
MANAGING CONSTRAINED DEVICES INTO THE

CLOUD: A RESTFUL WEB SERVICE

RELATORE: Prof. Michele Zorzi

CORRELATORI: Nicola Bui, Moreno Dissegna

LAUREANDO: Enrico Costanzi

A.A. 2012-2013

UNIVERSITÀ DEGLI STUDI DI PADOVA

DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE

TESI DI LAUREA

MANAGING CONSTRAINED

DEVICES INTO THE CLOUD: A

RESTFUL WEB SERVICE

RELATORE: Prof. Michele Zorzi

CORRELATORI: Nicola Bui, Moreno Dissegna

LAUREANDO: Enrico Costanzi

Padova, 23 Aprile 2013

ii

Abstract

The increasing popularity of the Internet of Things (IoT) brought to a new way to ap-
proach to internet communication. Interoperability among devices has become the key
to the success of the IoT, thus an efficient way to access and to programmatically man-
age devices, messages and interfaces is mandatory. Moreover, protocol and hardware
design has to deal with network components with server energy and computational
constraints. The Constrained Application Protocol (CoAP) addresses these needs: in
addition to being designed for power constrained environment it also simplifies the im-
plementation of a successful and intuitive paradigm such as REST. This feature makes
the development of smart web application easier, allowing programmers to build inter-
faces for the interaction and the management of a huge number of CoAP devices.
In this work we present a RESTful web application capable to provide high level, easy-
to-reach interfaces for the interaction with CoAP sensor networks. First, we describe
how virtual instances of physical devices are created in order to become a smart entry
point for querying network objects. Second, we explain how to exploit virtualization to
both lighten the workload of a physical network and generate complex queries. Finally,
we focus on the implementation of the application (on top of cloud based service), tak-
ing into consideration key aspects such as scalability, responsiveness and availability.

Contents

Abstract i

Introduction 1

1 Web Services for the Internet of Things 5
1.1 The Web as a Distributed Application Platform 5

1.1.1 RESTful Web Services . 5
1.2 Internet of Things . 8
1.3 Constrained Application Protocol . 9

1.3.1 Message Format . 9
1.3.2 Message Type . 10
1.3.3 Request Methods . 11
1.3.4 Options . 11
1.3.5 Core Link Format . 13
1.3.6 Observing Resources . 14
1.3.7 Proxy Operations . 14

1.4 Web of Things . 15

2 Requirements Analysis 19
2.1 Requirements . 21
2.2 Used Tools . 21

2.2.1 Spring Framework . 21
2.2.2 Hibernate . 24
2.2.3 Quartz . 24
2.2.4 jCoAP . 25

3 System Architecture and Development 27
3.1 Overview . 27

3.1.1 Involved actors . 27

iii

CONTENTS

3.1.2 Virtualized Entities . 28
3.2 Architecture Modules . 29

3.2.1 Access Module . 30
3.2.2 Processing Module . 32
3.2.3 Communication Module . 33

3.3 Access to Resources . 35
3.4 Resource Monitoring . 37
3.5 Triggering Resource Values . 39

4 Tests and Results 43
4.1 Testing Tools . 43
4.2 Performance Analysis . 45
4.3 Synchronous Resource Request . 45
4.4 Caching . 48
4.5 Notifications . 49
4.6 Comparison . 49

Conclusions 53

Bibliography 55

iv

Introduction

The Internet Protocol (IP) and the Hypertext Transfer Protocol (HTTP) have undoubt-
edly played a central role in the success of web technologies and their interoperability.
Along with the Representational State Transfer (REST) they helped in defining a stan-
dard for sharing resources through the Internet. Internet community has found and ex-
perimented its common language, enabling features unimaginable just few years ago.
Moreover, cloud computing technologies are enhancing performances, allowing ser-
vice to expand dynamically with respect to performance needs. Therefore, users find
themselves in front of a virtually infinite set of possibilities: content sharing, mash-up
and interoperability are made possible thanks to the combination of these technologies.

Giving public access to retained resources through REST Application Program-
ming Interfaces (API) is already a standard approach for many kind of applications and
services in the web. Distributed storage frameworks and social networks provide their
API (or Software Development Kit built upon them) to make their resources available
to the web. Cloud computing allow these services to be reliable, dynamic and scalable
with respect to their specific needs.

The burst of Internet of Things (IoT) brought the community to investigate on the
possible integrations between two worlds. On one side we have a well defined ap-
plication protocol, with apparently no limitations in terms of computational demand,
bandwidth and storage capacity. On the other side we are dealing with limited com-
putational resources, finite battery power, lack of elasticity and, above all, different
protocol stacks.

The Internet Engineering Task Force (IETF) has already faced many of the prob-
lems related to the standardization of a complete protocol stack which is feasible for
constrained environments. IPv6 over Low power Wireless Personal Area Networks
(6LoWPAN) [1] enables IPv6 on Low-power and Lossy Networks (LLNs), facilitating
the construction of networks independent from application gateways. Routing Over
Low-power and Lossy networks (ROLL) working group working on IPv6 Routing Pro-
tocol for Low power and Lossy Network (RPL) [2] to provide a suitable routing tech-
nique for smart and efficient inter-networking. However, networking is not enough.

1

INTRODUCTION

The infrastructure stack still lacks of a lightweight architecture enabling the easy inte-
gration of constrained devices with the Web. The Constrained RESTful Environment
working group is developing CoAP ([3]) to face these needs.

CoAP enables REST paradigm for constrained network and devices using IP pro-
tocol. Though it has several points in common with HTTP it has to be considered a
completely redesigned protocol whose main intent is the easy integration with the web.
In general, REST-based approach in Wireless Sensor Networks (WSNs) treats sensors
as they were Internet resources accessible through a Unique Resource Identifier and
the well-known request methods GET, PUT, POST and DELETE. A series of parallel
works describe the added value of CoAP. [4] discuss the feasibility of resource discov-
ery for machine-to-machine (M2M) interaction, while [5] provides a set of guidelines
for transparent cross-protocol proxying features. It is clear how in this case the Inter-
net of Things moves to the more precise concept of Web of Things (WoT), foreseeing
a scenario in which sensors and embedded devices are able to communicate through
web standards.

The feasibility of WSN management by means of cloud computing providers has
already been taken into consideration. [6] discusses about cloud challenges related to
sensor networks. [7] and [8] demonstrate how Amazon Web Services’ EC2 instances
can be used for environmental monitoring. [9] describes a functional architecture for
IoT virtualization over cloud computing aimed to lighten the workload of physical net-
works. Moreover, there are already a series of toolkits ([10], [11], [12], [13]) demon-
strating the empowerment of Internet of Things combined with RESTful applications.
Some of them are already deployed in a cloud computing environment.

We argue that despite the big number of solutions provided on line and in the
literature, further investigation is required in order to reach complete interoperabil-
ity between the regular internet and constrained networks. Most of the frameworks
work at the application level providing their modules to dynamically adapt receivers
to the huge number of different protocols. Rather than concentrating on standard-
ization, the approach seems to be oriented to follow the progress of communication
technologies and advertize new system functionalities as soon as they are understood
and integrated with new devices. REST-enabled sensor networks aim above all to re-
duce these integration issues letting developers to concentrate more on functionalities
rather than on mash-ups and technical aspects regarding protocols and their interoper-
ability. The work in [14] expresses the need to reach interoperability standardization
through the use of general-purpose transparent gateways along with REST-enabled en-
vironments. [15] describes a simple implementation of a proxy able to map HTTP
request into a CoAP request and vice-versa, underlining the importance of developing

2

a transparent implementation as soon as possible.
In this work we describe the design and the implementation of a user-based web

application framework for the management, the monitoring and the interaction with
CoAP networks. It supports resource virtualization with caching capability, event-
based notifications, resource monitoring and aggregated queries. The services are
made available to end users through RESTful interfaces, behind which a scalable and
modular infrastructure is built. Rather than concentrating our efforts on building inte-
gration modules for different protocols, we provide a systems which is highly integrate
with CoAP-REST environments.

The rest of the thesis is organized as follow. The first chapter will give a brief
introduction on CoAP features and on existing sensor frameworks. The second chap-
ter evaluates all the requirements for a web application to be suitable to be used in
replicated environments. The third chapter describes the system architecture and im-
plementation. Finally, the last chapter provides the results of some preliminary tests
on a simulated environment.

3

INTRODUCTION

4

Chapter 1

Web Services for the Internet of
Things

1.1 The Web as a Distributed Application Platform

The World Wide Web (WWW) has born in the early 90s as a platform to share docu-
ments on different computers interconnected with each other. From that moment, the
Web concept has continuously evolved. The resources to share in the Internet have
been gradually mutated, ending up to provide not only documents, static pages or mul-
timedia content, but also a distributed platform giving access to a large amount of
distributed applications. This evolution has been named Web 2.0 [16], referring to the
different approach required by users while interacting with web applications. Users do
not play a merely passive role, but they have become integral part of the Web we know.
Web 3.0 adds further potential to the capabilities of this interconnected network. This
nomenclature is strictly related to the concept of Semantic Web, in which every re-
source and service in the Internet is able to provide additional metadata suitable to
be queried and interpreted through automatic elaboration. This allows the Internet to
evolve autonomously, creating links and additional information based on the mash-ups
obtained by multiple self-descriptive resources.

1.1.1 RESTful Web Services

Web Services are software system designed for providing machine-to-machine interac-
tion over the Internet using Web technologies and standards. Web Services let different
applications to interact with each other independently on the programming language
or the operating system used to run them. This mechanism allows the realization of

5

1. WEB SERVICES FOR THE INTERNET OF THINGS

modular functionalities in a totally independent manner using platform that would be
otherwise incompatible. A Web Application can publish its functions and resources
making them available to the rest of the world.
Web services are built upon the combination of the Hypertext Transfer Protocol (HTTP)
and the Extensible Markup Language (XML). The first one provides a fully defined
protocol suitable for communication between endpoints, while the second one is used
to structure, store, and transport information. The most common approach when build-
ing web services is the one using Representational State Transfer (REST). REST rep-
resents an architectural style for the design of an application. In the last years have
become the most used paradigm for the realization of efficient and scalable web ap-
plications. What makes rest suitable for such a goal can be resumed in the following
points.

Resource Identification

Resources are the base entity for webs services. A resource can be any kind of ob-
ject on which an operation is allowed. REST allows to identify the resources us-
ing Unique Resource Identifiers (URI). A common development pattern suggests to
use self-explanatory URIs in order to link semantically the resource path to its real
function. REST URIs are composed concatenating the name or address of the server
hosting the resource, a path to reach the resource and, optionally, additional query
parameters to add additional data to the request.

Use of HTTP Methods

Action on resources are made possible by means of HTTP methods: GET, PUT, POST,
DELETE. REST maps these four methods into the higher level Create, Read, Update,
Delete (CRUD) operations.

HTTP Method CRUD Operation Description
POST Create Creates a new resource
GET Read Obtains the value of the resource
PUT Update Updates the value of an existing resource
DELETE Delete Deletes a resource

Table 1.1: Mapping Between HTTP methods and CRUD operations

6

1.1 THE WEB AS A DISTRIBUTED APPLICATION PLATFORM

Link Between Resources

The description of a resource can contain a link to other resources. Along with resource
high-level description, a client can obtain the URI of other resources, and access them
by simply following the provided path. Moreover, the use of URI to describe a resource
allows the linking between resources hosted by different applications or servers.

Resource Representation

Resource representation is usually decoupled from their internal representation. A
server encodes the resource in a format that can be requested by the client. REST
does not provide any restriction on the encoding format of the resource. However, a
common behavior is using standard Internet Media Types. The resource representation
is included in the headers server response. Similarly the client can include the accepted
formats in the HTTP request.

Stateless Communication

HTTP connections are stateless. This means that every request is totally independent
from other requests so that the communication consists only of independent pairs of
requests and responses. A stateless interaction does not require the server to maintain
any session-related information. In fact, if needed, the task of maintaining the state
of the connection is handled by the client. The main advantage of stateless commu-
nication is scalability. Firstly, the server don’t have to maintain information related to
the active connections coming from a potential big amount of clients. Secondly us-
ing stateless connections facilitates the management of clustered architectures. In fact
once the client initiates the communication its requests are not bounded to any session
retained by the server, and the communication can be moved transparently to other
replicated servers or functions.

REST interfaces are usually strictly linked to the concept of Application Program-
ming Interfaces (API). APIs are a set of functions and procedures to be used as in-
terfaces by software components. The use of API has the main role of providing to
programmers a set of functions that don’t require them neither to know the details of
the implementation, neither to write their own functions to reach the same scope. What
we are doing by making described web service interfaces accessible to programmers
is to provide RESTful web APIs.

The success of such a paradigm is under our eyes. Let us consider popular web ap-
plications like social networks or cloud storage framework. In addition to provide their

7

1. WEB SERVICES FOR THE INTERNET OF THINGS

own web platform, they also allow developers to access to collected data through web
API. The possibility to exploit web API to build any kind of application allows then
an unimaginable set of possibilities in regards to content sharing, application mash-up
and interoperability.

1.2 Internet of Things

The scenario we described in the previous section can be considered already mature.
Computers with apparently no limitations in terms of bandwidth, power consumption
and information processing have built a stable and scalable Internet, able to fit to the
needs of the users. The advent of the Internet of Things (IoT) ([17] opened a com-
pletely new landscape in regards to the possibilities to connect the planet. Not only
people, but also any kind of device able to process information can be interconnected
an cooperate in order to build the Future Internet . IoT refers to object that historically
are not considered to be connected to the Internet:

• electrical devices usually absent from sophisticated electronic

• embedded devices containing electronics components

• non electrical objects like food packages, clothing and so on

• wired and wireless sensors and actuators

The Internet of Things foresee a scenario in which direct interoperability between the
big Internet and the so called things is allowed by means of standardization process
aimed to facilitate the communication between these apparently separated worlds. The
amount of interconnected devices is growing day by day. Over the next years this
number could grow exponentially, increasing the Internet’s size and capability. How-
ever, the communication with small devices and smart objects has to deal with the
strong limitations of these components. Embedded nodes can have limited processing
and memorization capabilities due to the costs of production and their reduced dimen-
sions. Along with the power constraints comes the need to manage efficiently their
power consumption, especially when considering wireless sensors. These power and
battery limitations also lead to a networking issue. In order to save resources devices
are sleeping are most of their time, making unfeasible the possibility to reach them as
soon as it is needed.

The work in [18] focused the attention on three IoT-related interoperability goals
that have to be achieved in order to reach its full potential. First of all, an architectural

8

1.3 CONSTRAINED APPLICATION PROTOCOL

reference model have to be outlined in order to enhance the interoperability between
different IoT systems. Secondly, the integration of IoT architecture with the service
layer is necessary to facilitate the communication and build the future Internet. Thirdly,
the IoT networks must be provide with a scalable lookup and discovery of resource
location and names.

1.3 Constrained Application Protocol

The IETF has already standardize many protocols to incorporate resource constrained
devices with the Internet. As already mentioned, 6LoWPAN adapts IPv6 to low-power
and lossy networks working on IEEE 802.15.4 wireless standard. RPL provides a
routing protocol for IPv6 fluctuating nodes. Efficient XML Interchange (EXI) has
already been selected by the World Wide Web Consortium (W3C) as the standard
XML compression for constrained environments. The Constrained Application Pro-
tocol (CoAP) [3] described by Constrained RESTful Environments (CoRE) Working
Group is meant to complete this stack in order to provide a complete set of functions
partially solving the aforementioned interoperability issues.

CoAP describes a RESTful client-server architecture for constrained networks. It
implements a subset of HTTP functionalities, but rather than being a compression of
this protocol it presents a completely redesigned structure in order to be supported by
devices with limited resources. CoAP works on top of the User Datagram Protocol
(UDP). A messaging layer built on top of it provides optional reliability associating
requests and responses. CoAP sensors are meant to act both as a client and as a server,
in order to allow machine-to-machine interaction. Message exchange is based on re-
quests made to resource values accessible through Unique Resource Identifier.

1.3.1 Message Format

The lightness of CoAP can be noticed first by observing the structure of a CoAP mes-
sage (1.1).

CoAP messages are composed by a fixed-length 4-byte header, followed by a series
of options. The header is constructed by:

• the first two bits indicate the version of the protocol

• the second group of bits indicates the message type: Confirmable (CON), Non
Confirmable (NON), reset (RST) and acknowledgement (ACK).

9

1. WEB SERVICES FOR THE INTERNET OF THINGS

Figure 1.1: CoAP Message Format

• 4 bits are needed to indicate the token length. So far only a length between 0 and
8 bytes is allowed. Other values must be processed as message errors.

• 8 bits to indicate the various types of responses (1-31) and requests (64-191). 0
value is allowed for empty messages, the remaning values are reserved.

• the last 16 bits of the header contain the message id, used to identify message
duplication and to match message of type response/request to messages of type
reset/acknowledgement;

• the rest of the message can contain optional options and values, depending on
the situation

1.3.2 Message Type

As mentioned in the previous section, CoAP provides four types of messages:

Confirmable (CON) Confirmable messages are the way to provide reliability over
the UDP protocol. When a client sends a confirmable message to a server, the
server has always to send back an acknowledgement. In the case a confirmable
message is not acknowledged by the server an exponential backoff mechanism is
designed for message retransmission. The timeout must be doubled every time
the acknowledgement is not received in time.

Non Confirmable (NON) A non-confirmable message don’t have to be confirmed by
the server. The client has no chance to know if its request has reached the server.
He might alternatively send the same message multiple times. This type of mes-
sage is particularly suitable for periodic polling of resources.

Reset (RST) The reset message communicates to the client that something has gone
wrong during the communication. The reasons of a reset connection are usually
explained by the message code contained in the message. As for ACK messages,

10

1.3 CONSTRAINED APPLICATION PROTOCOL

a reset message is associated to the request by means of the message id and must
be empty.

Acknowledge (ACK) As already said, an acknowledgement have to be sent as a re-
sponse of a CON message. In the case the server has to respond with message
containing a payload, the ACK can be used to piggy-back the response. In the
case the ACK and the message content are sent separately, we are talking about
separate response. Since the message id has to be changed for every retransmis-
sion, a separate response is sent using a different one. The client receiving the
response has to acknowledge it using the new message id. In this case request
and response match thanks to the use of token option.

1.3.3 Request Methods

CoAP inherits the four main HTTP request methods (GET, PUT, POST and DELETE).
Every CoAP request is based on the URI of the requested resource and the method used
to access them. Responses are identified by means of status codes. Also in this case
the similarity with http can be noticed.

1.3.4 Options

CoAP options provide additional information to message exchange. They are com-
posed of a numeric code, a format and a length. For some of them a default value is
provided. They are divided in two groups: critical (odd code value) and elective (even
code value). The difference stands in the behavior to adopt in the case these options
are not recognized by the server. An unrecognized critical option makes the server to
reset the connection by means of a RST message. On the contrary, an elective option
is simply ignored in the case it’s not recognized properly. Another possible separation
is the one between repeatable options and non-repeatable options. Whether a repeat-
able option is sent more than once in the same packet the server must treat it as an
unrecognized option. We provide now a list of the CoAP options.

Uri-Host, Uri-Port, Uri-Path, Uri-Query

Uri-Host, Uri-Port, Uri-Path and Uri-Query identify univocally the targeted resource.
They are separate in such a way that no percent encoding is necessary and the full URI
can be reconstructed easily.

• Uri-Host option identifies the internet name of the host where the resource is
located. It can be either a name or an IP address.

11

1. WEB SERVICES FOR THE INTERNET OF THINGS

• Uri-Port identifies the port on which the requests have to be made

• Uri-Path is a repeatable option containing in order all the components of the path
identifying the resource in the device.

• Uri-Query allows to specify additional parameters to the resource query

Proxy-Uri, Proxy-Scheme

Proxy-Uri and Proxy-Scheme allow to specify a forward proxy acting as intermediary.
The must take precedence on the parameters used to build the target URI, in such a
way the request is processed correctly by the proxies.

Content-Format

It indicates the content format of the message payload. So far, the acceptable values
are a subset of the internet media types (also known as MIME).

Accept

Accept is a repeatable option available to clients to specify which content format is
acceptable in the response payload.

Max-Age

Max-Age indicates how long the resource can be cached before it’s considered not
fresh by the server. This is the basic function used by CoAP protocol to support caching
and save computational resources into the network

ETag

The ETag identifies opaquely a particular representation of a resource. If the server
supports it it’s able to mark every returned value. When the client uses it, the server is
able to confirm if the retained resource is still valid without sending its value again.

Location-Path, Location-Query

These options contain the relative URI and a query string. It is used to indicate where
the resource has been created in response to a POST request. While Location-Path is
non-repeatable, Location-Query can be set multiple times to indicate all the queries
parametrizing the resource.

12

1.3 CONSTRAINED APPLICATION PROTOCOL

If-Match, If-None-Match

If-Match is used for conditional resource request. It can be used with the Etag value or
can be sent without content. In the first case the server responds only if the Etag value
matches with a valid resource, in the second case the condition is satisfied just if the
targeted resource exists. If-None-Match behaves similarly, but carries no value. It is
useful mainly to check if the resource exists and prevents from accidental overrides.

1.3.5 Core Link Format

A key feature for machine-to-machine interaction is resource discovery. Core Link
Format ([4]) has been defined to allow this feature in Constrained RESTful environ-
ments. Again, HTTP protocol and in particular Web Linking serialization ([19]) have
been the start point for the definition of this standard. Resource discovery in Core Link
Format makes the description of the resources available on the well-known interface
./well-known/core of each server. By this way, every server is provided with a
default entry point meant to provide a description of its resources. Every resource is
described by means of its Unique Resource Identifier, a set of attributes and, if needed,
the relations with the other resources. We underline how the REST paradigm remains
the key point to access to these lists.

We won’t provide the recursive definition of the Core Link Format in details, we
list just some of the parameters provided along with each resource:

Title The title parameter has been inherited by Web Linking, and provides a human-
readable description of the resource.

Type The type contains the media type of the returned resource. Only one type pa-
rameter per resource is allowed.

Resource Type (rt) This attribute contains a string used to assign an application-
specific semantic type to the resource. We can state that while the title is human-
readable, the resource type is application-readable.

Interface Description (if) indicates opaquely a specific interface definition.

Maximum Size Estimated (sz) in the case the size of the resource exceed the UDP
MTU this attribute can be used to indicate approximately the expected size of
the response.

13

1. WEB SERVICES FOR THE INTERNET OF THINGS

1.3.6 Observing Resources

CoAP provides a publish/subscribe mechanism [20] where a client can declare to the
device its interest in receiving updates as the state of the resource changes. An ex-
tended GET requests causes the server to register the client in the list of the observers
for the resource. Every notification is an additional response sent by the server in reply
to the GET request. Figure 1.2 shows an example of the CoAP observation. It can be

Figure 1.2: Resource observation between CoAP client and server

noticed that:

- the matching between the request and the notifications is made using token op-
tion.

- if the request for observation is marked as confirmable the server has to sent
confirmable notification that must be acknowledged by the client. This feature
allows the server to establish if the client is still interested in the resource.

The observe value in a response is an indicator used to understand the order of
notifications. The client has to consider it in order to understand if the last received
notification is effectively the last one sent by the observed server.

1.3.7 Proxy Operations

The enablement of REST features enhances the communication between CoAP end-
points, however the interoperability with the Web reach its completeness only by let-
ting devices to communicate easily with HTTP nodes. For this reason, proxy features

14

1.4 WEB OF THINGS

play a fundamental role for the full interoperability of devices with the Web. Generally,
the use of intermediaries allows the endpoints to communicate transparently with inter-
mediaries that behave like a server on the client side and as a client for the destination
server. In CoAP environments the intermediaries can simply forward a CoAP request
or perform a cross-protocol translation between CoAP and HTTP. The characteristics
that CoAP inherits from HTTP make this translation easier. The work in [5] provides a
series of guidelines for consistent and efficient HTTP-CoAP mapping. CoAP methods,
status code, content type are all designed in order to provide a straightforward mapping
in order to communicate with the Internet.

Independently from the mapping features provided by the proxy, CoAP supports
both forward-proxies and reverse-proxies, let’s analyze the difference between them.

Forward Proxy a request made through a forward proxy requires the client to indicate
the destination (next-hop) of the request. This is done by means of proxy-uri and
proxy-scheme options we listed in section 1.3.4. In this case the client is aware of
the address of the server and the proxy only needs to rebuild the CoAP message
and to forward it to the received destination.

Reverse Proxy a reverse proxy determines the destination of a request by itself. A
client interacting with this kind of proxy is not aware of the real endpoint to
which its request is forwarded, and sees the proxy as the server for all its re-
quests.

1.4 Web of Things

The IoT has focused on standardizing connectivity in a wide variety of constrained
environments. The logical consequence of this evolution is to build high level applica-
tions concentrating the efforts on the application layer. RESTful principle has already
been recognized as a de-facto standard for the success, the modularity and the scala-
bility of the Web. As mentioned, CoRE concentrated on make things suitable for this
paradigm in order to promote the development of applications involving users, smart
things and the Web. CoAP is the most valuable result of this research.
The Web of Things (WoT) [21] considers the IoT as an fundamental component of In-
ternet communication and aims to integrate web protocols and technologies to rapidly
build applications exploiting IoT objects. Solutions such as Axeda1 or AirVantange2,

1http://www.axeda.com/
2http://www.sierrawireless.com/airvantage

15

http://www.axeda.com/
http://www.sierrawireless.com/airvantage

1. WEB SERVICES FOR THE INTERNET OF THINGS

IoBridge3 achieved the goal of connecting things to the Web, but only using proprietary
software and interfaces. On the contrary, the WoT vision focuses on sharing system
capabilities to easily integrate different environments.
The community has already experimented an increasing variety of toolkits allowing the
virtualization of networks and providing public access to smart objects through web
API and simply using a web browser. We list some examples.

Cosm

Cosm [10] is a scalable web platform that connects different types of devices with
applications to provide real-time control, monitoring and data storage. Cosm collects
devices data and aggregates them in the so called data feed. It provides also open API
for individuals and companies so that they can rapidly create new devices and interact
with their own products without having to build any infrastructure. Cosm implements
also triggering and notification functions for real time monitoring of resource values.
Moreover, it takes care of the social aspect of the Web of Things. Devices data (data
feeds) can be shared with other users using a smart key sharing system. If no limitations
on the access of feeds are required, the device can be also made totally public.

Paraimpu

Paraimpu [13] in highly focused on the integration of physical and virtual sensors
to web and social network. It is built around the concepts of sensor and actuators.
A virtual sensor can be associated to one or more actuators able to perform some
predetermined action as soon as a particular predefined condition is met. This can be
considered an explicit implementation of triggering features provided by Cosm.

Open sen.se

Open sen.se [12] also aims to provide a set of tools for collecting data. Users can mon-
itor their data using sense board: a name used to indicate the possibility of visualize
data on a board containing the output of various sensors. Data are collected though the
use of channels (physical devices, web forms, generic connected data sources) while
the processing is managed by internal applications. A key feature confirming the need
of interoperability in the WoT is underline by the fact that open sen.se explicit refers
to Cosm data feeds as a possible source for data collection.

3http://www.iobridge.com/

16

http://www.iobridge.com/

1.4 WEB OF THINGS

Wotkit

WotKit [22] is born as a response to developers that already have to deal with wide
range of API provided by as many IoT toolkits. Besides providing an implementation
of a monitoring framework for the Web of Things, the work in WotKit is aimed to point
out a series of requirements and open questions to be taken into consideration when
developing in the WoT world.

Nimbits

Nimbits [11] allows to register and process historical values from multiple resources.
It can be used as a backend infrastructure for applications, taking care of managing,
storing and processing data collected from different applications. Data collection is not
bounded to the use of devices, but provides an interface for applications to push the so
called nimbits data point into the system.

17

1. WEB SERVICES FOR THE INTERNET OF THINGS

18

Chapter 2

Requirements Analysis

In this section we provide a brief description of system functionalities and require-
ments, along with the tools we used to develop it. A detailed description of the appli-
cation is provided in chapter 3.

We aim to develop a web service allowing users to connect to REST-enabled CoAP
devices and manage them transparently through the web. No user interface has been
developed. Rather than providing a user interface we primarily focused on providing
REST interfaces upon which any kind of application can be built. To make use of sys-
tem features and to obtain access permissions, users have to use an application which
has previously been registered by developers. Thanks to REST interfaces developers
are able to interact with sensor networks, collecting data, instruct the web service to
push notifications if some predefined conditions are met. Every device, resource or
service can be identified by a Unique Resource Identifier accessible via HTTP meth-
ods (GET, POST, PUT and DELETE). Thanks to this approach, users and developers
don’t have to be aware on the technical details regarding network implementation but
will interact with virtualized instances of devices.

The use of a database along with the virtualization of resources is especially meant
to lighten the workload of constrained networks we’re dealing with. Besides providing
basic storage features of historical data and devices information, the web service must
be also able to cache resource values. In this case a request must be forwarded to the
devices only if the previously obtained resource values are considered not fresh.

The whole application must have two entry points. On one side it responds to user
requests performed by means of registered applications. On the other side it has to
interact with CoAP sensor networks by both sending requests and receiving data asyn-

19

2. REQUIREMENTS ANALYSIS

chronously. Received values and devices information have to be stored in a database.
We underline how in the last case the resources values are obtained both as a response
of a request or as a notification initiated by the observed resource. The dynamic nature
of sensor networks encouraged us to take into consideration the possibility to scale
system resources in order to face unpredictable computational demand. We want to
make sure that improvised workloads caused by the sensor networks don’t affect the
performances in terms of responsiveness. These aspects leads to the need of build a
scalable infrastructure in which system components able to cooperate with each other
without creating conflicts.

We provide now a short list describing briefly the typical use case flow.

• developers can register their application. The registration allows them to receive
a key-pair through which the system identifies the origin of the generated traffic.
All the APIs (apart from the ones used for asynchronous notifications) require a
user token which can be obtained only by means of registered resources.

• a user logs in into the system using its login and password, obtaining an access
token. The access token is necessary to perform all the basic operations.

• a user registers its devices, specifying their address, the optional intermediaries
and other human-readable information, like names and tags. A user owns the
devices he registers using our application. Unless he decides to share them, the
information related to these devices remains accessible only using user creden-
tials.

• a user registers the resources associated with the device. This must be done
manually via API or by instructing the server to query the Core Link Format
description (see section 1.3.5) to the device.

• the user must be able to instruct the application to poll devices periodically, or
to register to CoAP devices as observer (see 1.3.6).

• all the values received from a remote device must be stored persistently and
processed. The user is able to set trigger conditions upon which different types
of notification can be sent as soon as the new value is stored into the database.

20

2.2 REQUIREMENTS

2.1 Requirements

Given the above consideration we resume technical requirements to consider in the
definition of the system architecture.

• Queuing Requests. We will describe how the application is built upon compo-
nents deployed in different servers. These component are constantly exchanging
requests between them. We must ensure that all the messages are queued and
handled properly avoiding requests to be lost due to inefficient management of
multi-threading and queuing mechanism.

• Scalability and concurrency. Different instances of the same application must
cooperate without interfere with each other. Both database transaction and con-
nections to device must be atomic and isolated.

• Easy Deployment. The application components must be easy to deploy. The
need to deal with a scalable architecture require components to run out of the box
without needing any instance specific information and without complex config-
uration settings.

• Asynchronous Communication. The potential amount of simultaneous con-
nections could downgrade servers’ performances. When possible an asynchronous
publish/subscribe mechanism can free machine resources and enhancing respon-
siveness.

2.2 Used Tools

The core components of the framework are Java web application leveraging several
additional tools and libraries. In this section we describe the main ones.

2.2.1 Spring Framework

Spring Framework is an enterprise Java programming framework that provides a set
of functionalities to easily develop any kind of java application. Although it’s suitable
even for stand-alone applications it’s well known in the community as an excellent tool
for developing web services.
There are mainly two functionalities of Spring that made it appropriate for the devel-
opment of our application: RESTful Model and View Controllers (MVC) and depen-
dency injection.

21

2. REQUIREMENTS ANALYSIS

Model and View controller is an architecture pattern whose main idea behind is to
separate the software components:

• Model. The model supply the methods to access to application data

• View. The view is responsible for displaying the information to the users

• Controller. The controller receives the requests forwarding them to the view,
the controller or both

The idea behind the Dependency Injection is to have an external component (as-
sembler) which takes care of creating objects and their dependencies and to link them
through the use of injection. The injection can be done using a constructor or a setter
method and allows to decouple the creation of the object from the creation of its de-
pendencies. Spring provides dependency injection features through the use of beans
and annotations.

The Spring DispatcherServlet receives HTTP requests and forwards them
to the controllers. The association between the request and the controller method that
will handle the request is made through the RequestMapping annotation. All these
mappings are straightforward so that every request can be mapped in a unique con-
troller method. At this point the controller parses the needed HTTP parameters and
forwards them to the service layer. A Spring service owns the business logic of the
application. Apart from performing the most power demanding operation it can be
viewed as a forwarding point handling information exchange between the controllers
(acting as interfaces for external applications) and data management classes. The de-
pendencies between these three layers is handled using dependency injection. Figure

Figure 2.1: An example of HTTP URL that can be handled by a controller

2.1 illustrates an example of URL handled by the DispatcherServlet. The context string
identifies the servlet that has to handle the requests. After the servlet has been called
the control is passed to the RequestMapper that will find the proper association
between the pattern and the controller which is responsible for it. The controller in
listing 2.1 is an example of a controller suitable to satisfy this request.

22

2.2 USED TOOLS

Listing 2.1: An example of a Spring controller with an auto-wired dependency
1 @RequestMapping("/coap")

final class ResourceController{

3

@Autowired

5 AuthenticationService authenticationService;

7 @RequestMapping(method=RequestMethod.GET, value = "/{device}/{

resource}")

@ResponseStatus(value = HttpStatus.OK)

9 @ResponseBody

public DataEntryDTO getLastValue(@RequestHeader(value="UserKey",

required=false) String key,

11 @PathVariable String device, @PathVariable String resource){

13 User user = authenticationService.authenticate(key);

15 DataEntryDTO dt = rService.getUpdatedResource(device, resource,

user);

return dt;

17 }

}

• Autowired is the annotation needed to inject the service dependency into the
controller. No constructor is needed: the controller can use the service as soon
as its methods are called by the DispatcherServlet.

• RequestMapping tag on the top of a Controller class is used to map every
request starting with /coap while the same annotation upon the method com-
pletes the mapping. By this way every HTTP GET request on the URL showed
in figure 2.1 will be handled by the method.

• the ResponseStatus defines the HTTP response status to return to the client
if the request and its processing have been performed correctly.

• ResponseBody is the core of the View part. In fact, it allows the server to
automatically bind every response object into the format requested by the client
in the Accept HTTP header.

• RequestHeader parses the HTTP header looking for the one with key UserKey.

• PathVariable maps the variables into the controller path into the parameters
of the method.

23

2. REQUIREMENTS ANALYSIS

Controllers are only the surface of the whole processing engine that stands behind the
web application. Section 3 will provide a description of the back-end functionalities
handled by auto-wired services.

2.2.2 Hibernate

Hibernate is an Object/Relational persistence and query service taking care of mapping
Java classes into relational database tables. Moreover it provides several facilities to
access to database at different level of abstraction, from the plain SQL query to the
high level and powerful Criteria object. The usage of a query system with respect to
another depends on the needed level of performance and complexity.
Hibernate integrates perfectly with the Data Access Object (DAO) design pattern. The
idea behind DAO pattern is to decouple object persistence and data access logic. The
interface provided by a DAO doesn’t depend neither on the implementation of the
database nor on the query system, allowing the developer to change the persistence
mechanism without the need to re-engineer the application logic.

Figure 2.2: Hibernate work schema combined with DAO data access pattern

Moreover, combining Hibernate and Spring functionalities it’s possible to define
easily the isolation level of single java methods. Exploiting these features properly
helps in transferring the required isolation to well defined part of Java server code.

2.2.3 Quartz

Quartz Enterprise Job Scheduler is generally used for complex scheduling in Java
applications. In respect to Java Timer Tasks, Quartz presents several advantages, let’s
look at the main ones:

Cron Expressions Job scheduling can be defined using the powerful Unix cron syn-
tax. In particular, CronTrigger objects can be programmed to be fired at

24

2.2 USED TOOLS

specific dates and time. Using this capability it’s possible to schedule actions in
a more complex way in respect to simple periodic scheduling, allowing expres-
sions like every monday at 8am or every working day every 10 minutes.

Task Persistency Periodic tasks can be made persistent thanks to the use of JDBCJobStore
module. JDBCJobStore works with nearly every database and is able to store
there all the scheduling information. This means that even if the application
crashes or needs a reboot, the information related to the already scheduled jobs
won’t be lost.

Clustering Support Quartz can be used in clustered environments. Combining it with
JDBCJobStore it handles automatically the concurrency between the different
instances of the cluster, in such a way that every job is fired only once when
needed.

The combination of these three features allows the system to schedule new jobs dy-
namically, storing them on a persistent storage while making them available to all the
instances of a replicated service.

2.2.4 jCoAP

jCoAP is a Java library implementing many CoAP functionalities. Its implementation
is not suitable for constrained devices but fits well for the integration with Java based
web services and platforms such as smartphones (e.g. Android). jCoAP has been
developed in the University of Rockstock and sponsored by Siemens Corporate Tech-
nologies. Though its development is still since almost one year it is the most complete
Java library for the scope. Apart from client and server implementations, jCoAP pro-
vides also CoAP-HTTP and HTTP-CoAP proxying features. In this thesis we made
use of a modified version of jCoAP client and and jCoAP server. The reason why we
didn’t take advantage of the proxy implementation are explained in the next sections.

25

2. REQUIREMENTS ANALYSIS

26

Chapter 3

System Architecture and Development

In this section we illustrate the features of our web service with regards to software
development and network architecture. We describe a flexible and scalable framework
which aims both to manage efficiently large amounts of sensors and to provide high
level interface virtualization for end users to access transparently to the information
gathered from the devices. We aimed to make the infrastructure suitable for develop-
ers. The application implements REST-style architecture over HTTP. All the entities
and the functionalities of the system are identified by a persistent Uniform Resource
Identifier, while every request and response is formatted using XML or JSON. The
application implements some of the typical functionalities required when managing
sensor networks. We will describe in details how the system is able to manage event-
driven notification, task scheduling and query aggregation.

3.1 Overview

3.1.1 Involved actors

Before describing the architecture in detail we provide a brief overview on the actors
involved in the communication process.
The web service can be queried by an HTTP client. The client can be any type of appli-
cation built upon public API provided by the RESTful server. The RESTful server pro-
vides the public access to all system functionalities. It receives REST requests from the
clients, accesses to the database, manages computational demanding operations. It can
be instructed to query the devices either using its own embedded CoAP client or for-
warding all the requests to the independent data module. Devices can be reached both
through a CoAP Gateway or through a transparent HTTP proxy. A MySQL database
allows the RESTful server to store all relevant information, from devices information,

27

3. SYSTEM ARCHITECTURE AND DEVELOPMENT

to trigger values up to the historical information obtained by resources. Figure 3.1
shows the complete scenario.

Figure 3.1: Network structure

3.1.2 Virtualized Entities

Making the IoT available to end users forcedly takes us to the concept of virtualiza-
tion. Virtualizing wireless sensor network is meant to provide an abstraction layer
hiding technical implementation details to end-users. Though by now it’s not our case,
it’s particularly suited for framework supporting networks and protocols of different
nature. Virtualization provides the same interface independently on which kind of sen-
sor is hidden behind. We provide here a description of the virtualized entities upon
which the framework is built.

Physical devices are the entity related to all the information needed to reach the
CoAP sensor through the internet. The IP address, the listening UDP port, MAC ad-
dress and the owner are set during device registration allowing the web service to
redirect request to the proper end point.

CoAP sensor cannot always be queried directly. Facing the need of interoperability,
the Internet of Things has to deal with intermediaries able to translate the traffic from

28

3.2 ARCHITECTURE MODULES

one protocol to another. Moreover, though IPv6 is mature enough for addressing sen-
sor networks and devices, IPv4 networks and their NAT-related drawbacks still have to
be considered. For these reasons one or more CoAP gateways can be associated with
a physical device. The web service makes use of CoAP proxy features to build CoAP
packets using Proxy-Uri option and to address the packets properly in both the cases.

Physical devices don’t provide the needed abstraction level to reach our scope. A
higher level access point to devices is provided by logical devices. A logical device
is identified by a unique numeric identifier and supply additional information like a
sensor name, a description and tags, allowing to identify nodes in a human readable
manner. A logical device represents an abstraction of a physical device: its represen-
tation has the goal of making the access to resources as transparent as possible. A
physical device can be associate to one or more logical devices during its ’virtual’ life-
cycle. However, this can be possible only for one logical device at time. This feature is
meant to face the situation where a physical CoAP mote changes its location or scope.
In this case the system behaves as another sensor had been created and the physical
device is linked to a new logical one. Data can then be collected using the new logical
device while still keeping frozen the information related to the previously unlinked one.

The creation of a logical device finally allows to instantiate virtual resources. Every
CoAP device provides the access to its sensors through the paths that identify them.
Even if it is virtualized the framework keeps a resource accessible explicitly by using
its CoAP path (see section 3.3). Once the device has been reached the resource is
made available through the four familiar HTTP methods applied to the resource path.
As described in section 1.3.5, the Core-Link format is suitable for REST enabled sen-
sor networks to allow resource discovery in M2M application. This feature can be
exploited by the user and the framework will be able to parse all the public resources
made available using a GET to ./well-known/core resource path on CoAP well-
known port. In the case resources are not public, or simply the CoAP server don’t
implement resource discovery features, it’s possible to insert all the resources manu-
ally.

3.2 Architecture Modules

The functionalities of the framework can be divided in three distinct modules: the
access module, the processing module and the communication module. The access
module provides the interfaces and the data access to the virtual instances of the de-

29

3. SYSTEM ARCHITECTURE AND DEVELOPMENT

vices, the processing module elaborates the information and manages scheduling, noti-
fication, triggering and data elaboration, the communication module is responsible for
direct communication with the CoAP networks. Figure 3.2 summarizes the functions
of the modules.

Figure 3.2: Schema of the application modules and functions

3.2.1 Access Module

The access module is mainly handled by means of Spring controllers. In section 2.2.1
we describe how controllers are the entry point to access to all the functionalities of
the application and are then responsible for passing the correct information to the other
modules. Part of the their customization has already been treated, however we list here
the pre-processing and the post-processing operations performed by each controller.

• validating the received XML inputs

• parsing incoming HTTP parameters into predefined java classes

• binding outgoing requests into the format indicated in the HTTP Accept param-
eter, which can be either XML or JSON

• handling runtime exceptions and translates them into a defined HTTP status code

30

3.2 ARCHITECTURE MODULES

Every controller and its methods are strictly bounded to a well defined set of func-
tions accessible through REST requests. In addition to provide a straightforward map-
ping between the requests and the controllers, the path chosen for each controller aims
also to be human readable. In this sense the name and the path of each controller is
semantically bounded to its features. A brief description of our controllers gives an
overview on all the features provided by the web service.

AuthenticationController Manages the authentication of the user through
several different applications. The web service implements the OAuth protocol:
this controller returns both the refresh and the access token. With this token the
user will be able to access to its devices and resources

PhysicalDeviceController Provides CRUD (Create, Read, Update, Delete)
operation on data related to physical devices.

LogicalDeviceController Provides CRUD operation on data related to logi-
cal devices.

TriggerController A controller to define threshold on resource values. Using
this controller a user can define triggers upon which a well defined set of tasks
can be executed. These tasks comprehends email notification, HTTP PUSH on
external servers, interaction with already registered resources.

SchedulingController Using this controller the user can instruct the server to
poll a resource periodically from one of the already registered devices.

ResourceController Controller needed to access and modify all the information
related to CoAP resources, like historical values, tags, devices and so on. It
also provides the REST API to interact with the devices directly via http in a
transparent manner.

AsyncNotificationController Allows the asynchronous communication be-
tween processing module and the communication module. Moreover it provides
to the lower level to push notifications received from the network.

The registration of new devices, the authentication, the tagging features and more
in general data management have been widely described in [23] and they are out the
scope of this discussion.

31

3. SYSTEM ARCHITECTURE AND DEVELOPMENT

3.2.2 Processing Module

Processing module contains the core functionalities of the entire application. Apart
from handling the communication between the other two modules he’s also responsible
for database access through DAO objects. Figure 3.3 illustrates the behavior of this
module.

Figure 3.3: Behavior of processing module when querying and receiving new resource
values

Spring services are responsible for managing the flow showed in the figure. Again
we’re dealing with Java classes with different separate goals. Since the task separation
is very similar to the one listed in the previous section we won’t describe all the de-
veloped services. Still, we have to focus the attention only on the one responsible for
external communication: ResourceService.
ResourceService manages the access to both virtual and physical resources. It is
used to recover resource information, historical values and to interact with the com-
munication module in order to obtain an updated resource value. Notification mod-
ule and data handler are nothing more than functions called by ResourceService
when needed. These methods inherit the generic behavior of services in accessing the
database through DAO objects. On the other hand quartz scheduler and jobs behaves
differently. While the request for a new job has forcedly to make use of controller and
services, the access to the database is handled autonomously by quartz library.
All the outgoing requests for the communication module are queued and consumed by
means of a thread pool, in particular using Java ThreadPoolExecutor. A request

32

3.2 ARCHITECTURE MODULES

is intended to be a task to be executed by one of the threads handled by the thread pool.
The parameter to construct this object explains the implied advantages:

Core Pool Size is the number of threads that are always available in the pool of threads

Maximum Pool Size is the maximum number of threads to allow in the pool

Keep Alive Time if the number of threads is greater than the core pool size the thread
remains available even after having terminated its tasks. This allows the thread
pool to reuse it for future tasks without instantiating new tasks.

Working Queue is the queue used to hold tasks before they are executed.

In short, a thread pool allows the application to queue the requests and handle them
exploiting the multi-threading paradigm. In addition to provide an high level queuing
system it also helps to avoid the exhaustion of the thread pool handled by the servlet
container. Other feature of thread pools, like rejection handler and dynamic variation
of the parameters have to be investigate to enhance even more performance and re-
source scaling.

Outgoing messages can be both synchronous or asynchronous, depending on the
source of the request. In the following sections we will investigate these use cases.

3.2.3 Communication Module

In a preliminary development phase the communication features were handled by the
processing module. In this sense the service processing module and the communica-
tion module resided on the same physical (or virtual) machine. Although this approach
reduces latency and seems to improve performances it ends up presenting several draw-
backs.

First of all, hard coded integration of a CoAP client within the server code strictly
links the entire application to a unique CoAP implementation. Though jCoAP fits
properly around the need of developing a complex distributed Java application, it is
only one of the known implementations of this protocol. Good surveys of CoAP and
purposed implementations have been provided in [24] and [25]. Thus, looking at the
option of adopting other CoAP implementation in the future forced us to enhance the
flexibility of the system.

33

3. SYSTEM ARCHITECTURE AND DEVELOPMENT

Secondly, a CoAP response can take seconds or even minutes to reach the request
server. CoAP defines simple message layer for providing a reliable connection on
top of UDP protocol. The comparison in [25] confirms considerably performance im-
provements with regards to HTTP. However, the need for the web service to manage
hundreds of connections simultaneously take us back to performance consideration.
Retransmission is based on two parameters: the maximum number of retransmission
and the timeout value. The timeout value is doubled every time a retransmission is
needed. As a matter of facts, using default values indicated in table 3.1 the time from
the first transmission of a CON packet and the time when the client gives up accepting
acknowledgements (the so called MAX TRANSMIT WAIT) is 93 seconds.

Name Default Value
ACK TIMEOUT 2 seconds
ACK RANDOM FACTOR 1.5
MAX RETRANSMIT 4

Table 3.1: CoAP Default Transmission Parameters

Thirdly, transparent HTTP-CoAP mapping and vice versa is still under investiga-
tion. We don’t want to exclude a possibility of transforming our module in a simple and
efficient implementation of a transparent proxy. However there are still some issues to
face in order to reach this goal. As well as HTTP, CoAP don’t provide multi-hop proxy
features. Thus seeing the communication as a simple mapping of an HTTP request into
a CoAP message collides with the need of transmitting explicitly the intermediary from
the processing module to the communication module.

These considerations led us to the development of a completely independent mod-
ule managing communication with external networks. For now the communication
module is another web application leveraging the Spring framework and receiving in-
puts through HTTP requests. In respect to the rest of the application the communica-
tion module is only responsible to translate internal requests into CoAP messages to
be delivered externally. Figure 3.5 summarizes this behavior in the simplest case.

A very important advantage of choosing a network protocol for information ex-
change between modules is that they can be decoupled and deployed in different physi-
cal (or virtual) machines. In a situation in which a lot of connections have to be handled
simultaneously the possibility to replicate the network modules significantly reduce the
workload of the processing modules. Performances can be improved even more if we

34

3.3 ACCESS TO RESOURCES

Figure 3.4: Synchronous communication between modules

consider the possibilities for the two components to communicate asynchronously. A
fire-and-forget scenario becomes then suitable for the machines receiving user requests
and processing data. Figure 3.5 illustrates this situation.

Figure 3.5: Asynchronous communication between modules

We are aware that HTTP is not meant for asynchronous message exchange. Other
asynchronous protocol like Java Message Service (JMS) [26] or the Asynchronous
Message Queuing Protocol (AMQP) [27] will be considered for this use. On the other
hand the possibilities to lighten the communication through the implementation of a
custom efficient proxy are not to be excluded.

3.3 Access to Resources

Our web service provides REST access to all the functionalities and resources de-
scribed in the previous section. In this section we concentrate the description on the

35

3. SYSTEM ARCHITECTURE AND DEVELOPMENT

access to virtual instances of physical devices, logical devices and resources.

Figure 3.6: Explicit request of a resource value by an HTTP client

What really makes the framework useful is the implementation of virtual CoAP re-
sources. The identifier of a resource is composed by the logical device and the resource
path. By means of virtualization the user is able to perform power demanding oper-
ation that would be otherwise impossible if interacting directly with the constrained
network. On the other side the application aims to leverage the workload of physical
networks. This is done combining the possibility to access to a persistent database with
the advantage of the caching features provided by CoAP protocol.
CoAP max-age option is meant to provide a time value used to establish if the cached
resource value is fresh or not. Every time a response is received, the web service
checks the value of this option and stores it in the database. As described in section
5.10.5 of [3] a default value of 60 seconds is considered in the case this parameter is
absent.
Etag option is used as an identifier for the local resource representation. This value is
generated by CoAP server as representation of a resource varying over time. The client
interprets these values as opaque and can use them to request resources to servers. In
the case the local representation of the resource (identified by the previously store etag)
the server can simply confirm to the client that its local representation is still valid.

36

3.4 RESOURCE MONITORING

Image 3.6 is only one of the scenarios where the web service receives a new value.
This particular situation is the one requiring more efforts on the server side, due to the
need of maintaining open several TCP connections. Further cases will be investigated
later on in this chapter.

3.4 Resource Monitoring

Monitoring WSNs is key point for web enabled sensor framework. One of the open
questions arose in [22] encourages the community to reason out on the implication of
polling data periodically rather than waiting for the data to be sent by the sensors. The
first approach reveals itself to be very expensive for constrained environments: sensor
could be in sleeping mode for most of the time, the state of the resource could not have
been changed over time. These situations cause useless traffic to be generated both on
the client and server side. In the second case the device could find obstacles in reaching
the observer application without having being queried before.

As already described in section 1.3.6 the work in [20] extends the CoAP protocol
describing how a server can keep a list of its observers and send them notification when
the status of the observed resource changes. In this sense CoAP extends the function-
alities of HTTP, where transactions are always initiated by the client. Despite that, the
publish/subscribe mechanism provided by observation must be supported by the appli-
cation.
A user who has already registered his resource in the database is able to instruct the
web service to register to one of its devices as observer. Figure 3.7 shows how the reg-
istration is handled by the web service. The request for observation made by the user
is managed synchronously between the API server and the gateway. This is a security
feature that allow to inform immediately the user if something goes wrong during the
registration.
Given that the web service manages request from different user it must be take pre-
cautionary measures in the case that their queries cause conflicts between them. Ob-
servation is one of these cases. After a CoAP client has registered in the CoAP server
the reception of a GET request that is not marked with the observe option causes the
server to remove the client from the list of the observer for the resource. Since the web
service implements the CoAP caching mechanism through the use of max-age option
this possibility is unlikely but not impossible. As a consequence the web service han-
dling a GET request on a resource on which is already registered as observer will act
as follow:

37

3. SYSTEM ARCHITECTURE AND DEVELOPMENT

Figure 3.7: Resource observation handled by the web service

- if the resource value has expired a new observe request is sent to the server

- if the resource value stored in the database is still valid no requests will be sent
to the server and the returned value will be the cached one

Observe option is not a mandatory feature to implement in a CoAP device. The
situation in which the device refused observation requests must be taken into account.
Moreover there could be cases in which notify every single change of state of the re-
source is unnecessary. For these reasons our implementation support periodic polling
of device resources. The user is able to dynamically schedule new complex periodic
tasks responsible for polling resource values.

As mentioned in section 2.2.3 Quartz Scheduler provides the necessary tools to
accomplish this task. Quartz allows to schedule tasks dynamically and to make them
persistent due to the integration with several database implementations.
Quartz scheduling is based on the association between jobs and trigger. A job is an
interface to be implemented by java classes that have to be executed by one of the
worker thread of the main scheduler. A trigger contains the time condition upon which
the associated job has to be executed. Quartz provides two kinds of triggers:

Simple Trigger Simple triggers are used when the task has to be executed once at a

38

3.5 TRIGGERING RESOURCE VALUES

specific time or to be executed repeatedly at a specific interval after a given start
moment. For example, with a simple trigger it’s possible to schedule a job to
execute for the first time the 1st of January, then every 7 days.

CronTrigger CronTrigger is useful for more complex scheduling based on calendar-
like notions. As mentioned in chapter 2.2.3 triggers are defined using a Unix-like
cron syntax. A cron trigger, for example, can be instructed to be fired every 5
minutes from 8am to 12am only during working days.

Our web service allows users to request this kind of schedules using REST API. Figure
3.8 illustrates this process.

A post request destined to the SchedulingController is sent through an HTTP POST
request. The information required by the application for registering a new trigger is the
following:

• the period of the scheduler, if only a simple schedule is needed

• the cron expression as a possible alternative to the simple trigger period

• the resource URI

• the CoAP method (GET, PUT, POST, DELETE)

• the value to send in case of a PUT or a POST request

Upon the reception of this request the controller forwards it to the SchedulingService
which will instantiate the new job. The job persistence is handled by Quartz in a to-
tally transparent manner. This means that the service takes care only about scheduling
the new job without interacting directly with the database. From this moment every
instance of the web server connected to the database will be able to run this job, while
concurrency is again handled by quartz.

3.5 Triggering Resource Values

Collecting values from multiple resources, located in different networks around the
planet is a basic feature for an application integrated with wireless sensor network.
However this is not enough. The potential huge amount of information collected by
such a platform requires also processing capabilities that could be otherwise impossi-
ble due to the constrained nature of the devices.

39

3. SYSTEM ARCHITECTURE AND DEVELOPMENT

Triggering resource values in an example. An application is required to be able to
process received data as soon as they are received. The importance of this feature is
undeniable. Cosm triggers [10], Nimbits events subscription [11], Paraimpu [13] ac-
tuators, Open Sen.se [12] notifiers are only some of the examples of how applications
providing triggering features for their users.

Our application does the same. Every value received upon a CoAP observe notifi-
cation, a user request, a periodic scheduler is handled by a data module that:

- validates the incoming values

- push notifications in the notification queue handled by a thread pool.

As for scheduled jobs the user can create triggers using the API handled by the Trigger
Controller. The functionalities are inspired by the ones provided by the framework
listed above. The request is based again on an XML (or JSON) message in which the
user can indicate a list of conditions and a list of actions to accomplish whether all the
conditions are verified. The allowed actions up to now are:

- send an email to the creator of the trigger

- GET, PUT, POST, DELETE request made to another resource owned by the
creator of the trigger

- POST action on a URL given by the creator

Listing 3.1: An example of XML request to set a trigger on a resource value
<?xml version="1.0" encoding="UTF-8"?>

2 <trigger>
<name>Heater Trigger</name>

4 <conditionList>
<condition>

6 <comparator>lt</comparator>
<value>18.0</value>

8 </condition>
</conditionList>

10 <actionList>
<action>

12 <type>email</type>
</action>

14 <action>
<type>put</type>

16 <target>/34/heater<target>
<value>ON</value>

18 </action>
</actionList>

20 </trigger>

40

3.5 TRIGGERING RESOURCE VALUES

Listing 3.1 shows a trigger creation message. This message must be sent using the
URI identifying all the triggers of the given resource. For example, the above message
posted to URI /trigger/54321/temperature can be translated in if the temperature goes
below 18.0 degrees switch the heater on and send me an email. Trigger fire when the
condition is met, while the received value are respecting the threshold no more action
are done.

Figure 3.8: Behavior of the system in response to a registration of a periodic task

The list of conditions received in XML format are mapped into strings suitable to
be converted in a Boolean value through the use of Apache JEXL1. Triggers associated
to a resource are checked every time a resource value is received. JEXL allows to avoid
the use of multiple database lines and tables to store a complex condition enhancing
the performances of such a frequent operation.

1http://commons.apache.org/proper/commons-jexl/

41

http://commons.apache.org/proper/commons-jexl/

3. SYSTEM ARCHITECTURE AND DEVELOPMENT

42

Chapter 4

Tests and Results

In this section we will analyze the performances of the application in terms of re-
sponsiveness and communication overhead considering the variations of different pa-
rameters. All the tests have been performed in a simulated environment composed of
different Linux machines acting as clients, devices, server or deploying the commu-
nication module. We underline how we will consider only the processes involving a
direct communication with devices.

4.1 Testing Tools

The components of the simulated environment have been deployed in 5 different phys-
ical machines in a Wireless Local Area Network (WLAN). As mentioned, depending
on the component we used different programming languages and computers. Table 4.1
illustrates the main characteristics of the components.

Role Language OS CPU
Client 1 Python Ubuntu 10.04 Intel Core 2 Duo T7300
Client 2 Python Ubuntu 12.04 Intel Core 2 Duo T7300
Core Server Java (Tomcat) Ubuntu 12.04 Intel Core i7-3630QM
Comm. Module Java (Tomcat) Ubuntu 10.04 AMD Athlon 64 X2 Dual

Core 5400+

Devices Java (jCoAP) Ubuntu 12.04 Intel Core i3-2370M

Table 4.1: Used machines in the simulated environment

43

4. TESTS AND RESULTS

Client

To utilize the web application functionalities we developed some python scripts. In
order to exploit as much as possible the CPU power these programs have a strong
multithreaded behavior and have been developed in order to change dynamically their
execution speed. The frequency of requests, the set of resources to query, the interval
between two subsequent requests and the number of thread to use during tests can be
set as input parameters. More precisely, we programmed these clients to accomplish
these tasks:

• querying resources to the web service

• schedule new jobs in such a way that after the first query are processed au-
tonomously

• simulating a flood of notifications on the device side

Devices

Devices have been simulated using again jCoAP library (see 2.2.4). In order to re-
flect the behavior of real sensors in terms of communication and processing delay we
have modified the purposed default implementation in such a way to be able to set
dynamically a normal delay and the loss rate of the responses. Both these variables are
generated using the Random class provided by Java API.

Web Service

The web service has been deployed in two different machines. The first one leverages
public APIs, database interaction, notification and processing, the second one acts as
communication module in order to forward the requests to the proper endpoints. Both
the applications have been deployed using Tomcat application server.

Performances have been evaluated through the use of TCPdump1 for sniffing the
traffic passing through the core server. By this way we were able to intercept all re-
quests and responses as soon as they reach or leave server network interfaces. Wire-
shark2 has then been used to format the data in a way suitable to be parsed and ana-
lyzed.

1http://www.tcpdump.org/
2http://www.wireshark.org/

44

http://www.tcpdump.org/
http://www.wireshark.org/

4.3 PERFORMANCE ANALYSIS

4.2 Performance Analysis

We now illustrate the performances related to the operations described in chapter 3.
We tested the system paying particular attention in choosing the most power demand-
ing operation depending on the described situations. As an example, all messages
exchanged with devices are of type confirmable (see section 1.3.2) in such a way that
the proxy has to deal with several open UDP connections at the same time. Due to the
wide variety of involved components we have chosen some parameters to vary in order
to simulate as precisely as possible real use case situations.

The variables we considered are:

• the number of client requests per seconds

• the caching time of a value received from a device

• the average delay to receive a response from the devices

• the loss rate of a single CoAP response

• the number of resources to query

4.3 Synchronous Resource Request

In section 3.3 we already raised the problem of handling these types of connection.
Since clients require and wait for a response, all the connections must be handled
synchronously. For these reasons many open TCP connections can smoothly degrade
system performances, especially without the help of cached values. In fact, the number
of resources in this case is so high that the probability to query a resource twice in the
same minute is very low. The following scenario illustrates this behavior.

Resources 100.000
Mean Delay 1500 ms
Standard Deviation 500ms
Loss Rate 10%
Caching Time 60 seconds

Table 4.2: Used parameters for testing synchronous communication

In figure 4.1a we illustrate the behavior of the service receiving 29962 requests in
2050 seconds (34 minutes). The average number of requests per second in the long run

45

4. TESTS AND RESULTS

is 14.6 per second, while the average processing time before sending the response back
is 3.34 seconds with a standard deviation of 2.17. We can point out several things. The
web service don’t cause any delay while the number of requests per seconds remains
below 10. In fact, the average response time in this case is around the mean delay
time set manually into device simulators. As the number of requests increases over 10
requests per seconds we notice that processing and communication overhead start to
introduce a delay not only in the responses, but also to the clients’ requests, which are
programmed to increase the frequency of its requests linearly. No requests are rejected,
thread pooling allow to queue and to process them as soon an instance of the pool is
released.

(a) Processing time of a request performed on public API

(b) Number of client requests per second

Figure 4.1: API performances in relation to client requests with devices having mean
delay of 1.5 seconds

46

4.4 SYNCHRONOUS RESOURCE REQUEST

The situation can worsen setting the delay having a mean of 2.5 seconds. This
means that the likelihood of CoAP retransmissions increases and has to be handled
properly by the CoAP client installed on the communication module. In figure 4.2
we can notice some differences with respect to the previous situation. The number
of request exchanged in a similar situation is 19059. The average number of request
per second decreases to 9.29, while the average server processing time is 5.45 with
a standard deviation of 2.96. First, We notice how increasing the delay of devices
response, the time for processing requests varies in a wider range. Secondly, using
these parameters, clients are slowed down before the previously observed threshold
value.

(a) Processing time of a request performed on public API

(b) Number of client requests per second

Figure 4.2: API performances in relation to client requests with devices having mean
delay of 2.5 seconds

47

4. TESTS AND RESULTS

4.4 Caching

Caching is the first feature that can partially solve the aforementioned problems. In
order to show how caching feature can provide a considerable help in enhancing re-
sponsiveness of our web application we launched an increasingly number of clients
querying randomly a set of 10000 resources having caching time of 30 seconds. We
list all the values in table 4.3.

Resources 10.000
Mean Delay 1500 ms
Standard Deviation 500ms
Loss Rate 10%
Caching Time 30 seconds

Table 4.3: Used parameters for testing caching features

Figure 4.3 illustrates server responsiveness in case of repeated queries to cached
resources. At the beginning of the test, no cached values are stored in the database. As
the clients start to increase the frequency of requests we see how the average response
time decreases. This has to be ascribed to the increasing number of values that are
fetched from the database instead of being queried directly to the device.

(a) Server processing time (b) Client requests per second

Figure 4.3: Client-Server interaction with active caching features

Caching presents advantages also considering how the communication module is
left out of the communication in case that a cached value is stored in the database.
Figure 4.4 analyzes the connections directed to the communication module. More

48

4.6 NOTIFICATIONS

than half of the requests are processed by the core service and only the ones for which
caching cannot be used are forwarded to the communication module.

(a) Comm. Module Response times (b) Core server requests per second

Figure 4.4: Communication Module Response Time

4.5 Notifications

Another way to lighten the workload of the server is to allow devices to push values to
the application. In this case no long running connections have to be handled: the web
service simply sends back an acknowledgment to the notifier and stores the received
value into the database. In this case the processing is minimal: the server has just to
check that the received token option matches with the one stored in the database when
the observe request have been received for the first time. To test service performances
in relation to notification flooding we maintained the frequency parameters equals to
the ones used in section 4.3. Figure 4.5 shows how the capabilities of the web service
in terms of responsiveness when dealing with external notifications.

4.6 Comparison

To compare the aforementioned scenarios in relation to responsiveness to requests
flooding. Figure 4.6 illustrates the result of the comparison.

• using synchronous client requests the web service response time is strictly re-
lated to the delay caused by the device response

• caching may help in lower both the processing time of a synchronous request
and the workload of the devices. The blue line shows the behavior of the web
service forcing the hit-rate varying from 0.1 to 0.9.

49

4. TESTS AND RESULTS

Figure 4.5: Number of notifications per second handled by the web service

• the use of notifications is the preferred way to obtain new values from devices.
Since few operations are needed to validate and store new values, the amount of
incoming request within a second is considerably higher.

50

4.6 COMPARISON

Figure 4.6: Comparison the responsiveness of the web service using different proce-
dures to obtain values

51

4. TESTS AND RESULTS

52

Conclusions and future work

The goal of this thesis was the design and the implementation of a scalable web ser-
vice architecture allowing developers to build any kind of application for end users to
manage CoAP devices transparently. The research has mainly focused on exploiting
several features provided by the protocol. Firstly, we managed to maintain the REST
nature of the protocol in order to reflect this behavior also accessing to resources using
higher level interfaces proper of the Web. Secondly, exploiting CoAP caching indica-
tion allows to lower the workload of the physical network, acting as intermediate able
to understand if a direct interaction with the network is really needed. Thirdly, the web
service is able to act as a CoAP client, making also use of observe features in order to
receive values from the external.

The need of a possible future deployment in cloud computing environments leads
us to consider the possibility of evaluate the dynamic replication of components as well
as their need act concurrently. We point out the implementation details that allow us to
state how the components are ready to accomplish this task.

The web service implements the REST paradigm. The key point of this approach
in terms of replication the stateless nature of HTTP protocol. Every pair of request
and response is decoupled from past and future request, and the task to maintain the
authentication or the session is up to the clients. This means that as long as the client
needs to interact with the web application it is not strictly linked to one particular in-
stance or machine, but can interact transparently with a replicated environment hidden
behind, for example, a load balancer.

The possibility to deploy the core RESTful server from the communication module
presents several advantages. The simultaneous management of connections with a
large amount of devices can be difficult to handle. In this case multiple machines
handling communication could help to manage efficiently the communication, while
at the same time on the API side there could be no need of replication.

Accesses to database makes use of transactions. Hibernate and Spring provide the
necessary tools in order to identify and mark operations and methods in relation to the

53

CONCLUSIONS

lock they need for accomplishing their tasks.
The dynamic scheduling of tasks between multiple nodes is managed transpar-

ently by quartz library. Load balancing occurs automatically. Multiple instances of
the servers sharing the access to a database will act in such a way that no tasks are
performed twice. Each node tries to fire a job as quick as it can, and the first node
accessing the stored information will be the only one that will fire it. Moreover, if one
of the instances fails in accomplish its task, the other nodes in the database will be able
to detect this malfunction and recover the execution of the interrupted tasks. In addi-
tion, a newly instantiated node in the network will be able to access to all the already
schedule tasks and contribute in fire them concurrently with the previously deployed
instances.

However there are still some issues to face before reaching the full potential of
this application. Even if CoAP is designed for constrained devices, managing large
amounts of CoAP connections tends to be cost-demanding. In particular, every pend-
ing request must be handled in such a way that retransmissions are not delayed due
to computational delays in processing the queued messages. The implementation of
jCoAP we took as reference presents several drawbacks in regards to memory man-
agement. For these reasons, in the future it will be necessary to consider different
CoAP implementation or adapt the one we used having strong multithreaded behavior
able to manage properly concurrent connections and queues. After these enhancements
will be achieved, the deployment of a fully working application will be immediate.

54

Bibliography

[1] Zach Shelby and Carsten Bormann. 6LoWPAN: The wireless embedded Internet,
volume 43. Wiley, 2011.

[2] Tim Winter. Rpl: Ipv6 routing protocol for low-power and lossy networks. 2012.

[3] Z. Shelby, K. Hartke, C. Bormann, and B. Frank. Constrained Application Pro-
tocol (CoAP). IETF Internet Draft draft-ietf-core-coap-13, 2012.

[4] Z. Shelby. Core link format. IETF Internet Draft draft-ietf-core-link-format-14,
2012.

[5] A. Castellani, S. Loreto, A. Rahman, T. Fossati, and E. Dijk. Best practices
for HTTP-CoAP mapping implementation. IETF Internet Draft draft-castellani-
core-http-mapping-07, 2013.

[6] Mohammad Mehedi Hassan, Biao Song, and Eui-Nam Huh. A framework of
sensor-cloud integration opportunities and challenges. In Proceedings of the 3rd
international conference on Ubiquitous information management and communi-
cation, pages 618–626. ACM, 2009.

[7] K. Lee, D. Murray, D. Hughes, and W. Joosen. Extending sensor networks into
the cloud using amazon web services. In Networked Embedded Systems for En-
terprise Applications (NESEA), 2010 IEEE International Conference on, pages
1–7, 2010.

[8] Wei Wang, K. Lee, and D. Murray. Integrating sensors with the cloud using dy-
namic proxies. In Personal Indoor and Mobile Radio Communications (PIMRC),
2012 IEEE 23rd International Symposium on, pages 1466–1471, 2012.

[9] Sarfraz Alam, Mohammad MR Chowdhury, and Josef Noll. Senaas: An event-
driven sensor virtualization approach for internet of things cloud. In Networked
Embedded Systems for Enterprise Applications (NESEA), 2010 IEEE Interna-
tional Conference on, pages 1–6. IEEE, 2010.

55

BIBLIOGRAPHY

[10] Cosm - connect your world. https://cosm.com/. Accessed: 01/04/2013.

[11] Nibits - the open source internet of things on a distributed cloud. http://www.
nimbits.com/. Accessed: 01/04/2013.

[12] Open.sen.se - feel. act. make sense. http://open.sen.se/. Accessed:
01/04/2013.

[13] Paraimpu. http://paraimpu.crs4.it/. Accessed: 01/04/2013.

[14] Angelo P Castellani, Salvatore Loreto, Nicola Bui, and Michele Zorzi. Quickly
interoperable internet of things using simple transparent gateways. In position
paper in ’Interconnecting Smart Objects with the Internet’ Workshop, March 25,
2011.

[15] W. Colitti, K. Steenhaut, N. De Caro, B. Buta, and V. Dobrota. Rest enabled
wireless sensor networks for seamless integration with web applications. In Mo-
bile Adhoc and Sensor Systems (MASS), 2011 IEEE 8th International Conference
on, pages 867–872, 2011.

[16] Tim Oâreilly. What is web 2.0, 2005.

[17] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The internet of things: A
survey. Computer Networks, 54(15):2787–2805, 2010.

[18] Michele Zorzi, Alexander Gluhak, Sebastian Lange, and Alessandro Bassi. From
today’s intranet of things to a future internet of things: a wireless-and mobility-
related view. Wireless Communications, IEEE, 17(6):44–51, 2010.

[19] Mark Nottingham. Web linking. 2010.

[20] K. Hartke. Observing resources in coap. IETF Internet Draft draft-ietf-core-
observe-07, 2012.

[21] Dominique Guinard, Vlad Trifa, and Erik Wilde. A resource oriented architecture
for the web of things. In Internet of Things (IOT), 2010, pages 1–8. IEEE, 2010.

[22] Michael Blackstock and Rodger Lea. Wotkit: A lightweight toolkit for the web
of things. 2012.

[23] Alberto Boccato. Un’architettura di database per la virtualizzazione di dispositivi
embedded tramite web service. Università degli Studi di Padova, Dipartimento
di Ingegneria dell’informazione, 2013.

56

https://cosm.com/
http://www.nimbits.com/
http://www.nimbits.com/
http://open.sen.se/
http://paraimpu.crs4.it/

[24] Christian Lerche, Klaus Hartke, and Matthias Kovatsch. Industry adoption of the
internet of things: A constrained application protocol survey. In Proceedings of
the 7th International Workshop on Service Oriented Architectures in Converging
Networked Environments (SOCNE 2012), Kraków, Poland, September 2012.

[25] Berta Carballido Villaverde, Dirk Pesch, Rodolfo De Paz Alberola, Szymon Fe-
dor, and Menouer Boubekeur. Constrained application protocol for low power
embedded networks: A survey. In Innovative Mobile and Internet Services in
Ubiquitous Computing (IMIS), 2012 Sixth International Conference on, pages
702–707. IEEE, 2012.

[26] Mark Hapner, Rich Burridge, Rahul Sharma, Joseph Fialli, and Kate Stout. Java
message service. Sun Microsystems Inc., Santa Clara, CA, 2002.

[27] Steve Vinoski. Advanced message queuing protocol. Internet Computing, IEEE,
10(6):87–89, 2006.

57

BIBLIOGRAPHY

58

	Abstract
	Introduction
	Web Services for the Internet of Things
	The Web as a Distributed Application Platform
	RESTful Web Services

	Internet of Things
	Constrained Application Protocol
	Message Format
	Message Type
	Request Methods
	Options
	Core Link Format
	Observing Resources
	Proxy Operations

	Web of Things

	Requirements Analysis
	Requirements
	Used Tools
	Spring Framework
	Hibernate
	Quartz
	jCoAP

	System Architecture and Development
	Overview
	Involved actors
	Virtualized Entities

	Architecture Modules
	Access Module
	Processing Module
	Communication Module

	Access to Resources
	Resource Monitoring
	Triggering Resource Values

	Tests and Results
	Testing Tools
	Performance Analysis
	Synchronous Resource Request
	Caching
	Notifications
	Comparison

	Conclusions
	Bibliography

