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Abstract

We study circuit complexity for the ground state of a harmonic chain

with defect in 1+1 dimensions, choosing as a reference state, the ground

state of the homogeneous chain. By employing the covariance matrix for-

malism, we compute numerically C2 complexity and extract its divergence

pattern in the continuum limit. We find that, upon a suitable choice of the

coordinates, C2 complexity displays a logarithmic divergence. Finally, we

compare our results with the existing ones for the entanglement entropy

of half chain and the holographic complexity in the presence of a defect.
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1 Introduction

The concept of quantum circuit complexity has attracted considerable interest
in quantum information since the beginning of the quantum computing era
[1, 2]. In the simplest possible model for a quantum computer, we consider
a collection of qubits

∣
∣qi

〉
, - the quantum analogue of classical bits - and a

set of elementary gates UI , - unitary operators typically acting on few qubits.
Then, a quantum circuit can be regarded as a sequence of elementary gates
implementing a unitary transformation U = ΠN

I=1UI on some unentangled
state of the qubits, namely the reference state

∣
∣ψR

〉
=
∣
∣q1, . . . , qN

〉
. The final

state reached by the circuit is the target state:

∣
∣ψT

〉
= U

∣
∣ψR

〉
. (1.1)

A pictorial representation of a quantum circuit is given in figure 1.

Figure 1: Pictorial representation of a quantum circuit.

In general, there is not a unique way to achieve a certain task with a quantum
circuit and some circuits are more expensive than other in terms of the number
of gates employed. One question naturally arises and regards the search for
the optimal circuit to accomplish a certain task. This leads to define complexity
as the minimal number of elementary gates required to implement the unitary
transformation connecting the desired target and the reference state [1, 2].

This definition, besides its intuitive nature, is technically unfeasible and
makes the estimate of complexity a rather difficult task. This is why Nielsen
and collaborators introduced the geometric approach to complexity [3–5].
Their idea consisted in considering the space of all unitary transformations,
which can be realized with a quantum circuit, and in equipping it with a
geometric structure, allowing us to estimate the length of paths within such
space. Complexity is then identified with the minimal length of the optimal
path connecting the identity operator to the desired unitary transformation.
The power of such approach resides in the fact that, if we are able to equip
the space of unitaries with the structure of a Riemannian manifold, estimating
complexity is related to the well known problem of finding geodesics.
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It should be stressed that all the techniques developed by quantum in-
formation scientists are confined to the realm of quantum mechanics with a
finite number of degrees of freedom. However, in more recent times quantum
field theorists and high energy physicists have turned their eye onto the no-
tion of complexity and have been putting increasing effort into understanding
complexity in a quantum field theory framework. In order to bridge the gap
between quantum information and quantum field theory, a lattice quantum
field theory perspective has been adopted [6–16]. Considering a discrete ver-
sion of free scalar and fermionic field theories, Nielsen’s approach has been
applied to these lattice theories and the behavior of complexity in their con-
tinuum limit has been studied. In order to make the problem more tractable,
the attention has been restricted to Gaussian states, which are a well known
class of states in quantum information literature [17–21]. Within this perspec-
tive, complexity has also been quantified for quantum circuits made by mixed
states, which are characterized by density matrices [22–27]. Moreover, some
attempts have been made to characterize complexity for weakly interacting
quantum field theories using Nielsen’s approach in a lattice framework [28].
We should finally mention that a purely quantum field theory definition of
complexity is still lacking and that in the last few years a good amount of
effort has been put in such direction [29–39]. At the moment, the lattice field
theory approach still remains the best tool to estimate complexity in free and
weakly interacting theories, whereas still very little is known about complexity
in strongly interacting theories.

Besides being it an interesting problem in itself, the main motivation for
a quantum field theory definition of complexity lies in the field of the (holo-
graphic) gauge/gravity correspondence between quantum (gauge) field theo-
ries and quantum gravity models from string theory. The main idea behind
the holographic principle is that a theory of (quantum) gravity whose dy-
namics takes place in a certain volume V is equivalent to a non-gravitational
theory living in the boundary ∂V [40,41]. Such principle was realized in the so
called AdS/CFT correspondence [42–45], which consists in a duality between
a gravitational theory living in the Anti de Sitter space (AdS) and conformal
field theory (CFT) living on its boundary. It should be stressed that this is a
strong/weak coupling duality, which basically means that the strong coupling
regime on one side of the correspondence is a strongly coupled regime on the
other side: therefore the dual CFT to a semiclassical theory of gravity, will be
a strongly coupled one.

In the AdS/CFT framework, it is natural to introduce a dictionary connect-
ing gravitational observables in the bulk to quantum field theory observables
living in the boundary. It is exactly in the search of such dictionary that the
relationship between quantum information and gravity soon became evident.
One of the most important results is the formula for the holographic entan-
glement entropy [46–48] which relates the entanglement entropy in a CFT at
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strong coupling to a classical gravitational observable. To be more precise,
the entanglement entropy associated to the subregion A in the boundary is
seen to be proportional to the area of the so called Ryu-Takayanagi surface γA,
defined as the minimal area surface in the bulk such that it is homologous to
the subregion A and it has the same boundary as A, i.e. ∂γA = ∂A:

SA =
Area(γA)

4GN
. (1.2)

A pictorial representation of the prescription for the holographic entanglement
entropy is given in figure 2.

Figure 2: Pictorial representation of the prescription for the holographic entan-
glement entropy. Figure taken from [49].

Motivated by the success of the proposal for the holographic entanglement
entropy [50, 51], many attempts were made in order to find the gravitational
dual of other quantum information observables, among which there is certainly
complexity [52–61]. At the moment two main proposals are being investigated:
complexity equals volume (CV) and complexity equals action (CA). According
to CV [52, 55], holographic complexity is proportional to the volume V of a
maximal codimension-one bulk surface B that extends to the AdS boundary,
and asymptotes to the time slice Σ on which the boundary state is defined:

CV = max
Σ=∂B

[

V(B)
GN L

]

, (1.3)

where L is some length scale associated with the bulk geometry, usually the
AdS radius or the radius of the black hole. In the case of the eternal AdS black
hole, the surface B is the Einstein-Rosen bridge (ERB) connecting the time
slices tL and tR on the left and the right boundary. This can be seen in the left
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panel of figure 3. The CA proposal instead states that holographic complexity
is proportional to the gravitational action IWDW evaluated on the Wheeler-De
Witt (WDW) [58, 59]:

CA =
IWDW

π
. (1.4)

The WDW patch is defined as the union of all spacelike surfaces anchored at
the boundary time slice where the quantum state lives and can be regarded
as the causal development of the surface B defined for the CV conjecture. In
the left panel of figure 3, we can see the WDW patch in the eternal AdS black
hole, anchored at the time slices tL and tR on the left and right boundary.

Figure 3: B surface and WDW patch in the eternal AdS black hole. Figure
taken from [6].

In order to test those two conjectures, we need to calculate complexity in
the framework of the dual CFT. However, as it has been previously stated, at
the moment a precise definition of complexity in a pure quantum field theory
framework lacks completely and there is no method to evaluate complexity
in a strongly interacting CFT which is often of interest in holography. The
best that can be done for complexity is to calculate it for the Gaussian states
of the lattice version of a free quantum field theory. Then the divergence
pattern of complexity in the continuum limit of lattice free theories can be
compared to that of the gravitational observables for holographic complexity.
We stress that this comparison is not the one that should be rigorously made in
the framework of AdS/CFT correspondence, because holographic complexity
is computed in a general relativity framework and therefore the dual quan-
tum field theory complexity should be computed within the framework of a
strongly coupled CFT rather than in a free theory. The hope is that studying
complexity in the free theory, we can capture some of the general features
which are present also in the stongly interacting CFT.

In this thesis we aim at studying complexity for the ground state of the
harmonic chain with defect introduced in [62], in order to extract its divergence
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pattern in the continuum limit.
Such harmonic chain with defect realises in its massless continuum limit the

conformal interface described in [63]. Conformal interfaces are of great interest
in modern physics [64]: they can be regarded as one-dimensional objects that
connect two, possibly different, conformal field theories in two-dimensional
spacetime [63, 65–69]. In condensed matter physics, they have been applied
to two dimensional Ising model [65, 66], junctions of quantum wire [67–69],
and to the Kondo model [70, 71]. On the other hand, they have also been
largely studied in the context of the AdS/CFT correspondence, where they
occur when branes extend to the boundary [63, 72–74]. Among the many
applications of defects to holography, it has been recently seen that calculating
holographic complexity in a defect AdS3/CFT2 model might shed new light
in the search of the holographic dual to the complexity of the state living in
the boundary quantum field theory [75]. Interestingly, it has been seen that a
subleading logarithmic divergence appears in CV conjecture but not in CA. In
this thesis, we want to investigate if such subleading divergence is present or
not in the dual quantum field theory complexity. As mentioned before, this
comparison is meant to be qualitative.

Even if our main focus is complexity in presence of a defect, another quan-
tity of great relevance in quantum information and in AdS/CFT is - as we
briefly mentioned - entanglement entropy. Given a bipartite quantum mechan-
ical system A ∪ B in a pure state described by the density matrix ρ, we define
the reduced density matrix associated to the subsystem A as ρA = TrB ρ. Then,
the entanglement entropy associated to the bipartition A ∪ B is defined as the
Von Neumann entropy of the reduced density matrix ρA [76, 77]:

SA = −Tr
[
ρA log ρA

]
. (1.5)

If we consider a CFT defined on an infinite line, the entanglement entropy of an
interval of length l has a logarithmic scaling behavior at leading order [78–81]:

S(l) ' c

3
log

(
l

a

)

+ . . . (1.6)

where a is a cut-off length and c is the central charge of the model. In a CFT
defined on a seminfinite line with conformally invariant boundary conditions,
a similar result holds for the entanglement entropy of an interval of length l
with an end on the beginning of the seminfinite line [80, 81]:

S(l) ' c

6
log

(
l

a

)

+ . . . (1.7)

Once we consider systems with defects, the entanglement entropy asso-
ciated to the natural bipartition induced by a point-like defect turns out to
be one of the most intriguing properties [82]. If we consider two CFTs, one
defined on the half complex plane Re w > 0 and the other on Re w < 0, we
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can put a conformal invariant defect at Re w = 0 [83]. Then, the entanglement
entropy of an interval of length l with an end on the defect locus, is modified
replacing the central charge c in (1.6) with the coefficient ce f f ∈ [0, c] [83]:

S(l) '
ce f f

3
log

(
l

a

)

+ . . . (1.8)

The coefficient ce f f depends on the features of the conformal interface: in par-
ticular, we have that ce f f = 0 for a totally reflective interface and ce f f = c for a
totally transmissive interface. It has been calculated in [62] that in the contin-
uum limit for the critical harmonic chain defined on a segment with a defect
placed in the middle, the half chain entanglement entropy is that in (1.7), up to
the substitution of c with ce f f . This result was obtained also through numerical
computations [62]. Having developed the framework to study complexity for
the harmonic chain with defect, it is quite natural to repeat and extend slightly
the numerical computation in [62] for the entanglement entropy of the half
chain with defect. In this way, we can compare the behavior in the continuum
limit of the entanglement entropy to that of complexity.

This work is organized as follows. In section 2 we revise all the necessary
background for the complexity of pure state. We start with a brief review
of Nielsen’s approach in a quantum information framework, then we discuss
the extension of complexity to a lattice quantum field theory framework and
finally we revise the holographic prescriptions for the complexity of a pure
state. Then, in section 3 we discuss the harmonic chain with defect introduced
in [62]. In section 4, we present our numerical results for the complexity in
the harmonic chain with defect. Then, in section 5, we review the result for
the entanglement entropy of the half chain with defect and discuss a possible
relation with the results for complexity in section 4. Finally, in section 6 we
review the study of holographic complexity in presence of a defect [75] and
explain how it might be related to our results. Conclusions are drawn in
section 7. Moreover, some appendix, A, B and C, are present and contain
either technical details or straightforward extensions of the results presented
in the thesis.
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2 Complexity of Pure States in Quantum Field The-

ory and Holography

In this section we review the fundamental concepts related to the complexity
of a pure state. We start with a review of the tools developed in a quantum
information framework and then discuss how to extend them to the realm of
free scalar quantum field theories. Finally, we summarize the conjectures that
in the recent years were made for the holographic dual of the complexity of
the state defined in the boundary quantum field theory.

2.1 Complexity in Quantum Information

General Definition of Quantum Complexity The concept of complexity has
been studied in quantum information for a long time [1,2]. It basically refers to
the minimum number of operations which are needed to accomplish a certain
task. To be more precise, in the framework of a generic quantum mechanical
theory defined on the Hilbert space H, we need to specify these four elements:

• a reference state:
∣
∣ψR

〉
∈ H, (2.1)

• a target state:
∣
∣ψT

〉
∈ H, (2.2)

• a set of allowed unitary operators on our quantum computer, namely the
gates:

UI = e−iδtK̂I , (2.3)

where K̂I is a Hermitian operator and δt is an infinitesimal change in
time.

• a tolerance cutoff:
ε > 0, ε ∈ R. (2.4)

Then, we define as quantum computational complexity, the minimum number
of gates that are needed in order to reach target state from the reference up to
the chosen tolerance: ∥

∥
∥

∣
∣ψT

〉
−U

∣
∣ψR

〉
∥
∥
∥ ≤ ε. (2.5)

where
U = UI1

UI2
. . . . (2.6)

It is evident that estimating complexity using directly this definition is an
extremely difficult problem.
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Nielsen’s Approach A feasible and efficient method to approach this prob-
lem was developed by Nielsen and collaborators in [3–5]. Their idea was to
visualize the problem as a Hamiltonian control problem, where the discrete
string of gates in expression (2.6) is replaced by a Hamiltonian evolution:

U(t) =
←
T exp

[

−i
∫ t

0
dt̃H(t̃)

]

(2.7)

where
←
T is a left to right time ordering operator, t̃ is a time and H(t̃) is a

Hermitian operator playing the role of the Hamiltonian of the system. In order
to reproduce a circuit moving from reference

∣
∣ψR

〉
to target

∣
∣ψT

〉
, we impose

the following conditions:

U(0) = 1, U(1) = UT ,
∣
∣ψT

〉
= UT

∣
∣ψR

〉
. (2.8)

The Hamiltonian in equation (2.7) has the following structure:

H(t) = ∑
I

YI(t)KI , (2.9)

where YI(t) are the control functions determining which gate KI is turned on
at time t and the gate operators are taken as forming a basis for the space
of operators to which the Hamiltonian belongs. The control functions can be
regarded as the tangent vectors to the trajectory in the space of unitaries:

YI(t)KI =
dU(t)

dt
U−1(t). (2.10)

In order to estimate the cost associated to the choice of a certain path, one can
assign to each time step of the circuit a cost function [3]:

F(U(t), YI(t)), (2.11)

for which there is no preferential choice but rather a set of desirable properties:

• smoothness:
F ∈ C∞; (2.12)

• positive definiteness:

F ≥ 0 ∀ U, YI , F = 0↔ YI = 0; (2.13)

• triangle inequality:

F(U, YI + ỸI) ≤ F(U, YI) + F(U, ỸI) ∀ U, YI , ỸI ; (2.14)

• homogeneity:

F(U, λYI) = λF(U, YI) ∀ U, YI , λ ≥ 0. (2.15)
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Some possible choices for the cost functions are:

F1 = ∑
I

|YI |, F2 =
√

∑
I

(YI)2, . . . Fq =

(

∑
I

(YI)
q

) 1
q

. (2.16)

Then, we can define the length functional:

D(U) =
∫ 1

0
dt̃F(U(t̃), YI(t̃)), (2.17)

and find the path which has the minimal length. We identify complexity with
the length of such optimal path. Hence the problem of finding the complexity
of a certain task with a quantum computer is finally rephrased as that of
finding the minimal length path, namely a geodesic in the space of unitaries.
We should notice that the space of unitaries equipped with a cost function is a
manifold where the length between two points is defined. Furthermore, taking
F2 cost function we obtain the structure of a standard Riemannian geometry
with metric tensor GI J = δI J and length functional:

D(U) =
∫ 1

0
dt̃
√

GI JYI(t̃)YJ(t̃). (2.18)

In this specific case, we can use all the known techniques to find geodesics to
address the problem of finding complexity.

2.2 Complexity in Lattice Quantum Field Theory

Motivated by holographic conjectures for complexity, which will be described
in section 2.3, several attempts were made in order to take the tools developed
for complexity in quantum information and extend them to a quantum field
theory framework. In this section, we review some of the key ideas developed
to fulfill this task.

Set Up: Lattice of Harmonic Oscillators Given the complete lack of a quan-
tum field theory definition for complexity, the starting point of many recent
works on quantum field theory complexity [6,8], is the simplest model, i.e. the
free scalar field theory in 1+1 dimensions, whose Hamiltonian defined on a
segment of length L reads:

H =
1

2

∫ L

0
dx
[

π(x)2 + (∂xφ(x))2 + m2φ(x)2
]

, (2.19)

where φ(x) is the scalar field and π(x) is the conjugate momentum. These two
fields satisfy the standard equal time commutation relations for quantum field
theory:
[
φ(t, x), π(t, y)

]
= iδ(x− y),

[
φ(t, x), φ(t, y)

]
= 0,

[
π(t, x), π(t, y)

]
= 0.
(2.20)

15



Since we want to use Nielsen’s approach, which was developed for quantum
mechanical systems with a finite number of degrees of freedom, we regard
the Hamiltonian in expression (2.19) as the continuum limit of a quantum
harmonic chain of coupled oscillators. For this reason, we consider a discrete
version of Hamiltonian in formula (2.19), obtained placing our theory on a one
dimensional lattice of spacing δ:

H =
1

2

L/δ

∑
n=0

[

π2
n

δ
+ δ φ2

n +
1

δ

(
φn − φn+1

)2

]

, (2.21)

where φn and πn are the fields calculated in the space point x = nδ. Through
some simple identifications,

xn = δ
1
2 φn, pn =

πn

δ
1
2

, M =
1

δ
, Ω0 = m, K =

1

δ
, (2.22)

we can show that the lattice quantum field theory Hamiltonian is perfectly
equivalent to a quantum mechanical Hamiltonian of a system of coupled
harmonic oscillators:

H =
1

2

N

∑
n=0

[

p2
n

M
+ MΩ2

0x2
n + K (xn − xn+1)

2

]

, (2.23)

where the two dynamical variables satisfy the usual canonical commutation
relations, [

xi, pj

]

= iδij

[

xi, xj

]

= 0
[

pi, pj

]

= 0, (2.24)

which in the continuum limit give the canonical commutation relations in
formula (2.20).

Ground State Complexity of a Lattice of Coupled Harmonic Oscillators

The first approach to complexity in a lattice quantum field theory framework
was developed in [6], where the complexity associated to the ground state of
the harmonic chain of oscillators in formula (2.23) is computed. The reference
state is taken to be the maximally unentangled state, defined as the ground
state of a chain of decoupled oscillators of mass parameter ω0:

H =
1

2

N

∑
n=1

[

p2
n + ω2

0x2
n

]

. (2.25)

Periodic boundary conditions are taken for both Hamiltonians in expressions
(2.23) and (2.25). In terms of wavefunctions, we have that the target and
reference state read:

ψT,R =

(
det AT,R

π

) 1
4

exp

[

−1

2
xT AT,Rx

]

x = (x1, x2, . . . )T , (2.26)
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where we have that:

AR = ω01, AT =










Ω2
0 + 2K K

K Ω2
0 + 2K K

K Ω2
0 + 2K

. . .

. . .
. . .










. (2.27)

We introduce the normal mode basis x̃ and p̃ where the matrices ÃT and ÃR

are both in a diagonal form:

ÃR = ω01, ÃT =









ω̃0

ω̃1

ω̃2

. . .









, (2.28)

with:
ω̃2

n = Ω2
0 + 4K sin2 πn

N
n ∈ {0, 1, . . . , N − 1}. (2.29)

At this point, we ask ourselves what is the complexity associated to this family
of quantum circuits:

γ : ψR → ψT . (2.30)

In [6] the first cost function which is considered is the F2 cost function, which,
as explained at the end of section 2.1, gives to the space of unitary transfor-
mations the structure of a Riemannian manifold with metric tensor GI J = δI J .
However, identifying control functions YI by writing equation (2.10) using
a basis of the unitary operators acting directly on wavefunctions makes the
problem intractable. For this reason the authors of [6] decided to restrict to
the subspace of states whose wavefunction has the form described in equation
(2.26) where the matrices AT,R are replaced by a generic matrix A real and pos-
itive definite. For this peculiar class of states we can trade the wavefunctions
for such matrices A, which completely and uniquely characterize our state:

ψ(x) =

(
det A

π

) 1
4

exp

[

−1

2
xT Ax

]

←→ A real and positive. (2.31)

It is possible to rewrite the quantum circuits that remain within this subspace
of states, as linear operators G(t̃) ∈ GL(N,R) acting on the matrices A:

ÃT = G(t̃ = 1)ÃRGT(t̃ = 1). (2.32)

Among all the possible paths of the form described above, the optimal one
has been proved in [6] to be the straight line circuit, which directly amplifies
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the normal modes ω0 → ω̃n. For such optimal path, the operator G takes the
form:

G(t̃) = exp
[

M̃0 t̃
]

M̃0 = diag

(
1

2
log

ω̃0

ω0
,

1

2
log

ω̃1

ω0
, . . . ,

1

2
log

ω̃N−1

ω0

)

.

(2.33)
This result was shown to hold not only for F2 but for also for F1 and all the
Fq cost functions in formula (2.16). At this point, all that remains is to find
the control functions YI(t), which are useful to calculate complexity. With this
purpose, we notice that it is possible to rewrite equations (2.8) and (2.10) in a
version restricted to the GL(N,R) matrices acting on the A matrices:

G(t̃) =
←
T exp

[

−i
∫ t

0
dt̃ ∑

I

YI(t)MI

]

, YI(t)MI =
dG(t)

dt
G−1(t), (2.34)

where {MI}I form a basis for GL(N,R), which is formed by the matrices
having one entry equal to one and all the other entries null:

M1 =







1 0 · · ·
0 0 0
... 0

. . .







, M2 =







0 1 · · ·
0 0 0
... 0

. . .







, . . . (2.35)

Given the form of the optimal path, we can calculate control functions along it
by reverting the last equation in formula (2.34):

YI(t̃) = Tr
[

∂t̃G(t̃)G−1(t̃)MT
I

]

=⇒ YI(t̃) ≡
1

2
log

ω̃I

ω0
. (2.36)

Then the results for the complexity of the ground state of the harmonic chain of
oscillators can be straightforwardly derived computing the integral in formula
(2.17) along the optimal path:

C1 = ∑
i

∣
∣
∣
∣
log

ω̃i

ω0

∣
∣
∣
∣
, C2 =

1

2

√
√
√
√∑

i

(

log
ω̃i

ω0

)2

, Cq =
1

2q

(

∑
i

(

log
ω̃i

ω0

)q
) 1

q

.

(2.37)

Covariance Matrix Formalism for the Complexity of Gaussian States The
covariance formalism is a powerful tool which allows us to find a simple and
rather elegant formula - see equation (2.60) - for the complexity of a generic
Gaussian state with N bosonic degrees of freedom, provided that we special-
ize our discussion to F2 cost function. The first example of application of the
covariance matrix formalism to complexity is given in [8], to which we will
refer in our subsequent calculations. First of all, we consider the Hamiltonian
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in formula (2.23), whose dominion is contained in the Hilbert space of N har-
monic oscillator and focus on the pure Gaussian states. We define a Gaussian
state as that which has the most general Gaussian wavefunction:

ψ(xi) =
4

√

det
A

π
exp

[

−1

2
xi(Aij + iBij)xj

]

, (2.38)

where A and B are real bilinear forms and A is positive defined. We should
notice that such states represent a more general class of pure states than the
one considered in [6] and described in expression (2.31), which is reobtained
imposing the constraint B = 0. Those states are completely characterized
by the two point function of positions and momenta. Storing positions and
momenta together into a compact vector,

ri =
(

x1, . . . , xN , p1, . . . , pN

)
, (2.39)

we can express the two point function in terms of its symmetric and antisym-
metric part, respectively Gij and Jij:

〈
ψ
∣
∣rirj

∣
∣ψ
〉
=

1

2

(

Gij + i Jij

)

. (2.40)

Imposing the canonical commutation relations for a bosonic Gaussian state

[ri, rj] = i Jij J =

[

0 1

−1 0

]

, (2.41)

we notice that the antisymmetric part of the two point function is completly
fixed to be equal to the symplectic unit. We conclude that the Gaussian pure
state of a bosonic system made of N modes is completely and uniquely identi-
fied by the symmetric part of its two point functions , Gij, which is the bosonic
covariance matrix. At this point we wish to characterize the subgroup of uni-
tary transformations mapping a pure bosonic Gaussian state into another pure
bosonic Gaussian state, namely the Bogoliubov transformations. We consider
K̂ to be the quadratic form generating such subgroup:

K̂ =
1

2
rikijrj, (2.42)

and take kij to be a real symmetric form. The operator K̂ generates the unitary

transformation Û(t̃) which acts on Gaussian pure states as follows:

Û(t̃) = e−it̃K̂,
∣
∣Gt̃

〉
= Û(t̃) |G0〉 , (2.43)

and changes positions and momenta in this way:

Û(t̃)† ri Û(t̃) =
∞

∑
n=0

t̃n

n!
[iK̂, ri](n), (2.44)

19



where we used Baker-Campbell-Hausdorff formula and defined recursively
this operation:

[iK̂, ri](0) = ri [iK̂, ri](n) = [iK̂, [iK̂, ri](n−1)]. (2.45)

We can read off the matricial form K of the generator K̂:

Kij = Jinknj (2.46)

by simply applying the canonical commutation relation to the following com-
mutator:

[iK̂, ri] = Jinknjrj. (2.47)

Then we can write the matricial transformation U(t̃) generated by K as follows:

U(t̃) = et̃K
 Û†(t̃) ri Û(t̃) = U(t̃)ri . (2.48)

We still have to impose that the operator U(t̃) satisfies the canonical commuta-
tion relations, i.e. that it preserves the symplectic unit J:

U(t̃)JU(t̃)T = J. (2.49)

This leads to the condition for the generator K:

KJ + JKT = 0, (2.50)

and definitely tells us that the group of unitary transformations mapping
Gaussian states into Gaussian states is the 2N dimensional symplectic group:

U(t̃) ∈ Sp(2N,R), K ∈ sp(2N,R). (2.51)

At this point it is possible to rewrite the quantum circuit remaining within
the subspace of Gaussian states in terms of the operators U(t̃) acting on the
covariance matrices G:

Gij(t̃) =
〈

G(t̃)
∣
∣(rirj + rjri)

∣
∣G(t̃)

〉
=

=
〈

G(0)
∣
∣eit̃K̂(rirj + rjri)e

−it̃K̂
∣
∣G(0)

〉

= U(t̃)in U(t̃)mj

〈
G(0)

∣
∣(rnrm + rmrn)

∣
∣G(0)

〉

= U(t̃)in Gnm(0) U(t̃)mj.

(2.52)

and specialize to the the family of trajectories connecting reference and target
states:

G(t̃) = U(t̃)GRU(t̃)T t̃ ∈ [0, 1], (2.53)

where:
U(0) = 1 GT = U(1)GRU(1)T . (2.54)
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The operator U(t̃) defines the action of all the steps in the quantum circuit up
to time t̃ and can be regarded as:

U(t̃) =
←
T exp

∫ t

0
dt̃K(t̃) K(t̃) = YI(t̃)KI , (2.55)

where {KI}I forms a basis of generators of sp(2N,R). We can easily notice
the presence of an ambiguity: the transformation U(t̃) is defined up to the
stabilizer group, which is the subgroup of Sp(2N,R) preserving the covariance
matrix of the reference state and in our case corresponds to U(N):

StaGR
= {UR ∈ Sp(2N,R) | URGRUT

R = GR} ' U(N). (2.56)

In order to eliminate this ambiguity, we define the relative covariance matrix
∆, which expresses the relation between the target and reference covariance
matrices in a basis independent way:

∆ = GTG−1
R . (2.57)

Hence, every quantity that is invariant under Sp(2N,R) group is necessarily a
pure function of ∆. Once established the form for a quantum circuit connecting
the two Gaussian states as that of expression (2.55), we address the problem
of finding the minimal length functional for a given cost function. We recall
that the F2 cost function is such that it equips the Sp(2N,R) group with a
Riemannian metric of this form:

ds2 =
1

2
Tr
(

dUU−1GT(dUU−1)TG−1
R

)

=
1

2
Tr
(

K(t̃)GTK(t̃)TG−1
R

)

dt̃2. (2.58)

Now all that is left is the problem of finding the geodesic connecting reference
and target in such Riemannian manifold. The authors of [8] managed to
prove with Lie group techniques that the optimal path connecting two generic
Gaussian states can be expressed in terms of the relative covariance as follows:

γ := U(t̃) = e
t̃
2 log ∆. (2.59)

This yields an elegant formula for C2 complexity:

C2 =
1

2
√

2

√

Tr
[(

log ∆
)2
]

. (2.60)

2.3 Complexity in Holography

In this section we review the main conjectures related to the gravitational
observable dual to quantum field theory complexity for the state living in the
boundary. The two proposals at play are the so-called complexity equals volume
(CV) and complexity equals action (CA).
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Complexity equals Volume The conjecture complexity equals volume was for-
mulated by Susskind and collaborators in [52, 55]. It states that the complexity
associated to the quantum field theory state living on the boundary is dual to
the maximal volume codimension-one bulk surface anchored at the time slice
Σ living in the asymptotic boundary where the state is defined:

CV = max
Σ=∂B

[

V(B)
GN L

]

. (2.61)

with B corresponding to the bulk hypersurface of interest, GN to the Newton’s
constant of the bulk gravitational theory and L to the curvature radius of
AdS geometry. It is important to stress that in this conjecture the quantum
state in the boundary is assumed to be a pure state. What led Susskind and
collaborators to elaborate CV is the observation that the almost linear growth
at late time of the Einstein-Rosen bridge cannot be adequately probed by
holographic entanglement entropy [84]. Hence, they hypothesized that such
linear growth could be considered in analogy to the corrsponding property of
the complexity of the quantum state living in the boundary. We can see that
the prescription in formula (2.61) reproduces such late time linear growth in
the case of the eternal AdS black hole in d+1 dimensions, described by the
following metric:

ds2 = − f (r)dt2 +
dr2

f (r)
+ r2dΣ2

k,d−1, f (r) = k +
r2

L2
− ωd−2

rd−2
, (2.62)

where k ∈ 0,±1 is the curvature of the (d-1)-dimensional line element dΣ2
k,d−1

and ω is related to the position of the black hole horizon:

ωd−2 = rd−2
h

(

k +
r2

h

L2

)

. (2.63)

In [85–87], complexity has been calculated for such black hole using the CV
prescription and it has been shown that:

dC
dt

= −Ωk,d−1

GN L
E, (2.64)

where E is a conserved quantity and Ωk,d−1 is the dimensionless volume of
the (d− 1)-dimensional spatial geometry. In particular in [55, 87], it has been
seen that in the case of a planar AdS black hole (k=0) complexity is such that:

dC
dt
|t→∞ =

8π

d− 1
M, (2.65)

where M is the mass of the black hole. This clearly hints that the observable
we defined as the holographic dual of complexity exhibits a late time linear
growth, which constitutes an argument in favor of CV conjecture.

22



Complexity equals Action The conjecture complexity equals action (CA) has
been formulated in [58, 59]. It tells that the complexity is proportional to the
gravitational action evaluated on the Wheeler-DeWitt (WDW) patch, which is
defined as the union of all spacelike surfaces anchored at the boundary time
slice where the quantum state lives:

CA =
IWDW

π
. (2.66)

It is evident that the spacelike region corresponding to WDW patch may have
a very complicate shape, and therefore it might be difficult to evaluate on it
the gravitiational action. In [88], we can find the prescriptions for the precise
evaluation of the action integral on WDW patch, whose general form is written
below,

IWDW = IEH + IGHY + INULL + ICT + IJOINTS, (2.67)

and contains all those terms:

• IEH is the bulk Einstein-Hilbert action;

• IGHY is the Gibbons-Hawking-York action for timelike and spacelike
boundaries of WDW patch;

• INULL is the action on null boundaries of WDW patch;

• ICT is the counterterm introduced to ensure parametrization invariance
of INULL;

• IJOINTS is the action calculated at the intersections of two surfaces at the
boundary of the WDW patches.

We do not enter into further technical details, which can be found in [88],
because it would be out of the scope of this project. Finally, we just recall
that the late time linear growth, which is expected to be a general feature of
complexity, is recovered also with CA prescription in the framework of the
eternal black hole described by metric in formula (2.62). In fact, in [87], it has
been shown that complexity associated to such black hole in CA conjecture is
such that at late time it grows linearly in this way:

dCA

dt
|t→∞ =

2M

π
, (2.68)

where M is taken to be the black hole mass. This is a sign that CA can be
taken as an equivalently good conjecture to describe the gravitational dual of
quantum field theory complexity.
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3 The Harmonic Chain with Defect

In this section we describe the set up to be considered in our calculations for C2

complexity. We first describe the harmonic chain with defect introduced in [62]
and discuss the possible boundary conditions. We then proceed to discuss
the diagonalization of its Hamiltonian and finally we compute momentum
and position correlators to be used in the calculations of complexity for the
Gaussian states.

3.1 Harmonic Chain with Defect on a Segment

Chain on the Segment We consider the harmonic chain which is introduced
in [62], whose Hamiltonian is defined on a segment, is made of 2L sites and
contains a scale invariant defect. It reads:

H =
L

∑
n=1

(

p2
n

2m1
+

1

2
m1Ω2

0x2
n

)

+
L−1

∑
n=1

(
m1

2
(xn − xn+1)

2

)

+

+
1

2
K0(xL − xL+1)

2+

+
2L

∑
n=L+1

(

p2
n

2m2
+

1

2
m2Ω2

0x2
n

)

+
2L−1

∑
n=L+1

(
m1

2
(xn − xn+1)

2

)

,

(3.1)

where Ω0 is the mass of the chain in the limit where the defect is absent and
m1, m2 and K0 are all parameters dependent on the so called defect strength
θ ∈ R:

m1 = eθ m2 = e−θ K0 =

[

1

2

(
1

m1
+

1

m2

)]−1

=
1

cosh θ
. (3.2)

We have that the canonical commutation relations hold:
[

xi, pj

]

= iδij

[

xi, xj

]

= 0
[

pi, pj

]

= 0. (3.3)

For reasons which will be more clear at the end of this section, we will call
this set of coordinates, as Extended Coordinates. The intuitive argument is that
the effect of changing the parameter θ in this coordinate system is two sided:
on one hand it modifies the spring constant K0 in the locus of defect, and on
the other, it is spread throughout the chain because of m1 and m2.

Boundary Conditions We notice that the harmonic chain in [62] is such that
no interaction with the walls occurs, as it is pictorially represented in figure
4. This means that in the continuum limit we obtain a quantum field theory
defined on segment with Hamiltonian in formula (2.19) with von Neumann
boundary conditions:

∂xΦ(t,~x)|x=0,L = ∂xΠ(t,~x)|x=0,L = 0. (3.4)

25



However, if we wanted, we could easily extend our discussion to the case
where chain is attached to two rigid walls, i.e where Dirichlet boundaries,
q0 = q2L+1 = 0 and p0 = p2L+1 = 0, are imposed. This situation is pictorially
represented in figure 5. Notice that the only difference between the two cases
consists in the interaction with the fixed boundaries, which would result in a
slight change in the spectrum and the eigenfunctions but not in the structure
of the problem.

m1Ω2
0 m1Ω2

0 m2Ω2
0 m2Ω2

0K1 K0 K2

Figure 4: Harmonic Chain with Defect.No Boundary Conditions.

m1Ω2
0 m1Ω2

0 m2Ω2
0 m2Ω2

0K1 K1 K0 K2 K2

Figure 5: Harmonic Chain on a Segment.Dirichlet Boundary Conditions.

Scale Invariance We have that this choice of the parameters implies that the
spectrum of our chain is scale invariant: in fact, we have that the spectrum
depends on the ratio between the spring constants and the parameter mi with
i = 1, 2. On the left and right side we have that the spring constants are
respectively m1 and m2, and such ratio is equal to one. On the contact point
instead, we have to compare the spring constant K0 with the reduced mass
mred:

mred = 2

(
1

m1
+

1

m2

)−1

 

K0

mred
= 1. (3.5)

Localized Coordinates We can look at the problem in a different coordinate
system. We may absorb m1 and m2 in the dynamical variables through a
canonical transformation:






pi −→ pi√
m1

i ∈ 1, . . . , L

pi −→ pi√
m2

i ∈ L + 1, . . . , 2L







qi −→ qi
√

m1 i ∈ 1, . . . , L

qi −→ qi
√

m2 i ∈ L + 1, . . . , 2L
,

(3.6)
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which can be easily seen to be canonical and to bring the Hamiltonian in
equation (3.1) into the following form:

H =
L

∑
n=1

(

p2
n

2
+

1

2
Ω2

0x2
n

)

+
L−1

∑
n=1

(
1

2
(xn − xn+1)

2

)

+

+
1

2

K0

m1
x2

L +
1

2

K0

m2
x2

L+1 − K0xLxL+1

+
2L

∑
n=L+1

(

p2
n

2
+

1

2
Ω2

0x2
n

)

+
2L−1

∑
n=L+1

(
1

2
(xn − xn+1)

2

)

.

(3.7)

We can rewrite the Hamiltonian in equation (3.7) using a matricial notation:

H =
1

2
~p · ~p +

1

2
~x · V~x (3.8)

where:

V =




























Ω2
0 + 1 −1
−1 Ω2

0 + 2 −1

−1 Ω2
0 + 2

. . .

. . .
. . . −1

−1 Ω2
0 +

K0
m1

+ 1 −K0

−K0 Ω2
0 +

K0
m1

+ 1 −1

−1
. . .

. . .

. . . Ω2
0 + 2 −1

Ω2
0 + 2 −1
−1 Ω2

0 + 1




























.

(3.9)

Since C2 complexity is in general basis dependent, we will study it in both
coordinate system: we will call the first one as Extended Coordinates whereas
the other coordinates will be named Localized Coordinates. The reason for
introducing this new coordinate system is that if we change θ, this affects only
the spring constant and the mass parameters near the defect locus.

3.2 Spectrum of the Harmonic Chain with Defect

We first analyze the spectrum of the harmonic chain with defect defined on a
segment, following the methods developed in [62]. Since the change of basis
in formula (3.6) is canonical, we might refer equivalently to the Hamiltonian
in formula (3.1) or to that in formula (3.7).

Homogeneous Problem In order to find the spectrum of the model, we
first look at the problem for the homogeneous chain, where the matrix to be
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diagonalized is given by the no defect limit of the matrix in (3.9):

VHom =



























Ω2
0 + 1 −1
−1 Ω2

0 + 2 −1

−1 Ω2
0 + 2

. . .

. . .
. . . −1
−1 Ω2

0 + 2 −1
−1 Ω2

0 + 2 −1

−1
. . .

. . .

. . . Ω2
0 + 2 −1

Ω2
0 + 2 −1
−1 Ω2

0 + 1



























.

(3.10)

Following [62], we see that the eigenvalues of the homogeneous problem are:

Ω2 hom
m = Ω2

0 + 2

(

1− cos
(m− 1)π

2L

)

m ∈ 1, . . . , 2L, (3.11)

whereas the eigenfunctions are:

Φhom
m (n) =

√

1

2L
m = 1, n ∈ 1, . . . , 2L, (3.12)

Φhom
m (n) =

√

1

L
cos

(n− 1
2 )(m− 1)π

2L
m ∈ 2, . . . , 2L, n ∈ 1, . . . , 2L. (3.13)

Inhomogeneous Problem We now wish to move to the inhomogeneous prob-
lem. Following [62], we make the ansatz that the spectrum remains the same:

Ωm = Ωhom
m , (3.14)

whereas the eigenfunctions are modified with a defect dependent factor:

Φm(n) =







αmΦhom
m (n) n ∈ 1, . . . , L

βmΦhom
m (n) n ∈ L + 1, . . . , 2L

αm ∈ R, βm ∈ R. (3.15)

We can find αm and βm requiring two conditions:

• Orthonormality of the Eigenfunctions:

2L

∑
j=1

Φm(j)Φn(j) = δnm, (3.16)

which implies that:

[αmαn + (−)m+nβmβn]
L

∑
j=1

Φhom
m (j)Φhom

n (j) = δmn. (3.17)
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• Eigenvalue equations at the defect interface:




−1 Ω2

0 +
K0
m1

+ 1 −K0 0

0 −K0 Ω2
0 +

K0
m1

+ 1 −1












αmΦhom
m (L− 1)

αmΦhom
m (L)

βmΦhom
m (L + 1)

βmΦhom
m (L + 2)







= Ωhom

m

[

αmΦhom
m (L)

βmΦhom
m (L + 1)

]

,

(3.18)

which implies that:

αmβm = K0 =
1

cosh θ
. (3.19)

Solving the constraints given by equations (3.17) and (3.19), we find that:

α2
m = 1 + (−)m+1 tanh θ m ∈ {1, . . . , L}, (3.20)

β2
m = 1 + (−)m tanh θ m ∈ {L + 1 . . . 2L}. (3.21)

Solving the Orthonormality Condition We now focus on the derivation of
equation (3.17). First, we rewrite the orthonormality condition in formula
(3.16) as follows:

αnαm Anm + βnβmBnm = δnm, (3.22)

where:

Anm =
L

∑
j=1

Φhom
m (j)Φhom

n (j) Bnm =
2L

∑
j=L+1

Φhom
m (j)Φhom

n (j). (3.23)

We may exploit the reflection symmetry with respect to the defect point of the
harmonic chain defined on a segment and find that:

Φhom
m (2L− j) = (−)m−1Φhom

m (j) =⇒ Bnm = (−)n+m Anm. (3.24)

This leads to: (

αnαm + (−)n+mβnβm

)

Anm = δnm, (3.25)

where Anm can be evaluated as follows:

Anm =







1
2 n = m

0 m− n 6= 0, even

1
4L

[
sin ( π

2 (m−n))
sin ( π

4L (m−n))

]

m− n 6= 0, odd

. (3.26)

Solving the Eigenvalue Equations on Defect Interface Finally, we special-
ize our discussion to the derivation of the constraint in equation (3.19). Given
the ansatz in expression (3.14), we consider the homogeneous eigenvalue equa-
tions:

Ωhom
m Φhom

m (L) =
[

−1 Ω2
0 + 2 −1

]






Φhom
m (L− 1)
Φhom

m (L)
Φhom

m (L + 1)




 , (3.27)

29



Ωhom
m Φhom

m (L + 1) =
[

−1 Ω2
0 + 2 −1

]






Φhom
m (L)

Φhom
m (L + 1)

Φhom
m (L + 2)




 , (3.28)

and we plug them in equation (3.18), getting that:






(
K0
m1

)

αn αn − K0βn

βn − K0αn

(
K0
m2

)

βn






[

Φhom
m (L)

Φhom
m (L + 1)

]

= 0. (3.29)

We impose the condition that the determinant of the matrix of the above
equation is null and obtain that:

− 2αnβn + K0(β2
n + α2

n) = 0. (3.30)

We use equation (3.25) in the case where n = m, to find that:

α2
n + β2

n = 2 =⇒ αnβn = K0. (3.31)

3.3 Second Quantization for the Harmonic Chain with Defect

We wish to transform the Hamiltonian in equations (3.7) and (3.8) into the
Hamiltonian of a chain of decoupled oscillators, through a canonical trans-
formation. Then, we wish to define a second quantization Hamiltonian as
in equation (3.36) and to find the change of basis connecting our dynamical
variables to second quantization operators.

Structure of the Orthogonal Change of Basis We wish to define the orthog-
onal matrix Pij(θ), which induces the following change of basis:

[

~̃x

~̃p

]

=

[

P(θ)T 0

0 P(θ)T

] [

~x
~p

]

, (3.32)

such that:

• it is canonical;

• it reshapes the Hamiltonian of our problem in this way:

H =
1

2
~p · ~p +

1

2
~x · V~x =

=
1

2
(P(θ)T

~p) · (P(θ)T
~p) +

1

2
(P(θ)T

~x) · P(θ)TVP(θ)
︸ ︷︷ ︸

Diag(Ω2
1,...Ω2

2L)

P(θ)T
~x =

=
1

2

2L

∑
i=1

(

p̃2
i + Ω2

i x̃i

)

.

(3.33)
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If we consider the Hamiltonian in the Localized Basis in (3.7), the matrix P(θ),
containing on the columns the eigenvectors, has the following form:

Pij(θ) = Dij(θ)Φ
hom
j (i). (3.34)

The coefficient Dij(θ) encloses the dependence from the defect and takes this
form:

Dij(θ) =







√

1 + (−)j+1 tanh θ i ∈ {1, . . . , L}
√

1 + (−)j tanh θ i ∈ {L + 1 . . . 2L}
. (3.35)

Second Quantization Hamiltonian At this point is possible to write the
Hamiltonian above in terms of the second quantization operators:

H =
2L

∑
i=1

Ωi

(

â†
i âi +

1

2

)

, (3.36)

where:

âi =

√

Ωi

2

(

x̃i + i
p̃i

Ωi

)

, â†
i =

√

Ωi

2

(

x̃i − i
p̃i

Ωi

)

. (3.37)

We can build up a closed expression for the change of basis connecting the
operators xi and pi figuring in the original Hamiltonian, either in the Extended
Basis or in the Localized Basis, to the second quantization operators âi and â†

i .
We first invert formulas in equation (3.37):







x̃i =
1√
2Ωi

(

âi + â†
i

)

,

p̃i =
√

Ωi
2

1
i

(

âi − â†
i

) . (3.38)

We then invert (3.32) and plug the result of such an inversion into equation
(3.38). In this way we obtain the desired change of basis for the Localized
Basis:







xi = ∑
2L
j=1 Pij(θ)x̃j

pi = ∑
2L
j=1 Pij(θ) p̃j

−→







xi = ∑
2L
j=1

1√
2Ωj

Pij(θ)
(

âj + â†
j

)

pi = ∑
2L
j=1

√
Ωj

2
1
i Pij(θ)

(

âj − â†
j

) . (3.39)

We finally rescale the masses and obtain the desired change of basis for the
Extended Basis:







xi = ∑
2L
j=1

1√
2miΩj

Pij(θ)
(

âj + â†
j

)

pi = ∑
2L
j=1

√
Ωjmi

2
1
i Pij(θ)

(

âj − â†
j

) . (3.40)
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We conclude with the most general form for the relation linking qi and pi to
â†

i and âi:







xi = ∑
2L
j=1

[
1√
mi

]
1√
2Ωj
Dij(θ)Φ

hom
j (i)

(

âj + â†
j

)

pi = ∑
2L
j=1

[√
mi

]
√

Ωj

2
1
iDij(θ)Φ

hom
j (i)

(

âj − â†
j

) , (3.41)

where the dependence on the defect strength θ is all contained in the masses
mi, which appear only in the case we use the Extended Basis, and in the matrix
Dij(θ). We put into square brackets the multiplicative factor which should be
added if we want to switch from the Localized Basis to the Extended Basis.
This convention will be kept also in the subsequent sections.

3.4 Correlators and Covariance Matrix

General Form of Correlators We wish to build the 2-points correlator for
positions and momenta, 〈qiqj〉 and 〈pi pj〉, which can be rewritten using the
change of basis in equation (3.41):

〈xixj〉 =
[

1
√

mimj

]
2L

∑
n=1

2L

∑
m=1

√

1

2Ωn

√

1

2Ωm
Din(θ)Djm(θ)Φ

hom
n (i)Φhom

m (j)

〈0|
(

ân + â†
n

) (

âm + â†
m

)

|0〉
,

(3.42)

〈pi pj〉 =
[
√

mimj

] 2L

∑
n=1

2L

∑
m=1

√

Ωn

2

√

Ωm

2
Din(θ)Djm(θ)Φ

hom
n (i)Φhom

m (j)

(
1

i

)2

〈0|
(

ân − â†
n

) (

âm − â†
m

)

|0〉 .

(3.43)

Considering that:

〈0|
(

ân + â†
n

) (

âm + â†
m

)

|0〉 = 〈0| ân â†
m |0〉 = δnm, (3.44)

(
1

i

)2

〈0|
(

ân − â†
n

) (

âm − â†
m

)

|0〉 = 〈0| ân â†
m |0〉 = δnm, (3.45)

we can further simplify expressions in equations (3.42) and (3.43):

〈xixj〉 =
[

1
√

mimj

]
2L

∑
n=1

1

2Ωn
Din(θ)Djn(θ)Φ

hom
n (i)Φhom

n (j), (3.46)

〈pi pj〉 =
[
√

mimj

] 2L

∑
n=1

Ωn

2
Din(θ)Djn(θ)Φ

hom
n (i)Φhom

n (j). (3.47)
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Some explicit calculations for the above correlators are contained in appendix
A.

Covariance Matrix Then, our covariance matrix γ is the 4L× 4L block diag-
onal matrix:

G =

[

X
P

]

, (3.48)

where:

X =







x1,1 . . . x1,2L
...

. . .
...

x2L,1 . . . x2L,2L







, P =







p1,1 . . . p1,2L
...

. . .
...

p2L,1 . . . p2L,2L







. (3.49)

We can rewrite the covariance matrix in this form:

GT =
1

2

(

P(θ)Ω−1P(θ)⊕ P(θ)ΩP(θ)
)

, (3.50)

where P(θ) is defined by condition (3.34) and Ω is the diagonal matrix con-
taining the spectrum of the Hamiltonian:

Ω = diag(Ω1, . . . , Ω2L). (3.51)

Linear Approximation for Covariance Matrix with Defect We want to study
how the presence of a defect modifies the covariance matrix in absence of
defect at first order in θ. We wish to obtain the matrix Glin figuring in the first
order Taylor expansion of the covariance matrix G(θ):

G(θ) ' G0 + θ Glin + O(θ2). (3.52)

Then we plug the expansion in formula (3.52) into the expression (2.60) for C2

complexity. We obtain an expression for complexity at first order in θ, taking
as reference state the no defect ground state and taking as target state the
ground state of the defect chain with small θ:

C2 =
θ

2
√

2
Tr
[

GlinG−1
0

]

+ O(θ2). (3.53)

Some explicit calculations for Glin in the Localized Coordinates are contained
in appendix A.

Large θ limit for the Covariance Matrix with Defect We wish to investigate
the form that correlators in equations (3.46) and (3.47) assume in the limit
where θ → ∞. We only analyze the case where Localized Coordinates are
used, because, if we use Extended Coordinates we obtain some correlators
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which are ill defined. Pictorially, using the Localized Basis, we obtain that the
harmonic chain in the θ → ∞ is formed by two detached harmonic chains of
length L with mass parameter Ω0. To be more specific, we have that the matrix
Dij(θ) assumes the following form:

Dij|θ→∞ =







√

1 + (−)j+1 i ∈ {1, . . . , L},
√

1 + (−)j i ∈ {L + 1 . . . 2L}.
(3.54)

We can obtain the correlators in the limit θ → ∞ by simply plugging formula
(3.54) into expressions for correlators in (3.46) and (3.47).

3.5 Complexity with Maximally Unentangled Reference State

In this section we want to show that C2 complexity is basically unaffected by
the presence of the defect, if we take as reference the maximally unentangled
state, which is the ground state of the Hamiltonian of decoupled oscillators
in formula (2.25). The covariance matrix of this reference state is the tensor
product of two matrices proportional to the identity:

GR =
1

2ω0
1⊕ ω0

2
1. (3.55)

As a target state we choose the ground state of the Hamiltonian of the harmonic
chain with defect in Localized Coordinates described in section 3.1, whose
covariance matrix is given by expression (3.50). Hence, we can write down the
relative covariance matrix ∆:

∆ = GTG−1
R

=

(

ω0P(θ)Ω−1P(θ)T ⊕ 1

ω0
P(θ)ΩP(θ)T

)

,
(3.56)

where P(θ) is the change of basis defined in equation (3.34) and Ω is the
diagonal matrix containing the spectrum defined in equation (3.51). We notice
that ∆ enters into the formula (2.60) for C2 complexity of Gaussian states
through the trace of the square its logarithm:

Tr
(
log ∆

)2
= Tr

(

log

[

ω0P(θ)Ω−1P(θ)T ⊕ 1

ω0
P(θ)ΩP(θ)T

])2

. (3.57)

Then we can take the orthogonal change of basis P(θ)⊕ P(θ) out of the matrix
logarithm and exploit the invariance of the trace under orthogonal transforma-
tions:

Tr
(
log ∆

)2
= 2

2L

∑
i=1

(

log
Ωi

ω0

)2

. (3.58)
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Then, we see that C2 complexity is independent of the defect parameter θ:

C2 =
1

2

√
√
√
√

2L

∑
i=1

(

log
Ωi

ω0

)2

. (3.59)

This is exactly the result in formula (2.37), obtained in [6] for the C2 complexity
of the pure state of a harmonic chain without any defect. Hence, if we consider
the maximally unentangled state as the reference state, we obtain that C2 does
not feel the presence of the defect for any number of sites in the lattice.
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4 Complexity for Harmonic Chain with Defect

In this section we study numerically the C2 complexity associated to the ground
state of the harmonic chain with defect described in section 3. Our aim is to
extract the divergence structure of C2 in the continuum limit.

4.1 Preliminaries

We make some preliminary considerations, which are useful to understand
the results shown in the subsequent sections.

Target and Reference States We notice that the ground state of the harmonic
chain with defect treated in section 3.1 is generally characterized by two dif-
ferent parameters:

|G.S.〉 = |Ω0, θ〉 , (4.1)

which are defined in the Hamiltonian given by expression (3.1). We choose as
reference state the ground state with no defect (θ = 0) and as target state the
ground state with defect inserted (θ 6= 0) and with the same mass parameter
Ω0. Then we find C2 complexity of quantum circuits connecting those two
states:

γ :
∣
∣
∣Ω0, θR = 0

〉

−→
∣
∣
∣Ω0, θT = θ 6= 0

〉

Ω0 ∈ R, θ ∈ R. (4.2)

This family of circuits corresponds to the red line in figure 6.

|Ω0, θ = 0〉

R

|Ω0, θ 6= 0〉

Figure 6: Quantum circuits connecting the chosen reference state R, and the
gorund states of the harmonic chains with and without defect, |Ω0, θ = 0〉
and |Ω0, θ〉.

It should be stressed that this choice for the reference state is unusual, since in
all the recent literature about complexity in quantum field theory the reference
state is taken to be the maximally unentangled one, defined in section 2.2. If
we followed the same path outlined in [6], we should have considered the
C2 complexity of going from the chosen reference state R to the ground state
of the harmonic chain with defect |Ω0, θ〉 and eventually compare it to the
complexity of going form the same reference state to the ground state of the
same harmonic chain with no defect |Ω0, θ = 0〉. The corresponding families
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of circuits are represented by the black lines in figure 6. However, we have
seen in section 3.5 that the choice of the maximally unentangled reference
state implies that C2 complexity does not feel the presence of the defect. We
will show instead, that the C2 complexity associated to the family of paths in
formula (4.2) gives interesting results.

Continuum limit of a discrete lattice of harmonic oscillators In the follow-
ing sections we will often mention the continuum or, equivalently, the quantum
field theory limit of the harmonic lattice of oscillators. In this paragraph we
briefly clarify the meaning of such an expression. Given the parameter Ω0 we
define the following dimensionless quantity: 2LΩ0. For dimensional reasons,
we assume that the quantum field theory limit is obtained increasing the num-
ber of sites 2L in our chain while keeping 2Ω0L fixed. We point out that this
limit is exactly the one studied in [62] to obtain the entanglement entropies. If
2Ω0L 6= 0, we have the massive quantum field theory, whereas, if 2Ω0L = 0 we
obtain the massless or CFT limit. However, we cannot set sharply 2Ω0L = 0,
i.e. Ω0 = 0, because of the presence of a zero mode in the eigenspectrum.
Hence, we will consider the massless limit as that which is reached when
2Ω0L is sufficiently small to make the curve that we are studying collapse
when 2Ω0L decreases further.

4.2 Numerical Results on the Segment

We study C2 complexity by means of formula (2.60) for the quantum circuit
described in expression (4.2). We refer to the harmonic chain with defect
defined on a segment described in section 3.1.

4.2.1 Localized Coordinates

We consider the Hamiltonian of our system in the Localized Coordinates as in
formula (3.7) and therefore we use the correlators defined in equations (3.46)
and (3.47) without the multiplicative factor in the square brackets.

Logarithmic Divergent Behavior We are interested at the divergence struc-
ture of C2 complexity in quantum field theory limit. In figure 7, we plot the
dependence of C2 as a function of the logarithm of the total number of sites
Log(2L). First in figure 7a, we display results only for the case where θ = 1,
varying the parameter 2Ω0L in the following range:

2Ω0L ∈ {10−6, 10−4, 10−2, 1, 102}. (4.3)

Then, in figure 7b, we fix 2Ω0L = 10−4 and vary the parameter θ in the
following range:

θ ∈ {0.1, 0.5, 1.0, 5.0, 10.0}. (4.4)
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We clearly see the presence of a logarithmic divergence structure in all the
cases mentioned above. This is proved fitting the behaviour of C2 complexity
with the following logarithmic model:

C2 ' a(θ) log (2L) + b(θ) L→ ∞. (4.5)

Results of this fit can be seen in figure 7 where the fit line perfectly overlaps the
empty markers which represent the outcomes of our numerical computations.
However, we have to observe that the coefficients a(θ) and b(θ) are not fixed
if we perform the fit in different ranges of 2L, but converge to an asymptotic
value only in the quantum field theory limit defined in section 4.1. This is
discussed in appendix B: we can say that the convergence of a(θ) and b(θ) to
their asymptotic value in the continuum limit is almost reached for 2L as high
as 2L > 1400.

Coefficient of the Logarithmic Divergence We wish to study the depen-
dence of the coefficient a(θ) in expression (4.5) on the defect parameter θ.
Hence, we perform the logarithmic fit in the range

2L ∈ [1400, 1800], (4.6)

where we are sure that the continuum limit is reached, and extract fit parame-
ters for various values of θ. In figure 8, we plot a(θ) for several values of the
adimensional parameter 2Ω0L listed in (4.3). First, in figure 8a, we observe
what happens varying θ within a range as wide as six orders of magnitude:

θ ∈ [10−5, 10], (4.7)

and deduce that the growth of a(θ) is monotonic in θ and shows three regimes:

• Initial linear growth;

• Rapid transient between the the initial and the asymptotic regime;

• Final saturation.

The initial linear growth and the final saturation can be both obtained with an
independent numerical method. In order to recover the initial linear growth,
we use formula (3.53) to compute complexity at first order in θ in its quantum
field theory limit. Then we perform a logarithmic fit with the model in formula
(4.5) and extract the coefficient a(θ) at first order in θ. This coefficient is given
by the dashed line in figure 8a. If instead, we want to obtain the saturation
value of C2 we have to write correlators in the θ → ∞ limit using the prescrip-
tion in formula (3.54) and then compute C2 in the quantum field theory limit.
At this point, we perform a fit with the model in equation (4.5) and extract the
saturation value of a(θ) for θ → ∞. This coefficient corresponds to the dashed
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line in figure 8b. In this way we have realized two important self consistency
checks, which, as it can be seen in figure 8, are fully satisfied.
Regarding the massless limit, we see that the curves for a(θ) clearly collapse in
the limit where the dimensionless parameter 2Ω0L is small only for θ ≥ 10−2.
Finally, looking at the plot in figure 8b, we see the coefficient a(θ) in the
restricted range θ ∈ [0.1, 10.0], and notice that the massless limit is safely
reached already for 2Ω0L = 10−4 in such range of θ.
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Figure 7: Logarithmic divergence of C2 complexity in Localized Coordinates
in the continuum limit
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Figure 8: Coefficient a(θ) in formula (4.5) for various values of 2Ω0L.
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4.2.2 Extended Coordinates

We consider the Hamiltonian of our system in the Extended Coordinates as in
formula (3.1) and therefore we use the correlators defined in equations (3.46)
and (3.47) including the multiplicative factor in square brackets.

Volumic Divergent Behavior We study again the divergence structure of C2

complexity in quantum field theory limit along the circuit in formula 4.2. In
figure 9, we plot the the behavior of C2 as a function of the square root of the
number of sites

√
2L, first keeping fixed 2Ω0L and then keeping fixed θ. We

clearly see the presence of a leading divergence proportional to
√

2L. To prove
this, we perform a fit with the following model,

C2 ' d(θ)
√

2L + e(θ), 2L→ ∞ (4.8)

and see that the fit line perfectly crosses the empty markers in figure 9. Even
in this case, the coefficients d(θ) and e(θ) reach their true value only asymptot-
ically in the quantum field theory limit. Using methods analogous to those in
appendix B, we checked that for 2L as high as 400 sites, the continuum limit
is well reached.

Coefficient of the Volumic Divergence We choose a range of 2L where the
quantum field theory limit is safely reached:

2L ∈ [400, 700], (4.9)

and we study the behavior of the coefficient d(θ) in formula (4.8). We see
that the coefficient d(θ) seems to have a linear increase in θ according to the
following model:

d(θ) ' 1

2
θ + O(1). (4.10)

This is perfectly visible in figure 10, where values of d(θ) perfectly fall on the
line defined in equation (4.10).

Comparison with C2 in Localized Coordinates We have seen that even a
simple and canonical change of coordinates as that in (3.6), modifies dramati-
cally the divergence structure of C2 complexity. This is not surprising, given
the basis dependence of complexity. To better understand this point, we can
think of the meaning of modifying the parameter θ in the Localized and in the
Extended Basis. If we consider the Hamiltonian in Extended Coordinates, as
in formula (3.1), we see that a change in θ affects both the spring constant in
the defect location and the masses m1,2 of all the sites in the chain. This tells
us that a quantum circuit like that in formula (4.2), which basically changes
only θ, involves all the sites in the chain: therefore, it is expected that the
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complexity associated to such circuit scales with a power law in the number
of sites in the chain. Considering the infinite θ limit, we obtain this behavior
of the parameters:

m1 → ∞ m2 → 0 K0 → 0, (4.11)

which corresponds to the situation where we have two detached chains whose
respective Hamiltonians are ill defined. This is the reason why the coefficient
d(θ) in figure 10 does not saturate for θ → ∞. If, instead, we consider the
Hamiltonian in Localized Coordinate, as in formula (3.7), we see that varying
θ corresponds simply to changing m1 and m2 in the two sites close in the
defect locus and the spring constant between them. This makes us infer that
the effect of the family of circuits in expression (4.2) is localized in the region
near the defect locus. Hence, we do expect a divergence patter weaker than
a power law for the corresponding C2 complexity: through our analysis we
found that the UV divergence structure of C2 complexity is logarithmic. In
the θ → ∞ limit, the situation that we obtain is very different: we have two
detached chains, each with a well defined Hamiltonian of mass parameter Ω0.
For this reason the saturation of the coefficient a(θ) in figure 8 is perfectly
expected.
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Figure 9: Volumic divergence of C2 complexity in Extended Coordinates in
continuum limit.
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Figure 10: Coefficient d(θ) in formula (4.5) for various values of 2Ω0L.
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4.3 Numerical Results on a Circle

Motivated by holography, we repeat the previous analysis in the case of the
Hamiltonian of the harmonic chain with defect defined on a circle with two
defect points. Such model is a straightforward extension of that in section
3 and is described in appendix C. We consider only Localized Coordinates,
which are such that the Hamiltonian of our harmonic chain with defect on
a circle is that in formula (C.2). By analogy with the previous case we find
that the C2 complexity associated to the family of circuits in formula (4.2)
displays the logarithmic divergence pattern depicted in formula (4.5). We
report below the plot for the coefficient a(θ) and point out that it displays
analogous features to the plot in figure 8a containing the coefficient a(θ) in the
case of the harmonic chain with defect defined on a segment.
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Figure 11: Coefficient a(θ) in formula (4.5). Ground state of the Hamiltonian
in formula (C.2).
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5 Entanglement across the Harmonic Chain with

Defect

In this section we discuss the entanglement entropy for the half chain subre-
gion of the harmonic chain with defect described in section 3.1. After briefly
introducing the notion of entanglement entropy, we show that the entangle-
ment entropy for the half chain subregion of the harmonic chain with defect
has a logarithmic divergence pattern. We finally compare such divergence
pattern with that of the C2 complexity in section 4.2.1.

5.1 Basics of Entanglement Entropy

Definition of Entangled State We consider a generic quantum mechanical
theory defined on a bipartite Hilbert space:

H = HA ⊗HB, (5.1)

where we have that:

d = dimH dA = dimHA dB = dimHB. (5.2)

We consider a pure state in the full Hilbert space:

∣
∣ψ
〉
∈ H, (5.3)

and see that it admits a Schmidt decomposition in terms of the orthonormal
bases of the two bipartite systems A and B [89–91]:

∣
∣ψ
〉
=

min{dA ,dB}
∑

i

ci |i〉A ⊗ |i〉B , (5.4)

where the orthonormal basis for the two subsystems are running over the same
index i ∈ {1, . . . , min{dA, dB}}:

{|i〉A} ⊂ HA, {|i〉B} ⊂ HB, (5.5)

and the coefficients ci can be taken to be:

ci ∈ R, ci ≥ 0, ∑
i

|ci|2 = 1. (5.6)

Under the conditions listed above, Schmidt decomposition is unique and the
Schmidt rank is defined as the number of ci which are non null. We define
a pure state to be entangled if it has Schmidt rank strictly bigger than one,
i.e. if it cannot be written as the tensor product of two pure states of the
two subsystems A and B. We can generalize the definition of entanglement
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including mixed states in the following way. Given a density matrix ρ acting
on the elements of the full Hilbert space H, we define the state to be entangled
if it does not exist a decomposition of ρ in terms of the tensor product of two
density matrices describing the quantum state of the two subsystems ρA and
ρB [92]:

ρ = ρA ⊗ ρB. (5.7)

Entanglement Entropy for Pure State of a Bipartite System If we restrict to
only pure bipartite states, the most used entanglement measure is the so called
entanglement entropy. Suppose we have a pure state in a bipartite system:

∣
∣ψ
〉
∈ H = HA ⊗HB, (5.8)

we take the reduced density matrix for the subsystem A as the trace of the full
density matrix ρ over the subsystem B:

ρA = Tr
B

ρ. (5.9)

Then we define the entanglement entropy of the bipartite system as the Von
Neumann entropy associated to one of the two subsystems [76, 77]:

SA(ρ) := −Tr
A

ρA log ρA. (5.10)

Using Schmidt decomposition in equation (5.4), we can prove that that this
definition, once the bipartition is given, does not depend on the specific sub-
system on which we are tracing out:

SA(ρ) = SB(ρ). (5.11)

In fact, we can obtain a simple expressions in terms of the coefficients of the
Schmidt decomposition in formula (5.6):

SA(ρ) = SB(ρ) = −∑
i

ci log ci. (5.12)

Using this expression, we can see the entanglement entropy is null on a sepa-
rable state and it attains its maximum when the Schmidt coefficients ci are all
equal, which is the maximally entangled state.
We finally revise some other important properties of the entanglement entropy.
Suppose that we have a Hilbert space which is the union of three subspaces
H = HA ∪HB ∪HC, then the following inequalities hold:

• Positivity:
SA ≥ 0; (5.13)

• Subadditivity [93, 94] :
SA∪B ≤ SA + SB; (5.14)
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• Strong Subadditivity [93, 94]:

SA∪C + SA∩C ≤ SA + SB; (5.15)

• Araki-Lieb Inequality [95]:

|SA − SB| ≤ SA∪B. (5.16)

Some measures of entanglement for the bipartition of a mixed state exist, but
we do not discuss them here as this would be out of the scope of this thesis [96].

Entanglement Entropy for Gaussian States in a Finite Dimensional Hilbert

Space We wish to calculate the entanglement entropy for a Gaussian state.
We show that this is related uniquely to the symplectic spectrum of the corre-
sponding covariance matrix, which is defined in formula (2.40) and uniquely
characterizes the Gaussian state. With this aim we first revise some prop-
erties related to the fact the covariance matrix in expression (2.40) admits a
Williamson decomposition [97]. Williamson theorem states that any real, sym-
metric and positive matrix with even size, such as the covariance matrix G,
admits the following decomposition:

G = WTDW, (5.17)

where:

• W ∈ Sp(2N,R) is a symplectic matrix;

• D = diag(σ1, . . . σN)⊕ diag(σ1, . . . σN) is the diagonal matrix containing
the symplectic eigenvalues and is uniquely determined up to permuta-
tions of the symplectic eigenvalues.

A practical way to find computationally the symplectic eigenvalues consists in
the diagonalization of the matrix M defined as follows:

M := G J, (5.18)

where J is the 2N × 2N symplectic unit and G is the covariance matrix. The
spectrum of M yields directly the symplectic eigenvalues:

Spectrum(M) = {±iσ1, . . . ,±iσN}. (5.19)

It has been shown in [19] and [98] that the validity of the uncertainty principle
implies the following condition on the covariance matrix G:

G +
i

2
J ≥ 0, (5.20)
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where J is the symplectic unit. The authors of [19] showed that combining this
condition with the Williamson decomposition, a constraint on the symplectic
eigenvalues can be derived:

σi ≥
1

2
, (5.21)

where in the case of the pure state:

σi =
1

2
∀i ∈ {1, . . . , N}. (5.22)

Now, we are ready to briefly review the calculation of the entanglement en-
tropy for the Gaussian states of a finite dimensional Hilbert space, following
reference [99]. We focus on a chain of N coupled quantum harmonic oscillators
with Hamiltonian in formula (3.33), where the Hilbert space H is the tensor
product of N single-oscillator Hilbert spaces:

H =
N⊗

i=1

Hi. (5.23)

The ground state of such system is a Gaussian state as defined in formula (2.38)
and is completely characterized by its covariance matrix G written in expres-
sion (2.40). We choose a subsystem made of Nsub ≤ N harmonic oscillators,
whose Hilbert space is given by:

Hsub =
Nsub⊗

i=1

Hi, (5.24)

and whose covariance matrix γsub is simply obtained tracing out the remaining
subsystem on the full covariance matrix G:

Gsub = Tr
H/Hsub

G. (5.25)

At this point we recall the existence of a prescription for the entanglement
entropy associated to this bipartition [100], showing that it depends uniquely
on the symplectic eigenvalues {σi}i=1,...,Nsub

of the subsystem covariance matrix
Gsub :

S =
Nsub

∑
i=1

[(

σi +
1

2

)

log

(

σi +
1

2

)

−
(

σi −
1

2

)

log

(

σi −
1

2

)]

. (5.26)

A derivation of formula (5.26) is fully given in [99] and is not reported in this
thesis.
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5.2 Entanglement Entropy for the Half Harmonic Chain with
Defect

In this section, we compute the entanglement entropy associated to the half
chain subregion in the harmonic chain with defect in formula (3.7). We focus
on the bipartition where the chain of length 2L in figure 4 is divided into two
perfect halves by the locus of the defect.

Continuum Limit of the Entanglement Entropy for a Critical Harmonic

Chain with Defect Focusing on the harmonic chain with defect in formula
(3.1) and choosing the bipartition specified above, an exact result for the en-
tanglement entropy in the massless continuum limit has been obtained in [62].
This result is the same as that previously derived in a defect conformal field
theory framework in [83]. It has been shown that the entanglement entropy in
massless continuum limit displays a leading logarithmic divergence:

S =
ce f f (θ)

6
log L + . . . L→ ∞, Ω0L = 0, (5.27)

with a coefficient ce f f (θ) which has a complicate dependence on the defect
parameter θ:

ce f f

(

s =
1

cosh θ

)

=
3

2
s +

3

π2
{
[
(1 + s) ln (1 + s) + (1− s) ln (1− s)

]
ln s+

+
[
(1 + s)Li2(−s) + (1− s)Li2(s)

]
}.

(5.28)

In the no defect limit θ → 0, we notice that the result is in agreement to
what was theoretically derived in [78–81] for the entanglement entropy in a
conformal field theory in 1+1 dimensions:

• The leading divergence is logarithmic;

• The coefficient ce f f (θ) gives back the unit central charge of the free boson
conformal field theory in the limit where the defect is absent:

lim
θ→0

ce f f (θ) = 1. (5.29)

For this reason we regard the function ce f f (θ) as an effective central charge
telling us that the effect of the presence of the defect is to somehow decrease
the central charge that the entanglement entropy feels in the massless quantum
field theory limit. A plot of such exact result for ce f f (θ) is the continuous line
in figure 12.
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Numerical Results for Entanglement Entropy of Half Critical Harmonic

Chain with Defect We compute numerically the entanglement entropy for
half of the harmonic chain with defect applying formula (5.26) for the entan-
glement entropy of Gaussian states and following the procedure outlined in
section 5.1. We study the entanglement entropy in the continuum limit defined
in section 4.1, by increasing the number of sites in the chain 2L while keeping
the parameter 2Ω0L fixed to the values listed below:

2Ω0L ∈ {10−6, 10−4, 10−2, 1, 102}, (5.30)

and iterate the procedure for various values of θ ∈ [0, 10]. We clearly observe
that in all cases the entanglement entropy diverges logarithmically in the
continuum limit:

S =
c(θ)

6
log L + . . . L→ ∞, Ω0L 6= 0. (5.31)

At this point we perform the logarithmic fit and compute numerically the
coefficient c(θ). We choose the range of 2L where we perform the fit:

2L ∈ [2600, 3000], (5.32)

in such a way that the number of sites is sufficiently high to ensure the con-
vergence of the entropy to its quantum field theory limit. We verified such
convergence with analogous methods to those used in appendix B for C2 com-
plexity. We observe that in the limit 2Ω0L→ 0, we should expect that curve for
c(θ) collapses on the curve ce f f (θ) in formula (5.28). However, in figure 12, we
see the comparison between our numerical computations for c(θ) and ce f f (θ).
We notice that c(θ) effectively collapses on ce f f (θ) in the limit 2Ω0L→ 0 only
in the range:

θ ∈ [0, 1]. (5.33)

For θ > 1.0, the numerical extrapolation of the coefficient c(θ), not only lies far
from ce f f (θ) but does not even seem to converge to that behavior in the limit
2Ω0L→ 0. This is partly expected because in [62] it has been shown that only
for θ sufficiently small numerical estimates for ce f f (θ) reach easily the exact
curve and it is explicitly said that for higher values of θ, we cannot observe any
agreement between theoretical calculations and numerical computations. This
might be a sign of the fact that our theoretical model breaks for big values θ or
it can be related to the fact that strictly speaking we are not taking the massless
quantum field theory limit. In fact, we cannot set sharply 2Ω0L = 0, because
of the presence of a zero mode in the spectrum of the defect harmonic chain
(formula (C.5)); instead, we have to take sufficiently small values of 2Ω0L.
Practically we assume that the massless limit is reached when the curves for
c(θ) coincide when we lower further the value of 2Ω0L. In our case, we see
in figure 12b that when 2Ω0L = 10−4, the massless quantum field theory
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limit is reached only for θ < 3. This makes us believe that the mismatch
between exact results and numerical computation is not due to impossibility
of imposing rigorously the massless limit.

Comparison between the coefficients c(θ) and a(θ) We want to understand
if some relation exists between a(θ) and c(θ), i.e. between the logarithmic
divergence pattern of C2 complexity and of the entanglement entropy S. We
first notice that in the no defect limit the two coefficients a(θ) and c(θ) have a
different behavior:

c(θ = 0) = 1 a(θ = 0) = 0. (5.34)

This observation leads us to plot 1− c(θ) and compare this to the plot of a(θ)
in figure 13. Keeping in mind also the plots in figure 8 and 12, we notice that
some crucial differences are present between a(θ) and 1− c(θ):

• The small θ behavior is linear for a(θ), whereas it is parabolic for 1− c(θ).

• The coefficient a(θ) saturates to different values if we change 2Ω0L,
whereas 1− c(θ) saturates to the same constant value even if we change
2Ω0L.

• In the numerical computations for 1− c(θ) we see that for 2Ω0L = 10−4

a step like behavior appears The initial increase in 1− c(θ) at small θ is
then followed by a plateaux, followed by another increase up to the final
saturation. Such behavior is not observed in a(θ).

Those substantial differences lead us to conclude that there is no simple rela-
tion between a(θ) and 1− c(θ).
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Figure 12: Coefficient c(θ) in (5.31)
and the effective central charge ce f f (θ) in (5.27).
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6 Holographic Complexity in Presence of Defect

In this section we summarize the calculations made in [75], for holographic
complexity in presence of defect. Then, we try to explain how those results
are related to those we found in section 4.

6.1 Symmetric Defect in AdS3

The three dimensional toy model which was used in [75] to describe a symmet-
ric defect in AdS3 had been previously introduced in [101]. Let us consider a
three dimensional solution of Einstein equations with negative cosmological
constant and add to it a two dimensional brane. The action of the model reads:

S =
1

16πGN

∫

d3x
√
−g

(

R +
2

L2

)

− λ
∫

de f ect locus
d2x
√
−gIND,

where λ is the brane tension, L is AdS3 radius, R is Ricci scalar and gIND is
the induced metric on the defect locus. In order to find a solution, we can plug
this ansatz into Einstein equations:

ds2 = L2(dy2 + e2A(y)ds2
AdS2

),

with
ds2

AdS2
= dr2 − cosh r2 dt2,

and impose the following requirements:

• the defect is located on a thin AdS2 brane at y = 0;

• pure AdS3 is recovered in the limit λ→ 0, which concretely implies the
following condition:

e2A(y) −−→
λ→0

cosh2 y. (6.1)

It has been shown in [101] that the solution for A(y) is given by:

eA(y) = cosh (|y| − y∗) (6.2)

where y∗ is defined through the relation:

tanh y∗ = 4πGNλL, (6.3)

which gives the condition:

λ ≤ 1

4πGN L
. (6.4)

Then the geometry of the model, represented in figure 14, is described by the
following metric:

ds2 = L2

[

dȳ2 + cosh (|ȳ| − y∗)2
(

− cosh2 rdt2 + dr2
)]

. (6.5)

59



Figure 14: Geometry of defect AdS3. Figure taken form [75].

We can see that fixing the coordinate y, we get AdS2 slices, which are repre-
sented by green lines in figure 14; in particular fixing y = ±y∗ we obtain the
defect region. Hence, it is possible to obtain two patches, which are spanned
by the ranges of coordinate y ∈ [−∞, y∗] and y ∈ [−y∗, ∞] and are glued to-
gether at the defect location y = ±y∗. In figure 14, red lines instead represent
r constant curves, which are geodesics of the model and are orthogonal to y
constant lines. Boundary is located at both y = ±∞ and r = 0,±∞. The metric
in equation (6.5) can be reshuffled in a simpler form, performing this shift:







ȳ→ y + y∗, y < 0

ȳ→ y− y∗, y > 0
, (6.6)

and obtaining:

ds2 = L2

[

dy2 + cosh2 y
(

− cosh2 rdt2 + dr2
)]

. (6.7)

Another useful form for the metric in expression (6.7), is obtained through the
following change of coordinates:







tanh r = sin φ cos θ

sinh y = tan φ sin θ
, (6.8)

which gives the following metric:

ds2 =
L2

cos2 φ
(−dt2 + dφ2 + sin2 φdθ2), φ ∈

[

0,
π

2

]

θ ∈ R, t ∈ R. (6.9)

In this case we can regard the constant time slice as a Poincaré disk with radial

coordinate φ ∈
[

0, π
2

]

. Finally, we rescale t to introduce a new scale, which

sets the curvature of boundary:

τ = LBt. (6.10)
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6.2 Results for Complexity equals Volume

In this subsection, we summarize the calculations which were performed in
[75] to calculate holographic complexity for the conjecture complexity equals
volume in the peculiar set up of symmetric defect AdS3. We first discuss briefly
how the authors of [75] regularized the theory and then we outline their results
for complexity.

Cutoff Regularization Since holographic complexity is expected to be diver-
gent, there is the need to choose a regularization scheme for the model we are
considering. The authors of [75] decide to use cutoff regularization. For this
reason they first bring the metric in equation (6.9) into the holographic form:

ds2 =
L2

z2

(

dz2 + gij(x, z)dxidxj
)

, (6.11)

using this change of variable:

z = 2LB
cos φ/2− sin φ/2

cos φ/2 + sin φ/2
. (6.12)

Then, they adopt the usual holographic cutoff, the Fefferman-Graham cutoff:

z = δ, (6.13)

and translate it into the coordinate systems specified in expressions (6.7) and
in (6.9):

φ =
π

2
− δ̂, cosh y cosh r =

1

sin δ̂
, (6.14)

where they introduce the dimensionless cutoff:

δ̂ =
δ

LB
. (6.15)

However, such choice for the cutoff gives a non smooth surface on the defect
locus. This is sketched in figure 15, where one of the two time constant patches
of defect AdS3 is shown and the standard Fefferman-Graham cutoff surface
corresponds to the dashed blue line, which is not orthogonal to the locus of
the defect. The solution to this problem consists in considering a different
cutoff surface in the region near the defect and then glue it smoothly to the
standard cutoff cutoff surface used in the region away from the defect. The
near defect cutoff surface is chosen as follows:

tanh r = sin φ cos θ = cos δ̂, (6.16)

and is such that, in (τ, y, r) coordinate it follows r constant lines that are orthog-
onal to y constant surfaces and consequently to the locus of the defect y = ±y∗.
The cutoff surfaces described in expressions (6.14) and (6.16), smoothly inter-
polate at y = 0. This is again sketched in figure 15, where the near defect
cutoff is given by the red line and the y = 0 locus is the vertical black line.
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Figure 15: Fefferman-Graham cutoff surface. Figure taken from [75].

Complexity for the Pure State According to formula (2.61), holographic com-
plexity for the CV conjecture in this spacetime model, is proportional to the
volume of the constant time slice of defect AdS3. In figure 16, we can see one
patch of the time τ = 0 slice of defect AdS3, where the volume to be integrated
is divided in two parts:

• the region near defect V1, where we integrate the volume element using
(y, r) coordinates:

V1 = 2L2
∫ 0

−y∗
cosh y

∫ tanh−1 cos δ̂

0
dr; (6.17)

• the region away from defect V2, where we integrate the volume element
using (φ, θ) coordinates:

V2 = L2
∫ π

0
dθ
∫ π

2 −δ̂

0
dφ

sin φ

cos2 φ
. (6.18)

In this way, the authors of [75] obtain holographic complexity for the CV
conjecture:

CV =
2

GN L
(V1 + V2)

=
4cT

3

(
π

δ̂
+ 2 sinh y∗ ln

2

δ̂
− π

)

,

(6.19)

where y∗ is the parameter defined in formula (6.3) and cT is the Brown-
Henneaux central charge in [102], given by:

cT =
3L

2GN
. (6.20)
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Figure 16: Integration Region for CV conjecture. Figure taken from [75].

We clearly see that the presence of the defect gives a subleading logarithmic
divergence, which is contained in the boxed part of formula (6.19).

6.3 Results for Complexity equals Action

In this subsection, we summarize the calculations which were performed in
[75] to obtain holographic complexity for the conjecture complexity equals action
in the peculiar set up of symmetric defect AdS3. We first discuss briefly the
structure of the Wheeler-DeWitt patch and then we will outline the results for
complexity in the case of both the pure and mixed state.

Structure of the Wheeler-DeWitt patch The Wheeler-DeWitt (WDW) patch
is defined as the union of all spacelike surfaces anchored at the boundary time
slice where the state is defined. In order to find it, the procedure used in [75] is
to throw null geodesics starting from the boundary of t = 0 time slice and then
identify the boundary of WDW patch. In figure 17, we see the structure of the
future half of the WDW patch if the boundary state is defined at time t = 0.
In the region away from defect, the WDW patch is limited by the geodesics
starting from the points on the pieces of boundary y = ±∞: it takes the form
of a portion of cone, i.e. the blue surface in figure 17. On the other hand, in
the region near the defect, the structure of WDW patch is modified by the
presence of the two points in the intersection between the defect locus and
the boundary, i.e. at r = 0,±∞. The equations which describe null geodesics
starting from those two points are:

tanh r = cos t y ≡ y0, (6.21)

In figure 17, the WDW patch near defect is limited by the green surfaces,
whereas the yellow ones correspond to the defect location where the two
pieces of WDW patch are glued together.
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Figure 17: Wheeler-DeWitt patch in defect AdS3. Figure taken from [75].

Complexity for the Pure State According to formula (2.66), the authors of
[75] calculate holographic complexity as the gravitational action evaluated on
the WDW patch depicted in figure 17 following the prescriptions described in
section 2.3. Their result for holographic complexity of the pure state is given
by the following expression:

CA =
cT

3π

[

1

δ̂

(

ln
lct

L
+ 1

)

+
π

2

]

, (6.22)

where cT is the Brown-Henneaux central charge, lct is a counterterm scale
introduced in ICT piece in expression (2.67) for the gravitational action and
L is AdS radius. Expression (6.22) basically tells us that complexity for CA
conjecture does not feel the presence of the defect. We should point out
that in [75], subleading logarithmic divergences showing a defect dependence
appear when calculating the single terms in equation (2.67); however, their
effect disappears when we sum up those terms to obtain the total gravitational
action on the WDW patch.

6.4 Comparison with C2 Complexity

In this subsection we try to understand if there is some relationship between
the holographic problem studied in [75] and the problem we discussed in
section 4.

Summary of the Results in [75] We here summarize the results previously
discussed for holographic complexity in a set up with defect. We consider the
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quantity that in [75] is called complexity of formation of the defect:

∆CQFT = CQFT
R→Tde f ect

− CQFT
R→Tno de f ect

, (6.23)

where T and R are the target and reference state defined in the dual quantum
field theory living on the boundary of the symmetric defect AdS3 space de-
scribed in section 6.1. If the nature of the reference state R still remains an
open problem in holography, the target state is known to be the ground state
of the dual quantum field theory. Hence, making the identification

Cholo ←→ CQFT
R→T , (6.24)

we rewrite the results of sections 6.2 and 6.3 in terms of the complexity of
formation of the defect. For the pure state we have that the two conjectures
CV and CA give:

∆CV =
8cT

3
sinh y∗ ln

2

δ̂
, (6.25)

∆CA = 0. (6.26)

We finally remember that y∗ is related to the tension of the defect brane λ
through equation (6.3).

Search for the Dual Quantum Field Theory Set Up At the moment, it is not
known how to calculate complexity for an interacting quantum field theory.
Hence, the best that we can do is to calculate complexity for a free field theory
which mimics the features of the dual field theory of the defect AdS3 space
described in section 6.1. The requirements we ask on such free field theory are
those:

• The theory should be defined on a circle;

• The theory should contain two defect points at diametrically opposite
locations on the circle;

• The defect should be of the type described in [63].

It is evident that the first two conditions are not satisfied by the quantum
field theory limit of the harmonic chain considered in section 3. However, as
specified in [62], such a harmonic chain contains in its conformal field theory
limit a defect of the type described in [63]. Hence, we could try to write a har-
monic chain with analogous features to the one we described in section 3.1 but
defined on a circle and containing two defect points. This is done in appendix
C, where it is also shown that we can diagonalize the Hamiltonian on a circle
with two defect points using almost the same techniques of section 3.2. At this
point, we can calculate C2 complexity using this straightforward extension of
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the set up in section 3. We choose the Localized Coordinates, because the holo-
graphic defect in section 6.1 is localized in two points of the boundary. Finally
we have to find a dictionary connecting the quantities figuring in expression
(6.26) for holographic complexity and the quantities that we used in section
4 to study the lattice problem. We have that in holography divergences are
expressed in terms of the inverse of Fefferman-Graham cutoff 1

δ̂
, whereas in

lattice field theory we express divergences in terms of the total number of sites,
which is 4L in the case of the harmonic chain defined on a circle. Considering
that through the holographic correspondence, the Fefferman-Graham cutoff
corresponds to an ultraviolet cutoff in the dual quantum field theory, we can
put forward the following identification:

1

δ̂
|holography ←→ 4L|lattice. (6.27)

Quantum Field Theory Complexity with Generic Reference State At the
moment, the best proposal for the reference state of holography is the maxi-
mally unentangled reference state, which is the ground state of the Hamilto-
nian of decoupled oscillators in formula (2.25). If we consider the maximally
unentangled state as the reference state, we obtain that C2 does not feel the
presence of the defect for any number of sites in the lattice. Therefore, we
obtain that in the quantum field theory limit the complexity of formation of
the defect, if the reference state is the maximally unentangled one, is:

∆C2 = 0. (6.28)

This seems to support the holographic result coming form the CA conjecture.
However, there is still no clear agreement on the nature of the reference state,
therefore we will try to extract some information about the dual of the holo-
graphic complexity of formation of the defect in a way that is independent
from the reference state. As it was done in the previous paragraph, we will
mimic the dual field theory with the continuum limit of the harmonic chain
in Localized Coordinates defined on a circle with two defect points, which is
described in appendix C. In sections 4.3, we computed the C2 complexity of
moving from the ground state of a homogeneous harmonic chain on a circle
to that of a harmonic chain on a circle with two defect points inserted:

C2 Tno de f ect→Tde f ect
, (6.29)

which is associated to the path represented by the red line in figure 6. On the
other hand, if we want to calculate the complexity of formation of the defect
∆C2, we need the following quantities:

C2 R→Tde f ect
, C2 R→Tno de f ect

, (6.30)

which are associated to the black lines in figure 6 and are impossible to com-
pute if we do not know the nature of the reference state R. However, we can
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see that the quantities in expression (6.29) and (6.30) can be related by means
of the triangular inequality:

∆C2 = C2 R→Tde f ect
− C2 R→Tno de f ect

≤ C2 Tno de f ect→Tde f ect
. (6.31)

This tells us that studying the quantity defined in formula (6.29) we obtain an
upper bound on the complexity of formation of the defect in a free field theory.
We can use the result derived in section 4.3 to say that such upper bound on
the complexity of formation of the defect has a logarithmic divergence pattern.
The coefficient a(θ) of the logarithmic divergence is that contained in figure
11. It should be pointed out that those results are valid only for the pure state
case.
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7 Conclusions

In this thesis, we reviewed the notion of complexity of Gaussian states in a
lattice quantum field theory framework, and applied some of the tools present
in literature to the case of the harmonic chain with defect in [62].

We used a specific kind of complexity, namely C2 complexity, associated
to the choice of the F2 cost function. Such choice is due to the fact that F2

cost function induces the structure of Riemannian manifold in the space of
unitaries representing all the possible quantum circuits and, therefore, makes
it easier to find the optimal path. For this reason more tools, such as formula
(2.60), are present in literature to handle the problem of complexity with an
F2 cost function. However, there is no clear agreement whether to choose
F2 rather than other cost functions, such as F1 or the other ones listed in
expression (2.16) [6]. Therefore, in the future it would be interesting to extend
our analysis to other kind of cost functions.

We focused on the family of quantum circuits in expression (4.2) which
connect the ground state of the free bosonic harmonic chain to the ground
state of the harmonic chain with defect. Such choice is very peculiar and
differs from what has been done in most of the literature regarding complexity
starting from [6]. The state which is commonly taken as the reference, is
the maximally unentangled one, defined in section 2.2. In our case, making
this choice for the reference state makes the complexity in presence of defect
equal to the complexity for the simple free bosonic theory obtained in [6],
as it has been clarified in section 3.5. However, there is no clear agreement
on which should be the correct reference state to make comparisons with
holography [6, 103, 104]. Hence, we were naturally led to study the class of
paths in (4.2), which does not depend on the peculiar choice of the reference
state. This makes us able to derive an upper bound - see formula (6.30) - on
the difference between the complexity associated to the ground state with and
without defect, avoiding to make any assumption on the specific nature of the
reference state.

We managed to extract the divergence structure of C2 complexity in the
continuum limit defined in section 4.1. We performed this study in two dif-
ferent basis for the Hamiltonian of the harmonic chain with defect and saw a
practical demonstration that if the change of basis is performed only in the tar-
get state, it affects dramatically the structure of C2 complexity. The divergence
pattern is volumic if we adopt Extended Coordinates, whereas it is logarithmic
if we choose Localized Coordinates. This is due to the fact that in the Extended
Basis the effect of the defect is spread through the chain, whereas in Localized
Basis it is limited to the contact point between the two sides of the defect. For
this reason we expected the divergence in Localized Coordinates to be weaker
than that in Extended Coordinates.

We consider the presence of a logarithmic divergence pattern in Localized
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Coordinates to be the main result of our thesis. From now on, we will refer
only to the C2 divergence structure in Localized Coordinates, unless specified.
Such divergence structure is certainly present in the massive case and seems
to remain also in the limit of massless field theory. Even if we cannot take rig-
orously the massless continuum limit, because of the presence of a zero mode
in the spectrum, our analysis strongly indicates that the logarithmic structure
in the divergence pattern of complexity is present also in the massless case.
It would be interesting to repeat the same analysis with different boundary
conditions for our harmonic chain, for example Dirichlet ones, allowing us to
set sharply to zero the mass parameter of our defect harmonic chain. This has
already been done in the case without the defect [12], and could be extended to
the harmonic chain with defect studied in this thesis with Dirichlet boundary
conditions. Moreover, another interesting extension would consist in studying
the complexity associated to a subregion of the harmonic chain with defect,
using the tools developed in [23–27]. In particular, it would be possible to
consider various subregions: one containing the defect, one without the defect
and one with an endpoint on the defect locus.

The presence of a logarithmic divergence in the continuum limit of C2

complexity recalls the presence of another logarithmic divergence in the entan-
glement entropy associated to a subregion of a conformal field theory in 1 + 1
dimension [78–81]. It was already known that such logarithmic divergence
holds also in the continuum limit of the massless harmonic chain with defect
in section 3 and an exact result had been derived for the coefficient ce f f (θ) in
front of the logarithmic divergence [62, 83], showing its dependence on the
strength of the defect θ. We managed to reconstruct numerically the loga-
rithmic divergence of the half chain with defect entangelment entropy in the
continuum limit and studied the coefficient c(θ) in (5.31). We found that as the
strength of the defect θ increases, the theoretical result ce f f (θ) does not match
with the one extracted from our numerical results c(θ) in the massless limit. It
would be nice to better understand the origin of this discrepancy, which was
expected as it had been already mentioned in [62].

In order to investigate a possible relation between the logarithmic diver-
gence of the entanglement entropy and that of C2 complexity, we reconstructed
numerically the coefficient of the logarithmic divergence a(θ) as function of θ.
The outcome is that there seems to be almost no relation between c(θ) and a(θ).
Nevertheless, we consider our effort to find a(θ) worth because we provided
a numerical results which can be used as a reference if one day a method is
found to derive a(θ) analytically in the framework of defect quantum field
theory. It would be nice to see if the techniques used in [62] can be extended
to the continuum limit of C2 complexity for the harmonic chain with defect.

In the last part of this thesis, we observed that our results for C2 complexity
in the continuum limit of the harmonic chain with defect could be compared to
those obtained in a holographic set up in presence of defect [75]. It should be
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remembered that such comparison is not the best possible because according
to the AdS/CFT correspondence, we should compute complexity in a strongly
interacting defect CFT, whereas we are working in a free theory. Nevertheless,
it represents the best that we can do with the techniques that have been devel-
oped up to date to calculate complexity. The key result in [75] for holographic
complexity in presence of defect is that a subleading logarithmic divergence
arises only in the CV conjecture, whereas in the CA case holographic com-
plexity is not affected by the presence of the defect. If we look at C2 for the
ground state of the harmonic chain with defect with respect to the maximally
unentangled reference state, we are soon led to conclude that CA conjecture is
supported by our calculations.

However, we managed to learn a more general lesson from our calculations
in a way which is independent from the choice of the reference state. Let
us consider the difference between holographic complexity with and without
defect. As it is clear from inequality (6.31), the quantum field theory dual
of this quantity is upper bounded by the complexity of the quantum circuit
going from the ground state of the boundary quantum field theory without
defect to that in presence of defect. We notice that such quantity might display
a similar UV divergence pattern as the complexity that we studied numeri-
cally in this thesis. Therefore, we are led to conclude that, if we restrict to
C2 complexity and assume nothing about the reference state, the subleading
divergence associated to the defect can be at most logarithmic. This result is
compatible with the holographic complexity in presence of defect obtained in
both conjectures. In the future, it would be interesting to see if this result holds
also using other cost functions or it is specific of C2. It has been pointed out by
the authors of [75] that the different results in CV and CA for the holographic
complexity in presence of defect might correspond to a different choice of the
cost function. This claim still needs to be tested. Another interesting question
to be explored in the future regards the divergence pattern of holographic
complexity in presence of defect in a AdS3/BCFT2 set up [105, 106] and the
match with the continuum limit of C2 for the harmonic chain with defect in
presence of boundary.

In conclusion, the study of complexity in presence of defect is a very im-
portant and promising tool to test the validity of CV and CA conjectures and
to understand differences and analogy between the two of them. Our inves-
tigations showed that the continuum limit of C2 complexity for the ground
state of the harmonic chain with defect is compatible with the corresponding
holographic complexity in both conjectures CV and CA, up to a suitable choice
of the reference state. In this way we think that this thesis provided further
evidence of how the study of complexity in presence of defect might help to
take further steps in the search for the holographic dual to the complexity of
the boundary quantum field theory .

Besides that, the road to a rigorous quantum field theory definition for
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complexity is still long and far from its end. Our results provide a confirm of
the power of the lattice field theory approach to complexity, since they might
serve as guide in the search for an analytic derivation of complexity in a defect
quantum field theory. Moreover, we believe that all the techniques developed
in this thesis can be easily adapted to other problems and used to answer some
of the new questions about complexity which will inevitably arise in the close
future.
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A Correlators in the Harmonic Chain with Defect

Explicit Form of Correlators for the Hamiltonian on a Segment We rewrite
correlators in expressions (3.46) and (3.47) such a way that their dependence
on the defect strength is made explicit. We will focus on the case where the
chain is defined on a segment, whose Hamiltonian is given by equations (3.1)
and (3.7). We will report between square brackets the multiplicative modifi-
cation that occurs to the result when we move from Localized Coordinates to
Extended Coordinates. In the case where both points are in the first half chain,
i ∈ {1, . . . , L} and j ∈ {1, . . . , L}, we have that:

〈xixj〉 =
[

1

m1

] 2L

∑
n=1

1

2Ωn
α2

nΦhom
n (i)Φhom

n (j) =

=

[
1

eθ

] 2L

∑
n=1

(

1 + (−)n+1 tanh θ
) Φhom

n (i)Φhom
n (j)

2Ωn
,

(A.1)

whereas if they belong to two different half chains, i.e. i ∈ 1, . . . , L and
j ∈ L + 1, . . . , 2L, we obtain that:

〈xixj〉 =
2L

∑
n=1

1

2Ωn
αnβnΦhom

n (i)Φhom
n (j) =

=
1

cosh θ

2L

∑
n=1

Φhom
n (i)Φhom

n (j)

2Ωn
,

(A.2)

where we have just used (3.19). Finally, we consider the case where the two
points are both in the last half chain, namely i ∈ {L + 1, . . . , 2L} and j ∈
{L + 1, . . . , 2L}:

〈xixj〉 =
[

1

m2

] 2L

∑
n=1

1

2Ωn
β2

nΦhom
n (i)Φhom

n (j) =

=

[
1

e−θ

] 2L

∑
n=1

(
1 + (−)n tanh θ

) Φhom
n (i)Φhom

n (j)

2Ωn
.

(A.3)

Explicit Form of Correlators for Hamiltonian on a Circle We now consider
the Hamiltonian defined on a circle with two defect points, which is repre-
sented by Hamiltonians in formulas (C.1) and (C.2). In the case where both
points are in the same half chain, i ∈ {0, . . . , L − 1} ∪ {3L, . . . , 4L − 1} and
j ∈ {1, . . . , L} ∪ {3L, . . . , 4L− 1}, we have that:

〈xixj〉 =
[

1

m1

] 4L−1

∑
n=0

α2
n

2Ωn
Φhom

n (i)Φhom
n (j) =

=

[
1

eθ

] 4L−1

∑
n=0

(
1 + (−)n tanh θ

) Φhom
n (i)Φhom

n (j)

2Ωn
,

(A.4)
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whereas if they belong to two different half chains, i.e. i ∈ {0, . . . , L− 1} ∪
{3L, . . . , 4L− 1} and j ∈ {L, . . . , 3L− 1} , we obtain that:

〈xixj〉 =
4L−1

∑
n=0

αnβn

2Ωn
Φhom

n (i)Φhom
n (j) =

=
1

cosh θ

4L1

∑
n=0

Φhom
n (i)Φhom

n (j)

2Ωn
,

(A.5)

where we have just used (3.19). Finally, we consider the case where the two
points are both in the other half chain, namely i ∈ {L, . . . , 3L − 1} and j ∈
{L, . . . , 3L− 1}:

〈xixj〉 =
[

1

m2

] 4L−1

∑
n=0

1

2Ωn
β2

nΦhom
n (i)Φhom

n (j) =

=

[
1

e−θ

] 4L−1

∑
n=0

(

1 + (−)n+1 tanh θ
) Φhom

n (i)Φhom
n (j)

2Ωn
.

(A.6)

Explicit Results for Correlators in Linear Approximation We expose some
explicit calculations for the first order Taylor expansion as defined in (3.52) for
correlators in expressions in formulas (A.1), (A.2) and (A.3). We focus on the
case of the chain defined on a segment described in section 3.1. In the case
where both points are in the first half chain, i ∈ {1, . . . , L} and j ∈ {1, . . . , L},
we have that:

〈xixj〉 '
2L

∑
n=1

Φhom
n (i)Φhom

n (j)

2Ωn
+ θ

2L

∑
n=1

(−)n+1 Φhom
n (i)Φhom

n (j)

2Ωn
+ O(θ2), (A.7)

whereas if they belong to two different half chains, i.e. i ∈ {1, . . . , L} and
j ∈ {L + 1, . . . , 2L}, we obtain that:

〈xixj〉 '
2L

∑
n=1

Φhom
n (i)Φhom

n (j)

2Ωn
+ O(θ2). (A.8)

Finally, we consider the case where the two points are both in the last half
chain, namely i ∈ {L + 1, . . . , 2L} and j ∈ {L + 1, . . . , 2L}:

〈xixj〉 '
2L

∑
n=1

Φhom
n (i)Φhom

n (j)

2Ωn
+ θ

2L

∑
n=1

(−)n Φhom
n (i)Φhom

n (j)

2Ωn
+ O(θ2), (A.9)

Summing up, we obtain:
Glin = Xlin ⊕Plin, (A.10)
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where we have that:

Xlin =








(

∑
2L
n=1(−)n+1 Φhom

n (i)Φhom
n (j)

2Ωn

)

ij

0

0

(

∑
2L
n=1(−)n Φhom

n (i)Φhom
n (j)

2Ωn

)

ij








,

(A.11)

Plin =






(

∑
2L
n=1(−)n+1 Ωn

2 Φhom
n (i)Φhom

n (j)
)

ij
′

′
(

∑
2L
n=1(−)n Ωn

2 Φhom
n (i)Φhom

n (j)
)

ij




 .

(A.12)
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B Convergence of Complexity in Continuum Limit

We want to show that if we take the quantum field theory limit as defined in
section 4.1, the convergence of C2 in the case of the pure state is practically
reached when the number of chain sites is 2L > 1400. We first show it qualita-
tively in figure 18 where we focus on the case 2Ω0L = 10−4 and we perform
the fit in several subsequent ranges of 2L with steps of 20 sites:

2L ∈ {[200, 1800], [400, 1800], [600, 1800], [800, 1800],

[1000, 1800], [1200, 1800], [1400, 1800], [1600, 1800]}.
(B.1)

As we can see the curve for a(θ) coefficient, defined in equation (4.5), collapses
to its asymptotic behavior which can be considered almost reached when
2L ∈ [1600, 1800]. From now on we will call the fitted value for a(θ) in this
range as ã(θ).
Secondly, we compute the following ratio:

R =
a(θ)− ã(θ)

ã(θ)
, (B.2)

where a(θ) is computed for 2L in one of the ranges specified in B.1 and ã(θ) is
computed for 2L in the range [1600, 1800]. In figure 19, we focus on the case
2Ω0L = 10−4 and plot R(θ) as a function of θ for the various ranges of 2L. We
can clearly see that R(θ) is always below than 1% for 2L > 1400. Even if we
do not show plots, analogous results yield for the other values of 2Ω0L.
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Figure 18: Coefficient a(θ) in QFT limit at fixed 2Ω0L = 10−4.
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Figure 19: Coefficient R(θ) in formula (B.2) at fixed 2Ω0L = 10−4.
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C Harmonic Chain with two Defects on a Circle

Harmonic Chain with Defect on a Circle

We consider now a harmonic chain defined on circle of length 4L where the
defect is located in two different points which are equally distant from each
other on both sides . Such system is represented in figure 20 and represents a
straightforward extension of that analyzed by Eisler and Peschel in [62].

K1K1

K2K2

K0K0

m1Ω2
0

m2Ω2
0

m1Ω2
0

m2Ω2
0

m1Ω2
0

m2Ω2
0

Figure 20: Harmonic Chain with Defect.Periodic Boundary Conditions.

For completeness we report the system Hamiltonian in the Extended Basis:

H =
L−1

∑
n=0

(

p2
n

2m1
+

1

2
m1Ω2

0x2
n

)

+
L−2

∑
n=0

(
m1

2
(xn − xn+1)

2

)

+

+
1

2
K0 (xL−1 − xL)

2+

+
3L−1

∑
n=L

(

p2
n

2m2
+

1

2
m2Ω2

0x2
n

)

+
3L−1

∑
n=L

(
m1

2
(xn − xn+1)

2

)

+
1

2
K0 (x3L−1 − x3L)

2+

+
4L−1

∑
n=3L

(

p2
n

2m2
+

1

2
m2Ω2

0x2
n

)

+
4L−1

∑
n=3L

(
m1

2
(xn − xn+1)

2

)

,

(C.1)
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as well as in the Localized Basis:

H =
4L−1

∑
n=0

(

p2
n

2
+

1

2
Ω2

0x2
n

)

+
4L−1

∑
n=0

(
1

2
(xn − xn+1)

2

)

+

+
1

2

K0

m1
x2

L−1 +
1

2

K0

m2
x2

L − K0xL−1xL

+
1

2

K0

m1
x2

3L−1 +
1

2

K0

m2
x2

3L − K0x3L−1x3L.

(C.2)

The quantities K0, Ω0, m1 and m2 are those defined in the previous section.

Spectrum of the Harmonic Chain on a Circle with Defect

We will briefly show that the with a procedure analogous to that in section 3.2,
we can find the spectrum for the Hamiltonian in formulas (C.1) and (C.2).

Homogeneous Problem We report the spectrum of the homogeneous har-
monic chain with 4L sites following the conventions introduced in section 7
of [107]. The eigenvalues are:

Ω2 hom
m = Ω2

0 + 4

(

sin
mπ

4L

)2

m ∈ {0, . . . , 4L− 1}, (C.3)

whereas the eigenfunctions read:

Φhom
m (n) =

√

1

4L
e−

2πmn
4L i m, n ∈ {0, . . . , 4L− 1}. (C.4)

Inhomogeneous Problem We make the ansatz that the spectrum stays the
same:

Ωm = Ωhom
m , (C.5)

whereas the eigenfunctions are modified with a defect dependent factor:

Φm(n) =







αmΦhom
m (n) n ∈ {0, . . . , L− 1}

βmΦhom
m (n) n ∈ {L, . . . , 3L− 1}

αmΦhom
m (n) n ∈ {3L, . . . , 4L− 1}

αm ∈ R, βm ∈ R. (C.6)

We find αm and βm imposing the orthonormality condition and the eigenvalue
equation at the defect interface as it was done in section (3.2), taking care of
the fact that in this case the defect interfaces are two, located between L-1 and
L sites and between 3L-1 and 3L sites. We finally find that:

α2
m = 1 + (−)m tanh θ m ∈ {0, . . . , L− 1} ∪ {3L, . . . , 4L− 1}, (C.7)

β2
m = 1 + (−)m+1 tanh θ m ∈ {L . . . 3L− 1}. (C.8)

(C.9)
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Correlators for the Harmonic Chain on a Circle with Defect

We wish to transform the Hamiltonian in equations (C.1) and (C.2) into the
Hamiltonian of a chain of decoupled oscillators, through a canonical trans-
formation. Then, we wish to define a second quantization Hamiltonian as
in equation (C.14) and to find the change of basis connecting our dynamical
variables to second quantization operators.

Structure of the Orthogonal Change of Basis We wish to define the orthog-
onal matrix Pij(θ), which induces the following change of basis:

[

~̃x

~̃p

]

=

[

P(θ)T 0

0 P(θ)T

] [

~x
~p

]

. (C.10)

such that:

• it is canonical;

• it reshapes the Hamiltonian of our problem in this way:

H =
1

2

2L

∑
i=1

(

p̃2
i + Ω2

i x̃i

)

. (C.11)

If we consider the Hamiltonian in its Localized Basis (C.2), the matrix P(θ),
containing on the columns the eigenvectors, has the following form:

Pij(θ) = Dij(θ)Φ
hom
j (i). (C.12)

The coefficient Dij(θ) encloses the dependence from the defect and on the
cricle reads:

Dij(θ)|circle =







√

1 + (−)j tanh θ i ∈ {0, . . . , L− 1} ∪ {3L, . . . , 4L− 1}
√

1 + (−)j+1 tanh θ i ∈ {L, . . . , 3L− 1}
.

(C.13)

Second Quantization Hamiltonian At this point is possible to write the
Hamiltonian above in terms of the second quantization operators:

H =
4L

∑
i=1

Ωi

(

â†
i âi +

1

2

)

, (C.14)

where:

âi =

√

Ωi

2

(

x̃i + i
p̃i

Ωi

)

, â†
i =

√

Ωi

2

(

x̃i − i
p̃i

Ωi

)

. (C.15)
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We can build up a closed expression for the change of basis connecting the
operators xi and pi figuring in the original Hamiltonian, either in the Extended
Basis or in the Localized Basis, to the second quantization operators âi and â†

i ,
using a completely analogous procedure to that used in section 3.3:







xi = ∑
4L
j=1

[
1√
mi

]
1√
2Ωj
Dij(θ)Φ

hom
j (i)

(

âj + â†
j

)

pi = ∑
4L
j=1

[√
mi

]
√

Ωj

2
1
iDij(θ)Φ

hom
j (i)

(

âj − â†
j

) , (C.16)

where the terms in the squared brackets are multiplicative factors which ap-
pear only when we use the Extended Basis. Even in this case, the dependence
on the defect strength θ is all contained in the masses mi, which appear only
in the case we use the Extended Basis, and in the matrix Dij(θ).

General Form of Correlators We can build the 2-points correlator for posi-
tions and momenta, 〈xixj〉 and 〈pi pj〉 using a procedure analogous to that in
section 3.4. We obtain the following results analogous to those obtained for
the Hamiltonian on a segment in equations (3.46) and (3.47):

〈xixj〉 =
[

1
√

mimj

]
4L

∑
n=1

1

2Ωn
Din(θ)Djn(θ)Φ

hom
n (i)Φhom

n (j), (C.17)

〈pi pj〉 =
[
√

mimj

] 4L

∑
n=1

Ωn

2
Din(θ)Djn(θ)Φ

hom
n (i)Φhom

n (j), (C.18)

where the terms in the square brackets are the multiplicative factors which
appear if we consider the Extended Basis.

Covariance Matrix Then, our covariance matrix G is the 8L× 8L block diag-
onal matrix:

G =

[

X
P

]

, (C.19)

where:

X =







x1,1 . . . x1,4L
...

. . .
...

x4L,1 . . . x4L,4L







, P =







p1,1 . . . p1,4L
...

. . .
...

p4L,1 . . . p4L,4L







. (C.20)

We can rewrite the covariance matrix in this form:

GT =
1

2

(

P(θ)Ω−1P(θ)⊕ P(θ)ΩP(θ)
)

, (C.21)

where P(θ) is defined by condition (3.34) and Ω is the diagonal matrix con-
taining the spectrum of the Hamiltonian:

Ω = diag(Ω1, . . . , Ω4L). (C.22)
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