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 Introduction 

  

Portfolio choice problems are the leading edge of financial research. The portfolio 

theory underlying an investor’s optimal portfolio choice, pioneered by Markowitz’s 
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Mean-Variance Anlysis (1952), is by now well comprehended. The reborn interest in 

portfolio choice problems follows the relatively recent empirical evidence of time-

varying return distributions (predictability and conditional heteroskedasticity). The 

purpose of this work is indeed to examine the effects of predictability for an investor 

trying to take portfolio allocation decisions. According to Samuelson (1969) and 

Merton (1969), when asset returns are i.i.d., an investor who rebalances his portfolio 

optimally and whose preferences are described by a power utility function, should 

choose the same asset allocation regardless of the investment horizon. However, 

considering  the growing evidence of predictability in returns, the investor’s horizon 

may no longer be unimportant. We therefore address this issue of portfolio choice 

from the perspective of horizon effects: “Given the demonstration of predictability in 

asset returns, should a long horizon investor allocate his wealth differently from a 

short-horizon investor?” (Barberis, 2000) 

Our work draws on Nicholas Barberis’ paper (2000)  about long run predictability of 

asset returns. In his work he studies the effects of predictability for an investor  

making sensible portfolio choices. He analyzes portfolio choice in discrete time for 

an investor with power utility function over terminal wealth, employing two assets: a 

stock index and a risk-free asset. In order to examine how predictability affects 

portfolio choices he compares the allocation of an investor who does not recognize 

predictability, that is when asset returns are described by a i.i.d. model, to that of an 

investor who takes predictability into account. In particular he uses only one 

predictor variable in order to describe asset returns’ dynamics, the dividend yield. He 

finds that predictability in asset returns leads to strong horizon effects,  involving a 

much higher allocation to stocks for a long-horizon investor than for a short-horizon 

investor, this being because predictability makes stocks look less risky at long 

horizons.  

In our work we try to understand if a risk averse investor, who decides today how to 

invest his wealth and does not change the allocation until the predetermined maturity, 

distributes his wealth differently  for long horizons compared to short horizons. We 

firstly focus on studying the predictive power of only one variable, the dividend 

yield, for stock returns. Afterwards, we devote most  of our work to examining in 

what way the optimal portfolio allocation changes when investors have the 
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opportunity to choose how to allocate their wealth among three different assets, 

instead of the previous two: a stock index, a bond index, and a risk-free asset. We 

then investigate the predictability of excess stock and bond returns, availing 

ourselves of a set of five predictor variables gathered from the financial literature.  

Particular attention is paid to estimation risk, which can be defined as the uncertainty 

about the true values of model parameters. We analyze estimation  risk in order to 

take into account the uncertainty about the true predictive power of  predictor 

variables, that sometimes could be weak. This approach constitutes therefore a 

middle ground between rejecting the null hypothesis of returns predictability, and  

analyzing the problem taking the parameters as fixed and known precisely.  

In addition to what Barberis  handled in his paper, we then devote our attention to 

introducing an alternative method to the Expected Utility approach, that is the 

Prospect Theory developed by Kahneman and Tversky (1979), whose goal is to 

capture people’s attitudes to risky gambles as parsimoniously as possible. According 

to this theory a value function replaces the usual utility function, in particular the loss 

aversion utility function explains the investors’ behavior of being risk averse for 

gains and risk seeking for losses. Moreover it describes the principle of loss aversion, 

according  to which losses loom larger than corresponding gains. Our purpose is 

therefore to examine how the optimal portfolio allocation changes depending on 

whether the function employed to describe investors’ preferences over wealth is a 

power utility function or a loss aversion function.  

Regarding the application we evaluate a vector autoregressive model in order to 

explain the time-variation in asset returns throughout the predictor variables. 

Afterwards uncertainty about the model parameters is incorporated by the posterior 

distribution of the parameters given the data 

The purpose of the first chapter is to explain in detail some concepts and ideas used 

throughout the work. After a brief description of financial markets returns over the 

last two centuries, we define the notions of asset return, excess return and risk-free 

rate. 

The Expected Utility Theory and Mean-Variance Analysis are then illustrated. 

Finally we consider the case handled by Samuelson and Merton, when long-term 
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investors act myopically, choosing the same portfolio as  short-term investors, and 

we specify the main approaches an investor can adopt. 

In the second chapter attention is paid to the estimation risk, in other words we study 

the optimal portfolio allocation assuming that parameters are not known precisely. 

Our purpose is to understand how parameter uncertainty alone affects portfolio 

choice. According to a Bayesian approach, we define the posterior distribution of the 

model parameters given the data, and integrating over the uncertainty in the 

parameters captured by the posterior distribution, we construct predictive distribution 

for future returns, conditional only on observed data, and not on any fixed parameter 

value. The model implemented is then applied to a real dataset. Finally we illustrate 

the results obtained both assuming that excess returns have a normal distribution and 

adopting a resampling approach in order to understand if the assumption of normality 

attributed to assets returns affects the optimal portfolio allocation. 

The third chapter focuses on how predictability affects portfolio choice. For the 

initial study of predictability of excess stock returns only one variable is taken into 

account, the dividend yield. A vector autoregressive model of the first order with 

some restrictions  on its parameters is defined in order to examine how the  evidence 

of predictability in asset returns affects optimal portfolio choice. The model is then 

applied to a real dataset and the results of the optimal portfolio allocation for 

different investment horizons are presented for a buy-and-hold investor who is risk-

averse. Finally, the results obtained considering different initial values of the 

dividend yield are reported in order to understand the role of the predictor variable 

We devote the fourth and fifth chapters to develop some extensions to the model 

implemented in chapters 2 and 3. We study the optimal portfolio allocation when  

investors  have the opportunity to choose how to invest their wealth among three 

different assets: a stock index, a bond index, and the risk-free asset . The purpose of 

the fourth chapter is similar to the one of the second chapter, that is to understand 

how estimation risk alone affects portfolio choice. Some changes to the original 

model  are therefore implemented in order to define an appropriate  framework, 

which allows to us to examine the impact of parameter uncertainty when the investor 

can allocate his wealth among three different assets instead of two assets. The model 
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we implemented is then applied to a real dataset, and the results of the optimal 

portfolio allocation for a buy-and-hold investor who is risk-averse are illustrated. 

In the fifth chapter we focus on the study of predictability of excess stock and bond 

returns, and in order to do that, we avail ourselves of a set of five predictor variables. 

The model is similar in essence to the one we implement in the third chapter, a vector 

autoregressive model of the first order with some restrictions on its parameters. 

Applying it to a real dataset, we examine how the evidence of predictability affects 

portfolio choice when investors can choose to allocate their wealth between a stock 

index, a bond index and a risk free asset. 

Finally, in the fifth chapter, after having related the main critiques to the Expected 

Utility Theory we bring up some experimental evidence that led to the emergence of  

Behavioral Finance. We then introduce the Prospect Theory, a behavioral economic 

theory that tries to describe investors’ real-life choices, and we investigate how the 

optimal portfolio allocation changes when investors’ preferences are described by a 

loss aversion utility function. 
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Chapter 1 

Short run portfolio allocation 

1.1 Introduction 

The first one, is primarily a review chapter,  whose purpose is to illustrate some ideas  

and concepts used throughout our work. 

We firstly make a brief description of financial markets returns over the last two 

centuries. Afterwards we define the concept of asset return and illustrate some  

returns’ appealing statistical properties. In this paragraph the meanings of risk-free 

rate and excess return are also explained.  

The third paragraph is devoted to the Expected Utility Theory, which is used in order 

to describe economic agents’ decisions under uncertainty.  

In the fourth paragraph it is described the Mean-Variance Analysis, a portfolio 

choice theory whose main objective is to define the optimal portfolio allocation in 

the short-run; and its limitations are then given. 

Finally we consider the case handled by Samuelson and Merton, when long-term 

investors act myopically, choosing the same portfolio as  short-term investors.  

 

 

 

1.1 Financial market returns from 1802 

Risk and return are the fundamental blocks of finance and portfolio management. 

Once the risk and expected return of each asset are specified, modern financial 

theory can help investors define the best portfolios. But the risk and return on stocks 

and bonds are not physical constants. Despite the overwhelming quantity of 

historical data, one can never be certain that the underlying factors that generate asset 

prices have remained unchanged. One cannot, as in the physical sciences, run 

repeated controlled experiments, holding all other factors constant while estimating 

the value of the parameter in question.  
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However, one must start by analyzing the past in order to understand the future. In 

the next few paragraphs we  carry  a short analysis of past returns on stocks and 

bonds over the last two centuries. During this two-century period great changes have 

revolutionized the United States. The United States firstly made a transition from an 

agrarian to an industrialized economy and then became the main political and 

economic power in the world. Modern times led to the 1929 to 1932 stock collapse, 

the Great Depression, and the postwar expansion.  The story is illustrated in Figure 

1.1. It displays the real total return indexes for stocks, long and short-term bonds, 

gold, and commodities from 1802 through 2011. Since the focus of every long-term 

investor should be the growth of purchasing power that is, monetary wealth adjusted 

for the effect of inflation, the data in the graph are constructed by taking the dollar 

total returns and correcting them by the changes in the price level. Total return means 

that all returns, such as interest and dividends and capital gains, are automatically 

reinvested in the asset and allowed to accumulate over time 

 

Figure 1.1: Total real return indices, 1802 through June 2012 

It can be easily seen that the total real return on equities dominates all other assets 

and also shows remarkable long-term stability. Indeed, despite extraordinary changes 

in the economic, social, and political environment over the past two centuries, stocks 

have yielded about 6.6 percent per year after inflation. The wiggles on the stock 

return line represent the bull and bear markets that equities have suffered throughout 

history. The short-term fluctuations in the stock market, which appear so large to 

investors when they occur, are insignificant when compared to the upward 

movement of equity values over time. The long-term perspective radically changes 

one’s view of the risk of stocks. 
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In contrast to the remarkable stability of stock returns, real returns on fixed-income 

assets have declined considerably over time. Until the twenties, the annual returns on 

bonds and bills, although less than those on equities, were significantly positive. But 

since those years, and especially since World War II, fixed-income assets have 

returned little after inflation. 

Must however be said that in the real world investors consume most of the dividends 

and capital gains, so that the growth of the capital stock is not greater than the 

economy’s rate of growth even though the total return on stocks is substantially 

higher. It is rare for anyone to accumulate wealth for long periods of time without 

consuming part of his or her return. The stock market has the power to turn a single 

dollar into millions by the perseverance of generations, but few will have the 

patience or desire to suffer the wait. 

Although it might appear to be riskier to accumulate wealth in stocks rather than in 

bonds over long periods of time, precisely the opposite seems to be true: there is 

indeed evidence that the safest long-term investment for the preservation of 

purchasing power is a diversified portfolio of equities. 

Indeed, according to the data Siegel(1994) availed himself of in his analysis , 

standard deviation, that is the measure of risk used in portfolio theory and asset 

allocation models, is higher for stock returns than for bond returns over short-term 

holding periods, however, once the holding period increases, stocks become less 

risky than bonds. The standard deviation of average stock returns falls nearly twice 

as fast as for fixed income assets as the holding period increases. 

Theoretically the standard deviation of average annual returns is inversely 

proportional to the holding period if asset returns  follow a random walk. But the 

historical data show that the random walk hypothesis can not be maintained for 

equities. Indeed the actual risk of stock declines far faster than the predicted rate 

under the random walk assumption. All that highlights one of the most relevant 

factors to be considered in making investment choices, that is the holding period. 

Although the dominance of stocks over bonds is readily apparent in the long run, it is 

also important to note that in the short run, stocks outperform bonds or bills only 

about three out of every five years according to Siegel’s research. The high 
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probability that bonds and even bank accounts will outperform stocks in the short run 

is the primary reason why it is so hard for many investors to stay in stocks. 

After a brief explanation of the main concepts and tools that will be used throughout 

our work, we will dedicate the next chapters to the exploration of the critical idea of 

how the holding period can affect the optimal allocation decision of an investor. We 

will firstly consider an investor who is allowed to choose how to invest his wealth 

only between a risk-free asset and a stock index, and afterwards we will add to the 

assets he can avail himself of a bond index. 

 

 

 

1.2 Asset returns 

When an empirical analysis in carried out, it is very important to use data whose type 

can supports the pursued objectives. Most financial studies involve returns instead of 

asset prices. There are at least two reason to contemplate returns rather than prices. 

Firstly, for the average investor, financial markets may be considered close to 

perfectly competitive, so that the size of the investment does not affect prices 

changes. Therefore, the return is a complete and scale-free  summary of the 

investment opportunity. Secondly, returns have more attractive statistical properties 

than prices, such as stationarity and ergodicity 

There are, however, several definitions of asset returns, we discuss some of them, 

that will be used throughout our work. 

We denote by tP  the price of an asset at time t  . We assume for the moment that the 

asset pays no dividends. 

One-Period Simple Return 

Holding the asset for one period from date 1t   to date t  would result in a simple 

gross return : 

 

1

1 t
t

t

P
R

P

  , (1.1) 
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The corresponding one-period simple net return or simple return is: 

 
1

1 1

1t t t
t

t t

P P P
R

P P



 


   .                               (1.2) 

. 

Continuously Compounded Return 

The natural logarithm of the simple gross return of an asset is defined as the  

continuously compounded return  or log return: 

 
1

1

log(1 ) log ,t
t t t t

t

P
r R p p

P




       (1.3) 

where logt tp P . 

Continuously compounded returns tr   enjoy some advantages over the simple net 

returns tR . First statistical properties of log returns are more tractable, indeed it has 

not any lower bound and it is therefore compatible with the hypothesis of Normality. 

If tr  has normal distribution with mean    mu and variance 2  , the simple return 

has lognormal distribution with mean

2

2
(1 )tE R e



 

 
 
    and variance 

 22 2
(1 ) ( 1)tVar R e e

  
    . Secondly, when we consider multiperiod returns:  

 
1 1

1 1

1 1

( ) log(1 ( )) log((1 ) (1 )...(1 )

log(1 ) log(1 ) ... log(1 )

... ,

t t t t t k

t t t k

t t t k

r k R k R R R

R R R

r r r

  

  

  

      

      

   

  (1.4) 

Thus, the continuously compounded multiperiod return is simply the sum of the 

continuously compounded one-period returns involved. However, the simplification 

is more in the modeling of the statistical behavior of asset returns over time, indeed 

the previous assumption of normality hold true for multiperiod returns as well, since 

the sum of normally distributed variables is also normally distributed.    

Dividend Payment 

If an asset pays periodic dividends, the definitions of asset returns must be modified. 

Denote by tD  the asset’s dividend payment between dates 1t   and t , and by tP   the 
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asset’s price at the end of period t  . Thus, dividend is not included in tP  . Then the 

simple net return and continuously compounded return at time t may be defined as 

 
1

1

1 and log( ) log( ).t t
t t t t t

t

P D
R r P D P

P





      (1.5) 

Note that the continuously compounded return on a dividend-paying asset is a 

nonlinear function of log prices and log dividends. However, when the ratio of price 

to dividends is not too variable , this function can be approximated by a linear 

function of log prices and dividends. 

Throughout our work we will use  continuously compounded returns. Continuous 

compounding is usually preferred when the focus of interest is the  temporal behavior 

of returns, since multiperiod returns can be computed  overtly. Conversely, it is 

common to use simple returns when a cross-section of assets is being studied. 

 

 

1.2.1 Portfolio returns 

An investor’s portfolio can be defined as  his collection of investment assets where 

he allocates his wealth. Denote by itR    the simple return connected with the asset i  , 

belonging to a portfolio counting N  assets, and by i   its weight in the portfolio. 

The simple return on a portfolio consisting of N  assets is a weighted average of the 

simple net returns of the assets involved, where the weight on each asset is the 

percentage of the portfolio’s value invested in that asset. If portfolio p   places weight

ip  on asset i , then the simple return on the portfolio at time t  , ptR , is related to the 

returns on individual assets itR , by 
1

N

pt ip it

i

R R


  where 
1

1
N

ip

i




 .  

Continuously compounded returns of a portfolio, unfortunately, do not have the 

above convenient property. Since the continuously compounded return on a portfolio 

is the logarithm of this linear combination, that is not equal to the linear combination 

of logarithms, in other words: 
1

N

pt ip it

i

r r


   
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Moreover, the sum of log-normal distributions is not defined as a log-normal. In 

empirical applications this problem is usually minor. When returns are measured 

over short intervals of time, and are therefore close to zero, the continuously 

compounded return on a portfolio is close to the weighted average of the 

continuously compounded returns on the individual assets: 
1

N

pt ip it

i

r r


 .  

 

 

1.2.2 Excess returns and risk-free asset 

For the analysis that will be carried out later it is necessary to refer to a risk-free 

asset. The return on a risk-free asset may be defined as  theoretical  return of an 

investment with no risk of financial loss. The assumption is based on the evidence 

that in the market it is possible to find an asset that has a sure and well-known ex 

ante return. In practice, these assets are usually short-term government bonds of 

absolutely reliable countries,  money market funds, or  bank deposit.  Formally, the 

risk-free random variable has constant expected value and a variance equal to zero. 

But it may appear risky since its returns can fluctuate over time and its variance 

move usually away from zero.  Nevertheless their variability is minimal compared to 

the one of the risky assets and therefore can be well approximated to zero. 

Since the risk free return can be obtained with no risk, it is implied that any 

additional risk taken by an investor should be rewarded with an higher return than 

the risk-free one. We measure the reward as the difference between the expected 

return on the risky asset and the risk-free rate. This difference is defined as the risk 

premium on common stocks.  

It is often convenient to handle an asset’s excess return, in place of the asset’s return. 

Excess return is defined as the difference between the asset’s return and the return on 

some reference asset, where the reference asset is usually assumed to be the risk-free 

one.  In the next equation,  itz  contains the simple excess return on the risky asset i   

relative to the risk-free asset. 

 
it itz r rf    (1.6) 

http://en.wikipedia.org/wiki/Rate_of_return
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where 
fr  specifies the risk-free return. 

An investor could choose to invest  a portion of his wealth in  the risk-free asset, as 

well as in the N  risky assets. If you specify with 0   the portfolio’s share of wealth 

invested in the risk-free asset, the portfolio return will then be: 

 0 0, where 1,p fr r    ω'r i'ω   (1.7) 

alternatively 

 ( ),p f fr r r  ω' r i   (1.8) 

where ( )fr r i z ,  vector of excess returns. 

Subtracting 
fr  to both members of the expression above, we can obtain the portfolio 

excess return formula as  function of risky assets’ excess return. 

 
pz ωz   (1.9) 

Here the weight vector does not sum to 1, since ω   only represents the proportion 

invested in risky assets. 

 

Since the risk-free random variable is assumed to have a constant mean and  a 

variance equal to zero, the riskiness of risky assets is often measured by the standard 

deviation of excess returns.  However, due to fr  fluctuation over time, excess returns 

sample variances and covariances are not equal to returns’.  Nevertheless the 

fluctuations of the risk-free assets are negligible compared with the uncertainty of 

stock market returns, the difference between the two variances will thus be small. 

Most of the time this condition is observed and the difference between the empirical 

variances of r  and z   is not significant. 

The majority of economic models is based on hypothesis, not always verified, that 

return and excess return are independent realization from the same multivariate 

normal distribution.  
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1.3 Expected Utility Theory 

Uncertainty plays  a remarkable role  in the investors’ processes of  taking decisions. 

Since the future is unknown, investors make their choice within an uncertain overall 

framework, where every action carries   different consequences depending on the 

state of nature that it will come true. Each state of nature has its own probability of 

success, and therefore they have a specific probability distribution.  

Economic agents’ decisions under uncertainty can be represented as the choice of a 

particular prospect within a set of alternatives. In the case where individuals do not 

bother about the risk related to the choice of an uncertain prospect, their decisions are 

driven solely by the expected value criterion ,  which takes into account only the 

sizes of the payouts and the probabilities of occurrence. The alternative with the 

highest expected value will then be chosen. However, most people are not indifferent 

to the risk. Intuitively, one would rank each prospect as more attractive when its 

expected return is higher, and lower attractive when its risk is higher. But when risk 

increases along with return, the most attractive portfolio is not easy to be found 

anymore. How can investors quantify the rate at which they are willing to trade off 

return against risk? In situations involving uncertainty (risk), individuals act as if 

they choose on the basis of expected utility, the utility of expected wealth, rather than 

expected value.  

Economists use Expected Utility Theory in order to explain decisions taken under 

uncertainty. This perspective, which focuses on man as a rational and predictable 

being in his actions, was developed in 1947 by Neumann and Morgenstern  and has 

been widely accepted and applied as a model of economic behavior. According to 

this theoretical model, individuals, who are required  to choose between several 

options, do not evaluate financial quantities depending on their amount, but on the 

satisfaction they subjectively confer on them. Investors can assign a welfare, or 

utility, score to competing investment portfolios based on the expected return and 

risk of those portfolios. The utility score may be viewed as a means    of ranking 

portfolios,  resulted from a criterion of personal choice, therefore it will depend on 

preferences of investors in a specific moment or situation. Higher utility values are 

assigned to portfolios with more attractive risk-return profile.    
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This theory allows us to study individual preferences, which are represented by a 

utility function u , which is defined barring a monotonic increasing transformation. 

This function has two properties: it must respect the preferences order of the 

individual and it must be increasing, that is it must have positive marginal utility of 

wealth, since it is reasonable to confer more utility to greater payoffs.  

Given a function ( )u x where x  corresponds to the wealth in 1t    and assuming 

'( ) 0u x    (rational investor), the expected utility of wealth result from 

 

1

[ ( )] ( )
S

i i

i

E u x p u x


    (1.10) 

where 
1

1
S

i

i

p


  and S  are the states of nature. 

Investors choice criteria  among several risky alternatives are always based on the 

expected utility result. Rational individuals choose the option that maximize their 

utility, on the basis of the expected utility rather than expected value of the 

outcomes. Therefore the preferred alternative depends on which subjective expected 

utility is higher. Different people may take different decisions because they may have 

different utility functions or different beliefs about the probabilities of varied 

outcomes.  

Asked to choose between two prospects, a risk-free one, with sure return R, and a 

risky one with expected return equal to R,  investors always compare ( [ ])u E x  and 

[ ( )]E u x . 

A risk averse individual would prefer to receive a certain return R   rather than 

having an uncertain prospect whose expected value corresponds to R .   He is 

therefore willing to give up a part of income in exchange for a sure outcome, since he 

considers uncertainty as a negative element. Financial analysts generally assume 

investors are risk averse in the sense that, if the risk premium were zero, people 

would not be willing to invest any money in stocks. A risk-averse investor penalizes 

the expected rate of return of a risky portfolio by certain percentage to account for 

the risk involved. The greater the risk, the larger the penalty. In theory, then, there 

must always be a positive risk premium on stocks in order to induce risk-averse 
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investors to hold the existing supply of stocks instead of placing all their money in 

risk-free assets.  

In contrast to risk-averse investors, risk-neutral investors judge risky prospectus 

solely by their expected rates of return. The level of risk is irrelevant to the risk-

neutral investor, meaning that there is no penalty for risk. 

A risk lover is willing to engage in fair games and gambles; this investor adjusts the 

expected return upward to take into account the pleasure  of confronting the 

prospect’s risk. Risk lovers will always take a fair game because their upward 

adjustment of utility for risk gives the fair game a higher utility than the risk-free 

investment. 

The concept of risk aversion is useful to estimate risk effects in individuals’ 

satisfaction level and  in their preferences. 

Risk attitude is directly related to the curvature of the utility function:   

 A risk averse individual has concave utility function. Moreover the concavity 

shows diminishing marginal wealth utility. 

 A risk neutral individual has linear utility function.  

 A risk lover individual  has convex utility function. 

The degree of risk aversion can therefore be measured by the curvature of the utility 

function. Since the risk attitudes are unchanged under affine transformations of  u    , 

the first derivative , 'u   ,   is not an adequate measure of the risk aversion of a utility 

function. Instead, it needs to be normalized. This leads to the definition of the 

Arrow–Pratt
 
measure risk aversion. 

The Arrow–Pratt measure of absolute risk aversion is: 

 ''( )
( ) ,

( )
A

u x
R x

u x
    (1.11) 

Where 'u  and ''u  are the first and second derivatives of the utility function and x  is 

the generic outcome. The reasons behind the choice of this coefficient is intuitive: a 

function is concave if its second derivative is nonpositive. It is a local measure of 

risk, it depends in general on  , and its unit is the inverse of the outcome x   one. 

This coefficient define the absolute amount an investor is willing to pay in order to 
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avoid a risky situation. It is commonly assumed that absolute risk aversion decreases 

with wealth.  

The Arrow–Pratt measure of relative risk aversion is: 

 ''( )
( ) .

( )
R A

u x
R x x x R

u x
     (1.12) 

It has the advantage over the coefficient of absolute risk aversion to be independent 

of the monetary unit for wealth. It defines the share of wealth an investor is willing to 

pay in order to avoid a risky situation. Long term economic behavior shows that 

relative risk aversion is almost independent from wealth.  

When investors are risk averse,  and therefore the utility function is concave, the 

indicators are positive and the degree of risk aversion increases as their value raises. 

 

 

1.4 Mean-Variance Analysis 

History shows us that, in the short run, long-term bonds have been riskier 

investments than investments in Treasury bills, and that stock investments have been 

riskier still. On the other hand, the riskier investments have offered higher average 

returns. Investors, of course, do not make all-or-nothing choices from these 

investment classes. They can and do construct their portfolios using securities from 

all asset classes. Portfolio selection, that is the definition of the optimal allocation 

obtained maximizing expected utility,  is indeed one of the most relevant issue an 

investor must deal with.  The process of building an investment portfolio usually 

begins by deciding how much money to allocate to broad classes of assets, such as 

stocks, bonds, real estate, commodities, and so on. The choice among these broad 

asset classes is referred as asset allocation. Then, the portfolio’s construction 

continues with the capital allocation between the risk-free asset and the risky 

portfolio. However, to define portfolio’s shares that minimize risk and maximize 

return is the final purpose of this process.  
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Portfolio choice theory was originally developed by Markowitz (1952). In his Mean-

Variance Analysis model he showed how investors should pick assets if they care 

only about mean and variance of portfolio returns over a single period. The main 

objective of this approach it to define the optimal portfolio and to track the efficient 

frontier that gather  all the risk-return efficient opportunities. The system consists of 

two parts. In the first one, where investor’s expectations and his risk aversion do not 

come into play, the risk-return combinations available from the set of risky assets are 

identified and the optimal portfolio of risky assets is selected. Secondly the investor 

chooses his appropriate optimal portfolio, combination of risk–free asset and optimal 

risky portfolio, maximizing his own satisfaction. In this last step, the introduction of 

individuals’ preferences makes it possible to compare the efficient portfolios, and to 

take the final decision among them. The Expected Utility theory, that fully quantify 

the investor’s position,  represents the connecting element between these two parts. 

The principal idea behind the frontier set of risky portfolios is that, for any risk level, 

investors are interested only in that portfolio with the highest expected return, or 

alternatively for any given level of expected return they prefer the portfolio which 

has minimum variance.  

The efficient frontier can be obtained in two ways: 

- Minimizing the portfolio’s variance for all the possible values of expected return; 

- Maximizing  investor’s expected return changing the portfolio’s variance.  

These two methods  return the same efficient frontier when there is a square utility 

function or when returns have an elliptical distribution, as the case of a multivariate 

normal distribution. 

The investor maximizes an objective function, that depends on the mean and 

variance of returns, in order to define a set of efficient portfolios, that constitute the 

efficient frontier. It is important to highlight that the set of efficient portfolios does 

not depend on the investor’s expectation or on his risk aversion level. 

When the first step is completed, the investor has a list of efficient portfolios, that is 

the efficient frontier of risky assets . Thus, he proceeds to step two and introduces the 

risk-free asset. The efficient frontier is now given as a straight line tangent to the 

efficient frontier of risky assets, and it is defined as Capital Market Line. The set of 
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admissible portfolios is specified, now the investor must choose his  optimum 

according to his  own preferences and level of risk aversion. The optimum portfolio 

is therefore defined as the tangency point between the efficient frontier and the 

indifference curves derived from his utility function.  

What the investor does in order to solve the risk-return trade-off, is to maximize his 

utility function defined over wealth in 1t   . The wealth at the end of the period 

depends on the allocation decisions. And since the assets where he can invest are 

risky, his wealth will also have risky returns, whose  we can compute the expected 

value and variance. Then the maximization problem is: 

 
1max [ ( )]tE u W


   (1.13) 

subject to 1 1  (1 )t t tW R W   , and where   is a portfolio’s share invested in the 

risky asset, or : 

 max [ ( (1 ))] max ( )t tE u W R u CE
 

    (1.14) 

where the certainty equivalent is the guaranteed amount of money that an individual 

would view as equally desirable as a risky asset, ( ) [ ( )]u CE E u x   . 

Similar results are available if we assume instead  that the investor maximizes an 

objective function that is a liner combination of mean and variance with a positive 

weight on mean and a negative weight on variance.  
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, 1 ,

( )
max ( )

2

A t
t p t p t

R W
E R






 
 

 
  (1.15) 

Where   is the portfolio’s share invested in the risky asset, 1 1(1 )t t tW R W    and   

2

,p t   is the portfolio’s variance at time t . 

The result of Markowitz analysis are shown in the mean-standard deviation diagram 

of Figure 1.2. The vertical axis shows expected return, and the horizontal axis shows 

risk as measured by standard deviation. Stocks offer a high expected return and a 

high standard deviation, bonds a lower expected return and lower standard deviation. 

The risk-free asset has a lower mean again, but is riskless over one period, so it is 

plotted on the vertical zero-risk axis. Investors can achieve any efficient combination 
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of risk and return along the curve, that it is the efficient frontier, by changing the 

proportion of stock and bonds. Moving up the curve they increase the proportion in 

stocks and correspondingly reduce the proportion in bonds. As stock are added to the 

all-bond portfolio, expected returns increase and risk decreases, a very desirable 

combination for investors. But after the minimum risk point is reached, increasing 

stocks will increase the return of the portfolio only with extra risk.  The slope of any 

point on the efficient frontier indicates the risk-return trade-off for that allocation.  

When the risk-free asset is added to a portfolio of risky assets, the efficient frontier 

becomes the straight line that passes through the risk-free point and is tangent to the 

curved line . This straight line, the Capital Market Line, offers the highest expected 

return for any given standard deviation. All investors who care only about mean and 

standard deviation will hold the same portfolio of risky assets. Conservative 

investors will combine this portfolio with a risk-free asset to achieve a point on the 

mean-variance efficient frontier that is low down and to the left;  moderate investors 

will reduce their holdings in the risk-free asset, moving up and to the right; 

aggressive investors may even borrow to leverage their holdings of the tangency 

portfolio, reaching a point on the straight line that is even riskier than the tangency 

portfolio. But none of these investors should alter the relative proportions of risky 

assets in the tangency portfolio.  
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1.4.1 The form of the utility function 

As we mentioned before, models of portfolio choice require assumptions about the 

form of the utility function and about the distribution of asset returns. There are three 

alternative sets of assumptions that generate consistent result with those of  the 

mean-variance analysis.  

Investors have quadratic utility defined over wealth. That is, 

2

1 1 1( )t t tU W aW bW    . Under this assumption maximizing expected utility is 

equivalent to maximizing a linear combination of mean and variance. No 

distributional assumptions on asset returns are required. Quadratic utility implies that 

absolute risk aversion and relative risk aversion are increasing in wealth.  

Investors have exponential utility, 1 1( ) exp( )t tU W W    , and returns are 

normally distributed. Exponential utility implies that absolute risk aversion is a 

constant , while relative risk aversion increases in wealth. 

Figure 1.2:  Mean-standard deviation diagram 
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Investors have power utility, 
1 1( ) ( 1) / (1 )A

t tU W W A    , and asset returns are 

lognormally distributed. Power utility implies that absolute risk aversion is declining 

in wealth, while relative risk aversion is a constant A  . As A  approaches one the 

limit is log utility: 1 1( ) log( )t tU W W   

The power utility function seems to be the most suitable choice to explain investors’ 

preference. Indeed, since absolute risk aversion should decline, or at the very least 

should not increase with wealth, the quadratic utility can be excluded, and the power 

utility can be preferred to the exponential utility. The power-utility property of 

constant relative risk aversion is attractive, and is required to explain the stability of 

financial variables. The choice between exponential and power utility also implies 

distributional assumptions on returns. Power utility function produces simple results 

if returns are lognormal. The assumption of lognormal returns, unlike the one of 

normal returns, can hold at every time horizon since products of lognormal random 

variables are themselves lognormal.The assumption of lognormal returns has another 

limit, however. It does not carry over straightforwardly from individual assets to 

portfolios. Anyway this difficulty can be avoided by considering short time intervals. 

Indeed, as the time interval shrinks, the non-lognormality of the portfolio return 

diminishes. Therefore, in the portfolio choice analysis that we are carrying out later, 

we use a power utility function to describe the investor’s preferences. 

 

 

1.4.2 Limitations of the Mean-Variance Model 

The striking conclusion of Markowitz’s analysis is that all investors who care only 

about mean and standard deviation must hold the same portfolio of risky assets and 

none of these investors should alter the relative proportions of risky assets in the 

tangency portfolio. But financial planners have traditionally resisted the simple 

investment advice embodied in Markowitz’s Mean-Variance theory. One common 

pattern in financial advice is that conservative investors are typically encouraged to 

hold more bonds, relative to stocks, than aggressive investors, contrary to the 

constant bond-stock ratio suggested by the mean-variance model. 



18 
 

One possible explanation for this pattern of advice is that aggressive investors are 

unable to borrow at the riskless interest rate, and they thus cannot reach the upper 

right portion of the straight line in Figure 1.2. In this situation, aggressive investors 

should move along the curved line, increasing their allocation to stocks and reducing 

their allocation to bonds. The fact is that this explanation only applies once the 

constraint on borrowing starts to commit the investor, that is, once cash holdings 

have been reduced to zero; but the bond-stock ratio often changes even when cash 

holdings are positive.  

Markowitz’s mean-variance approach can be applied only when investor’s 

preferences are described by a quadratic utility function, of the mean-variance kind, 

or when the distribution of risky returns is elliptical. Although these hypothesis allow 

to obtain explicit solutions, they are strong assumptions, that do not describe the 

reality: the quadratic utility function is not enough flexible and for some specific 

combination it may violate the non satiety assumption ( for high values of wealth you 

can have a reduction in utility), the normal distribution of returns can be used when 

markets are not excessively volatile; increasing the frequency of observations from 

annual to monthly or weekly the returns’ distribution usually deviates from a normal 

one. Therefore, for long time horizons and for violation of one of these two 

assumption the approximation included in the mean-variance approach is not 

sufficiently accurate. An additional possibility is the hypothesis that investor's 

preferences violate the axioms of Expected Utility theory, as in the Prospect Theory 

of Kahneman and Tversky (1979). 

Moreover, so far we have assumed that the investor has a short investment horizon 

and cares only about the distribution of wealth at the end of the next period. In 

reality, investors are more interested in maintaining a certain standard of living 

through long-term investment. If individuals with long horizon invest repeatedly in 

the efficient uniperdiodal portfolio, they achieve an efficient strategy when: 

 they have constant relative risk aversion and own only financial wealth; 

 asset returns are i.i.d.; 

 there is no uncertainty in the estimated parameters; 

 there are no transaction costs. 
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Most of these assumptions are not realistic, therefore we can not consider Mean-

variance analysis an appropriate model for long-term investment. Merton (1969) 

found that in a multiperiod context portfolio choice can be significantly different.  

 

 

1.5  The holding period 

Beyond single agent’s preferences, a lot of other factors affects optimal portfolio 

choice. For instance, an individual with a long investment horizon may consider risk 

differently from a short-horizon investor. Thus, the optimal portfolios of long-

horizon investors do not need necessarily to have the same composition of those of 

short-horizon investors. Given these important results, it might seem puzzling that 

the holding period has almost never been mentioned before. 

In order to understand the optimal portfolio allocation when several holding periods 

are taken into account, it is essential to specify the behaviors an investor can adopt. 

 Buy-and-hold  

An agent with investment horizon of t  years chooses the portfolio allocation 

at the beginning of the first year and does not touch his portfolio again until 

the t  years are over. The buy-and-hold strategy is a passive and static 

investment strategy: once the portfolio is created, it is not handled in any 

way.  

 myopic rebalancing  

The investor chooses some arbitrary intervals to rebalance the portfolio, for 

example every year. He then chooses an allocation  at the beginning of the 

first year, knowing that he will always choose the initial allocation at the 

beginning of every year. This strategy is called myopic because the individual 

does not use any of the new information  he has once a year is passed to 

allocate the portfolio in an optimal way for the subsequent years. Moreover , 

it is similar to the buy-and-hold strategy since over the years always the same 
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allocation is chosen, as if the investor would not intervene until the end of the 

investment horizon. 

 Optimal rebalancing 

The investor chooses today the allocation of his portfolio, knowing that at 

regular intervals he may reallocate the portfolio using all the new information 

available up to that moment. This is the most sophisticated technique to 

manage a portfolio in a dynamic and uncertain context as the financial 

market. 

This paper presents the results for a buy-and-hold investor who faces the problem of 

portfolio choice in several investment horizons. 

 

 

1.5.1 Long-run portfolio choice 

Illustrating the classic Mean-Variance Analysis we assumed that the investor has a 

short investment horizon and cares only about the distribution of wealth at the end of 

the next period. However, most of the time, investors are more interested in 

maintaining a certain standard of living through long-term investment. 

Financial economists recognized the need for a long-term portfolio choice theory in 

the 70’s . They started to develop empirical models of portfolio choice for long term 

investors, building on the fundamental insights of Samuelson and Merton; important 

contributions came from Rubinstein, Stigliz and Breeden.  

Below we try to explain those special cases in which long-term investors should take 

the same  decisions as short-term investors. In these special examples the investment 

horizon is irrelevant; portfolio choice is therefore said myopic.  

Classic results of Samuelson (1969) and Merton (1969, 1971) show two sets of 

conditions under which the long-term agent acts myopically, choosing the same 

portfolio as a short-term agent.  

Firstly, portfolio choice will be myopic, if the investor has power utility and returns 

are i.i.d. As we already stated, power utility implies the presence of constant relative 

risk aversion. With constant relative risk aversion, portfolio choice does not depend 
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on wealth, and hence does not depend on past returns. Moreover if returns are i.i.d, 

no new information emerges between one period and the next so there is no reason 

for portfolio choice to change over time in a random way. The investor with power 

utility function, who rebalances over time his portfolio, will choose the same 

allocation of short period regardless of the investment horizon. The choice of myopic 

portfolio is therefore optimal if investors do not have labor income  and if investment 

opportunities are constant over time. 

The second condition for myopic portfolio choice is that investor has log utility. In 

this case portfolio choice will be myopic even if asset return are not i.i.d.. Hence  

also if investment opportunities vary over time, with this utility function the horizon 

becomes irrelevant. The argument here is simple. Indeed, if the log utility investor 

chooses a portfolio that maximizes the expected log return, K-period log return is 

just the sum of 1-period log returns. Since the portfolio can be chosen freely each 

period, the sum is maximized by maximizing each of its elements separately, that is, 

by choosing each period the portfolio that is optimal for a 1-period log utility 

investor. 

Nonetheless a typical pattern in financial advice is the tendency for financial 

planners to encourage young investors, with a long horizon, to invest mainly in 

stocks compared to  older investors who have a shorter horizon.  In this work we will 

explore the conditions under which a long investment horizon indeed justifies a 

different allocation, therefore contrasting with Samuelson and Merton conclusion. 

We devote the next chapters to studying the optimal portfolio decision when 

Samuelson and Merton’s assumptions are infringed, in particular in the third chapter 

we allow for predictability in asset return rather than consider an i.i.d. context, still 

employing a  power utility function.   
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Chapter 2 

Portfolio allocation with parameter uncertainty 

 

2.1 Introduction 

In this chapter we deal with the optimal portfolio allocation assuming that parameters 

are not known precisely. Our purpose is to understand how parameter uncertainty 

alone affects portfolio choice. 

We devote the third paragraph to a brief description of the data set used throughout 

our work, and to some preliminary analysis of the data in order to examine their 

features.  

We then present the model  that handles portfolio choice under several investment 

horizons and under the case where the investor either ignores or accounts for 

parameter uncertainty.  

In the fifth paragraph the results obtained by implementing the model to the data set 

are reported and explained. 

Finally we adopt the resampling approach in order to simulate data from the real and 

unknown generating process. We therefore understand if the assumption of normality 

attributed to assets returns, that has a critical role in the construction of the model, 

affects the portfolio optimal allocation. 

 

 

2.2 Parameter uncertainty 

Theoretical models often assume that an investor who makes an optimal financial 

decision knows the true parameters of the model, but the true parameter are rarely if 

ever known to the decision maker. In reality, model parameters need to be estimated 

and, hence, the model’s usefulness depends in part on how good the estimates are. 

This gives rise to estimation risk in virtually all financial models. Estimation risk is 

defined as the investor’s uncertainty about the true values of model parameters. The 

parameter uncertainty increases the perceived risk in the economy and necessarily  
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influences portfolio decisions, it is therefore the primary source of deviation from 

reasonably satisfactory and consistent solutions.  At present, estimation risk is 

commonly minimized based on statistical criteria such as minimum variance and 

asymptotic efficiency. The reasons why this type of risk exists may be attributed to 

two specific factors: sampling error, when inputs are estimated , and non-stationarity 

of the time series.  

A first example of parameter uncertainty arises from the classic portfolio choice 

problem. Markowitz’s work shows that the optimal portfolio for an investor who 

cares only about  mean and standard deviation is a combination of tangency portfolio 

and the risk-free asset. Despite its limitation as a single-period model already 

mentioned before, the mean-variance framework is one of the most important 

benchmark models used in practice today. However the framework requires 

knowledge of both the mean and covariance matrix of the asset returns, which in 

practice are unknown and have to be estimated from the data. The standard approach, 

ignoring estimation risk, simply treats the estimates as the true parameters and plugs 

them into the optimal portfolio formula derived under the mean-variance framework.  

Even though we assume  that investors know these parameters with certainty, we can 

not be sure that the estimated values coincide effectively with the true values of the 

parameters. The investor would face two problems at the same time: a portfolio 

allocation problem  and an inferential problem. 

The concept of parameter uncertainty was first investigated by Bawa, Brown and 

Klein (1979) who explore the issue in the context of i.i.d. returns. Whereas Kandel 

and Stambaugh (1996) were the first to explore the problem of parameter uncertainty 

in the context of portfolio allocation with predictable returns. They show that for a 

short-horizon investor, the optimal allocation can be sensitive to the current value of 

predictor variables, even though regression evidence for such predictability may be 

weak. In our analysis we focus  on a wider range of horizons, from one month to 10 

years, rather than the one-month horizon of Kandel and Stambaugh. 

The studies on estimation risk typically focuses on the subjective distribution 

perceived  by investors. Since investors do not know the true distribution, they must  

estimate the parameters using whatever information is available, which can be 

formally modeled using  Bayesian analysis.   The subjective distribution combines 
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investors’ prior beliefs with the information contained  in observed data. Indeed, 

rather than constructing the distribution of future returns conditional on fixed 

parameter estimates, they can integrate over the uncertainty in the parameters 

captured by the posterior distribution.  This allows them to construct what is known 

in Bayesian analysis  as the predictive distribution for future returns, conditional only 

on observed data, and not on any fixed parameter values. This distribution represents 

investors’ best guess about future returns, and  is therefore relevant for investment 

decisions. 

Our first set of results relates to the case where parameter uncertainty is ignored, that 

is, the investor allocates his portfolio taking the parameters as fixed at their estimated 

values; then we consider the case where the investor takes into account uncertainty 

about model parameters.  By comparing the solution in the case where we condition 

on fixed parameters, and where we use the predictive distribution conditional only on 

observed data, we see the effect of parameter uncertainty on the portfolio allocation 

problem. 

 

 

2.3 Data set 

To illustrate our approach, we use monthly U.S. financial data for the period January 

1990-November 2012, the sample consisting therefore  of  275 monthly data.  We 

begin our analysis including only one risky asset that, combined with the risk-free 

one, constitute the investor optimal portfolio choice. 

In our study, the risky asset is the S&P 500 Index, and the risk-free asset is a short-

term debt instrument. 

The S&P 500 is the most  widely accepted barometer of the market. This value 

weighted index was firstly compiled in 1957 when it included 500 of the largest 

industrial, rail, and utility firms that traded on the New York Stock Exchange. It soon 

became the standard against which the performance of institutions and money 

managers investing in large U.S. stocks was compared. It now includes 500 large-cap 

stocks, which together represent about 75% of the total U.S. equities market.  The 
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S&P 500 thus provide a convenient way to examine the behavior of stock returns. 

Returns on the index were computed assuming continuous compounding, from  the 

monthly total return time series downloaded from Datastream. 

The risk-free asset used in  the analysis is the 3-month Treasury Bill, downloaded 

from FRED (Federal Reserve Economic Data) a database of the of the Federal 

Reserve Bank of St. Luis. The available data are annualized, therefore we divided the 

annualized rates by 12 in order to get the monthly rates of return. 

 

 

2.3.1 Preliminary analysis 

Equity index’s total return time series is non-stationary and it has frequent changes in 

mean, as it is displayed in Figure 2.1. 

 

 

 

Returns instead exhibit more attractive properties,  that is the reason why we use 

returns in place of prices series  throughout our work. Continuous compounded 

returns are computed according to equation (1.3), starting from the total return series 

of the stock index.  We now make a brief analysis of these returns properties. The 

returns considered here are stationary, and the autocorrelation function confirms that. 
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Figure 2.1: S&P 500 Stock Price Index over the period 1990-2012. 
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Moreover analyzing the empirical autocorrelation function we can see that returns 

are uncorrelated. They have a positive mean of 0.0070, that is significant since the t-

statistic (obtained dividing the returns’ mean by its standard error) , is equal to 

2.6945 , which is greater than the critical value 1.96.  

S&P500 Logarithmic Returns 

Mean 0.007082 St. Error 0.002628 

Minimum -0.183863 Variance 0.001900 

Maximum 0.108277 St. Dev 0.043587 

1° Quartile -0.017341 Skewnees -0.773007 

3° Quartile 0.035467 Kurtosis Excess 1.579464 
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Figure 2.2: S&P 500 Continuously Compounded Returns over the period     1990-2012 

 

Table 2.1: Main descriptive statistics of S&P 500 Continuously Compounded Returns 

over the period     1990-2012. 
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When returns are calculated assuming continuous compounding they are 

hypothesized to have a Normal distribution.  This hypothesis hold true for 

multiperiod returns as well, since they are simply the sum of the continuously 

compounded  one-period returns involved. The assumptions of normality, attributed 

to the assets’ returns,  has a fundamental role in the construction of the model, 

however there are empirical reasons to believe that it does not represent an adequate 

description of the returns’ generator process. We now test for  the normality of our 

sample.  

There are several test statistics that can be used in order to verify the normality of the 

returns series. The simplest ones are based on the properties of the indexes of 

skewness and kurtosis. Indeed under normality assumption ˆ( )S x and ˆ ( ) 3K x  are 

distributed asymptotically as normal with zero mean and variance 6 / T and 24 / T , 

respectively. These asymptotic properties can be used to test the normality of asset 

returns. Given our asset series, the skewness and excess of kurtosis of returns can be 

verified throughout the use of marginal tests respectively based on S and K.  Jarque 

and Bera (1987) combine the two tests and use the test statistic  

2 2
ˆ ˆ 3

,
6 / 24 /

S K
JB

T T

   
     

  
 

which is asymptotically distributed as a chi-squared random variable with 2 degrees 

of freedom, to test for the normality of asset return series. 
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Figure 2.3: Empirical correlogram of S&P 500 returns. 
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Another statistic used in order to test for the hypothesis of normality, when the mean 

and variance are not specified, is the Lilliefors one. Initially the empirical mean and 

variance are estimated from the available data, then the maximum discrepancy 

between the empirical distribution function and the cumulative distribution function 

of the normal distribution, with the estimated mean and variance, is found . Finally 

the obtained statistic value is compared with the critical values of the Lilliefors 

distribution in order to assess whether the maximum discrepancy is large enough to 

be statistically significant , thus requiring rejection of the null hypothesis. 

  Normality Test 

Jarque-Bera     0.001 

Lilliefors          0.023 

 

Our results reject the null hypothesis of normal returns for a significance level of 

0.05. A confirmation of what has been said, the normal probability plot in  Figure 2.5  

shows  a departure of sample quantiles  from the theoretical ones of the normal 

distribution, in particular on the left queue. Moreover, the empirical density function 

of the returns series in Figure 2.4,  has a particularly high peak around its mean and 

exhibits a skewness on the left side and leptokurotsis, sign that  extreme returns are 

more likely to happen compared to a normal distribution.  
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Table 2.2: Normality tests’ P-values for the returns series. 

Figure 2.4: Empirical density function of the S&P 500 returns series and normal probability 

density function evaluated by using the sample mean and standard deviation. 
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We now consider the short-term interest rate series, the U.S. Treasury Bill with a 

maturity of three months. Looking at the autocorrelation function in Figure 2.6 we 

hypothesize a non stationary series. When we implement the Dickey-Fuller test 

without constant, since it is not significant, we obtain a value of the t-statistic equal 

to -2.14, which is smaller, in absolute value, than the critical value -2.58, and 

confirm the presence of unit root at a significance level of 1%. However the monthly 

interest rate is a very small number and has a lower variance compared to the stocks 

returns’ one. Therefore interest rates can be considered almost constant and they can 

be set equal to their sample mean fr  . The effect of the approximation can be 

considered irrelevant to the analysis. For these reasons,  the interest rate is treated as 

risk-free and it is used to build the equity index excess returns. The excess returns, 

obtained as difference between stock returns and fr , retain all the properties that 

characterize the equity index. Only some descriptive statistics on position indexes, 

such as  average, quartiles and extremes change  . 

3-Month treasury Bill 

Mean 0.002735 St. Error 6.527e-006 

Minimum 8.33e-006 Variance 3.199e-006 

Maximum 0.006562 St. Dev 0.001789 

1° Quartile 0.000991 Skewnees -0.128481 

3° Quartile 0.004158 Kurtosis Excess -1.113750 
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Figure 2.5: Normal probability plot of S&P 500 returns series. 

Table 2.3: Main descriptive statistics of 3-Month Treasury Bill over the period 1990-

2012. 
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If we look at the Figure 2.8 , we can see that the empirical density function  of the 

interest rate differs from normal probability density evaluated by using the sample 

mean and standard deviation. Furthermore, the normal probability plot exhibits a 

strong departure of the empirical queues from the theoretical ones.  This is  

confirmed by the normality tests we implemented, which lead to reject the hypothesis 

of normality of the risk-free asset.  
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Figure 2.6: 3-Month Treasury Bill over the period 1990-2012. 

Figure 2.7: Empirical correlogram of 3-Month Treasury Bill 
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  Normality Test 

Jarque-Bera     0.005 

Lilliefors           0.01 
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Table 2.4: Normality tests’ P-values for 3-Month Treasury Bill series. 

Figure 2.8: Empirical density function of the 3 Month Treasury Bill series and normal 

probability density function evaluated by using the sample mean and standard deviation. 

Figure 2.9: Normal probability plot of  the 3 Month Treasury Bill series. 
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2.4 Long horizon portfolio allocation 

This section is dedicated to the presentation of the model developed by Barberies 

(2000), that deals with the portfolio choice under several investment horizons and 

under the case where the investor either ignores or accounts for parameter 

uncertainty and returns predictability. We start out our analysis by considering the 

case where no predictor variables are included in the model, and hence where asset 

returns are i.i.d., and look at how parameter uncertainty alone affects portfolio 

allocation. There are two assets: Treasury bill and equity index, in this case the 

value-weighted index S&P 500. For simplicity, we suppose that the continuously 

compounded monthly return on Treasury Bills is a constant 
fr  . The excess return on 

the risky asset is obtained as difference between the stock return and fr , and it is 

continuously compounded.   

As we have just said, we model excess returns on the stock index  assuming that they 

are i.i.d., so that   

 ,t tr     (2.1) 

where tr is the continuously compounded excess return on the equity index over 

month t , and where 2i.i.d. (0, )t N   .  

Suppose we are at time T  and want to write down the portfolio problem for a buy-

and-hold investor with a horizon of T̂  months. If the investor has no chance to buy 

or sell assets between time T  and horizon ˆT T  , he will only be interested in the 

distribution of wealth at the end of the investment period, that is ˆ( )
T T

u W


. The most 

used utility function for portfolio allocation problem is the power utility function, 

that has absolute risk aversion declining in wealth, while relative risk aversion is 

constant. The investor’s preferences over terminal wealth are then described by a 

constant relative risk-aversion power utility function of the form: 

  
1

( )
1

AW
u W

A






 (2.2) 

where A   is the coefficient of relative risk aversion 
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If initial wealth 1TW    and   is the allocation to the stock index, then end-of-

horizon wealth is given by 

 
ˆ ˆ1

ˆ ˆ(1 )exp( ) exp( ... )f f TT T T T
W r T r T r r   

       (2.3) 

If we write the cumulative excess stock return over T̂  periods as 

 
ˆ ˆ1 2 ... ,T TT T T T

R r r r  
     (2.4) 

the buy-and-hold investor’s problem is to solve 

  
1

ˆ
ˆ ˆ(1 )exp( ) exp( )

max
1

A

f f T T

T

r T r T R
E

A

 




   
 
  
 

 (2.5) 

tE denotes the fact that the investor calculates the expectation conditional on his 

information set at time T , adopting the distribution of cumulative excess returns  

ˆT T
R


. We have therefore to define which distribution the investor should use in 

calculating this expectation. Indeed, the distribution may be different depending on 

whether the investor accounts for parameter uncertainty or not. The effect of 

parameter uncertainty is then revealed by comparing the optimal portfolio allocation 

obtained in these two cases. 

 

Ignoring parameter uncertainty 

Once the parameters 2( , )     have been estimate, a distribution for future stock 

excess returns conditional on a set of parameter values and on the data observed by 

the investor  up until the start of his investment horizon is generated, which we write 

as 2

ˆ
ˆ ˆ( | , , )

T T
p R r 


. Since ˆT T

R


 is the sum of T̂  normally distributed random 

variables with mean    and variance 2  , the sum ˆT T
R


 is normally distributed 

conditional on   and 2  with mean T̂   and variance 2T̂ . 

The investor then solves  

 
ˆ ˆ ˆ

ˆmax ( ) ( | , ) .
T T T T T T

W p R r dR


 
    (2.6) 
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The shortcoming with this approach is that it ignores the fact that theta 2( , )    is 

not known precisely. There may be substantial uncertainty about the regression mean 

of   and 
2  . 

 

Incorporating parameter uncertainty 

A natural way to take the uncertainty in the estimations into account is to use 

Bayesian concept of posterior distribution ( | )p r  , which summarizes the 

uncertainty about the parameters given the data observed so far. To construct the 

posterior distribution 2( , | )p r    a prior is required. A potential choice could be the 

uninformative prior 

 2

2

1
( , ) .p  


  (2.7) 

But we could also have used a more informative prior, which for instance puts zero 

weight on negative values of   , reflecting the consideration of Merton (1980) that 

expected market risk premium should be positive. 

The resulting posterior distribution derived by Zellner (1971) consists of the 

marginal distribution Inverse Gamma  

 
2 2

1

1 1
| , ( )

2 2

T

t

i

T
r IG r r



 
 

 
  (2.8) 

and of the conditional Normal distribution 

 2
2| , , ,r N r

T


 

 
 
 

 (2.9) 

Indeed, to sample form the posterior 2( , | )p r  , we firstly sample from the 

marginal  2( | )p r , an Inverse Gamma distribution, and then, given the 2  

drawn, from the conditional 2( | , )p r  , a Normal distribution.  
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Integrating over  this distribution, we obtain the predictive distribution for long-

horizon returns. This distribution is conditioned only on the sample observed, and 

not on any fixed theta : 

 
ˆ ˆ( | ) ( | , ) ( | ) .

T T T T
p R r p R r p r d  

 
   (2.10) 

The investor then solve 

 
ˆ ˆ ˆmax ( ) ( | ) .

T T T T T T
W p R r dR




    (2.11) 

It could be helpful to rewrite the problem as 

 
ˆ ˆ ˆ

ˆ ˆ ˆ

max ( ) ( , | )

max ( ) ( | , ) ( | ) .

T T T T T T

T T T T T T

W p R r dR d

W p R r p r dR d





  

   

  

  





 (2.12) 

The integral can therefore be evaluated by sampling from the joint distribution 

ˆ( , | )
T T

p R r


, and then averaging ˆ( )
T T

W


 over those draws. We sample from the 

joint distribution by first sampling from the posterior ( | )p r  and then from the 

conditional ˆ( | , )
T T

p R r 


 , 2ˆ ˆ( , )N T T  .  

In order to solve the maximization problems (2.6) and (2.11)  we calculate the 

integrals for several values of the proportion invested in the equity index, that is 

0, 0.01, 0.02, ..., 0.98, 0.99  , and report the   that maximizes expected utility. 

We therefore restrict the allocation to the interval 0 1   precluding short selling 

and buying on margin. In section 2.5, we present the optimal allocation   which 

maximize expected utility for a variety of risk aversion levels A  and investment 

horizons  ranging from 1 month to 10 years, and for each of the two cases where the 

investor either ignores or account for parameter uncertainty.   

The integrals themselves are evaluated numerically by simulation. For instance, if we 

are trying to evaluate 

 ( ) ( ) ,g y p y dy   

where ( )p y   is a probability density function. We can approximate the integral by 
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( )

1

1
( ),

I
i

i

g y
I 

  
 

where 
(1) ( ),..., Iy y  are independent draws from the probability density ( )p y . 

Thus we approximate the integral for the calculation of the expected utility by 

taking a sample ( )

ˆ

i

T T
R


  from one of the two possible distributions, and then 

computing 

  
1

( )

ˆ

1

ˆ ˆ(1 )exp( ) exp( )1
.

1

A
i

I
f f T T

i

r T r T R

I A

 






   
 
  
 

  

 

 

We chose to avail ourselves of the interactive environment of numerical computation 

and programming MATLAB, in order to implement the model described before.  The 

employed commands are listed in Appendix B. 

 

2.4.1 Sampling process 

As we have just mentioned in equation (2.10) , there are two steps to sampling from 

the predictive distribution for long-horizon returns ˆ( | )
T T

p R r


. Firstly, we generate a 

large sample  from the posterior distribution for the parameters 2( , | )p r  . We 

sample form the marginal 2( | )p r , an Inverse Gamma distribution, and then, given 

the 
2̂ drawn, from the conditional 2ˆ( | , )p r  , a Normal distribution. To ensure a 

high degree of accuracy we fix the sample size I = 200000 throughout, and we repeat 

this 200000 times in order to give an accurate representation of the posterior 

distribution. The second step in sampling from the predictive distribution is to 

sample from the distribution of returns conditional on fix parameter values and past 

data 2

ˆ
ˆ ˆ( | , , )

T T
p R r 


.  The sum ˆ ˆ1 2 ...T TT T T T

R r r r  
     is Normally distributed 

conditional on ̂   and 2̂   with mean ˆ ˆT  and variance 2ˆ ˆT  . Therefore for each of 

the pairs of ̂ and 2̂  drawn from the posterior 2( , | )p r  , we sample one point 



 37 
 

form the Normal distribution with mean ˆ ˆT  and variance 2ˆ ˆT . This gives a sample 

of size 200000 from the predictive distribution ˆ( | )
T T

p R r


 which we can use to 

compute the optimal allocation when taking estimation risk into account. 

When parameter uncertainty is ignored, the investor samples instead from the 

distribution of future returns conditional on fixed parameters and past data 

2

ˆ
ˆ ˆ( | , , )

T T
p R r 


. We assume that the investor takes the posterior mean of   and 

2  as the fixed values of parameters, and then draws 200000 times forma a Normal 

distribution with mean ˆ ˆT  and variance 2ˆ ˆT . 

 

 

2.5 Results 

The framework we have just introduced allows us to understand how parameter 

uncertainty affects portfolio choice. This section presents the results of our analysis. 

The objective is to show how the portfolio allocation changes as the  investment 

horizon of a buy-and-hold investor increases, and how the optimal allocation 

changes depending on whether parameter uncertainty is taken into account or ignored 

in the model. 

We simply compare the solution to problem (2.6) which ignores parameter 

uncertainty, with the solution to problem (2.11) which takes uncertainty into account.  

The result are based on the model t tr    , where tr  is the continuously 

compounded excess stock index return in month t  and 2i.i.d. (0, )t N  . 

Table 2.5 gives the mean and standard deviation (in parentheses) of the posterior 

distribution  2( , | )p r   for each parameter   and 2 .   
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1990-2012 

  
2  

0.0044 0.0019 

(0.0026) (0.0002) 

 

 

For an investor using the entire sample from 1990 to 2012, the posterior distribution 

for the mean monthly excess return   has mean 0.0044 and standard deviation 

0.0026. This seems to be an important source of parameter uncertainty for the 

investor. The posterior distribution for the variance 2  is more compact and is 

centered around 0.0019. 

 

Ignoring parameter uncertainty 

When the investor does not take into account parameters uncertainty ,  he solves the 

maximization problem (2.6),  employing a distribution for future excess returns 

conditional on the parameter values and on the observed data of this form  

2

ˆ
ˆ ˆ( | , , )

T T
p R r 


, which is normally distributed with mean ˆ ˆT   and variance 2ˆ ˆT . 

In this case ̂  and 2̂  are the means of each parameter’s posterior distribution 

shown in Table 2.5. 

Figure 2.10  shows the optimal portfolio allocation for a buy-and-hold investor,  

whose preferences over terminal wealth are described by a constant relative risk-

aversion power utility function. The optimal percentage   allocated to the stock 

index, is  plotted against the investment horizon that range from 1 month to 10 years. 

The graph on the left side is based on a relative risk-aversion level of 5A   , the one 

on the right is for 10A   .   

The line, that shows the percentage  allocated to the stock index on varying holding 

period, is completely horizontal in both the graphs. An investor ignoring the 

uncertainty about the mean and variance of asset allocation returns would therefore 

Table 2.5: Mean and standard deviation (in parenthesis) of each parameter’s posterior 

distribution. 
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allocate the same amount to stocks, regardless of his investment horizon. This  is 

similar to Samuelson’s result where he showed that with power utility function and 

i.i.d.  returns, the optimal allocation is independent of the horizon. However, it is 

important to note that he proves this for an investor who optimally rebalances his 

portfolio at regular intervals, rather than for an investor who follows a buy-and-hold 

strategy.  

  

 

 

 

When the investor ignores parameter uncertainty, he uses a Normal distribution with 

mean ˆ ˆT  and variance 2ˆ ˆT  in order to forecast log cumulative returns. We indeed 

assume that continuously compounded excess stock returns are homoscedastic, 

uncorrelated.    Both the mean and the variance grow linearly with the investor’s 

horizon T̂ . A natural consequence of this is that the investor chooses the same stock 

allocation, regardless of the holding period. 

When 5A  ,   the optimal percentage   that the investor allocates to the stock 

index  is 56% , whereas for an investor with 10A   the percentage allocated to the 

stock index falls to 28%. As the level of relative risk-aversion increases, the 

allocation to the stock index falls, indeed a conservative investor prefers a portfolio 

where the risk-free asset constitutes the main proportion. 
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Figure 2.10: Optimal allocation to stocks for a buy-and-hold investor with power utility 

function. The percentage invested in stocks is  plotted against the investment horizon in 

years. The graph on the left side corresponds to a level of risk-aversion of 5, the graph on 

the right to a level of risk-aversion of 10. 
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Ignoring parameter uncertainty 

In this section we try to show how the allocation differs when parameter uncertainty 

is explicitly incorporated into the investor’s decision making framework. When he 

takes into account parameter uncertainty, he solves the maximization problem (2.11), 

throughout the application of the predictive distribution ˆ( | )
T T

p R r


 conditional only 

on past data.   

Figure 2.11 shows that in this context, the stock allocation falls as the horizon 

increases. Therefore we note that parameter uncertainty can introduce  horizon effect 

even in the context of i.i.d. model returns. Accounting for estimation risk, the 

investor’s distribution for long-horizon returns incorporates an extra degree of 

uncertainty, involving an increase in its variance. Moreover, this extra uncertainty 

makes the variance of the distribution for cumulative returns increase faster than 

linearly with the horizon T̂ . This makes stocks appear riskier to long-horizon 

investors, who therefore reduce the amount they allocate to equities in favor of risk-

free asset.  

The explanation why variances increase faster than linearly with the horizon is 

because, in the presence of parameter uncertainty, returns are no longer i.i.d. form 

perspective of the investor, but rather positively serially correlated. An important 

source of uncertainty in the parameters surrounds the mean of the  stock return. 

Returns are positively serially correlated in the sense that, if the stock return is high 

over the first month, then it will probably be high over the second month because it is 

likely that the state of world is one with a  high realization of the uncertain stock 

mean parameter  .   

The magnitude of the effects included by parameter uncertainty are meaningful. An 

investor using the full data set, with 5A  , at an investment horizon of one month 

allocates to the stock index 56%, the same portion he would have invested ignoring 

parameter uncertainty . On the other hand, after ten years the percentage allocated to 

the stock index falls to 41% , a difference  of more than 10 percent . When the level 

of risk-aversion grows to 10 , the difference in allocation at a 10-year horizon 
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becomes 8%, that is, the investor passes from an allocation to stocks equal to 28% to 

an allocation of 20%. 

 

  

 

 

 

 

 

2.6 Resampling 

Thus far we hypothesized that returns, calculated assuming continuous 

compounding, had a Normal distribution, or more precisely that the model for excess 

return over month t , ,t tr     whit 2i.i.d. (0, )t N  ,  held true. This 

assumption of normality, attributed to the assets returns, has a critical role in the 

construction of the model; however, as we can note from the preliminary analysis of 

S&P 500 stock price index, there are empirical reasons to believe that it does not 

represent an adequate description of the returns’ generator process. After testing for 

normality we ended up rejecting the null hypothesis of normal returns for a 

significance level of 0.05. Furthermore the distribution of future excess returns is 

unknown since we do not know the future realizations of the stock index. In this 
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Figure 2.11: Optimal allocation to stocks for a buy-and-hold investor with power utility 

function. The percentage invested in stocks is  plotted against the investment horizon in 

years. The solid line refers to the case where the investor ignores parameter uncertainty, 

the dot line to the case where he accounts for it.  The graph on the left side corresponds to a 

level of risk-aversion of 5, the graph on the right to a level of risk-aversion of 10.  
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section we find a way to obtain the empirical distribution of future excess returns  

using past data to simulate future returns from the available sample. This technique is 

defined as resampling. It only allows the assumption that all sample data have the 

same probability to occurring, no additional hypothesis is made. This method can be 

implemented by constructing a number of resamples of the observed dataset of 

excess returns ,of equal size to the observed dataset, each of which is obtained by 

random sampling with replacement from the original dataset. This process is 

repeated thousands of times in order to generate a probability distribution anchored 

to the true but unknown distribution of returns. The cumulative excess returns over 

T̂  periods are simply the sum of T̂  samples generated using a resempling method. 

When we want the sampling method to take into account parameters uncertainty, we 

firstly sample from the standardized returns  

 
,t

t

r
u






  

 

so that the mean is equal to 0 and the variance is equal to 1. Every drawn value is 

then multiplied by a value ̂  obtained from the posterior distribution of 2 , an 

added to a value ̂  obtained from the posterior distribution of   . 

Comparing the optimal allocations obtained assuming normally distributed 

cumulative excess returns to the allocations obtained  resampling the excess returns, 

we get a measure of the sensitivity of the results to departures form the normality 

hypothesis. 

 

2.6.1 Results 

Figure 2.12  shows the optimal portfolio allocation for a buy-and-hold investor,  

whose preferences over terminal wealth are described by a power utility function. 

The optimal percentage   allocated to the stock index, is  plotted as a function of the 

investment horizon, that range from 1 month to 10 years.  The graphs on the left side 

refer to the analysis that assumes normally distributed excess returns  based on the 
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model t tr    , where 2i.i.d. (0, )t N  . The graphs on the right side allude to 

the case where excess returns are generated by resampling.  

The graphs in figure 2.12 exhibit a strong similarity. Whether the investors take into 

account the estimation risk or ignore it, the optimal allocations obtained  under the 

hypothesis of normality are essentially the same as the ones obtained  by resampling 

Although we rejected the null hypothesis of normality for the distribution of excess 

returns, the optimal allocation does not appear to be affected by this assumption. In 

the next analysis we will therefore keep on hypothesizing a normal distribution of 

excess returns . 
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Figure 2.12: Optimal allocation to stocks for a buy-and-hold investor with power utility 

function. The percentage invested in stocks is  plotted against the investment horizon in 

years.  The two upper graphs correspond to the case where the investor’s level of risk 

aversion equals 5, the graphs below to the case where his level of risk aversion equals 10. 
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Chapter 3 

Portfolio allocation with predictable returns 

 

3.1       Introduction 

This chapter focuses on how predictability affects portfolio choice. An important 

aspect of this analysis is that in constructing optimal portfolios, we account for the 

fact that the true extent of predictability in returns is highly uncertain.  

For the study of the predictability of excess stock returns only one variable is 

considered, the dividend yield, which is introduced and analyzed in the third 

paragraph. 

A VAR model is then defined in order to examine how the  evidence of predictability 

in asset returns affects optimal portfolio choice. 

In the sixth paragraph we describe the procedure to incorporate parameter 

uncertainty in the portfolio allocation problem and then explain the sampling 

process, a critical step in computing optimal allocations.  

In the seventh paragraph the results of the optimal portfolio allocation for a buy-and-

hold investor who is risk-averse are presented. To see whether predictability in 

returns has any effect on portfolio choice we compare the allocation of an investor 

who recognizes predictability to that of an investor who is blind to it.  

Finally, the results obtained considering different initial values of the dividend yield 

are reported in order to understand the role of the predictor variable. 

 

 

3.2  Returns predictability 

Economists have long been concerned  by the nature of variations in the stock 

market. By the early 1970’s  a consensus emerged among financial economists 

suggesting that stock prices could be well approximated by random walk model, and 

that changes in stock returns were basically unforecastable. Samuelson (1965) 
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showed that in an informationally efficient market, price changes must be 

unpredictable. However, random walk model had been around for many years; 

having been originally discovered by Louis Bachelier back in 1900.  The main idea 

behind the random walk theory is that investors react instantaneously to any 

informational advantages they have, eliminating therefore profit opportunities. Thus, 

prices must fully reflect  the information available in the market and no profit can be 

made from information based trading.   

However, recently there has been an emergence of counter arguments. One branch of 

the literature asserts that expected returns contain a time-varying component that 

implies predictability of future returns. Recent researches (Keim and Stambaug 

(1984), Campbell (1984), Fama and French (1989) ) have drawn attention to the 

ability of some economic variable, to partially predict stock and bond returns and 

interest rates. 

Typical predictor variables employed in this kind of researches are financial ratios, 

such as the dividend-price ratio, the earnings-price ratio, and the book-to-market 

ratio, which have a quantity  that represent the market in the denominator; but also 

measures of equity risk such as squared returns, or interest rates measures which 

capture the level or slope of the interest rates’ term structure and finally financial and 

economic variables such as the inflation rate. Depending on their nature these 

variables can capture variation throughout time of expected excess returns or 

variation in the variance and also in the covariance matrix.  

 

 

3.3       Predictor variable: dividend yield 

Given actual historical data on asset returns and a predictor variable, we try to 

understand the magnitude of these effects by computing optimal asset allocation for 

an investor who adopts a static buy-and-hold strategy, and  whose preference over 

terminal wealth are described by a constant relative risk-aversion power utility 

function. 

We firstly develop the model using only one predictor variable in order to describe 

return’s dynamics. In this section we use dividend/price , henceforth called dividend 
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yield, to forecast returns on the value-weighted index S&P 500, for return horizons 

ranging from one month to ten years. Dividend yield occupies a salient role in much 

of the empirical literature on the predictability of stock returns. As discussed by 

Keim and Stambaugh (1986) , given that asset’s current price is inversely related to 

the discount rate applied to expected future cash flows, variables that are inversely 

related to price levels, such as the dividend yield, are suitable candidates ex ante as 

predictors for returns. At high frequency, dividends are smooth relative to stock 

prices, so the dividend yield displays a strong inverse  association with the level of 

equity prices and thereby arises as a plausible predictor variable. 

There is however evidence that dividend yields forecast stock return in Rozeff 

(1984), Shiller(1984), Flood, Hodrick, and Kaplan (1986), Campbell and Shiller 

(1988), and Fama and French (1988b).  

We downloaded the S&P 500 monthly dividend yield time series from Datastream 

database for the period Jenuary 1990-November 2012. 

  

3.3.1    Preliminary Analysis 

As we can see in figure 3.1 the dividend yield time series is non-stationary and has 

frequent changes in mean, this is further confirmed by the autocorrelogram in figure 

3.2. Furthermore when we implement the Dickey-Fuller test without constant, since 

it is not significant, we obtain a value of the t-statistic equal to -1.32, which is 

smaller, in absolute value, than the critical value -1.95 and confirm the presence of 

unit root at a significance level of 0.05. In developing a VAR model only stationary 

variables should be taken into account, unfortunately the dividend yield does not 

exhibit this property. Stambaugh  (1999) asserts that using highly persistent variables 

in a VAR model can lead to small biases in the coefficients’ estimate if the sample 

size is not large enough.  He finds that the bias has an opposite sign to the correlation 

between innovations in excess returns and dividend yield. He also notes  that the bias 

disappear as this correlation approaches zero. The non stationarity can clearly have 

some effects on the values of the estimated coefficients, but for now no correction is 

made. Estimated values will be treated as given and known by investors, or 
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alternatively, the uncertainty in the VAR model parameters will be taken into 

account so as to not give too much credit to  the particular estimated value.  

 

Dividend Yield 

Mean 0.021151 St. Error 0.000390 

Minimum 0.010800 Variance 0.000042 

Maximum 0.040300 St. Dev 0.006457 

1° Quartile 0.017000 Skewnees 0.655035 

3° Quartile 0.026600 Kurtosis Excess -0.163063 
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Table 3.1: Main descriptive statistics of S&P 500 dividend yield over the period     1990-

2012. 

 

 Figure 3.1: S&P 500 dividend yield over the period 1990-2012. 
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The normality tests implemented easily reject the null hypothesis of normality for a 

significance level of 0.05. We can indeed observe  that the empirical density function  

of the dividend yield differs from the normal probability density evaluated by using 

the sample mean and standard deviation, in particular it has two significant peaks. 

The probability plot of Figure 3.4 further confirms this result. 

  Normality Test 

Jarque-Bera      0.002 

Lilliefors          0.001 
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Figure 3.2: Empirical correlogram of the S&P 500 dividend yield series. 

Table 3.2: Normality tests’ P-values for the dividend yield series.. 

Figure 3.3 : Empirical density function of the S&P 500 dividend yield series and normal 

probability density function evaluated by using the sample mean and standard deviation. 
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3.4  Long horizon predictability and parameter uncertainty 

In light of the growing evidence that returns are predictable, the investor’s horizon 

may be highly relevant. It has been known since Samuelson and Merton  that 

variation in expected returns over time can potentially introduce horizon effects. 

Time-variation in  returns can therefore invalidate the assumptions under which a 

long-term investor acts myopically, choosing the same portfolio as a short-term 

investor 

The extent to which the holding period does play a role serves as an interesting and 

convenient way of thinking  about how predictability affects portfolio choice. 

Moreover, the results may shed light on the common but controversial advice that 

investors with long horizons should allocate more heavily on stocks.  

 

An important aspect of our analysis is that in constructing optimal portfolios, we 

account for the fact that the true extent of predictability in returns is highly uncertain. 

This is of particular concern in this context because the evidence of time variation in 

expected returns is sometimes weak. A typical example is the following. Denote by 

rt  the continuously compounded return on the value-weighted index S&P500 in 

month t, and by 1tdy    be the portfolio’s dividend yield in month 1t   . An OLS 
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Figure 3.4: Normal probability plot of S&P 500 dividend yield series. 
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regression of the returns on the lagged dividend yield, using monthly returns from 

January 1990 to November 2012, gives 

 
1

(0.0097) (0.4602)

0.0072 0.6171 ,t t tr dy    
 (3.1) 

where standard errors are in parentheses and the 2R   is 0.0029 . The coefficient on 

the dividend yield is not quite significant, and the 2R is very low. Some investors 

might react to the weakness of this evidence by discarding the notion that returns are 

predictable; others might instead ignore the substantial uncertainty regarding the true 

predictive power of the dividend yield and analyze the portfolio problem assuming 

that parameters are known precisely. However, the optimal stock-versus-cash 

allocation of the investor can depend importantly on the current value of a predictive 

variable, such as the dividend yield, even though a null hypothesis of no 

predictability might not be rejected at conventional significance levels. The approach 

we choose in our work could be considered as a middle ground:  we explicitly 

account for the uncertainty about the parameters, also known as estimation risk, 

when constructing optimal portfolios. 

How is parameter uncertainty incorporated?  It is natural to take a Bayesian approach 

here. The uncertainty about the parameters of the predictive variables is summarized 

by the posterior distribution of parameters given the data. Rather than constructing 

the distribution of future returns conditional on fixed parameter estimates, we 

integrate over the uncertainty in the parameters captured by the posterior distribution. 

It may be important that the investor take into account uncertainty about the model 

parameters such as the coefficient on  the predictor variable in equation (3.1). The 

standard errors in equation (3.1) indicate that the true forecasting ability of the 

dividend yield may be much weaker than that implied by the raw parameter estimate. 

The investor’s portfolio decisions can be improved by adopting a framework that 

recognizes this.  

Our framework assumes a risk-averse investor with initially vague beliefs about the 

distribution of stock returns. The investor uses the above regression evidence to 

update those beliefs, and these revised beliefs  are then used by the investor to 

compute the optimal asset allocation. We find that the asset allocation chosen by the 

investor depends importantly on the level of the current dividend yield. 
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3.5      Predictability analysis model 

To examine how the evidence of predictability in asset returns affects optimal 

portfolio choice we analyze a vectorial autoregressive process, VAR.  Barberies 

(2000) develops this model that it is suitable to describe the dynamic behavior of 

stocks returns. The model is similar in structure to the one implemented by Kandel 

and Stambaugh (1991), Cambpbell (1991), and by  Hodrick (1992). 

 

The investor  uses a VAR  model to forecast returns, where the state vector in the 

VAR can  include asset returns and predictors variables. This is a convenient 

framework  for examining how predictability affects portfolio choice: by changing 

the number of predictor variables in the state vector, we can compare the optimal 

allocation of an investor who takes return predictability into account to that of an 

investor who is blind to it. In the calculations presented in this section, the vector tz  

contains only two components: the excess stock index return tr , and a single 

predictor variable, the dividend yield 1,tx  , which captures an important component 

of the variation in expected returns. Hereinafter in this work we will take into 

account other variables. The model takes this form 

 
1 ,t t tz a Bx     (3.2) 

with ' ( , ')t t tz r x , 1, ,( ,..., ) 't t n tx x x  , since the number of predictor variable n  is 

equal to 1 1,t tx x , and i.i.d. (0, )t N  .  

The first component of tz , namely tr   , is the continuously compounded excess 

return over month t. The remaining components of tz  , which together make up the 

vector or explanatory variables tx , consist of variables useful for predicting returns, 

such as the dividend yield. The first equation in the system specifies expected stock 

returns as a function of the predictor variables. The other equations specify the 

stochastic evolution of the predictor variables. Considering the dividend yield as the 

sole predictor variable the model takes this form: 
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1 1 1 1, 1, 1

1, 1 2 2 1, 2, 1

,

,

t t t

t t t

r a b x

x a b x





 

 

  

  
 (3.3) 

where 

 2 2
1, 1 12

2 2
2, 12 2

0, .
t

t

N
  

  

   
     

    
 

 

 

The variance-covariance matrix of contemporaneous innovations   is invertible and 

not necessarily diagonal;  thus we allow the shocks to be cross-sectionally correlated, 

but assume that they are homoscedastic and independently distributed over time.  

The hypothesis of homoscedasticity is of course restrictive. It rules out the possibility 

that the predictor variables predict change in risk; they can affect portfolio choice 

only by predicting changes in expected return. However, even though the assumption 

of homoscedasticity is not entirely realistic, empirical evidence suggests that changes 

in risk is a short-lived phenomenon that does not affect the long-term portfolio 

choice(Chacko e Viceira,1999). 

The model we handle is not exactly a first order VAR, since all the variables here 

evaluated should also  depend on the lagged value of tr  . Basically we  analyze a 

VAR(1) model with some restrictions  on its parameters , indeed we can write: 

 
0 1 ,t t tz a B z     (3.4) 

Where 0B  is a square matrix and its first column contains only zeros so that tz  does 

not depend on 1tr   .   

 

0

0

.

0

B B

  
  

   
    
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3.6      Long horizon portfolio allocation 

In this section we introduce the impact of predictability as well as of  parameter 

uncertainty, that we already analyzed in chapter 2. We implement the VAR model 

illustrated before  in order to explore how the evidence or predictability in returns 

affects optimal portfolio choice. Our pursue is to study the portfolio allocation 

problem for a buy-and-hold investor with an investment horizon of T̂  months.   

We now  rewrite the model in a more convenient way:  

 
2 1 2

1

' 1 ' '
'

1 ,
'

' 1 ' 'T T T

z x
a

B
z x





     
      

       
      

     

 (3.5) 

 

or  

 ,Z XC E   (3.6) 

 

where Z  is  a ( 1, 1)T n   matrix with the vectors 2 ',..., 'Tz z   as rows; X   is a 

( 1, 1)T n  matrix with the vectors 1 1(1 '),..., (1 ')Tx x   as rows, and E  is a 

( 1, 1)T n  matrix with vectors  2 ',..., 'T    as rows. Instead C  is a ( 1)( 1)n n 

matrix . Since in this section we study the predictive effect of one variable only, n   

equals 1, and matrix C  takes this form: 

1 2

1 2

a a

b b

 
 
 

 

where the first row contains the intercepts and the second one contains the 

coefficients of 1tx    . 

Now, we want to write down the problem faced at time T  by a buy-and-hold 

investor with a horizon of T̂  months , given by the next equation. Since he has no 

chance to buy or sell assets between time T  and horizon ˆT T , he is interested only 

in the distribution of wealth at the end of the holding period. The investor problem 

therefore concerns the maximization of his expected utility defined over final wealth.  
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  
1

ˆ
ˆ ˆ(1 )exp( ) exp( )

max .
1

A

f f T T

T

r T r T R
E

A

 




   
 
  
 

 (3.7) 

tE   denotes the fact that the investor calculates the expectation conditional on his 

information set at time T . We have therefore to define which distribution the 

investor should use in calculating this expectation. If we consider the case when the 

investor recognizes predictability, there are two possible distributions he can use 

when computing the expectation in equation (3.7) depending on whether he accounts 

for parameter uncertainty or not. 

 

Ignoring parameter uncertainty 

We evaluate the model 1t t tz a Bx    . When the uncertainty  in the model 

parameters is ignored the investor uses the distribution of future returns conditional 

on both past data and fixed parameters values ( , , )a B    , ˆ( | , )
T T

p R z


. Once the 

parameters estimates have been obtained  from the posterior distribution, it is 

generated a distribution for future stock excess returns conditional on a set of 

parameter values and on the data observed by the investor  up until the start of his 

investment horizon, which we write as ˆ
ˆ( | , )

T T
p R z 


, where 1( ,..., ) 'Tz z z  is the 

data observed by the investor until the start of his investment horizon . 

The investor then solves: 

 
ˆ ˆ ˆ

ˆmax ( ) ( | , ) .
T T T T T T

W p R z dR


 
    (3.8) 

In order to define the cumulative excess returns conditional distribution 

ˆ
ˆ( | , )

T T
p R z 


  we can write the model as 0 1t t tz a B z    , therefore 
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
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 (3.9) 

Conditional on a , B  and     the sum ˆ ˆ1 2 ...T TT T T T
Z z z z  

     is Noramlly 

distributed with mean and variance given by: 

 2

0 0

ˆ ˆ1 2

0 0 0 0

ˆ ˆ ˆ( 1) ( 2)

...

( ... ) ,

sum

T T

T

Ta T B a T B a

B a B B B z





    



    

 (3.10) 
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ˆ ˆ1 1

0 0 0 0

( ) ( ) '

( ) ( ) '

( ... ) ( ... ) '.

sum

T T

I B I B

I B B I B B

I B B I B B 

  

   

     

       

 (3.11) 

In this case, we assume that the distributions for future returns are ( , )sum sumN   ,  

where sum    and sum   are constructed using the posterior means of a , B  and   as 

fixed values.  

 

Incorporating parameter uncertainty 

In contrast, when we take parameter uncertainty into account we refer to a Bayesian 

approach. Zellner (1971) discusses the Bayesian analysis of a multivariate regression 

model in the traditional case with exogenous regressors. The form of the likelihood 

function is the same in the cases of endogenous regressors , so long as we condition 

on the first observation in the sample, 1z  . Therefore we can take advantages of his 

analysis for our dynamic regression framework with endogenous regressors. 
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Throughout a posterior distribution ( | )p z  we summarize the uncertainty about the 

parameters ( , , )a B     given the observed data. 

To construct the posterior distribution  ( , , | )p a B z  we consider, as in the previous 

section, an uninformative prior as 

 ( 2)/2( , ) | | .np C       

the posterior
1( , | )p C z  is then given by 

 1 1| ( 2, )z Wishart T n S      

 

 1ˆ( ) | , ( ( ), ( ' ) )vec C z N vec C X X     

where ˆ ˆ( ) '( )S Z XC Z XC    with 1ˆ ( ' ) 'C X X X Z  . 

Integrating over this distribution, we obtain the predictive distribution for long-

horizons  returns. This distribution is conditioned only on the sample observed, and 

not on any fixed a , B  and  . 

 
ˆ ˆ( | ) ( | , ) ( | ) .

T T T T
p R z R z p z d  

 
   (3.12) 

The problem the investor has to solve is then  

 
ˆ ˆ ˆmax ( ) ( | ) .

T T T T T T
W p R z dR




    (3.13) 

Or alternatively 

 
ˆ ˆ ˆ

ˆ ˆ ˆ

max ( ) ( , | )

max ( ) ( | , ) ( | ) .

T T T T T T

T T T T T T

W p R z dR d

W p R z p z dR d





  

   

  

  





 (3.14) 

Excess returns distribution conditional on a set of parameter values and on the 

observed data is given by 

 
ˆ | , , ( , ).sum sumT T

Z C z N 


   (3.15) 

where sum  and sum  are computed using the estimated parameters of the posterior 

distribution. 
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In order to solve the maximization problem (3.8) and (3.13) we calculate the 

integrals for several values of the proportions invested in the equity index, that is 

0, 0.01, 0.02, ..., 0.98, 0.99   and report the   that maximizes expected utility. 

We calculate  the optimal allocation   which maximizes expected utility for a 

variety of risk aversion levels A   and investment horizons  ranging from 1 month to 

10 years, and for each of the two cases where the investor either ignores or account 

for parameter uncertainty.   

We chose to avail ourselves of the interactive environment of numerical computation 

MATLAB in order to implement the model described before.  The employed 

commands are listed in Appendix B. 

 

3.6.1 Sampling process 

The next few paragraphs explain how we sample from the predictive distribution, an 

important step in computing these optimal allocations. 

The procedure for sampling is similar to that in the second chapter. Firstly, we 

generate a sample of size I=200000 from the posterior distribution for the parameters 

( , , | )p a B z . We sample from the posterior distribution by first drawing from the 

marginal 
1( | )p z , Wishart, and then given the  ̂  drawn, from the conditional 

ˆ( ( ) | , )p vec C z  , a Normal distribution. We therefore generate a sample of size 

200000 from the posterior distribution for C   and  .  Repeating this 200000 gives 

an accurate representation of the posterior distribution. Secondly, for each of the 

20000 realizations of the parameters ˆ ˆ( , )C   in the sample from the posterior  

( , , | )p a B z  , we sample once from the distribution of returns  conditional on both 

pasta data and the parameters ˆ
ˆ ˆ( | , , )

T T
p Z C z


  , a Normal distribution of cumulative 

returns conditional on past data and on parameters Ĉ  and ̂  . This gives us a sample 

of size 200000 form the predictive distribution for returns, conditional only on past 

returns, with the parameter uncertainty integrated out. 

In contrast when parameter uncertainty is ignored we assume that the distributions 

for future returns  are constructed using the posterior means of â , B̂  and ̂  as the 
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fixed values of the parameters, and then drawing 200000 times from the Normal 

distribution with mean and variance given by equations (3.10) and (3.11) above. 

 

 

3.7      Results 

To see whether predictability in returns has any effect on portfolio choice of a buy-

and hold investor, our strategy is to compare the allocation of an investor who 

recognizes predictability to that of an investor who is blind to it. The VAR model 

provides a convenient way of making this comparison  because by simply altering 

the number of predictor variables included in the vector tx , it simulates investors 

with different information sets.  

In this section we compute the optimal allocations    which maximize the quantity 

in expression (3.7)  for a variety of risk aversion levels A  and investment horizons 

T̂  , and for different cases where the investor either ignores or accounts for 

parameter uncertainty. 

The results are based on the model 1 ,t t tz a Bx     where ( , ) 't t tz r x  

includes continuously compounded monthly excess stock returns tr  and the dividend 

yield 1,tx  , and where i.i.d. (0, )t N  . 

Table 3.3 presents the mean and standard deviation (in parentheses) of the posterior 

distribution ( , | )p C z  for each parameter a  , B   and  .  

The predictive power of the dividend yield is summarized in the first row of the B

matrix. We note that the posterior distribution for that coefficient has mean 0.5420 

and standard deviation 0.4117, which appears to be an important source of parameter 

uncertainty for the investor.  Moreover the second row of the B matrix confirms us  

the high persistency of the dividend yield, that we already mentioned before. The 

variance matrix shows the strong negative correlation between innovations in stock 

returns and the dividend yield, estimated here at -0.7940; this correlation has an 

important influence on the distribution of long-horizon returns. Indeed if the 

dividend yield falls unexpectedly, since 2

12 0  , it is likely to be accompanied by a 
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contemporaneous positive shock to stock returns. However, since the dividend yield 

has fallen, stock returns are forecasted to be lower in the future, since 1 0b  . This 

rise, followed by a fall in returns generate a component of negative serial correlation 

in returns which slows the evolution of the variance of cumulative returns as the 

horizon grows.  

1990-2012 

a B 

-0.0071 0.5420 

(0.0091

) 

(0.4117) 

  
0.0004 0.9805 

(0.0002

) 

(0.0088) 

  
  

0.0019 -3.28e-05 

(0.0002

) 

(3.23e-06) 

  
 8.82e-07 

 (7.66e-08) 

 

 

 

The aim of this section is to understand how predictability in asset returns and 

parameter uncertainty affects portfolio choice. To do this, we compute optimal 

allocation using four different choices for the distribution of future returns. These 

distributions differ in whether they take into account predictability and estimation 

risk. In the second chapter we  explored the issue of parameter uncertainty in the  

context of i.i.d. returns. Here we want to see whether predictability in returns has any 

effect on portfolio choice throughout the implementation of a VAR model. In any 

case the investor may account for  parameter uncertainty in the model, and thus use a 

predictive distribution of the form ˆ( | )
T T

p R z


, or he may ignore  parameter 

uncertainty in the model; in this case we assume that the distribution for future 

returns  are constructed using the posterior means of a  , B  and  , given in Table 

3.3, as the fixed values of the parameters. 

 

Table 3.3: Mean and standard deviation (in parenthesis) of each parameter’s posterior 

distribution. 
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Ignoring parameter uncertainty 

When the investor  ignores  parameters uncertainty ,  he solves the maximization 

problem (3.8),  employing a distribution for future excess returns conditional on the 

estimated parameter values and on the observed data of this form  ˆ
ˆ ˆˆ( | , , )

T T
p Z a B


 , 

which is normally distributed with mean ˆ
sum    and variance ˆ

sum . The investor’s 

distribution for future returns of course depends on the value of the dividend yield at 

the beginning of the investment horizon, 
1,Tx . If the value of the yield is low, this 

forecasts low returns, lowering the mean of the distribution for future returns and 

reducing the allocation to the stock index. In our set of result we set the initial value 

of the dividend yield to its mean in the sample, namely 
1, 2.12%Tx   , in order not to 

consider the impact of the initial value in the portfolio choices, and investigate how 

the optimal allocation changes with the investor’s horizon for this fixed initial value 

of the predictor. 

Figure 3.5 shows the optimal portfolio allocation for a buy-and-hold investor,  whose 

preferences over terminal wealth are described by a power utility function. The 

optimal percentage   allocated to the stock index is  plotted as a function of the 

investment horizon that range from 1 moth to 10 years. The graph on the left is based 

on a relative risk-aversion level of 5 , the  one on the right side is for 10A   .  The 

two lines on each graph correspond to the two possible distributions the investor 

could use  once the fact he ignores parameter uncertainty is assumed. The black line 

represents the case where the investor  ignores predictability, that is when he 

assumes t tr    , with 
2i.i.d. (0, )t N  ; on the other hand the green line 

represents the case where the investor uses a VAR model which allows for 

predictability in returns.  

We can note that the green line, that represents the optimal percentage   allocated to 

the stock index when the investor takes into account predcitability, rises dramatically 

as the investment horizon increases.  Hence, when we ignore parameter uncertainty 

about the model parameters, the optimal allocation to equities for a long-horizon 

investor is much higher than for a short-horizon investor. When we acknowledge that 

returns may be predictable rather than i.i.d., the mean and variance of cumulative 
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returns may not grow linearly with the investor horizon T̂  anymore, as in the case 

when asset returns are modeled as i.i.d. In the context of predictability in returns the 

variance of cumulative stock returns may grow slower than linearly with the 

investor’s horizon, lowering  the perceived long-run risk of stocks and hence leading 

to higher allocations to stocks in the optimal portfolio. 

This point can be verify mathematically, performing the matrixial calculation of sum  

described in equation  (3.11) . For instance, the conditional variances of one- and 

two-period cumulative stock returns are 

 2

1 1( ) ,T TVar r    (3.16) 

 

 2 2 2 2

1 2 1 1 2 1 12( ) 2 2 .T T TVar r r b b        (3.17) 

If we plug in the parameter values estimated from the data, the posterior means in 

table 3.3 , we find that  2 2

1 2 1 122 0b b   ,which implies that the conditional variance 

of two-period returns is less than twice the conditional variance of one-period 

returns. When we take into account the predictive power of the dividend yield, 

conditional variances greow more slowly  than linearly with the investor’s horizon, 

making stocks look relatively less risky at longer horizon and increasing their 

optimal weight in the investor’s portfolio. 

The insight behind this result can partially be explained by the effect of the  negative 

correlation between innovations in stock returns and the dividend yield, that has 

already been described above. However the results obtained here should not be 

considered as being specific to the particular way we have modeled returns, nor to 

the specific parameter values estimated from the data. There is a strong economic 

intuition behind the concept that time variation in expected returns induces mean-

reversion in realized returns. The essence of this concept is the assumption that both  

a stock’s  high and low returns are temporary and stock’s returns will tend to move to 

the average over time. Or even, when there is a positive shock to expected returns, it 

is very reasonable that realized returns should suffer  a contemporaneous negative 

shock since the discount rate for discounting future cash flows has suddenly 
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increased. This negative shock to current realized returns, followed by higher 

forecasted returns, are the provenience of mean-reversion, which in turn makes 

stocks more appealing in the long run.  

In his study, Barberies underlines the fact that horizon effects can be present even 

without negative serial correlation in returns. He asserts that the predictability in 

returns may be sufficient to make stocks more attractive at long horizons, without 

being strong enough to induce mean-reversion in returns.  

  

 

 

 

 

 

Incorporating parameter uncertainty 

In this section we try to show how the allocation differs when parameter uncertainty 

is explicitly incorporated into the investor’s decision making framework. Our 

strategy for understanding the effect of parameter uncertainty is to compare the 

allocation of an investor who uses the predictive distribution to forecast returns with 

the allocation of an investor who uses instead the distribution of returns conditional 

on fixed parameters â  , B̂  and ̂ .   
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Figure 3.5: Optimal allocation to stocks for a buy-and-hold investor with power utility 

function. The percentage invested in stocks is  plotted against the investment horizon in 

years. The green line refers to the cases where the investor accounts for predictability, the 

black line to the cases where he ignores it. The graph on the left side corresponds to a level 

of risk-aversion of 5, the graph on the right to a level of risk-aversion of 10.  
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Figure 3.6  shows the optimal portfolio allocation for a buy-and-hold investor,  

whose preference over terminal wealth are described by a power utility function. The 

optimal percentage   allocated to the stock index is  plotted against the investment 

horizon that range from 1 moth to 10 years.  The four lines in the graphs correspond 

to the four  possibilities for the distribution of future returns, depending on whether 

the investor allows for predictability and parameter uncertainty. The dotted lines 

correspond to cases where investor accounts for parameter uncertainty, the solid ones 

to cases where he ignores it. The green lines refers to the case where the investor  

accounts for predictability, whereas the black one to the case where the investor is 

blind to it. 

Figure 3.6  shows that when we account for predictability and parameter uncertainty 

together, there is still horizon effect, in other words, the optimal allocation changes 

as the investment horizon increases. However the long-horizon allocation is again 

higher than the short-horizon allocation, but not nearly as much higher as  when we 

ignore estimation risk. We can deduce that incorporating parameter uncertainty can 

considerably reduce the size of the horizon effect. Moreover in this case the optimal  

allocation to equities is not monotonic anymore, we can indeed observe that it first 

rises with the investment horizon , and then it starts falling as the investment horizon 

grows. In any case it always remains under the optimal allocation of an investor who 

assumes that asset returns are modeled as i.i.d. , and above the allocation of this 

investor when he takes parameter uncertainty into account. But we need to bear in 

mind that the posterior distribution for  1b  has a meaningful standard deviation of 

0.4117. 

This effect firstly arises from the investor’s uncertainty about the mean stock return. 

Exactly in the same way of chapter 2 , incorporating the uncertainty about the mean  

makes conditional variances grow faster as the horizon increases, making stocks look 

more risky and inducing a lower allocation to stocks compared to the case where 

estimation risk is ignored. Moreover the true predictive power of the dividend yield 

is uncertain to the investor; therefore it is also uncertain whether the dividend yield 

really does slow the evolution of conditional variances, and hence whether stocks’ 

riskiness diminish with the horizon. The investor acknowledge both that the 

predictive power may be weaker  than the point estimate suggests, in which case  he 
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would be more cautious to allocate more to stocks at long horizons, and that it may 

be stronger, in which case he would be  enthusiastic to allocate  more to stocks at 

longer horizons. These effects go on opposite directions. On net, the investor invests 

less at long horizon because he is risk-averse. Other two effects go on opposite 

direction, accounting for predictability makes stocks look less risky at long horizons; 

whether incorporating the estimation risk makes them look more risky, this therefore 

lead, which is the case, to stock allocations that are not monotonic as a function of 

the investment horizon.  

  

 

 

 

3.8    The role of the predictor variable 

 

Up to this point we have examined just one consequence of including the dividend 

yield as a predictor variable in the VAR. Taking into account the predictive power of 

the dividend yield reduces the variance of predicted long-horizon cumulative returns,  

, lowering  the perceived long-run risk of stocks and hence leading to higher 

allocations to stocks for long horizon investor. Conditioning on the dividend yield 

affects not only the conditional variance but also the mean of the cumulative excess 

returns. Indeed, when the dividend yield is low relative to its historical mean, an 
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Figure 3.6: Optimal allocation to stocks for a buy-and-hold investor with power utility 

function. The percentage invested in stocks is  plotted against the investment horizon in 

years. The green lines refer to the cases where the investor accounts for predictability, the 

black lines to the cases where he ignores it. The solid lines refers to the case where the 

investor ignores parameter uncertainty, the dot line to the cases where he accounts for it.  

The graph on the left side corresponds to a level of risk-aversion of 5, the graph on the 

right to a level of risk-aversion of 10.  
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investor forecasts lower than average stock returns and hence reduces his allocation 

to stocks. This effect has not been taken into account so far because the initial value 

of the dividend yield has been kept fixed at its sample mean.  

In this section we examine the results on the optimal portfolio allocation for different 

initial values of the dividend yield 
1,Tx  . Figure 3.7 presents the optimal allocations, 

estimated running a regression over the period 1990 to 2012 . The graphs on the left 

side refer to the case where the investor ignores parameter uncertainty, the one on the 

right to the case where he accounts for it. Each graph exhibits the optimal stock 

allocation as a function of the investor’s horizon for five different initial values of the 

predictor variable: the historical mean of the dividend yield in our sample, the first 

and third quartile and the 37.5% and 67.5% percentiles.  

Both graphs on the left side show that for all the initial values of the dividend yield 

considered, the allocation to stocks rises with the investor’s horizon. The result we 

obtained earlier in this section continues therefore to hold. Moreover, for any fixed 

horizon, the optimal allocation to stocks is higher for higher values of the predictor 

variable. Since the dividend yield affects the mean of the distribution for future 

returns, the investor expects higher future returns when the dividend yield is high. 

Besides, we can notice that the optimal stock allocation of an investor with 10-year 

horizon is just as sensitive to the initial value of the dividend yield 1,Tx as the optimal 

allocation of a one-year horizon investor. So, the various allocation do not converge 

to a specific value in the long run. 

The two graphs on the right illustrate the optimal allocation to stocks when parameter 

uncertainty is incorporated. The results are extremely different from the previous 

one, when parameter uncertainty is ignored. At low value of the dividend yield, the 

stock allocation is generally increasing in the investment horizon, whereas that 

allocation is generally decreasing  in the horizon at higher dividend yield. In other 

words, the allocation of an investor with  a 10-year horizon is less sensitive to the 

initial value of the predictor variable than the allocation of a one-year horizon 

investor, and much less sensitive than the allocation of a 10-year horizon investor 

who ignores parameter uncertainty. The allocation lines show therefore sign of 

converging. It is reasonable to think that the degree of predictability of returns in 
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more distant future months is less than in nearby months, the effect of the initial 

value of the dividend yield on future expected returns therefore diminishes as the 

investment horizon grows. 
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Figure 3.6: Optimal allocation to stocks for a buy-and-hold investor with power utility 

function. The percentage invested in stocks is  plotted against the investment horizon in 

years.  The two graphs on the left ignore parameter uncertainty, the ones on the right 

account for it. The five lines within each graph correspond to different initial value of the 

dividend yield:          (solid line),          (dashed line),          (dotted 

line),          (dashed line),          (solid line).  
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Chapter 4  

Portfolio allocation with parameter uncertainty:                

two risky assets 

 

4.1 Introduction 

In this chapter we introduce some extensions to the model implemented thus far. We 

indeed want to study the optimal portfolio allocation when  investors  can choose 

how to allocate their wealth among three different assets: a stock index, a bond 

index, and the risk-free asset .  Our purpose is similar to the one of the second 

chapter, that is to understand how parameter uncertainty alone affects portfolio 

choice. 

The third paragraph is dedicated to the description of the new dependent variable, the 

bond index, and to some preliminary analysis. 

Some changes to the framework presented in the second chapter  are then 

implemented, and an adequate model, that deals with portfolio choice under the case 

where the investor either ignores or accounts for parameter uncertainty, is defined. 

We then explain the sampling process needed to implement this model. 

In the sixth paragraph the results of the optimal portfolio allocation for a buy-and-

hold investor who is risk-averse are presented. 

 

 

4.2 An extra risky asset: the bond index 

In Modern portfolio theory it is described how an investor may alter risk and return 

of a portfolio by changing the mix of assets. In particular, according to the Mean-

Variance Analysis, the investor chooses his appropriate optimal portfolio, 

combination of risk–free asset and optimal risky portfolio, maximizing his own 

satisfaction.  In the previous chapters we assumed that the stock index was the only 

risky asset available to the investor, therefore simplifying his decision process. 
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Indeed he was only asked to choose the proportion to be allocated to the stock index 

and the one to be allocated to the risk-free asset. From now on, we devote our 

attention to studying the optimal portfolio allocation for a buy-and-hold investor who 

is allowed to allocate his wealth among two risky assets, the stock index and the 

bond index, and a risk-free one.  Adding  another risky asset, the bond index, the 

investor can achieve any combination of risk and return along the efficient frontier 

by changing the proportion of stocks and bonds. 

Bonds are the most important financial assets competing with stocks, they promise 

fixed monetary payments over time. In contrast to equity, the cash flows from bonds 

have a maximum monetary value set by the terms of the contract and except in the 

case of default, bond returns do not vary with the profitability of the firm. That said, 

an investor could consider it advantageous to allocate all his wealth in these debt 

instruments, however, we already said in the first chapter that although it might 

appear safer to accumulate wealth in bonds rather than in stocks over long periods of 

time, precisely the opposite seems to be true. As Siegel asserts, standard deviation is 

higher for stock returns than for bond returns over short-term holding period, but 

once the holding period increases, bonds become riskier than stocks. He finds that 

the probability that stocks  outperform fixed income assets increases dramatically 

with the holding period, although in the short run bonds and even bank accounts 

outperform stocks with a high probability. Even though over long periods returns on 

bonds  fall short of that on stocks, bonds may still serve to diversify a portfolio and 

lower the overall risk.  

In the next two chapter we intend to explore the issue of portfolio allocation among 

three assets, the stock index, the bond index and the risk-free asset. In particular our 

purpose is to throw light on the commonly held view that investors with long horizon 

should allocate more heavily on stocks. We desire to investigate the question in a 

broader context, compared to the one of the previous chapters, where the investor is 

now allowed to choose how to invest his wealth between two risky assets; and we 

want therefore to observe how the addition of a risky asset affects optimal portfolio 

choice.  

The long term debt instrument we employ in order to carry out our analysis is the  20 

years U.S. Treasury  bond index downloaded from Datastream data set. We compute 
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the bond index returns starting  from the monthly total returns time series and 

assuming continuous compounding. 

 

4.2.1 Preliminary analysis 

Bond index total return time series is non-stationary and a trend in mean is easily 

identifiable in Figure 4.1. . The logarithmic returns calculated starting from this 

series are stationary, and the autocorrelation function in Figure *** is a confirmation 

of that. They have a positive mean of 0.0074, and it is significantly different from 

zero, since the t-test, obtained from the ratio between  returns’ mean and the 

corresponding standard error, is equal to 3.82.  

20 U.S. Year Treasury Bond Logarithmic Returns 

Mean 0.007418 St. Error 0.001941 

Minimum -0.141319 Variance 0.001032 

Maximum 0.136941 St. Dev 0.032133 

1° Quartile -0.010567 Skewnees 0.055695 

3° Quartile 0.026208 Kurtosis Excess 3.182042 
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Table 4.1: Main descriptive statistics of the 20 Year U.S. Year Treasury Bond Logarithmic 

Returns over the period     1990-2012. 

 

Figure 4.1: 20 Year U.S. Treasury Bond Total Return series over the period 1990-2012. 
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As we have already mentioned in the second chapter there are empirical reasons to 

believe that  assumption of i.i.d. normal returns, that is behind several models, does 

not represent an appropriate description of the returns’ generator process. Taking a 

look at Figure 4.4, we can see how the empirical density function of the returns series 

moves away from the normal probability density function evaluated by using the 

sample mean and standard deviation, we can moreover recognize a skewness on the 

left side. This is furthermore confirmed by the normality tests implemented, that 

reject the null hypothesis of normality. If we look then at the normal probability plot 

in Figure 4.5 we notice  a strong departure of the empirical queues from the 

theoretical ones. 
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Figure 4.2: 20 Year U.S. Treasury Bond returns series over the period 1990-2012 

Figure 4.3: Empirical correlogram of 20 Year U.S. Treasury Bond return series 
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Normality Test 

Jarque-Bera     0.001 

Lilliefors        0.0236 
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Table 4.2: Normality tests’ P-values for the bond returns series. 

Figure 4.5: Normal probability plot of the 20 Year U.S Treasury Bond returns series. 

Figure 4.4: Normal density plot of the 20 Year U.S Treasury Bond returns series. 
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4.3 Model with two risky assets 

In this section we introduce some extensions to the model developed by Barberies 

(2000), that deals with the portfolio choice under several investment horizons.  

Some changes to the initial model should be made in order to evaluate how portfolio 

choice changes when the investor can choose how to allocate his wealth no longer 

between two alternatives but rather among three different assets: the risk-free asset, 

an equity index and a bond index.  We firstly consider the case where no predictor 

variables are included in the model, and afterword we focus on a more generic 

model. 

As we did when only one risky asset was available, we begin  our analysis by 

considering the context where no predictor variables are included in the model, and 

hence where asset returns are i.i.d., and look at how parameter uncertainty alone 

affects portfolio allocation. There are three assets: Treasury bill, an equity index, in 

this case the value-weighted index S&P 500, and a bond index , the 20-Year U.S. 

Treasury Bond. As before, for the sake of simplicity, we suppose that the 

continuously compounded monthly return on Treasury Bills is a constant fr , and that 

the excess returns on the risky assets, obtained as difference between the returns and 

fr ,  are continuously compounded.  We therefore assume a normal distribution for 

the excess returns. 

We therefore model excess returns on the stock and bond indexes assuming that they 

i.i.d., so that   

 
1 1

2 2

1, ,

2, , ,

t r r t

t r r t

r a

r a





 

 
 (4.1) 

Where 1,tr  is the continuously compounded excess return on the equity index over 

month t  , 2,tr  is the continuously compounded excess return on the bond index over 

month t  and where i.i.d. (0, )t N  . The variance matrix of contemporaneous 

innovations is invertible and unexpected excess returns realizations are allowed to 

covariate among them. Moreover, as we did in the third chapter we assume that   

does not vary over time.  
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In matrix notation the model becomes: 

 ,t tr a     (4.2) 

with  
1, 2,' ( , )t t tr r r , 

1 2
' ( , )r ra a a  and i.i.d. (0, )t N   

and,  if we consider the entire time series, takes this form: 

 

 
2 2' 1 '

1 ' ,

' 1 'T T

r

a

r





    
    

     
    
    

  (4.3) 

or 

 ,R IM E    (4.4) 

where R  is  a ( 1,2)T   matrix with the vectors 2 ',..., 'Tr r   as rows; I   is a ( 1,1)T   

vector of ones, M  is a (1,2)  matrix containing the means of the process, and E    is 

a ( 1,2)T  matrix with vectors  2 ',..., 'T    as rows.  

Although now we are not focused on studying the predictability dynamics of assets 

returns, we can rewrite the model in a different way, that henceforth will turn out to 

be useful . We therefore consider a model of the form: 

 
0 1 ,t t tr a B r      (4.5) 

with 1, 2,' ( , )t t tr r r , 
1 2

' ( , )r ra a a , i.i.d. (0, )t N   and 0B  equal to 

 

0

0 0

.

0 0

B B

    
    

     
        

  (4.6) 

where  matrix B  does not exist since we are not taking predictability into account , 

and therefore 0B is a two columns matrix of zeros. 

This is a convenient framework. In fact the state vector in the model could include 

not only assets returns, but predictor variables as well. All that is needed to move 

from the i.i.d. context to the one of predictability, is to add some predictor variables 

in the state vector and to change the composition of B matrix, and consequently of 

0B . By changing the number of predictor variables in the state vector, we can indeed 
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compare the optimal allocation of an investor who takes return predictability into 

account to that of an investor who is blind to it. 

 

  

4.4 Long horizon portfolio allocation 

We devote this section  to analyzing the portfolio choice under several investment 

horizons and under the case where the investor either ignores or accounts for 

parameter uncertainty. To do this we employ the model described in the previous 

section where assets returns are assumed to be i.i.d. 

The purpose of our analysis is to determine the optimal portfolio allocation for a buy-

and-hold individual with a horizon of  T̂  months. Since the investor has no chance to 

buy or sell securities between time horizon T  and ˆT T , he is only interested in the 

distribution of wealth at the end of the investment period, that is ˆ( )
T T

u W


. We 

employ the same utility function used in the previous chapters, that is  the power 

utility function, which has a constant coefficient of relative risk aversion. The 

investor's preferences on final wealth in ˆT T  are then described by a power utility 

function  of the form 

 1

( )
1

AW
u W

A






  (4.7) 

where A is the coefficient of relative risk aversion. 

Since the investor can now allocates his wealth among three different assets, instead 

of  only two alternatives, the end-of-horizon wealth is thus given by 

 
ˆ

ˆ1, 1 1,

ˆ2, 1 2,

ˆ(1 )exp( )

ˆexp( ... )

ˆexp( ... ).

fT T

f T T T

f T T T

W r T

r T r r

r T r r

 







 

 

  

   

   

  (4.8) 

Assumed initial wealth 1TW   ,    being the allocation to the stock index and   the 

allocation to the bond index. 
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If we write the cumulative excess stock return over T̂   periods as  

 
ˆ ˆ1, 1 1, 21, 1,

... ,T TT T T T
R r r r  

      (4.9) 

and the cumulative bond excess return over T̂  periods as 

 
ˆ ˆ2, 1 2, 22, 2,

... ,T TT T T T
R r r r  

      (4.10) 

the buy-and-hold investor’s problem is to solve   

 
1

ˆ ˆ ˆ1, 2,

,

ˆ ˆ ˆ(1 )exp( ) exp( ) exp( )
max .

1

A

f f fT T T T T T

T

W r T r T R r T R
E

A 

   


  

       
 
  
 

 (4.11) 

The investor calculates the expectation conditional on his information set at time T . 

We have therefore to define once again which distribution he should use in 

calculating this expectation, depending on whether he accounts for parameter 

uncertainty or not. The effect of parameter uncertainty can then be studied by 

comparing the optimal portfolio allocation obtained in these two cases. 

 

Ignoring parameter uncertainty 

We evaluate the model t tr a   . When the uncertainty  in the model parameters 

is ignored the investor uses the distribution of future returns conditional on both past 

data and fixed parameters values ˆ ˆˆ( , )a   .  Once the parameters estimates have 

been obtained  from the posterior distribution, it is generated a distribution for future 

stock and bond excess returns conditional on a set of parameter values and on the 

data observed by the investor  up until the start of his investment horizon, which we 

write as ˆ
ˆ( | , )

T T
p R r 


 , where we denote by ˆ ˆ ˆ1, 2,

( , ) '
T T T T T T

R R R
  
  the cumulative 

excess returns of stocks and bonds and by 1( ,..., ) 'Tr r r  the data observed by the 

investor until the start of his investment horizon.  

The investor then solves: 
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ˆ ˆ ˆ

,

ˆmax ( ) ( | , ) .
T T T T T T

W p R r dR
 

 
    (4.12) 

Since the model employed here is ,t tr a    we have that 

ˆ ˆ1 2 ...T TT T T T
R r r r  

    is the sum of T̂  bivariate normal random variables with 

mean a   and variance   , the sum  ˆT T
R


 is therefore normally distributed 

conditional on a  and   with theoretical mean T̂ a  and variance T̂  . 

Alternatively, if we write the model as 0 1 ,t t tr a B r     with 0B  void 

matrix, we have that 

 
1 0 1

2

2 0 0 2 0 1

2 1

ˆ 0 0 0

ˆ

0

ˆ2 2 2

ˆ ˆ ˆ0 0 0 2 0 11 2

...

... .

T T T

T T T T

T

T T

T

T

T

T TT T T T T T

r a B r

r a B a B r B

r a B a B a B a

B r

B B B B



 

    

 

  







     

  

     

     



     

  (4.13) 

The sum ˆ ˆ1 2 ...T TT T T T
R r r r  

     conditional on a , 0B  and    is Normally 

distributed with mean and variance given by: 

ˆ ˆ2 1 2

0 0 0 0 0 0
ˆ ˆ ˆ( 1) ( 2) ... ( ... ) ,T T

sum TTa T B a T B a B a B B B r              (4.14) 

 

 

0 0

2 2

0 0 0 0

ˆ ˆ1 1

0 0 0 0

( ) ( ) '

( ) ( ) '

( ... ) ( ... ) '.

sum

T T

I B I B

I B B I B B

I B B I B B 

  

   

     

       

  (4.15) 

Assuming that 0B  is a void  matrix, these ones become: 

 ˆ
sum Ta    (4.16) 
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         ˆ
sum T                                 (4.17) 

that is exactly the same result obtained before. 

 

Incorporating parameter uncertainty 

Differently, when we take parameter uncertainty into account we refer to Zellner’s 

Bayesian approach (1971). Throughout a posterior distribution ( | )p z   we 

summarize the uncertainty about the parameters ( , )a    given the observed data. 

To construct the posterior distribution ( , | )p a z  we consider, as we did in the third 

chapter,  an uninformative prior of the form 

 1/2( , ) | | .p       

The resulting posterior distribution  consists of the marginal distribution  

 1 1| ( 2, )z Wishart T S     

and of the conditional Normal distribution 

 ˆ( ) | , ( ( ), )vec M r N vec M    

where ˆ ˆ( ) '( )S R IM R IM    with ˆ 'M I R  .  

Integrating over this distribution, we obtain the so-called predictive distribution for 

long-horizons  returns, as we did when we considered a single risky asset. This 

distribution is conditioned only on the observed sample, and not on any fixed a  and 

 .  

 
ˆ ˆ ˆ( | ) ( | , ) ( | ) .

T T T T T T
p R r R r p r dR d  

  
    (4.18) 

The problem the investor has to solve is then 

 
ˆ ˆ ˆ

,
max ( ) ( | ) .

T T T T T T
W p R z dR

 


     (4.19) 

Or alternatively 
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ˆ ˆ ˆ

,

ˆ ˆ ˆ
,

max ( ) ( , | )

max ( ) ( | , ) ( | ) .

T T T T T T

T T T T T T

W p R r dR d

W p R r p z dR d

 

 

  

   

  

  





  (4.20) 

As the decomposition in equation (4.20) shows, we sample from the joint distribution 

by first sampling from the posterior ( | )p r  and then from the conditional 

ˆ( | , , )
T T

p R r a


 , a ˆ ˆ( , )N T a T  .   

The problem of expected utility maximization is solved calculating the integrals 

(4.12) and (4.19) for several combinations of   and  , the proportion invested in 

the equity index and the one invested in the bond index respectively. In other words 

we compute the integrals for all the available combinations of 

0, 0.01, 0.02, ..., 0.98, 0.99   and 0, 0.01, 0.02, ..., 0.98, 0.99   subject to 

0 1     and report   and    that maximize expected utility. We therefore 

restrict the allocation to the interval 0 1     precluding short selling and buying 

on margin. For each of the two cases where the investor either ignores or account for 

parameter uncertainty, we calculate  the optimal proportions   and   , which 

maximize expected utility for a variety of risk aversion levels A and investment 

horizons  ranging from 1 month to 10 years. 

The integrals themselves are evaluated numerically by simulation, generating 200000 

values from the distributions defined earlier.  

We chose to avail ourselves of the interactive environment of numerical computation 

MATLAB in order to implement the model described before.  The employed 

commands are listed in Appendix B. 

 

4.4.1 Sampling process 

The procedure for sampling from the predictive distribution is similar to that in 

chapter 2 and 3. First, we generate a sample of size I=200000 from the posterior 

distribution for the parameters ( , | )p a r  . We sample from the posterior distribution 

by first drawing from the marginal 
1( | )p r , Wishart, and then given the ̂  drawn, 
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from the conditional ˆ( ( ) | , )p vec M r  , a Normal distribution. We therefore generate 

a sample of size 200000 from the posterior distribution for M̂  and ̂ . Repeating this 

200000 gives an accurate representation of the posterior distribution.  

Secondly, for each of the 20000 realizations of the parameters ˆ ˆ( , )M   in the sample 

from the posterior  ( , | )p a r , we sample once from the distribution of returns  

conditional on both past data and the parameters ˆ
ˆ ˆ( | , , )

T T
p R M r


 , a Normal 

distribution. This gives us a sample of size 200000 from the predictive distribution 

for returns, conditional only on past returns, with the parameter uncertainty 

integrated out. 

In contrast, when parameter uncertainty is ignored we assume that the distributions 

for future returns  are constructed using the posterior means of â  and ̂  as the fixed 

values of the parameters, and then drawing 200000 times from the Normal 

distribution with mean ˆ ˆT a  and variance  ˆ ˆT  . 

 

 

4.5 Results 

In this section we illustrate the results obtained from our analysis. To see how 

parameter uncertainty affects portfolio choice, our strategy is to compare the 

allocation of an investor who takes into account estimation risk to that of an investor 

who ignores it.  In the next paragraphs we present the optimal combinations of   

and    which maximize the quantity in expression (4.11)  for a variety of risk 

aversion levels A   and investment horizons T̂  , and for different cases where the 

investor either ignores or accounts for parameter uncertainty, 

The result are based on the model ,t tr a    where 1, 2,' ( , )t t tr r r  are the 

continuously compounded excess returns of the stock and bond index in month t , 

1 2
' ( , )r ra a a  and i.i.d. (0, )t N  .  

Table 4.3 gives the mean and standard deviation (in parentheses) of the posterior 

distribution  ( , | )p a r  for each parameter a  and . 
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1990-2012 

a  

0.0043 

0.5420 
(0.0027) 

(0.4117)   
0.0047 

0.9805 (0.0020) 

(0.0088)     

0.0019 -0.0002 

(0.0002) (0.0001) 

  
 0.0010 

 (0.0001) 

 

 

For an investor using the entire sample from 1990 to 2012, the posterior distribution 

for the mean monthly excess stock return 1a  has mean  0.0043  and standard 

deviation 0.0027. The posterior distribution for the mean monthly excess bond return 

2a has instead mean 0.0047 and standard deviation0.0020.  In both cases the standard 

deviations seem to be an important source of parameter uncertainty for the investor. 

The variance matrix shows the negative correlation between innovations in stock 

returns and bond returns, estimated here at -0.1074; this is a sign that bond can serve 

to diversify the portfolio and lower the risk 

 

Ignoring parameter uncertainty 

When the investor does not take into account parameters uncertainty ,  he solves the 

maximization problem (4.12),  employing a distribution for future excess returns 

conditional on the parameter values and on the observed data of this form  

ˆ
ˆˆ( | , , )

T T
p R a r


 , which is normally distributed with mean ˆ ˆT a   and variance ˆ ˆT  . In 

this case â  and ̂  are the means of each parameter’s posterior distribution shown in 

Table 4.3 

Table 4.3: Mean and standard deviation (in parenthesis) of each parameter’s posterior 

distribution. 
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Figure 4.6  shows the optimal portfolio allocation for a buy-and-hold investor,  

whose preference over terminal wealth are described by a constant relative risk-

aversion power utility function. The optimal combinations of  , proportion 

allocated to the stock index,  and  , proportion allocated to the bond index, are  

plotted against the investment horizon that range from 1 month to 10 years. The 

graph on the left side is based on a relative risk-aversion level of 5A   , the one on 

the right is for 10A   .  

  

 

 

 

 

In each graph there are two lines, a green one representing the percentage  allocated 

to the stock index , and a blue one representing the percentage   allocated to the 

bond index. Both these lines are completely horizontal in each of the two graphs. An 

investor ignoring the uncertainty about the mean of each parameter’s posterior 

distribution would therefore allocate the same amount to stocks and bonds, 

regardless of the investment horizon. Independently from the time horizon then, the 

percentage allocated to the bond index is always greater than the one allocated to the 

stock index, whether  the risk-aversion level A  is equal to 5 or to 10. 
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Figure 4.6: Optimal allocation to risky assets for a buy-and-hold investor with power utility 

function. The percentage invested in risky assets is  plotted against the investment horizon in 

years. The green line corresponds to the percentage invested in stocks, the blue line to the 

percentage invested in bonds. The graph on the left side corresponds to a level of risk-

aversion of 5, the graph on the right to a level of risk-aversion of 10.  
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This result is consistent with the context we are analyzing. Indeed, when the investor 

ignores parameter uncertainty, he uses a Normal distribution with mean ˆ ˆT a  and 

variance ˆ ˆT   in order to forecast log cumulative returns; and both the mean and the 

variance grow linearly with the investor’s horizon T̂ . A natural consequence of this 

is therefore that the investor chooses the same stock allocation, regardless of the 

holding period. 

For an investor using the full data set, and when 5A  ,   the optimal combination of 

risky assets is when   equals 34%  and   equals almost 63%, whereas for an 

investor with 10A   the optimal proportion of stocks and bonds is when   equals 

31.5% and   equals 54.5% . We notice  that the percentage allocated to the risky 

assets  is almost 100%  when the level of risk-aversion is 5, and it falls to 86% when 

the level of risk aversion increases to 10. Therefore the proportion allocated to risky 

assets diminishes as a function of the risk-aversion level, sign that  conservative 

investors prefer to portion their wealth  between risky and risk-free assets, instead of 

invest all their money in risky assets.  However, it is important to underline that the 

proportion of risky assets invested in stocks and bonds is not especially sensitive to 

the investor’s level of risk-aversion.    

 

Incorporating parameter uncertainty 

In this section we try to show how the allocation to stocks bonds and risk-free asset 

differs when parameter uncertainty is explicitly incorporated into the investor’s 

decision making framework. When he takes into account parameter uncertainty, he 

solves the maximization problem (4.19), throughout the application of the predictive 

distribution ˆ( | )
T T

p R r


 conditional only on past data.   

Figure 4.7  shows that when 10A  , the allocation to risky assets falls as a function 

of the investment horizon, on the other hand, when 5A  , there is no considerable 

reduction of the allocation to risky assets as the horizon increases. Therefore we note 

that, in the context of i.i.d. model,  the appearance of horizon effect due to parameter 

uncertainty,  strongly  depends on the investor’s level of risk-aversion.  
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When the investor accounts for estimation risk, his distribution for long-horizon 

returns incorporates an extra degree of uncertainty, involving an increase in its 

variance. As we explained in the second chapter, this extra uncertainty makes the 

variance of the distribution for cumulative returns increase faster than linearly with 

the horizon T̂ . This makes stocks and bonds appear riskier to long-horizon investors. 

We therefore presume that an investor with a risk-aversion level of 5 is not affected 

as much as a more conservative investor by this increase in the variance. Indeed, if a 

conservative investor reduces the amount allocated to equities and bonds in favor of 

the risk-free asset,  an aggressive one does not alter his allocation to stocks and 

bonds. 

  

 

 

 

 

 

An investor, whose  level of risk aversion is equal to 5, reduces his allocation in risky 

assets only by 1% during a period of 10 years.  On the other hand, an investor with 

risk-aversion level of 10 , after ten years diminishes his allocation to stocks and 

bonds respectively by 9% and 14% , reducing the amount allocated to risky assets by 

23%. 
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Figure 4.7: Optimal allocation to risky assets for a buy-and-hold investor with power utility 

function. The percentage invested in risky assets is  plotted against the investment horizon 

in years. The green line corresponds to the percentage invested in stocks, the blue line to 

the percentage invested in bonds.  The solid lines refers to the cases where the investor 

ignores parameter uncertainty, the dotted line to the cases where he accounts for it.  The 

graph on the left side corresponds to a level of risk-aversion of 5, the graph on the right to 

a level of risk-aversion of 10.  
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Chapter 5   

Portfolio allocation with predictable returns and five 

predictor variables 

 

5.1 Introduction  

This chapter focuses on how predictability affects optimal portfolio allocation, when 

the investor is allowed to allocate his wealth between two risky assets, the stock 

index and the bond index, and a risk-free asset.   

For the study of the predictability of excess stock and bond returns we consider a set 

of five predictor variables, that are introduced and analyzed in the third paragraph. 

A VAR model is then introduced to investigate how the evidence of predictability in 

asset returns affects optimal portfolio choice. The framework is similar to the one we 

implemented in the third chapter, the only difference now is that we want to study 

the predictive effects on stocks and bonds allocation of five predictor variables.   

In the last paragraph we implement the same strategy used in chapter 3. We compare 

the allocation of an investor who recognizes predictability to that of an investor who 

is blind to it, to see whether predictability in returns has any effect on portfolio 

choice, and report the results  obtained in our analysis. 

 

 

5.2  Stock and bond predictability  

In the previous chapter, we added to our model another risky asset, the bond index, 

therefore introducing some extensions to the framework drawn on Barberis’ article. 

We analyzed how the portfolio choice problem changes when an individual has the 

opportunity to invest his wealth among three different assets instead of the usual two 

alternatives. We devoted the chapter to studying the portfolio decision in the context 

of i.i.d. returns, where no predictor variable was included in the model. However , 

expected returns on long term bonds can vary through time for at least two reasons: 
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variation in default premium, variation in term or maturity premium. In this chapter 

we intend to study how predictability in stock and bond returns affect optimal 

portfolio choice, in order to carry out this analysis we incorporate a set of five 

predictor variables to the previous model. 

Until the 80s, in literature, most of the evidence of ex ante variables that predict 

excess returns was confined especially to specific types of assets. There have been 

steps in that direction, however. Campbell (1984) finds that, in the 1959-1979 period 

, several measures constructed from interest rates on U.S. Government securities 

predict risk premiums of Treasury bills, 20-year Government bonds, and the value-

weighted portfolio of New York Stock Exchange (NYSE) common stock. In the 

same year Keim and Stambaugh find that several ex ante observable variables based 

on asset price levels predict  ex post excess returns on common stocks of NYSE 

firms of various sizes, long-term bonds of various default-risks, and U.S Government 

bonds of various maturities. In 1989 Fama and French find that expected excess 

returns on corporate bonds and stocks move together, and that dividend yields, 

commonly used to forecast stock returns, also forecast bond returns. According to 

them, predictable variation in stock returns is, in turn tracked by variables commonly 

used to measure default and term premiums in bond returns. 

In order to carry out our analysis we chose a set five predictor variables that are 

among the most used in recent financial studies. Before introducing the model we 

implemented, we devote the next section to a brief review of the variables we avail 

ourselves of. 

 

 

5.3 Predictive variables 

We decided to incorporate in our model a heterogeneous set of variables. The first 

variable is the dividend yield;  we already used it in the third chapter in order to 

study its predictive effect in the portfolio choice, and it has a long tradition among 

practitioners and academics. The second one is the VIX index, which captures the 

stock market volatility. Then we considered  the term spread and the credit spread, 
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that mainly refer to the bond market. Finally, the risk-free rate, which is often used in 

financial literature to forecast returns both of equities and bonds.  

 

5.3.1 Vix index 

The Vix index, or better the Chicago Board Options Exchange Market Volatility 

Index, is a measure of the implied volatility of S&P 500 index options. It represents 

one indicator of the market’s expectation of stock market risk over the next 30 day 

period. The monthly volatility index that we downloaded from Yahoo! Finance is 

annualized, we  therefore divided it by the square root of 12 in order to convert it to a 

monthly measure of volatility. 

Preliminary analysis 

The tendency of the VIX index is displayed in figure 5.1 . Its mean is 5.895% 

If we look at the autocorrelation function in figure 5.2. we can recognize many 

significant lags, although they appear to die out rapidly. When we implement the 

Dickey-Fuller test with constant, since it is  significant, we obtain a value of the t-

statistic equal to -4.959, which is greater,  in absolute value,  than the critical value -

3.42, and reject the null hypothesis of presence of unit root at a significance level of 

0.05, the VIX time series can therefore be considered stationary. 

 

Vix  

Mean 0.589548 St. Error 0.001357 

Minimum 0.030080 Variance 5.048e-04 

Maximum 0.172888 St. Dev 0.022468 

1° Quartile 0.042002 Skewness 1.584198 

3° Quartile 0.069917 Kurtosis Excess 3.935083 

 

 
Table 5.1: Main descriptive statistics of the VIX series over the period     1990-2012. 
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The VIX series has positive skewness of 1.584 and an excess of kurtosis of 3.935. 

We can indeed recognize that the empirical density function of the series moves 

away  from the normal probability density function evaluated by using the sample 

mean and standard deviation. Moreover, looking at the Normal probability plot we 

can see a departure of sample quantiles from theoretical ones of the normal 
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Figure 5.1: VIX series over the period 1990-2012. 

Figure 5.2: Empirical correlogram of the VIX series. 
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distribution. The normality test implemented easily rejects the null hypothesis of 

normality.  

  

Normality Test 

Jarque-Bera <0.001 

Lilliefors <0.001 
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Table 5.2: Normality tests’ P-values for the VIX series. 

Figure 5.4: Normal probability plot of the VIX series. 

Figure 5.3: Empirical density function of the VIX series and normal probability density 

function evaluated by using the sample mean and standard deviation. 
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5.3.2 Term spread 

We define the term spread as the difference between the yield to maturity on  long-

term bonds and the yield to maturity on short term bonds. In this work we obtain the 

term spread as difference between the yield on the 10-year U.S. Treasury bond and 

the 3-month U.S. Treasury bill rate. We downloaded both of them from FRED 

(Federal Reserve Economic Data) . The available data are annualized, we therefore  

divided the annualized rates by 12 in order to get the monthly rates of return. 

 

Preliminary analysis 

The term spread series has a positive mean, this is natural since bonds with long 

maturities are usually characterized by a higher yield than the short maturity ones. 

Looking at the autocorrelation function in Figure 5.6 we see that the series has a 

strong persistency. When we implement the Dickey-Fuller test without constant, 

since it is  not significant, we obtain a value of the t-statistic equal to -1.14, which is 

smaller, in absolute value, than the critical value -1.95, and accept the null hypothesis 

of presence of unit root at a significance level of 0.05. We can conclude that the term 

spread time series is  not stationary. 

Term Spread 

Mean 0.001569 St. Error 5.830e-005 

Minimum -4.396e-004 Variance 9.314e-007 

Maximum 0.003119 St. Dev 9.651e-004 

1° Quartile 0.000739 Skewnees -0.161072 

3° Quartile 0.002399 Kurtosis Excess -1.142654 

 

 
Table 5.3: Main descriptive statistics of the term spread series over the period     1990-

2012. 
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If we look at figure  5.7 we can observe that the empirical density function of the 

series moves away  from the normal probability density function evaluated by using 

the sample mean and standard deviation. In particular, it appears to have a lower, 

wider peak around the mean and thinner tails if compared to the normal density. 

Moreover, when we look at the Normal probability plot we  notice a departure of 

sample quantiles from theoretical ones of the normal distribution. The normality test 

implemented, clearly rejects the null hypothesis of normality.  
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Figure 5.5: Term spread series over the period 1990-2012. 

Figure 5.6: Empirical correlogram of the term spread seires. 
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Normality Test 

Jarque-Bera 0.0040 

Lilliefors <0.001 
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Figure 5.7: Empirical density function of the term spread series and normal probability 

density function evaluated by using the sample mean and standard deviation. 

 

Figure 5.4: Normality tests’ P-values for the term spread series.. 

Figure 5.8: Normal probability plot of the term spread series. 
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5.3.3 Credit spread 

The credit spread is the difference between the quoted rates of returns on two 

different investments of different credit quality. It reflects the additional net yield an 

investor can earn from an asset with more credit risk relative to one with less credit 

risk. In our analysis we refer to the credit spread as to the difference between the 

yield to maturity of Baa-rated corporate bonds and Aaa-rated corporate bonds (rated 

by Moody’s Investor Service). We downloaded the data from FRED (Federal 

Reserve Economic Data) . Since the available data are annualized, we  divided the 

annualized rates by 12 in order to get the monthly rates of return. 

 

Preliminary analysis 

The credit spread time series is plotted in Figure 5.9, its mean is positive and this is 

reasonable since the credit spread is the difference between Aaa-rated bonds yields 

and Baa bonds yields. The sample autocorrelation function in Figure 5.10 shows  

many significant lags. When we implement the Dickey-Fuller test with constant, 

since it is  significant, we obtain a value of the t-statistic equal to –4.15, which is 

greater, in absolute value, than the critical value -3.42, and reject the null hypothesis 

of presence of unit root at a significance level of 0.05, the credit spread time series 

can therefore be considered as stationary. 

 

Credit Spread 

Mean 8.032e-004 St. Error 2.133e-005 

Minimum 4.553e-004 Variance 1.247e-007 

Maximum 0.002801 St. Dev 3.531e-004 

1° Quartile 0.000579 Skewnees 3.024166 

3° Quartile 0.000920 Kurtosis Excess 11.845541 

 

 
Table 5.5: Main descriptive statistics of the credit spread series over the period     1990-

2012. 
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The term spread series has a strong positive skewness  of 3.024166 and the excess of 

kurtosis is equal to 11.845541. Moreover, we can recognize that the empirical 

density function of the series moves away  from the normal probability density 

function evaluated by using the sample mean and standard deviation. Looking then at 

the Normal probability plot we can see a departure of sample quantiles from 

theoretical ones of the normal distribution. The normality test implemented, easily 

rejects the null hypothesis of normality.  
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Figure 5.9: Credit spread series over the period 1990-2012. 

Figure 5.10: Empirical correlogram of the credit spread series. 
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Normality Test 

Jarque-Bera <0.001 

Lilliefors <0.001 
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Figure 5.6: Normality tests’ P-values for the credit spread series.. 

Figure 5.11: Empirical density function of the credit spread series and normal probability 

density function evaluated by using the sample mean and standard deviation. 

Figure 5.12: Normal probability plot of credit spread series. 
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5.3.4 Risk-free asset 

Another variable we use to forecast returns of stock and bond indexes is the short-

term interest rate, that we computed starting from the 3-month U.S. Treasury Bill. In 

the second chapter we analyzed the main properties of this variable, we observed  

that it was not stationary and not normally distributed. 

 

 

5.3      Predictability analysis model 

To investigate how the evidence of predictability in asset returns affects optimal 

portfolio choice we analyze a vectorial autoregressive process, VAR. The framework 

is similar to the one we implemented in the third chapter, the only difference now is 

that we want to study the predictive effects on stocks and bonds allocation of five 

predictor variables.   

The investor  uses a VAR  model to forecast returns, where the state vector in the 

VAR  include returns on stock and bond indexes and predictors variables. As we 

already explained before, this is an advantageous framework  for examining how 

predictability affects portfolio choice: we can indeed compare the optimal allocation 

of an investor who takes return predictability into account to that of an investor who 

is blind to it, by only changing the number of predictor variables in the state vector. 

In the calculations presented in this section, the vector tz  contains seven 

components: the excess stock index return 1,tr , the excess bond index return 
2,tr    and 

five predictor variables: the dividend yield 1,tx , the VIX index 2,tx , the term spread 

3,tx , the credit spread 4,tx  and the risk-free rate 5,tx  . The model takes this form 

 
1 ,t t tz a Bx     (5.1) 

with ' ( , ')t t tz r x , 1, ,( ,..., ) 't t n tx x x  , in our analysis  the number of predictor 

variable n  is equal to 5,  and i.i.d. (0, )t N  .  

The first two components of tz , namely 1,tr  and 
2,tr , are the continuously 

compounded excess returns over month t    of the stock and bond index respectively. 
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The other five  components of tz  make up the vector or explanatory variables tx . 

The first two equations in the system specify expected stock and bond returns as a 

function of the predictor variables. The other equations specify the stochastic 

evolution of the predictor variables. Referring to our model with five predictor 

variables, the form is this: 

 
1, 1 1 11 1, 12 2, 13 3, 14 4, 15 5, 1, 1

2, 1 2 21 1, 22 2, 23 3, 24 4, 25 5, 2, 1

1, 1 3 31 1, 32 2, 33 3, 34 4, 35 5, 3, 1

2, 1 4 41 1, 42 2, 43

,

,

,

t t t t t t t

t t t t t t t

t t t t t t t

t t t

r a b x b x b x b x b x

r a b x b x b x b x b x

x a b x b x b x b x b x

x a b x b x b







 

 

 



      

      

      

    3, 44 4, 45 5, 4, 1

3, 1 5 51 1, 52 2, 53 3, 54 4, 55 5, 5, 1

4, 1 6 61 1, 62 2, 63 3, 64 4, 65 5, 6, 1

5, 1 7 71 1, 72 2, 73 3, 74 4, 75 5, 7, 1

,

,

,

,

t t t t

t t t t t t t

t t t t t t t

t t t t t t t

x b x b x

x a b x b x b x b x b x

x a b x b x b x b x b x

x a b x b x b x b x b x











 

 

 

  

      

      

      

 (5.2) 

where 

 
1, 12 17

2

7, 71 7

0, .

t

t

N

  

  

    
    
    

   
   

 

 

 

Regarding the variance-covariance matrix of contemporaneous innovations    we 

make the same assumptions we already made in chapter 3, that is, it is invertible and 

not necessarily diagonal;  we indeed allow the shocks to be cross-sectionally 

correlated, but assume that they are homoscedastic and independently distributed 

over time  

As before, the model we handle is not exactly a first order VAR, since all the 

variables here evaluated do not depend on the lagged value of 
1,tr  and 

2,tr  . Basically 

we  analyze a VAR(1) model with some restriction  on its parameters , indeed we can 

write: 

 
0 1 ,t t tz a B z     (5.3) 

Where 0B  is a square matrix and its first two column contains only zeros so that tz  

does not depend on 1, 1tr   and on 2, 1tr  .   
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0

0 0

.

0 0

B B

  
  

   
    

 

 

 

We   rewrite the model in a more convenient way:  

 
2 1 2

1

' 1 ' '
'

1 ,
'

' 1 ' 'T T T

z x
a

B
z x





     
      

       
      

     

 (5.4) 

 

or  

 ,Z XC E    (5.5) 

 

where Z  is  a ( 1, 2)T n   matrix with the vectors 2 ',..., 'Tz z   as rows; X   is a 

( 1, 1)T n  matrix with vectors 1 1(1 '),..., (1 ')Tx x   as rows, and E  is a ( 1, 2)T n 

matrix with vectors  2 ',..., 'T    as rows. Instead C  is a ( 1)( 2)n n  matrix . In this 

section we study the predictive effect of five predictor variables therefore n  is  equal 

to 5 and matrix C  takes this form: 

 
1 2 3 4 5 6 7

11 21 31 41 51 61 71

12 22 32 42 52 62 72

13 23 33 43 53 63 73

14 24 34 44 54 64 74

15 25 35 45 55 65 75

a a a a a a a

B B B B B B B

B B B B B B B

B B B B B B B

B B B B B B B

B B B B B B B

 
 
 
 
 
 
 
  
 

 

 

 

where the first row contains the intercepts and the other rows contain the coefficients 

of 1tx    . 

We write down the problem faced at time T  by a buy-and-hold investor with a 

horizon of T̂  months. Since he has no chance to buy or sell assets between time T  

and horizon ˆT T , he is interested only in the distribution of wealth at the end of the 
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holding period. The investor problem therefore concerns the maximization of his 

expected utility defined over final wealth.  

 
1

ˆ ˆ ˆ1, 2,

,

ˆ ˆ ˆ(1 )exp( ) exp( ) exp( )
max .

1

A

f f fT T T T T T

T

W r T r T R r T R
E

A 

   


  

       
 
  
 

  (5.6) 

The investor calculates the expected utility conditional on his information set at time 

T ,  adopting different distributions of cumulative excess returns ˆT T
R


 .These 

distributions differ in whether they take into account estimation risk or not. 

To avoid redundancy we do not describe again how cumulative excess returns are 

distributed in these two cases, we instead invite you to read section 6 of chapter 3. 

 

 

5.4 Results 

We devote this section to describing the results obtained by implementing the model 

described above. In order to carry out our analysis we chose to avail ourselves of the 

interactive environment of numerical computation MATLAB. The employed 

commands are listed in Appendix B. 

The strategy we recur to, is the same one used in the third chapter to see whether 

predictability in returns has any effect on  portfolio choice of a buy-and hold 

investor. In other words we compare the allocation of an investor who recognizes 

predictability to that of an investor who is blind to it. The VAR model provides a 

convenient way of making this comparison  because by simply altering the number 

of predictor variables included in the vector tx , it simulate investors with different 

information sets.  

In this section we compute the optimal combinations of   and    which maximize 

the quantity in expression (5.6)  for a variety of risk aversion levels A  and 

investment horizons T̂  , and for different cases where the investor either ignores or 

accounts for parameter uncertainty. 



 99 
 

The results are based on the model 1 ,t t tz a Bx     where 
1, 2,( , ) 't t t tz r r x  

includes continuously compounded monthly excess stock returns 
1,tr  and bond 

returns 2,tr  and a set of five predictor variables tx  , and where i.i.d. (0, )t N  . 

Tables 5.7 and 5.8 present the mean and standard deviation (in parentheses) of the 

posterior distribution ( , | )p C z  for each parameter a  , B   and  .  

 

1990-2012 

a  B  

0.0041 1.5215 0.0026 -30.5827 -7.2628 -4.2022 

(0.0152) (0.6077) (0.0016) (12.7341) (4.6686) (2.8800) 

      
-0.0129 0.2651 0.0027 -17.9176 4.8075 1.0578 

(0.0112) (0.4448) (0.0012) (9.3436) (3.4236) (2.1129) 

      
0.0006 0.9823 -0.0000 0.2090 0.0365 -0.0332 

(0.0003) (0.0131) (0.0000) (0.2749) (0.1007) (0.0621) 

      
1.1017 -35.5763 0.7997 582.1398 85.1288 82.1823 

(0.4127) (16.4642) (0.04346) (345.094

3) 

(126.548

7) 

(78.1225) 

      
-0.0000 0.0048 0.0000 0.8331 -0.0258 -0.0177 

(0.0000) (0.0012) (0.0000) (0.0253) (0.0093) (0.0057) 

      
-0.0001 0.0027 0.0000 0.0250 0.9625 -0-0038 

(0.0001) (0.0028) (0.0000) (0.0585) (0.0214) (0.0132) 

      
0.0002 -0.0050 -0.0000 0.0517 0.0264 1.0000 

(0.0001) (0.0022) (0.0000) (0.0435) (0.0166) (0.0102) 

      
 

 

 

 

 

 

 

 

 

 

 

 

Table 5.7: Mean and standard deviation (in parenthesis) of parameters ( , )a B ’s  

posterior distribution. 

 



100 
 

  

0.0019 -0.0002 -3.4e-05 -0.0383 -1.1e-06 -1.7e-07 6.4e-07 

(0.0002) (0.0001) (0.0000) (0.0041) (0.0000) (0.0000) (0.0000) 

       
 0.0010 1.8e-06 0.0065 4.3e-07 -3.2e-06 -5.1e-07 

 (0.0001) (0.0000) (0.0024) (0.0000) (0.0000) (3.2e-07) 

       
  0.0000 0.0006 2.4e-08 1.7e-08 -1.4e-08 

  (0.0000) (0.0001) (5.4e-09) (1.2e-08) (9.3e-09) 

       
   1.4294 2.9e-05 5.9e-06 -2.9e-05 

   (0.1261) (6.7e-06) (1.5e-05) (0.0000) 

       
    7.6e-09 -3.1e-10 1.8e.09 

    (6.7e-10) (1.1e-09) (8.6e-10) 

       
     4.1e-09 -1.4e-08 

     (3.6e-09) (2.1e-09) 

       
      2.4e-08 

      (2.1e-09) 

 

 

 

 

In the first two rows of the B matrix is summarized the predictive power of the five 

predictor variables relative to the stock excess returns and to the bond excess returns. 

We note that the posterior distribution for those coefficients has heterogeneous 

means, and the standard deviations range from 0.0012 to 12.7341, which obviously 

appears to be an huge source of parameter uncertainty for the investor.  We notice 

however that standard deviations are higher for those coefficients which advert to 

bonds predictor variables. Moreover we can see that all the predictor variables 

exhibit high persistency. The variance matrix shows the strong negative correlation 

between innovations in stock returns and the first two predictive variables, that are 

dividend yield and VIX index, estimated here at   -0.8084 and  -0.7267 respectively; 

this has an important influence on the distribution of long-horizon returns, even 

though there are many other effects to take into account since there are 3 others 

predictor variables. As regarding the correlation between the bond returns and the 

predictor variables we note that is generally weak, the only one worthy of attention is 

the negative correlation between the bond returns and the term spread that is  -

0.4944.  

Table 5.8: Mean and standard deviation (in parenthesis) of parameter   ’s posterior 

distribution. 
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We want to examine how predictability in asset returns and parameter uncertainty 

affect portfolio choice. To do this, we compute optimal allocation using four 

different choices for the distribution of future returns. These distributions differ in 

whether they take into account predictability and estimation risk. In the fourth 

chapter we  explored the issue of parameter uncertainty in the  context of i.i.d. 

returns of stock and bond indexes. Here we want to see whether predictability in 

returns has any effect on portfolio choice throughout the implementation of a VAR 

model. In any case the investor may account for  parameter uncertainty in the model, 

and thus use a predictive distribution of the form ˆ( | )
T T

p R z


, or he may ignore 

parameter uncertainty in the model; in this case we assume that the distribution for 

future returns  are constructed using the posterior means of a  , B  and   given in 

Tables 5.7 and 5.8 as the fixed values of the parameters. 

 

Ignoring parameter uncertainty 

When the investor  ignores  parameters uncertainty ,  he solves the maximization 

problem (5.6),  using a distribution for future excess returns conditional on the 

estimated parameter values and on the observed data of this form  ˆ
ˆ ˆˆ( | , , )

T T
p Z a B


 , 

which is normally distributed with mean ˆ
sum    and variance ˆ

sum . Since the 

investor’s distribution for future returns depends on the values of the predictor 

variables at the beginning of the investment horizon 
Tx  , we set the initial value of 

the predictor variables  to its mean in the sample, in order not to consider the impact 

of the initial values in the portfolio choices, and investigate how the optimal 

allocation changes with the investor’s horizon for these fixed initial values of  

predictors. 

Figure 5.13  shows the optimal portfolio allocation for a buy-and-hold investor,  

whose preference over terminal wealth are described by a constant relative risk-

aversion power utility function. The optimal combinations of  , proportion allocated 

to the stock index,  and  , proportion allocated to the bond index, are  plotted 

against the investment horizon that range from 1 month to 10 years. The  graph on 
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the left side is based on relative risk-aversion level of 5 , the one on the right are for 

10A   .   

In each graph the green line represents the percentage   allocated to the stock index, 

the blue line the percentage   allocated to the bond index.   

  

 

 

 

We can note that the context  changes depending on the risk-aversion level of the 

investor. Indeed, when the risk-aversion level is equal to 5, the green line that 

represents the optimal percentage   allocated to the stock index, rises as the 

investment horizon increases, whereas the blue line, that represents the optimal 

percentage   allocated to the bond index, falls as a function of the investment 

horizon. On the other hand, when the risk-aversion level of the investor is equal to 

10, only the percentage allocated to the bond index decreases with the investment 

horizon, whereas the percentage invested in the stock index keeps approximately 

steady. It is important to note then, that when the investor’s level of risk-aversion is 

equal to 5 the percentage allocated to risky assets keeps steady to 100%, 

independently from the investment horizon. When instead the risk-aversion level 

increases to 10, the percentage invested in risky assets diminishes as the investment 
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Figure 5.13: Optimal allocation to risky assets for a buy-and-hold investor with power 

utility function. The percentage invested in risky assets is  plotted against the investment 

horizon in years. The green line corresponds to the percentage invested in stocks, the blue 

line to the percentage invested in bonds. The graph on the left side corresponds to a level 

of risk-aversion of 5, the graph on the right to a level of risk-aversion of 10.  
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horizon increases; at the beginning it nearly reaches 100% whereas in the end it is 

approximately around 70%.  

This results differ substantially from the ones obtained before, when the investor 

availed himself of only one risky asset, the stock index; and when only one predictor 

variable was employed. In the third chapter we found that, in the context of 

predictability in returns the variance of cumulative returns may grow slower than 

linearly with the investor’s horizon, lowering the perceived long-run risk of stocks 

and bonds and hence leading to higher allocations to risky assets in the optimal 

portfolio. In particular, in that case, we could explain the intuition behind this result 

by the effect of the negative correlation between innovations in stock returns and the 

dividend yield. On the other hand, now there is no longer a single predictor variable, 

but five ones. We need therefore to take into account the effect of all the correlations 

between innovations in stock and bond returns and the predictor variables, in order to 

explain the evolution of the variance of cumulative returns. In fact, the effects of 

these correlations may cancel each other out in the conditional variances of 

cumulative stock and bond returns, therefore not always lowering the perceived long-

run risk of risky assets and hence leading to a less evident increase of the risky asset 

allocation in the optimal portfolio. 

 

Ignoring parameter uncertainty  

In this section we try to show how the optimal allocation differs when parameter 

uncertainty is explicitly incorporated into the investor’s decision making framework. 

Our strategy for understanding the effect of parameter uncertainty is to compare the 

allocation of an investor who uses predictive distribution to forecast returns with the 

allocation of an investor who uses instead distribution of returns conditional on fixed 

parameters â  , B̂  and ̂ .   

Figure 5.14  shows the optimal portfolio allocation for a buy-and-hold investor,  

whose preference over terminal wealth are described by a power utility function. The 

optimal combinations of  , proportion allocated to the stock index,  and  , 

proportion allocated to the bond index, are  plotted against the investment horizon 
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that range from 1 month to 10 years. The graph on the left side is based on a relative 

risk-aversion level of 5 , the one on the right is for 10A   .   

The green lines in the graphs are relative to the stock allocation, whereas the blue 

lines refer to the bond allocation. The solid lines refer to the case where the investor 

ignores parameter uncertainty, the dotted lines refer to the cases where the investor 

accounts for estimation risk.   

When we account for predictability and parameter uncertainty together, there is still 

horizon effect, in other words, the optimal allocation changes as the investment 

horizon increases. However, it is important to note that is not the kind of horizon 

effect we expected. In both graphs of Figure 5.14 the share invested in risky assets is 

strongly affected by the presence of estimation risk. For instance, when the investor’s 

risk-aversion level is 5, the share invested in risky assets shifts from 100%, in the 

first five years, to 53% in the last month. Moreover, the optimal  allocation to stocks 

and bonds is not monotonic, we can indeed observe that it first rises with the 

investment horizon , and then it starts falling as the investment horizon grows. 

The allocation to risky assets falls even lower than the allocation of an investor who 

assumes that asset returns are modeled as i.i.d, whether he accounts for parameters 

uncertainty or not. We need to remind, that most of the means of  the posterior 

distribution for B  have large variances, which are a huge source of parameter 

uncertainty. Moreover we are adding the uncertainty of five different parameters 

together, not only the uncertainty of the dividend yield as we did in the third chapter. 

This effect originate therefore from two different causes: firstly from the investor’s 

uncertainty about the means of stock and bond returns; exactly in the same way of 

chapter 4, incorporating uncertainty about the means make conditional variances 

grow faster as the horizon increases, making stocks and bonds look more risky and 

inducing a lower allocation to risky assets compared to the case where estimation 

risk is ignored. Secondly, this effect arises from the investor’s uncertainty about the 

predictive power of the predictor variables. It is therefore uncertain also whether the 

predictor variables does slow the evolution of conditional variance, and hence 

whether stocks and bonds’ riskiness diminish with the horizon. As we explained in 

the third chapter, the investor acknowledge both that the predictive power may be 



 105 
 

weaker than the point estimate suggests, and that it may be stronger. These effects go 

on opposite directions and on net, the investor invest less at longer horizons because 

he is risk-averse. Moreover, other two effects go on opposite directions, accounting 

for predictability and incorporating estimation risk; the first one makes risky assets 

look less risky, the second one makes them look more risky; this therefore lead, to 

allocations that are not monotonic as a function of the investment horizon. 

 

  

 

 

 

 

 

5.5 The role of the predictor variables 

We devote this section to analyzing the results on the optimal portfolio allocation for 

different initial values of the five predictor variables. As we did in the third chapter, 

we intend to take into account not only the impact of the predictor variables on the 

conditional variances but also on the mean of cumulative excess returns. This effect 

has not been taken into account so far because the initial values of the five predictor 

variables  have been kept fixed at its sample mean.  
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Figure 5.14: Optimal allocation to stocks for a buy-and-hold investor with power utility 

function. The percentage invested in stocks is  plotted against the investment horizon in 

years. The green line corresponds to the percentage invested in stocks, the blue line to the 

percentage invested in bonds.  The solid line refers to the case where the investor ignores 

parameter uncertainty, the dot line to the case where he accounts for it.  The graph on the 

left side corresponds to a level of risk-aversion of 5, the graph on the right to a level of risk-

aversion of 10.  
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In Figure 5.15, the two graphs on the left show the optimal portfolio allocations 

when parameter uncertainty is ignored; the graphs on the right incorporate it. Each 

graph exhibits the optimal stock allocation as a function of the investor’s horizon for 

five different initial values of the predictor variables: the historical mean in our 

sample, the first and third quartile and the 37.5% and 67.5% percentiles.  

Both graphs on the left side illustrate that, for any fixed horizon, the optimal 

allocation to stocks and bonds is generally, even if not always, higher for higher 

initial values of the predictor variables. Since the predictors affect the mean of the 

distribution for future returns, the investor expects higher future returns when their 

value is high. Besides, we can notice that, when the investor’s level of risk-aversion 

equals 5, the optimal  allocation of an investor with 10-year horizon is quite sensitive 

to the initial value of the predictor variables Tx . So, the various allocation do not 

converge to a specific value in the long run. This does not happen when the 

investor’s level of risk-aversion is 10, indeed the amount allocated to stocks appears 

to converge in the long run, even though the percentage invested in bonds is still 

quite sensitive to the initial value of the predictors. 

When we look at the two graphs on right, which refer to the case when parameter 

uncertainty is incorporated, we notice that the results are extremely different from the 

previous one. At low value of the predictors, the stock and bond allocations are  

generally increasing in the investment horizon, whereas those allocations are  

generally decreasing  in the horizon at higher initial value of the predictor variables. 

The results obtained in the third chapter, when only the dividend yield was affecting 

the mean and standard deviation of cumulative excess returns, are therefore 

confirmed in a more elaborated context.  Again, the allocation of an investor with  a 

10-year horizon is less sensitive to the initial value of the predictor variables than the 

allocation of a one-year horizon investor. In fact, the allocation lines show sign of 

converging.  

It is reasonable to think that the degree of predictability of returns in more distant 

future months is less than in nearby months, the effect of the initial value of the 

predictors on future expected returns therefore diminishes as the investment horizon 

grows.  
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Moreover, Stambaugh (1999) finds that the various patterns in the optimal assets 

allocations can be understood to some degree by examining moments of the return 

distribution, the skewness in particular. Incorporating parameter uncertainty 

introduce a positive skewness in the predictive distribution for low initial value of the 

dividend yield, and negative skewness for high initial values.  He observes that 

positive skewness can lead to a higher stock allocation than that obtained with 

negative skewness, explaining therefore the convergence to a specific value in the 

long run. 
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Figure 5.15: Optimal allocation to risky assets for a buy-and-hold investor with power utility 

function. The percentage invested in risky assets is  plotted against the investment horizon in 

years.  The two graphs on the left ignore parameter uncertainty, the ones on the right 

account for it. The ten lines within each graph correspond to different initial value of the 

predictor variables: the mean (solid line), 37.5% and 67.5% percentiles (dashed line),first 

and third quartiles (dotted line). 
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5.6    Other samples results 

So far we illustrated the results obtained implementing the models to the sample data 

for the period January 1990 – November 2012. However, it is important to remind 

that we  carry out those analysis for other three subsample. Hereinafter we briefly 

describe the key points of the results we obtained. In any case we invite you  to take 

a look at Appendix A, where all the graphs are listed. 

 

5.6.1.  Sample 1990-2000 

The first sample we consider is the period January 1990 – December 2000.  

Figure 5.16  shows the optimal portfolio allocation for a buy-and-hold investor who 

recognizes predictability.  The optimal combinations of  , proportion allocated to 

the stock index,  and  , proportion allocated to the bond index, are  plotted against 

the investment horizon that range from 1 month to 10 years. The graph on the left 

side is based on a relative risk-aversion level of 5 , the one on the right is for 10A   .   

The green lines in the graphs are relative to the stock allocation, whereas the blue 

lines refer to the bond allocation. The solid lines refer to the case where the investor 

ignores parameter uncertainty, the dotted lines refer to the cases where the investor 

accounts for estimation risk.   

The main feature that immediately strike the viewer is that the amount invested in 

stocks and the one invested in bond are inverted compared to the result obtained in 

the full sample. In fact, when the investor’s level of risk-aversion is equal to 5, he 

allocates almost 100% to stock, whereas when his level of risk-aversion equals 10 he 

invests around 70% on stocks after 10 years.   In this case all the correlation between 

innovations in stock returns and the predictor variables are negative. They can 

therefore affect conditional variances of cumulative stock returns, making stocks 

look relatively less risky at longer horizon and increasing their optimal weight in the 

investor’s portfolio. Moreover, as we observed in the previous section, the initial 
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values of the predictor variables is another important factor that can influence the 

investor’s optimal allocation.  

When the investor accounts for predictability and parameter uncertainty together, his 

behavior is similar in essence, to the one illustrated for the full period (1990-2012). 

The large uncertainty about the estimated parameters make the allocation to risky 

asset substantially fall with the horizon.   

  

  

 

Figure 5.16: Optimal allocation to stocks for a buy-and-hold investor with power utility 

function. The percentage invested in stocks is  plotted against the investment horizon in 

years. The green line corresponds to the percentage invested in stocks, the blue line to the 

percentage invested in bonds.  The solid lines refers to the cases where the investor ignores 

parameter uncertainty, the dotted line to the cases where he accounts for it.  The graph on 

the left side corresponds to a level of risk-aversion of 5, the graph on the right to a level of 

risk-aversion of 10.  

 

 

5.6.2. Sample 2002-2006 

The second sample we analyze is the period January 2002 – December 2006.  

Figure 5.17  shows the optimal portfolio allocation for a buy-and-hold investor who 

recognizes predictability.  The optimal combinations of  , proportion allocated to 

the stock index,  and  , proportion allocated to the bond index, are  plotted against 
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the investment horizon that range from 1 month to 10 years. The graph on the left 

side is based on a relative risk-aversion level of 5 , the one on the right is for 10A   .   

The green lines in the graphs are relative to the stock allocation, whereas the blue lines 

refer to the bond allocation. The solid lines refer to the case where the investor ignores 

parameter uncertainty, the dotted lines refer to the cases where the investor accounts 

for estimation risk 

As in the previous case,  we observe that the amount allocated to stocks is greater 

than the amount allocated to bonds, compared to the result obtained in the full 

sample. Here, the percentage allocated to the stock index nearly reaches 100% after 3 

years, even when the investor’s level of risk-aversion equals 10. If we observe the 

correlation between innovations in stock returns and the predictor variables we note 

that they are not all negative. Again, we would need to take into account the effect of 

the initial values of the predictor variable. 

Looking at the lines that refer to the case when the investor accounts for predictability 

and estimation risk together, we note that when his level of risk-aversion equals 10, 

the amount  invested in risky assets keeps steady around 100% after the fourth year, 

even if the combination of bonds and stocks appears to be variable. Instead when the 

investor’s level of risk- aversion equals 5  the allocation to risky asset considerably 

fall. 
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5.6.3 Sample 2007-2012 

The last sample we consider is the period January 2007 – November 2012.  

Figure 5.18  shows the optimal portfolio allocation for a buy-and-hold investor who 

recognizes predictability.  The optimal combinations of  , proportion allocated to 

the stock index,  and  , proportion allocated to the bond index, are  plotted against 

the investment horizon that range from 1 month to 10 years. The graph on the left 

side is based on a relative risk-aversion level of 5 , the one on the right is for 10A   .   

The green lines in the graphs are relative to the stock allocation, whereas the blue lines 

refer to the bond allocation. The solid lines refer to the case where the investor ignores 

parameter uncertainty, the dotted lines refer to the cases where the investor accounts 

for estimation risk 

In this sample, as it happened for the full one, the amount invested in stocks is 

generally smaller than the amount invested in bonds. However, when the investor’s 

level of risk aversion equals 5, the percentage allocated to the stock index rises more 

clearly with the investment horizon, compared to the full sample. In fact, around the 
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Figure 5.17: Optimal allocation to stocks for a buy-and-hold investor with power utility 

function. The percentage invested in stocks is  plotted against the investment horizon in years. 

The solid line refers to the case where the investor ignores parameter uncertainty, the dot line 

to the case where he accounts for it.  The graph on the left side corresponds to a level of risk-

aversion of 5, the graph on the right to a level of risk-aversion of 10.  
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seventh year the amount invested in stock even exceed the amount allocated to bond 

index. The percentage allocated to risky assets hold steady to 100% when the 

investor’s level of risk aversion is equal to 5; when instead it increases to 10, the 

percentage invested in risky assets diminishes as the investment horizon increases. 

When the investor accounts for predictability and parameter uncertainty together, his 

behavior appear to be considerably sensitive to estimation risk. The large uncertainty 

about the estimated parameters make the allocation to risky asset substantially fall 

with the horizon when the investor’s level of risk aversion is equal to 5; whereas 

when it equals 10, the amount invested in risky asset, and in particular  in stocks, 

reaches 100% after the third year. 

  

 

 

 

 

CDS in place of Dividend Yield 

A further analysis we carried  out, is to explore the implications of replacing the 

predictor variable dividend yield, which has a long tradition among practitioners and 

academics, by  measure of  credit risk, the CDS of the U.S. Banking sector. Since the 
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Figure 5.18: Optimal allocation to stocks for a buy-and-hold investor with power utility 

function. The percentage invested in stocks is  plotted against the investment horizon in 

years. The solid line refers to the case where the investor ignores parameter uncertainty, the 

dot line to the case where he accounts for it.  The graph on the left side corresponds to a 

level of risk-aversion of 5, the graph on the right to a level of risk-aversion of 10.  
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data available do not cover the full sample, we decided to implement this study only 

for the last subsample.  

In Figure 5.19  is displayed the optimal portfolio allocation for a buy-and-hold 

investor who recognizes predictability.  The optimal combinations of  , proportion 

allocated to the stock index,  and  , proportion allocated to the bond index, are  

plotted against the investment horizon that range from 1 month to 10 years. The 

graph on the left side is based on a relative risk-aversion level of 5 , the one on the 

right is for 10A   .   

The blue lines in the graphs are relative to the stock allocation, whereas the green 

lines refer to the bond allocation. The solid lines refer to the case where the investor 

ignores parameter uncertainty, the dotted lines refer to the cases where the investor 

accounts for estimation risk.   

The similarity of these graphs with the graphs above, where the dividend yield was 

incorporated in the model, is obvious. Whether the investor takes into account 

parameter uncertainty or not, the results obtained by replacing the dividend yield 

with the CDS are identical, in essence, to the ones obtained before. It therefore seems 

that when the investor avail himself of a heterogeneous set of variable, the role of the 

dividend yield can easily be replaced by another variable such as the CDS.  
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Figure 5.18: Optimal allocation to stocks for a buy-and-hold investor with power utility 

function. The percentage invested in stocks is  plotted against the investment horizon in years. 

The solid line refers to the case where the investor ignores parameter uncertainty, the dot line 

to the case where he accounts for it.  The graph on the left side corresponds to a level of risk-

aversion of 5, the graph on the right to a level of risk-aversion of 10.  
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Chapter six 

Portfolio allocation under loss aversion  

 

6.1 Introduction 

In this chapter we investigate how the optimal allocation changes when investors’ 

preferences are described by a different utility function.  

The first sections are devoted to showing the main critiques to the Expected Utility 

Theory and to illustrate the experimental contributions that led to the emergence of 

Behavioral Finance.   

We then introduce the Prospect Theory, a behavioral economic theory that tries to 

model real-life choices, rather than optimal decisions, availing itself of methods 

originated from psychology. According to this theory a loss aversion function is 

implemented   to explore the portfolio choice.  

In the last paragraph the results about the optimal portfolio allocation when 

investors’ preferences are described by a loss aversion function are given 

 

 

6.2 Critiques to the Expected Utility theory 

A crucial element of any model trying to understand asset prices or trading behavior 

is an assumption about investor preferences, or about how investors evaluate risky 

gambles. The  majority of models assume that investors evaluate gambles according 

to the expected utility framework. This theory, introduced by Von Neumann and 

Morgenstern in 1944, has been generally accepted as a normative model of rational 

choice, and widely applied as  a descriptive model of economic behavior.  They 

show that if preferences satisfy a number of plausible axioms, then they can be 

represented by the expectation of a utility function. However there is now general 

agreement that this theory does not provide an adequate description of individual 
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choice: experimental work has shown that decision makers systematically violate 

Expected Utility theory when choosing among risky gambles. It may be that 

Expected Utility theory is a good approximation to how people evaluate a risky 

gamble like the stock market, even if it does not explain attitudes to the kinds of 

gambles observed  in experimental settings. However, the difficulty the Expected 

Utility method has encountered in trying to explain basic facts about the stock market 

suggests that it may be worth taking a closer look at the experimental evidence. 

Indeed, 

recent work in behavioral finance has argued that some of the lessons we learn from 

violations of Expected Utility are central to understanding a number of financial 

phenomena. 

The first inconsistency of actual observed choices with the predictions of expected 

utility theory is demonstrated by Maurice Allais (1953), who, throughout his 

paradox, shows  that people underweight outcomes that are merely probable in 

comparison with outcomes that are obtained with certainty. On the contrary, 

according to the expectation principle, the utility of a risky prospect is linear in 

outcome probabilities.  

Daniel Kahneman and Amos Tversky (1979) find that, contrary to expected utility 

theory, people treat gains and losses differently and typically over- or underweight 

true probabilities.  In their research they list some major phenomena of choice, which 

violate the standard model:  

The certainty effect, that is the tendency to underweight outcomes that are merely 

probable relative to outcomes that are considered certain. However this does not 

mean that certainty is generally desirable, rather, it appears that certainty increases 

the aversiveness of losses as well as the desirability of gains. Indeed, in the positive 

domain, it contributes to a risk averse preference for sure gain over a larger gain that 

is merely probable; in the negative domain it leads to a risk seeking preference for 

loss that is merely probable over a smaller loss that is certain. 

The reflection effect, that  reverses the preference order of decision makers. That is, 

they usually prefer smaller gains with higher probability, whereas they prefer larger 

losses with  lower probability.  This effect causes therefore risk aversion in the 

positive domain and risk seeking in the negative domain . Williams reported data 
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where a translation of outcomes produces a dramatic shift from risk aversion to risk 

seeking. Moreover a review by Fishburn and Kochenberger documents the 

prevalence of risk seeking in choices between negative prospectus. 

The isolation effect, that is the disposition to  disregard components that the 

alternatives share, and focus on the components that distinguish them, in order to 

simplify the choice between alternatives. This approach to choice problems may 

produce inconsistent preferences because a pair of prospects can be decomposed into 

common and distinctive components in more than one way, and different 

decompositions sometimes lead to different preferences (framing effect). This 

violates the description invariance assumed by the rational theory of choice, which 

asserts that equivalent formulation of a choice problem should give rise to the same 

preference order.   

A huge amount of evidence for anomalies  in human behavior has been found , the 

field of behavioral finance has evolved attempting to understand and explain how 

emotions and cognitive errors influence investors and decision-making process. The 

common belief in this field is that the study of psychology and social sciences can 

explain many stock market anomalies and shed light on the efficiency of financial 

markets.  

 

 

6.3 Behavioral Finance 

The traditional finance approach tries to understand financial markets using models 

in which agents are “rational”. Rationality carries two main consequences. Firstly, 

when decision makers receive new information, they update their beliefs correctly, in 

the manner described by Bayes’ law. Secondly, given their beliefs, agents make 

choices that are normatively acceptable, in the sense that they are consistent with 

Subjective Expected Utility . 

This traditional framework is simple, and it would be very satisfying if its predictions 

were supported by the data. Unfortunately, it has become clear that basic facts about 
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the aggregate stock market, the cross-section of average returns and individual 

trading behavior are not easily understood in this context. 

Behavioral finance is a new approach to financial markets that has arisen, at least in 

part, in response to the difficulties faced by the traditional modus operandi. In 

general, it argues that some financial phenomena can be better understood using 

models in which some agents are not fully rational. More specifically, it analyzes 

what happens when we loosen one, or both, of the two principle that underlie 

individual rationality. In some behavioral finance models, agents fail to update their 

beliefs accurately. In other models, agents apply Bayes’ law properly but make 

choices that are normatively controversial. 

Surveys and empirical researches suggest that individuals do not always follow the 

traditional assumptions about rational economic decision-making. This point of view 

is consistent with the fundamental economic proposition that people can and do try to 

maximize their self-interest, but it also recognizes that such decisions are often sub-

optimal, given available information. These anomalies have led to the emergence of 

a new approach to financial markets, Behavioral Finance. It was developed in the 

50s, but only towards the end of the '70s has acquired the status of theory thanks to  

relevant empirical studies. 

Among the  various behavioral factors that usually influence agents’ choice, we 

illustrate the most common ones, identified by behavioral finance: 

Heuristic decision-making: “Heuristics are simple rules of thumb which have been 

proposed to explain how people make decisions, come to judgments and solve 

problems, typically when facing complex problems or incomplete information. These 

rules work well under most circumstances, but in certain cases lead to systematic 

cognitive biases” Kahneman (2011). Tversky defined heuristic as a strategy, which 

can be applied to a variety of problems, that usually yields a correct solution. People 

often use these shortcuts to reduce complex problem solving to more simple 

operations. 

Framing effects : another bias in decision-making is a result of the fact that many 

participants are easily conditioned by the way in which investment question are 

illustrated to them. If a number of different investment options are illustrated, issues 
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such as numbering and the order in which they appear will affect the choice made. 

Benartzi and Thaler (1999) find that simple changes in the way information is 

displayed  can affect individuals‘ choices.  

Overconfidence: overconfidence is the tendency for people to overestimate their 

knowledge, capabilities and the accuracy of their information, for that reason 

investment decisions become based on conjecture rather than fundamental value. A 

large experimental literature finds that individuals are usually overconfident (see for 

example Fischoff, 1982), that is, they believe their knowledge is more accurate than 

it actually is.  

However, we do not have to think to Behavioral Finance as an alternative model to 

the traditional theory, but rather , considering that traditional approaches can explain 

the majority of phenomena, we need to think to Behavioral Finance as an opportunity 

to interpret, by analyzing the real investors’ behavior,  those anomalies that are not 

fully comprehended by traditional theory. 

In response of the great amount of evidence for anomalies, since 80s there has been 

an explosion of work on so-called non expected utility theories, all of them trying to 

do a  better job of  explaining the real behavior of decision makers.  Some of the best 

known models include weighted-utility theory (Chew and MacCrimmon, 1979 ), 

implicit expected utility (Chew, 1989 and Dekel,1986), disappointment aversion 

(Gul, 1991) and probably the most relevant  one, Prospect theory, originating from 

the work of Kahneman & Tversky (1979).  We devote the next section to illustrating 

the main ideas that are the foundation of Prospect theory. 

 

 

6.4 Prospect theory 

Among the alternatives to the Expected Utility approach,  Prospect theory is 

considered the most successful at capturing experimental results. This theory was 

developed by Daniel Kahneman and Amos Tversky in 1979  as a psychologically 

more realistic description of preferences compared to expected utility theory. Its goal 
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is to capture people’s attitudes to risky gambles as parsimoniously as possible. 

Indeed, Tversky and Kahneman (1986) argue that normative methods are doomed to 

failure, because people make choices that are simply impossible to justify on 

normative grounds, in that they violate dominance or invariance.   

An essential feature of the present theory is that the carriers of value are changes in 

wealth or welfare, rather than final states. This assumption is compatible with basic 

principles of perception and judgment. Our perceptual apparatus is attuned to the 

evaluation of changes or differences rather than to the evaluation of absolute 

magnitudes. However, the emphasis on changes as the carriers of value should not be 

taken to imply  that the value of a particular change is independent of initial position. 

Indeed, value should be treated as a function in two arguments: the asset position that 

serves as reference point, and the magnitude of the change (positive or negative) 

from that reference point. 

According to Tversky and Kahneman’s approach, the value function   replaces the 

utility function developed by Neumann and Morgnestern, and takes this form 

 1

2

00

00

if( )
( )

if( )

x xx x
x

x xx x








 
 

 
 (6.1) 

This formulation has some important features. Firstly, utility is defined over gains 

and losses relative to a reference point 0x  rather than over final wealth positions, an 

idea first proposed by Markowitz (1952) and which has been implicitly accepted in 

most experimental measurements utility. Secondly, the S  shape of the value function 

 , namely its concavity in the domain of gains and convexity in the domain of 

losses. The shape of the value function depends on the parameters’ values. The 

parameter   is the coefficient of loss aversion, a measure of the relative sensitivity 

to gains and losses, if set greater than 1 it allows to indicate the greater sensitivity to 

losses than to gains; 1  measure the level of risk aversion for gains; 2  measures  

the level of risk seeking for losses.   Several values of 1 , 2  , and   are used in 

financial literature, Tversky and Kahneman (1992) use experimental evidence to 

estimate 1 2 0.88    , 2.25  . Instead Gemmill, Hwang and Salmon (2005) set 

1 0.85   and 2 0.95  .  
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As we already said, the   function is concave above the reference point and convex 

below the reference point, a discontinuity point is therefore placed in correspondence 

to the reference point  0x  . These conditions reflect the principle of diminishing 

sensitivity : the impact of change diminishes with the distance from the reference 

point. 

The   function also is steeper for losses than for gains, this is implied by the 

principle of loss aversion according to which losses loom larger than corresponding 

gains. . In other words, the aggravation that one experiences in losing a sum of 

money appears to be greater than the pleasure associated with gaining the same 

amount. 

In the classical theory, the utility of an uncertain prospect is the sum of the utilities of 

the outcomes, each weighted by its probability. On the other hand, in Prospect theory 

the value of each outcome is multiplied by a decision weight not by an additive 

probability. This weighting scheme is a monotonic transformation of outcome 

probabilities , however decision weights are not probabilities, they do not obey to the 

probability axioms and they should not be understand as a measure of degree or 

belief. They measure the influence of events on the desirability of prospects, and not 

merely the perceived likelihood of these events. The two scales coincide if the 

expectation principle holds, but not otherwise. Decision makers use subjective 

Figure 6.1: an example of value function.  
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weights that overestimate or underestimate the true probability ip . If a gamble 

promises outcome ix  with probability ip  people assign the gamble the value 

( ) ( )i i

i

V G x  . The weight depends on the cumulative distribution function of 

the gamble  and are set equal to *( ) ( )i i iw P w P   , where   iP  is the probability that 

the gamble will yield an outcome at least as good as ix  , and *

iP  is the probability 

that it will yield an outcome strictly better than ix , w  denote the nonlinear transform 

on the cumulative distribution of G   

Tversky and Kahneman have suggested the following one parameter approximation 

in order to obtain the decision weights. 

 

1/
( ) .

( (1 ) )

P
w P

P P



  


 
 (6.2) 

 

and estimated 0.65    

 

 

6.5 Long horizon asset allocation 

This section is dedicated to the  study of  the portfolio allocation problem for a buy-

and-hold investor whose preferences are described by a loss aversion function 

developed in Tversky and Kahneman’s (1992) Prospect theory. 

 The investor is assumed to adopt a buy-and-hold strategy, he has therefore no 

chance to buy or sell assets between time T  and horizon ˆT T   ; and he can choose 

to allocate his wealth between three assets: the equity index, the bond index and the 

risk-free asset. 

In this chapter  the investor’s preferences are described by a loss aversion function, 

rather than by a power utility function. Utility is assigned to gains and losses 

achieved at time  ˆT T  , defined relative to a reference point identified as the initial 

wealth TW  ,that we fix as equal to 1 for the sake of simplicity.  This approach is 

completely different from the one developed by the expected utility theory, indeed in 
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prospect theory values are attached to changes rather than to final wealth. On the 

other hand, according to the expected utility theory, utility is maximized over 

terminal wealth ˆT T
W


 , independently from the level of initial wealth. 

The loss aversion function takes this form: 

 1

2

ˆˆ

ˆ

ˆˆ

( ) if
( )

( ) if

TT T TT T

T T
TT T TT T

W WW W
W

W WW W













 
 

 
 (6.3) 

The parameter   is the coefficient of loss aversion and measures the relative 

sensitivity to gains and losses; 1  measures  the level of risk seeking for losses; 2  

measure the level of risk aversion for gains.    

We choose not to replace objective probabilities by decision weights in the portfolio 

allocation problem, as contemplated by Aït-Sahalia and Brandt (2001) and  

Berkelaar, Kouwenberg and Post (2004). Bernatzi and Thaler (1995) find that the 

loss aversion function is the main determinant of Prospect theory  whereas the 

specifical functional forms of the value function and weighting functions are not 

critical. We therefore focus our attention on the effect that the loss aversion function 

has on  portfolio choices. 

The problem faced by the  investor  is the same one explained in chapter 4 and 5, the 

only change is that now he maximizes his utility using  a loss aversion function in 

place of the power utility function. The investor calculates the expected utility 

conditional on his information set at time T   adopting different distributions of 

cumulative excess returns ˆT T
R


 .These distributions differ in whether they take into 

account predictability and estimation risk. 

Assuming that excess returns are i.i.d., so that ,t tz a    with   1 , 2 ,' ( , )t t tz r r , 

1 2' ( , )a a a  and i.i.d. (0, )t N  , two distributions can be used depending on 

whether  the investor accounts or ignores parameters uncertainty . 

On the other hand, if we allow for predictability in excess returns we can use a VAR 

model to study the predictive effects on stocks and bonds allocation of a set of five 

predictor variables. The model takes this form 1 ,t t tz a Bx     with 

1, 2,' ( , , ')t t t tz r r x , 1, ,( ,..., ) 't t n tx x x  and i.i.d. (0, )t N  . The distribution of 
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cumulative returns conditional on the data available at time T  is then normal  with 

mean sum  and variance sum , where mean and variance are calculated in different 

way depending on whether we incorporate estimation risk or not. 

To avoid redundancy, we do not illustrate again cumulative excess returns 

distributions , we instead invite you to read sections 4.4 and 3.6. 

 

 

6.6 Results 

This section presents the results of our analysis when investor’s preferences are 

described by a loss aversion function. In order to implement the model we chose to 

avail ourselves of the interactive environment of numerical computation MATLAB. 

The employed commands are listed in Appendix B. 

Our objective is to show how the portfolio allocation of a buy-and hold investor 

changes as a function of the investment horizon; and how the optimal combination of 

  and  , changes depending on whether parameter uncertainty is taken into 

account or ignored and if  the investor recognizes predictability or is blind to it. 

We use two different form of value function in order to compute the expected utility. 

The first one, is the loss aversion function used by Barkelaar, Kouwenbera and Post 

(2004) and sets 1 2 0.88    and 2.25   . The second one has been used by 

Barberis, Huang and Santos (2001) and has 1 2 1    and  2.25   . Here the 

investor is risk neutral for gains and losses, but he is much more distressed by losses 

than he is happy with equivalent gains. 

Figure 6.2  shows the optimal portfolio allocation for a buy-and-hold investor whose 

preferences  are described by a loss aversion function, and when he  ignores 

predictability of assets returns,  . The optimal combinations of  , proportion 

allocated to the stock index,  and  , proportion allocated to the bond index, are  

plotted against the investment horizon that range from 1 month to 10 years. The 

graph on the left side  refers to the case where 1 2 0.88   , whereas the one on 
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the right to the case where the investor is risk neutral, thus 1 2 1    .  The green 

lines represent the percentage allocated to the stock index, the blue ones represent 

instead the percentage allocated to the bond index. The dashed lines stand for when 

estimation risk is taken into account. 

 

  

 

 

 

 

 

When we look at Figure 6.2 a distinguishing feature just leaps out of it, that is, the 

share allocated to the risky assets considerably changes as the investment horizon T̂  

increases. Although we are in the context of i.i.d. returns we can observe the 

remarkable presence of horizon effect. When the investor uses the entire sample, and 

parameters are 1 2 0.88    the percentage invested in stocks in the first month is 

3% and in the third month it already reaches 36% , thereafter it keeps on growing as 

a function of the investment horizon. The percentage invested in bonds is instead 5% 

in the first month , by the end of the third month it grows to 63% and around twenty 

months after it starts falling up to 54%.  The horizon effect is much clearer in the 

graph related to the risk neutral investor. Here the percentage allocated to the stock 
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Figure 6.2: Optimal allocation to risky assets for a buy-and-hold investor under loss 

aversion. The percentage invested in stocks is  plotted against the investment horizon in 

years. The green line corresponds to the percentage invested in stocks, the blue line to the 

percentage invested in bonds.  The solid lines refers to the cases where the investor ignores 

parameter uncertainty, the dotted line to the cases where he accounts for it.  The graph on 

the left side corresponds to the case where 1 2 0.88    , the one on the right to the case 

where 1 2 1    

 



 125 
 

index is 36% in the third month, but it rises to 86% by the end of tenth years. 

Meanwhile ,the percentage allocated to the bond index fall from 63% to 12%.  

The share invested in risky assets starting from the third month is always 100% 

irrespective of the level of risk aversion of the investor. However, we notice that 

when 1 2 1    and individuals are risk neutral for gains and losses, the percentage 

invested in stocks grows substantially compared to the case when  1 2 0.88   . 

All that clash with the results obtained employing a power utility function, according 

to which, when returns are i.i.d, the portfolio allocation holds steady irrespective of 

the investment horizon T̂  . Our results are also confirmed by Benartzi and Thaler 

(1995), they find that  when we are in a loss aversion context, the attractiveness of  

risky asset will depend on the time horizon of the investor. The longer the investor 

intends to hold the asset, the more attractive the risky asset will appear. 

When parameter uncertainty is taken into account, the share invested in risky assets 

is again 100% for the most part of the investment horizons, however the percentage 

invested in bonds is smaller compared to the  one the investor allocates when he 

ignores estimation risk. Vice-versa for the share allocated to stocks. 

Figure 6.3  shows the optimal portfolio allocation for a buy-and-hold investor whose 

preferences  are described by a loss aversion function, and when he  takes into 

account predictability of assets returns,  . The optimal combinations of  , proportion 

allocated to the stock index,  and  , proportion allocated to the bond index, are  

plotted as a function of the investment horizon that range from 1 month to 10 years. 

The graph on the left side  refers to the case where 1 2 0.88   , whereas the one 

on the right to the case where the investor is risk neutral, thus 1 2 1    .  The 

green lines represent the percentage allocated to the stock index, the blue ones 

represent instead the percentage allocated to the bond index. The solid lines refer to 

the case where the investor ignores parameter uncertainty, the dotted lines refer to 

the cases where the investor accounts for estimation risk.   

Looking at the graphs, we note that the investor allocates all his wealth in risky 

assets already from the third month, both in the case where 1 2 0.88    and in the 
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case where 1 2 1   .  Moreover now he allocates a larger percentage to stocks 

than to bonds as the horizon increases. When 1 2 0.88    he indeed allocates 

almost 100% to stocks  and 0% to bonds, starting from the seventh year. When 

instead he is risk-neutral but loss averse, he starts to allocate 100% to stocks even 

before the fifth year. When estimation risk is taken into account the share invested in 

risky assets keeps steady at 100%, but the combination of bonds and stocks seems to 

be variable especially when the investment horizon is longer than 9 years. 
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Figure 6.3: Optimal allocation to risky assets for a buy-and-hold investor under loss 

aversion. The percentage invested in stocks is  plotted against the investment horizon in 

years. The green line corresponds to the percentage invested in stocks, the blue line to the 

percentage invested in bonds.  The solid lines refers to the cases where the investor ignores 

parameter uncertainty, the dotted line to the cases where he accounts for it. The graph on 

the left side corresponds to the case where 1 2 0.88    , the one on the right to the case 

where 1 2 1    
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Conclusions 

In this work we investigated the issue of portfolio choices for investors with long horizons. 

In particular, given the evidence of predictability in asset returns of recent financial research, 

we examined the effects of this predictability  for investors seeking to make portfolio 

allocation decisions. Our study reveals that portfolio allocations for short- and long-horizon 

investors can be very different in the context of predictable returns.  

For the most part of our work we assumed that investor’s preferences over terminal wealth 

were described by a constant relative risk-aversion power utility function.  

We started out our analysis by considering the case where the investor was allowed to 

choose how to allocate his wealth only between two assets: the stock index and the risk-free 

asset.  When asset returns are assumed to be i.i.d. with normal innovations, and the 

parameters in the model are treated as if known with complete precision, we observe that the 

optimal allocation is independent of the horizon, remaining identical to the short run.  

On the other hand, we observe that when parameter uncertainty is explicitly incorporated 

into the investor’s decision making framework, by using a Bayesian approach, the stock 

allocation falls as the horizon increases, parameter uncertainty can therefore introduce  

horizon effect even in the context of i.i.d. model returns. This extra uncertainty means the 

variance of the distribution for cumulative returns increase faster than linearly with the 

horizon, making  stocks appear riskier to long-horizon investors 

Afterwards we considered the impact of predictability implementing a VAR model, an 

important aspect of this analysis is that in constructing optimal portfolios, we accounted for 

the fact that the true extent of predictability in returns is highly uncertain.  

When we ignore the estimation risk we observe that the optimal allocation to equities for a 

long-horizon investor is much higher than for a short-horizon investor. In the context of 

predictability in returns the variance of cumulative stock returns may grow more slowly than 

linearly with the investor’s horizon, which is the case when asset returns are modeled as 

i.i.d., lowering  the perceived long-run risk of stocks and hence leading to higher allocations 

to stocks in the optimal portfolio.  

However when we accounted for predictability and parameter uncertainty together, we still 

find horizon effect, although the long-horizon allocation is not nearly as high as  when we 

ignore estimation risk. We can deduce that incorporating parameter uncertainty can 

considerably reduce the size of the horizon effect. Therefore a long-horizon investor who 

ignores parameter uncertainty may over-allocate to stocks by a sizeable amount. 
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We then devoted the majority  of our work to examining in what way the optimal portfolio 

allocation changes when investors have the opportunity to choose how to allocate their 

wealth among three different assets, instead of the previous two: a stock index, a bond index, 

and a risk-free asset.  

We firstly assumed i.i.d. modeled returns and we observed that an investor ignoring the 

uncertainty about the mean and variance of assets returns would allocate the same amount to 

stocks and to bonds regardless of his investment horizon. Independently from the time 

horizon and from the risk-aversion level then, the percentage allocated to the bond index is 

always greater than the one allocated to the stock index. 

Accounting for estimation risk instead, the investor’s distribution for long-horizon returns 

incorporates an extra degree of uncertainty, involving an increase in its variance. 

We then investigated the predictability of excess stock and bond returns availing ourselves of 

a set of five predictor variables commonly used in literature for the portfolio choice 

problems.  In this case the allocation to stocks, and in general to risky assets, does not rise so 

dramatically at long horizons as in the case where only two assets and one predictor variable 

were included in the model. In particular, the amount allocated to the bond index tends to fall 

as the horizon increases,  whereas the percentage invested in the stock index rises slightly or 

keeps approximately steady, depending on the risk aversion level. When we consider the 

predictive power of five variables instead of the sole dividend yield, the change of the 

conditional variance over time appears  not to be as obvious as before, since now the effect 

of the five variables influences its form. 

When we account for predictability and parameter uncertainty together, we note that the 

horizon effect is still present, however the share invested in risky assets is strongly affected 

by the presence of estimation risk. The allocation to risky assets falls even lower than the 

allocation of an investor who assumes that asset returns are modeled as i.i.d, whether he 

accounts for parameters uncertainty or not. This effect arises therefore from two different 

causes: firstly from the investor’s uncertainty about the means of stock and bond returns. 

Secondly, from the investor’s uncertainty about the predictive power of the predictor 

variables. 

When we employ  a loss aversion function, instead of the common power utility function, in 

order to describe the investor’s preferences, the optimal portfolio allocation changes 

dramatically. Even in the context of i.i.d. returns we can observe remarkable presence of 

horizon effects. All that clashes with the results obtained employing a power utility function, 

according to which, when returns were i.i.d, the portfolio allocation held steady irrespective 

of the investment horizon. When we take parameter uncertainty into account, we find that 
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the percentages invested in bonds and stocks changes slightly  compared to the case where 

the investor does not account for estimation risk . 

When we consider the effects of predictability, we note that the percentage allocated to 

stocks is increasingly large, until it reaches 100% at a investment horizon of  seven and even 

five years, depending on the risk aversion level. When estimation risk is taken into account 

the share invested in risky assets is still the same, but the combination of bonds and stocks 

seems to be variable. 

Our results suggest that portfolio calculations can be seriously deceptive if the allocation 

framework ignores the uncertainty surrounding parameters evaluation. Moreover, we 

observe that parameter uncertainty makes the optimal allocation much less sensitive to the 

initial value of the predictor variables. This suggest that studies which ignore uncertainty 

about parameters may lead the investor to take positions in stocks which may be both too 

large and too sensitive to the predictor variables selected. 

This work makes it possible to extend the model and their framework to examine other 

issues of interest to investors. We could indeed change the assets included in the model or 

select a different set of predictor variable. We could introduce variation in conditional 

volatilities and conditional means. Finally we could consider time-variation in the studied 

parameters. 

An intriguing extension of what we have handled in this work concerns the study of  the 

dynamic problem faced by an investor who rebalances optimally at regular intervals. This 

investment strategy, better approximation of reality, refers to the hedging demands, 

originally treated by Merton (1973). 
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Appendix A 

In addition to the sample examined throughout the work (January 1990 – November 

2012), we carried out all the analysis for other three subsample: January 1990 – 

December 1999, January 2002 – December 2006, January 2007 – November 2012. 

Hereinafter we list the most meaningful graphs of each samples. 

 

Sample 1990 – 2000 
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Figure A.1: Optimal allocation to risky assets for a buy-and-hold investor with power utility 

function when he does not take into account predictability. The percentage invested in risky 

assets is  plotted against the investment horizon in years. The green line corresponds to the 

percentage invested in stocks, the blue line to the percentage invested in bonds. The graph 

on the left side corresponds to a level of risk-aversion of 5, the graph on the right to a level 

of risk-aversion of 10.  
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Figure A.1: Optimal allocation to risky assets for a buy-and-hold investor with power utility 

function when he does take into account predictability. The percentage invested in risky 

assets is  plotted against the investment horizon in years. The green line corresponds to the 

percentage invested in stocks, the blue line to the percentage invested in bonds. The graph 

on the left side corresponds to a level of risk-aversion of 5, the graph on the right to a level 

of risk-aversion of 10.  

 

Figure A.1: Optimal allocation to risky assets for a buy-and-hold investor with loss aversion 

function when he does not take into account predictability. The percentage invested in risky 

assets is  plotted against the investment horizon in years. The green line corresponds to the 

percentage invested in stocks, the blue line to the percentage invested in bonds. The graph 

on the left side corresponds to the case where 1 2 0.88    , the one on the right to the 

case where 1 2 1    
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Sample 2002 – 2006 
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Figure A.1: Optimal allocation to risky assets for a buy-and-hold investor with loss aversion 

function when he does take into account predictability. The percentage invested in risky 

assets is  plotted against the investment horizon in years. The green line corresponds to the 

percentage invested in stocks, the blue line to the percentage invested in bonds. The graph 

on the left side corresponds to the case where 1 2 0.88    , the one on the right to the 

case where 1 2 1    

 

Figure A.1: Optimal allocation to risky assets for a buy-and-hold investor with power utility 

function when he does not take into account predictability. The percentage invested in risky 

assets is  plotted against the investment horizon in years. The green line corresponds to the 

percentage invested in stocks, the blue line to the percentage invested in bonds. The graph 

on the left side corresponds to a level of risk-aversion of 5, the graph on the right to a level 

of risk-aversion of 10.  
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Appendix B 

 

Portfolio allocation with parameter uncertainty 

Here, the commands we used to implement the analysis of chapter 2 are listed. 

We assumed i.i.d. excess returns of the form ,t tr     where 2i.i.d. (0, )t N   . 

% uploading data  

load dati.mat 

num_sample=200000 

TB3MS;       % 3-months treasury bill 

ri;                     % S&P 5OO Stock Price Index  

div = dy;    % S&P 5OO DY m=length(ri); 

 

% Continuously compounded stock returns (included dividend payments) 
wdr = zeros((m-1),1); 
for i = 2:m; 

wdr(i) = log(ri(i)/ri(i-1));  
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end 

  
rf = log(1+TB3MS/1200);    
rfree = mean(rf); 
rt = wdr-rfree;   % stock excess returns 
mu=mean(rt); 
sigma2=var(rt); 
n=length(rt); 
omega = [0:0.01:0.99]' ; % stock percentage 

  
% Power Utility Function 

function [util] = U(x,R) 
util = (x.^(1-R))/(1-R); 

end 

 

 
% PARAMETER UNCERTAINTY 

  
a = (n-1)/2; 
b = ((n-1)*sigma2)/2; 
c = 1/b; 

  
x = gamrnd(a,c,[num_sample,1]);  
marg = 1./x  ;           % sigma2|r distribution, Inverse-Gamma  

  
W = zeros(100,num_sample); 
EU5_1 = zeros(100,1); 
utilita5_1 = zeros (100,num_sample); 
EU10_1 = zeros(100,1); 
utilita10_1 = zeros (100,num_sample); 
omegamax5_1 = zeros(120,1); 
omegamax10_1 = zeros(120,1); 
maxcal5_1 = zeros(120,1); 
maxcal10_1 = zeros(120,1); 

   
for t=1:120 
     C = randn(num_sample,1);  

sd = sqrt(marg/n); 
condiz = mu+sd.*C;      % distribuzione di mu|sigma2,r      
Z = randn(num_sample,1); 
sdd = sqrt(t*marg); 
RT = t*condiz+sdd.*Z;   % distribuzione extrarendimenti   

  w1 = (1-omega)*exp(t*rfree); 
W1=repmat(w1,1,num_sample); 
W = W1+omega*(exp(t*rfree+RT))'; 

   utilita5_1 = U(W,5); 
EU5_1 = mean(utilita5_1,2);   

  [maxcal5_1(t),ind]=max(EU5_1); 
omegamax5_1(t)=omega(ind); 

  utilita10_1 = U(W,10); 
EU10_1 = mean(utilita10_1,2); 
[maxcal10_1(t),ind]=max(EU10_1); 
omegamax10_1(t)=omega(ind) ; 

end 
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% NO UNCERTAINTY  

 
mup = mean(condiz);   % posterior mean of mu 
sigma2p = mean(marg);   % posterior mean of sigma2 

 
W = zeros(100,num_sample); 
EU5_2 = zeros(100,1); 
utilita5_2 = zeros (100,num_sample); 
EU10_2 = zeros(100,1); 
utilita10_2 = zeros (100,num_sample); 
omegamax5_2 = zeros(120,1); 
omegamax10_2 = zeros(120,1); 
maxcal5_2 = zeros(120,1); 
maxcal10_2 = zeros(120,1); 

  
for t = 1:120 

sd = sqrt(t*sigma2p); 
RT = t*mu + sd .* randn(num_sample,1);     % 

RT~N(t*mup,t*sigma2p)  
  w1 = (1-omega)*exp(t*rfree); 

W1=repmat(w1,1,num_sample); 
W = W1+omega*(exp(t*rfree+RT))'; 

  utilita5_2 = U(W,5); 
EU5_2 = mean(utilita5_2,2); 

  [maxcal5_2(t),ind]=max(EU5_2); 
omegamax5_2(t)=omega(ind); 

  utilita10_2 = U(W,10); 
EU10_2 = mean(utilita10_2,2); 

  [maxcal10_2(t),ind]=max(EU10_2); 
omegamax10_2(t)=omega(ind) ; 

  
end 

 

Resampling 

Here, the commands we used to implement the analysis of section 2.6 are listed. In 

this case the normality assumption of  cumulative excess returns conditional on past 

data is loosened. 

% UNCERTAINTY 

  
a = (n-1)/2; 
b = ((n-1)*sigma2)/2; 
c = 1/b; 
x = gamrnd(a,c,[num_samples,1]); 
marg = 1./x ;    % sigma2|r distribution Inverse-

Gamma 

  
C = randn(num_samples,1); 
sd = sqrt(marg/n); 
condiz = mu+sd.*C ;    % mu|sigma2,r distribution 

  
sdd = sqrt(marg); 
RT = zeros(num_samples,1); 
omegamax5_3 = zeros(120,1); 
omegamax10_3 = zeros(120,1); 
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ZTi = zeros(num_samples,1); 
RTi = zeros(num_samples,1); 

  
UT =(rt-mu)/(sqrt(sigma2));    % standardized returns.      

 
for t=1:120 

ZTi = randsample(UT,num_samples,true); 
RTi = (ZTi.*sdd)+condiz;  
RT = RT+RTi;     % resampled cumulative 

returns  
W = zeros(100,num_samples); 
w1 = (1-omega)*exp(t*rfree); 
W1 = repmat(w1,1,num_samples); 
W  = W1+omega*(exp(t*rfree+RT))';  
utilita5_3 = zeros(100,num_samples); 
utilita5_3 = U(W,5); 
EU5_3 = zeros(100,1); 
EU5_3 = mean(utilita5_3,2); 
[maxcal5_3(t),ind]=max(EU5_3); 
omegamax5_3(t)=omega(ind); 
utilita10_3 = zeros(100,num_samples); 
utilita10_3 = U(W,10); 
EU10_3 = zeros(100,1); 
EU10_3 = mean(utilita10_3,2);  
[maxcal10_3(t),ind]=max(EU10_3); 
omegamax10_3(t)=omega(ind);  

end 

  
% NO UNCERTAINTY 

 
RT = zeros(num_samples,1); 
W = zeros(100,num_samples); 
utilita5_4 = zeros(100,num_samples); 
EU5_4 = zeros(100,1); 
omegamax5_4 = zeros(120,1); 
utilita10_4 = zeros(100,num_samples); 
EU10_4 = zeros(100,1); 
omegamax10_4 = zeros(120,1); 

  
for t=1:120  
     RTi = randsample(rt,num_samples,true);   

RT = RT+RTi;    % resampled cumulative 

returns  
     w1 = (1-omega) * exp(t*rfree); 
     W1=repmat(w1,1,num_samples); 
     W = W1+omega*(exp(t*rfree+RT))';  
     utilita5_4 = U(W,5); 
     EU5_4 = mean(utilita5_4,2); 
     [maxcal5_4(t),ind]=max(EU5_4); 
     omegamax5_4(t)=omega(ind);  
     utilita10_4 = U(W,10); 
     EU10_4 = mean(utilita10_4,2); 
     [maxcal10_4(t),ind]=max(EU10_4); 
     omegamax10_4(t)=omega(ind) ; 
end 
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Portfolio allocation with predictable returns 

Here, the commands we used to implement the analysis of chapter 3 are listed. 

We assumed predictable excess returns, the model we implemented takes therefore 

this form: 1 ,t t tz a Bx     with ' ( , ')t t tz r x  and i.i.d. (0, )t N  .  

m_div = mean(div); 
Z = [rt(2:n),div(2:n)]; 
I = ones((n-1),1); 
X = [I,div(1:(n-1))]; 
D = inv(X'*X); 
Chat = D*X'*Z; 
S = (Z-X*Chat)'*(Z-X*Chat); 
vecChat = Chat(:); 

  

 
% Functions we implement in order to derive the predictive 

distribution 

 

function [varcov] = sposta(x) 
varcov=[x([1]),x([2]);x([2]),x([3])]; 

end 
 

function [varcov] = sposta2(x) 
varcov = [x([1]),x([2]);x([3]),x([4])]; 

end 

 
% Raising a matrix to a power 

function [pot] = potenza(x,n); 
if (n==0) 
     pot=x^0; 
elseif (n==1) 
     pot=x; 
else  pot = x; 
     for (i=1:(n-1)) 
         pot = pot*x; 
     end 
end 

 
% Mean of the predictive distribution 

% B0^0 (t-1)* B0^1 +1* B0^(t-1) 
function [totsum] = polinomio(x,n); 
totsum = zeros(2,2); 
for (i=1:n) 
     sum = i*potenza (x,(n-i)); 
     totsum=totsum + sum; 
end 
end 

 
function [totsum] = sommamatrix(x,n) ; 
totsum = zeros(2,2); 
for (i=1:n) 
     sum = potenza(x,i); 
     totsum = totsum + sum; 
end 
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function [totsum] = sommamatrix2(x,n)  
totsum = zeros(2,2); 
for (i=0:(n-1)) 
     sum = potenza(x,i); 
     totsum = totsum + sum; 
end 

  
% variance matrix of predictive distribution 

function [totalsum] = sigmaric(x,t,sigma); 
totalsum = zeros(2,2);   
if (t==1) 
     totalsum = totalsum  
else 
    for (n=1:(t-1)) 
         f = sommamatrix2(x,(n+1)); 
         sum = f * sigma * f'; 
         totalsum = totalsum +sum; 
    end 
end 

  

  
 % NO UNCERTAINTY   

  
cond = zeros(num_sample,4); 
totalsomma1 = zeros(num_sample,1); 
totalsomma2 = zeros(num_sample,1); 
totalsommacov = zeros(num_sample,1); 

   
for i = 1:num_sample  

sigmainv =  wishrnd(inv(S),(n-3)); 
sigma = inv(sigmainv);                 

totalsomma1(i) = sigma(1,1); 
totalsomma2(i) = sigma(2,2); 
totalsommacov(i) = sigma(1,2); 
varcov = kron(sigma,D); 
cond(i,:) = mvnrnd(vecChat',varcov);     

end 

  
% posterior means of parameters 
a = [m_prev([1]);m_prev([3])];     
B0 = zeros(2,2); 
B0(1,2) = m_prev([2]); 
B0(2,2) = m_prev([4]); 
sigma = zeros(2,2); 
sigma(1,1) = mean(totalsomma1); 
sigma(1,2) = mean(totalsommacov); 
sigma(2,1) = mean(totalsommacov); 
sigma(2,2) = mean(totalsomma2); 

  
% z_t starting value 
ZZ = [Z((n-1),1);m_div] ;  

  
RTT = zeros(num_sample,2);       
RT = zeros(num_sample,1); 
W = zeros(100,num_sample); 
EU5_5 = zeros(100,1); 

utilita5_5 = zeros (100,num_sample); 

EU10_5 = zeros(100,1); 
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utilita10_5 = zeros (100,num_sample); 
omegamax5_5 = zeros(120,1); 
omegamax10_5 = zeros(120,1); 
maxcal5_5 = zeros(120,1); 
maxcal10_5 = zeros(120,1); 

  
for t = 1:120 
    musum = (polinomio(B0,t)*a+sommamatrix(B0,t)*ZZ); 

    
     totalsum = zeros(2,2); 
     sigmasum = sigma + sigmaric(B0,t,sigma); 

  
     RTT = mvnrnd(musum',sigmasum,num_sample) ; 
     RT = RTT(:,1     
     w1 = (1-omega)*exp(t*rfree); 
     W1=repmat(w1,1,num_sample); 
     W = W1+omega*(exp(t*rfree+RT))'; 

     
     utilita5_5 = U(W,5); 

     
     EU5_5 = mean(utilita5_5,2); 

  
     [maxcal5_5(t),ind]=max(EU5_5); 
     omegamax5_5(t)=omega(ind); 

  

  
  utilita10_5 = U(W,10); 

EU10_5 = mean(utilita10_5,2); 

      
      [maxcal10_5(t),ind]=max(EU10_5); 
      omegamax10_5(t)=omega(ind) ; 
end 

  

 
% UNCERTAINTY 

  
cond = zeros(num_sample,4); 
a_c = zeros(num_sample,2); 
B0_c = zeros(num_sample,4); 
mupred = zeros(120,2); 
ZT = zeros (120,num_sample); 

  
ZZ = [Z((n-1),1);m_div] ;  

  
for i = 1:num_sample  
    sigmainv =  wishrnd(inv(S),(n-3)); 
    sigma = inv(sigmainv); 
    varcov = kron(sigma,D); 

   
    cond(i,:) = mvnrnd(vecChat',varcov);   
    a_c(i,:) = [cond(i,1);cond(i,3)]; 
    B0_c(i,:) = [0;cond(i,2);0;cond(i,4)]; 
    totsigmaricors = zeros(2,2); 

    
for t = 1:120  

mupred(t,:) = polinomio(sposta2(B0_c(i,:)),t)*a_c(i,:)'+ 

sommamatrix(sposta2(B0_c(i,:)),t)* ZZ ;     
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    f = sommamatrix2(sposta2(B0_c(i,:)),t); 
    sigmaricors = f * sigma * f'; 
    totsigmaricors = totsigmaricors+sigmaricors; 
    sigmapred = sigma + totsigmaricors; 
    zt = mvnrnd(mupred(t,:)',sigmapred);  
    ZT(t,i) =  zt(1,1); 
end 
end 

  

  
W = zeros(100,num_sample); 
EU5_6 = zeros(100,1); 
utilita5_6 = zeros(100,num_sample); 
omegamax5_6 = zeros(120,1); 
EU10_6 = zeros(100,1); 
utilita10_6 = zeros(100,num_sample); 
omegamax10_6 = zeros(120,1); 
maxcal5_6 = zeros(120,1); 
maxcal10_6 = zeros(120,1); 

  

  
for t = 1:120 
    w1 = (1-omega) * exp(t*rfree); 
    W1 = repmat(w1,1,num_sample); 
    W = W1+omega*(exp(t*rfree+ZT(t,:)'))';   
    utilita5_6 = U(W,5); 
    EU5_6 = mean(utilita5_6,2);  
    [maxcal5_6(t),ind] = max(EU5_6); 
    omegamax5_6(t) = omega(ind);  
    utilita10_6 = U(W,10); 
    EU10_6 = mean(utilita10_6,2);  
    [maxcal10_6(t),ind] = max(EU10_6); 
    omegamax10_6(t) = omega(ind);  
end 

  

 

 

Stock and bond portfolio allocation under uncertainty 

Here, the commands we used to implement the analysis of chapter 4 are listed. 

We assumed i.i.d. stock and bond excess returns of the form. ,t tr a    with  

1, 2,' ( , )t t tr r r , 
1 2

' ( , )r ra a a  and i.i.d. (0, )t N   

In addition we also inserted the commands for the optimal portfolio allocation under 

loss aversion that we handled in chapter 6. 

% Continuously compounded bond returns  

  
b = TR20YR;    % 20-Yr treasury bond 

wdb = zeros((m-1),1); 
for i = 2:m; 
     wdb(i) = log(b(i)/b(i-1));  
end 
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wdb = wdb(2:m);  
bt = wdb - rfree ; 
% Predictor variables 

 
div; 
rf; 
aaa;     % aaa rated bonds 

baa;     % baa rated bonds 

vix,      % vix 
tl = TB10YR_prova;  
tl = tl(2:m); 
rfl = log(1+tl/1200);  
ts = rfl - rf;      % term spread 
cs = baa - aaa;    % credit spread 
delta    % vector of combination of alpha and beta 

alpha = delta(:,1);  % percentage allocated to stocks 
beta  = delta(:,2);  % percentage allocated to bonds 

  
  

 

% Functions we used in order to derive the distributions. 

 

% Loss aversion function, alpha_1 = alpha_2 = 0.88, beta = 2.25 

 

function [loss] = loss_aversion_case1(x)  
loss = ((x-1).^0.88);  
end 

 
function [loss] = loss_aversion_case2(x) 
loss = (-2.25.*((1-x).^0.88));  
end 
 

% Loss aversion function, alpha_1 = alpha_2 = 1, beta = 2.25 

 

function [loss2] = loss_aversion2_case1(x);  
loss2 = (x-1);  
end 

 
function [loss2] = loss_aversion2_case2(x); 
loss2 = (-2.25*(1-x));  
end 

  
function [varcov7] = sposta7(x) 
varcov7 = 

[x([1]),x([2]),x([3]),x([4]),x([5]),x([6]),x([7]);x([8]),x([9]),x([1

0]),x([11]),x([12]),x([13]),x([14]);x([15]),x([16]),x([17]),x([18]),

x([19]),x([20]),x([21]);x([22]),x([23]),x([24]),x([25]),x([26]),x([2

7]),x([28]);x([29]),x([30]),x([31]),x([32]),x([33]),x([34]),x([35]);

x([36]),x([37]),x([38]),x([39]),x([40]),x([41]),x([42]);x([43]),x([4

4]),x([45]),x([46]),x([47]),x([48]),x([49])]; 
end 

 
% Mean of the predictive distribution 

* B0^0 (t-1)* B0^1 +1* B0^(t-1) 
function [totsum7] = polinomio7(x,n); 
totsum7 = zeros(7,7); 
for (i=1:n) 
    sum = i*potenza (x,(n-i)); 
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    totsum7=totsum7 + sum; 
end 
end 

 

function [totsum7] = sommamatrix7(x,n) ; 
totsum7 = zeros(7,7); 
for (i=1:n) 
    sum = potenza(x,i); 
    totsum7 = totsum7 + sum; 
end 

 

% Used to derive variance matrix of predictive 

distribution 

 
function [totsum7] = sommamatrix7_2(x,n)  
totsum7 = zeros(7,7); 
for (i=0:(n-1)) 
    sum = potenza(x,i); 
    totsum7 = totsum7 + sum; 
end 

 
function [totalsum7] = sigmaric7(x,t,sigma); 
totalsum7 = zeros(7,7);   
if (t==1) 
    totalsum7 = totalsum7 ;        
else 
    for (n=1:(t-1)) 
        f = sommamatrix7_2(x,(n+1)); 
        sum = f * sigma * f'; 
        totalsum7 = totalsum7 +sum; 
    end 
end 

  

 
% UNCERTAINTY 

  
Z = [rt(2:n),bt(2:n)];    
I = ones((n-1),1); 
X = I; 
D = inv(X'*X); 
Chat = D*X'*Z;      
S = (Z-X*Chat)'*(Z-X*Chat);    
vecChat = Chat(:);  

   

cond = zeros(1,2); 
a_c = zeros(1,2); 
B0_c = zeros(1,4); 
mupred = zeros(1,2); 
ZZ = [Z((n-1),1);Z((n-1),2)] ;  
W = zeros(5149,1); 
 

for i = 1:num_samples 
     sigmainv =  wishrnd(inv(S),(n-2));     
     sigma = inv(sigmainv);                 
    varcov = kron(sigma,D); 
    cond = mvnrnd(vecChat',varcov); 
    a_c = [cond(1),cond(2)]; 
     B0_c = [0,0,0,0]; 
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     totsigmaricors = zeros(2,2);     

  
    for t = 1:120  

mupred = (polinomio(sposta(B0_c),t)*a_c'+ 

sommamatrix(sposta(B0_c),t)* ZZ)' ;    
         f = sommamatrix2(sposta(B0_c),t); 
         sigmaricors = f * sigma * f'; 
         totsigmaricors = totsigmaricors+sigmaricors; 
         sigmapred = sigma + totsigmaricors; 
         zt = mvnrnd(mupred,sigmapred);     
         w1 = (1-alpha-beta)*exp(t*rfree);  
         W = w1+delta*(exp(t*rfree+zt))';    
         utilita5(:,t) =  U(W,5);     
         utilita10(:,t) = U(W,10);     
         bigger  = W(W >= 1); 
         smaller = W(W < 1); 
         loss_new_a(W >= 1)= loss_aversion_case1(bigger); 
         loss_new_a(W < 1)  = loss_aversion_case2(smaller);  
         loss_new_b(W >= 1) = loss_aversion2_case1(bigger); 
         loss_new_b(W < 1)  = loss_aversion2_case2(smaller);  
         loss_a(:,t) = loss_new_a; 
         loss_b(:,t) = loss_new_b;  
    end 
      utilita_laA_1 = utilita_laA_1+ loss_a; 
      utilita_laB_1 = utilita_laB_1+ loss_b; 

utilita5_1 = utilita5_1 + utilita5;                      

tilita10_1 = utilita10_1 + utilita10;    

         
end 
        EU5_1 = utilita5_1 / num_samples;    
        EU10_1 = utilita10_1 / num_samples;   
        EU_laA_1 = utilita_laA_1 / num_samples; 
        EU_laB_1 = utilita_laB_1 / num_samples;  
        [maxcal5_1,ind]=max(EU5_1,[],1);    

        betamax5_1 = beta(ind);     
        alphamax5_1 = alpha(ind);        
        deltamax5_1= delta(ind,:);    

  [maxcal10_1,ind]=max(EU10_1,[],1);   
   betamax10_1 = beta(ind);    
        alphamax10_1 = alpha(ind);     
        deltamax10_1 = delta(ind,:);    
        [maxcal_laA_1,ind]=max(EU_laA_1,[],1); 
        betamax_laA_1 = beta(ind); 
        alphamax_laA_1 = alpha(ind); 
        deltamax_laA_1= delta(ind,:);  
        [maxcal_laB_1,ind]=max(EU_laB_1,[],1); 
        betamax_laB_1 = beta(ind); 
        alphamax_laB_1 = alpha(ind); 
        deltamax_laB_1 = delta(ind,:); 

  
% NO UNCERTAINTY 

  
cond = zeros(num_samples,2); 
totalsomma1 = zeros(num_samples,1); 
totalsomma2 = zeros(num_samples,1); 
totalsomma12 = zeros(num_samples,1); 
for i = 1:num_samples  

sigmainv =  wishrnd(inv(S),(n-2=));    
sigma = inv(sigmainv 
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totalsomma1(i) = sigma(1,1); 
totalsomma2(i) = sigma(2,2); 
totalsomma12(i) = sigma(1,2); 
varcov = kron(sigma,D 
cond(i,:) = mvnrnd(vecChat',varcov);     

end 
 

m = mean(cond,1);    

st_mean = std(cond,1) 
% parameters’ posterior means 
a = [m(1);m(2)];   
B0 = zeros(2,2); 
sigma = zeros(2,2); 
sigma(1,1) = mean(totalsomma1); 
sigma(1,2) = mean(totalsomma12); 
sigma(2,1) = mean(totalsomma12); 
sigma(2,2) = mean(totalsomma2); 
 

% z_t starting value 
ZZ = [Z((n-1),1);Z((n-1),2)] ; %%% AGGIUNGO L'ULTIMO VALORE DEL BOND 

  
delta ;  

alpha = delta(:,1); 
beta = delta(:,2); 

  
for t = 1:120  
     EU5_2 = zeros(5149,1); 
     utilita5_2 = zeros (5149,1); 
     EU10_2 = zeros(5149,1); 
     utilita10_2 = zeros (5149,1); 
     EU_laA_2 = zeros(5149,1); 
     utilita_laA_2 = zeros (5149,1); 
     EU_laB_2 = zeros(5149,1); 
     utilita_laB_2 = zeros (5149,1);  
     musum = (polinomio(B0,t)*a+sommamatrix(B0,t)*ZZ); 
     totalsum = zeros(2,2);     

     sigmasum = sigma + sigmaric(B0,t,sigma); 
     RT = mvnrnd(musum',sigmasum,num_samples)     
     w1 = (1-alpha-beta)*exp(t*rfree);    

     
    for i = 1:num_samples 
         rtt = RT(i,:);  
         W = w1+delta*(exp(t*rfree+rtt))';            
         utilita5_2 = utilita5_2 + U(W,5); 
         utilita10_2 = utilita10_2 + U(W,10); 
         bigger  = W(W >= 1); 
         smaller = W(W < 1);  
         loss_new_a(W >= 1) = loss_aversion_case1(bigger); 
         loss_new_a(W < 1)  = loss_aversion_case2(smaller);  
         loss_new_b(W >= 1) = loss_aversion2_case1(bigger); 
         loss_new_b(W < 1)  = loss_aversion2_case2(smaller);  
         utilita_laA_2 = utilita_laA_2+ loss_new_a; 
         utilita_laB_2 = utilita_laB_2+ loss_new_b; 
    end 

     
    EU5_2 = utilita5_2 / num_samples; 
    EU10_2 = utilita10_2 / num_samples; 
    EU_laA_2 = utilita_laA_2 / num_samples; 
    EU_laB_2 = utilita_laB_2 / num_samples; 
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    [maxcal5_2(t),ind]=max(EU5_2); 
    betamax5_2(t) = beta(ind); 
    alphamax5_2(t) = alpha(ind); 
    deltamax5_2(t,:)= delta(ind,:);  
    [maxcal10_2(t),ind]=max(EU10_2); 
    betamax10_2(t) = beta(ind); 
    alphamax10_2(t) = alpha(ind); 
    deltamax10_2(t,:) = delta(ind) ; 
    [maxcal_laA_2(t),ind]=max(EU_laA_2); 
    betamax_laA_2(t) = beta(ind); 
    alphamax_laA_2(t) = alpha(ind); 
    deltamax_laA_2(t,:)= delta(ind,:);  
    [maxcal_laB_2(t),ind]=max(EU_laB_2); 
    betamax_laB_2(t) = beta(ind); 
    alphamax_laB_2(t) = alpha(ind); 
    deltamax_laB_2(t,:)= delta(ind,:);  
end 

  
Z = [rt(2:n),bt(2:n),div(2:n),vix(2:n),cs(2:n),ts(2:n),rf(2:n)];    
I = ones((n-1),1); 
X = [I,div(1:(n-1)),vix(1:(n-1)),cs(1:(n-1)),ts(1:(n-1)),rf(1:(n-

1))]; 
D = inv(X'*X); 
Chat = D*X'*Z; 

S = (Z-X*Chat)'*(Z-X*Chat);    
vecChat = Chat(:);    
  

 

 

 

Portfolio allocation with predictable returns and five predictor variables 

Here, the commands we used to implement the analysis of chapter 5 are listed. 

We assumed predictable excess returns, the model we implemented takes therefore 

this form: 1 ,t t tz a Bx     with ' ( , ')t t tz r x , 1, ,( ,..., ) 't t n tx x x  , and

i.i.d. (0, )t N  .  

In addition we also inserted the commands for the optimal portfolio allocation under 

loss aversion that we handled in chapter 6. 

 
% NO UNCERTAINTY 

  
m_div = mean(div); 
m_vix = mean(vix); 
m_ts = mean(ts); 
m_cs = mean(cs); 
m_rf = mean(rf); 
m_pe = mean(pe); 

 
% k = predictor variables 
k=5; 
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for i = 1:num_samples  
sigmainv =  wishrnd(inv(S),(n-k-2));    

sigma = inv(sigmainv);                

totalsomma1(i) = sigma(1,1); 
totalsomma2(i) = sigma(2,2); 
totalsomma3(i) = sigma(3,3); 
totalsomma4(i) = sigma(4,4); 
totalsomma5(i) = sigma(5,5); 
totalsomma6(i) = sigma(6,6); 
totalsomma7(i) = sigma(7,7); 
totalsomma12(i) = sigma(1,2); 
totalsomma13(i) = sigma(1,3); 
totalsomma14(i) = sigma(1,4); 
totalsomma15(i) = sigma(1,5); 
totalsomma16(i) = sigma(1,6); 
totalsomma17(i) = sigma(1,7); 
totalsomma23(i) = sigma(2,3); 
totalsomma24(i) = sigma(2,4); 
totalsomma25(i) = sigma(2,5); 
totalsomma26(i) = sigma(2,6); 
totalsomma27(i) = sigma(2,7); 
totalsomma34(i) = sigma(3,4); 
totalsomma35(i) = sigma(3,5); 
totalsomma36(i) = sigma(3,6); 
totalsomma37(i) = sigma(3,7); 
totalsomma45(i) = sigma(4,5); 
totalsomma46(i) = sigma(4,6); 
totalsomma47(i) = sigma(4,7); 
totalsomma56(i) = sigma(5,6); 
totalsomma57(i) = sigma(5,7); 
totalsomma67(i) = sigma(6,7); 
varcov = kron(sigma,D);      

cond(i,:) = mvnrnd(vecChat',varcov);     
end 

  
m_prev = mean(cond,1);    

st_mean_prev = std(cond,1) 

  
% parameters’ posterior means 
a = 

[m_prev(1);m_prev(7);m_prev(13);m_prev(19);m_prev(25);m_prev(31);m_p

rev(37)];  
B0 = zeros(7,7); 

  

 
% z_t starting value 
ZZ = [Z((n-1),1);Z((n-1),2);m_div; m_vix; m_cs; m_ts; m_rf] ; %  

 
RT = zeros(num_samples,7) ;    

W = zeros(5149,1); 
alpha  ;  

beta = alpha(:,1); 
omega = alpha(:,2); 

  
loss_new_a = zeros(5149,1); 
loss_new_b = zeros(5149,1); 
for  t = 1:120 
    musum = (polinomio7(B0,t)*a+sommamatrix7(B0,t)*ZZ);  
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    totalsum7 = zeros(7,7);     
    sigmasum = sigma + sigmaric7(B0,t,sigma);  
    RT = mvnrnd(musum',sigmasum,num_samples) 

    RT = RT(:,1:2);   
    EU5_5 = zeros(5149,1); 
    utilita5_5 = zeros (5149,1); 
    EU10_5 = zeros(5149,1); 
    utilita10_5 = zeros (5149,1); 
    EU_laA_5 = zeros(5149,1); 
    utilita_laA_5 = zeros (5149,1); 
    EU_laB_5 = zeros(5149,1); 
    utilita_laB_5 = zeros (5149,1);  
    w1 = (1-beta-omega)*exp(t*rfree);    

 
    for i = 1:num_samples 
         rtt = RT(i,:);    
         W = w1+alpha*(exp(t*rfree+rtt))';    
         utilita5_5 = utilita5_5 + U(W,5); 
         utilita10_5 = utilita10_5 + U(W,10);  
        bigger  = W(W >= 1); 
         smaller = W(W < 1);  
         loss_new_a(W >= 1) = loss_aversion_case1(bigger); 
         loss_new_a(W < 1)  = loss_aversion_case2(smaller);  
         loss_new_b(W >= 1) = loss_aversion2_case1(bigger); 
         loss_new_b(W < 1)  = loss_aversion2_case2(smaller);  
         utilita_laA_5 = utilita_laA_5+ loss_new_a; 
         utilita_laB_5 = utilita_laB_5+ loss_new_b;     
    end 

     
    EU5_5 = utilita5_5 / num_samples; 
    EU10_5 = utilita10_5 / num_samples;  
    EU_laA_5 = utilita_laA_5 / num_samples; 
    EU_laB_5 = utilita_laB_5 / num_samples; 

    [maxcal5_5(t),ind]=max(EU5_5); 
    omegamax5_5(t) = omega(ind); 
    betamax5_5(t) = beta(ind); 
    alphamax5_5(t,:)= alpha(ind,1:2);  
    [maxcal10_5(t),ind]=max(EU10_5); 
    omegamax10_5(t) = omega(ind); 
    betamax10_5(t) = beta(ind); 
    alphamax10_5(t,:) = alpha(ind,1:2) ;  
    [maxcal_laA_5(t),ind]=max(EU_laA_5); 
    omegamax_laA_5(t) = omega(ind); 
    betamax_laA_5(t) = beta(ind); 
    alphamax_laA_5(t,:)= alpha(ind,:);  
    [maxcal_laB_5(t),ind]=max(EU_laB_5); 
    omegamax_laB_5(t) = omega(ind); 
    betamax_laB_5(t) = beta(ind); 
    alphamax_laB_5(t,:)= alpha(ind,:);  
end 

  

 

  
% UNCERTAINTY  

 
cond = zeros(1,42); 
a_c = zeros(1,7); 
B0_c = zeros(1,49); 
mupred = zeros(1,7); 
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ZZ = [Z((n-1),1);Z((n-1),2);m_div; m_vix; m_cs; m_ts; m_rf] ;   
W = zeros(5149,1); 
loss_b = zeros(5149,120); 

  
for i = 1:num_samples  
    sigmainv =  wishrnd(inv(S),(n-k-2));    

    sigma = inv(sigmainv);                 

    varcov = kron(sigma,D);  
    cond = mvnrnd(vecChat',varcov);  
    a_c = 

[cond(1),cond(7),cond(13),cond(19),cond(25),cond(31),cond(37)];   
    B0_c = 

[0,0,cond(2),cond(3),cond(4),cond(5),cond(6),0,0,cond(8),cond(

9),cond(10),cond(11),cond(12),0,0,cond(14),cond(15),cond(16),c

ond(17),cond(18),0,0,cond(20),cond(21),cond(22),cond(23),cond(

24),0,0,cond(26),cond(27),cond(28),cond(29),cond(30),0,0,cond(

32),cond(33),cond(34),cond(35),cond(36),0,0,cond(38),cond(39),

cond(40),cond(41),cond(42)];               

totsigmaricors = zeros(7,7);     

 
for t = 1:120 

mupred = (polinomio7(sposta7(B0_c),t)*a_c'+ 

sommamatrix7(sposta7(B0_c),t)* ZZ)' ;    %%%% IL  
         f = sommamatrix7_2(sposta7(B0_c),t); 
         sigmaricors = f * sigma * f'; 
         totsigmaricors = totsigmaricors + sigmaricors; 
         sigmapred = sigma + totsigmaricors; 
         zt = mvnrnd(mupred,sigmapred);    

zt = zt (1,1:2);  
         w1 = (1-beta-omega)*exp(t*rfree);      
         W = w1+alpha*(exp(t*rfree+zt))'  
         utilita5(:,t) =  U(W,5);    

         utilita10(:,t) = U(W,10);    
         bigger  = W(W >= 1); 
         smaller = W(W < 1); 
         loss_new_a(W >= 1)= loss_aversion_case1(bigger); 
         loss_new_a(W < 1)  = loss_aversion_case2(smaller);  
         loss_new_b(W >= 1) = loss_aversion2_case1(bigger); 
         loss_new_b(W < 1)  = loss_aversion2_case2(smaller);  
         loss_a(:,t) = loss_new_a; 
         loss_b(:,t) = loss_new_b;  
end  
     utilita_laA_6 = utilita_laA_6+ loss_a; 
     utilita_laB_6 = utilita_laB_6+ loss_b; 
     utilita5_6 = utilita5_6 + utilita5 ;    
     utilita10_6 = utilita10_6 + utilita10;    
end 

  
 EU5_6 = utilita5_6 / num_samples;    

 EU10_6 = utilita10_6 / num_samples;   
 EU_laA_6 = utilita_laA_6 / num_samples; 
 EU_laB_6 = utilita_laB_6 / num_samples;  
 [maxcal5_6,ind]=max(EU5_6,[],1);    

 omegamax5_6 = omega(ind);     
 betamax5_6 = beta(ind);        
 alphamax5_6= alpha(ind,:);    
 [maxcal10_6,ind]=max(EU10_6,[],1);   

 omegamax10_6 = omega(ind);    
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 betamax10_6 = beta(ind);     

 alphamax10_6 = alpha(ind,:);  
 [maxcal_laA_6,ind]=max(EU_laA_6,[],1); 
 omegamax_laA_6 = omega(ind); 
 betamax_laA_6 = beta(ind); 
 alphamax_laA_6= alpha(ind,:);  
 [maxcal_laB_6,ind]=max(EU_laB_6,[],1); 
 omegamax_laB_6 = omega(ind); 
 betamax_laB_6 = beta(ind); 
 alphamax_laB_6 = alpha(ind,:); 
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