
Master Thesis in Computer Engineering

Protein Intrinsic Disorder Detection Based on
Structural Features

Master Candidate Supervisor

Alberto Crivellari Prof. Alexander Miguel Monzon
Student ID 2061934 University of Padova

Co-supervisor

Prof. Damiano Piovesan
University of Padova

Academic Year
2022/2023

To my girlfriend,
my parents and friends.

Abstract

Structural Bioinformatics is a branch of science that involves the analysis of
three-dimensional structures of molecules using computer science techniques.
Initially, the primary focus was on proteins with a fixed three-dimensional struc-
ture. However, researchers in the last 20 years have shifted their attention to
Intrinsically Disordered Proteins (IDPs), which are proteins containing disor-
dered regions that exhibit highly heterogeneous conformations. The work in
this thesis is centered around recognizing IDPs from sequences through the
extraction of features that indicate protein disorder.

This work presents a software tool, AlphaFold-disorder (SASA), developed
by implementing PSEA and SASA algorithms. Subsequently, the quality of re-
sults produced by the new software tool was compared with state-of-the-art
software. The development process involved three major procedures: the im-
plementation of the PSEA procedure for predicting secondary structures based
on three-dimensional coordinates of amino acids; the implementation of the
SASA procedure for computing RSA (Relative Solvent Accessibility) of amino
acids using the SASA library; and the implementation of the FoldComp pro-
cedure for managing .fcz files, which are compressed protein files. To assess
the quality of the results, the dataset was initially plotted to gain insights
into the distribution of features. Machine learning models were then imple-
mented. Finally, ROC and Precision-Recall curves between AlphaFold-disorder,
AlphaFold-disorder (SASA), and the best machine learning model were com-
pared. The comparison revealed that AlphaFold-disorder (SASA) predictions
are on par with AlphaFold-disorder ones, while the machine learning model
requires more training data to surpass their predictions.

Contents

List of Figures xi

List of Tables xiii

List of Algorithms xvii

List of Code Snippets xvii

List of Acronyms xix

1 Introduction 1
1.1 BioComputing UP . 1
1.2 Internship description . 1
1.3 Thesis Outline . 2

2 An Overview on Proteins 3
2.1 Basics of Molecular Biology . 3

2.1.1 Cells . 3
2.1.2 DNA . 3
2.1.3 Central Dogma of Biology 5
2.1.4 Proteins . 8
2.1.5 Tandem Repeat Proteins . 12
2.1.6 Intrinsically Disordered Proteins 13

2.2 Computational Biology: Computer Science Applied to Biology . . 15
2.2.1 Structural Data . 16
2.2.2 BioPython . 18
2.2.3 DSSP . 19

vii

CONTENTS

3 Analysis of AlphaFold-disorder 21
3.1 Introduction . 21

3.1.1 AlphaFold . 21
3.1.2 pLDDT . 21
3.1.3 Disorder . 21
3.1.4 Binding . 22

3.2 AlphaFold-disorder . 22
3.3 CAID . 23
3.4 AlphaFold-pLDDT . 24
3.5 AlphaFold-rsa . 24
3.6 AlphaFold-binding . 25
3.7 Analysis of the Code . 26

3.7.1 Parsing Input Parameters 26
3.7.2 Parsing Input Files . 27
3.7.3 Extraction of Residues’ Statistics 28
3.7.4 Computation of Predictions 30
3.7.5 Creation of Output Files . 31

3.8 Usage of AlphaFold-disorder software tool 32
3.8.1 Dependencies . 32
3.8.2 Usage . 33
3.8.3 DSSP Installation . 33
3.8.4 Python Libraries Installation 33

4 AlphaFold-disorder (SASA): Development of Procedures 35
4.1 Secondary Structure Detection with Protein Atomic Coordinates . 36

4.1.1 Introduction . 36
4.1.2 Implementation of PSEA procedure 38
4.1.3 Helper procedures . 44
4.1.4 Integration . 45

4.2 Computation of RSA with Shrake-Rupley Algorithm 47
4.2.1 Implement Shrake-Rupley algorithm 47
4.2.2 Normalization . 48
4.2.3 Integration . 51

4.3 Implementation of FoldComp Library 52

viii

CONTENTS

5 AlphaFold-disorder (SASA) assessment 53
5.1 Output dataset . 54
5.2 Exploratory Plots . 54
5.3 ML models . 56

5.3.1 Preprocessing . 57
5.3.2 Development of Machine Learning Models 59
5.3.3 Ridge . 60
5.3.4 LASSO . 61
5.3.5 Poisson GLM . 61
5.3.6 Tweedie GLM . 62
5.3.7 K-Nearest Neighbors . 62
5.3.8 Decision Tree . 62
5.3.9 Extra Tree . 64

5.4 Evaluation of ML models’ predictions 64
5.4.1 Disorder PDB . 65
5.4.2 Disorder NOX . 66
5.4.3 Binding . 67

5.5 Helper Scripts for Analysis . 68
5.5.1 Fetch proteins and functional annotations from DisProt

database . 68
5.5.2 Fetch ground truths arrays from CAID 69

6 Conclusions 71

References 73

Acknowledgments 77

ix

List of Figures

2.1 Chromosomes set in human genome, from [2] 4
2.2 Transcription: RNA Synthesization, from [18] 5
2.3 Translation: Protein Synthesization, from [5] 6
2.4 Genetic code, from [4] . 7
2.5 Structure of proteins, from [1] . 9
2.6 Tandem Repeat Proteins, from [9] 12
2.7 Intrinsically Disordered Proteins, from [13] 13
2.8 Atom to macromolecules to organism, from [12] 16
2.9 Biological technologies for obtaining structural data, from [6] . . . 17
2.10 BioPython logo . 18

3.1 CAID cycle [3] . 23
3.2 From AlphaFold paper [14] . 25

4.1 𝛼-Carbon atoms in a protein, from [16] 36
4.2 The three secondary structure P-SEA can identify, from [15] . . . 37
4.3 Angle 𝜏 . 40
4.4 Dihedral Angle 𝛼 . 40
4.5 Distances d2, d3 and d4 . 41

5.1 Histogram of the features considered, with respect to disorder
ground truth (positive class) . 55

5.2 Histogram of the RSA feature, with respect to disorder ground
truth (both classes) . 56

5.4 Picture of SVM hyperplane, from [17] 60
5.5 How KNN algorithm works, from [22] 63
5.6 Example of a decision tree, from [20] 64
5.7 ROC curves - DisorderPDB ground truth 65

xi

LIST OF FIGURES

5.8 Precision-Recall curves - DisorderPDB ground truth 65
5.9 ROC curves - DisorderNOX ground truth 66
5.10 Precision-Recall curves - DisorderNOX ground truth 66
5.11 ROC curves - Binding ground truth 67
5.12 Precision-Recall curves - Binding ground truth 67

xii

List of Tables

2.1 List of Amino Acids . 11

3.1 Columns of an AlphaFold-disorder output file 32

4.1 Parameters for P-SEA assignment of secondary structure. 37
4.2 Sander and Rost’s normalization factors 49
4.3 Ad-hoc normalization factors . 50

5.1 Atchley scale . 58
5.2 DataFrame for Disorder-PDB ground truth 69

xiii

List of Algorithms

1 Pseudocode for extracting 𝛼-carbons coordinates 39
2 Pseudocode for computing angles and distances between 𝛼-carbons

coordinates . 42
3 Pseudocode for assigning secondary structure to residues 43

xvii

List of Code Snippets

3.1 Import libraries parsing . 26
3.2 Command-line arguments parsing. 26
3.3 Input files parsing . 27
3.4 Extraction residues’ statistics . 29
3.5 Procedure make_prediction() . 30
3.6 Creation of output files . 31
4.1 Procedure get_sse_psea() . 45
4.2 Procedure to compare SSEs . 46
4.3 Integration of rsa with SASA on process_pdb_psea procedure . . 51
4.4 Integration of FoldComp . 52
5.1 SVM implementation . 60
5.2 Ridge implementation . 61
5.3 LASSO implementation . 61
5.4 Poisson-GLM implementation . 62
5.5 Tweedie-GLM implementation . 62
5.6 K Nearest Neighbors implementation 62
5.7 Decision Tree implementation . 63
5.8 Extra Tree implementation . 64
5.9 Script to use AlphaFold database API 68

xix

List of Acronyms

NMR Nuclear Magnetic Resonance

DNA DeoxyriboNucleic Acid

RNA RiboNucleic Acid

ATP Adenosine TriPhospate

IDP Intrinsically Disordered Proteins

DSSP Define Secondary Structure Prediction

SASA Solvent Accessible Surface Areas

CLI Command Line Interface

CSV Comma Separated Values

TSV Tab Separated Values

JSON JavaScript Object Notation

PIP Package Installer for Python

CAID Critically Assessment of protein Intrinsic Disorder prediction

PDB Protein Data Bank

mmCIF MacroMolecular Crystallographic Information File

SS Secondary Structure

SSE Secondary Structure Elements

RSA Relative Solvent Accessibility

xix

LIST OF CODE SNIPPETS

pLDDT predicted Local Distance Difference Test

P-SEA Protein Secondary Element Assignment

ML Machine Learning

LASSO Least Absolute Shrinkage and Selection Operator

SVM Support Vector Machines

ROC Receiver Operating Characteristic

xx

1
Introduction

1.1 BioComputing UP

BioComputing UP is a research laboratory and is part of the Department of
Biomedical Sciences of the University of Padua. The research there is focused on
developing bioinformatic tools and high quality computational methods which
are put to use to solve important biological issues. Its main fields are: structural
biology, functional biology, genome wide analysis, genetic diseases and cancer
studies.

1.2 Internship description

The internship project I carried on during the stage at BioComputing Up was
mainly about expanding a pre-existent software tool, Alphafold-disorder, with
newer libraries. In particular, my tasks were:

• Studying Alphafold-disorder code and related papers, to understand the
scientific principles beneath;

• Implementing an algorithm which detects protein secondary structure,
based on atomic distances and angles, calculated with protein atomic co-
ordinates and the library BioPython. This algorithm was described in a
paper [11];

• Integrating this secondary structure detection algorithm into the software
tool Alphafold-disorder;

1

1.3. THESIS OUTLINE

• Developing a procedure to compute the solvent-accessibility for each
aminoacid in the protein, using the algorithm devised by Shrake and
Rupley in 1973, by integrating a specific library;

• Integrating this procedure to compute solvent-accessibility into Alphafold-
disorder;

• Integrating the library FoldComp and developing a quick procedure to
allow input files of the type .fcz in Alphafold-disorder. FoldComp is a
library that creates .fcz files as a compression of normal protein data files,
.pdb files. FoldComp library is described in a scientific paper [10];

• Evaluating results through plots and machine learning models.

1.3 Thesis Outline

This thesis is divided into chapters based on the 6 tasks I’ve accomplished in
my internship.

Chapter 1 : brief introduction and contextualization.
Chapter 2: overview on proteins, starting from the basics concepts of biology,

with a focus on proteins with intrinsically disordered regions, to how computer
science is applied in this field.

Chapter 3: description of Alphafold-disorder and the relevant libraries in-
volved, such as DSSP.

Chapter 4: development of the software tool AlphaFold-disorder (SASA).
Focus on the three major procedures implemented.

Chapter 5: analysis of the results produced by the new software tool Alphafold-
disorder (SASA) through plots and machine learning models, to assessment of
the results produced.

Chapter 6: conclusions based on the insights provided by the plots made in
the Chapter 5.

2

2
An Overview on Proteins

2.1 Basics of Molecular Biology

2.1.1 Cells

Life is made of cells, the fundamental working units of every living system.
They are composed of water; macromolecules (proteins and polysaccharides)
and other small molecules, such as lipids and amino acids.

Cells are the smallest structural unit of an organism capable of indepen-
dent functioning.Each cell follows the same common cycle of birth, replication,
protein synthesis and death.

2.1.2 DNA

The nucleus of the cell contains the DNA, which contains the genetic infor-
mation of the individual, the DNA is highly folded to save up as much space in
the nucleus.

The genome is an organism’s complete set of DNA, the human genome
contains about 3 billion DNA base pairs and 24 distinct chromosomes.

In figure 2.1 we can see the set of 24 chromosomes in the human genome. A
cell normally contains 23 chromosomes, the 22 common ones, the autosomes,
plus one of the sex chromosomes, "XX" in females and "XY" in males.

Chromosomes are contains pieces of DNA, among them we have genes: the
basic functional units of heredity.

3

2.1. BASICS OF MOLECULAR BIOLOGY

Figure 2.1: Chromosomes set in human genome, from [2]

Genes are specific sequences of DNA that encode instructions on how to
make proteins, they determine the principal hereditary characteristics in the
human being, such as height, muscular mass and appetite.

Mutations of one or more genes can cause alterations as harmless as a dif-
ferent eye color or as serious as a disease. These mutations can also provide
beneficial effects, such as immunity or protection for some diseases, for example
a specific gene mutation is known for its protection against malaria.

The DNA can be used to synthesize proteins, particular molecules that par-
ticipate in most of the essential processes of the human body:

• building and repairing body structures;

• digesting nutrients;

• hormones: some hormones are proteins or protein-derived. Hormones
are chemical messengers that flow through blood to coordinate different
body’s functions;

• executing various metabolic functions, or assisting the execution.

4

CHAPTER 2. AN OVERVIEW ON PROTEINS

2.1.3 Central Dogma of Biology

The Central Dogma of Biology describes the transfer of genetic information
from DNA to RNA to proteins. The key steps involved are :

• Replication: Duplication of DNA molecules, used during cell division;

• Transcription: Synthesis of an RNA molecule, using DNA as template;

• Translation: Synthesis of a protein, using the information encoded in RNA
molecules.

Now I will describe the Transcription step, that produces RNA molecules
and the Translation step, that synthesize proteins.

Transcription

Transcription is the process of copying a segment of DNA into RNA.

Figure 2.2: Transcription: RNA Synthesization, from [18]

An enzyme called RNA polymerase produces an RNA strand, by passing
through a DNA strand.

5

2.1. BASICS OF MOLECULAR BIOLOGY

The resulting RNA is the copy of the coding strand of the "input" DNA ,
while the strand used as template to create this copy is called template strand.

In figure 2.2 we can see how RNA polymerase creates the RNA. We can note
that the RNA molecule is called messenger RNA, also known as mRNA.

There are other two types of RNA, tRNA and rRNA:

• mRNA: messenger RNA, contains the genetic information from the DNA.
mRNA specifies ;

• tRNA: transfer RNA, transfer the correct amino acid to the ribosome. It
acts as a bridge between the mRNA and the ribosome;

• rRNA: ribosomal RNA, combined with ribosomal proteins creates the
ribosome.

Translation

Translation is the cellular process that synthesizes proteins based on the
genetic instructions encoded in messenger RNA.

Figure 2.3: Translation: Protein Synthesization, from [5]

In figure 2.3 we can how the ribosome synthesizes the protein chain.
The synthesization happens inside a ribosome, which reads the triplet of

nucleotides of the mRNA (codon) and brings the correct tRNA, which has a
triplet of nucleotides (anticodon) that matches the codon.

6

CHAPTER 2. AN OVERVIEW ON PROTEINS

Then the tRNA transfers its amino acid to the growing protein chain of the
ribosome.

In figure 2.3 we can see how the ribosome, along with tRNAs, identifies the
correct amino acid and transfers it into the growing protein, through a chemical
bond.

Figure 2.4: Genetic code, from [4]

In the figure 2.4 above, we can observe the Genetic Code: the set of triplets
of nucleotides, codons and the corresponding amino acid.

We can observe 4 particular combinations of nucleotides that correspond to
signal of start and stop the protein synthesization:

• The codon AUG identifies the START signal for the protein translation;

• The codons UAA, UAG, UGA identify the STOP signal, which ends the
translation process producing the final protein.

7

2.1. BASICS OF MOLECULAR BIOLOGY

2.1.4 Proteins

Proteins are large, complex molecules made up of amino acids, smaller
subunits also referred to as residues. The residues are the building blocks of a
macromolecule, so in this case the residues are the incorporated amino acids.
Proteins are linear chains of different combinations of 20 different amino acids.

Protein Functions

• Cellular structure;

• Present in body’s major components, such as skin and hairs;

• Hormones, some of them are proteins, they communicate with other cells;

• Enzymes are proteins, they regulate gene activity.

The protein function depends both on the amino acids’ sequence order and
types and on the three-dimensional structure the protein folds into.

Protein Folding

Proteins tend to fold into lowest energy three-dimensional conformation.
They already begin to fold already when the amino acid chain is being formed
during translation.

Different amino acids have different chemical properties and by interacting
with each other the protein starts to fold adopting its functional structure.

The structure of the protein determines the protein function. Through fold-
ing some amino acids are more exposed, this determines which substrates the
protein can react to.

Substrates are molecules or compounds that participate in a chemical reac-
tion, they are starting materials or reactants which are acted upon by enzymes
or catalysts.

8

CHAPTER 2. AN OVERVIEW ON PROTEINS

Figure 2.5: Structure of proteins, from [1]

From figure 2.5 we can see the four types of structures in a protein:

• Primary structure: the sequence of amino acids;

• Secondary structure: local structural patterns formed by residues;

• Tertiary structure: the global structure of the peptide chain;

• Quaternary structure: aggregation between the various peptide chains in
the protein.

The main two types of secondary structures are :

• Alpha-helix: proteins bury most of their hydrophobic residues in the
interior core, forming a spiral structure resembling an helical spring;

• Beta-sheets: segments of the protein are stretched out and aligned in a
sheet-like arrangement.

9

2.1. BASICS OF MOLECULAR BIOLOGY

Amino Acids

Amino acids are monomers1 of proteins, each amino acid has a specific
chemical behavior.

All amino acids in the human genetic code have a carboxyl group (-COOH)
and an amino group (-NHH) bound to the central carbon atom. Amino acids
differ for the side chain, while the carboxyl group and the amino group are the
same for each one of the 20 amino acid. Side chains differ in these 3 features :

• three-dimensional structure;

• electric charge;

• hydrophobicity.

Amino acids are mainly classified by hydrophobicity :

• hydrophobic amino acids repel water, they are also called non-polar amino
acids.

• hydrophilic amino acids are attracted to water, they are also called polar
amino acids.

1A monomer in molecular biology is a molecule that can bond with other monomers to
create a macromolecule.

10

CHAPTER 2. AN OVERVIEW ON PROTEINS

Other classifications take into account the structure, functionality or electrical
charge of the amino acid (uncharde, positively charged or negatively charged).
Some other classifications are based on the particularity of the side chains, such
as Sulfur-Containing.

Full Name Abbreviation Abbreviation Polarity
(3 Letters) (1 Letter)

Glycine Gly G
Alanine Ala A
Valine Val V

Leucine Leu L
Isoleucine Ile I Non-Polar

Methionine Met M
Phenylalanine Phe F
Tryptophan Trp W

Proline Pro P
Serine Ser S

Threonine Thr T
Cysteine Cys C
Tyrosine Tyr Y

Asparagine Asn N
Glutamine Gln Q Polar

Aspartic Acid Asp D
Glutamic Acid Glu E

Lysine Lys K
Arginine Arg R
Histidine His H

Table 2.1: List of Amino Acids

In the table 2.1, we can see the list of the 20 amino acids in the Genetic Code
with :

• Polarity;

• Three letters abbreviation;

• One letter abbreviation.

To check which triplet of nucleotides corresponds to each amino acid in the
Genetic Code, we can go back to figure 2.4.

11

2.1. BASICS OF MOLECULAR BIOLOGY

2.1.5 Tandem Repeat Proteins

Tandem repeat proteins are the product of minimal folds from the repetition
of simpler units. Their buried residues are more conserved, with a large surface
and a high sequence variability.

Figure 2.6: Tandem Repeat Proteins, from [9]

From the figure 2.6 we can see what tandem repeat proteins look like. We
can also observe how they are divided into classes; tandem repeat proteins are
classified according to periodicity in 5 classes:

• Class I: Aggregates;

• Class II: Collagen and Coiled-coils;

• Class III: Solenoids;

• Class IV: Toroids;

• Class V: Beads on a string.

12

CHAPTER 2. AN OVERVIEW ON PROTEINS

2.1.6 Intrinsically Disordered Proteins

A polypeptide chain can be classified as different types of proteins, such as:

• Membrane proteins;

• Globular proteins;

• Tandem repeat proteins;

• Intrinsically disordered proteins.

The main difference between Intrinsically Disordered Proteins and the others
is that IDPs don’t have a fixed structure, either in same parts or in every part of
the protein.

Figure 2.7: Intrinsically Disordered Proteins, from [13]

In disordered proteins the cost of folding is higher and so the protein has a
lesser degree of freedom in folding.

It has complex surfaces which means high specificity with low versatility. For
specificity we mean that when 2 proteins fit together, we need 2 highly specific
protein structures to fit together, since their shape is so complex, an average
protein can’t be a proper fit.

Low versatility is the opposite: since the shape is quite complex, it doesn’t
fit together with most proteins, hence it’s not versatile.

Due to their complex structures, disordered proteins are less prone to envi-
ronmental stress: they can preserve their function in unstable conditions, such
as high temperature.

13

2.1. BASICS OF MOLECULAR BIOLOGY

In cell regulation around 25% of proteins are disordered, those are involved
in highly dynamic and complex processes that require proteins with high speci-
ficity.

IDPs (Intrinsically Disordered Proteins) are really interesting to study, be-
cause they are implicated in several pathologies and due to their different func-
tions they are involved in:

• Regulatory functions;

• Central role in the assembly of macromolecular machines, such as ribo-
somes;

• Transport of molecules through nuclear pore;

• Binding: IDPs can participate in one-to-many and many-to-many inter-
actions, where one IDP region binds to multiple molecules, potentially
gaining very different structures in the bound state.

They are also implicated in several pathological conditions, like cancer, car-
diovascular diseases, and neurodegenerative diseases.

Some of the first classes of IDPs were notable due to their pathological roles
in neurodegenerative diseases.

14

CHAPTER 2. AN OVERVIEW ON PROTEINS

2.2 Computational Biology: Computer Science Ap-
plied to Biology

The growing amount of data in the field of Molecular Biology brought the
scientists to exploit Computer Science. Computers can process data way faster
than human beings, and especially in this field, where we have so much infor-
mation on DNA, genes and proteins, it’s really useful to compute and process
these pieces of informations faster and possibly with less errors.

This new field takes the name of Bioinformatics, the union of Biology, Com-
puter Science and Statistics. Statistics is needed because most of the information
isn’t 100% reliable, hence statistics methods are used. The main fields of bioin-
formatics are:

• Structural data analysis: its purpose is to predict the three-dimensional
structures of proteins, nucleic acids and other biological molecules. Un-
derstanding the structure of these molecules can provide insights into their
functions and interactions;

• Omics data analysis: for example genomics, proteomics, metagenomics,
epigenomics and so on. Omics data is a broad term that refers to large-scale
datasets generated from various biological technologies. These large-scale
datasets enable researchers to study different aspects of biological sys-
tems, often on a global or comprehensive scale. For example, in genomics
analysis, we have large-scale datasets focused on genome data, so we can
analyze DNA sequences and genes organization and functions.

In this thesis the focus will be on structural data analysis, since the software
tool I talk about analyzes the three-dimensional structure to obtain information
on the disorder or binding propensity.

15

2.2. COMPUTATIONAL BIOLOGY: COMPUTER SCIENCE APPLIED TO BIOLOGY

2.2.1 Structural Data

Figure 2.8: Atom to macromolecules to organism, from [12]

In figure 2.8 we can see the various steps from molecules to macromolecules
to bigger complexes up to the final organism.

We can use structural data for:

• Structure prediction;

• Predicting protein interactions: protein folding, binding, protein assem-
blies;

• Structure comparison: by comparing the moolecules’ structure we can
determine to which species it belongs to and where in the evolutionary
scale it stands;

• Exploring mechanisms of interaction with ligands: metabolites, drug com-
pounds, DNA and others.

From molecular data we get information on coordinates and then we want
to obtain some kind of knowledge, for example:

• Mutation X disrupts the function of enzyme Y which causes disease Z.

"Coordinates by themselves just specify shape and are not necessarily of intrinsic
biological value, unless they can be related to other information"
Integrative database analysis in structural genomics, Mark Gerstein, Nature Structural Biology

16

CHAPTER 2. AN OVERVIEW ON PROTEINS

There are many databases that store information on structural data for many
proteins or other macromolecules, some of them also contains sequence data or
metabolic pathways data. Sequence data are just data on DNA so the sequences,
while metabolic pathways are related to which pathway a given gene activate.

Down below we can see a picture of most databases for bioinformatics data.

The first database for structural data was PDB (Protein Data Bank), with the
purpose of building an archive on protein structural data. A lot of the newer
databases for structural data are derived from PDB.

Lastly, we can see a figure representing the most used biological technologies
for obtaining structural data.

Figure 2.9: Biological technologies for obtaining structural data, from [6]

In our case, for protein chains and residues, the most interesting biological
technologies are the first two from left:

• X-ray crystallography;

• NMR spectroscopy.

To close up this chapter I will talk about one of the most important libraries
in bioinformatics: BioPython.

17

2.2. COMPUTATIONAL BIOLOGY: COMPUTER SCIENCE APPLIED TO BIOLOGY

2.2.2 BioPython

Regarding Computer Science the main languages used for bioinformatics
are:

• R;

• Matlab;

• Python.

For python there is the library BioPython, which is a library containing
classes, functions and modules for the various necessities in bioinformatics.

Figure 2.10: BioPython logo

There are a lot of subpackages under the package Bio of BioPython, in our
case we are just interested in 3 of them:

• Bio.PDB: contains classes that deal with macromolecular crystal struc-
tures. In particular it includes PDB and mmCIF parsers, the DSSP wrap-
per2, the SASA module and the Structure class;

• Bio.Data: collection of useful biological data, for example in our case we
use it for the normalization factors for RSA;

• Bio.SeqUtils: contains mhelper functions to deal with sequences.

In particular from Bio.PDB we use the classes:

• PDBParser: as the name suggests, it’s a class which reads a .pdb file and
saves it into a variable of the type Structure class;

2A wrapper is a class or procedure that translates a library’s existing interface into a com-
patible interface, it "wraps" the underlying library. It’s often used to enable cross-language, in
this case the wrapper enables the c++ library "DSSP" to be used in Python.

18

CHAPTER 2. AN OVERVIEW ON PROTEINS

• MMCIFParser: similar to PDBParser, but for .mmCIF files;

• DSSP: the python wrapper for the software tool DSSP;

• SASA: a class for calculating solvent accessibility;

• Polypeptide: a class with helper functions to deal with protein chains, in
particular we use the function is_aa() to see if a string is an identifier for
an amino acid.

On the other hand the Bio.Data subpackage has been used just for the nor-
malization factors for SASA, the dictionary residue_sasa_scales.

And Bio.SeqUtils has been used for the helper function Seq1, which converts
a sequence of amino acids with three-letters code into a sequence of amino acids
with one-letter code.

For more information on BioPython and its subpackages and submodules,
here is the link to the documentation.

2.2.3 DSSP

In BioPython we have an important procedure: the DSSP wrapper. DSSP
(Define Secondary Structure Prediction) is a computer database used in struc-
tural bioinformatics to analyze a protein chain, in particular the secondary struc-
ture and other statistics that can be derived from it.

It uses hydrogen bond patterns and other geometric features of the protein
to analyze it.

19

https://biopython.org/docs/dev/api/index.html

3
Analysis of AlphaFold-disorder

3.1 Introduction

3.1.1 AlphaFold

AlphaFold is a deep learning system developed by DeepMind. It’s designed
to predict protein folding, which is very important to study the protein functions.
It uses deep networks to predict the three-dimensional structure of proteins.

Here the reference to the scientific paper [7].

3.1.2 pLDDT

pLDDT (per-residue Local Distance Difference Test) is a metric used by Al-
phaFold to indicate the confidence of predictions.

A high pLDDT score indicates higher confidence in the predicted 3D position
of that residue in the protein structure. AlphaFold obtains it by computing
the distances between the predicted position and the experimentally observed
position of the residue.

3.1.3 Disorder

Disorder, in the context of Molecular Biology of proteins, refers to how "out-
of-order" is the structure of a part of the protein, usually a region. Two of the
three algorithms inside the software tool predict the disorder propensity of a

21

3.2. ALPHAFOLD-DISORDER

certain residue, amino acid.
This disorder propensity is a probability for that residue of being part of a

disordered region. Disordered regions are quite important to study, because, as
we talked about in the previous chapter, proteins with intrinsically disordered
regions are involved in many functions and pathologies.

3.1.4 Binding

The other algorithm within the software tool is a predictor for binding, which
means it predicts a binding propensity for each residue, namely the probability
for that residue to bind with some ligand.

This binding propensity can overlap with disorder propensity, since many
disordered regions tend to have higher binding activity.

3.2 AlphaFold-disorder

AlphaFold-disorder is a software tool developed by Damiano Piovesan,
Alexander Miguel Monzon and other members of the BioComputing UP labo-
ratory. The objective of the software tool is to predict disorder and binding of
the amino acids with high accuracy.

The CAID portal (Critical Assessment of Protein Intrinsic Disorder) [3], also
developed by members of the BioComputing UP laboratory, was used to mea-
sure the quality of the software tool prediction.

In particular 3 algorithms within the tool were measured:

• AlphaFold-pLDDT: uses pLDDT to predict disorder values;

• AlphaFold-rsa: uses pLDDT and RSA statistics to predict disorder values;

• AlphaFold-binding: uses pLDDT and RSA statistics to predict binding
values.

Each of these algorithms produces a table containing binding, disorder and
other statistics for every amino acid, or residue1.

The professors and researchers of the laboratory published a scientific pa-
per[14] regarding this software tool: Intrinsic protein disorder and conditional
folding in AlphaFoldDB.

1In molecular biology, a residue refers to a monomer within a polymeric chain. In the case
of a protein, a residue refers to an aminoacid.

22

CHAPTER 3. ANALYSIS OF ALPHAFOLD-DISORDER

Figure 3.1: CAID cycle [3]

In this chapter we will see more in detail the CAID web application and the
3 algorithms within AlphaFold-disorder.

3.3 CAID

CAID, Critical Assessment of Protein Intrinsic Disorder prediction, is a web
application established in 2018 to determine the state-of-art for predicting dis-
order and binding on IDRs, Intrinsic Disordered Regions.

The scientific paper for CAID portal is [3].
The idea is to compare different softwares for this kind of prediction: each

of them assigns to every residue of the protein the propensity for that residue to
be intrinsically disordered. Accuracy of predictions are evaluated by means of
ground truths, obtained by a reference, in this case the reference is the DisProt
database. On CAID both software runtimes and accuracy of predictions are
compared.

Here we can see a picture representing the CAID cycle:

• Ground Truth: DisProt database was selected as reference because it con-
tains a large number of manually curated disorder and binding annota-
tions at a protein level. DisProt annotates association between intrinsically
disordered regions and a biological function.

• Standardization: Participants submit their softwares, and the CAID orga-
nizers encapsulate code into containers, providing standardization across

23

3.4. ALPHAFOLD-PLDDT

different machines. This also makes it easier to deploy them and to package
softwares with dependencies.

• Prediction: Running the containers implemented in the Standardization
step on the Ground Truth targets generates predictions. The cluster used
by CAID can execute all methods in parallel within some resource con-
straints (90 GB RAM, 48 threads, 4 Hours per sequence).

• Benchmarking: The performances of the various methods are evaluated
by a number of metrics. CAID identifies the confidence threshold to
optimize the performance for a specific metric. In benchmarking and
runtimes pages are reported some of the assessment results.

The 3 algorithms we mentioned earlier, AlphaFold-pLDDT, AlphaFold-rsa
and AlphaFold-binding, are already present in their containers on the CAID
application.

3.4 AlphaFold-pLDDT

This predictor is provided by the software tool AlphaFold-disorder. It’s a
indicator of presence of disorder, it predicts the propensity for each residue to
be intrinsically disordered.

Its predictions are based on the pLDDT, predicted Local Distance Difference
Test, which is already present in .pdb files from AlphaFold predictions as the
B-factor. This algorithm just obtains a statistic representing disorder propensity
for that residue, out of the B-factor.

AlphaFold-pLDDT uses "1 - pLDDT" as disorder propensity.
The optimal classification threshold found with CAID is 0.312, represent-

ing pLDDT <68.8 %, this threshold was selected by maximizing the F1-Score
performance on the CAID DisProt dataset.

3.5 AlphaFold-rsa

AlphaFold-rsa is another indicator of presence of disorder, within the soft-
ware tool AlphaFold-disorder.

The disorder propensity is calculated with the relative solvent accessibility,
RSA, over a local window centered on the residue whose disorder propensity
we want to predict. DSSP was used to obtain the relative solvent accessibility
and the optimal local window, of 25 residues, was chosen with a grid search in
the range of 1 to 50 residues.

24

CHAPTER 3. ANALYSIS OF ALPHAFOLD-DISORDER

Figure 3.2: From AlphaFold paper [14]

The optimal classification threshold for AlphaFold-rsa is 0.581, which means
RSA < 41.9 %. Again the threshold was selected by maximizing F1-Score per-
formance on the CAID DisProt dataset.

3.6 AlphaFold-binding

Finally we have the last predictor in the software tool AlphaFold-disorder.
This infer the binding propensity on disordered residues: disordered residues
tend to have higher binding propensity (probability that residue has to bind
with other molecules).

This predictor makes use of both the pLDDT and the RSA calculated for
the other 2 predictors: in the scientific paper [14] that describes the software
tool AlphaFold-disorder, we can see the relation between RSA, pLDDT and this
binding propensity.

The parameter T represents a threshold, obtained again from maximizing
the F1-Score on the CAID DisProt dataset. The optimal threshold found with
CAID is 0.773.

Below 0.773 the binding propensity is the value from AlphaFold-rsa(T); above
0.773 we use the pLDDT score to compute the binding propensity.

25

3.7. ANALYSIS OF THE CODE

3.7 Analysis of the Code

The main points are:

1. Parsing of input parameters;

2. Parsing of input file(s);

3. Extraction of pLDDT and RSA for each residue;

4. Computation of predictions;

5. Creation of output files.

3.7.1 Parsing Input Parameters

To parse input they used the library parse_args along with Path and PurePath
of the library pathlib.

import argparse

from pathlib import Path, PurePath

Code 3.1: Import libraries parsing

The procedure "parse_args()" is used to parse parameters given in terminal,
when using the software tool. These are the main parameters:

• --in-struct (-i): the input file(s). Either a single file, folder or file listing
containing the relative paths of .PDB or .mmCIF files;

• --out (-o): name for the output file(s).

• --format (-f): format for the output file, it can be either "tsv" or "caid";

• -dssp: the path for the mkdssp executable, by default is just the alias
"mkdssp" which is needed to be setted in the environment variables;

• -ll: log level, it can be one of the following: "notset", "debug", "info",
"warning", "error", "critical".

def parse_args():

parent_parser = argparse.ArgumentParser(add_help=False)

group = parent_parser.add_mutually_exclusive_group(required=True)

group.add_argument(’-i’, ’--in_struct’, type=str,

help=’A single file, folder or file listing

26

CHAPTER 3. ANALYSIS OF ALPHAFOLD-DISORDER

containing (gzipped) PDB or mmCIF files (relative paths)’

)

[...]

parent_parser.add_argument(’-ll’, type=str, choices=[’notset’,

’debug’,’info’,’warning’,’error’,’critical’],

default=’info’, help=’Log level’)

main_parser = argparse.ArgumentParser(parents=[parent_parser])

return main_parser.parse_args()

Code 3.2: Command-line arguments parsing.

3.7.2 Parsing Input Files

First of all the library pathlib is employed to obtain the path of the input
file(s) and then we have 4 possibilities, identified through if-else ’s :

• one protein file: so either a ".pdb" file, a ".pdb.gz", ".cif" or ".cif.gz" file;

• list of files;

• a directory: each protein file within this directory is processed;

• non-protein files are recognized and not processed.

if __name__ == ’__main__’:

[...]

p = Path(args.in_struct)

args.in_struct is the CLI parameter for input files

if p.is_file():

input is a single struct file or file with list

if ’’.join(PurePath(p).suffixes) in [’.pdb’, ’.pdb.gz’,

’.cif’, ’.cif.gz’] :

#process single file as input

processed_data = process_file(p)

[...]

else:

process list of files as input

with open(p, ’r’) as list_file:

for file in list_file:

real_file = Path(p.parent, Path(file.strip()))

processed_data = process_file(real_file)

[...]

else:

27

3.7. ANALYSIS OF THE CODE

input is a directory

start_T = time.time()

for file in p.iterdir():

if ’’.join(PurePath(p).suffixes) in [’.pdb’, ’.pdb.gz’,

’.cif’, ’.cif.gz’] :

#process every file in the directory

processed_data = process_file(p)

Code 3.3: Input files parsing

3.7.3 Extraction of Residues’ Statistics

This part is implemented under the main procedure "process_pdb". To
implement this procedure a few libraries have been used: the main ones are
BioPython and pandas. The input parameters for the procedure are three:

• pdb_file: the actual protein file, so the path to that file;

• pdb_name: the name of the file;

• dssp_path: the path to the mkdssp executable.

Description of the procedure

The procedure can be divided in 4 steps :

1. Load structure: the protein file is loaded and parsed into a proper data struc-
ture: "Bio.PDB.Structure", a class in BioPython that represents a macro-
molecular structure. This parsing is done through "Bio.PDB.PDBParser"
if it’s a .pdb file or with "Bio.PDB.FastMMCIFParser" if it’s a .mmCIF file.

2. DSSP invocation: DSSP is a software tool used to obtain interesting statistics
for each residue. The software tool is invoked through a Python wrapper2
class: "Bio.PDB.DSSP" provided by BioPython.

3. Extraction of statistics: Finally the statistics of interests are extracted by
iterating the residues. The statistics of interests are 3:

2A wrapper is a class or procedure that translates a library’s existing interface into a com-
patible interface, it "wraps" the underlying library. It’s often used to enable cross-language, in
this case the wrapper enables the c++ library "DSSP" to be used in Python.

28

CHAPTER 3. ANALYSIS OF ALPHAFOLD-DISORDER

1. pLDDT: obtainable without DSSP, from the B-factor value already
present in the .pdb file;

2. RSA: it represents how much the solvent can access this residue. It’s
provided by DSSP;

3. SS: secondary structure of the residue. Also provided by DSSP.

4. Save statistics in a DataFrame: Finally the statistics of interest are stored in
a DataFrame, a class provided by the library "pandas". Dataframe is the
most popular way to manage a table and easily write it in a ".csv" or ".tsv"
file.

Code snippet of the procedure

For more information on DSSP there is the original scientific paper [8] and
the updated repository of github: DSSP. Down below we can see an adjusted
code snippet to illustrate how this extraction of statistics for each residue works.
It’s adjusted for the purpose of showing it in this thesis.

import pandas as pd

from Bio.PDB import PDBParser , DSSP

from Bio.PDB.MMCIFParser import FastMMCIFParser

from Bio.SeqUtils import seq1

[...]

def process_pdb(pdb_file, pdb_name, dssp_path=’mkdssp’):

[...]

Load the structure

file_ext = Path(rel_file).suffix

if file_ext in [’.pdb’]:

structure = PDBParser().get_structure(’’, real_file)

else:

assume mmCIF

structure = FastMMCIFParser().get_structure(’’. real_file)

[...]

Calculate DSSP. WARNING Check the path of mkdssp

dssp_dict = dict(DSSP(structure[0], real_file , dssp=dssp_path))

[...]

Parse b-factor (pLDDT) and DSSP statistics of interest

df = []

for i, residue in enumerate(structure.get_residues()):

lddt = residue[’CA’].get_bfactor() / 100.0

29

3.7. ANALYSIS OF THE CODE

rsa = float(dssp_dict.get((residue.get_full_id()[2],

residue.id))[3])

ss = dssp_dict.get((residue.get_full_id()[2], residue.id))[2]

df.append((pdb_name, i + 1, seql(residue.get_resname()),

lddt, 1 - lddt, rsa, ss))

df = pd.DataFrame(df, columns=[’name’, ’pos’, ’aa’, ’lddt’,

’disorder’, ’rsa’, ’ss’])

return df

Code 3.4: Extraction residues’ statistics

3.7.4 Computation of Predictions

We already have the predictions of AlphaFold-pLDDT, here we will describe
the procedure for predictions of the other 2 algorithms: AlphaFold-RSA and
AlphaFold-Binding.

The procedure is called make_prediction and it asks as input three parameters:

• df: dataframe containing the data on residue from DSSP;

• window_rsa: the window of residues to consider when calculating rsa;

• thresholds_rsa: the threshold of rsa that represents a high solvent-accessibility.

The last 2 parameters have a default value, based on empirical tests: 25
residues for the window_rsa and 0.581 for the thresholds_rsa.

The default value for window_rsa was found with grid search, with various
numbers for the parameter, 25 was the best one. While for thresholds_rsa, the
default value was obtained by maximizing the F1 score, on CAID.

Both in window_rsa and in thresholds_rsa we can have multiple values, for
an easier comparison, the parameters are in fact lists of values.

By default this procedure adds to the dataframe 2 columns, one for AlphaFold-
RSA disorder prediction and one for AlphaFold-Binding binding prediction.
With more than elements in the parameter lists of window_rsa and thresh-
olds_rsa we will have more columns.

Down below a code snippet of the procedure.

1 def make_prediction(df, window_rsa=[25], thresholds_rsa=[0.581]):

2 for w in window_rsa:

3 column_rsa_window=’disorder -{}’.format(w)

4 half_w = int((w-1)/2)

5 tmp_pad = np.pad(df[’rsa’], (half_w, half_w), ’reflect’)

30

CHAPTER 3. ANALYSIS OF ALPHAFOLD-DISORDER

6 # running mean of array tmp_pad, with window: half_w*2 +1

7 df[column_rsa_window] = moving_average(tmp_pad, half_w*2 +1)

8

9 for th_rsa in thresholds_rsa:

10 column_rsa_binding = ’binding -{}-{}’.format(w, th_rsa)

11 df[column_rsa_binding] = df[column_rsa_window].copy()

12 df.loc[df[column_rsa_window]>th_rsa,column_rsa_binding] =

13 df.loc[df[column_rsa_window]>th_rsa,’lddt’] * ((1-th_rsa)+th_rsa)

Code 3.5: Procedure make_prediction()

At line number 6 a procedure moving_average() is invoked: the procedure
uses the NumPy library to compute the moving average of an array, using
convolution.

While on lines 11 and 12 we have some complex computation that uses the
thresholds_rsa to transform the scores.

3.7.5 Creation of Output Files

Finally the data obtained from DSSP and the predictions computed are
saved in 2 .tsv files. Actually the first .tsv file is done before the procedure
make_prediction, since it doesn’t include the predictions’ columns. For simplic-
ity of explanation I preferred to talk about it in the same part as for the 2nd
output file.

This creation of output files is incorporated in the main procedure, using the
function "to_csv" provided by the Pandas library.

if __name__ == ’__main__’:

fout_path = Path(args.out)

[...]

data = data.append(processed_data)

[...]

fout_name = ’{}/{}_data.tsv’.format(fout_path.parent, fout_path.

stem)

First .tsv file

data.to_csv(fout_name , sep=’\t’, quoting=csv.QUOTE_NONE , index=

False, float_format=’%.3f’)

[...]

for name, pdb_data in data.groupby(’name’):

pred = pred.append(make_prediction(pdb_data.copy(),

window_rsa=args.rsa_window ,

thresholds_rsa=args.rsa_threshold))

31

https://en.wikipedia.org/wiki/Moving_average
https://en.wikipedia.org/wiki/Convolution

3.8. USAGE OF ALPHAFOLD-DISORDER SOFTWARE TOOL

[...]

fout_name = ’{}/{}_pred.tsv’.format(fout_path.parent, fout_path.

stem)

pred.to_csv(fout_name , sep=’\t’, quoting=csv.QUOTE_NONE , index=

False, float_format=’%.3f’)

Code 3.6: Creation of output files

fout_path is the information of name and path provided as parameter in the
invocation of the software tool from shell, obtained form the parameter .out of
the result from the output data structure of parse_args procedure, seen in Code
Snippet 3.1. data is the DataFrame obtained from the procedure process_pdb,
seen in Code Snippet 3.4. It contains the data from the protein files and their
statistics obtained with DSSP. pred is the DataFrame obtained from the proce-
dure make_prediction, seen in Code Snippet 3.5. It contains the predictions
computed in that procedure and the data from protein files and DSSP.

name pos aa lddt disorder rsa ss disorder-25 binding-25-0.581
109m 1 M 0.299 0.701 0.198 C 0.098 0.098
109m 2 V 0.254 0.746 0.362 C 0.089 0.089
109m 3 L 0.196 0.803 0.021 C 0.088 0.088
109m 4 S 0.171 0.829 0.086 C 0.09 0.09
109m 5 E 0.163 0.837 0.149 H 0.099 0.099
109m 6 G 0.159 0.841 0.031 H 0.092 0.092
109m 7 E 0.134 0.866 0.016 H 0.099 0.099
109m 8 W 0.127 0.873 0 H 0.109 0.109
109m 9 Q 0.123 0.877 0.169 H 0.109 0.109
109m 10 L 0.12 0.88 0.038 H 0.109 0.109
109m 11 V 0.11 0.89 0 H 0.109 0.109
109m 12 L 0.12 0.88 0.019 H 0.108 0.108
109m 13 H 0.12 0.88 0.239 H 0.093 0.093

Table 3.1: Columns of an AlphaFold-disorder output file

3.8 Usage of AlphaFold-disorder software tool

3.8.1 Dependencies

In order to use AlphaFold-disorder, we first need :

• the actual Python script alphafold_disorder.py;

32

CHAPTER 3. ANALYSIS OF ALPHAFOLD-DISORDER

• at least one protein file, in format .pdb, .mmCIF, .pdb.gz or .mmCIF.gz;

• the DSSP executable: mkdssp;

• the following libraries: BioPython, Numpy and Pandas.

3.8.2 Usage

To execute the software tool we can write the following command in the CLI:

python3 AlphaFold -disorder -i pdbs/ -o output

Instead of "output" we can write the name for the output file that we desire,
and instead of "pdbs/" we can give as input a protein file, a directory containing
protein files or a file with the relative paths of protein files.

3.8.3 DSSP Installation

There are two ways to install DSSP:

1. Download the pre-compiled file from the latest release in GitHub;

2. Build the the source file from the GitHub repository.

To build the source file we have to install and build a few libraries, but it’s
all well-document in the readme.md file of the DSSP repository.

3.8.4 Python Libraries Installation

To install the 2 Python libraries required we need Python3 and pip3, Package
Installer for Python. Then to install the 2 Python libraries we just have to execute
the following commands from the CLI:

• BioPython: pip3 install biopython;

• Numpy: pip3 install numpy;

• Pandas: pip3 install pandas.

33

https://github.com/PDB-REDO/dssp/releases/tag/v4.4.0
https://github.com/PDB-REDO/dssp

4
AlphaFold-disorder (SASA):
Development of Procedures

We developed a variation of AlphaFold disorder: AlphaFold-disorder (SASA).
We developed a procedure to compute secondary structure of residues (PSEA
algorithm) and a procedure to compute RSA, using the SASA algorithm.

In this chapter I will show the actual development part of the thesis. We
worked on three different procedures:

• Detection of secondary structure using protein atomic coordinates: de-
velopment of a procedure that assigns to each residue its secondary struc-
ture. It’s based on P-SEA algorithm, described in this scientific paper[11];

• Computation of RSA, using Shrake-Rupley algorithm: We calculated
SASA using Shrake-Rupley algorithm and then computed RSA with nor-
malization factors;

• Implementation of FoldComp library: for reading protein files in .fcz,
which is a compression of .pdb files.

35

4.1. SECONDARY STRUCTURE DETECTION WITH PROTEIN ATOMIC COORDINATES

4.1 Secondary Structure Detection with Protein Atomic
Coordinates

4.1.1 Introduction

In the scientific paper of PSEA [11], the researchers suggest an algorithm
based on protein atomic coordinates of the central carbon atom of the residue,
the 𝛼-Carbon. This algorithm assigns the secondary structure to a residue r,
based on distances and angles between the 𝛼-carbon of the residue and the
𝛼-carbon of its neighbor residues.

Figure 4.1: 𝛼-Carbon atoms in a protein, from [16]

𝛼-Carbon atoms are the core of residues, in figure 4.1 we can see them in a
piece of a protein chain.

Now back to the P-SEA algorithm: for each residue i, we want to calculate
these distance measures:

• d2i: it’s the distance between the residue (i-1) and the residue (i+1);

• d3i: it’s the distance between the residue (i-1) and the residue (i+2);

• d4i: it’s the distance between the residue (i-1) and the residue (i+3);

And these angle measures:

• 𝜏i: the angle formed by the residues (i-1), i and (i+1);

• 𝛼i: the dihedral angle formed by the residues (i-1), i, (i+1) and (i+2).

36

CHAPTER 4. ALPHAFOLD-DISORDER (SASA): DEVELOPMENT OF PROCEDURES

Distances and angles are computed between the 𝛼-carbons of bonded residues.
Specific range of values in d2, d3, d4, 𝜏i, 𝛼i determine in which secondary struc-
ture that residue falls into, among the main three categories:

• Helices;

• Strands: such as beta-sheets parallel and anti-parallel;

• Coils: turns and loops;

The thresholds for belonging in one of the two non coil secondary structures
are shown in table 4.1.

Parameters Helix Strand
Angle 𝜏 (°) 89 ± 12 124 ± 14

Dihedral angle 𝛼 (°) 50 ± 20 -170 ± 45

Distance d2 (Å) 5.5 ± 0.5 6.7 ± 0.6
Distance d3 (Å) 5.3 ± 0.5 9.9 ± 0.9
Distance d4 (Å) 6.4 ± 0.6 12.4 ± 1.1

Table 4.1: Parameters for P-SEA assignment of secondary structure.

Figure 4.2: The three secondary structure P-SEA can identify, from [15]

In the next section I will show the implementation of the PSEA algorithm
discussed on the paper[11].

37

4.1. SECONDARY STRUCTURE DETECTION WITH PROTEIN ATOMIC COORDINATES

4.1.2 Implementation of PSEA procedure

We can summarize the PSEA algorithm in these steps:

1. Get the coordinates of the residue’s 𝛼-carbon atom, for each residue in the
protein;

2. Compute distances and angles for each residue, as described in the paper;

3. Assign to each residue its secondary structure, based on computed dis-
tances and angles.

Get 𝛼-carbon atom’s coordinates for each residue

In this first step we want to obtain the list of residues in the protein and then
for each residue we want the coordinates of its 𝛼-carbon.

We store them in a matrix with 3 columns and as many rows as the number
of residues. In each row we store the 3 coordinates of the 𝛼-carbon atom.

The basic idea would be to:

• Obtain the list of atoms from the protein chain;

• Obtain the list of 𝛼-carbon atoms from the whole list of atoms;

• For each 𝛼-carbon atom, obtain its residue with the BioPython function
"get_parent()";

• Store the coordinates of that 𝛼-carbon atom in the row of that residue, in
the matrix.

This is the basic pseudo-code for this step. Although internally, the code is
more optimized for computational purposes: we used NumPy methods to use
the residues starting indexes more efficiently to create the 𝛼-carbon coordinates’
matrix.

38

CHAPTER 4. ALPHAFOLD-DISORDER (SASA): DEVELOPMENT OF PROCEDURES

Algorithm 1 Pseudocode for extracting 𝛼-carbons coordinates
Require: 𝑠𝑡𝑟𝑢𝑐𝑡, a protein structure

list_atoms = struct.get_atoms()
res_start_ids = get_res_start()
list_ca = empty list of size "len(res_start_ids)"
for atom in list_atoms do

if atom.name = "CA" then
list_ca.append(atom)

end if
end for
matrix_coordinates = empty matrix of size "len(res_start_ids) x 3" {Res start
ids are long the number of residues in the protein chain, and 3 because we
have 3 coordinates: x,y,z.}
for ca in list_ca do

matrix_coordinates.append(ca.coordinates)
end for

Compute distances and angles between 𝛼-carbon atoms

Now we have a list of 𝛼-carbon atoms, with their coordinates. The next step
described in the paper is computing distances and angles between these atoms,
to assign the correct secondary structure.

For each row of the matrix, which represents the residue’s 𝛼-carbon atom,
compute the 5 measures:

• d2: distance between atom at row i and atom at row i+2;

• d3: distance between atom at row i and atom at row i+3;

• d4: distance between atom at row i and atom at row i+4;

• angle 𝜏: angle between three consecutive atoms: at rows i, i+1 and i+2;

• angle 𝛼: angle between four consecutive atoms: at rows i, i+1, i+2 and i+3.

I will show with a few pictures what distances and those 2 angles looks
like, in the case of 5 consecutive 𝛼-carbons (𝛼-carbon are directly linked for
simplicity).

39

4.1. SECONDARY STRUCTURE DETECTION WITH PROTEIN ATOMIC COORDINATES

Figure 4.3: Angle 𝜏

Figure 4.4: Dihedral Angle 𝛼

40

CHAPTER 4. ALPHAFOLD-DISORDER (SASA): DEVELOPMENT OF PROCEDURES

Figure 4.5: Distances d2, d3 and d4

Measures:

• Distances: for the distances we just use the euclidean norm, which is
| |𝑥 | |2 =

√
𝑥2

1 + ... + 𝑥2
𝑛

• Angle 𝜏: for this angle we used the following formula
𝜏 = 𝑎𝑟𝑐𝑐𝑜𝑠(𝑎·𝑏

| |𝑎 | |·| |𝑏 | |). With 𝑎 = (𝑣𝑖+1 − 𝑣𝑖) and 𝑏 = (𝑣𝑖+1 − 𝑣𝑖+2).

• Angle 𝛼: to calculate the dihedral angle between the 4 data points we
have to calculate the angle between the two half-planes defined by three
consecutive points. The first semi-plane 𝑛1 is defined by the points 𝑣𝑖 , 𝑣𝑖+1
and 𝑣𝑖+2. The second semi-plane is defined by the points 𝑣𝑖+1, 𝑣𝑖+2 and
𝑣𝑖+3.

41

4.1. SECONDARY STRUCTURE DETECTION WITH PROTEIN ATOMIC COORDINATES

1. We computed the vectors u,v and w by vector subtraction: 𝑎 =
𝑣𝑖+1−𝑣𝑖

| |𝑣𝑖+1−𝑣𝑖 | | , 𝑏 = 𝑣𝑖+2−𝑣𝑖+1
| |𝑣𝑖+2−𝑣𝑖+1 | | and 𝑐 = 𝑣𝑖+3−𝑣𝑖+2

| |𝑣𝑖+3−𝑣𝑖+2 | | ;

2. We computed the two half-planes 𝑛1 = 𝑎 × 𝑏 and 𝑛2 = 𝑏 × 𝑐 1;
3. Finally we obtain the angle as 𝛼 = 𝑎𝑟𝑐𝑡𝑎𝑛2((𝑛1 × 𝑛2) · 𝑏, 𝑛1 · 𝑛2).

Here we can see the pseudo-code that computes distances and angles.

Algorithm 2 Pseudocode for computing angles and distances between 𝛼-carbons
coordinates
Require: 𝑐𝑎_𝑐𝑜𝑜𝑟𝑑, a matrix containing the coordinates of the various 𝛼-carbon

atoms
d2 = distance_atoms(ca_coords[:-2], ca_coords[2:])
d3 = distance_atoms(ca_coords[:-3], ca_coords[3:])
d4 = distance_atoms(ca_coords[:-4], ca_coords[4:])
tau = angle(ca_coords[:-2], ca_coords[1:-1], ca_coords[2:])
alpha = dihedral(ca_coords[:-3],ca_coords[1:-2],ca_coords[2:-1],ca_coords[3:-
2])

As we can see from the pseudo-code we used the python language built-in
functions to compute all distances and angles in oneshot, but it’s possible to
implement it with for loops.

Assign secondary structure to each residue

For this last step, we want to compute which residue belongs to a helix
structure and which residue belongs to a strand structure. The paper describes
the procedure to assign to a residue the secondary structure, based on distances
and angles, using the table for criteria: table 4.1.

For assigning residues to helical structure:

• Helices are first assigned to any segment at least five residues long, satis-
fying either one of the following helical criteria:

1. Each residue’s 𝛼-carbon in the segment satisfies both the helical cri-
teria for d3i and for d4i distances;

2. Each residue’s 𝛼-carbon in the segment satisfies both the helical cri-
teria for 𝛼i and 𝜏i angles.

1This × symbol is to indicate the cross product between two vectors, while the · symbol is
for dot product. More information on the cross product here.

42

https://en.wikipedia.org/wiki/Cross_product

CHAPTER 4. ALPHAFOLD-DISORDER (SASA): DEVELOPMENT OF PROCEDURES

• Then each of this segment is lengthened by one residue at each end and
if those 2 residues satisfy some criteria, we assign them to helix structure
too. The criteria is that the residue satisfies either:

1. d3i distance helical criteria;
2. 𝜏i angle helical criteria.

Regarding the assignment of strand structure to residues, the procedure is
similar:

• Strand structure is assigned to any segment at least three residues long,
satisfying either one of the following strand criteria:

1. Each residue’s 𝛼-carbon in the segment satisfies both the d2i, d3i and
d4i distances criteria;

2. Each residue’s 𝛼-carbon in the segment satisfies both the 𝜏i and 𝛼i
angles criteria.

• Then lengthening by one residue at each end if it satisfies the d3i distance
strand criteria;

• Finally short 𝛽-strand (<4 residues) are kept only if they have enough
contacts, which means they are included in a 𝛽-sheet.

Algorithm 3 Pseudocode for assigning secondary structure to residues
Require: ca_coords, d2, d3, d4, 𝛼, 𝜏

basic_helix = (d3 ∈ (4.8, 5.8) AND d4 ∈ (4.8, 7)) OR (𝜏 ∈ (75, 101) AND 𝛼 ∈
(30, 70))
basic_helix = mask_consecutive(basic_helix, 5)
extended_helix = extend_region(basic_helix)
basic_strand = (d3 ∈ (4.8, 5.8) AND d4 ∈ (4.8, 7)) OR (𝜏 ∈ (75, 101) AND 𝛼 ∈
(30, 70))
basic_strand = mask_consecutive(basic_strand, 3)
extended_strand = extend_region(basic_helix)
extended_strand = mask_regions_with_low_contacts(extended_strand)
ss_prediction = list long len(ca_coords) initialized with all "C"
ss_prediction[extended_helix] = "H"
ss_prediction[extended_strand] = "E"

43

4.1. SECONDARY STRUCTURE DETECTION WITH PROTEIN ATOMIC COORDINATES

The procedures used in this pseudocode will be described later on in their
section 4.1.3:

• extend_region;

• mask_consecutive;
• mask_regions_with_low_contacts.

After this step every residue will have its secondary structure assigned:

• H for helix structure residues;

• E for strand structure residues;

• C for coils;

• ” for residues without the 𝛼-carbon.

4.1.3 Helper procedures

In this section we will describe more in detail the helper procedures used for
the PSEA algorithm:

• get_res_start(): procedure that creates a list of atoms out of the protein
structure and then computes the start of each residue, by changes of residue
name, id or chain id. It’s possible to pass as parameter to the procedure
"move_hhem_to_end = True", this puts those atoms between chains to
the end of the atom array, resulting in a higher accuracy of prediction of
secondary structure in multi-chain proteins.

• distance_atoms(): computes the distance between two atoms;

• angle(): computes the angle between three atoms;

• dihedral(): computes the dihedral angle between four atoms, between
their semiplanes;

• mask_consecutive(): this procedure is used to create the first step of helix
and strand mask, where we want at least a segment of 3/5 residues sat-
isfying a certain condition. It uses binary masks along with the library
NumPy;

• extend_region(): this procedure is for the second step of finding if a
residue belongs to that structure, which is lengthening. This procedure
lengthens the segment if the residues satisfy the necessary criteria;

• mask_regions_with_low_contacts(): finally this procedure is used in the
strand structure mask, short strands are kept only if they have enough
contacts. This procedure removes short strands with low contacts from
the strand masks.

44

CHAPTER 4. ALPHAFOLD-DISORDER (SASA): DEVELOPMENT OF PROCEDURES

I decided to not show the code snippets for these procedures because they
are complex and not too useful to understand the code, but they can be found
in the github repository in the file "utils_alphafold_disorder.py".

4.1.4 Integration

For the integration with the existing AlphaFold-disorder software tool, we
encapsulated this PSEA algorithm in a procedure called get_sse_psea() which
takes as input the protein structure and returns as output an array of characters,
with the secondary structure of each residue. The procedure called from the
software-tool for each protein file is called "process_pdb_psea()". Based on
which method we want to use there is a "process_pdb_psea()" procedure and a
"procedure_dssp()" one.

So the existing code isn’t too much touched, since the only difference is that
it has to call this procedure instead of the DSSP wrapper procedure.

Down below a code snippet of this procedure encapsulating the whole PSEA
algorithm.

1 def get_sse_psea(structure , add_short_contacts = True, move_end_hhem

= True) :

2 res_start_id , atom_array = get_res_start(structure ,

3 move_end_hhem)

4 ca_coord, novirtual_mask = get_ca_coord(res_start_id , atom_array)

5 length, [d2i, d3i, d4i, ri, ai] = calc_dist_angles(ca_coord)

6 helix_mask , strand_mask = calc_struct_mask(ca_coord , length,

7 [d2i, d3i, d4i], [ri, ai], add_short_contacts)

8

9 return finalize_sse(ca_coord , length, novirtual_mask ,

10 helix_mask , strand_mask)

Code 4.1: Procedure get_sse_psea()

We already talked about the procedures get_res_start, while get_ca_coord,
like the name suggests creates the matrix of 𝛼-carbon coordinates, calc_dist_angles
is the procedure for computing the distances and angles. calc_struct_mask is
the procedure to compute the helix mask and strand mask, this procedure takes
as parameter "add_short_contacts", which if set to true removes short strands
with low contacts.

And finally the finalize_sse procedure uses the helix and strand masks to
assign the secondary structure to each residue and returns an array of characters,

45

https://github.com/EvilCrive/AlphaFold-disorder/tree/MobiDB-Alphafold

4.1. SECONDARY STRUCTURE DETECTION WITH PROTEIN ATOMIC COORDINATES

each character representing the secondary structure for the residue at that array
position.

We compared the secondary structure predicted with this method and the
secondary structure predicted with DSSP for a few hundred proteins and as the
paper[11] of PSEA said we got an accuracy of around 80%.

To compare that we used a procedure called "compare_sses" which compares
the secondary structure elements predicted from DSSP with the secondary struc-
ture predicted with PSEA algorithm.

1 def compare_sses(sse, dssp) :

2 sse_dssp = [dssp[i][2] for i in dssp]

3

4 counter1 = 0

5 counter2 = 0

6 countersize = 0

7 for (i,j) in zip(sse, sse_dssp) :

8 if j in [’H’,’G’,’I’] :

9 j = ’a’

10 elif j in [’B’, ’E’] :

11 j = ’b’

12 else :

13 j = ’c’

14 if i == ’’: i = ’c’

15

16 if i == j :

17 counter1 += 1

18 if i in [’a’,’b’] : i = ’p’

19 if j in [’a’,’b’] : j = ’p’

20 if i == j :

21 counter2 += 1

22 #else :

23 #print(i,j)

24 countersize+=1

25 counter1 = counter1/countersize

26 counter2 = counter2/countersize

27 if counter1 == counter2 :

28 return round(counter1 ,4)

29 else :

30 return [counter1/countersize , counter2/countersize]

Code 4.2: Procedure to compare SSEs

46

CHAPTER 4. ALPHAFOLD-DISORDER (SASA): DEVELOPMENT OF PROCEDURES

4.2 Computation of RSA with Shrake-Rupley Algo-
rithm

We implemented an alternative way to compute the RSA, without the DSSP.
This method is uses the Shrake-Rupley algorithm, to compute SASA, solvent
accessible surface areas. This value is then transformed into the relative solvent
accessibility with two rounds of normalization factors: first by using Sander’s
normalization factors, like in DSSP, and then by using an ad-hoc normalization
factors we made to not have rsa values bigger than 1, obtained from a sample of
two thousands proteins.

We can summarize the steps for implementing this procedure in 2 steps:

• Implement Shrake-Rupley algorithm to obtain the SASA statistics, for each
residue;

• Normalization to obtain RSA statistics: both with Sander and Rost’s nor-
malization factors, explained in their scientific paper [19] and with our
ad-hoc normalization factors.

4.2.1 Implement Shrake-Rupley algorithm

The Shrake & Rupley algorithm consists in a "rolling ball" of radius equal
to a solvent molecule, which estimates the surface of the target molecule. This
algorithm allows us to compute the SASA statistic (Solvent Accessible Surface
Areas), more details can be found in the relative scientific paper[21].

To implement this algorithm in our code we just imported the library "Bio.PDB.SASA"
and used the provided class "ShrakeRupley", with its function "compute()". We
used the class to create an object of type "ShrakeRupley" and then applied the
function "compute()" passing as parameters the protein structure and the level
"R", R stands for residue, so that we compute the SASA statistic for each residue.
We used the default paramters for the class ShrakeRupley since they are the
right parameters for water as solvent, but in case of a different solvent we might
want to change them.

We will see a snippet of the code for this procedure in the section 4.2.3.

47

4.2. COMPUTATION OF RSA WITH SHRAKE-RUPLEY ALGORITHM

4.2.2 Normalization

These SASA values aren’t relative at all, they can have really high values, up
to 200 or more. We want to obtain a statistic that represents the relative surface
accessibility, so we have to perform some kind of normalization. We applied
two rounds of normalization factors:

• Sander and Rost’s normalization factors: these are factors for normal-
ization developed by Sander and Rost, with the maximum values of ASA
values (Accessible Surface Areas). To use them we import the library
"Bio.Data.PDBData" which contains the dictionary "residue_sasa_scales",
this dictionary provide the normalization factor for each residue, so we
apply these normalization factors to the SASA value we obtained for each
residue;

• Ad-hoc normalization factors: since after applying the Sander and Rost’s
normalization factors we still had RSA values bigger than 1, we designed
another round of normalization factors. We took all the proteins from the
DisProt database, which are 2547 proteins, computed the SASA values for
each residue and divided them by the Sander and Rost’s normalization
factors obtaining the norm_SASA values. With all these norm_SASA val-
ues we built up a dictionary of ad-hoc normalization factors. Finally we
divided the norm_SASA values by these ad-hoc normalization factors and
obtained the final RSA values.

After these 2 rounds of division by normalization factors we obtain the
RSA values, within a range of [0,1], representing the percentage of surface
accessibility for that residue.

Now for reference I will show the values of the 2 rounds of normalization
factors as tables.

48

CHAPTER 4. ALPHAFOLD-DISORDER (SASA): DEVELOPMENT OF PROCEDURES

3 Letters AA 1 Letter AA Normalization Factor
Ala A 106
Arg R 248
Asn N 157
Asp D 163
Cys C 135
Gln Q 198
Glu E 194
Gly G 84
His H 184
Ile I 169

Leu L 164
Lys K 205
Met M 188
Phe F 197
Pro P 136
Ser S 130
Thr T 142
Trp W 227
Tyr Y 222
Val V 142

Table 4.2: Sander and Rost’s normalization factors

49

4.2. COMPUTATION OF RSA WITH SHRAKE-RUPLEY ALGORITHM

3 Letters AA 1 Letter AA Normalization Factor
Ala A 1.713
Arg R 1.280
Asn N 1.476
Asp D 1.435
Cys C 1.551
Gln Q 1.311
Glu E 1.360
Gly G 1.804
His H 1.404
Ile I 1.413

Leu L 1.532
Lys K 1.357
Met M 1.420
Phe F 1.434
Pro P 1.490
Ser S 1.515
Thr T 1.507
Trp W 1.423
Tyr Y 1.346
Val V 1.549

Table 4.3: Ad-hoc normalization factors

50

CHAPTER 4. ALPHAFOLD-DISORDER (SASA): DEVELOPMENT OF PROCEDURES

4.2.3 Integration

Regarding the integration into the exisiting software-tool AlphaFold-disorder,
we implented this algorithm for RSA inside the procedure "process_pdb_psea"
since it’s an alternative way to compute rsa compared to the one in "pro-
cess_pdb_dssp".

For the normalization factors:

• Sander’s normalization factors: it’s enough to import the dictionary "residue_sasa_scales"
from "Bio.Data.PDBData", which contains the normalization factors of
each residue;

• Ad-hoc normalization factors: we created a file .json called "dict_max_rsa.json",
which contains the normalization factors of each residue.

Once we have the dictionary of the normalization factors, we can obtain the
factor of our residue simply by obtaining the value paired with that residue in
the dictionary.

Down below a code snippet of the implementation of this Shrake & Rupley
algorithm to obtain the RSA values.

def process_pdb_psea(pdb_file , pdb_name) :

structure , real_file = extract_pdb(pdb_file)

with open(’dict_max_rsa.json’,’r’) as f :

dict_adhoc_factors = json.load(f)

[...]

sse = get_sse_psea(structure)

[...]

ShrakeRupley().compute(structure , level="R")

for i, residue in enumerate(structe.get_residues()):

[...]

rsa = residue.sasa / residue_sasa_scales[’Sander’][residue.

resname]

rsa = rsa / dict_adhoc_factors[protein_letters_3to1[residue.

resname]]

[...]

Code 4.3: Integration of rsa with SASA on process_pdb_psea procedure

51

4.3. IMPLEMENTATION OF FOLDCOMP LIBRARY

4.3 Implementation of FoldComp Library

We used the library FoldComp, described in more detail in their scientific
paper [10], to allow to use a new input file in the software tool.

With FoldComp we can read and write .fcz file, which are compressed protein
files, this enable us to store more protein files in the same storage space.

Regarding the implementation, we have:

• "decompress" procedure of FoldComp;

• we made a procedure for checking if a file is a .fcz file "is_fcz_file": if the
file starts with b’FCMP:’, then it’s a .fcz file.

Since in our case we are interested just in reading files .fcz we just need the
procedure "decompress" from the library, which decompress the .fcz file into a
.pdb file.

We used the library StringIO as a workaround to avoid saving the protein
file after decompressing the .fcz file.

def is_fcz_file(filepath) :

with open(filepath , ’rb’) as test_f:

return test_f.read(5) == b’FCMP:’

def extract_pdb(pdb_file) :

[...]

elif is_fcz_file(real_file):

with open(real_file , ’rb’) as f :

(name, pdb_filevalue) = foldcomp.decompress(f)

structure = PDBParser(QUIET=True).get_structure(’’, StringIO(

pdb_filevalue))

[...]

Code 4.4: Integration of FoldComp

52

5
AlphaFold-disorder (SASA)

assessment

AlphaFold-disorder (SASA) is the variation we developed of the software-
tool AlphaFold-disorder, using PSEA and SASA instead of DSSP to compute
the predictions, in particular we have the SASA variation for each of the three
algorithms within the software-tool:

• AlphaFold-pLDDT (SASA);

• AlphaFold-rsa (SASA);

• AlphaFold-binding (SASA).

Now we have to understand if this new software-tool produces good pre-
dictions: we need to evaluate the results’ quality. To do so, we will analyse
the output datasets, which contain the predictions, of AlphaFold-disorder and
AlphaFold-disorder (SASA) and compare them to a ground truth:

• Analyse the columns of the output datasets;

• Create plots or visualizations, to gain insights on the results and patterns
between features (statistics and predictions);

• Finally create ML models and analyse the statistics and main plots of the
best models.

53

5.1. OUTPUT DATASET

5.1 Output dataset

The software-tool produces two output files:

• output_data.tsv: contains the statistics before computing the predictions;

• output_pred.tsv: contains both the statistics and the predictions.

We will consider only the latter one, since it includes the first one inside. The
name of the files depends on the parameter given by command line when using
the software-tool.

Both in AlphaFold-disorder dataset and AlphaFold-disorder (SASA) dataset
we have the same columns, an example of such a dataset in table 3.1.

5.2 Exploratory Plots

We produced some plots to explore the distributions of the various features
and visualize their trends.

We obtained the ground truth from the CAID portal, and we considered the
structural features of the proteins present in these ground truths. These ground
truths are lists of "0", "-" and "1" for each residue in some proteins: respectively
absent, present and uncertain. We described the procedure to obtain and process
the CAID ground truths in 5.5.

The features we considered are:

• LDDT;

• RSA;

• disorder-25;

• binding-25.

Disorder-25 and Binding-25 are respectively the predictions of AlphaFold-rsa
and AlphaFold-binding.

We have two ground truths for disorder and one for binding, we made plots
per class: positive disorder and negative, and for binding too. We made density
plots, histograms and scatterplots, using the Python library seaborn.

54

CHAPTER 5. ALPHAFOLD-DISORDER (SASA) ASSESSMENT

Figure 5.1: Histogram of the features considered, with respect to disorder
ground truth (positive class)

In figure 5.1 shows the distribution of the features considered in this analysis,
for residues with disorder, according to the ground truth.

In figure 5.2 we have another histogram to show distribution of features, this
time on both classes of disorder (present - 1 vs absent - 0).

Another kind of plot we made are scatterplots: we made them between all
pairs of the four considered features, to visualize any possible trend, in particular
trends related with frequency.

I will show the scatter plots of the pair (rsa, lddt) for binding ground truth.

To further explore the results, we decided to develop some ML models
and compare their Precision-Recall and ROC plots to the benchmark ones
(AlphaFold-plddt, AlphaFold-rsa and AlphaFold-binding).

55

5.3. ML MODELS

Figure 5.2: Histogram of the RSA feature, with respect to disorder ground truth
(both classes)

5.3 ML models

For the machine learning models we considered two different ground truths
for disorder and one for binding:

• disorder-pdb;

• disorder-nox;
• binding.
These three ground truths are from the CAID portal [3]. We described the

procedure to obtain and process the CAID ground truths in 5.5.
We developed machine learning models using the three ground truths as

target features for the test datasets: so we will have three test datasets, based
on the ground truth used and one train dataset, where the target feature will be
either binding or disorder, based on the test dataset used.

56

CHAPTER 5. ALPHAFOLD-DISORDER (SASA) ASSESSMENT

(a) Scatterplot (rsa, lddt) - positive class

(b) Scatterplot (rsa, lddt) - negative class

5.3.1 Preprocessing

As test datasets we used the dataframes containing the proteins present in
each of the ground truths, with target the ground truths.

While as train dataset we used the dataframe of all the proteins in the DisProt

57

5.3. ML MODELS

database, using as target either the disorder or binding functional annotations
present in DisProt, based on the test dataset used. We described the procedure
to obtain these proteins and these functional annotations from DisProt in 5.5.

We computed a one-hot encoding of the ss column: ss_onehot, so we have
a number instead of characters "H", "E", "C". We did this both for test datasets
and for train datasets.

We also added new features to improve the accuracy of ML models: we
incorporated the Atchley scale in the datasets. This Atchley scale consists in five
features that are defined for each residue.

Amino Factor Factor Factor Factor Factor
acid I II III IV V

A -0.591 -1.302 -0.733 1.570 -0.146
C -1.343 0.465 -0.862 -1.020 -0.255
D 1.050 0.302 -3.656 -0.259 -3.242
E 1.357 -1.453 1.477 0.113 -0.837
F -1.006 -0.590 1.891 -0.397 0.412
G -0.384 1.652 1.330 1.045 2.064
H 0.336 -0.417 -1.673 -1.474 -0.078
I -1.239 -0.547 2.131 0.393 0.816
K 1.831 -0.561 0.533 -0.277 1.648
L -1.019 -0.987 -1.505 1.266 -0.912
M -0.663 -1.524 2.219 -1.005 1.212
N 0.945 0.828 1.299 -0.169 0.933
P 0.189 2.081 -1.628 0.421 -1.392
Q 0.931 -0.179 -3.005 -0.503 -1.853
R 1.538 -0.055 1.502 0.440 2.897
S -0.228 1.399 -4.760 0.670 -2.647
T -0.032 0.326 2.213 0.908 1.313
V -1.337 -0.279 -0.544 1.242 -1.262
W -0.595 0.009 0.672 -2.128 -0.184
Y 0.260 0.830 3.097 -0.838 1.512

Table 5.1: Atchley scale

As the last step of preprocessing, we defined which features do we want to
consider in the learning process and which one is the target.

For both the train and test datasets we consider as input features:

• lddt;

• rsa;

• ss_onehot;

• the five factors from the Atchley scale.

58

CHAPTER 5. ALPHAFOLD-DISORDER (SASA) ASSESSMENT

For the train datasets we consider as target feature the DisProt functional
annotation, either binding or disorder annotation. In case we used as test
dataset the one with target binding ground truth, we will use as target feature
for the train set the binding functional annotations of DisProt, otherwise we will
use as target feature the disorder functional annotations.

For the test datasets we consider as target feature either of the three ground
truths.

5.3.2 Development of Machine Learning Models

For the development of the ML models we implemented the library sklearn,
further details on the website.

The ML task we considered is regression, because we want to obtain the
propensity of disorder or binding of the residues.

We implemented eight different ML models: svm, ridge, lasso, poisson-glm,
tweedie, k-nearest neighbors, decision tree and extra tree.

In general to implement the libraries and compute the ML models we used
the procedures provided by the library, in particular:

• fit(): this procedure allows us to fit the model with our train dataset;

• predict(): this procedure allows us to predict a value, given the input data
of the test dataset. Then we will compare this value with the target value
of the test dataset and evaluate the ML model performances.

We also have a class contructor to initialize each model, always provided by
the library.

In the code snippets of the various ML models we will see the variables:

• X_train: input features of the train dataset;

• y_train: target feature of the train dataset;

• X_test: input features of the test dataset;

• y_pred: predicted values for output feature, given X_test.

Now I will show the different ML models and how we implemented them
with the sklearn library.

59

https://scikit-learn.org/stable/

5.3. ML MODELS

Figure 5.4: Picture of SVM hyperplane, from [17]

SVM

Support Vector Machines are one of the most simple yet powerful machine
learning models. The objective is find an N-dimensional hyperplane that clearly
separates data points of different classes.

Down below a code snippet of its implementation on a Python notebook.

from sklearn.linear_model import *

[...]

clf = SGDRegressor()

clf.fit(X_train,y_train)

y_pred = clf.predict(X_test)

Code 5.1: SVM implementation

The class SGDRegressor is defined in the module linear_model of sklearn,
SGDRegressor stands for Stochastic Gradient Descent because the SVM hyper-
plane is computed with stochastic gradient descent. This is the most basic linear
model for regression.

5.3.3 Ridge

Ridge Regression, also known as Tikhonov regularization or L2 regulariza-
tion, is a variation of linear regression: it adds a regularization term to make the

60

CHAPTER 5. ALPHAFOLD-DISORDER (SASA) ASSESSMENT

model more robust.
The L2 regularization discourages large coefficient values: the larger the

coefficient the more the regularization term penalizes the model. This makes
the model more simple and stable, penalizing complex models.

from sklearn.linear_model import *

[...]

clf = RidgeCVRegressor()

clf.fit(X_train,y_train)

y_pred = clf.predict(X_test)

Code 5.2: Ridge implementation

Here we used the RidgeCV class instead of simply Ridge, because we have
cross-validation included too, which might increase performances. RidgeCV is
also inside the module linear_model of sklearn.

5.3.4 LASSO

LASSO, Least Absolute Shrinkage and Selection Operator, is a linear regres-
sion model which uses L1 regularization. L1 regularization has the effect of
setting some of the coefficients to exactly zero. This has the interesting property
of performing feature selection, meaning that LASSO can be used to automati-
cally select a subset of the most relevant features.

This is the ML model with better performances with our datasets, probably
this automatic feature selection is very effective in our case.

from sklearn.linear_model import *

[...]

clf = LassoCV()

clf.fit(X_train,y_train)

y_pred = clf.predict(X_test)

Code 5.3: LASSO implementation

LassoCV is also inside the module linear_model of sklearn. Even here the
cross-validation is included.

5.3.5 Poisson GLM

Poisson Generalized Linear Model is a statistical model used for analyzing
count data, where the data follows a Poisson distribution.

61

5.3. ML MODELS

from sklearn.linear_model import *

[...]

clf = PoissonRegressor()

clf.fit(X_train,y_train)

y_pred = clf.predict(X_test)

Code 5.4: Poisson-GLM implementation

PoissonRegressor is also inside the module linear_model of sklearn.

5.3.6 Tweedie GLM

Tweedie Generalized Linear Model is a statistical model used modeling data
that follows a Tweedie distribution.
from sklearn.linear_model import *

[...]

clf = TweedieRegressor()

clf.fit(X_train,y_train)

y_pred = clf.predict(X_test)

Code 5.5: Tweedie-GLM implementation

TweedieRegressor is also inside the module linear_model of sklearn.

5.3.7 K-Nearest Neighbors

K Nearest Neighbors is a regression model that makes predictions based on
the average of nearby data points.
from sklearn import neighbors

[...]

clf = neighbors.KNeighborsRegressor()

clf.fit(X_train,y_train)

y_pred = clf.predict(X_test)

Code 5.6: K Nearest Neighbors implementation

KNeighborsRegressor is defined in the module neighbors of the sklearn
library.

5.3.8 Decision Tree

The decision tree splits the dataset into subsets based on the most significant
feature, the split points are chosen to minimize the variance for regression. The
process is then repeated for each subset, creating a tree-like structure.

62

CHAPTER 5. ALPHAFOLD-DISORDER (SASA) ASSESSMENT

Figure 5.5: How KNN algorithm works, from [22]

To make predictions, the decision tree is traversed from the root to a leaf
node, and the value associated with that leaf node is used as the final prediction.
During the traversal, the algorithm evaluates the feature at each internal node
based on the input features.

from sklearn import tree

[...]

clf = tree.DecisionTreeRegressor()

clf.fit(X_train,y_train)

y_pred = clf.predict(X_test)

Code 5.7: Decision Tree implementation

DecisionTreeRegressor is defined in the module tree of the sklearn library.

63

5.4. EVALUATION OF ML MODELS’ PREDICTIONS

Figure 5.6: Example of a decision tree, from [20]

5.3.9 Extra Tree

The extra tree is a combination of multiple decision trees, extremely random-
ized, to improve the performances and robustness of decision trees.

ExtraTreeRegressor is defined in the module tree of the sklearn library.

from sklearn import tree

[...]

clf = tree.ExtraTreeRegressor()

clf.fit(X_train,y_train)

y_pred = clf.predict(X_test)

Code 5.8: Extra Tree implementation

5.4 Evaluation of ML models’ predictions

To evaluate the predictions of the ML models, we computed their ROC
and Precision-Recall curves and compared them with the ROC and Precision-
Recall curves of the software-tools AlphaFold-disorder and AlphaFold-disorder
(SASA).

We will see the ROC curves and the Precision-Recall curves divided by
ground truth used in the ML models training process.

64

CHAPTER 5. ALPHAFOLD-DISORDER (SASA) ASSESSMENT

5.4.1 Disorder PDB

In this pair of plots we see the ROC curves and Precision-Recall Curves, using
disorder pdb as the ground truth. We can observe that AlphaFold-rsa (SASA)
is a bit better than AlphaFold-rsa in both curves, a similar trend we have for
AlphaFold-pLDDT (SASA) and AlphaFold-pLDDT. Finally the best ML model,
LASSO, is within the average accuracy of the two software tools.

Figure 5.7: ROC curves - DisorderPDB ground truth

Figure 5.8: Precision-Recall curves - DisorderPDB ground truth

65

5.4. EVALUATION OF ML MODELS’ PREDICTIONS

5.4.2 Disorder NOX

Here we used disorder NOX as the ground truth. Here AlphaFold-rsa (SASA)
is quite better than AlphaFold-rsa in both curves, a similar trend we have for
AlphaFold-pLDDT (SASA) and AlphaFold-pLDDT. Finally the ML model is
within the accuracy of the two software tools, although it’s better than both the
predictors of the original AlphaFold-disorder.

Figure 5.9: ROC curves - DisorderNOX ground truth

Figure 5.10: Precision-Recall curves - DisorderNOX ground truth

66

CHAPTER 5. ALPHAFOLD-DISORDER (SASA) ASSESSMENT

5.4.3 Binding

In the following figures, we consider binding as the ground truth. In both
curves, for the major part, AlphaFold-binding (SASA) has better predictions
than AlphaFold-binding and of the ML model.

Figure 5.11: ROC curves - Binding ground truth

Figure 5.12: Precision-Recall curves - Binding ground truth

67

5.5. HELPER SCRIPTS FOR ANALYSIS

5.5 Helper Scripts for Analysis

5.5.1 Fetch proteins and functional annotations from DisProt
database

First of all we downloaded the file .json from the DisProt website, in the
download page. Then we used the library json of Python to extract from the
json file, inside the json file we find all the information we want about DisProt
proteins.

Here follows an overview of the structure of the JSON file: from the root
of the json we have two keys, data and size. Size contains just the number of
proteins in this json, and data contains an array of DisProt IDs. Each DisProt IDs
have several key-value pairs, we are interested in acc, disprot_id and regions.

We are interested in the key ’acc’ of every DisProt protein because it is the
UniProt ID: with these UniProt IDs we can fetch the proteins structure of all the
proteins in DisProt with the AlphaFold database API.

import requests

[...]

list_absent = []

for i in uniprot_ids :

url = ’https://alphafold.ebi.ac.uk/files/AF-’+i+’-F1-model_v4.pdb

’

r = requests.get(url, allow_redirects=True)

if r.reason == ’OK’ :

filename = ’’ + i + ’.pdb’

open(filename ,’wb’).write(r.content)

else :

list_absent.append(i)

print("Error "+str(r.status_code)+", "+r.reason+": "+i)

Code 5.9: Script to use AlphaFold database API

Then we are interested in the functional annotations of every DisProt protein,
contained inside the key ’regions’: an array of annotations for that protein.

68

https://disprot.org/download

CHAPTER 5. ALPHAFOLD-DISORDER (SASA) ASSESSMENT

5.5.2 Fetch ground truths arrays from CAID

We downloaded the ground truths data from the CAID web site, in the
Data page. These ground truth files are in .FASTA, a file format for bioinformatic
sequences.

In these files we have the ground truth for several DisProt ID, and for each
of them to each residue is assigned a value between 0, 1 and ’-’. ’-’ means no
information, 1 is presence of disorder/binding and 0 is absence.

Finally we parsed these .FASTA files in pandas DataFrames and used them
in our analysis. Down below an example of the first rows of the DataFrame for
disorder-PDB ground truth.

uniprot disprot amino_id amino_name disorder-pdb_GT
0 P06837 DP02342 1 M 1
1 P06837 DP02342 2 L 1
2 P06837 DP02342 3 C 1
3 P06837 DP02342 4 C 1
4 P06837 DP02342 5 M 1
5 P06837 DP02342 6 R 1

Table 5.2: DataFrame for Disorder-PDB ground truth

69

https://caid.idpcentral.org/challenge#Data

6
Conclusions

We developed a variation of the software-tool AlphaFold-disorder, replacing
DSSP with PSEA and SASA. This was done mainly to avoid the dependency
with DSSP and to explore an alternative way to obtain similar predictions,
reproducing papers for this development as well.

AlphaFold-disorder (SASA) allows .fcz files, with the integrated FoldComp,
so in the future we can store thousands of proteins with less storage required. A
.fcz file contains the same data as a .pdb file with way lower size (around eight
times smaller than .pdb).

Once the development was finished we started to evaluate the results, we
started with explorative plots to gain some visual insight on the features. We
used histogram plots to visualize the distributions of the features, related to the
ground truth: both for each ground truth’s class and then with both classes in
the same plot for an easier visualization. Then we plotted scatterplots between
pairs of features to visualize possible trends between two features, even in this
case we did them for every ground truth, for both classes.

Then we tried to develop a ML model using AlphaFold-disorder (SASA)
results to obtain predictions with higher accuracy. We used two thousands
and five hundred proteins for training data, proteins from DisProt. The results
were not as good as we hoped, but they just predicted what the software tool
predicted, we probably a way bigger dataset for any meaningful increase in
accuracy.

71

We compared AlphaFold-disorder (SASA) with AlphaFold-disorder with
ROC curves and Precision-Recall curves. The variation we developed of the
software tool has better ROC and PRecision-Recall curves than the original
AlphaFold-disorder software tool. We can conclude the quality of results of the
new software tool slightly improved or at least is on par.

72

References

[1] Annie Annie. Amino Acid DPT.pptx. 2023. url: https://www.slideshare.
net/AnnieAnnie18/amino-acid-dptpptx.

[2] Sarita Aggarwal Aradhana Bedi. CK-12 CBSE Biology Class 12. website. 6.1
Human Chromosomes and Genes. 2016.

[3] CAID web application. url: https://caid.idpcentral.org/challenge.

[4] Omar Fitian Rashid. “Text Encryption Based on DNA Cryptography, RNA,
and Amino Acid”. In: Aug. 2021.

[5] Jaishree Gorane. Write Short Note on Ribosomes. https://classnotes123.com/write-
short-note-on-ribosomes/. 2022.

[6] Joshua Hutchings and Giulia Zanetti. “Fine details in complex environ-
ments: the power of cryo-electron tomography”. In: Biochemical Society
Transactions 46 (June 2018), BST20170351. doi: 10.1042/BST20170351.

[7] John Jumper et al. “Highly accurate protein structure prediction with
AlphaFold”. In: Nature 596.7873 (Aug. 2021), pp. 583–589. issn: 1476-4687.
doi: 10.1038/s41586-021-03819-2. url: https://doi.org/10.1038/
s41586-021-03819-2.

[8] Wolfgang Kabsch and Christian Sander. “Dictionary of protein secondary
structure: Pattern recognition of hydrogen-bonded and geometrical fea-
tures”. In: Biopolymers 22.12 (1983), pp. 2577–2637. doi: https://doi.
org/10.1002/bip.360221211. eprint: https://onlinelibrary.wiley.
com/doi/pdf/10.1002/bip.360221211. url: https://onlinelibrary.
wiley.com/doi/abs/10.1002/bip.360221211.

[9] Andrey V. Kajava. “Tandem repeats in proteins: From sequence to struc-
ture”. In: Journal of Structural Biology 179.3 (2012). Structural Bioinformat-
ics, pp. 279–288. issn: 1047-8477. doi: https://doi.org/10.1016/j.

73

https://www.slideshare.net/AnnieAnnie18/amino-acid-dptpptx
https://www.slideshare.net/AnnieAnnie18/amino-acid-dptpptx
https://www.ck12.org/book/cbse_biology_book_class_xii/section/6.1/
https://caid.idpcentral.org/challenge
https://doi.org/10.1042/BST20170351
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/https://doi.org/10.1002/bip.360221211
https://doi.org/https://doi.org/10.1002/bip.360221211
https://onlinelibrary.wiley.com/doi/pdf/10.1002/bip.360221211
https://onlinelibrary.wiley.com/doi/pdf/10.1002/bip.360221211
https://onlinelibrary.wiley.com/doi/abs/10.1002/bip.360221211
https://onlinelibrary.wiley.com/doi/abs/10.1002/bip.360221211
https://doi.org/https://doi.org/10.1016/j.jsb.2011.08.009
https://doi.org/https://doi.org/10.1016/j.jsb.2011.08.009

REFERENCES

jsb.2011.08.009. url: https://www.sciencedirect.com/science/
article/pii/S1047847711002371.

[10] Hyunbin Kim, Milot Mirdita, and Martin Steinegger. “Foldcomp: a li-
brary and format for compressing and indexing large protein structure
sets”. In: Bioinformatics 39.4 (Mar. 2023), btad153. issn: 1367-4811. doi: 10.
1093/bioinformatics/btad153. eprint: https://academic.oup.com/
bioinformatics/article-pdf/39/4/btad153/49807920/btad153.pdf.
url: https://doi.org/10.1093/bioinformatics/btad153.

[11] G. Labesse et al. “P-SEA: a new efficient assignment of secondary struc-
ture from C trace of proteins”. In: Bioinformatics 13.3 (June 1997), pp. 291–
295. issn: 1367-4803. doi: 10.1093/bioinformatics/13.3.291. eprint:
https : / / academic . oup . com / bioinformatics / article - pdf / 13 /

3/291/1170655/13- 3- 291.pdf. url: https://doi.org/10.1093/
bioinformatics/13.3.291.

[12] Lukaves. Illustration of the hierarchy of biological organization - from atom
to the organism. Illustration of the hierarchy of biological organization
- from atom to the organism. url: https : / / www . dreamstime . com /
illustration-hierarchy-biological-organization-atom-to-organism-

atom-to-organism-image212905226.

[13] Catherine A. Musselman and Tatiana G. Kutateladze. “Characterization
of functional disordered regions within chromatin-associated proteins”.
In: iScience 24.2 (2021), p. 102070. issn: 2589-0042. doi: https://doi.org/
10.1016/j.isci.2021.102070. url: https://www.sciencedirect.com/
science/article/pii/S2589004221000389.

[14] Damiano Piovesan, Alexander Miguel Monzon, and Silvio C. E. Tosatto.
“Intrinsic protein disorder and conditional folding in AlphaFoldDB”. In:
Protein Science 31.11 (2022), e4466. doi: https://doi.org/10.1002/pro.
4466. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/
pro.4466. url: https://onlinelibrary.wiley.com/doi/abs/10.1002/
pro.4466.

[15] Random Coil. url: https://d15.beauty/random-coil.

[16] Mahmood Rashid, Firas Khatib, and Abdul Sattar. “Protein preliminar-
ies and structure prediction fundamentals for computer scientists”. In:
http://arxiv.org (Oct. 2015).

74

https://doi.org/https://doi.org/10.1016/j.jsb.2011.08.009
https://doi.org/https://doi.org/10.1016/j.jsb.2011.08.009
https://www.sciencedirect.com/science/article/pii/S1047847711002371
https://www.sciencedirect.com/science/article/pii/S1047847711002371
https://doi.org/10.1093/bioinformatics/btad153
https://doi.org/10.1093/bioinformatics/btad153
https://academic.oup.com/bioinformatics/article-pdf/39/4/btad153/49807920/btad153.pdf
https://academic.oup.com/bioinformatics/article-pdf/39/4/btad153/49807920/btad153.pdf
https://doi.org/10.1093/bioinformatics/btad153
https://doi.org/10.1093/bioinformatics/13.3.291
https://academic.oup.com/bioinformatics/article-pdf/13/3/291/1170655/13-3-291.pdf
https://academic.oup.com/bioinformatics/article-pdf/13/3/291/1170655/13-3-291.pdf
https://doi.org/10.1093/bioinformatics/13.3.291
https://doi.org/10.1093/bioinformatics/13.3.291
https://www.dreamstime.com/illustration-hierarchy-biological-organization-atom-to-organism-atom-to-organism-image212905226
https://www.dreamstime.com/illustration-hierarchy-biological-organization-atom-to-organism-atom-to-organism-image212905226
https://www.dreamstime.com/illustration-hierarchy-biological-organization-atom-to-organism-atom-to-organism-image212905226
https://doi.org/https://doi.org/10.1016/j.isci.2021.102070
https://doi.org/https://doi.org/10.1016/j.isci.2021.102070
https://www.sciencedirect.com/science/article/pii/S2589004221000389
https://www.sciencedirect.com/science/article/pii/S2589004221000389
https://doi.org/https://doi.org/10.1002/pro.4466
https://doi.org/https://doi.org/10.1002/pro.4466
https://onlinelibrary.wiley.com/doi/pdf/10.1002/pro.4466
https://onlinelibrary.wiley.com/doi/pdf/10.1002/pro.4466
https://onlinelibrary.wiley.com/doi/abs/10.1002/pro.4466
https://onlinelibrary.wiley.com/doi/abs/10.1002/pro.4466
https://d15.beauty/random-coil

REFERENCES

[17] Matheus Remigio. “Máquina de Vetores de Suporte SVM”. In: (). url:
https://medium.com/@msremigio/m%C3%A1quinas-de-vetores-de-

suporte-svm-77bb114d02fc.

[18] QCE Biology Revision. Gene Expression. website. 2020.

[19] Burkhard Rost and Chris Sander. “Conservation and prediction of solvent
accessibility in protein families”. In: Proteins: Structure, Function, and Bioin-
formatics 20.3 (1994), pp. 216–226. doi: https://doi.org/10.1002/prot.
340200303. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.
1002/prot.340200303. url: https://onlinelibrary.wiley.com/doi/
abs/10.1002/prot.340200303.

[20] Anshul Saini. Decision Tree Algorithm A Complete Guide. website. 2023.

[21] A. Shrake and J.A. Rupley. “Environment and exposure to solvent of pro-
tein atoms. Lysozyme and insulin”. In: Journal of Molecular Biology 79.2
(1973), pp. 351–371. issn: 0022-2836. doi: https://doi.org/10.1016/
0022 - 2836(73) 90011 - 9. url: https : / / www . sciencedirect . com /
science/article/pii/0022283673900119.

[22] Gattu Vĳaya Kumar and Prasanta Sahoo. “A Recommendation System &
Their Performance Metrics using several ML Algorithms”. In: (June 2020).

75

https://medium.com/@msremigio/m%C3%A1quinas-de-vetores-de-suporte-svm-77bb114d02fc
https://medium.com/@msremigio/m%C3%A1quinas-de-vetores-de-suporte-svm-77bb114d02fc
https://qcebiologyrevision.com/year12/unit4topic1/gene-expression/3/
https://doi.org/https://doi.org/10.1002/prot.340200303
https://doi.org/https://doi.org/10.1002/prot.340200303
https://onlinelibrary.wiley.com/doi/pdf/10.1002/prot.340200303
https://onlinelibrary.wiley.com/doi/pdf/10.1002/prot.340200303
https://onlinelibrary.wiley.com/doi/abs/10.1002/prot.340200303
https://onlinelibrary.wiley.com/doi/abs/10.1002/prot.340200303
https://www.analyticsvidhya.com/blog/2021/08/decision-tree-algorithm/
https://doi.org/https://doi.org/10.1016/0022-2836(73)90011-9
https://doi.org/https://doi.org/10.1016/0022-2836(73)90011-9
https://www.sciencedirect.com/science/article/pii/0022283673900119
https://www.sciencedirect.com/science/article/pii/0022283673900119

Acknowledgments

I would like to express my deepest gratitude to my advisor Alexander Miguel
Monzon and my co-supervisor Damiano Piovesan for their essential guidance
and insight throughout this journey. I am also very thankful to the entire
BioComputingUP laboratory for having welcomed me and provided help and
support when I was in need.

I extend my gratitude to my family, my friends and my girlfriend Daniela for
her love and support.

77

	List of Figures
	List of Tables
	List of Algorithms
	List of Code Snippets
	List of Acronyms
	Introduction
	BioComputing UP
	Internship description
	Thesis Outline

	An Overview on Proteins
	Basics of Molecular Biology
	Cells
	DNA
	Central Dogma of Biology
	Proteins
	Tandem Repeat Proteins
	Intrinsically Disordered Proteins

	Computational Biology: Computer Science Applied to Biology
	Structural Data
	BioPython
	DSSP

	Analysis of AlphaFold-disorder
	Introduction
	AlphaFold
	pLDDT
	Disorder
	Binding

	AlphaFold-disorder
	CAID
	AlphaFold-pLDDT
	AlphaFold-rsa
	AlphaFold-binding
	Analysis of the Code
	Parsing Input Parameters
	Parsing Input Files
	Extraction of Residues' Statistics
	Computation of Predictions
	Creation of Output Files

	Usage of AlphaFold-disorder software tool
	Dependencies
	Usage
	DSSP Installation
	Python Libraries Installation

	AlphaFold-disorder (SASA): Development of Procedures
	Secondary Structure Detection with Protein Atomic Coordinates
	Introduction
	Implementation of PSEA procedure
	Helper procedures
	Integration

	Computation of RSA with Shrake-Rupley Algorithm
	Implement Shrake-Rupley algorithm
	Normalization
	Integration

	Implementation of FoldComp Library

	AlphaFold-disorder (SASA) assessment
	Output dataset
	Exploratory Plots
	ML models
	Preprocessing
	Development of Machine Learning Models
	Ridge
	LASSO
	Poisson GLM
	Tweedie GLM
	K-Nearest Neighbors
	Decision Tree
	Extra Tree

	Evaluation of ML models' predictions
	Disorder PDB
	Disorder NOX
	Binding

	Helper Scripts for Analysis
	Fetch proteins and functional annotations from DisProt database
	Fetch ground truths arrays from CAID

	Conclusions
	References
	Acknowledgments

