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ABSTRACT 

In recent years, the prevalence of diabetes mellitus has been steadily increasing. 

Especially for type 1 diabetes, prevention and treatment are difficult to manage as the risk 

factors that interact with the genetic predisposition triggering the autoimmune reaction 

are still unclear. 

This thesis investigates the potential impact of sodium-glucose cotransporter type 2 

inhibitors (SGLT2i) in patients with type 1 diabetes (T1D). Despite being primarily 

indicated for type 2 diabetes, SGLT2 inhibitors have recently garnered attention for their 

potential benefits in adjunction to insulin therapy, also in individuals with type 1 diabetes. 

This study employs mathematical modeling techniques to elucidate the mechanisms 

through which SGLT2 inhibitors modulate glucose metabolism and other related 

parameters in patients with type 1 diabetes. For the validation of the model, a database of 

12 subjects involved in a double-blind, placebo-controlled crossover study with a 4-week 

washout period was used. 

Model’s performance was assessed in terms of data fit, precision of estimates and 

physiological plausibility. Satisfactory results have been obtained although additional 

studies and longer clinical trials are recommended. 
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SOMMARIO 

Negli ultimi anni, la diffusione del diabete mellito è in costante aumento. Soprattutto 

per il diabete di tipo 1, la prevenzione e il trattamento sono difficili da gestire, poiché i 

fattori di rischio, che interagiscono con la predisposizione genetica che scatena la 

reazione autoimmune, non sono ancora chiari. 

Questa tesi si propone di studiare il potenziale impatto degli inibitori del co-

trasportatore sodio-glucosio di tipo 2 (SGLT2i) nei pazienti con diabete di tipo 1 (T1D). 

Nonostante siano stati inizialmente utilizzati nel trattamento di pazienti con diabete di 

tipo 2, gli inibitori SGLT2 hanno recentemente attirato l'attenzione per i loro potenziali 

benefici in aggiunta alla terapia insulinica anche nei pazienti diabetici di tipo 1. 

Questo studio impiega tecniche di modellazione matematica per chiarire i meccanismi 

attraverso i quali gli inibitori SGLT2 modulano il metabolismo del glucosio e altri 

parametri correlati, in pazienti con diabete di tipo 1. Per la validazione del modello è 

stato utilizzato un database di 12 soggetti coinvolti in uno studio crossover in doppio 

cieco, controllato con placebo e con un periodo di wash out di 4 settimane. 

Le prestazioni del modello sono state valutate in termini di adattamento ai dati, 

precisione delle stime e plausibilità fisiologica. Sono stati ottenuti risultati 

soddisfacenti, anche se si raccomandano ulteriori studi e trial clinici più lunghi. 
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Chapter 1 

INTRODUCTION 

1.1 Type 1 Diabetes. 

Type 1 Diabetes Mellitus (T1D) is a chronic, autoimmune disease, characterized by 

immune-mediated destruction of pancreatic β-cells resulting in insulin deficiency. T1D 

represents almost 10-15% of all diabetes cases and it is also known as juvenile or insulin-

dependent diabetes, as it historically was associate with the onset at a young age, even if 

this opinion has changed over the past decade, and the only possible treatment is with 

insulin [1].  

The classic trio of symptoms associated with the disease onset are: polydipsia, 

polyphagia, and polyuria, which, together with hypoglycaemia constitute the main criteria 

for the diagnosis of the disease [1]. 

T1D seems to be more common in men than women and its incidence is strictly related 

with specific months of the year (more cases are diagnosed in autumn and winter [1]). 

In addition, the global incidence of T1D is strongly associated to the geographic area we 

are considering; this disorder seems to be uncommon in Cina, India and Venezuela 

whereas Finland, Sweden and Sardinia show a much higher incidence.  

In many countries the incidence of T1D has been increasing for several decades [2], even 

if this trend is not the same for all age groups. The reasons of this variability, in terms of 

distribution, incidence and age has been attributed to environmental influences, genetic 

predispositions and lifestyle [3].  

Figure 1.1.1: Distribution of Type 1 Diabetes worldwide. Adapted from [3] 
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In type 1 diabetes the body produces autoantibodies that attack the beta cells of the 

pancreas, which are responsible for insulin production, recognising them as foreigners. 

Therefore, the production of this hormone, whose task is to regulate the utilisation of 

glucose by the cells, is reduced to zero. This results in a situation of excess of glucose in 

the blood identified as hyperglycaemia. The lack of insulin, therefore, does not allow the 

body to utilise sugars introduced through the diet, which are thus eliminated with the 

urine. In this situation, the body is forced to produce energy in other ways, mainly through 

fat metabolism, which results in the production of so-called ketone bodies, which leads 

to diabetic ketoacidosis (DKA). The accumulation of ketone bodies in the body, if it is 

left untreated, can lead to very dangerous consequences, including coma.  

Currently, there is no cure for type 1 diabetes mellitus and the only possible therapy is the 

exogenous administration of insulin, which involves basal insulin to stabilize blood 

glucose levels during fasting states and bolus insulin before carbohydrate (CHO) 

consumption, meals or beverages, to counteract respective blood glucose level rises. 

Although it is normal for blood sugar levels to fluctuate throughout the day in nondiabetic 

individuals, but such fluctuations are modest. In diabetic patients these fluctuations are 

much more pronounced, but both hyper- and hypoglycaemia are conditions that should 

be avoided at all costs or at least reduced as much as possible. In fact, blood sugar levels 

that are too high or too low can cause health issues, in both short and long term, such as 

damage the body’s organs, heart attack, stroke, diabetic coma, problems with kidneys, 

eyes, feet and nerves, which could then end up fatally. 

Patients with type 1 diabetes should therefore try to keep their glucose levels in a range 

between 70-180 mg/dl of glucose, that is considered the “safety range”. 

<70 mg/dl Hypoglycaemia  

70-180 mg/dl Target range 

>180 mg/dl  Hyperglycaemia  

Table 1.1: Blood sugar level ranges 

Diagnosis of diabetes has historically included fasting blood glucose higher than 7 

mmol/L (126 mg/dL), any blood glucose of 11,1 mmol/L (200 mg/dL) or higher with 

symptoms of hyperglycaemia, or an abnormal 2 horal glucose-tolerance test [4]. In 2009 

the American Diabetes Association, decides to include the Glycated Haemoglobin 
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(Hb𝐴1𝐶) as a test for the diabetes diagnosis. People with Hb𝐴1𝐶 ≥6,5% were treated as 

diabetic [5].  

The diagnosis of T1D is a crucial issue since it can be easily mistaken with type 2 diabetes 

and the associated symptoms are not so evident in an early stage of the onset of the 

disease. The development of diabetes, in fact, can be divided into 3 stages.  

Stage 1 is characterized by the presence of autoantibodies and the absence of 

dysglycaemia (too low or too high blood sugar levels). In stage 2, both autoantibodies 

and dysglycaemia are present, whereas only stage 3 is characterized also by the presence 

of symptoms [6].  

 

Figure 1.2: T1D stages. Adapted from [6] 

 

1.2 Current therapies and future prospective. 

Currently the first-line therapeutic option for treating T1D is the insulin replacement 

therapies, in which the exogenous insulin is used to achieve glucose-lowering action [7]. 

Depending on the type of treatment to be performed, different types of insulin can be 

used: 

• Short-acting insulin: it starts its action around 30 minutes after injection. It reaches 

its peak effect at 90-120 minutes and lasts about 4 to 6 hours. 
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• Rapid-acting insulin: its action starts 15 minutes after the injection, it reaches its 

peak effect at 60 minutes and lasts about 4 hours. This type of insulin is generally 

used 15-20 minutes before meals.  

• Intermediate-acting insulin: it starts working in about 1 to 3 hours, it reaches peak 

effect at 6-8 hours and lasts 12 to 24 hours. 

• Long and ultra-long-acting insulin: which provides coverage for as long as 14 to 

40 hours. 

Insulin can be delivered by syringes or pens, inhaler or pumps. 

• Syringes and pens are generally used for multiple daily injection (MDI) therapy 

and involve a combination of both short-acting (bolus) and long-acting (basal) 

insulin. 

• Inhalers are usually used when insulin bolus is needed immediately, i.e. before a 

meal. Inhalation insulin powder is not a substitute for long-acting insulin and 

should therefore be used in combination with long-acting insulin. Unlike common 

inhaler sprays, the insulin dose is first released into a closed compartment that is 

an integral part of the inhaler and only then inhaled deeply by the patient. The 

diffusion of insulin into the chamber before inhalation has the advantage of 

avoiding the high-speed impact of insulin in the throat and first airways and 

facilitating a slow and deep inhalation. 

• Insulin pumps are small devices able to deliver doses of insulin at specific times, 

thanks to a pre-programmed schedule. A traditional pump includes: 

- the pump, including controls, processing module and batteries. 

- a disposable reservoir for insulin, located inside the pump. 

- an infusion set, which includes a cannula for subcutaneous insertion and a 

tubing system to connect the insulin reservoir to the cannula. 

Insulin pumps can manage continuous subcutaneous insulin infusion (CSII) 

and can deliver both boluses and basal insulin.  

All these treatments need actions by the user, in terms of blood sugar monitoring and 

carbohydrate counting, also known as self-monitoring of blood glucose (SMBG), which 

is a critical part of insulin therapy. Challenges that affect adherence to SMBG include 

pain, costs, behavioural and technical skills and motivation [8]. For those reasons, 
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attempts are being made to replace SMBG with real-time continuous glucose monitoring 

(rt-CGM), to improve patients’ quality of life and limit pain as much as possible.  

So far, the user’s control is always required, both in terms of monitoring and the right 

dose of insulin to be delivered and these traditional delivery systems involves an invasive 

procedure and do not provide long-term insulin independence. The ultimate goal would 

be to make the whole procedure automatic, and this is exactly what is being attempted 

with the artificial pancreas. It combines the technology of a pump with that of continuous 

glucose monitoring (CGM) to adjust insulin delivery based on real-time glucose 

regarding. By automating insulin delivery and closely monitoring glucose levels, it can 

help regulate blood sugar more effectively than traditional methods that rely on manual 

injections or pump adjustments. 

Others challenging future prospective are immunotherapy, islet cell transplantation or 

stem cell-based therapy, for which efforts are currently underway to enhance the 

outcomes achieved so far. Future endeavours will, therefore, require a novel focus, 

leveraging prior experience with regard to the immunopathophysiology of T1D, whilst 

also exploring the promise of combination therapies that integrate tried or new treatment 

modalities [9]. 

Firstly evaluated for type 2 diabetes, sodium–glucose co-transporter-type 2 (SGLT2) 

inhibitors treatment showed significant benefits also in T1D in reducing insulin dose 

requirements, improving glycaemic control and reducing the body weight, when added to 

insulin therapy. SGLT2 (sotagliflozing, dapagliflozin and empagliflozin) inhibitors are 

selective and reversible inhibitors of renal SGLT2, the major transporter responsible for 

renal glucose reabsorption which lower blood glucose levels by restraining the absorption 

of glucose in the small intestine and promoting the renal excretion of glucose [10].  

So far, sotagliflozing and dapagliflozin are approved in Europe and Japan as adjuncts to 

insulin for the management of overweight people with T1D when insulin alone does not 

provide an adequate glycaemic control [9]. However, long-term clinical trials and 

additional studies are needed to evaluate all potential adverse effects and to further 

understand additional benefits of SGLT2 inhibitors [7].  
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1.3 Importance of models in physiology and medicine. 

A model is a mathematical representation of a system, defining the relationship among 

all the possible inputs and related outputs of the system. A model is something which can 

simulate the reality, but it’s poorer and more schematic than the reality or the actual 

objects. Models can be used for different purposes such as simulate, predict and gain 

insights, they allow us to avoid dangerous experiments, that cannot be done in vivo and 

to forecast what will happen in the future based on the past.  

Mathematical modelling is now widely applied in physiology and medicine to support 

life scientists and clinical workers and finds applications in various fields, such as medical 

research, education and supporting clinical practice. They can help the users in yielding 

quantitative insights into the way physiological systems are controlled, in exploring the 

dynamic effects of pathophysiological processes or of drug therapy and enabling 

estimates to be made of physiological parameters that are not directly measurable. 

Mathematical models are also largely used in epidemiology, a field in which these models 

succeed in overcoming most of the ethical issues related to animal and human trial, by 

following the principles of the “three Rs alternatives”: replacement, reduction and 

refinement.  

Models can be divided into three categories: 

• Black box: in which the internal structure is unknown or too complex to be 

represented by a set of equations. The parameters have no physical/physiological 

meaning and we can only know which are the inputs and the output. This kind of 

models are also known as Models of Data. 

•  White box: in which not only the input-output relationship is known, but also the 

internal behaviour of the system, which consist of a set of equations obtained by 

putting together all the subsystems known equations. 

• Grey box: which is characterized by known or partially known structure but 

unknown parameters. Measured input and output and assumptions on the model 

structure are used to obtain values for the unknown parameters, this is a procedure 

also known as parameter estimation.  

These last two models are also known as Models of System.  
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1.3.1 The UVA/Padova Simulator. 

One of the most important and innovative models capable of simulating the glucose-

insulin system is the UVA/Padova Simulator. This model is implemented in Matlab and 

allows the user to simulate, among many other things, metabolic dynamics, variation in 

glucose levels and impact on glycaemic control. The UVA/Padova Simulator emulated 

meal challenges and included a population of 300 in silico subjects (100 adults, 100 

adolescents and 100 children), each of which is represented by a model parameter vector, 

randomly extracted from an appropriate joint parameter distribution.  

The UVA/Padova Simulator puts in relation the measured plasma concentrations 

(Glucose G, and Insulin I) to glucose fluxes (rate of appearance Ra, production EGP, 

utilization U, renal excretion E) and insulin fluxes (secretion S, and degradation D). 

 

Figure 1.3: Scheme of the glucose-insulin control system. Adapted from [11] 

The model can be divided into subsystems: 
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• Glucose subsystem:  

 

composed of two compartments 𝐺𝑝, glucose masses in plasma and rapidly 

equilibrating tissues and 𝐺𝑡, glucose masses in slowly equilibrating tissues. This 

subsystem is described by the following equations: 

 

{
 
 

 
 𝐺̇𝑝(𝑡) = 𝐸𝐺𝑃(𝑡) + 𝑅𝑎(𝑡) − 𝑈𝑖𝑖(𝑡) − 𝐸(𝑡) − 𝑘1𝐺𝑝(𝑡) + 𝑘2𝐺𝑡(𝑡)                𝐺𝑝(0) = 𝐺𝑝𝑏

𝐺̇𝑡(𝑡) = −𝑈𝑖𝑑(𝑡) + 𝑘1𝐺𝑝(𝑡) − 𝑘2𝐺𝑡(𝑡)                                                              𝐺𝑡(0) = 𝐺𝑡𝑏

𝐺(𝑡) =
𝐺𝑝

𝑉𝐺
                                                                                                                   𝐺(0) = 𝐺𝑏    

  

(1. 1) 

Where EGP is the endogenous glucose production (mg/kg/min), Ra is the glucose rate 

of appearance in plasma (mg/kg/min), E is the renal excretion (mg/kg/min), 𝑈𝑖𝑖 and 

𝑈𝑖𝑑 are the insulin-independent and -dependent glucose utilizations (mg/kg/min), Vg 

is the distribution volume of glucose (dl/kg), k1 and k2 are the rate parameters and the 

suffix b denotes basal state.  

•  Insulin subsystem:  

Figure 1.4: Glucose subsystem. Adapted from [11] 

Figure 1.5: Insulin subsystem. Adapted from [11]. 
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Composed by two compartments: 𝐼𝑙 and 𝐼𝑝 which are the insulin masses in liver 

and plasma respectively (pmol/l). This subsystem is described by the following 

equations: 

 

{
 
 

 
 𝐼𝑙̇(𝑡) = −(𝑚1 +𝑚3(𝑡)) ∙ 𝐼𝑙(𝑡) + 𝑚2𝐼𝑝(𝑡) + 𝑆(𝑡)                         𝐼𝑙(0) = 𝐼𝑙𝑏

𝐼𝑝̇(𝑡) = −(𝑚2 +𝑚4) ∙ 𝐼𝑝(𝑡) + 𝑚1 ∙ 𝐼𝑙(𝑡)                                         𝐼𝑝(0) = 𝐼𝑝𝑏

𝐼(𝑡) =
𝐼𝑝

𝑉𝐼
                                                                                            𝐼(0) = 𝐼𝑏

 

(1. 2) 

Where S is the insulin secretion (pmol/kg/min), 𝑉𝐼 is the distribution volume of insulin 

(l/kg) and 𝑚1,𝑚2 𝑎𝑛𝑑 𝑚4 are the rate parameters (𝑚𝑖𝑛−1).  

• Unit process models and identification: 

The unit process of glucose and insulin subsystem was identified from average 

data with a forcing function strategy and are shown in figure 1.6. 

 

Figure 1.6: Unit process models and forcing function strategy: endogenous glucose production (top left panel), glucose 

rate of appearance (top right panel), glucose utilization (bottom left panel), insulin secretion (bottom right panel). 

Adapted from [11]. 

• Endogenous glucose production (constrained to be non-negative):  

𝐸𝐺𝑃(𝑡) = 𝑘𝑝1 − 𝑘𝑝2 ∙ 𝐺𝑝(𝑡) − 𝑘𝑝3 ∙ 𝐼𝑑(𝑡) − 𝑘𝑝4 ∙ 𝐼𝑝𝑜(𝑡)            𝐸𝐺𝑃(0) = 𝐸𝐺𝑃𝑏  

(1. 3) 
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Where 𝑘𝑝1 (mg/kg/min) is the extrapolated EGP at zero glucose and insulin, 𝑘𝑝2 

(𝑚𝑖𝑛−1) is the liver glucose effectiveness, 𝑘𝑝3 (mg/kg/min per pmol/l) is the 

parameter governing amplitude of insulin action on the liver and 𝑘𝑝4 

(mg/kg/min/(pmol/kg)) is the parameter governing amplitude of portal insulin 

action on the liver. 

𝐼𝑝𝑜 is the amount of insulin in the portal vein (pmol/kg), 𝐼𝑑 (pmol/l) is a delayed 

insulin signal realized with a chain of two compartments:  

{
𝐼1̇(𝑡) = −𝑘𝑖 ∙ [𝐼1(𝑡) − 𝐼(𝑡)]           𝐼1(0) = 𝐼𝑏
𝐼𝑑̇(𝑡) = −𝑘𝑖 ∙ [𝐼𝑑(𝑡) − 𝐼1(𝑡)]        𝐼𝑑(0) = 𝐼𝑏

 

(1. 4) 

where 𝑘𝑖 (𝑚𝑖𝑛−1) is the rate parameter accounting for delay between insulin 

signal and insulin action.  

• Glucose rate of appearance: describes the glucose transit through the stomach and 

intestine, by assuming the stomach to be represented by two compartments and a 

single compartment for the gut. 

 

{
  
 

  
 
𝑄𝑠𝑡𝑜(𝑡) = 𝑄𝑠𝑡𝑜1(𝑡) + 𝑄𝑠𝑡𝑜2(𝑡)                                                     𝑄𝑠𝑡𝑜(0) = 0

𝑄̇𝑠𝑡𝑜1(𝑡) = −𝑘𝑔𝑟𝑖 ∙ 𝑄𝑠𝑡𝑜1(𝑡) + 𝐷 ∙ 𝑑(𝑡)                                         𝑄𝑠𝑡𝑜1(0) = 0

𝑄̇𝑠𝑡𝑜2(𝑡) = −𝑘𝑒𝑚𝑝𝑡(𝑄𝑠𝑡𝑜) ∙ 𝑄𝑠𝑡𝑜2(𝑡) + 𝑘𝑔𝑟𝑖 ∙ 𝑄𝑠𝑡𝑜1(𝑡)              𝑄𝑠𝑡𝑜2(0) = 0

𝑄̇𝑔𝑢𝑡 = −𝑘𝑎𝑏𝑠 ∙ 𝑄𝑔𝑢𝑡(𝑡) + 𝑘𝑒𝑚𝑝𝑡(𝑄𝑠𝑡𝑜) ∙ 𝑄𝑠𝑡𝑜2(𝑡)                    𝑄𝑔𝑢𝑡(0) = 0

𝑅𝑎(𝑡) =
𝑓 ∙ 𝑘𝑎𝑏𝑠 ∙ 𝑄𝑔𝑢𝑡(𝑡)

𝐵𝑊
                                                             𝑅𝑎(0) = 0

 

(1. 5) 

where 𝑘𝑔𝑟𝑖 (𝑚𝑖𝑛
−1) is the rate of grinding, 𝑘𝑒𝑚𝑝𝑡(𝑄𝑠𝑡𝑜) (𝑚𝑖𝑛

−1) is the rate constant 

of gastric emptying, which is a non-linear function of 𝑄𝑠𝑡𝑜, 𝑘𝑎𝑏𝑠(𝑚𝑖𝑛
−1) is the rate 

constant of intestinal absorption, f is the fraction of intestinal absorption, D (mg) is 

the amount of ingested glucose, BW (kg) is the body weight and Ra (mg/kg/min) is 

the appearance rate of glucose in plasma.  

• Glucose utilization: assumed to be made up of two components, insulin-

independent and -dependent utilization. The first one is constant and represents 

glucose uptake by the brain and erythrocytes: 
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                                                      𝑈𝑖𝑖(𝑡) = 𝐹𝑐𝑛𝑠 

(1. 6) 

 

Insulin- dependent utilization depends nonlinearly from glucose in the tissues: 

𝑈𝑖𝑑(𝑡) =
𝑉𝑚(𝑋(𝑡)) ∙ 𝐺𝑡(𝑡)

𝐾𝑚(𝑋(𝑡)) + 𝐺𝑡(𝑡)
 

(1. 7) 

Where 𝑉𝑚(𝑋(𝑡)) and 𝐾𝑚(𝑋(𝑡)) are assumed to be linearly dependent from a 

remote insulin, X(t): 

𝑉𝑚(𝑋(𝑡)) = 𝑉𝑚0 + 𝑉𝑚𝑥 ∙ 𝑋(𝑡) 

𝐾𝑚(𝑋(𝑡)) = 𝐾𝑚0+𝐾𝑚𝑥 ∙ 𝑋(𝑡) 

(1. 8) 

X (pmol/L) is insulin in the interstitial fluid and it is described by: 

𝑋̇(𝑡) = −𝑝2𝑢 ∙ 𝑋(𝑡) + 𝑝2𝑢[𝐼(𝑡) − 𝐼𝑏]                 𝑋(0) = 0 

(1. 9) 

Where I is plasma insulin and 𝑝2𝑢 (𝑚𝑖𝑛−1) is the rate constant of insulin action 

on the peripheral glucose utilization.  

• Insulin secretion: described by the following equations 

𝑆(𝑡) = 𝛾 ∙ 𝐼𝑝𝑜(𝑡) 

𝐼𝑝̇𝑜(𝑡) = −𝛾 ∙ 𝐼𝑝𝑜(𝑡) + 𝑆𝑝𝑜(𝑡)                  𝐼𝑝𝑜(0) = 𝐼𝑝𝑜𝑏 

𝑆𝑝𝑜(𝑡) = {
𝑌(𝑡) + 𝐾 ∙ 𝐺̇(𝑡) + 𝑆𝑏                𝑓𝑜𝑟 𝐺̇ > 0

𝑌(𝑡) + 𝑆𝑏                                    𝑓𝑜𝑟  𝐺̇ ≤ 0
 

(1. 10) 

Where 𝛾 (𝑚𝑖𝑛−1) is the transfer rate constant between portal vein and liver, K 

(pmol/kg per mg/dl) is the pancreatic responsivity to the glucose rate of change. 

• Glucose renal excretion: which occurs if plasma glucose exceeds a certain 

threshold and can be modelled by a linear relationship with plasma glucose: 

𝐸(𝑡) = {
𝑘𝑒1 ∙ [𝐺𝑝(𝑡) − 𝑘𝑒2           𝑖𝑓 𝐺𝑝(𝑡) > 𝑘𝑒2
0                                         𝑖𝑓 𝐺𝑝(𝑡) ≤ 𝑘𝑒2

 

(1. 11) 
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The complete model is given by the equations so far seen and represents one of the most 

comprehensive models of the glucose-insulin system [11]. 

In 2014, this model was extended (S2013) in order to overcome some previous limitations 

such as the absence of counteregulatory hormones (glucagon, epinephrine and growth 

hormone), the glucocentric nature of the model and the absence of intersubject variability. 

The model was modified as shown by the figure 1.7. 

As reported by Dalla Man et al. [12] this version provides a more reliable framework for 

in silico trials for regulatory purposes, for testing glucose sensors and insulin augmented 

pump prediction methods and for closed-loop single/dual hormone controller design, 

testing and validation. Both S2008 and S2013 simulators have been validated and 

accepted by FDA for a single-meal scenario [12].  

Mathematical models play a pivotal role in biomedical science because they enable the 

simulation and analysis of complex biological processes, offering a virtual overview, 

crucial in medical research and the development of new treatments. In fact, mathematical 

models allow the prediction of a biological system’s behaviour under various conditions. 

In type 1 diabetes context, they can simulate glucose dynamics in response to different 

Figure 1.7: Scheme of the new version of the model. Gray blocks 

are those that were been updated and black block were new [12] 

with respect to the previous version [11]. Adapted from [12]. 
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therapies, aiding researches in assessing the potential effectiveness of new drugs or 

treatments. 

By comparing predicted results with known experimental data, research can enhance and 

optimize models, making them more precise tool for prediction complex biological 

responses and long-term effects on patients’ health conditions.  

In conclusion, employing mathematical models is becoming more and more useful in 

medical research, allowing efficient and ethical prediction, validation and 

experimentation. This contributes to the development of new therapies and enhances the 

management of medical conditions.  

 

1.4 Object of the thesis. 

The purpose of this thesis is to build up a comprehensive and exhaustive model that 

examines and elucidates the effects of Sodium-Glucose Co-Transporter type 2 (SGLT2) 

inhibitors in patients with type 1 diabetes.  

The aim of the study is to conduct an in-depth analysis of physiological and metabolic 

responses, with a specific emphasis on assessing the impact of these pharmaceutical 

agents on crucial aspects of glycaemic control and glucose-insulin variability. By 

analysing these effects in depth, the research aims not only to quantify the observed 

improvements, in terms of lowering plasma glucose and glycated haemoglobin (𝐻𝑏𝐴1𝐶), 

reducing body weight and insulin requirements, but also to unravel the underlying 

mechanisms that contribute to the efficacy of SGLT2 inhibitors in patients with type 1 

diabetes. This detailed exploration seeks to offer an understanding of the intricate 

interplay between the drug and the physiological process involved in glucose regulation. 

The ultimate goal is to contribute valuable insights that can provide information and refine 

treatments strategies, potentially paving the way for optimised and personalised treatment 

approaches for patients with type 1 diabetes.  
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1.5 Content of the thesis. 

The content of this thesis will encompass a multifaceted exploration of the effects of 

SGLT2 inhibitors in the context of type 1 diabetes.  

The study will open with thorough review of the existing literature, providing a 

comprehensive understanding of current knowledge and gaps in the field. Subsequently, 

research will delve into the physiological and metabolic responses elicited by SGLT2 

inhibitors, clarifying their impact on glycaemic control, insulin sensitivity and other 

relevant parameters. The investigation will involve the analysis of clinical data arising 

from a single-centre, investigator-led, double-blind, placebo-controlled crossover study 

conducted by Herring et al. in their paper “Metabolic effects of an SGLT2 inhibitor 

(Dapagliflozin) during a period of acute insulin withdrawal and development of 

ketoacidosis in people with type 1 diabetes”.  

Furthermore, the thesis will take a mechanistic approach, attempting to unravel the 

mechanisms through which SGLT2 inhibitors exert their influence. Special attention will 

be given to potential synergies with existing treatment modalities and the implications for 

personalized therapeutic strategies.  

By presenting a comprehensive and detailed analysis, this thesis aims to contribute to the 

understanding of the intricate interplay between SGLT2 inhibitors and type 1 diabetes, 

fostering progress in the field of diabetes management.  
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Chapter 2 

DATABASE AND PROTOCOL 

The database used in this thesis is the one collected by Herring et al. and reported in their 

paper “Metabolic effects of an SGLT2 inhibitor (Dapagliflozin) during a period of acute 

insulin withdrawal and development of ketoacidosis in people with type 1 diabetes”. This 

study was a double-blind, placebo-controlled crossover study with a four-week washout 

period. It was performed in 12 people (four male and eight female) with type 1 diabetes 

using insulin pump therapy. They were recruited between February and October 2018 via 

the diabetes insulin pump database at the “Royal Surrey Country National Health Service 

Trust”. They were made aware of potential changes in glycaemic control and were asked 

to record any trial administration, concomitant medication (including insulin), 

hypoglycaemia frequency, fasting ketone levels and any adverse event. Ethics approval 

was granted from the National Research Ethics Service Committee.  

Exclusion criteria included proliferative retinopathy, moderate-to-severe renal 

impairment, severe hepatic impairment, cardiac failure, uncontrolled cardiac arrhythmia 

and hypertension, mental incapacity, pregnancy or breastfeeding and suspected allergy to 

trial products. 

Participants received dapagliflozin (10mg daily) or placebo in random order for seven 

days, and, on the last day, they came to the hospital for a metabolic study. They were 

asked not to consume food and to drink only water from 22:00 of the day before and not 

to undertake any strenuous exercise or consume alcohol from the day before the study 

day. In addition, they disconnected their subcutaneous insulin pump at 6:00 am on the 

day of the metabolic study. In order to maintain a blood glucose concentration of 90 mg/dl 

(5mmol/L) they received a soluble variable insulin infusion. Stable isotopes were also 

infused to measure glucose rate of appearance (Ra), glucose rate of disappearance (Rd) 

and lipolysis.  

When the isotopic steady state was reached, insulin infusion was stopped, blood glucose 

was allowed to increase and the study terminated after 600 min or earlier if blood glucose 

reached 324mg/dl (18mmol/L), or bicarbonate was less than 15 mmol/L, or venous pH 

was less than 7.35 or if capillary ketones were higher than 5 mmol/L.  
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Blood samples were taken every 20 minutes until 180 min and then every 30 minutes. 

Even urine samples were collected every 2 hours to spot urinary ketones.  

Information about the participants is summarized in the table below, as mean ± SEM 

(standard error of mean).  

Participants Duration of 

diabetes 

Age BMI 𝐻𝑏𝐴1𝐶 C-peptide 

12 

 

23.3±4.1 

years 

40.7±3.9 

years 

26.8±1.4 

kg/m² 

59.9±2.3 

mmol/l 

<0.2 mmol/L 

Table 2.1: Participants' information 

All subjects completed 180 min of each metabolic study. Results are shown in the figures 

below. 

• Glucose concentration: 

 

At 0 min, glucose concentration was not different between treatments, then it 

increased in both groups reaching a final value of 8.5±0.7 mmol/L (mean ± SEM) 

in dapagliflozin group and 14.3±1.1 mmol/L with placebo. Urinary glucose 

excretion was 5.1±0.8 𝜇mol/kg/min with dapagliflozin and 0.029±0.01 

𝜇mol/kg/min with placebo, proving the SGLT2 inhibitors effect of promoting the 

renal excretion of glucose. 

Figure 2.4: Plasma glucose concentration. White dots refer to the placebo 

group, instead black dots refer to dapagliflozin group. Adapted from [13] 
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• Glucose rate of appearance: 

 

At baseline glucose Ra was higher in dapagliflozin compared with the placebo, 

13.0±0.77 𝜇mol/kg/min and 11.7±0.7 𝜇mol/kg/min respectively. During insulin 

withdrawal, glucose Ra increased, peaking at 90 min, and then declined, with no 

significant difference in the two groups.  

 

Figure 5.2: Glucose rate of appearance. White dots refer to the placebo 

group, instead black dots refer to dapagliflozin group. Adapted from [13] 
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• Glucose rate of disappearance: 

Glucose rate of disappearance showed to be higher in the dapagliflozin group than 

the placebo one for the duration of the study [13]. 

The data, reported as mean ±(SEM), were collected through WebPlotDigitalizer and 

arranged in a .mat file so that they could be used as database for our model implemented 

in Matlab.  

 

  

Figure 2.3: Glucose rate of disappearance. White dots refer to the placebo 

group, instead black dots refer to dapagliflozin group. Adapted from [13] 
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Chapter 3 

MODEL DEVELOPMENTS 

3.1 Mathematical models 

A very important class of Models of System are the Compartmental Models. They are 

based on mass-balance considerations and are widely used for quantitative studies of the 

kinetics of materials in physiological systems. Since the state variables represent masses, 

compartmental models are Positive Systems. 

Materials can be either exogenous, such as drugs or tracers, or endogenous, such as a 

substrates or a hormones. Kinetics include processes such as production, distribution, 

transport, utilization and substrate-hormone interaction. 

Compartmental Models consist of a finite number of compartments with specified 

interconnections among them. Each compartment represents a quantity of material that 

acts as though it is well mixed and kinetically homogeneous. Well-mixed means that any 

two samples taken at the same compartment at the same time would have the same 

concentration of the compound being studied, and therefore are equally representative. 

On the other hand, kinetically homogeneous means that every particle in a compartment 

has the same probability of taking a given pathways leaving the compartment. 

Compartments can be accessible, if a measurement can be drawn from it, or non-

accessible, if no measurement can be made.  

Interconnections represent fluxes of material which physiologically constitute transport 

from one location to another or a chemical transformation or both.  

Figure 3.1 represents a one-compartment model which can be mathematically formalized 

as follows. 
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 Each i-th compartment of a n-compartment model has a mass-balance equation: 

𝑄𝑖̇ (𝑡) =∑𝐹𝑖𝑗(𝑡)

𝑛

𝑗=1
𝑗≠𝑖

−∑𝐹𝑗𝑖(𝑡)

𝑛

𝑗=1
𝑗≠𝑖

− 𝐹0𝑖(𝑡) + 𝑃𝑖(𝑡) + 𝑈𝑖(𝑡) 

(3. 1) 

With  

• 𝑄𝑖(0) = 𝑄𝑖0 

• 𝑄𝑖, 𝐹𝑖𝑗 , 𝑃𝑖 , 𝑈𝑖 ≥ 0 

• 𝐹𝑖𝑗(𝑡) = 𝐹𝑖𝑗[𝑄1(𝑡), 𝑄2(𝑡), … , 𝑄𝑛(𝑡)] =  𝑘𝑖𝑗[𝑄1(𝑡), 𝑄2(𝑡), … , 𝑄𝑛(𝑡)]𝑄𝑗(𝑡) 

𝑤𝑖𝑡ℎ 𝑘𝑖𝑗[𝑄1(𝑡), 𝑄2(𝑡),… , 𝑄𝑛(𝑡)] ≥ 0 

Where 𝑈𝑖 represent some external input  and 𝑃𝑖 represent materials produced by the body 

(endogenous production). 𝐹𝑖𝑗 and 𝐹𝑗𝑖 describe the fluxes entering and exiting the 

compartment. The subscript zero represents the external environment, thus 𝐹0𝑖 depicts 

something that is being eliminated, and finally 𝑘𝑖𝑗 is the fractional transfer coefficient 

from compartment j to compartment i. 

Summarizing, each compartmental model is described by n state equations, in the form 

of the mass-balance equations, and m measurement equations: 

𝐶𝑖(𝑡) = 𝑄𝑖(𝑡)/𝑉𝑖 

(3. 2) 

Defining the vectors: 

𝑃(𝑡) = [𝑃1(𝑡), 𝑃2(𝑡), … , 𝑃𝑛(𝑡)]
𝑇 

𝑈(𝑡) = [𝑈1(𝑡), 𝑈2(𝑡), … , 𝑈𝑛(𝑡)]
𝑇 

Figure 3.1: Mono-compartmental model 
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𝐶(𝑡) = [𝐶1(𝑡), 𝐶2(𝑡), … , 𝐶𝑚(𝑡)]
𝑇  

(3. 3) 

The compartmental model equations can be written as: 

{
𝑄̇(𝑡) = 𝐾[𝑄(𝑡)]𝑄(𝑡) + 𝑃[𝑄(𝑡)] + 𝑈(𝑡)           𝑄(0) = 𝑄0
𝐶(𝑡) = 𝐻𝑄(𝑡)                                                                             

 

(3. 4) 

In linear Compartmental Models, matrix K is constant, independent from Q, and it 

contains the rate transfer coefficients and their combination: 

𝐾 = [

−(𝑘01 + 𝑘21 +⋯𝑘𝑛1) 𝑘12 …𝑘1𝑛
𝑘21 −(𝑘02 +⋯+ 𝑘𝑛2) …𝑘2𝑛
𝑘𝑛1 𝑘𝑛2 −(𝑘0𝑛 +⋯+ 𝑘𝑛−1 𝑛

] 

(3. 5) 

Non-diagonal elements correspond to the rate constants between compartments and are 

non-negative, whereas diagonal elements are linear combinations of rate constants and 

are non-positive. 

K is a diagonally-dominant matrix, which means that the diagonal element of each 

column is not lower, in absolute value, than the sum of the non-diagonal elements of the 

column. 

In presence of closed subsystems, part of the system in which material enter but is not 

able to exit, the model cannot be asymptotically stable, because the mass of compartments 

that belong to the subsystem, only increase or remain constant (not decrease), so that the 

state variables cannot converge to zero. On the other hand, in absence of closed 

subsystem, the model is asymptotically stable, because there is at least a flux towards the 

external environment.  

Compartmental Models have been so widely used because they provide a simple and 

effective method for schematizing, simulating and predicting the properties of the spread 

of a disease, such as prevalence (total number of infected) or the duration of an epidemic. 

Compartmental models are largely used in epidemiology, a field in which these models 

succeed in overcoming most of the ethical issues related to animal and human trial, by 



28 
 

following the principles of the “three Rs alternatives”: replacement, reduction and 

refinement.  

 

3.2 System Identifiability 

Once the model is built, before trying to estimate the model parameters, we need to make 

sure that all the parameters can be estimated from the data, because only if the model is 

identifiable than it makes sense trying to numerically estimate the value of its parameters.  

The a Priori Identifiability has the aim to theoretically establish, in the ideal case of error-

free model and exact knowledge of all the continuous time model output and their 

derivatives, if it is possible to determine the unknown parameters.  

If a model is not a priori identifiable we can try to make it identifiable by enriching the 

experiment or reducing the model complexity, or both. 

For linear compartmental models, the identifiability can be verified by calculating the 

Laplace Transform of the input and output: 

𝑌(𝑠) = 𝐿[𝑦(𝑡)] 

𝑈(𝑠) = 𝐿[𝑢(𝑡)] 

(3.6) 

Then calculating the transfer function of the system as the ratio between them: 

𝐻(𝑠) =
𝑌(𝑠)

𝑈(𝑠)
 

(3.76) 

Thus, to assess the a priori identifiability, one can check if the model parameters can be 

univocally determined from the coefficients of the transfer function. 

For linear compartmental models, the transfer function H(s) is always a ratio of 

polynomials: 
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𝐻(𝑠) =
𝛽𝑛𝑠

𝑛−1 + 𝛽𝑛−1𝑠
𝑛−2 +⋯+ 𝛽2𝑠 + 𝛽1

𝑠𝑛 + 𝛼𝑛𝑠𝑛−1 +⋯+ 𝛼2𝑠 + 𝛼1
 

(3.8) 

Coefficients 𝛼𝑘 𝑎𝑛𝑑 𝛽𝑘function of model parameters, 𝑘𝑖𝑗 and 𝑉𝑖 and may be thought as 

observable parameters. One can write down the algebraic relationship linking 𝛼𝑘 𝑎𝑛𝑑 𝛽𝑘 

with 𝑘𝑖𝑗 and 𝑉𝑖. If these set of equations, called exhaustive summary, can be solved in the 

unknowns 𝑘𝑖𝑗 and 𝑉𝑖, then the model is a priori identifiable. According to Cawley-

Hamilton theorem the exhaustive summary will contain a number of equations equal to 

k=2n-1, in which n is the order of the system. This theorem is only valid for linear models 

and it is not for the non-linear ones. 

A model can be: 

• Uniquely identifiable, if all its parameters 𝑝𝑖 are uniquely identifiable. 

• Locally identifiable, if all its parameters 𝑝𝑖 are uniquely identifiable apart from 

one or more who are not, but have a finite number of solutions. 

• Not identifiable, if at least one parameter is not identifiable and has infinite 

solutions. 

Dealing with non-linear models is more difficult because, even if we linearize the model, 

this would not give us information about the identifiability of the original non-linear 

model. There are several methods to verify the identifiability of a non-linear model such 

as the Taylor series expansion of y(t), Similarity Transformation or Differential Algebra.  

The Taylor series expansion method requires the expression of the output as a function of 

the parameters, which are observable, thus obtaining an exhaustive summary as:  

𝑦𝑘(𝑝, 𝑡0) = 𝜙̂        𝑘 = 0, 1, 2, … 

(3.9) 

in which 𝑦𝑘 represent the output expressed as function of the parameters p. 

In case of non-linear models, the number of needed equations k is not known (apart from 

the fact that k≥P, with P dimension of the vector p). The possibility to solve the exhaustive 

summary is a necessary and sufficient condition to claim the model identifiability. 
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However, due to the complexity of the exhaustive summary, if it is not possible to prove 

the uniquely identifiability, nothing can be claimed about the nonidentifiability. 

A priori identifiability analysis allows to avoid doing experiments if the parameters of 

interest are not identifiable, which is particularly important in physiological and clinical 

studies where ethical and practical issues come into play and it is also an efficient 

instrument for defining the minimal input/output configuration. 

In this project we didn’t check the system a priory identifiability. We assumed instead that 

the model was identifiable, because the model was too complex to assess the a priory 

identifiability.  

What it was possible to do instead, was to verify the a posteriori identifiability. Indeed, 

the a posteriori identifiability is a check on the feasibility of the estimate resulting in the 

so-called parametric identification of the model, which consists of determining whether 

it is possible, with measurements affected by error, to devise one or more experiments 

that allow the parameters to be estimated accurately. 

 

3.3 Parameter estimation 

The procedure known as parameter estimation aims to assign numerical values to the 

model’s parameters, and it can be done with several optimization methods. The two most 

commonly used approaches are the Fisher and the Bayesian approach. 
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Figure 3.2: Parameter estimation scheme. Adapted from [14] 

 

3.3.1 Fisher Approach 

Let’s consider the observable model output as: 

𝑦(𝑡) = 𝑔(𝑡, 𝒑) 

(3.10) 

 Where p are the parameters, we want to estimate.  

We further assume that the N output measurements, 𝑧𝑖 are affected by measurement error, 

which can be considered additive: 

𝑧𝑖 = 𝑦𝑖 + 𝑣𝑖 = 𝑔(𝑡𝑖, 𝒑) + 𝑣𝑖                 𝑖 = 1, 2, …𝑁 

(3.11) 

Where 𝑣𝑖 is the measurement error corrupting the i-th measurement 𝑧𝑖  and, since it is 

unknown, it can be considered as a random variable.  

The problem is to assign a numerical value to p from the data 𝑧𝑖 collected through 

experiments.  
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Weighted Least Squares (WLS) belongs to the so-called Fisherian Approach, which is a 

regression method based on adjusting the value of the parameters until we obtain the set 

of values which provide the best fit to the data. There are fundamentally two kind of 

regression: linear and non linear. The first one concerns the so-called models linear in the 

parameters and provide an exact solution. The second one regards models non-linear in 

the parameters, in which the optimization algorithm is computationally more complex 

and it provides only an approximated estimation of the parameters.  

Let's start with the simplest case, in which we want to obtain the best fit to the data to the 

straight line. In this case the model output would be: 

𝑦(𝑡) = 𝒑𝑡 

(3.12) 

For different values of p, different straight lines will be generated, but we want to find 

the one which provides the best fit to the data. In order to do that we make use of the so-

called residual, which is the difference between the observed datum 𝑧(𝑡𝑖)(▲) and the 

expected output 𝑦(𝑡𝑖): 

𝑟𝑘 = 𝑟(𝑡𝑖) = 𝑧(𝑡𝑖) − 𝑦(𝑡𝑖) 

(3.13) 

 

Figure 3.3: Model output y(t) and observable datum (▲). Adapted from [14] 
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Now we can calculate the Residual Sum of Squares (RSS), which is a measure of how 

good the fit is to the given set of data and it is also called objective function or cost 

function(J(p)): 

𝑅𝑆𝑆 =∑𝑟𝑖
2

𝑁

𝑖=1

=∑(𝑧(𝑡𝑖) − 𝑔(𝑡𝑖, 𝑝))
2

𝑁

𝑖=1

 

(3.14) 

The aim is to find the best p which minimize the RSS: the smaller the RSS the better the 

fit. This regression method is also known as Least Squares. 

It is also possible to weight the data, so that some data are assigned more confidence than 

others, by changing the objective function.  

The cost function (J(p)) to be minimized is now the Weighted Residual Sum of Squares 

(WRSS): 

𝑊𝑅𝑆𝑆 =∑𝑤𝑖𝑟𝑖
2

𝑁

𝑖=1

 

(3.15) 

Generally, if the measurement error variance is known, the optimal choice is to set 𝑤𝑖 =

1/𝜎𝑖
2, with 𝜎𝑖

2 the variance of the noise associated to the i-th measurement. 

The most common assumptions on the noise are: 

• Errors have zero mean: E[𝑣𝑖]=0 

• Errors are independent: Cov[𝑣𝑖 , 𝑣𝑗]=0 for i≠j 

• The variance is known: Var[𝑣𝑖]=𝜎𝑖
2 

A standardized measure of the error is provided by the fractional standard deviation (FSD) 

or coefficient of variation (CV): 

𝐹𝑆𝐷[𝑣𝑖] = 𝐶𝑉[𝑣𝑖] =
√𝜎𝑖

2

𝑧𝑖
 

(3.16) 
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Where √𝜎𝑖
2 is the standard deviation (SD) of the error. 

It is possible now to extend the simple scalar case, previously seen, to the vector one, 

considering the model z=Gp+v (where G is a matrix n x M, with n numbers of data and 

M numbers of parameters), where v has the covariance matrix 𝛴𝑣 = 𝑑𝑖𝑎𝑔(𝜎1
2, 𝜎2

2, … , 𝜎𝑁
2). 

The cost function will be: 

𝐽(𝑝) =∑
1

𝜎𝑖
2 𝑟𝑖

2

𝑁

𝑖=1

= ||𝑟2||𝛴𝑣−1 = 𝑟𝑇𝛴𝑣
−1𝑟 = (𝑧 − 𝐺𝑝)𝑇𝛴𝑣

−1(𝑧 − 𝐺𝑝) 

(3.17) 

WLS estimate is the value of p which minimizes J(p): 

𝑝̂𝑊𝐿𝑆 = 𝑎𝑟𝑔min
𝑝
(𝑧 − 𝐺𝑝)𝑇𝛴𝑣

−1(𝑧 − 𝐺𝑝) 

(3.18) 

Since it is a quadratic problem there is a closed form analytical solution for 𝑝̂𝑊𝐿𝑆: 

𝑊𝑅𝑆𝑆(𝑝) = (𝑧 − 𝐺𝑝)𝑇𝛴𝑣
−1(𝑧 − 𝐺𝑝)

=  𝑧𝑇𝛴𝑣
−1𝑧 − 2𝑝𝑇𝐺𝑇𝛴𝑣

−1𝑧 + 𝑝𝑇𝐺𝑇𝛴𝑣
−1𝐺𝑝

𝑑𝑊𝑅𝑆𝑆(𝑝)

𝑑𝑝

= −2𝐺𝑇𝛴𝑣
−1𝑧 + 2𝐺𝑇𝛴𝑣

−1𝐺𝑝 = 0 

𝑝̂𝑊𝐿𝑆 = (𝐺𝑇𝛴𝑣
−1𝐺)−1𝐺𝑇𝛴𝑣

−1𝑧 

(3. 197) 

At this point we have to figure out how much reliable is 𝑝̂. Since the estimation of p 

depends on measurements z which are effected by errors also the estimated 𝑝̂ would be 

affected by error (𝑝), defined as the distance between the true value (p) and the estimated 

one (𝑝̂): 

𝑝 = 𝑝 − 𝑝̂  

(3.20) 

We can compute the variability of the estimation error by calculating its covariance 

matrix:  
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𝛴𝑝̃ = 𝑐𝑜𝑣(𝑝) = 𝐸[𝑝𝑝𝑇] = 𝛴𝑝     

(3.21) 

Since 𝑝̂𝑊𝐿𝑆 = (𝐺𝑇𝛴𝑣
−1𝐺)−1𝐺𝑇𝛴𝑣

−1𝑧, we get:  

𝑝 = 𝑝 − 𝑝̂ = 𝑝 − (𝐺𝑇𝛴𝑣
−1𝐺)−1𝐺𝑇𝛴𝑣

−1𝑧 = 𝑝 − (𝐺𝑇𝛴𝑣
−1𝐺)−1𝐺𝑇𝛴𝑣

−1(𝐺𝑝 + 𝑣)

= [𝐼𝑀 − (𝐺
𝑇𝛴𝑣

−1𝐺)−1𝐺𝑇𝛴𝑣
−1𝐺]𝑝 − (𝐺𝑇𝛴𝑣

−1𝐺)−1𝐺𝑇𝛴𝑣
−1𝑣 

(3.22) 

By using the definition (3.21), can be immediately obtained as the covariance of the 

random addendum: 

𝛴𝑝̃ = (𝐺𝑇𝛴𝑣
−1𝐺)−1 

(3.23) 

Given the model G, the more inaccurate the data (larger 𝛴𝑣) more inaccurate the 

parameter estimates (larger 𝛴𝑝) will be. The covariance matrix provides a measure of the 

precision with which p is estimated, from it we can calculate the: 

• Standard deviation of the estimate: 𝑆𝐷(𝑝̂𝑖) = √𝑣𝑎𝑟(𝑝̂𝑖) 

• Confidence interval: 𝑝̂𝑖 ± 𝑆𝐷(𝑝̂𝑖) 

• Coefficient of variation, which represents the precision of the estimated 

parameter: CV(𝑝̂𝑖) = 100 ×
𝑆𝐷(𝑝𝑖)

𝑝𝑖
 

In case of models nonlinear in the parameters the problem of how to estimate the 

parameters becomes more complex. The solution is computed through a number of 

iterations that draws on the linear regression theory. The most commonly used approach 

is the Gauss-Newton Method, which can be summarized in the following steps: 

1) Given the non-linear model 𝑧𝑖 = 𝑔(𝑡𝑖, 𝒑) + 𝑣𝑖 with i=1, 2, …, N, we firstly have 

to choose an initial value 𝑝̂(0) 
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2) Linearize the model 𝑔(𝑡𝑖, 𝒑) around 𝑝̂(𝑘) at any time                                       

𝑡𝑖𝑔(𝑡𝑖, 𝑝) = 𝑔(𝑡𝑖, 𝑝
(𝑘)) + [

𝜕𝑔(𝑡𝑖,𝑝
(𝑘))

𝜕𝑝1
 
𝜕𝑔(𝑡𝑖,𝑝

(𝑘))

𝜕𝑝2
 . . .

𝜕𝑔(𝑡𝑖,𝑝
(𝑘))

𝜕𝑝𝑀
]

[
 
 
 
 𝑝1 − 𝑝1

(𝑘)

𝑝2 − 𝑝2
(𝑘)

. . .

𝑝𝑀 − 𝑝𝑀
(𝑘)
]
 
 
 
 

 

(3.24) 

The quantity 

[
 
 
 
 𝑝1 − 𝑝1

(𝑘)

𝑝2 − 𝑝2
(𝑘)

. . .

𝑝𝑀 − 𝑝𝑀
(𝑘)
]
 
 
 
 

 is called ∆𝑝 and represents the deviation of p in 

respect of the initial assigned value 𝑝̂(0) 

3) Solve the problem in ∆𝑝 using the WLS  

 

Which in compact form becomes: 

∆𝑧 = 𝑆∆𝑝 + 𝑣 

(3.26) 

4) Update 𝑝̂(𝑘+1) = 𝑝̂(𝑘) + ∆𝑝̂ 

 

5) If ||z-G(𝑝̂)||𝛴𝑣−1
2  has changed significantly, k=k+1 and we have to start again from 

step 2. 

Since we are dealing with a model nonlinear in the parameters, the objective function is 

no more a quadratic problem (parabola), but it contains several local minima. Among all 

the local minima we need to find the smallest one, called global minimum.  

(3.25) 
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The difference between the linear and nonlinear case is that in linear regression there is a 

unique minimum for WRSS that can be calculated with a closed-form (eq. 3.24) while, in 

the nonlinear case, no closed-form is available, therefore, one has to use iterative method 

to find and approximate solution, and initial values are needed to start the algorithm. 

Moreover, since there may be several local minima for WRSS and the choice of initial 

values plays a key role on the final result.  

In order to estimate the precision of our model we have to calculate the covariance matrix, 

but in this case we do not have a closed form solution like for linear WLS. An approximate 

solution may be: 

𝛴𝑝̃ = 𝛴𝑝 ≅ (𝑆𝑇𝛴𝑣
−1𝑆)−1 

(3.27) 

In which S is the sensitivity matrix calculated at the optimal value p and represents the 

gradient of the model in respect to the parameters. Given 𝛴𝑣, the larger is S, the lower is 

𝛴𝑝, the more precise are the parameter estimates. 

Once determined p the steps to follow to assess the quality of the results are: 

• Analysis of residuals: which should reflect the assumption on the measurement 

error (zero mean, uncorrelated and with a known covariance matrix). 

• Parameter precision: which depends on the coefficients of variation (CV) of the 

parameters. 

• Parsimony criteria: based on principle of parsimony. It is used to balance between 

the need of good fit and good precision. In case of time invariant systems and 

Gaussian error it can be calculated as: 

Akaike criterion: 𝐴𝐼𝐶 = 𝑊𝑅𝑆𝑆 + 2𝑀 

Schwartz criterion: 𝑆𝐶 = 𝑊𝑅𝑆𝑆 +𝑀 log𝑁 

In which M is the number of parameters and N is the number of data. 
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3.3.2 Bayesian Approach 

Whereas Fisher approach was based on knowledge of data (z) and the noise 

characteristics, the Bayesian approach is based not only on the experimental data (a 

posteriori information), but also on some a priori information (data independent) available 

on the unknown parameters.  

 

 

A Bayesian estimator assumes that the a priori probability distribution of p, 𝑓𝑝(𝑝), is 

available. This probability density changes after seeing the data z, and is therefore called 

a posteriori probability density 𝑓𝑝|𝑧(𝑝|𝑧) (conditioned by the data) and it is the key 

function in Bayes estimation.  

From the Bayes’ theorem we can obtain the a posteriori probability density as: 

𝑓𝑝|𝑧(𝑝|𝑧) =
𝑓𝑧|𝑝(𝑧|𝑝)𝑓𝑝(𝑝)

𝑓𝑧(𝑧)
 

(3.28) 

In which 𝑓𝑝(𝑝) is the a priori probability density of p, 𝑓𝑧|𝑝(𝑧|𝑝) is the likelihood of z 

which depends on the model g(t, p), and 𝑓𝑧(𝑧) is the probability density of the 

measurement error.  

Figure 3.4: Comparison of the requirements for WLS and 

Bayesian estimations. Adapted from [14] 
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The Maximum a Posteriori estimator (MAP) is given by: 

𝑝̂𝑀𝐴𝑃 = 𝑎𝑟𝑔max
𝑝
𝑓𝑝|𝑧(𝑝|𝑧) 

(3.29) 

Since 𝑓𝑧(𝑧) does not depend on p the MAP estimator can be written as: 

𝑝̂𝑀𝐴𝑃 = 𝑎𝑟𝑔max
𝑝
𝑓𝑧|𝑝(𝑧|𝑝)𝑓𝑝(𝑝) = 𝑎𝑟𝑔max

𝑝
𝐽(𝑝) 

(3.30) 

In general, an analytic expression for 𝑓𝑝|𝑧(𝑝|𝑧) is either not available or is simply 

intractable. Hence, the Markov Chain Monte Carlo method can be adopted.  

The expression of 𝑓𝑝|𝑧(𝑝|𝑧) can be simplified under specific assumption regarding the 

distribution of 𝑓𝑧(𝑧) and 𝑓𝑝(𝑝). Assuming that both v and p are independent and normally 

distributed, we obtain:  

𝑓𝑝(𝑝) =
1

[(2𝜋)𝑀𝑑𝑒𝑡(𝛴𝑝)]1/2
𝑒𝑥𝑝 (−

1

2
(𝑝 − 𝜇𝑝)

𝑇𝛴𝑝
−1(𝑝 − 𝜇𝑝)) 

𝑓𝑧|𝑝(𝑧|𝑝) =
1

[(2𝜋)𝑁𝑑𝑒𝑡(𝛴𝑣)]1/2
𝑒𝑥𝑝 (−

1

2
[𝑧 − 𝐺(𝑝)]𝑇𝛴𝑣

−1[𝑧 − 𝐺(𝑝)]) 

𝑓𝑧|𝑝(𝑧|𝑝)𝑓𝑝(𝑝) =
1

[(2𝜋)𝑁𝑑𝑒𝑡(𝛴𝑣)]1/2[(2𝜋)𝑀𝑑𝑒𝑡(𝛴𝑝)]1/2
 𝑒𝑥𝑝 (−

1

2
(𝑝

− 𝜇𝑝)
𝑇𝛴𝑝

−1(𝑝 − 𝜇𝑝)) ∙ 𝑒𝑥𝑝 (−
1

2
[𝑧 − 𝐺(𝑝)]𝑇𝛴𝑣

−1[𝑧 − 𝐺(𝑝)])

=
1

[(2𝜋)𝑁𝑑𝑒𝑡(𝛴𝑣)]1/2[(2𝜋)𝑀𝑑𝑒𝑡(𝛴𝑝)]1/2

∙ 𝑒𝑥𝑝 {−
1

2
([𝑧 − 𝐺(𝑝)]𝑇𝛴𝑣

−1[𝑧 − 𝐺(𝑝)] + (𝑝 − 𝜇𝑝)
𝑇𝛴𝑝

−1(𝑝

− 𝜇𝑝))} 

(3.31) 

In order to maximize 𝑓𝑧|𝑝(𝑧|𝑝)𝑓𝑝(𝑝) we have to minimize the argument of the 

exponential, obtaining: 
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𝑝̂𝑀𝐴𝑃 = 𝑎𝑟𝑔min
𝑝
([𝑧 − 𝐺(𝑝)]𝑇𝛴𝑣

−1[𝑧 − 𝐺(𝑝)] + (𝑝 − 𝜇𝑝)
𝑇𝛴𝑝

−1(𝑝 − 𝜇𝑝)) 

(3.32) 

In which the first term represents the weighted distance between data and the prediction 

(a posteriori information) and the second one represents the distance between the estimate 

and the prior (a priori information).  

Compared to WLS, MAP worsens the fit but betters the precision. It realizes a 

compromise between a priori and a posteriori information. For instance, if a priori 

information is ‘poor’, i.e. 𝛴𝑝 is large, the second term becomes negligible. 

As well as for the Fisher approach, for the Bayesian approach we can use the parsimony 

principle to establish the precision of the estimate, by using the Generalized Information 

Criteria (GEN-IC): 

𝐺𝐸𝑁 − 𝐼𝐶 =
2𝑀

𝑁
+ 𝐽𝑀𝐴𝑃(𝑝̂) 

(3. 83) 

where  

𝐽𝑀𝐴𝑃(𝑝) = 𝑓𝑧|𝑝(𝑧|𝑝)𝑓𝑝(𝑝) 

(3. 94) 

As previously stated, the Bayesian Approach is based on the experimental data and some 

a priori information. This a priori information (the prior) is usually summarized in the 

distribution of p, 𝑓𝑝(𝑝), which in turn is completely defined by the average vector 𝜇𝑝 (of 

dimension M) and the covariance matrix 𝑝 (of dimension M×M, with M number of 

parameters), if the distribution is Gausian. Such information may come from literature, 

previous studies or experiments. MAP approach can be also used in case of availability 

of a priori information for a subset of parameters only. Parameters for which no a priori 

information is available will be assigned a ‘fake’ prior with infinite variance, which is 

equivalent of having no prior. 
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3.4 Model selection 

Once we have the model structure and we have assigned a numerical value to the 

parameters, selecting an optimal model involves analysing three fundamental aspects: the 

fit, the coefficient of variations and the parsimony criteria.  

The first involves a visual analysis of the results obtained. The model must in fact be able 

to adapt to the available data without under- or over-estimating them. Finding the best fit 

therefore means finding the curve that best approximates a distribution of points or a 

function.  

The coefficient of variation is a dispersion index, which represents the precision of the 

estimated parameter. It is a number expressed as a percentage and the larger it is, the lower 

the precision with which that parameters are estimated will be.  

The last one is the so-called Parsimony Criterion, based on principle of parsimony. It is 

used to balance between the need of good fit and good precision. The parsimony principle 

states that a simpler model with fewer parameters is preferred over more complex models 

with more parameters, provided the models fit the data similarly well. One of the most 

frequently used methods is the Akaike information criterion, which is an estimator of 

prediction error and is calculated as: 𝐴𝐼𝐶 = 𝑊𝑅𝑆𝑆 + 2𝑀, where M is the number of 

parameters. AIC deals with the trade-off between the goodness of fit of the model and the 

simplicity of the model. In other words, AIC deals with both the risk of overfitting and 

the risk of underfitting. If a set of models performs similarly in terms of ability to fit the 

data and precision of the estimates, one should choose the one providing the lowest AIC. 
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3.5 Model Implementation 

To develop our model, we started from the UVA/Padova Simulator, which unfortunately 

was not able to reproduce the results shown by Herring et al. [13] in the two experiments 

conducted. Thus, we decided to consider only the Glucose subsystem (Figure 3.5), 

described by the equations below, and try to estimate the values of the parameters in order 

to reproduce the pattern observed in the data.  

{
 
 

 
 𝐺̇𝑝(𝑡) = 𝐸𝐺𝑃(𝑡) + 𝑅𝑎(𝑡) − 𝑈𝑖𝑖(𝑡) − 𝐸(𝑡) − 𝑘1𝐺𝑝(𝑡) + 𝑘2𝐺𝑡(𝑡)                𝐺𝑝(0) = 𝐺𝑝𝑏

𝐺̇𝑡(𝑡) = −𝑈𝑖𝑑(𝑡) + 𝑘1𝐺𝑝(𝑡) − 𝑘2𝐺𝑡(𝑡)                                                            𝐺𝑡(0) = 𝐺𝑡𝑏

𝐺(𝑡) =
𝐺𝑝

𝑉𝐺
                                                                                                                𝐺(0) = 𝐺𝑏    

  

(3. 35) 

Where 𝐺𝑝 and 𝐺𝑡 (mg/kg) are glucose masses in plasma and rapidly equilibrating tissues, 

and slowly equilibrating tissues, respectively, G (mg/dl) is plasma glucose concentration, 

and the suffix b denotes basal state. EGP (mg/kg/min) is the endogenous glucose 

production; Ra (mg/kg/min) is the glucose rate of appearance in plasma; E is the renal 

excretion; 𝑈𝑖𝑖 and 𝑈𝑖𝑑 (mg/kg/min) are insulin-independent and -dependent glucose 

utilizations; 𝑉𝐺 (dl/kg) is the distribution volume of Glucose and 𝑘1 and 𝑘2 (𝑚𝑖𝑛−1) are 

the rate parameters.  

Since we had no information about insulin, except that it is withdrawn at 6am in the 

morning of the metabolic study and replaced with a soluble variable insulin infusion to 

maintain a glucose concentration at 5 mmol/L, we modelled the insulin trend as shown in 

the Figure 3.6. 

Figure 3.5: Glucose subsystem. Adapted from [11] 
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In order to build the model, other equations were taken into account, such as: 

• Glucose Renal Excretion: 

𝐸(𝑡) = {
𝑘𝑒1 ∙ [𝐺𝑝(𝑡) − 𝑘𝑒2]       𝑖𝑓 𝐺𝑝(𝑡) > 𝑘𝑒2
0                                  𝑖𝑓 𝐺𝑝(𝑡) ≤ 𝑘𝑒2

 

(3.36) 

Where 𝑘𝑒1 (𝑚𝑖𝑛
−1) is the glomerular filtration rate and 𝑘𝑒2 (mg/kg) is the renal threshold 

of glucose.  

• Glucose Independent Utilization: 

𝑈𝑖𝑖(t) = 𝐹𝑐𝑛𝑠  

(3.37) 

It takes place in the first compartment (𝐺𝑝), is constant and represents glucose 

uptake by the brain and erythrocytes.  

• Glucose Dependent Utilization: 

𝑈𝑖𝑑(𝑡) =
𝑉𝑚(𝑋(𝑡)) ∙ 𝐺𝑡(𝑡)

𝐾𝑚(𝑋(𝑡)) + 𝐺𝑡(𝑡)
 

(3.38) 

Where  

𝑉𝑚(𝑋(𝑡)) = 𝑉𝑚0 + 𝑉𝑚𝑥 ∙ 𝑋(𝑡) 

𝐾𝑚(𝑋(𝑡)) = 𝐾𝑚0 + 𝐾𝑚𝑥 ∙ 𝑋(𝑡) 

𝑋̇(𝑡) = −𝑝2𝑢 ∙ 𝑋(𝑡) + 𝑝2𝑢[𝐼(𝑡) − 𝐼𝑏]       𝑋(0) = 0 

Figure 3.6: Modelled insulin trend 

(3.39) 
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Where X (pmol/L) is insulin in the interstitial fluid, I is plasma insulin, and 𝑝2𝑢 

(𝑚𝑖𝑛−1) is the rate constant of insulin action on the peripheral glucose utilization 

[11]. 

The model was identified simultaneously on plasma glucose and rate of disappearance 

data, using simulated insulin (I), rate of appearance pattern (Ra), reported in the paper 

(Figure 2.2) as forcing function (known input). 

We assumed that measurement error was independent, Gaussian, with zero mean and 

standard deviation equal to 2% for glucose and 4% for rate of disappearance. This last 

assumption was the result of some trial, since no information was available on the 

precision of Rd.   

The Fisher approach was the tested first. The model has been built in Matlab and the 

optimization algorithm used was ‘lsqnonlin’, which is able to solve Non Linear Weighted 

Least Squares problems. The goal of ‘lsqnonlin’ is to minimize the sum of the weighted 

square residuals, which represent the distance between the data point and the values 

predicted by the model. The optimization is done by varying the model’s parameters to 

find the combination that minimize the sum of weighted squared residuals.  

One critical point was the choice of the initial values of the parameters. In fact, it turns 

out that the optimization algorithm is very sensitive that, due to the model complexity. 

Initially we decided to use as initial values those reported in the UVA/Padova Simulator: 

‘adult #9999’, which represents the average data of 100 adult patients collected in the 

Simulator.  

Parameter  Value Unit of measurement 

𝐕𝐠  1,84 dl/kg 

𝐕𝐦𝐱  0,07 mg/kg/min per pmol/l 

𝐊𝐦𝟎  0,10 mg/kg 

𝐤𝟐  0,06 𝑚𝑖𝑛−1 

𝐤𝟏  230,96 𝑚𝑖𝑛−1 

𝐩𝟐𝐮  0,04 𝑚𝑖𝑛−1 

𝐤𝐞𝟏  0,0005 𝑚𝑖𝑛−1 

𝐤𝐞𝟐  339 mg/kg 

𝐅𝐜𝐧𝐬  1 mg/kg/min 
Table 3.1: Initial parameters values 
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Since, the choice of initial values is crucial, we decided to precede the parameters 

estimation with two different optimization functions: ‘fmincon’ and ‘fminsearch’. The 

first one is used for constrained optimization problem and can handle problems with both 

equality and inequality constraints on the variables. It uses different algorithms (interior-

point, active-set, sqp) depending on the problem structure and the user’s preferences. 

These algorithms are iterative and use information about the objective function and 

constraints, including derivative when provided. The second instead is used for 

unconstrained optimization problem and it finds the minimum of a scalar function of 

several variables without any constraints on those variables. It uses the Nelder-Mead 

algorithm, which does not require the calculation of the derivative of the objective 

function, so it is less expensive to compute. It iteratively modifies the parameters until it 

converges to the minimum. Both optimization functions return us the minimum value of 

the objective function and the optimal values of the parameters, which will be then used 

by ‘lsqnonlin’ for parameters estimation. Tests have been done with both ‘fminsearch’ 

and ‘fmincon’ but the first one has shown better results in terms of precision. Since with 

‘fminsearch’ we obtained negative values of some parameters, we decided to transform 

them into logarithmic scale, thus overcoming the problem. 

After testing the WLS approach and realising that it was not able to return adequate results 

we switched to the Bayes approach. This approach was used to estimate the parameters 

of both the placebo group and the SGLT2i group separately. 

Then a simultaneous identification of the two visits was performed, which allows us to 

see which parameters changed significantly after the use of SGLT2 inhibitor. The aim was 

to use only one model to identify simultaneously both placebo and SGLT2 inhibitor 

group, maintaining most of the parameters the same for both, but using two different 

values for parameters ke1 and ke2, which are the parameters involved in the glucose renal 

excretion. In fact, in the literature it is reported that the use of SGLT2 inhibitors has an 

impact on the renal excretion subsystem, thus assuming that these two parameters were 

different in the two occasions (placebo and SGLT2i) was reasonable. 

As already stated, the model is very sensitive to the initial condition. Thus, after several 

trials using different set of initial conditions, we concluded that the best set of initial 

condition were the one reported in the table below. 
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Parameter Value Unit of measurement 

𝐕𝐠  1,21 dl/kg 

𝐕𝐦𝐱  0,11 mg/kg/min per pmol/l 

𝐊𝐦𝟎  236,94 mg/kg 

𝐤𝟐  0,07 𝑚𝑖𝑛−1 

𝐤𝟏  0,05 𝑚𝑖𝑛−1 

𝐩𝟐𝐮  0,05 𝑚𝑖𝑛−1 

𝐤𝐞𝟏  0,008 𝑚𝑖𝑛−1 

𝐤𝐞𝟐  216 mg/kg 

𝐅𝐜𝐧𝐬  1,15 mg/kg/min 

𝐤𝐞𝟏_𝐒𝐆𝐋𝐓𝟐𝐢  0,015 𝑚𝑖𝑛−1 

𝐤𝐞𝟐_𝐒𝐆𝐋𝐓𝟐𝐢  129,55 mg/kg 

Table 3.2: Best set of initial conditions 
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Chapter 4 

RESULTS 

4.1 Model assessment 

To assess which model would be the best, several tests have been conducted. The tests 

performed can be divided into four phases. The first aimed at estimating the parameters 

of the placebo group. The second was similar to the first but aimed at estimating the 

parameters of the SGLT2i group. The third, named simultaneous identification, aimed to 

find a single parameter set (apart from a couple of parameters that are allowed to vary 

between visits) able to fit both placebo and SGLT2i group simultaneously. The last one 

aimed at finding the best set of initial conditions tested again in the simultaneous 

identification. 

For the first three phases the set of initial conditions considered was the one reported in 

the Table 3.1, which was taken from the UVA/Padova Simulator, representing the average 

data of 100 adult patients.  

The results of the first phase are reported below. 

• Test n.1.  

Fisher approach: 

This approach provided a satisfactory fit of the data (Figure 4.1) but also a very 

bad precision of the estimated parameters (Tabel 4.1). The precision of a 

parameter is represented by the coefficient of variation (CV), which is a number 

expressed as a percentage and the larger it is, the lower the precision with which 

that parameters are estimated will be.  
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Parameter Value CV% 

Vg [dl/kg] 1,35 4,26 

𝐕𝐦𝐱 [ 𝑚g/kg/min per pmol/l] 0,5 >1000 

𝐊𝐦𝟎[ 𝑚𝑔/𝑘𝑔  ] 8,967∙ 10−7 1,190∙ 1014 

𝐤𝟐[ 𝑚𝑖𝑛−1  ] 0,38 >1000 

𝐤𝟏 [ 𝑚𝑖𝑛−1  ] 0,14 >1000 

𝐩𝟐𝐮 [ 𝑚𝑖𝑛−1  ] 0,11 >1000 

𝐤𝐞𝟏 [ 𝑚𝑖𝑛−1  ] 0,005 >1000 

𝐤𝐞𝟐 [mg/kg] 3,27 >1000 

𝐅𝐜𝐧𝐬 [mg/kg/min] 0,5 >1000 

Tabel 4.1: Values of parameters estimated with the Fisher approach and their precision in the placebo 

group. 

Moreover, some of the estimated values turn out to be non-physiological (i.e. 

𝑘𝑒2, 𝑘𝑚0, 𝑝2𝑢, 𝐹𝑐𝑛𝑠). Obviously, this approach cannot be considered for the 

construction of an optimal model, so we decided to try to estimate the parameters 

through the Bayesian Maximum a Posteriori Approach. 

 

  

Figure 4.1: Result obtained with the Fisher Approach on the placebo group. Upper 

panel: plasma glucose concentration data (open blue circle) vs model prediction 

(continuous red line). Middle panel: simulated plasma insulin concentration (open blue 

circle and continuous blue line). Lower panel: glucose rate of disappearance data (open 

blue circle) vs model prediction (continuous red line) and endogenous glucose production 

data (open yellow circle and continuous yellow line) 
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• Test n.2.  

This test consisted in using Bayesian estimator preceded by ‘fminsearch’ 

optimization algorithm:  

 

Figure 4.2: Result obtained with the Bayesian estimator preceded by ‘fminsearch’ optimization algorithm on the 

placebo group. Upper panel: plasma glucose concentration data (open blue circle) vs model prediction (continuous 

red line). Middle panel: simulated plasma insulin concentration (open blue circle and continuous blue line). Lower 

panel: glucose rate of disappearance data (open blue circle) vs model prediction (continuous red line) and 

endogenous glucose production data (open yellow circle and continuous yellow line) 

Parameter Value CV% 

Vg [dl/kg] 1,35 2,42 

𝐕𝐦𝐱 [ 𝑚g/kg/min per pmol/l] 0,12 252,6 

𝐊𝐦𝟎[ 𝑚𝑔/𝑘𝑔  ] 230 0,04 

𝐤𝟐[ 𝑚𝑖𝑛−1  ] 0,09 337 

𝐤𝟏 [ 𝑚𝑖𝑛−1  ] 0,09 226 

𝐩𝟐𝐮 [ 𝑚𝑖𝑛−1  ] 0,05 625,5 

𝐤𝐞𝟏 [ 𝑚𝑖𝑛−1  ] 0,01 >1000 

𝐤𝐞𝟐 [mg/kg] 213 0,045 

𝐅𝐜𝐧𝐬 [mg/kg/min] 0,6 117,06 
Table 4.2: Values of parameters estimated with the Batesian approach preceded by ‘fminsearch’ 

optimization algorithm and their precision in the placebo group. 

This second test provided a good fit of the data but a bad precision of some estimates.  
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• Test n.3.  

This test consisted in using ‘fminsearch’ optimization algorithm, MAP estimator 

and a standard deviation (SD) for 𝐹𝑐𝑛𝑠. Having noticed that, in the previous case, 

the Fcns value was far from the physiological one, it was decided to use a very 

tight variance associated to this parameter (0,001), so that the estimated value will 

not deviate much from the initial value.  

 

Figure 4.3: Result obtained with the Bayesian estimator preceded by ‘fminsearch’ optimization algorithm and SD for 

 𝐹𝑐𝑛𝑠 of 0,001 on the placebo group. Upper panel: plasma glucose concentration data (open blue circle) vs model 

prediction (continuous red line). Middle panel: simulated plasma insulin concentration (open blue circle and 

continuous blue line). Lower panel: glucose rate of disappearance data (open blue circle) vs model prediction 

(continuous red line) and endogenous glucose production data (open yellow circle and continuous yellow line) 

Parameter Value CV% 

Vg [dl/kg] 1,4 2,7 

𝐕𝐦𝐱 [ 𝑚g/kg/min per pmol/l] 0,45 60,7 

𝐊𝐦𝟎[ 𝑚𝑔/𝑘𝑔  ] 218 0,04 

𝐤𝟐[ 𝑚𝑖𝑛−1  ] 0,08 199 

𝐤𝟏 [ 𝑚𝑖𝑛−1  ] 0,05 407 

𝐩𝟐𝐮 [ 𝑚𝑖𝑛−1  ] 0,01 >1000 

𝐤𝐞𝟏 [ 𝑚𝑖𝑛−1  ] 0,007 >1000 

𝐤𝐞𝟐 [mg/kg] 188 0,07 

𝐅𝐜𝐧𝐬 [mg/kg/min] 1 0,1 
Table 4.3: Values of parameters estimated with the Batesian approach preceded by ‘fminsearch’ 

optimization algorithm and a SD for  𝐹𝑐𝑛𝑠 of 0,001 and their precision in the placebo group. 
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Since every test performed involved the use of both the optimisation function 

(‘fminsearch’) and the MAP, from now on it will be implied that they were used, and any 

additions or changes made will be highlighted exclusively.  

• Test n.4.  

To try to lower the high CV values a SD of 0,2 was assumed for ke1. 

 

Figure 4.4: Result obtained with the Bayesian estimator preceded by ‘fminsearch’ optimization algorithm and SD for 

 𝐹𝑐𝑛𝑠 of 0,001 and for 𝑘𝑒1 of 0,2 on the placebo group. Upper panel: plasma glucose concentration data (open blue 

circle) vs model prediction (continuous red line). Middle panel: simulated plasma insulin concentration (open blue 

circle and continuous blue line). Lower panel: glucose rate of disappearance data (open blue circle) vs model 

prediction (continuous red line) and endogenous glucose production data (open yellow circle and continuous yellow 

line) 

Parameter Value CV% 

Vg [dl/kg] 1,4 1,9 

𝐕𝐦𝐱 [ 𝑚g/kg/min per pmol/l] 0,13 274,3 

𝐊𝐦𝟎[ 𝑚𝑔/𝑘𝑔  ] 227 0,04 

𝐤𝟐[ 𝑚𝑖𝑛−1  ] 0,2 120,3 

𝐤𝟏 [ 𝑚𝑖𝑛−1  ] 0,06 349 

𝐩𝟐𝐮 [ 𝑚𝑖𝑛−1  ] 0,06 625 

𝐤𝐞𝟏 [ 𝑚𝑖𝑛−1  ] 0,004 >1000 

𝐤𝐞𝟐 [mg/kg] 38 3 

𝐅𝐜𝐧𝐬 [mg/kg/min] 1 0,1 
Table 4.4: Values of parameters estimated with the Batesian approach preceded by ‘fminsearch’ 

optimization algorithm and a SD for  𝐹𝑐𝑛𝑠 of 0,001 and for 𝑘𝑒1 of 0,2 and their precision in the placebo 

group. 

As shown in the Table 4.4, this test returned a non-physiological ke2 value (37,88 mg/kg), 

which leads us to say that this case cannot be considered.   
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• Test n.5. 

To avoid too low ke2 values its SD in the prior was reduced to 0,2. 

 

Figure 4.5: Result obtained with the Bayesian estimator preceded by ‘fminsearch’ optimization algorithm and SD for 

 𝐹𝑐𝑛𝑠 of 0,001, for 𝑘𝑒1 of 0,2 and for 𝑘𝑒2 of 0,2 on the placebo group. Upper panel: plasma glucose concentration 

data (open blue circle) vs model prediction (continuous red line). Middle panel: simulated plasma insulin 

concentration (open blue circle and continuous blue line). Lower panel: glucose rate of disappearance data (open 

blue circle) vs model prediction (continuous red line) and endogenous glucose production data (open yellow circle 

and continuous yellow line) 

Parameter Value CV% 

Vg [dl/kg] 1,4 1,8 

𝐕𝐦𝐱 [ 𝑚g/kg/min per pmol/l] 0,2 186,3 

𝐊𝐦𝟎[ 𝑚𝑔/𝑘𝑔  ] 224 0,04 

𝐤𝟐[ 𝑚𝑖𝑛−1  ] 0,22 108,3 

𝐤𝟏 [ 𝑚𝑖𝑛−1  ] 0,09 236,8 

𝐩𝟐𝐮 [ 𝑚𝑖𝑛−1  ] 0,06 560,6 

𝐤𝐞𝟏 [ 𝑚𝑖𝑛−1  ] 0,005 >1000 

𝐤𝐞𝟐 [mg/kg] 133 0,12 

𝐅𝐜𝐧𝐬 [mg/kg/min] 1 0,1 
Table 4.5: Values of parameters estimated with the Batesian approach preceded by ‘fminsearch’ 

optimization algorithm and a SD for  𝐹𝑐𝑛𝑠 of 0,001, for 𝑘𝑒1 of 0,2 and for 𝑘𝑒2 of 0,2 and their precision in 

the placebo group. 

 

Finally, the last three tests performed involved a reduction of the covariance matrix, as 

the smaller the covariance of the prior, the more precise the estimates will be.  
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• Test n.6. 

First, the covariance matrix was multiplied by 0,75. 

 

Figure 4.6: Result obtained with the Bayesian estimator preceded by ‘fminsearch’ optimization algorithm and the 

covariance matrix multiplied by 0,75 on the placebo group. Upper panel: plasma glucose concentration data (open 

blue circle) vs model prediction (continuous red line). Middle panel: simulated plasma insulin concentration (open 

blue circle and continuous blue line). Lower panel: glucose rate of disappearance data (open blue circle) vs model 

prediction (continuous red line) and endogenous glucose production data (open yellow circle and continuous yellow 

line) 

Parameter Value CV% 

Vg [dl/kg] 1,4 1,9 

𝐕𝐦𝐱 [ 𝑚g/kg/min per pmol/l] 0,14 234,3 

𝐊𝐦𝟎[ 𝑚𝑔/𝑘𝑔  ] 231 0,03 

𝐤𝟐[ 𝑚𝑖𝑛−1  ] 0,13 203,4 

𝐤𝟏 [ 𝑚𝑖𝑛−1  ] 0,09 203,6 

𝐩𝟐𝐮 [ 𝑚𝑖𝑛−1  ] 0,06 535,8 

𝐤𝐞𝟏 [ 𝑚𝑖𝑛−1  ] 0,009 >1000 

𝐤𝐞𝟐 [mg/kg] 192,3 0,06 

𝐅𝐜𝐧𝐬 [mg/kg/min] 0,8 38,8 
Table 4.6: Values of parameters estimated with the Batesian approach preceded by ‘fminsearch’ 

optimization algorithm and the covariance matrix multiplied by 0,75 and their precision in the placebo 

group. 
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• Test n.7. 

Then, the covariance matrix was multiplied by 0,5 

 

Figure 4.7: Result obtained with the Bayesian estimator preceded by ‘fminsearch’ optimization algorithm and the 

covariance matrix multiplied by 0,5 on the placebo group. Upper panel: plasma glucose concentration data (open 

blue circle) vs model prediction (continuous red line). Middle panel: simulated plasma insulin concentration (open 

blue circle and continuous blue line). Lower panel: glucose rate of disappearance data (open blue circle) vs model 

prediction (continuous red line) and endogenous glucose production data (open yellow circle and continuous yellow 

line) 

Parameter Value CV% 

Vg [dl/kg] 1,4 1,8 

𝐕𝐦𝐱 [ 𝑚g/kg/min per pmol/l] 0,11 228 

𝐊𝐦𝟎[ 𝑚𝑔/𝑘𝑔  ] 233,5 0,03 

𝐤𝟐[ 𝑚𝑖𝑛−1  ] 0,13 191,1 

𝐤𝟏 [ 𝑚𝑖𝑛−1  ] 0,09 186,6 

𝐩𝟐𝐮 [ 𝑚𝑖𝑛−1  ] 0,05 495,1 

𝐤𝐞𝟏 [ 𝑚𝑖𝑛−1  ] 0,008 >1000 

𝐤𝐞𝟐 [mg/kg] 192,5 0,06 

𝐅𝐜𝐧𝐬 [mg/kg/min] 0,8 38 
Table 4.7: Values of parameters estimated with the Batesian approach preceded by ‘fminsearch’ 

optimization algorithm and the covariance matrix multiplied by 0,5 and their precision in the placebo 

group. 
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• Test n.8. 

The last test is performed by multiplying the covariance matrix by 0,25. 

 

Figure 4.8: Result obtained with the Bayesian estimator preceded by ‘fminsearch’ optimization algorithm and the 

covariance matrix multiplied by 0,25 on the placebo group. Upper panel: plasma glucose concentration data (open 

blue circle) vs model prediction (continuous red line). Middle panel: simulated plasma insulin concentration (open 

blue circle and continuous blue line). Lower panel: glucose rate of disappearance data (open blue circle) vs model 

prediction (continuous red line) and endogenous glucose production data (open yellow circle and continuous yellow 

line) 

Parameter Value CV% 

Vg [dl/kg] 1,45 1,6 

𝐕𝐦𝐱 [ 𝑚g/kg/min per pmol/l] 0,09 158,8 

𝐊𝐦𝟎[ 𝑚𝑔/𝑘𝑔  ] 237,6 0,02 

𝐤𝟐[ 𝑚𝑖𝑛−1  ] 0,15 134,2 

𝐤𝟏 [ 𝑚𝑖𝑛−1  ] 0,07 153,54 

𝐩𝟐𝐮 [ 𝑚𝑖𝑛−1  ] 0,04 374,37 

𝐤𝐞𝟏 [ 𝑚𝑖𝑛−1  ] 0,007 >1000 

𝐤𝐞𝟐 [mg/kg] 197,35 0,07 

𝐅𝐜𝐧𝐬 [mg/kg/min] 1 16,34 
Table 4.8: Values of parameters estimated with the Batesian approach preceded by ‘fminsearch’ optimization 

algorithm and the covariance matrix multiplied by 0,25 and their precision in the placebo group. 

As shown in figures 4.2 to 4.8, all tests performed provide a good fit of the data but this 

is not the only aspect to consider when choosing an optimal model. Another important 

issue to take into account is the precision of the estimates, expressed as coefficient of 

variation (CV). 

The next step was to repeat all the tests done for the placebo group on the SGLT2 inhibitor 

group.  
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• Test n.9. 

We started with the simplest case: ‘fminsearch’ optimization algorithm, followed 

by MAP estimator and a SD for Fcns of (0,001). It should also be mentioned that 

the case of 'fminsearch' and MAP was tested but unfortunately returned infinite 

values for CVs. This means that the algorithm was not able to find a good set of 

parameters that minimize the objective function that resulted in very imprecise 

parameter estimates.  

 

Figure 4.9: Result obtained with the Bayesian estimator preceded by ‘fminsearch’ optimization algorithm and SD for 

 𝐹𝑐𝑛𝑠 of 0,001 on the SGLT2i group. Upper panel: plasma glucose concentration data (open blue circle) vs model 

prediction (continuous red line). Middle panel: simulated plasma insulin concentration (open blue circle and 

continuous blue line). Lower panel: glucose rate of disappearance data (open blue circle) vs model prediction 

(continuous red line) and endogenous glucose production data (open yellow circle and continuous yellow line) 

Parameter Value CV% 

Vg [dl/kg] 1,37 3,2 

𝐕𝐦𝐱 [ 𝑚g/kg/min per pmol/l] 0,04 892,2 

𝐊𝐦𝟎[ 𝑚𝑔/𝑘𝑔  ] 244,7 0,04 

𝐤𝟐[ 𝑚𝑖𝑛−1  ] 0,14 189,7 

𝐤𝟏 [ 𝑚𝑖𝑛−1  ] 0,05 412,6 

𝐩𝟐𝐮 [ 𝑚𝑖𝑛−1  ] 0,05 705,2 

𝐤𝐞𝟏 [ 𝑚𝑖𝑛−1  ] 0,009 >1000 

𝐤𝐞𝟐 [mg/kg] 28 4,4 

𝐅𝐜𝐧𝐬 [mg/kg/min] 1 0,1 
Table 4.9: Values of parameters estimated with the Batesian approach preceded by ‘fminsearch’ optimization 

algorithm and a SD for  𝐹𝑐𝑛𝑠 of 0,001 and their precision in the SGLT2i group. 
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As shown in the table 4.9, the value of ke2 is by no means physiological, so in the next 

test a variance of 0.2 was assumed for ke1 to see if changing a parameter closely related 

to ke2 also changes the value of the latter. 

• Test n.10. 

‘fiminsearch’ optimization algorithm, MAP and SD for Fcns and ke1 of 0,001 and 

0,2 respectively: 

 

Figure 4.10: Result obtained with the Bayesian estimator preceded by ‘fminsearch’ optimization algorithm and SD 

for  𝐹𝑐𝑛𝑠 of 0,001 and for 𝑘𝑒1 of 0,2 on the SGLT2i group. Upper panel: plasma glucose concentration data (open 

blue circle) vs model prediction (continuous red line). Middle panel: simulated plasma insulin concentration (open 

blue circle and continuous blue line). Lower panel: glucose rate of disappearance data (open blue circle) vs model 

prediction (continuous red line) and endogenous glucose production data (open yellow circle and continuous yellow 

line) 

Parameter Value CV% 

Vg [dl/kg] 1,46 2,8 

𝐕𝐦𝐱 [ 𝑚g/kg/min per pmol/l] 0,12 259 

𝐊𝐦𝟎[ 𝑚𝑔/𝑘𝑔  ] 236,4 0,04 

𝐤𝟐[ 𝑚𝑖𝑛−1  ] 0,07 278 

𝐤𝟏 [ 𝑚𝑖𝑛−1  ] 0,09 198,4 

𝐩𝟐𝐮 [ 𝑚𝑖𝑛−1  ] 0,02 >1000 

𝐤𝐞𝟏 [ 𝑚𝑖𝑛−1  ] 0,03 608 

𝐤𝐞𝟐 [mg/kg] 199,6 0,03 

𝐅𝐜𝐧𝐬 [mg/kg/min] 1 0,1 
Table 4.10: Values of parameters estimated with the Batesian approach preceded by ‘fminsearch’ optimization 

algorithm and a SD for  𝐹𝑐𝑛𝑠 of 0,001 and for 𝑘𝑒1 of 0,2 and their precision in the SGLT2i group. 
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As can be seen, this strategy succeeded in bringing the ke2 value in a physiological range. 

Unfortunately, however, the problem of high CVs still persisted.  

As in the case of the placebo group, also for the SGLT2i all the tests conducted involved 

the use of both ‘fminsearch’ and MAP. Therefore, in the following, only additional 

assumptions or changes made are higilighted. 

• Test n.11. 

To try to lower the CV values, a SD of 0,2 for ke2 was assumed. 

 

Figure 4.11: Result obtained with the Bayesian estimator preceded by ‘fminsearch’ optimization algorithm and SD for 

 𝐹𝑐𝑛𝑠 of 0,001, for 𝑘𝑒1 of 0,2 and for 𝑘𝑒2 of 0,2 on the SGLT2i group. Upper panel: plasma glucose concentration 

data (open blue circle) vs model prediction (continuous red line). Middle panel: simulated plasma insulin 

concentration (open blue circle and continuous blue line). Lower panel: glucose rate of disappearance data (open 

blue circle) vs model prediction (continuous red line) and endogenous glucose production data (open yellow circle 

and continuous yellow line) 

Parameter Value CV% 

Vg [dl/kg] 1,62 2,4 

𝐕𝐦𝐱 [ 𝑚g/kg/min per pmol/l] 0,09 332,1 

𝐊𝐦𝟎[ 𝑚𝑔/𝑘𝑔  ] 240 0,04 

𝐤𝟐[ 𝑚𝑖𝑛−1  ] 0,14 180,3 

𝐤𝟏 [ 𝑚𝑖𝑛−1  ] 0,05 391,3 

𝐩𝟐𝐮 [ 𝑚𝑖𝑛−1  ] 0,03 >1000 

𝐤𝐞𝟏 [ 𝑚𝑖𝑛−1  ] 0,01 898,10 

𝐤𝐞𝟐 [mg/kg] 102 0,2 

𝐅𝐜𝐧𝐬 [mg/kg/min] 1 0,1 
Table 4.11: Values of parameters estimated with the Batesian approach preceded by ‘fminsearch’ optimization 

algorithm and a SD for  𝐹𝑐𝑛𝑠 of 0,001, for 𝑘𝑒1 of 0,2 and for 𝑘𝑒2 of 0,2 and their precision in the SGLT2i group. 
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The last three tests performed involved the reduction of the covariance matrix, as the 

smaller the covariance of the prior, the more precise the estimates will be. 

• Test n.12. 

The covariance matrix was multiplied by a factor 0,75 

 

Figure 4.12: Result obtained with the Bayesian estimator preceded by ‘fminsearch’ optimization algorithm and the 

covariance matrix multiplied by 0,75 on the SGLT2i group. Upper panel: plasma glucose concentration data (open 

blue circle) vs model prediction (continuous red line). Middle panel: simulated plasma insulin concentration (open 

blue circle and continuous blue line). Lower panel: glucose rate of disappearance data (open blue circle) vs model 

prediction (continuous red line) and endogenous glucose production data (open yellow circle and continuous yellow 

line) 

Parameter Value CV% 

Vg [dl/kg] 1,4 2,8 

𝐕𝐦𝐱 [ 𝑚g/kg/min per pmol/l] 0,07 456,5 

𝐊𝐦𝟎[ 𝑚𝑔/𝑘𝑔  ] 239,7 0,03 

𝐤𝟐[ 𝑚𝑖𝑛−1  ] 0,11 220 

𝐤𝟏 [ 𝑚𝑖𝑛−1  ] 0,07 260,4 

𝐩𝟐𝐮 [ 𝑚𝑖𝑛−1  ] 0,04 772,9 

𝐤𝐞𝟏 [ 𝑚𝑖𝑛−1  ] 0,015 >1000 

𝐤𝐞𝟐 [mg/kg] 174,7 0,06 

𝐅𝐜𝐧𝐬 [mg/kg/min] 1,6 67 
Table 4.12: Values of parameters estimated with the Batesian approach preceded by ‘fminsearch’ optimization 

algorithm and the covariance matrix multiplied by 0,75 and their precision in the SGLT2i group. 
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• Test n.13. 

The covariance matrix was multiplied by a factor 0,5 

 

Figure 4.13: Result obtained with the Bayesian estimator preceded by ‘fminsearch’ optimization algorithm and the 

covariance matrix multiplied by 0,5 on the SGLT2i group. Upper panel: plasma glucose concentration data (open 

blue circle) vs model prediction (continuous red line). Middle panel: simulated plasma insulin concentration (open 

blue circle and continuous blue line). Lower panel: glucose rate of disappearance data (open blue circle) vs model 

prediction (continuous red line) and endogenous glucose production data (open yellow circle and continuous yellow 

line) 

Parameter Value CV% 

Vg [dl/kg] 1,5 2,4 

𝐕𝐦𝐱 [ 𝑚g/kg/min per pmol/l] 0,06 480,3 

𝐊𝐦𝟎[ 𝑚𝑔/𝑘𝑔  ] 241,7 0,03 

𝐤𝟐[ 𝑚𝑖𝑛−1  ] 0,11 196,3 

𝐤𝟏 [ 𝑚𝑖𝑛−1  ] 0,07 236,4 

𝐩𝟐𝐮 [ 𝑚𝑖𝑛−1  ] 0,04 726,4 

𝐤𝐞𝟏 [ 𝑚𝑖𝑛−1  ] 0,02 >1000 

𝐤𝐞𝟐 [mg/kg] 152,3 0,08 

𝐅𝐜𝐧𝐬 [mg/kg/min] 1,05 41 
Table 4.13: Values of parameters estimated with the Batesian approach preceded by ‘fminsearch’ optimization 

algorithm and the covariance matrix multiplied by 0,5 and their precision in the SGLT2i group. 
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• Test n.14. 

The covariance matrix was multiplied by a factor 0,25 

 

Figure 4.14: Result obtained with the Bayesian estimator preceded by ‘fminsearch’ optimization algorithm and the 

covariance matrix multiplied by 0,25 on the SGLT2i group. Upper panel: plasma glucose concentration data (open 

blue circle) vs model prediction (continuous red line). Middle panel: simulated plasma insulin concentration (open 

blue circle and continuous blue line). Lower panel: glucose rate of disappearance data (open blue circle) vs model 

prediction (continuous red line) and endogenous glucose production data (open yellow circle and continuous yellow 

line) 

Parameter Value CV% 

Vg [dl/kg] 1,6 1,9 

𝐕𝐦𝐱 [ 𝑚g/kg/min per pmol/l] 0,06 276,7 

𝐊𝐦𝟎[ 𝑚𝑔/𝑘𝑔  ] 237 0,02 

𝐤𝟐[ 𝑚𝑖𝑛−1  ] 0,09 177,5 

𝐤𝟏 [ 𝑚𝑖𝑛−1  ] 0,07 167,45 

𝐩𝟐𝐮 [ 𝑚𝑖𝑛−1  ] 0,04 450 

𝐤𝐞𝟏 [ 𝑚𝑖𝑛−1  ] 0,02 >1000 

𝐤𝐞𝟐 [mg/kg] 193,9 0,04 

𝐅𝐜𝐧𝐬 [mg/kg/min] 1,4 10,28 
Table 4.14: Values of parameters estimated with the Batesian approach preceded by ‘fminsearch’ optimization 

algorithm and the covariance matrix multiplied by 0,25 and their precision in the SGLT2i group. 

So far, the best compromise in terms of data fitting and precision of the parameters, for 

both placebo and SGLT2i group, even if some of them were still estimated with poor 

precision, was obtained with the MAP estimator preceded by ‘fminsearch’ optimization 

function and the covariance matrix multiplied by 0.75 (figure and table 4.6 and 4.12). 

Unfortunately, despite we aimed to find a balance between good fit and good precision 

of the estimate, we had to deal with high CV, especially for some parameters. This was 
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in part due to the fact that few data points were available to estimate well the slope of 

glucose and glucose rate of disappearance’s curves. 

To improve the precision of the estimates we resorted to the so-called simultaneous 

identification. It is a way which allow us to identify simultaneously both the placebo and 

the SGLT2i group. In this way, it was easier to understand which parameters changed 

significantly before and after the use of SGLT2i. Since what is reported in the literature 

is that the use of SGLT2 inhibitors impacts the renal excretion, it was reasonable to 

consider that ke1 and ke2, which are the parameters involved in the glucose renal excretion, 

were different in the two occasions (placebo and SGLT2i), while the remaining 

parameters were assumed to be identical. 

• Test n.15. 

‘fminsearch’ optimization algorithm, MAP estimator and a SD for 𝑉𝑔 and 𝐹𝑐𝑛𝑠 of 

0,5 and 0,001 respectively were used in this case. 

 

Figure 4.15: Result obtained with the simultaneous identification using Bayesian estimator preceded by ‘fminsearch’ 

optimization algorithm and a SD of 0,5 for 𝑉𝑔 and of 0,001 for 𝐹𝑐𝑛𝑠 . Upper panel: plasma glucose concentration data 

of placebo group (open red circle) vs model prediction of placebo group (continuous blue line), plasma glucose 

concentration data of SGLT2i group (open pink circle) vs model prediction of SGLT2i group (continuous green line). 

Middle panel: simulated plasma insulin concentration (open blue circle and continuous blue line). Lower panel: 

glucose rate of disappearance data of placebo group (open red circle) vs model prediction of placebo group 

(continuous blue line) and glucose rate of disappearance data of SGLT2i group (open pink circle) vs model 

prediction of SGLT2i group (continuous green line). 

Parameter Value CV% 

Vg [dl/kg] 1,46 1,8 
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𝐕𝐦𝐱 [ 𝑚g/kg/min per pmol/l] 0,2 105,15 

𝐊𝐦𝟎[ 𝑚𝑔/𝑘𝑔  ] 213,4 0,04 

𝐤𝟐[ 𝑚𝑖𝑛−1  ] 0,11 196,5 

𝐤𝟏 [ 𝑚𝑖𝑛−1  ] 0,05 336,75 

𝐩𝟐𝐮 [ 𝑚𝑖𝑛−1  ] 0,09 363,8 

𝐤𝐞𝟏 [ 𝑚𝑖𝑛−1  ] 0,006 >1000 

𝐤𝐞𝟐 [mg/kg] 159 0,06 

𝐅𝐜𝐧𝐬 [mg/kg/min] 1 0,09 

𝐤𝐞𝟏_𝐒𝐆𝐋𝐓𝐢[ 𝑚𝑖𝑛
−1  ] 0,01 834,8 

𝐤𝐞𝟐_𝐒𝐆𝐋𝐓𝐢  [mg/kg] 102,2 0,12 
Table 4.15: Values of parameters estimated in the simultaneous identification with the Batesian approach preceded by 

‘fminsearch’ optimization algorithm and and a SD of 0,5 for 𝑉𝑔 and of 0,001 for 𝐹𝑐𝑛𝑠and their precision.  

• Test n.16. 

To try to lower some CVs, SD of p2u and to ke1was assumed to be 0,75 and 0,2 

respectively. 

 

Figure 4.16: Result obtained with the simultaneous identification using Bayesian estimator preceded by ‘fminsearch’ 

optimization algorithm and a SD of 0,5 for 𝑉𝑔, of 0,001 for 𝐹𝑐𝑛𝑠, of 0,75 for 𝑝2𝑢 and of 0,2 for 𝑘𝑒1 . Upper panel: 

plasma glucose concentration data of placebo group (open red circle) vs model prediction of placebo group 

(continuous blue line), plasma glucose concentration data of SGLT2i group (open pink circle) vs model prediction of 

SGLT2i group (continuous green line). Middle panel: simulated plasma insulin concentration (open blue circle and 

continuous blue line). Lower panel: glucose rate of disappearance data of placebo group (open red circle) vs model 

prediction of placebo group (continuous blue line) and glucose rate of disappearance data of SGLT2i group (open 

pink circle) vs model prediction of SGLT2i group (continuous green line). 

Parameter Value CV% 

Vg [dl/kg] 1,36 2 

𝐕𝐦𝐱 [ 𝑚g/kg/min per pmol/l] 0,5 56,8 

𝐊𝐦𝟎[ 𝑚𝑔/𝑘𝑔  ] 222,6 0,04 

𝐤𝟐[ 𝑚𝑖𝑛−1  ] 0,04 448,8 

𝐤𝟏 [ 𝑚𝑖𝑛−1  ] 0,02 800 
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𝐩𝟐𝐮 [ 𝑚𝑖𝑛−1  ] 0,03 >1000 

𝐤𝐞𝟏 [ 𝑚𝑖𝑛−1  ] 0,005 >1000 

𝐤𝐞𝟐 [mg/kg] 114,2 0,25 

𝐅𝐜𝐧𝐬 [mg/kg/min] 1 0,09 

𝐤𝐞𝟏_𝐒𝐆𝐋𝐓𝐢[ 𝑚𝑖𝑛
−1  ] 0,01 856,8 

𝐤𝐞𝟐_𝐒𝐆𝐋𝐓𝐢  [mg/kg] 104,5 0,16 
Table 4.16: Values of parameters estimated in the simultaneous identification with the Batesian approach preceded by 

‘fminsearch’ optimization algorithm and and a SD of 0,5 for 𝑉𝑔, of 0,001 for 𝐹𝑐𝑛𝑠, of 0,75 for 𝑝2𝑢 and of 0,2 for 𝑘𝑒1 

and their precision. 

As already stated, the model is very sensitive to the initial conditions, thus several 

simulations were carried out with different sets of initial conditions to find the best one. 

The new set of initial conditions to be used was chosen by assessing the goodness of the 

fit it generated, and it is reported in the table below. 

Parameter Value 

Vg [dl/kg] 1,2 

𝐕𝐦𝐱 [ 𝑚g/kg/min per pmol/l] 0,11 

𝐊𝐦𝟎[ 𝑚𝑔/𝑘𝑔  ] 236,9 

𝐤𝟐[ 𝑚𝑖𝑛−1  ] 0,08 

𝐤𝟏 [ 𝑚𝑖𝑛−1  ] 0,05 

𝐩𝟐𝐮 [ 𝑚𝑖𝑛−1  ] 0,05 

𝐤𝐞𝟏 [ 𝑚𝑖𝑛−1  ] 0,008 

𝐤𝐞𝟐 [mg/kg] 216 

𝐅𝐜𝐧𝐬 [mg/kg/min] 1 

𝐤𝐞𝟏_𝐒𝐆𝐋𝐓𝐢[ 𝑚𝑖𝑛
−1  ] 0,015 

𝐤𝐞𝟐_𝐒𝐆𝐋𝐓𝐢  [mg/kg] 129,55 
Table 4.17: New set of initial conditions 

In addition, the value of Fcns was varied from 1 to 1.5 with an increment of 0.05, and the 

best result was achieved with an Fcns value of 1.15.  

Taking this change into account, then, the final set of initial conditions is: 

Parameter Value 

Vg [dl/kg] 1,20 

𝐕𝐦𝐱 [ 𝑚g/kg/min per pmol/l] 0,11 

𝐊𝐦𝟎[ 𝑚𝑔/𝑘𝑔  ] 236,9 

𝐤𝟐[ 𝑚𝑖𝑛−1  ] 0,08 

𝐤𝟏 [ 𝑚𝑖𝑛−1  ] 0,05 

𝐩𝟐𝐮 [ 𝑚𝑖𝑛−1  ] 0,05 

𝐤𝐞𝟏 [ 𝑚𝑖𝑛−1  ] 0,008 

𝐤𝐞𝟐 [mg/kg] 216 

𝐅𝐜𝐧𝐬 [mg/kg/min] 1,15 

𝐤𝐞𝟏_𝐒𝐆𝐋𝐓𝐢[ 𝑚𝑖𝑛
−1  ] 0,015 
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𝐤𝐞𝟐_𝐒𝐆𝐋𝐓𝐢  [mg/kg] 129,55 
Table 4.18: Final set of initial conditions 

With these new considerations other tests were performed. 

• Test n.17. 

 

Figure 4.17: Result obtained with the simultaneous identification using Bayesian estimator preceded by ‘fminsearch’ 

optimization algorithm and a SD of 0,5 for 𝑉𝑔, of 0,009 for 𝐹𝑐𝑛𝑠, of 0,001 for 𝑘𝑒2and 𝑘𝑒2_𝑆𝐺𝐿𝑇2𝑖 and of 0,1 for 𝑘𝑒1 

and 𝑘𝑒1_𝑆𝐺𝐿𝑇2𝑖. Upper panel: plasma glucose concentration data of placebo group (open red circle) vs model 

prediction of placebo group (continuous blue line), plasma glucose concentration data of SGLT2i group (open pink 

circle) vs model prediction of SGLT2i group (continuous green line). Middle panel: simulated plasma insulin 

concentration (open blue circle and continuous blue line). Lower panel: glucose rate of disappearance data of 

placebo group (open red circle) vs model prediction of placebo group (continuous blue line) and glucose rate of 

disappearance data of SGLT2i group (open pink circle) vs model prediction of SGLT2i group (continuous green line). 

Parameter Value CV% 

Vg [dl/kg] 1,33 1,3 

𝐕𝐦𝐱 [ 𝑚g/kg/min per pmol/l] 0,15 117 

𝐊𝐦𝟎[ 𝑚𝑔/𝑘𝑔  ] 207,3 0,04 

𝐤𝟐[ 𝑚𝑖𝑛−1  ] 0,07 153,2 

𝐤𝟏 [ 𝑚𝑖𝑛−1  ] 0,05 214,5 

𝐩𝟐𝐮 [ 𝑚𝑖𝑛−1  ] 0,09 344,35 

𝐤𝐞𝟏 [ 𝑚𝑖𝑛−1  ] 0,008 675,7 

𝐤𝐞𝟐 [mg/kg] 216 0,0005 

𝐅𝐜𝐧𝐬 [mg/kg/min] 1,151 0,78 

𝐤𝐞𝟏_𝐒𝐆𝐋𝐓𝐢[ 𝑚𝑖𝑛
−1  ] 0,02 256,7 

𝐤𝐞𝟐_𝐒𝐆𝐋𝐓𝐢  [mg/kg] 129,54 0,0007 
Table 4.19: Values of parameters estimated in the simultaneous identification with the Batesian approach preceded by 

‘fminsearch’ optimization algorithm and and a SD of 0,5 for 𝑉𝑔, of 0,001 for 𝐹𝑐𝑛𝑠, of 0,001 for 𝑘𝑒2and 

𝑘𝑒2_𝑆𝐺𝐿𝑇2𝑖 and of 0,1 for 𝑘𝑒1 and 𝑘𝑒1_𝑆𝐺𝐿𝑇2𝑖 and their precision. 
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• Test n.18. 

 

Figure 4.18: Result obtained with the simultaneous identification using Bayesian estimator preceded by ‘fminsearch’ 

optimization algorithm and a SD of 0,5 for 𝑉𝑔, of 0,009 for 𝐹𝑐𝑛𝑠, of 0,01 for 𝑘𝑒2and 𝑘𝑒2_𝑆𝐺𝐿𝑇2𝑖 and of 0,1 for 𝑘𝑒1 

and 𝑘𝑒1_𝑆𝐺𝐿𝑇2𝑖. Upper panel: plasma glucose concentration data of placebo group (open red circle) vs model 

prediction of placebo group (continuous blue line), plasma glucose concentration data of SGLT2i group (open pink 

circle) vs model prediction of SGLT2i group (continuous green line). Middle panel: simulated plasma insulin 

concentration (open blue circle and continuous blue line). Lower panel: glucose rate of disappearance data of 

placebo group (open red circle) vs model prediction of placebo group (continuous blue line) and glucose rate of 

disappearance data of SGLT2i group (open pink circle) vs model prediction of SGLT2i group (continuous green line). 

Parameter Value CV% 

Vg [dl/kg] 1,24 1,34 

𝐕𝐦𝐱 [ 𝑚g/kg/min per pmol/l] 0,23 91,2 

𝐊𝐦𝟎[ 𝑚𝑔/𝑘𝑔  ] 209,4 0,04 

𝐤𝟐[ 𝑚𝑖𝑛−1  ] 0,07 236,7 

𝐤𝟏 [ 𝑚𝑖𝑛−1  ] 0,06 284,6 

𝐩𝟐𝐮 [ 𝑚𝑖𝑛−1  ] 0,08 370,7 

𝐤𝐞𝟏 [ 𝑚𝑖𝑛−1  ] 0,01 566,1 

𝐤𝐞𝟐 [mg/kg] 213,2 0,005 

𝐅𝐜𝐧𝐬 [mg/kg/min] 1,15 0,77 

𝐤𝐞𝟏_𝐒𝐆𝐋𝐓𝐢[ 𝑚𝑖𝑛
−1  ] 0,02 239,24 

𝐤𝐞𝟐_𝐒𝐆𝐋𝐓𝐢  [mg/kg] 127,5 0,008 
Table 4.20: Values of parameters estimated in the simultaneous identification with the Batesian approach preceded by 

‘fminsearch’ optimization algorithm and and a SD of 0,5 for 𝑉𝑔, of 0,001 for 𝐹𝑐𝑛𝑠, of 0,01 for 𝑘𝑒2and 𝑘𝑒2_𝑆𝐺𝐿𝑇2𝑖 and 

of 0,1 for 𝑘𝑒1 and 𝑘𝑒1_𝑆𝐺𝐿𝑇2𝑖 and their precision. 
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• Test n.19. 

 

 

Figure 4.19: Result obtained with the simultaneous identification using Bayesian estimator preceded by ‘fminsearch’ 

optimization algorithm and a SD of 0,5 for 𝑉𝑔, of 0,009 for 𝐹𝑐𝑛𝑠, of 0,05 for 𝑘𝑒2and 𝑘𝑒2_𝑆𝐺𝐿𝑇2𝑖 and of 0,1 for 𝑘𝑒1 

and 𝑘𝑒1_𝑆𝐺𝐿𝑇2𝑖. Upper panel: plasma glucose concentration data of placebo group (open red circle) vs model 

prediction of placebo group (continuous blue line), plasma glucose concentration data of SGLT2i group (open pink 

circle) vs model prediction of SGLT2i group (continuous green line). Middle panel: simulated plasma insulin 

concentration (open blue circle and continuous blue line). Lower panel: glucose rate of disappearance data of 

placebo group (open red circle) vs model prediction of placebo group (continuous blue line) and glucose rate of 

disappearance data of SGLT2i group (open pink circle) vs model prediction of SGLT2i group (continuous green line). 

Parameter Value CV% 

Vg [dl/kg] 1,15 1,88 

𝐕𝐦𝐱 [ 𝑚g/kg/min per pmol/l] 0,17 146,4 

𝐊𝐦𝟎[ 𝑚𝑔/𝑘𝑔  ] 226,89 0,04 

𝐤𝟐[ 𝑚𝑖𝑛−1  ] 0,08 217,88 

𝐤𝟏 [ 𝑚𝑖𝑛−1  ] 0,07 271,3 

𝐩𝟐𝐮 [ 𝑚𝑖𝑛−1  ] 0,07 418,15 

𝐤𝐞𝟏 [ 𝑚𝑖𝑛−1  ] 0,01 654,1 

𝐤𝐞𝟐 [mg/kg] 184,1 0,02 

𝐅𝐜𝐧𝐬 [mg/kg/min] 1,15 0,8 

𝐤𝐞𝟏_𝐒𝐆𝐋𝐓𝐢[ 𝑚𝑖𝑛
−1  ] 0,02 298,8 

𝐤𝐞𝟐_𝐒𝐆𝐋𝐓𝐢  [mg/kg] 104,05 0,04 
Table 4.21: Values of parameters estimated in the simultaneous identification with the Batesian approach preceded by 

‘fminsearch’ optimization algorithm and and a SD of 0,5 for 𝑉𝑔, of 0,001 for 𝐹𝑐𝑛𝑠, of 0,05 for 𝑘𝑒2and 𝑘𝑒2_𝑆𝐺𝐿𝑇2𝑖 and 

of 0,1 for 𝑘𝑒1 and 𝑘𝑒1_𝑆𝐺𝐿𝑇2𝑖 and their precision. 
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• Test n.20. 

 

Figure 4.20: Result obtained with the simultaneous identification using Bayesian estimator preceded by ‘fminsearch’ 

optimization algorithm and a SD of 0,5 for 𝑉𝑔, of 0,009 for 𝐹𝑐𝑛𝑠, of 0,1 for 𝑘𝑒2and 𝑘𝑒2_𝑆𝐺𝐿𝑇2𝑖 and of 0,001 for 𝑘𝑒1 

and 𝑘𝑒1_𝑆𝐺𝐿𝑇2𝑖. Upper panel: plasma glucose concentration data of placebo group (open red circle) vs model 

prediction of placebo group (continuous blue line), plasma glucose concentration data of SGLT2i group (open pink 

circle) vs model prediction of SGLT2i group (continuous green line). Middle panel: simulated plasma insulin 

concentration (open blue circle and continuous blue line). Lower panel: glucose rate of disappearance data of 

placebo group (open red circle) vs model prediction of placebo group (continuous blue line) and glucose rate of 

disappearance data of SGLT2i group (open pink circle) vs model prediction of SGLT2i group (continuous green line). 

Parameter Value CV% 

Vg [dl/kg] 1,3 1,76 

𝐕𝐦𝐱 [ 𝑚g/kg/min per pmol/l] 0,17 148,7 

𝐊𝐦𝟎[ 𝑚𝑔/𝑘𝑔  ] 216,2 0,04 

𝐤𝟐[ 𝑚𝑖𝑛−1  ] 0,09 200,4 

𝐤𝟏 [ 𝑚𝑖𝑛−1  ] 0,05 331,9 

𝐩𝟐𝐮 [ 𝑚𝑖𝑛−1  ] 0,06 451,9 

𝐤𝐞𝟏 [ 𝑚𝑖𝑛−1  ] 0,008 12,65 

𝐤𝐞𝟐 [mg/kg] 186,4 0,02 

𝐅𝐜𝐧𝐬 [mg/kg/min] 1,16 0,76 

𝐤𝐞𝟏_𝐒𝐆𝐋𝐓𝐢[ 𝑚𝑖𝑛
−1  ] 0,015 6,83 

𝐤𝐞𝟐_𝐒𝐆𝐋𝐓𝐢  [mg/kg] 108,34 0,04 
Table 4.22: Values of parameters estimated in the simultaneous identification with the Batesian approach preceded by 

‘fminsearch’ optimization algorithm and and a SD of 0,5 for 𝑉𝑔, of 0,001 for 𝐹𝑐𝑛𝑠, of 0,1 for 𝑘𝑒2and 𝑘𝑒2_𝑆𝐺𝐿𝑇2𝑖 and 

of 0,001 for 𝑘𝑒1 and 𝑘𝑒1_𝑆𝐺𝐿𝑇2𝑖 and their precision. 
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4.2 Model selection 

As already stated in chapter 3, the selection of an optimal model involves the evaluation 

of several aspects. The first step involves the analysis of the fit, the evaluation of which 

involves a visual inspection of the plots comparing data and model prediction (figure from 

4.1 to 4.20). The model should be able to well fit the data without under- or over-

estimating them.  

The second aspect to be taken into account is the value of CVs. In fact, they represent the 

precision of an estimate and are expressed as a percentage. The higher the CV value, the 

more inaccurate the estimate will be. Each test performed includes both the value of the 

estimated parameters and their CV (table from 4.1 to 4.22). Unfortunately, in our model 

we had to deal with high CV values for some parameters, but this may be due to the 

accuracy of the measurements taken and used in the model as input.  

The last parameter to consider is the so-called Akaike information criterion, which is 

based on the principle of parsimony.  

The table below provides a summary of the above-mentioned aspects, with their 

respective values, involved in the choice of an optimal model. 

Test N° 

Test n.6 Test n.8 

Test 

n.12 

Test 

n.14 

Test 

n.17 

Test 

n.18 

Test 

n.19 

Test 

n.20 

N°. of 

param 9 9 9 9 8 10 10 8 

Median 

CV% 485,29% 433,85% 346,03% 246,37% 160,33% 162,79% 182,68% 105,01% 

RMSE 5,37 6,56 60,13 58,73 5,31 5,35 4,49 4,81 

AIC 23,37 24,56 78,13 76,73 21,31 25,35 24,49 24,91 

Table 4.23: Model comparison 

Having compared the different models and having reported the relative AIC, we can 

conclude that the best model can be considered the number 17, which is the one with the 

lowest AIC coefficient.  
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4.3 Role of SGLT2i in glucose control 

SGLT2 are responsible for reabsorption of more than 90% of glucose in the proximal 

tubule of the kidney. In diabetic patients the expression of SGLT2 paradoxically increases, 

so that the renal threshold for glycosuria increases and therefore excess glucose is 

retained.  

Sodium-glucose cotransporter type 2 inhibitors are selective and reversible inhibitors of 

renal SGLT2. Their action is totally independent from insulin. They affect the kidneys 

directly by lowering the threshold for renal excretion of glucose and increasing its urinary 

excretion, they are able to bring about a significant reduction in glycaemia (both fasting 

and post-prandial) and, consequently, a lower glucotoxicity. 

The model constructed contains a parameter strictly responsible for the renal absorption 

threshold. In fact, ke2 divided by Vg gives us exactly the value of the renal threshold in 

mg/dl.  

As reported in the literature, under physiological conditions the renal threshold limit value 

should be around 180mg/dl. When blood glucose exceeds 180/200 mg/dl the patient starts 

to have glycosuria, which indicates the presence of glucose in the urine. Glycosuria is 

therefore an expression of hyperglycaemia related to an excessive sugar intake or to a 

disease that alters its regulation, as type 1 diabetes.  

Since SGLT2i reduce the reabsorption of glucose and increase its excretion through the 

urine, the renal threshold will therefore be lower than 180 mg/dl, but unfortunately by 

how much is not yet known.  

Model number 17 returns a lower 𝑘𝑒2/𝑉𝑔value in the SGLT2i group confirming that the 

drug acts on the renal threshold. 
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Chapter 5 

CONCLUSION 

The purpose of this thesis is to build up a comprehensive and exhaustive model that 

describes the effects of Sodium-Glucose Co-Transporter2 (SGLT2) inhibitors in patients 

with type 1 diabetes.  

The database collected in the paper by Herring et al. [13] was used to test the model. This 

study was a double-blind, placebo-controlled crossover study with a 4-week washout 

period, and it was performed in 12 people with type 1 diabetes using insulin pump therapy. 

Initially, an attempt was made to see if the UVA/Padova simulator was able to reproduce 

data observed by Herring et al. [13] but, unfortunately, that was not the case. We thus 

switched to another approach. Only the glucose subsystem was considered and the model 

was identified using the simulated insulin (I) and rate of appearance (Ra) profiles as 

forcing function. 

Several tests have been conducted, using different approaches and trying to adopt 

strategies aimed at improving results. Some of them reported satisfactory results, while 

some others did not, due to poor ability to fit the data or high CVs or non-physiological 

values of the estimated parameters.  

As already mentioned in paragraph 4.2, the best results were achieved with Test n. 17, 

since it provided the best compromise in terms of data fitting, CVs and AIC. Nevertheless, 

the experiments carried out are not to be considered definitive, nor are they the only ones 

possible; indeed, the possibility of carrying out further experiments would help to 

improve the results. 

From a physiological perspective, what we expected was that after using SGLT2i the renal 

threshold would decrease, as these inhibitors have the primary effect of decreasing this 

threshold. This is exactly what happened in most of the tests carried out. However, the 

values obtained for the renal threshold with or without SGLT2 inhibitors were lower than 

expected. This can be due to some limitations of our approach. 

A fundamental aspect that must be taken into account in the development of this thesis is 

the fact that we did not have individual data available but only averages of data obtained 
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from the clinical trial carried out by Herring et al. [13]. Furthermore, we had no 

information on the insulin time course. In fact, we had to model insulin concentration 

knowing only that subcutaneous infusion was withdrawn at 6am in the morning of the 

metabolic study and replaced with a soluble variable insulin infusion to maintain a 

glucose concentration at 5 mmol/L; then, such infusion was stopped to allow glucose 

rising. Finally, both Rd and Ra time courses were not directly measured, but estimated 

from a tracer experiment, which provided virtually model independent profiles. However, 

the goodness of such estimates is difficult to assess, since tracer-to-tracee ratio are not 

reported in the original paper [13].  

In conclusion, through our modeling approach, we were able to assess the impact of these 

drugs on glycemic dynamics and their effects on renal excretion. As already reported in 

the literature, SGLT2i may serve as a valuable addition to the standard treatment of type 

1 diabetes, aiding in reducing blood glucose levels and thus enhancing disease 

management. However, it is important to recognize that the efficacy and safety of these 

drugs may vary among patients, and further research is needed to fully understand their 

long-term impact on the health and well-being of diabetic individuals. SGLT2i have been 

shown to stimulate the release of glucagon and the reabsorption of ketones in the renal 

tubules, thus increasing the concentrations of ketone bodies, which leads patients with 

type 1 diabetes into a life-threatening situation of ketoacidosis, which can lead to diabetic 

coma.  

Ultimately, SGLT2 inhibitors represent a promising perspective in type 1 diabetes 

management and warrant further investigation, such as long-term clinical trial, additional 

studies, or new customised models, to maximize benefits and mitigate potential risks. 
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