
COMPARISON OF AUTHENTICATION SCHEMES

FOR WIRELESS SENSOR NETWORKS AS APPLIED

TO SECURE DATA AGGREGATION

RELATORE: Ch.mo Prof. Michele Zorzi

CORRELATORI: Dott. Ing. Paolo Casari, Ing. Paolo A. Castellani

LAUREANDO: Matteo Canale

A.A. 2009-2010

Comparison of authentication

schemes for wireless sensor

networks as applied to secure

data aggregation

Laureando: Matteo Canale

Relatore: Ch.mo Prof. Michele Zorzi

Laurea in Ingegneria delle Telecomunicazioni

Anno Accademico 2009/2010

9 Marzo 2010

Chapter 0 :

2

Table of contents

1 Introduction 5

2 Data aggregation and the need for security 9
2.1 Data aggregation . 9

2.1.1 Routing protocols . 10
2.1.2 Aggregation functions . 12
2.1.3 Data representation . 14

2.2 Security in a Wireless Sensor Network 14
2.2.1 Security Requirements . 15
2.2.2 Attack Types . 17
2.2.3 Adversarial Model . 19

2.3 Security Vs. Data Aggregation 20

3 Secure Data Aggregation - Review of the State of the Art 21
3.1 Classification . 21
3.2 Hop-by-hop protocols . 22

3.2.1 SIA, Secure Information Aggregation [36] 22
3.2.2 SecureDAV, Secure Data Aggregation and Verification [39] 23
3.2.3 SDAP, Secure Data Aggregation Protocol [43] 25
3.2.4 ESPDA, Energy-efficient Secure Pattern-based Data Ag-

gregation [45] . 27
3.2.5 SELDA, Secure and rELiable Data Aggregation protocol [46] 29
3.2.6 Secure hop-by-hop aggregation of end-to-end concealed data

[52] . 30
3.3 End-to-end protocols . 32

3.3.1 CDA, Concealed Data Aggregation [54] 33
3.3.2 CDAP [58] . 33
3.3.3 EAED, Efficient Aggregation of Encrypted Data in WSNs

[60] . 35
3.4 Comparison of the proposals . 36

4 Authentication Techniques applied to Data Aggregation 39
4.1 Message Authentication Codes (MACs) 39

4.1.1 MAC Forgery . 41
4.2 Block cipher-based authentication 42

3

Chapter 0 : TABLE OF CONTENTS

4.2.1 Block ciphers . 42
4.2.2 The RC5 block cipher . 43
4.2.3 The CBCMAC algorithm 48

4.3 Hash function-based authentication 49
4.3.1 The MD5 message digest algorithm 50
4.3.2 SHA1 - Secure Hash Algorithm 1 52
4.3.3 The keyed-hash message authentication code (HMAC) . . 54

4.4 The quest for the aggregated MAC 56
4.5 ESAWN - Relaxed authenticity for data aggregation in WSNs . . 58

4.5.1 Definitions and model assumptions 59
4.5.2 ESAWN Protocol . 61
4.5.3 Protocol evaluation . 66
4.5.4 Summary . 71

5 Experimental results 73
5.1 Evaluation of MAC protocols on TelosB motes 73

5.1.1 Experimental settings . 73
5.1.2 MAC schemes experimental results 74

5.2 Experimental evaluation of ESAWN 79
5.2.1 Experimental settings . 79
5.2.2 ESAWN simulation results 80

5.3 Energy consumption . 88
5.3.1 Radio current absorption 89
5.3.2 CPU current absorption 90
5.3.3 Overall current absorption 92

5.4 Summary . 101

6 Conclusion and future works 103

Acknowledgements (Ringraziamenti) 105

4

Chapter 1

Introduction

Thanks to the recent advances of hardware manufacturing technology and effi-
cient software algorithms, the deployment of a network composed by hundreds
or thousands of small, low-cost wireless sensors has nowadays become possible.
These sensor nodes are resource-constrained devices, capable of performing sim-
ple computations, measuring environmental data and communicating with neigh-
bouring units. As a wireless sensor network (WSN) is typically composed of a
considerable amount of nodes, these devices has to be small and inexpensive; fur-
thermore, in order to maximise the network lifetime, they have to ensure a low
power consumption.

Several applications has been proposed for WSNs, ranging from environmental
monitoring to military applications, from medical care to the management of
household electrical devices, etc. Therefore, many different requirements emerge,
depending on the specific application and on the context where the network has
to be deployed. However, because communication is the most expensive process
in terms of energy consumption for a sensor node (the authors of [2] claim that
transmissions take up to the 70% of the overall network energy consumption),
a common goal for WSN applications is to reduce as much the amount of data
to be transmitted as possible. These data typically consist of sensor readings
that have to be collected and transmitted towards the gathering point by means
of multihop communication. A possible approach for reducing the amount of
information to be transferred to the upper levels in the network hierarchy is that
of performing in-network data aggregation, i.e., processing data in order to reduce
their size. Data aggregation dramatically decreases the radio energy consumption
and, therefore, is a fundamental component for many WSN applications. It is
performed by means of an aggregation function and/or data compression and
its basic idea is that of trading communication complexity for computational
overhead, since simple local computations are typically less expensive than radio
transmissions in terms of energy consumption.

The wireless medium, however, is intrinsically unsafe, as it is accessible by
all users in the transmission range, even if not authorised. Furthermore, since a
wireless sensor network can be possibly deployed in a hostile environment (let us
think, for example, of a military application), where sensor nodes can be somehow

5

Chapter 1 : Introduction

compromised by an adversary, a certain level of security has to be ensured, to
the network in general and, specifically, also to data aggregation protocols. Typ-
ical security requirements include data confidentiality (i.e., the attacker should
not be able to leak information about the message contents), data integrity (i.e.,
accidental or malicious modifications to sent packets have to be detected) and
authenticity (i.e., the receiver should be able to verify that received messages
were actually sent by the claimed entities).
Unfortunately, while trying to embed security primitives in a data aggregation
protocol, several security challenges arise. In first place, it should be observed
that, basically, data aggregation and security have contrasting goals: while the
first tries to minimise the amount of transmitted data, the latter adds a non-
negligible computational and communication overhead in order to ensure the
verification of some security properties.
Secondly, the in-network processing performed by a data aggregation protocol
makes it even harder, if not impossible, to ensure a strict, global verification of
the aforementioned security requirements, as the nodes that perform the aggre-
gation need to process the received data. Therefore, since no node except the
final gathering point can be considered trustworthy, it is necessary to address the
problem of ensuring security also in the aggregation process.
Last but not least, while embedding security on sensor nodes, their severe limita-
tions in terms of computational capabilities and energy resources should be taken
into account. Traditional, strong security primitives, in fact, are not applicable
on most sensor nodes. Therefore, energy efficient and computationally simpler
algorithms have to be adopted, sometimes by sacrificing some security in order
to make the implementation feasible on sensor nodes.
Summarising, data aggregation protocols should be designed jointly with secu-
rity protocols, with the purpose of yielding a good trade off between the overall
protocol complexity and the ensured level of security, while keeping energy con-
sumption within acceptable boundaries.

The present thesis mainly focuses on the problem of data authentication pro-
vided to a WSN data aggregation protocol, though an extensive overview on
secure data aggregation protocols is provided. Three different authentication al-
gorithms were implemented and analysed, together with their application in a
suitable secure data aggregation protocol.

The work is organised as follows. Chapter 2 introduces the reader to the
data aggregation problem and to the related security requirements; furthermore,
the relationship between the two is analysed. In chapter 3, a survey on the
current state of the art in secure aggregation protocols is presented, together
with a comparison among the considered proposals. Chapter 4 investigates au-
thentication and its relationship with data aggregation. Three authentication
schemes, namely CBCMAC-RC5, HMAC-SHA1 and HMAC-MD5, are described
and a protocol, ESAWN, which addresses the problem of ensuring end-to-end
authenticity, is analysed. Chapter 5 presents the results obtained from the im-
plementation on real sensor nodes (the chosen platform are TelosB motes) of the
three aforementioned authentication schemes and jointly evaluates the ESAWN

6

Chapter 1 : Introduction

protocol performance. Finally, chapter 6 draws the conclusions on the presented
work and considers possible future developments.

7

Chapter 1 : Introduction

8

Chapter 2

Data aggregation and the need
for security

Wireless sensor networks are typically composed of a large number of sensor
nodes, each one collecting application specific information from the environment.
This information usually needs to be transferred to a central gathering point via
multihop communication. There it can be analysed and processed for further use.
Because communication is very expensive in terms of energy consumption, it is
desirable to minimise it in order to enhance network lifetime, which is indeed a
fundamental parameter in a WSN.
Data aggregation moves exactly towards this direction. The basic idea is to jointly
process distinct sensor readings by means of an aggregation function and/or of
data compression, in order to reduce the amount of information that has to be
transmitted towards the next hop. A hierarchical network structure has to be
defined as well, so that routing paths are established and aggregation points are
distributed on the way to the gathering point, i.e., the base station (BS, from
now on).

While addressing the problem of reducing communication, however, data ag-
gregation poses severe security problems, related both to the underlying network
protocols (routing through compromised nodes) and to the need of in-network
data processing (which usually does not allow to simultaneously achieve end-to-
end confidentiality, authenticity, etc., as data needs to be processed at interme-
diate nodes).

In this chapter, data aggregation and security requirements are explored to-
gether with the difficulties in making them coexist in a secure data aggregation
protocol.

2.1 Data aggregation

Note: in this section an extensive reference to the exhaustive surveying work
presented in [13] is made.

9

Chapter 2 : Data aggregation and the need for security

As widely anticipated, data aggregation is a fundamental feature for a WSN,
since it allows a considerable reduction of the communication complexity in ex-
change for a reasonable computational overhead at sensor nodes. In a WSN, in
fact, local computations usually consume much less energy than data transmis-
sions; the goal of data aggregation is precisely that of finding a suitable trade
off between communication and computational complexity, in order to limit the
overall energy consumption.

According to [13], the in-network aggregation process is defined as follows:

Definition 1 (In-network aggregation). In-network aggregation is the global pro-
cess of gathering and routing information through a multihop network, processing
data at intermediate nodes with the objective of reducing resource consumption
(in particular, energy), thereby increasing network lifetime.

Moreover, two different approaches exist, namely:

• In-network aggregation with size reduction - the data received by an aggre-
gator node from its children is processed in such a way to reduce its size;
for example, if an aggregator node receives two temperature measurements
from its two children, it could compute their average and forward the result
to the upper-level aggregator, thus sending a single packet instead of two.

• In-network aggregation without size reduction - the aggregator node merges
packets coming from different sources into a single packet, without perform-
ing data processing. This allows a reduction of the overhead, while data
size is not reduced.

According to [13], in-network aggregation techniques are based upon three fun-
damental components: suitable networking protocols, effective aggregation func-
tions and efficient ways of representing data. A brief description of each compo-
nent is provided in the remainder of this section, while a deeper analysis can be
found in [13].

2.1.1 Routing protocols

In order to perform data aggregation, a specific routing protocol has to be de-
signed. In fact, while traditional routing protocols aim at finding the shortest
path towards the destination (according to a specified metric), a routing protocol
suitable for data aggregation is expected to choose paths that ensure optimal
data aggregation of semantically similar data, with the final goal of minimising
energy consumption.
This forwarding paradigm is referred to as data-centric routing. Using such an
approach implies that the metrics used for defining routing paths must consider
variables like the position of most suitable aggregation points, data type, overall
energy efficiency, etc.

Another specific issue that needs to be taken into account while designing a
data aggregation protocol is the timing strategy, i.e. some form of synchronisation

10

Chapter 2 : Data aggregation and the need for security

among nodes. According to the specific application, one of the following policies
could be chosen:

• periodic simple aggregation - aggregation operations are triggered by a pre-
fixed timer; therefore, when the timer is triggered, each aggregator node
aggregates data received in the current time-slot and forwards the result to
the designated node(s).

• periodic per-hop aggregation - aggregation operations are performed as soon
as a node hears from all of its children. A time-out is used to prevent
protocol freezing in case some children’s packets are lost.

• periodic per-hop adjusted aggregation - the approach is identical to that of
periodic per-hop aggregation except that time-outs are adjusted for each
node, depending on its position in the network structure.

Finally, a routing protocol is characterised by the underlying network struc-
ture. In the following the main approaches suitable for in-network aggregation
are presented. A detailed description of the main routing protocols based on the
considered approaches can be found in [13].

Tree-based approaches

Tree structures are the most widely used in data aggregation protocols, because
of their simplicity and efficiency. The topology is that of a spanning tree rooted at
the Base Station (BS), i.e. the gathering point demanded to perform processing
for further data use. A possible tree topology is represented in figure 2.1(a).

Typically, the BS queries for a specific subset of sensor readings; the request
is spread along the tree. Successively, sensor nodes answer by performing data
aggregation along the aggregation tree.

Tree-topologies have a major drawback: if a packet is lost at some level of the
aggregation tree, all information related to the corresponding sub-tree is lost as
well. This is a direct consequence of the hierarchical structure imposed by the
tree-based approach and makes it unsuitable for highly dynamic networks, where
link/node failures are frequent. On the other hand, however, as the authors
of [13] claim, “these approaches are particularly suitable for designing optimal
aggregation functions and performing efficient energy management”, as confirmed
by several studies [14, 15, 16]. Examples of tree-based protocols can be found in
[17, 18, 19].

Cluster-based approaches

Cluster-based schemes [20, 21, 22, 23] are very similar to tree-based ones, as
they are founded on a hierarchical organisation of the network. According to
this approach, though, nodes are subdivided into clusters and for each cluster a
cluster-head is defined. Cluster-heads are responsible for data aggregation of their

11

Chapter 2 : Data aggregation and the need for security

cluster and have to forward the result to the BS. An example of cluster-based
topology is represented in figure 2.1(b).

Advantages and drawbacks of this type of scheme are essentially the same of
tree-based solutions.

Multipath approaches

A different approach, whose aim is to overcome the major drawback of classical
hierarchical approaches (i.e. their unsuitability for networks with a high rate
of link failures), is pursued by multipath schemes. The basic idea is that of
sending data over multiple paths, exploiting the broadcast nature of the wireless
medium. This approach enhances the protocol resiliency against packet loss, while
introducing a significant overhead. Representative of this class are the protocols
proposed in [24, 25, 26].

Hybrid approaches

Finally, an hybrid approach between tree/cluster-based and multipath schemes
can be pursued. In particular, the data aggregation structure can be adjusted
according to specific network conditions and to some target performance figures.
A proposal that applies this paradigm is described in [27].

2.1.2 Aggregation functions

In order to perform in-network aggregation, an effective aggregation function
is needed, so that data coming from different sources can be combined at the
aggregator node. By “effective” we mean that these functions need to take into
account the scarce resource availability of sensor nodes and must cope with their
severe limitations.

Many types of aggregation functions exist, depending on the specific sensor
application. Typical examples are functions such as mean, median, quantile,
max and min. As a deeper analysis is not functional to this thesis, only a coarse
classification is provided in the remainder of this section. Specifically, we can
distinguish:

• Lossy Vs. Lossless aggregation functions.
Data can be aggregated either by losing some of the original information
content (lossy aggregation) or by preserving all of it (lossless aggregation).
Lossless aggregation ensures a complete recovery of all single sensor readings
at the BS, while the lossy approach does not allow a perfect reconstruction.

• Duplicate sensitive Vs. Duplicate insensitive aggregation functions.
Whether an aggregator node receives multiple sensor data with the same
content, he could take into account the redundant information or simply
discard it. In the first case, the aggregation is duplicate sensitive, while
in the second one it is not. Major representatives of the two approaches

12

Chapter 2 : Data aggregation and the need for security

(a) Tree-based.

(b) Cluster-based.

Figure 2.1: Examples of network topologies.

13

Chapter 2 : Data aggregation and the need for security

are the mean and the median functions, which are respectively duplicate
sensitive and duplicate insensitive aggregation functions.

2.1.3 Data representation

Finally, a proper data aggregation protocol should use an efficient way of repre-
senting data, in order to comply with the limited storage capabilities of sensor
nodes and to reduce the number of bits to be transmitted over the wireless medium
(thus improving network lifetime).
Ideally, data representation should be adjusted according to the specific type of
data to be processed and to application requirements. An interesting proposal
that moves towards this direction is presented in [28]: it exploits source coding
techniques to optimally represent and compress data, based on information about
its correlation.

As a conclusion to this section, we highlight that the three previously described
components should be jointly designed and implemented in order to ensure opti-
mal performance even though they were presented separately. Furthermore, they
should be tightly coupled with the requirements of the specific application of the
considered WSN.

2.2 Security in a Wireless Sensor Network

As widely anticipated in Chapter 1, security is a paramount requirement in Wire-
less Sensor Networks, especially for certain applications. Furthermore WSNs have
many characteristics that make them extremely vulnerable to malicious attacks,
especially when they are deployed in hostile environments.

Firstly, the wireless medium is, by definition, open to everyone; an attacker
can easily gain access to transmitted packets and take part to the communication,
simply by tuning his radio device on the correct frequency. He could also jam the
transmission, preventing the network from working correctly.

Secondly, the elements that compose a WSN are cheap, resource-constrained
sensor nodes, with limited computational power, reduced storage capabilities and
scarce energy resources. Therefore it is not feasible to implement traditional
strong security algorithms, as they would be too demanding for sensor nodes; on
the other hand, though, a weakened security protocol cannot face a strong adver-
sary. Hence a suitable trade off between performances and security is needed, i.e.
efficient algorithms should ensure adequate protection against malicious attacks.

Thirdly, a WSN can scale up to thousands of sensor nodes and, thereby, se-
curity protocols should be flexible and scalable as well. e Last but not least,
we remark that most WSNs protocols, including data aggregation ones, usually
do not consider potential security threats at the design stage. On the contrary,
security mechanisms are added later as stand-alone modules. This is an outstand-
ing limitation, as security should be taken into account from the very beginning

14

Chapter 2 : Data aggregation and the need for security

stages of WSNs protocol design.
To summarise, security is a critical issue for a WSN and poses several chal-

lenges while designing a protocol. In the following sections, security requirements,
attack types and an adversarial model are presented. As a conclusion, the prob-
lem of designing a secure data aggregation protocol is introduced.

2.2.1 Security Requirements

Several properties could be demanded to a secure protocol, according to the
specific application. The major security requirements ones are listed below.

Data confidentiality

Data confidentiality ensures that secrecy of sensed data is never disclosed to
unauthorised parties. This means that the information transmitted by each sen-
sor node is readable only by those nodes to which that information is addressed.

A brief introduction to cryptographic primitives for data confidentiality.

Confidentiality can be achieved through cryptographic algorithms, which can be distin-
guished mainly into two categories: symmetric-key crypto (SKC) algorithms and public-key
crypto (PKC) algorithms. In the following, a brief introduction to these two categories of
crypto algorithms is given; the main features are described, while a detailed description is
beyond the purpose of this thesis.

In first place we define as:

• encryption process an algorithm that, given an encryption key, transforms the plain-

text data received as input into a bit-stream, called ciphertext that is unreadable by all
the parties who do not know the encryption key.

• decryption process the inverse of the encryption process, that is the algorithm that,
given a decryption key (matched with the encryption one), transforms the received en-
crypted bit-stream (ciphertext) into a plaintext message.

SKC algorithms assume that the two nodes involved in the transmission , e.g. Si and Sj,
share a common secret key, e.g. Kij . This key enables both the encryption and the decryption
process, namely:

- SKC Encryption - E : K × P 7→ C, c = E(Kij , p),

- SKC Decryption - D : K × C 7→ P , p = D(Kij , c),

being K the set of all the possible keys, P the set of all possible plaintexts, C the set of possible
ciphertexts, p ∈ P the chosen plaintext and c ∈ C the corresponding ciphertext.
Widely used SKC algorithms are AES [3], RC5 [4], DES [6].

Conversely, PKC algorithms use a key pair (Kpubl,Kpriv), i.e. respectively the public and
the private key. As the names suggest, Kpubl is publicly known, while Kpriv is known only to
the authorized addressee of the message. More specifically, using the public key, every node
can encrypt data that can be decrypted only knowing the corresponding private secret key:

- PKC Encryption - E : K × P 7→ C, c = E(Kpubl, p),

- PKC Decryption - D : K × C 7→ P , p = D(Kpriv, c),

15

Chapter 2 : Data aggregation and the need for security

where K, P , C, p and c have the same meaning as before.
Many PKC schemes are based on the presumed hardness of a mathematical problems, such as
factoring the product of two large primes or computing discrete logarithms. Assuming that
these problems are not feasible to be solved, the security of these schemes is proven. Well
regarded PKC algorithms are RSA [7], the ElGamal algorithm [9], the Diffie-Hellman key
exchange protocol [10] and various Elliptic Curve (ECC) techniques [8]. It should be noticed
that ECC algorithms grant a considerable improvement in terms of complexity reduction over
traditional PKC algorithms: in order to achieve the a comparable level of security of a PKC
system based on RSA with a public key of size 1024 bits, a PKC system based on ECC just
needs a public key of 160 bits.

PKC-based crypto-systems have a considerable advantage over SKC schemes in the key
management process. SKC schemes require each pair of the communication end-points to be
equipped with the same secret key; therefore, if secure communication needs to be established
between every couple of end-points in a network of n nodes, the overall amount of pairwise-key

required would be equal to n(n−1)
2 . Conversely, PKC schemes would need just n public keys,

thus leading to a considerably lower overhead. On the other hand, SKC algorithms are much
less computationally intensive with respect to PKC ones; this advantage is typically from 2 to
3 orders of magnitudes. This means, of course, that PKC is much more demanding in terms
of resources and energy consumption: that is the main reason why PKC is hardly feasible in
Wireless Sensor Networks, at least when the designer is dealing with low-end motes, such as
MicaZ and TelosB.

Authentication

Since sensors use a shared wireless medium to communicate, authentication mech-
anisms are needed to detect maliciously injected or spoofed packets, in order to
ensure that data is actually provided by the expected party. The lack of authenti-
cated communication could lead to several problems, such as node impersonation,
Sybil attack (please refer to §2.2.2 for further details) and so on.
Referring to data aggregation, in the absence of authentication mechanisms an
attacker could alter the aggregation result providing the aggregator node with
fake data, claiming to be a legal sensor node while actually he is not; or, even
worse, the aggregator node itself could cheat on the aggregation, providing the
upper level aggregator or the sink with forged aggregated data. There are several
mechanisms that allow message and source authentication: the most used are the
so-called Message Authentication Codes (MACs). Widely used MACs are the
CBCMAC (Cipher Block Chaining MAC) and the HMAC (Hashed MAC), which
are based respectively on block ciphers (such as AES, RC5, Skipjack, etc) and
on hash functions (such as MD5, SHA-1, RIPEMD, etc.); these schemes will be
analysed in detail in chapter 4.

Data Integrity

This property ensures that the content of a message has not been altered, either
maliciously or accidentally, during the transmission process. Data integrity can
be provided by a simple mechanism, such as a CRC (Cyclic Redundancy Code),
but, usually, a MAC is used to fulfil simultaneously authentication and integrity.

16

Chapter 2 : Data aggregation and the need for security

Data freshness

In order to protect the network against replay attacks (see section §2.2.2 in the
current chapter), messages with the same information content (i.e. measured
values) should look different every time they are transmitted, so that the attacker
cannot exploit the confidentiality, the authenticity or the integrity of a message at
time t for successive transmissions at time t+δ. Data freshness can be provided by
simply embedding a counter or a pseudo-random value (shared by the sender and
the receiver) in the packet payload before applying the cryptographic primitive
used to provide confidentiality or authentication.

Availability

If this property holds, the network is able to ensure the availability of resources
and measured data even in the presence of some compromised nodes. It is nearly
infeasible to provide 100% availability of radio resources in a WSN, since sen-
sor nodes’ transmissions are low-power and can be easily jammed by a powerful
attacker. Assuming that the attacker is not interested in jamming all communica-
tions in the network, in a secure data aggregation protocol it is possible to ensure
a reasonable level of security with respect to availability, using mechanisms such
as:

- Self-healing - diagnose and react to the attacker’s activities and take cor-
rective actions on defined policies to recover the network or a node.

- Aggregator rotation - rotate the aggregation duties between honest nodes in
order to reduce the impact of an attacker compromising an aggregator node
(the role of aggregator would be only temporary) and balance the energy
consumption.

Non-repudiation

This property ensures that a transferred packet has been sent (received) by the
party claiming to have sent (received) the packet. In secure aggregation schemes,
once the aggregator sends the aggregation results, it should not be able to deny
the sent data. This gives to the base station the opportunity to determine what
caused the changes in the aggregation results.

2.2.2 Attack Types

Preface: An exhaustive classification of possible attacks in a WSN is be-
yond the purpose of this thesis and, therefore, the reader interested in a compre-
hensive overview should refer to some specific work, such as the one presented in
[11]. In the following, the focus is mainly on attacks related to data aggregation.

17

Chapter 2 : Data aggregation and the need for security

Denial of Service (DoS) attack

Within this class, a wide range of possible attacks is included. DoS attacks
could be performed by means of radio jamming, but also by simply deviating the
behaviour of a sensor node from its specified policy, in such a way to prevent
the system to work properly. In a data aggregation protocol, an example of DoS
attack can be that of an aggregator which refuses to aggregate packets received
from its children, thus preventing data from travelling towards the next hop.

Node compromise

Compromising a node allows an attacker to gain access to all of its contents (such
as cryptographic keys) and to manage the communication with its neighbours. A
compromised node can alter sensed data at its own will, without being detected
as malicious by authenticity or decryption checks.

Sybil attack

By means of a Sybil attack, the adversary is able to impersonate more than one
identity within the same network; in this way, he can alter aggregation protocols
in several ways. For example, he could create multiple identities to generate
additional votes in the aggregator’s election phase (assuming that aggregators are
not chosen in advance), allowing the election of a compromised node. Otherwise,
the attacker could decide to contribute several times to the aggregation process,
exploiting his different identities.

Selective forwarding attack

Using selective forwarding, a node drops some of the incoming messages , thus
preventing the network to function properly (DoS attack) or simply by altering
the aggregation result.

Replay attack

An attacker could record some traffic from the network, without necessarily un-
derstanding its content (i.e. without violating its confidentiality), and replay
sniffed packets later on, exploiting their authenticity and integrity to mislead the
aggregator in order to, for example, alter the aggregation result.

Stealthy attack

The adversary aims to inject false data into the network without revealing its
existence. In a data aggregation scenario, the injected false data leads to a false
aggregation result. A compromised node can report significantly biased or fake
values and perform a Sybil attack to affect the aggregation result.

18

Chapter 2 : Data aggregation and the need for security

2.2.3 Adversarial Model

An adversary is characterized by several features, which enable him or not to
perform certain types of attacks. In the following the main differences in the
attacker’s capabilities are described.

Adversary type

A first classification of an attacker could be done basing on which security re-
quirements he aims to threaten:

• Passive attacker - the threatened security requirement is confidentiality.
The adversary, in fact, simply takes advantage of the nature of the wireless
medium and eavesdrop the traffic in order to extract sensitive information
about sensed data, without really interacting with the network entities. Of
course, a strong encryption algorithm can ensure security with respect to
this type of attacker, with a cost in terms of energy consumption.

• Active attacker - the adversary aims to threaten the integrity and the au-
thenticity properties in the network. In order to do it, he interacts actively
with the network nodes: he may inject packets, modify overheard packets
and then replay them, destroy nodes, stop or delay packets from being de-
livered to the destination node, tamper nodes and extract their sensitive
information, etc.

Network access

The network scale over which the adversary can perform his attacks is another
important feature. Two main categories can be distinguished:

• Total network access adversary - the attacker has access to the whole
WSN. If he is passive, he can overhear all the communication between nodes;
if he is active, he can interact with all the components of the network, thus
including sensor nodes, aggregator and base station.

• Partial network access adversary - the attacker can access only a por-
tion of the WSN, hence limiting the potential of his attacks. If the attacker
is passive, he can eavesdrop only some of traffic in the network; if he is
active, he can interact only with a subset of nodes in the WSN.

Adversary (coarse) classification

Summarising, the authors of [12] propose an approximate classification of attack-
ers into three categories:

• Strong adversary - Active adversary with total network access.

• Medium adversary - Active adversary with partial network access.

• Light adversary - Passive adversary with partial network access.

19

Chapter 2 : Data aggregation and the need for security

2.3 Security Vs. Data Aggregation

In the previous sections, data aggregation and security in wireless sensor networks
were introduced.
Data aggregation is necessary in order to improve the overall network lifetime,
that is indeed a fundamental design parameter for a WSN. At the same time,
though, a careful designer should consider security threats that could arise in
such a network, which is easily accessible to the attacker and must face serious
resource constraints.

Implementing data aggregation and security in a single protocol is a great
challenge, since, somehow, they have contrasting goals. Data aggregation aims to
minimise energy consumption, by means of reducing the amount of transmitted
data; on the contrary, security adds computational and communication overhead,
in order to ensure a set of properties such as confidentiality, authenticity, etc.

Two major difficulties in the creation of a secure data aggregation protocol
can be distinguished:

• data aggregation requires to process information at the aggregator node;
therefore, ensuring end-to-end verification of security requirements (which,
in fact, would be desirable, as usually no sensor node can be trusted to
be honest) is extremely challenging. Therefore, a relaxation of security
requirements and particular assumptions on the attacker or on the network
capabilities could be necessary in order to make the aggregation process
feasible and efficient even in the presence of security mechanisms.

• sensor nodes are severely limited in terms of computational, storage and
energy resources; each WSN protocol should be designed with this limita-
tion in mind. When it comes to security, it is even more difficult to comply
with these constraints, as traditional strong security mechanisms are com-
putationally too intensive for most sensor nodes.

In the following chapter, some proposals for secure data aggregation protocols
are presented.

20

Chapter 3

Secure Data Aggregation -
Review of the State of the Art

The need for secure data aggregation protocols has been widely introduced in the
previous chapter. In the following, a review of the current state of art in secure
data aggregation protocols, to the best of the author’s knowledge, is presented,
according to the classification proposed in §3.1. After a detailed description of
the major proposals, a structured comparison is performed in order to underline
achievements and weaknesses of each protocol, with a focus on future develop-
ments.

3.1 Classification

Secure data aggregation protocols can be distinguished into two main categories,
namely hop-by-hop and end-to-end protocols.

In the first class, security primitives are applied in a hop-by-hop fashion, i.e.
security requirements (confidentiality, authenticity, integrity, etc.) are verified at
each step. This kind of protocols allows a simpler implementation of aggregation
functions, and does not impose any bound on their nature (sum, mean, max, min,
etc.); moreover, it does not require specific cryptographic algorithms1. On the
other hand, hop-by-hop protocols suffer from a considerable inefficiency, as they
require aggregator nodes to deal with cryptographic primitives, especially when
confidentiality is required. In general, however, hop-by-hop protocols are much
more easily implementable in a resource-scarce WSN, as they require fewer com-
putational (and, hence, energy) resources with respect to end-to-end protocols.

The second class, i.e., end-to-end protocols, is based on particular crypto-
graphic algorithms, known as Privacy Homorphisms, which allow direct compu-
tations (usually addition and/or multiplication) on encrypted data. The main
advantage of these protocols is that they ensure end-to-end confidentiality and
they do not require cryptographic operations at the aggregator node. Conversely,
because of the use of privacy homomorphisms, they need a significantly increased

1therefore, traditional cryptographic algorithms, both SKC and PKC, can be used.

21

Chapter 3 : Secure Data Aggregation - Review of the State of the Art

amount of energy for the encryption phase with respect to traditional crypto-
graphic algorithms and, with privacy homomorphisms available nowadays, only
addition-based and multiplication-based aggregation operations are feasible. Fur-
ther details are given in §3.3.

In the following, some of the major proposals for secure data aggregation
protocols are presented; this review does not aim to be comprehensive of all
protocols proposed by the scientific community, but rather to give an extensive
overview on possible approaches to secure data aggregation by selecting some
representative candidates.

3.2 Hop-by-hop protocols

3.2.1 SIA, Secure Information Aggregation [36]

SIA [36] is one of the first protocols for performing secure data aggregation pro-
posed by the scientific community. SIA addresses the problem of “how to enable
secure information aggregation, such that the user accepts the data with high
probability if the aggregated result is within a desired bound, but that the user
detects cheating with high probability and rejects the result if it is outside of the
bound” [36]. The authors consider the case where compromised sensor nodes or
aggregators can deviate their behaviour arbitrarily with respect to the predefined
policy; the aim of their protocol is to avoid with the highest possible probability
that the user accepts an aggregate that is deviating consistently from the correct
value.
SIA assumes that each sensor has a unique ID and shares with the base station
a pair of secret keys; these keys enable the sensor to authenticate messages and,
if confidentiality is required, to encrypt them2.
The paradigm of SIA is the so-called aggregate-commit-prove approach: the ag-
gregators do not only have to perform aggregation tasks, but also have to prove
that they perform these tasks correctly. Specifically, to prevent the aggregators
from cheating, the protocol uses cryptography-based commitment techniques and
constructs efficient random sampling mechanisms and interactive proofs ; these
mechanisms enable the user to verify that the answer given by the aggregators
is a good approximation of the true value even when the aggregators and/or a
fraction of the sensor nodes may be corrupted.
As the name suggests, the aggregate-commit-prove algorithm consists of three
phases, namely:

1. AGGREGATE - the aggregator gathers data from the sensor nodes and
locally computes the corresponding aggregated value.

2please note that the authors do not suggest any cryptographic algorithm to be used for the
sake of confidentiality, as confidentiality is not the main target of the protocol, but it is rather
a collateral property that may be implemented. On the other hand, they suggest the use of
HMAC [38] for authentication.

22

Chapter 3 : Secure Data Aggregation - Review of the State of the Art

2. COMMIT - the aggregator commits to the collected data; this commitment
is a proof for the base station that the aggregator is using the sensor readings
submitted by sensor nodes. The authors of SIA suggest the use of a Merkle
hash tree [37] in order to implement efficiently this mechanism. In figure
3.1, it is shown how this mechanism works.

3. PROVE - the aggregator sends to the BS the result of the aggregation
process and the commitment to the sensor readings, and then proves to the
BS that the reported results are correct using interactive proof protocols,
which usually consist of two steps:

(a) the BS checks whether the committed data is a good representation of
the true data values in the sensor network.

(b) the BS checks whether the aggregator is cheating, that is if the aggre-
gation result does not comply with the correct result aggregated from
the committed data values.

The authors then propose some protocols, that they claim to be secure, for
computing the median and the mean, for extracting the maximum and the min-
imum and finally for counting distinct elements in the reported sensor readings.
It is shown that these protocols have sub-linear complexity.

SIA is completed by a mechanism which grants a property named Forward
Secure Authentication (FSA). Specifically, FSA ensures that, if the BS queries
some previously sensed data, the attacker is not able to alter the data collected
in the past before the sensor was compromised. This mechanism assumes that
each sensor is loosely-time synchronized with the BS and that time is divided into
constant time intervals.
It should be noticed, by the way, that FSA is not easily implementable in a WSN,
as sensor nodes are given a small amount of memory to store previously sensed
data and have limited computational capabilities (the mechanism is based on the
iterative use of hash functions).

3.2.2 SecureDAV, Secure Data Aggregation and Verifica-

tion [39]

In many aspects, SecureDAV is a protocol similar to SIA: both of them aim to
ensure protection against stealthy attacks (i.e. attacks in which the aggregator
tries somehow to alter the aggregation result without being discovered by other
nodes), use a verification mechanism to find out possible cheating on the aggre-
gation result and have a cluster-based approach.
Nevertheless, SecureDAV introduces some important new features. First of all,
SecureDAV uses Elliptic Curve Cryptography ([8]), which enables the use of PKC
in aWSN, maintaining the computational cost at a reasonable level. In particular,
ECC enables sensor nodes to efficiently generate a signature, while the verifica-
tion of this signature (which is computationally much more complex) is devolved

23

Chapter 3 : Secure Data Aggregation - Review of the State of the Art

Figure 3.1: Merkle hash tree used to commit to a set of values.
The aggregator constructs the Merkle hash tree over the sensor measurements
m0, ..., m7. To lower the size of verification information, the aggregator first
hashes the measurements with a cryptographic hash function, e.g. v3,0 = H(m0),
assuming that the size of the hash is smaller than the size of the data. To
construct the Merkle hash tree, each internal value of the Merkle hash tree is
derived from its two child nodes: vi,j = H(vi+1,2j||vi+1,2j+1) (where || denotes the
concatenation operation). The Merkle hash tree is a commitment to all the leaf
nodes and, given the authentic root node v0,0, a verifier can authenticate any
leaf value by verifying that the leaf value is used to derive the root node. For
example, to authenticate the measurement m5, the aggregator sends m5 along
with v3,4, v2,3, v1,0 and m5 is authentic if the following equality holds:

v0,0 = H(v1,0||H(H(v3,4||H(m5))||v2,3.

to the BS (which does not suffer from the strict limitations of the sensor nodes).
The solutions proposed in [39] is composed mainly by two blocks: the Cluster
Key Establishment (CKE) protocol and the SecureDAV protocol itself.

The CKE protocol generates a secret cluster key for each cluster3. Each node
has only a share of the secret cluster key and the cluster key is hidden from each
node. The cluster key is used to generate partial signatures using ECDSA (Elliptic
Curve Digital Signature Algorithm) [42]. The cluster-head then gathers all the

3it is assumed that the corresponding public key is known by all the nodes in the cluster as
well as by the BS

24

Chapter 3 : Secure Data Aggregation - Review of the State of the Art

partial signatures of its cluster-nodes, combines them into a single signature and
sends it, together with the aggregated data, to the BS. The BS, who knows the
corresponding public key, can finally check the authenticity. Please note that,
since the attacker does not know the complete cluster-key, he cannot generate
the whole signature for the aggregated data. Furthermore, the authors of [39]
prove that compromising less than t nodes in a cluster (where t < n/2, with n
being the total number of nodes in the cluster) does not enable the adversary to
form a full signature.
Once CKE has been successfully executed, SecureDAV uses its output in order
to perform secure data aggregation. In [39] the implementation of SecureDAV is
provided when the required aggregation function is the mean between the sensed
readings. The process can be summarised into the following steps:

1. in each cluster, the cluster-head aggregates the data reported by sensor
nodes and computes the mean; it then broadcasts the result to all cluster
members.

2. every cluster node compares its reading with the value reported by the
cluster-head. If the difference between the two values is below a fixed thresh-
old (that is if the aggregation result is “reliable” according some predefined
criteria), the node creates a partial signature of the aggregated data using
its part of the secret key and sends it to the cluster-head.

3. the cluster-head combines all the partial signatures into the complete sig-
nature and sends it, together with the computed mean, to the BS, which
finally verifies it.

SecureDAV, at last, has an integrity check mechanism based on a Merkle hash
tree, definitely similar to the one used in [36].

3.2.3 SDAP, Secure Data Aggregation Protocol [43]

The work presented in [43] is quite complete and well-articulated. Besides insert-
ing their work in a structured framework, the authors propose diverse solutions
for collateral problems involved in secure aggregation, such as the tree construc-
tion (the network topology is assumed to be tree-based) and the key distribution.
Moreover, after an accurate description of the proposed protocols and of their
theoretical background, an extensive performance analysis4 and simulations are
conducted.

While designing SDAP, its authors observed, first of all, that compromising a
node closer to the root of the tree has a more significant impact on the final ag-
gregation result with respect to compromising a lower level node; the aggregation
result of a higher level node depends, in fact, on a bigger number of lower-level
sensor nodes. SDAP tries to limit this problem by using a divide-and-conquer

4in terms of computational, storage and communication overhead.

25

Chapter 3 : Secure Data Aggregation - Review of the State of the Art

approach5. Specifically, SDAP uses a probabilistic grouping method to dynam-
ically partition the network tree into multiple logical sub-trees of comparable
size. Hop-by-hop aggregation is then performed separately in each group and re-
sults are then encrypted (with a different key for each sub-tree) and transmitted
to the BS. Through this arrangement, in each group less nodes are positioned
below high-level nodes, thus limiting the potential impact of a high-level node
compromise. In figure 3.2 an example of tree-partitioning is shown.

Figure 3.2: An example of grouped aggregation tree. The nodes x, y and w with
the dark-gray color are leader nodes and the nodes included in the dashed line
are corresponding group members. The BS is the default root.

Furthermore, the probabilistic approach, ensures another important advan-
tage on the attacker; namely, the latter cannot compromise nodes selectively ac-
cording to his optimal attack strategy (e.g. by positioning a compromised node
in each sub-tree or gathering all compromised nodes in a single group). Each
node, in fact, is not preassigned to a specific group and could be a group-leader

5the aggregation problem is decomposed into many sub-problems , which solutions are then
reassembled at the BS.

26

Chapter 3 : Secure Data Aggregation - Review of the State of the Art

(i.e. aggregator) or he could not: it depends on dynamic and probabilistic parti-
tioning performed by the SDAP protocol. As mentioned earlier, SDAP performs
an hop-by-hop aggregation in each logical subgroup and generates an aggregate
for each of them; it is then up to the BS to verify the validity of the provided
results and, at last, compute the final aggregation result. The BS mainly uses
three mechanisms in order to detect potential attacks:

1. Authenticity check - the BS checks the received aggregate MAC, verifying
that it was actually provided by a legitimate group leader.

2. Bivariate multiple-outlier algorithm - using an extended version of the
Grubbs’s test [44], the BS detects potential outliers in the data aggre-
gated by each group; each suspected group will be required to prove the
commitment that it has previously submitted to the BS.

3. Commit-and-attest - each group commits to its aggregate; the idea is similar
to that presented in SIA and ensures that no group can repudiate aggre-
gates that it has actually sent to the BS. Groups under suspicion (due to a
failed authenticity check or detection of a potential outlier by the extended
Grubb’s test) are required to prove their commitment. In order to imple-
ment this mechanism, the authors of [43] use an approach similar to the
Merkle hash tree, adapted, though, to SDAP specifications.

The BS discards aggregates provided by groups that are not able to prove their
commitment; the final aggregation result is in fact computed on those aggregates
that successfully passed the three tests described above.

Through theoretical analysis and several simulations, the authors of [43] claim
that their protocol is effective against attacks that aim to alter the aggregation
result and efficient with respect to the reasonable overhead that it entails: the
energy used for the aggregation and attestation processes is nearly the same of
that required for transmitting 6 bytes, while the storage overhead is limited to
few kilobytes.

3.2.4 ESPDA, Energy-efficient Secure Pattern-based Data
Aggregation [45]

A different approach is pursued in [45]. The authors propose a secure data aggre-
gation protocol in a cluster-based WSN, but with a key difference with respect
to the solutions presented so far: this protocol does not perform aggregation
in strict meaning but rather selects only non-redundant data reported by sensor
nodes to the cluster head (what this means exactly will be explained later), which
then simply forwards it to the BS. Therefore, there is no aggregation function in
ESPDA, but just an optimised redundancy reduction in each cluster head data.
Specifically, ESPDA uses pattern codes in order to perform aggregation. As ex-
plained by its authors, “pattern codes are basically representative data items that

27

Chapter 3 : Secure Data Aggregation - Review of the State of the Art

are extracted from the actual data in such a way that every pattern code has cer-
tain characteristics of the corresponding actual value”. Pattern codes extraction
may vary depending on the type of considered data6. Whether a single sensor
node dispose of multiple sensing units (e.g. temperature, humidity, pressure,
etc.), the pattern code corresponding to a given set of measurements is composed
by the union of different pattern codes generated by each sensing unit (please
refer to §2.2 in [45] for further details).
It is important to underline that, in the pattern codes extraction process, a cer-
tain approximation (whose entity depends on the precision of the pattern code
generation) is assumed. This means, for example, that if two distinct sensor nodes
measure two slightly different temperatures, let’s say 15◦C and 17◦C respectively,
the corresponding pattern code may be identical if the granularity is coarser than
2◦C.
ESPDA could be summarised in the following steps:

1. each sensor node sends its pattern code to the associated cluster-head.

2. the cluster-head identifies distinct patterns and asks a single node for each
different pattern to send its actual data to the BS, passing through the
cluster-head itself; therefore the cluster-head acts more like a data forwarder
than like a data aggregator.

3. each sensor node selected at the previous step encrypts its actual sensor
readings with a session key (shared only with the BS) and sends it to the
BS.

According to this procedure, the cluster-head does not have to decrypt the data
received by its children, since the selection process is performed on pattern codes.
ESPDA bypasses the main limit of hop-by-hop aggregation protocols, though it
does not allow the implementation of aggregation functions in a traditional sense.

In conclusion, some other features of ESPDA are briefly listed:

• Blowfish - ESPDA uses this SKC algorithm in order to provide data con-
fidentiality; the authors claim that this algorithm is optimal in terms of
power consumption and data storage, as compared to other algorithms such
as AES, DES, RC5;

• Data freshness - ESPDA ensures this fundamental property through two
expedients: the use of different cryptographic keys (obtained by XORing a
pre-loaded key and a session key broadcasted by the base station) and the
use of a different pattern seed at each new session;

6the example presented in [45] takes as actual data some images of human beings sensed by
surveillance sensors, for which the key parameters for face and body recognition are taken as
patterns.

28

Chapter 3 : Secure Data Aggregation - Review of the State of the Art

• NOVSF-BH (Non-blocking Orthogonal Variable Spreading Factor - Block
Hopping) - ESPDA uses this technique (inherited and adapted from the
OSFV codes used as channelisation codes by UMTS [53]) in order to fur-
ther improve protocol security and spectral efficiency, without requiring
additional energy;

• Sleep-active mode protocol - ESPDA introduces an algorithm for coordi-
nating activation and deactivation of sensing units on sensor nodes with
overlapped sensing ranges, in order to reduce redundancy in the sensed
data and save energy as well.

3.2.5 SELDA, Secure and rELiable Data Aggregation pro-

tocol [46]

Another interesting and different approach to the secure data aggregation problem
is proposed in [46]. The authors start from a simple statement of fact: since
compromised nodes have access to cryptographic keys that are used to secure the
aggregation process, cryptographic primitives alone are not enough to provide
secure aggregation. Therefore, a web-of-trust approach [47] is proposed. The
basic idea of SELDA is that sensor nodes observe actions of their neighbouring
nodes to develop trust levels (trustworthiness) for both the environment and the
neighbouring nodes. Monitoring mechanisms are used to detect node availability
and misbehaviours of the neighbours; an example is shown in figure 3.3.

Figure 3.3: SELDA monitoring mechanisms

(a) S1 detects node availability misbehaviour of S3, if S3 does not respond S2’s
hello messages over a period of time .
(b) S1 detects routing misbehaviours of S3, if S3 does not want to forward S2’s
data packets properly.
(c) Event E is detected by S1, S2, S3 if event E is reported falsely by anyone of
these nodes, as the sensing misbehaviour of an eventually compromised node is
detected by the other two nodes.

29

Chapter 3 : Secure Data Aggregation - Review of the State of the Art

This reputation scheme is based on Beta distribution functions ([48],[49]).
Trust informations are exchanged by each node with its neighbours in order to
create a web-of-trust that allows them to find secure and reliable paths towards
data aggregators. Furthermore, in order to improve the reliability of the aggre-
gated data, data aggregators weight the sensor readings they received according
to the corresponding trust levels.

Finally, thanks to the monitoring mechanisms, SELDA is able to detect if a
data aggregator is under DoS attack. The authors claim that SELDA involves
a tolerable communication overhead, while increasing considerably the security
in the aggregation process. An improvement of SELDA is achieved in [50] by
introducing the concept of functional reputations, which ensure a more effective
evaluation of sensor nodes trustworthiness.

3.2.6 Secure hop-by-hop aggregation of end-to-end con-

cealed data [52]

For completeness, the proposal in [52] is reviewed in this paragraph. The approach
is definitely interesting, though there seem to be some security issue, at least
unless some adjustment is applied. The idea is that of creating a protocol that
has the typical advantages of a hop-by-hop protocol, while providing end-to-end
data confidentiality. The authors aim to achieve the following results:

• Resilience - an adversary who compromises a few nodes of an aggregated
WSN must not spy-out or gain any impact on the final aggregation outcome,
at least not beyond the influence of readings and results of its (eventually)
compromised nodes.

• Efficient data integrity, commitment and attestation - the aggregation re-
sults must be verified to be the authentic union of sensor readings and
intermediate results. Such verification and attestation processes should not
impose significant overhead over the WSN (i.e., over aggregation commu-
nication overhead).

• Generality - the protocol should apply to any aggregated WSN with ar-
bitrary tree topology. Moreover, the protocol should support expandable
WSNs without any extra reconfiguration.

• Status monitoring - BS must determine when a sensor node becomes un-
reachable, by knowing and maintaining a list of all nodes that contributed
in each aggregation query.

The main ingredient of the proposed protocol is a process named data diffu-
sion. Data diffusion is a transformation that preserves the mathematical rela-
tionships between different values which are all bounded by a defined interval; it
is defined as a function of some input value (e.g. the sensor reading) and of a
secret key, shared only by the two communication end-points, namely the sensing

30

Chapter 3 : Secure Data Aggregation - Review of the State of the Art

node and the BS.
BeingD the sensing range interval, K the space of possible keys, mj

Si
the j-th read-

ing of sensor node Si and PS : D×K 7→ D a one-way-keyed function (initialised
with a secret seed m0

Si
, shared by the sensing node and the BS) that performs the

mapping Dj = PS(KSi
, Dj−1), the authors of [52] define the diffusion function

F : D ×D 7→ D as follows:

FKSi
(mj

Si
) = PS(KSi

, Dj−1)�mj
Si
.

As said in [52], “there is no strict definition of operand �; it refers to any
reversible operation that takes two inputs and produces an output that belongs
to D. Examples of � could vary between trivial operators such as the simple
addition, to more complex bijective functions”.
Through the diffusion process, a weak notion of confidentiality is achieved and,
hence, information is somehow concealed. In fact, in order to perform the inverse-
diffusion (and thus extract the actual value), the designated receiver needs to
know the seed m0

Si
of the one-way function PS and the secret shared key KSi

. Of
course the security level of this kind of this primitive is not even comparable to
the one ensured by a proper encryption protocol, but, in a low-powered WSN, it
appears to offer a good trade off between confidentiality and energy consumption.
Since mathematical relationships are preserved by the diffusion process, aggre-
gation can be performed hop-by-hop directly on the concealed data. The actual
result of the aggregation process can be successively obtained by the inverse-
diffusion at the BS.
In [52] each sensor node Si has pair of secret symmetric keys, KSi

and K ′
Si
, shared

only with the BS. Once the reading from the sensing units is terminated, the sen-
sor performs the diffusion process of the read data twice, once for each of the
secret keys; this pair of diffused values, together with a MAC, are then forwarded
to the data aggregator. The latter performs aggregation on the diffused data,
computes the overall MAC and sends the result to the BS.
The BS can then apply the inverse-diffusion process on received aggregated data
and perform the so-called IPET, i.e. Identical Pair Equality Test; the authors
claim that this test gives, with a computational cost of O(1), an immediate feed-
back about the integrity of the aggregation result. IPET is therefore used, to-
gether with MACs, to build a particularly efficient commit-and-attest algorithm
that does not require the reconstruction of the whole MAC tree (as for the Merkle
hash tree [37]).

In conclusion, the core idea of [52] is quite interesting and would allow to
build a simple and functional protocol, which would have the advantages of both
hop-by-hop and end-to-end protocols.
Unfortunately, however, the definition of the diffusion function is rather elusive.
This definition allows, for example, to chose a simple modular addition in place
of the operand �; that would enable the attacker to perform a co-ordinate attack
on the diffused pair, e.g. by adding the same offset to both of the diffused values,
thus invalidating the security of the whole protocol, whose expedients (double

31

Chapter 3 : Secure Data Aggregation - Review of the State of the Art

diffusion and IPET) would become definitely useless (both for the sake of security
and overhead).
A further investigation on diffusion functions could solve these issues, but, as
long as these points are not clarified, the implementation of this protocol remains
uncertain.

3.3 End-to-end protocols

A brief introduction to Privacy Homomorphisms

A privacy homomorphism (PH) is a cryptographic transformation which allows
direct computation on encrypted data. Let Q and R be two rings, with addition
denoted by “+” and multiplication denoted by “·” in both cases, and let K be
the space of the keys. Moreover, let E : K ×Q→ R be the encryption operation
and D : K × R→ Q the decryption operation.
A privacy homomorphism can be based on symmetric keys or on asymmetric keys
and can be additive and/or multiplicative. Given a, b ∈ Q and k, kpriv, kpubl, we
define a PH:

• additive PH with symmetric keys if
a+ b = Dk(Ek(a) + Ek(b))

• additive PH with asymmetric keys if
a+ b = Dkpriv(Ekpubl(a) + Ekpubl(b))

• multiplicative PH with symmetric keys if
a · b = Dk(Ek(a) · Ek(b))

• multiplicative PH with asymmetric keys if
a · b = Dkpriv(Ekpub(a) · Ekpub(b))

In general, symmetric key PHs (such as [55]) are computationally more efficient,
but they suffer a serious limitation: the compromise of a single sensor node (and
the consequent extraction of its keys) involves confidentiality violation of the
whole network, as a symmetric key PH, in order to perform data aggregation,
requires all the ciphertexts to be encrypted with the same shared secret key. On
the other hand, asymmetric key PHs (such as the ones proposed in [35],[56]) ad-
dress this severe security problem, but they are found to be too computationally
intensive for most of low-powered sensor nodes and, hence, they are hardly usable
on traditional WSNs.
At the present moment, known privacy homomorphisms involve a significant com-
putational overhead with respect to traditional symmetric key cryptography7;
within some context, however, they offer a good trade off between ensured confi-
dentiality and implementation complexity.

7an intense research activity is pursued by the scientific community.

32

Chapter 3 : Secure Data Aggregation - Review of the State of the Art

3.3.1 CDA, Concealed Data Aggregation [54]

CDA is one of the first proposals for an end-to-end secure data aggregation pro-
tocol. Its authors assume that only aggregator nodes can be compromised, while
sensor nodes cannot. Furthermore, in [54] no authenticity and/or integrity mech-
anism is included; the authors just suggest complementary algorithms.
The basing element of CDA is an additive and multiplicative privacy homomor-
phism proposed by Domingo-Ferrer [10]; Wagner proved in [57] that this PH is
vulnerable to chosen plaintext attacks8, but, nonetheless, the authors of CDA
believe that it ensures sufficient security for a WSN; attackers are assumed to be
interested in violating confidentiality in a reasonably small time, while currently
known attacks to the considered PH need an amount of time in the order of one
day to be accomplished.

CDA enjoys all the main advantages of end-to-end protocols (no cryptographic
operation required to the aggregator node, end-to-end confidentiality under cer-
tain conditions), but it suffers, at the same time, of the two severe limitations
of symmetric key PHs: on one side, the attacker can violate the confidentiality
of the whole network by compromising a single sensor node9; on the other side,
the power consumption of the adopted PH is considerably higher than the one of
a traditional SKC algorithm such as RC5. The authors estimate the additional
overhead entailed by CDA to be up to 22% and they claim that this additional
complexity is compensated by the power saving granted by CDA in the aggrega-
tion phase.

3.3.2 CDAP [58]

The authors of CDAP observe that the symmetric key PH used in [54] is vulner-
able to plaintext attacks and, therefore, they suggest to recur to an asymmetric
key PH, e.g. the one proposed in [56]. Such an homomorphism, however, is
computationally too intensive for an ordinary sensor node. Hence, the authors
propose the use of a group of enhanced, more powerful nodes (such as the Intel
Motes [59]), called AGGNODEs. Unlike traditional sensor nodes, these nodes are
not subject to strict computational and energetic bounds and are committed to
encryption and aggregation operations. The authors state that the proportion of
required AGGNODEs over the number of traditional sensor nodes is in the order
of 1 out of 50.

CDAP can be summarised in the following steps:

1. AGGNODEs receive the BS’s public key and the network is deployed (a
static cluster-based topology is assumed).

2. AGGNODEs establish pairwise secret keys with neighbouring sensor nodes.

8attacks where the adversary can chose a plaintext input to the encryption algorithm and
obtain the corresponding ciphertext.

9the authors of [54] assume, as stated earlier, that only aggregator nodes are tamperable,
but, unfortunately, such an hypothesis is not realistic in most cases.

33

Chapter 3 : Secure Data Aggregation - Review of the State of the Art

3. each node encrypts its sensed data using a SKC algorithm (e.g. RC5) and
sends them to the designated AGGNODE.

4. AGGNODEs decrypt received data, aggregate them and, at last, encrypt
them using the PH described in [56].

5. encrypted data are forwarded by sensor nodes and further aggregated by
AGGNODEs on the path to the BS.

Observing that in the first data gathering phase sensor nodes use a SKC al-
gorithm, it is quite obvious that compromising an AGGNODE invalidates the
confidentiality of all the sensor readings sent by the underlying nodes and allows,
anyway, fake data injection. The authors of CDAP, by the way, claim that such
an attack would have only a local effect and, thus, it is an acceptable drawback.

Figure 3.4: Example of the CDAP aggregation tree.

Referring to figure 3.4, it can be noticed that, if AGGNODE2 is compromised,
it is empowered to alter only those data received by its children. On the other
hand, if AGGNODE1 was compromised and no mechanism for protecting aggre-
gated data was embedded in the protocol, the potential damage caused by the

34

Chapter 3 : Secure Data Aggregation - Review of the State of the Art

attacker would be much wider. However CDAP, through the asymmetric key PH,
ensures that AGGNODEs cannot manipulate or violate the confidentiality of the
received aggregated data. Therefore, a compromised AGGNODE can cheat only
on single sensor readings received by its children.
By means of simulations, it is shown that, using at least 6 AGGNODEs out of
100 traditional sensor nodes, CDAP is even more efficient than a traditional hop-
by-hop secure aggregation protocol, despite the computational overhead involved
by the used PH is considerably higher with respect to the one of a traditional
SKC scheme.

3.3.3 EAED, Efficient Aggregation of Encrypted Data in

WSNs [60]

The last surveyed proposal is the one of Castelluccia et al. [60]. The protocol
is very similar to that presented in CDA, but it is based on a different PH, i.e.
an additive homomorphic stream cipher, whose security proof is provided in the
appendix of [60].

The basic idea is that of replacing the XOR operation, traditionally used by
stream ciphers, with a simple modular addition. In the following, this new PH is
defined. Let:

• M be a large integer;

• m be the message to encode, represented as an integer m ∈ [0,M − 1];

• k be a random keystream, with k ∈ [0,M − 1];

• c be the ciphertext, output of the encryption algorithm run on m;

The authors define the following operations:

1. Encryption - c = EM
k (m) = m+ k (mod M);

2. Decryption - DM
k (c) = c− k (mod M);

Given two ciphertexts c1 and c2, where c1 = EM
k1
(m1) = m1 + k1 (mod M) and

c2 = EM
k2
(m2) = m2 + k2 (mod M), It is straightforward to verify that

DM
k1+k2

(c1 + c2) = m1 +m2 (mod M).

Please note that if n different ciphertext ci are added, then M must be larger
than

∑n

i=1mi, otherwise correctness is not provided. In fact, if
∑n

i=1mi is larger
than M , decryption will result in a value m′ that is smaller than M .
From the point of view of performance, the authors of [60] claim that their proto-
col is just slightly less efficient, with respect to used bandwidth, than a traditional
symmetric key hop-by-hop protocol, though it provides a much higher level of se-
curity, being an end-to-end secure aggregation protocol. Moreover, encryption

35

Chapter 3 : Secure Data Aggregation - Review of the State of the Art

and aggregation operations require just a small amount of additions and the
encryption process expands the packet size of a few of bits.

Unfortunately, there is a non-negligible drawback in the proposed algorithm.
In fact, each aggregate message is coupled with the list of nodes that failed to
contribute to the aggregation. When the aggregation tree is large, the list of
sensor nodes become larger and results in a significant communication overhead.

3.4 Comparison of the proposals

As a conclusion to the review performed in this chapter, tables 3.1 and 3.2 sum-
marise the properties of the surveyed protocols, in terms of verified security
requirements (§2.2.1) and attack vulnerabilities (according to the classification
presented in §2.2.2).

Protocol Confidentiality Authentication Integrity Freshness Availability
SIA X X X X X
SecureDAV X X X X X
SDAP X X X X X
ESPDA X X X X X
[52] X X X X X
SELDA X X X n.d. X

CDA X X X X X
CDAP X X X X X
EAED X X X X X

Table 3.1: Security requirements ensured by the presented protocols.

Protocol DoS Node Replay Sybil Selective Stealthy
compromise attack attack forwarding attack

SIA X X X
SecDAV X X X X X
SDAP X X X X
ESPDA X X X X
SELDA X n.d. X
[52] X X X
CDA X X X
CDAP X X X X
EAED X X

Table 3.2: Attack vulnerabilities of the examined protocols.

Referring to tables 3.1 and 3.2, it is important to underline some points:

• the security level achieved by each protocol with respect to security re-
quirements is not the same for all of the proposal; in particular, end-to-end

36

Chapter 3 : Secure Data Aggregation - Review of the State of the Art

confidentiality can be assumed to be a stronger property when compared
with hop-by-hop one. In general, the ensured security requirements should
be always evaluated in the context of the considered protocol.

• end-to-end protocols ensure only end-to-end data confidentiality; the ac-
complishment of other security requirements is left to different protocols.

• none of the proposed protocols, except SELDA [46], addresses the avail-
ability requirement (and therefore protection against DoS attacks). Even
if it could appear as a serious security flaw, one should observe that, due
to transmitting power bounds of WSN nodes, an attacker can jam all the
communications within the network without big efforts. Therefore, if an
adversary aims at disrupting all network services (with an impact propor-
tional to his power, see §2.2.3) through a DoS attack, we can assume that
no security mechanism can protect the network against his threats. This is
the reason why, somehow, it is not very important to look for availability
(intended as protection against DoS attacks) in these protocols.

• all the proposed protocols are vulnerable to node compromise. This is a
direct consequence of the fact that nodes are not tamper-proof; therefore,
nothing can be done against this threat.

37

Chapter 3 : Secure Data Aggregation - Review of the State of the Art

38

Chapter 4

Authentication Techniques
applied to Data Aggregation

Authenticity is an essential requirement in communication systems pursuing secu-
rity. In the field of wireless communications, the quest for authenticity becomes
even more urgent, as the communication medium itself is intrinsically unsafe.
Furthermore, if we consider that communication systems could be deployed in
hostile environments, it is clear that authentication mechanisms cannot be given
up.

Typically, in order to provide data authenticity, a MAC, i.e. Message Authen-
tication Code is used. A MAC is nothing but an authentication tag, derived by
applying a symmetric authentication scheme provided with the data to authenti-
cate and a secret symmetric key, known only to authorized parties (namely to the
MAC generator and to its intended recipients). Additionally to the authenticity
property, MACs ensure also data integrity.

In this chapter, two of the most used and solid MAC algorithms (CBCMAC
and HMAC) are presented after a brief, focused introduction to their theoretical
foundations. Extensive references to the formal framework (definitions, algo-
rithms, etc.) provided in [1] are made.
Afterwards, the relationship between data aggregation and authentication is in-
vestigated, and the difficulties arising when providing authenticity to a data ag-
gregation protocol are shown and, finally, a protocol addressing end-to-end au-
thenticity in data aggregation is proposed. The considered protocol, ESAWN
[51], is thoroughly described, some enhancements are introduced and a set of
metrics for its evaluation is proposed.

4.1 Message Authentication Codes (MACs)

As stated in [1], “MAC algorithms may be viewed as (cryptographic) hash func-
tions which take two functionally different distinct inputs, a message and a secret
key, and produce a fixed size (say n-bit) output, with the design intent that it is
infeasible in practice to produce the same output without knowledge of the key”.

39

Chapter 4 : Authentication Techniques applied to Data Aggregation

In first place, it is therefore convenient to provide a formal definition of what a
cryptographic hash function is, in order to successively define a MAC algorithm.

Definition 2 (Cryptographic hash function [1]).

A cryptographic hash function is a function h which has the following prop-
erties:

1. compression - h maps an input x of arbitrary finite bit-length, to an output
h(x) of fixed bit-length n.

2. ease of computation - given h and an input x, h(x) is easy to compute.

Furthermore, one or more of the properties listed below may be required:

3. preimage resistance - for essentially all pre-specified outputs, it is compu-
tationally infeasible1 to find any input which hashes to that output, i.e. to
find any preimage x′ such that h(x′) = y, when given any y for which a
corresponding input is not known.

4. second preimage resistance - it is computationally infeasible to find any
second input which has the same output as any specified input, i.e., given
x, to find a second preimage x′ 6= x such that h(x′) = h(x).

5. collision resistance - it is computationally infeasible to find any two distinct
inputs x and x′ which hash to the same output, i.e. such that h(x) = h(x′).

Definition 3 (MAC Algorithm [1]).

A message authentication code (MAC) algorithm is a family of functions hk

parametrised by a secret key k, with the following properties:

1. ease of computation - for a known function hk, given a value k and an input
x, hk(x) is easy to compute. The result is called MAC.

2. compression - hk maps an input x of arbitrary finite bit-length to an output
hk(x) of fixed bit-length n.

Furthermore, given a description of the function family h, for every fixed and
allowable value of k (unknown to the adversary), the following property holds:

3. computation resistance - given zero or more text-MAC pairs (xi, hk(xi), it
is computationally infeasible to compute any text-MAC pair (x, hk(x)) for
any new input x 6= xi (including possibly for hk(x) = hk(xi) for some i) for
a party who does not know the secret key.

1what computationally infeasible means depends on the context of reference; in general,
this definition entails the actual impossibility in performing a certain computation, even if,
theoretically, it is feasible.

40

Chapter 4 : Authentication Techniques applied to Data Aggregation

4.1.1 MAC Forgery

Whether a MAC algorithm is not compliant with property 3 (computation re-
sistance), it is subject to MAC forgery and, being “forgeable”, the security of
the algorithm has been violated. As it can be easily understood, an adversary
who wants to attack a MAC algorithm, aims to compute a new text-MAC pair
(x, hk(x)) for some x 6= xi, given one or more legitimate pairs (xi, hk(xi) but, of
course, without knowing the secret key.

Possible attacks on a MAC algorithm

We distinguish three possible types of attacks against MAC algorithms, for ad-
versaries with increasing advantages:

1. known-text attack - one or more text-MAC pairs (xi, hk(xi)) are available
to the attacker.

2. chosen-text attack - one or more text-MAC pairs (xi, hk(xi)) are available
to the attacker, with the xi chosen by the attacker.

3. adaptive chosen-text attack - the attacker can adaptively choose the inputs
to the MAC algorithm, thus adjusting his strategy on-the-fly.

Types of MAC forgery

Two different types of MAC forgery can be distinguished, namely:

1. selective forgery - the adversary can choose an input to the MAC algorithm
and obtain a correct text-MAC pair.

2. existential forgery - the adversary can produce a legitimate text-MAC pair,
but is not allowed to choose the text.

Obviously, selective forgery is the most serious threaten to the security of the
system, but also existential forgery can have a devastating impact. For example,
let’s think of a system for bank transactions: if an attacker is able to forge
(existentially) consistent text-MAC pairs, he can replace the correct amount of
money with a random one.

A limitation of MAC algorithms

As stated in [38], “the successful verification of a MAC does not completely guar-
antee that the accompanying message is authentic: there is chance that a source
with no knowledge of the key can present a purported MAC on the plaintext
message that will pass the verification procedure”. Trivially, this type of attack
can be achieved through a traditional brute-force approach and a forged t-bit
MAC can be successfully verified with an expected probability equal to (1/2)t,
independently on the underlying MAC algorithm.

41

Chapter 4 : Authentication Techniques applied to Data Aggregation

Of course, whether non-authentic messages can be repeatedly presented to
the verifying authority, this limitation becomes even more consistent, since the
success probability increases at each successive trial.

Also, if the MAC is truncated (i.e. the length of the used MAC is smaller
than the output of the MAC function) the success probability improves. Hence,
the authors of [38] suggest that if the MAC is truncated, then its length t should
be chosen as large as possible and, anyways, it shall be at least L/2, where L is
the bit-length of the MAC output block size.

The length of a truncated MAC, however, could be relaxed to 32 bits for
applications in which either the number of repeated trials for message authenti-
cation is limited by design or the bandwidth of the communication channel is low
enough to preclude too many trials. This could be the case of a WSN.

4.2 Block cipher-based authentication

4.2.1 Block ciphers

Note : block ciphers can actually be either symmetric-key or public key.
For the purposes of this thesis, only symmetric-key block ciphers are considered.

According to the definition provided in [1], “a block cipher is a function
which maps n-bit plaintext blocks to n-bit ciphertext blocks. The function is
parametrised by a k-bit key K, taking values from a subset K (the key-space) of
the set of all k-bit vectors Vk. It is usually assumed that the key is chosen at
random”. In [1], a formal definition is provided as well:

Definition 4 (Block Cipher).

A n-bit block cipher is a function E : Vn × K 7→ Vn, such that for each key
K ∈ K and plaintext P ∈ Vn, E(P,K) is an invertible mapping (the encryp-
tion function for K) from Vn to Vn, written EK(P). The inverse mapping is the
decryption function, denoted DK(C), where C = EK(P) denotes the ciphertext
resulting from encrypting plaintext P under K.

The fixed length parameter n is called block size and, for many block ciphers,
it is equal to 64 bits. Whether the plaintext block P or the key K have less
than n bits, padding is required. Conversely, if the plaintext message exceeds one
block in length, various modes of operation can be used in order to address this
problem. Some available block cipher modes of operation are:

• Electronic CodeBook (ECB)

• Cipher-Block Chaining (CBC)

• Cipher FeedBack (CFB)

• Output FeedBack (OFB)

42

Chapter 4 : Authentication Techniques applied to Data Aggregation

As stated earlier, these modes of operation allow block ciphers to provide
confidentiality for arbitrary length messages. In figure 4.1 schemes for different
modes of operation are shown, while a detailed overview is beyond the purpose
of this thesis (the interested reader can find in [1] an exhaustive description).

CBC Mode

Referring to [1], we define the algorithm of CBC mode of operation:

Algorithm 1 (CBC mode).

INPUT: k-bit key K; n-bit plaintext blocks x1, x2, ..., xt, n-bit initialisation
vector IV .

OUTPUT: ciphertext blocks c1, ..., ct

1. Encryption - c0 ← IV . For 1 ≤ j ≤ t, cj ← EK(cj−1 ⊕ xj).

2. Decryption - c0 ← IV . For 1 ≤ j ≤ t, xj ← cj−1 ⊕E−1
K (cj).

Properties of the CBC mode of operation

• Identical plaintexts - if the same plaintext is encrypted twice using the
same key and initialisation vector IV , the two block cipher outputs will
be identical. Therefore, changing the IV , the key or the first plaintext
block (e.g. through incrementing a counter or generating a random field) is
necessary in order to achieve the data freshness property (see §2.2.1).

• Chaining dependencies - each ciphertext block cj depends on xj as well
as on xj−1, xj−2, ..., x1; therefore, for a successful decryption process, it is
imperative that the ciphertext ordering is coherent with the one adopted
during the encryption phase.

• Error propagation - if a single bit error occurs in ciphertext block cj, the
decryption of cj and of cj−1 will be faulty (as xj depends on cj and cj−1).
Typically, the block x′

j recovered from cj is totally random, while plaintext
x′
j+1 has bit errors exactly where cj was corrupted; this means that the

adversary can alter bits in xk+1 in a predictable way, simply by changing
the corresponding bits in cj.

• Error recovery - As said in [1], “CBC mode is self-synchronizing or cipher-
text autokey, in the sense that if an error (including loss of one or more
entire blocks) occurs in block cj but not cj+1, cj+2 is correctly decrypted to
xj+2”.

4.2.2 The RC5 block cipher

A particularly efficient (and thus suitable for being used in WSNs) block cipher
is RC5, proposed by Ronald L. Rivest2 in 1997 [4]. In the following, a quite

2Rivest is one of the creators of the RSA algorithm.

43

Chapter 4 : Authentication Techniques applied to Data Aggregation

Figure 4.1: Common modes of operation for an n-bit block cipher. (figure taken
from [1])

accurate description of the algorithm is presented.

RC5 main features

The main features of RC5 are listed below:

• RC5 is a symmetric block cipher, suitable for hardware or software imple-
mentation.

• While designing RC5, the author wanted it to be fast : thus the choice to
create a word-oriented architecture. Furthermore, in order to allow easy
adaptation for processors with different word lengths, RC5 is parametrised

44

Chapter 4 : Authentication Techniques applied to Data Aggregation

in the word size w. This feature makes RC5 particularly suitable for imple-
mentation on wireless sensor nodes.

• RC5 is iterative in structure, with a variable number of rounds. The user
can explicitly manipulate the trade off between higher speed and higher
security, adjusting the number of rounds r.

• RC5 accepts variable length cryptographic keys, depending on the desired
level of security; the higher the key length b (in bytes), the higher the
achievable security.

• RC5 is easily implementable.

• RC5 uses data-dependent rotations, in which “one word is cyclically rotated
by an amount determined by the low-order bits of another intermediate
result”[4].

Being a word-oriented algorithm, implies that all basic computational op-
erations in RC5 have w-bit words as input and output. Moreover, input and
output to the RC5 block cipher are blocks of length 2w (i.e. the plaintext and
the ciphertext size is 2w).

Another adjustable RC5 parameter is the number of rounds r. As the author
says “choosing a larger number of rounds presumably provides an increased level
of security”.
RC5 uses an expanded key table, S, derived from the user’s supplied secret key
and whose size depends on r. Specifically, the size t of table S is defined as
t = 2(r+1) words; this means that choosing a higher r, though ensuring (at least
theoretically) an increased level of security, entails a higher memory utilisation
as well.

RC5 parameters

As mentioned in the previous paragraph, RC5 is adjustable according to several
parameters. For the sake of clearness, tunable RC5 parameters are:

I w - the word size, expressed in bits; allowed values of w are 16, 32 or 64
bits.

I r - the number of rounds, on which the size t of the expanded key table S
depends, as t = 2(r + 1); allowed values of r are 0, 1, 2, ...255.

I b - the number of bytes in the secret key K; allowed values of b are
0, 1, 2, ...255.

I K - the b-byte secret key, K[0], K[1], ...K[b− 1].

45

Chapter 4 : Authentication Techniques applied to Data Aggregation

RC5 primitive operators

RC5 is based only on three primitive operations (and their inverses), namely:

• �: addition modulo-2w of two words;

• ⊕: bitwise exclusive OR (XOR) of words;

• ←↩, ↪→: respectively left and right rotation of words.

x ←↩ y denotes cyclically shifting a w-bit word left by y bits, where the
rotation-count y may be reduced mod w. Rotations are performed according to
variable amounts, depending on the plaintext; the author claims that, on modern
microprocessors, a variable rotation takes a constant time, i.e., the computation
time is independent on the span of the rotation.

Please note that the author assumes a standard little-endian convention for
packing bytes into input/output blocks, i.e., the first byte occupies the low-order
bit positions and so on.

The RC5 algorithm

The RC5 algorithm consists of three components, specifically a key expansion
algorithm, an encryption algorithm and a decryption algorithm. All of these
components are described below, according to the definitions provided in [4] and
[1].

Algorithm 2 (RC5 Encryption).

INPUT :

X 2w-bit plaintext M = (A|B), where A and B are two w-bit words;

X number of rounds r;

X key K = K[0]...K[b− 1].

OUTPUT :

X 2w-bit ciphertext C.

ALGORITHM :

1. compute 2(r + 1) subkeys K0, ...,K2r+1 through the key expansion algorithm;

2. A← A�K0, B ← B �K1;

3. for i = 1 to r do
A←↩ ((A⊕B)←↩ B)�K2i;
B ←↩ ((B ⊕A)←↩ A)�K2i+1;

4. C ← (A,B).

Algorithm 3 (RC5 Decryption).

46

Chapter 4 : Authentication Techniques applied to Data Aggregation

INPUT :

X 2w-bit ciphertext C = (A|B), where A and B are two w-bit words;

X number of rounds r;

X key K = K[0]...K[b− 1].

OUTPUT :

X 2w-bit decrypted plaintext C.

ALGORITHM :

1. compute 2(r + 1) subkeys K0, ...,K2r+1 through the key expansion algorithm;

2. for i = r downto 1 do
B ←↩ ((B �K2i+1)←↩ A)�A;
A←↩ ((A�K2i)←↩ B)�B;

3. B ← B �K1, A← A�K0;

4. M ′ ← (A,B).

Algorithm 4 (RC5 Key expansion).

INPUT :

X word bit-size w;

X number of rounds r;

X key K = K[0]...K[b− 1].

OUTPUT :

X subkeys K0, ...,K2r+1, where Ki has w bits.

ALGORITHM :

1. Copy the secret key K[0, ..., b− 1] into an array L[0, ..., c− 1] of c = db/ue words, where
u = w/8 is the number of bytes per word (if necessary, apply zero-padding to K in order
to achieve a byte-count divisible by u);

for i = b− 1 downto 0 do
L[i/u]← (L[i/u] ↪→ 8) +Ki;

2. Let Pw = Odd((e − 2)2w, Qw = Odd((φ − 1)2w) be two “magic constants”3 . During
the second phase of the key expansion, the subkeys are initialised to a particular, fixed,
key independent pseudo-random bit pattern; this is done using an arithmetic progression
modulo 2w determined by Pw and Qw;

K0 = Pw;
for i = r to 2r + 1 do

Ki ← Ki−1 �Qw;

3. i← 0,j ← 0;
A← 0, B ← 0;
do 3×max{2(r + 1), c} times

Ki ← (Ki �A�B)←↩ 3, A← Ki, i← i+ 1 mod 2(r + 1);
Lj ← (Kj �A�B)←↩ (A�B), B ← Lj , j ← j + 1 mod c;

4. Output K0, ...,K2r+1.

3with e = 2.718281828459... (base of natural logarithms) and φ = 1.618033988749... (golden
ratio).

47

Chapter 4 : Authentication Techniques applied to Data Aggregation

RC5 (essential) cryptanalysis

In 1998 [5], 12-round RC5 (with 64-bit words) was found to be susceptible to
a differential attack using 244 chosen plaintexts. Adjusting the block cipher
parameters, however, solves this issue (18−20 rounds offer a sufficient protection,
at least according to the authors of [5]). Therefore, in the context of this thesis,
it is assumed that RC5 offers a suitable security level for a WSN.

4.2.3 The CBCMAC algorithm

CBCMAC is a well-known authentication algorithm that is based on block ciphers
in CBC mode of operation; it provides authenticity, founding on resilient and
performing block ciphers. The CBCMAC algorithm is described below, according
to the definition provided in [1].

Algorithm 5 (CBCMAC algorithm).

INPUT :

X data x;

X specification of block cipher E, operating on n-bit blocks;

X secret MAC key k for E.

OUTPUT :

X n-bit MAC of x.

ALGORITHM :

1. Padding and blocking

pad input x if necessary (in order to obtain a number of bits divisible by n). Split the
padded input into a number t of n-bit blocks, denoted by x1, ..., xt;

2. CBC processing

let Ek denote the encryption using E with key k. Compute the block Ht (i.e. the MAC)
as follows:

H1 ← Ek(x1)
for i = to t do

Hi ← Ek(Hi−1 ⊕ xi);

3. Optional process to increase strength of MAC

using a second key k′ 6= k, compute H ′

t ← E−1
k′ (Ht), Ht ← Ek(H

′

t)

4. Completion

output the n-bit MAC Ht

In figure 4.2, the CBCMAC algorithm is graphically shown. Please observe
that the CBCMAC algorithm described above allows the designer to choose a
generic block cipher for implementation. For example, the previously presented
RC5 block cipher is suitable to be embedded in a CBCMAC-RC5 authentication
algorithm (CBCMAC-RC5 is actually the scheme which has been implemented
in this thesis for further analysis).

48

Chapter 4 : Authentication Techniques applied to Data Aggregation

A quick insight into CBCMAC Security

Once the CBCMAC algorithm has been defined, a natural question emerges: is
the CBCMAC secure and under which hypothesis? A detailed dissertation is
beyond the purpose of this thesis, but some points have to be explored.

First of all, as proven in [62], the security of a CBCMAC depends on the one
of the underlying block cipher. This means that CBCMAC cannot be considered
alone while evaluating its security, but has to be considered together with its
embedded block cipher.

Secondly, if its input messages are not of fixed size, CBCMAC could be vulner-
able to existential forgery through adaptive chosen-plaintext attacks. Specifically,
let xi be an n-bit block and let y(n) be the n-bit representation of y. The attacker
can request the MAC t1 for a block x1, obtaining the text-MAC pair (x1, t1);
then, inputting the block x2 = t1, he obtains the MAC t2 which is also the MAC
for the two-block message x1||0n. Therefore, given two text-MAC pairs (x1, t1)
and (x2, t2), with x2 = t1, the adversary is able to forge a new pair (x3, t3), where
x3 = x1||0(n).

Figure 4.2: The CBCMAC algorithm. (figure taken from [1])

4.3 Hash function-based authentication

In the previous section, a possible way of ensuring message authentication using
block ciphers was shown. Block ciphers provide good performance and a well-
studied platform to lean on, but they are not the only, nor the best (in absolute
terms), means to ensure message authenticity.
In particular, there is a family of cryptographic primitives that suit well to the
MAC generation problem: un-keyed cryptographic hash functions. This group of

49

Chapter 4 : Authentication Techniques applied to Data Aggregation

hash functions, which includes primitives such as MD4, MD5, SHA1, RIPEMD,
can be even faster than block ciphers in software implementation and is readily
and freely available to the public.

The scientific community defined a standard [38] for creating keyed-hash mes-
sage authentication codes. This standard is described in §4.3.3, but, firstly, an
overview on un-keyed cryptographic hash functions is provided. A definition of
what a cryptographic hash function is, was already given in §4.1.
In the next paragraph two of the most used representatives of this class of func-
tions are described, namely MD5 and SHA1.

4.3.1 The MD5 message digest algorithm

MD5 is a 128-bit cryptographic hash function proposed in 1991 by Ronald Rivest
[63].
MD5 was designed for 32-bit machines as an extension of the MD4 message-
digest algorithm and, with respect to MD4, is a bit more conservative, in the
sense that it sacrifices some speed for improved security. MD5 is indeed a very
fast hashing algorithm, though it was found to be vulnerable to several attacks
(a detailed cryptanalysis is not provided in this thesis; the interested read could
refer to [64, 65, 66]), that make its use questionable for the sake of robust security.
It is interesting, however, to test its performances in a WSN, particularly in order
to compare it against different or newer solutions.

Algorithm 6 (MD5 algorithm [1] [63]).

INPUT :

X b-bit message x = x[0]....x[b − 1], where b is an arbitrary non-negative integer;

OUTPUT :

X 128-bit message-digest of x.

ALGORITHM :

1. Preprocessing

• Padding

pad input x so that its length in bits is congruent to 448 modulo 512; padding is
always performed, even if the length of the message is already congruent to 448
modulo 512.
Padding is performed according to the following procedure: firstly, a single bit “1′′

is appended to the message and, then, r − 1 “0′′ bits are appended so that the
bit-length of the padded message is equal to 448 modulo 512. Therefore, at least
1 bit and at most 512 bits are appended.

• Append length

A 64-bit representation of b (the length of the message before padding) modulo
264 is appended to the padded bit-string.

The result is a bit-string with a length that is an exact multiple of 512 bits, i.e. 16 32-
bit words. Summarising, let m be the number of 512-bit blocks in the resulting string,
being b+ r+ 64 = 512m = 32 · 16m. The formatted input consists of 16m 32-bit words:
x0, x1, ..., x16m−1.

50

Chapter 4 : Authentication Techniques applied to Data Aggregation

• Initialise MD buffer

A four-word buffer (A,B,C,D) is used to compute the message digest. A,B,C,D
are 32-bit registers, initialised with the following hexadecimal values:

(a) A = 0x01234567;

(b) B = 0x89ABCDEF;

(c) C = 0xFEDCAB98;

(d) D = 0x76543210.

2. Processing

• Preliminary definitions

Firstly, define four auxiliary functions, each taking three 32-bit words as input and
producing a 32-bit word as output:

– f(x, y, z) = xy ∨ xz

– g(x, y, z) = xz ∨ yz

– h(x, y, x) = x⊕ y ⊕ z

– i(x, y, z) = y ⊕ (x ∨ z)

where uv denotes the bitwise AND between u and v, ∨ denotes the bitwise inclusive
OR, ⊕ the bitwise exclusive OR and u denotes the bitwise complement of u.

Secondly, define 64 different 32-bit constants y[i] = first 32 bis of binary value
abs(sin(i + 1)), 0 ≤ i ≤ 63, where j is in radians and abs denotes the absolute
value.

Thirdly, define the order for accessing source words:

(a) z[0, ..., 15] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15],

(b) z[16, ..., 31] = [1, 6, 11, 0, 5, 10, 15, 4, 9, 14, 3, 8, 13, 2, 7, 12],

(c) z[32, ..., 47] = [5, 8, 11, 14, 1, 4, 7, 10, 13, 0, 3, 6, 9, 12, 15, 2],

(d) z[48, ..., 63] = [0, 7, 14, 5, 12, 3, 10, 1, 8, 15, 6, 13, 4, 11, 2, 9].

Finally, define the number of bit positions for left shifts:

(a) s[0, ..., 15] = [7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22],

(b) s[16, ..., 31] = [5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20],

(c) s[32, ..., 47] = [4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23],

(d) s[48, ..., 63] = [6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21].

• Processing

for i = 0 to m− 1 {
for j = 0 to 15 {

X [j]← x16i+j ;
}
(AA,BB,CC,DD)← (A,B,C,D);
Round 1

for j = 0 to 15
t← (A+ f(B,C,D) +X [z[j]] + y[j]);
(A,B,C,D)← (D,B + (t←↩ s[j], B, C);

Round 2

for j = 16 to 31 {
t← (A+ g(B,C,D) +X [z[j]] + y[j]);
(A,B,C,D)← (D,B + (t←↩ s[j], B, C);

}
Round 3

51

Chapter 4 : Authentication Techniques applied to Data Aggregation

for j = 32 to 47 {
t← (A+ h(B,C,D) +X [z[j]] + y[j]);
(A,B,C,D)← (D,B + (t←↩ s[j], B, C);

}
Round 4

for j = 48 to 63 {
t← (A+ i(B,C,D) +X [z[j]] + y[j]);
(A,B,C,D)← (D,B + (t←↩ s[j], B, C);

}
Update chaining values

(A,B,C,D)← (A+AA,B +BB,C + CC,D +DD). }

3. Completion

The final hash value is the concatenation: A||B||C||D.

4.3.2 SHA1 - Secure Hash Algorithm 1

SHA hash functions are cryptographic hash functions designed by the U.S. Na-
tional Security Agency (NSA) and published by the National Institute of Stan-
dards and Technology(NIST). SHA1 (Secure Hash Algorithm 1) was introduced
in 2001 [67] and is the most widely used member of the SHA family.

SHA1 has a structure very similar to that of the MD family and is actu-
ally modelled on the MD4 message-digest algorithm. Concerning security issues,
SHA1 was found to be subject to some collision attacks (i.e., attacks violating
the collision resistance property of the cryptographic hash function), but these
attacks require a huge amount of computations and are thus considered nearly
infeasible nowadays4.
Therefore in a WSN, with the currently available attacks on the algorithm, SHA1
can provide sufficient security, since we can reasonably assume that the attacker
is interested in violating security systems within a small amount of time5 and,
most likely, he cannot dispose of outstanding computational power, as he would
like to compromise the system from the inside (e.g., by compromising a node and
using its resources).
Anyways, in the near future, it would be wise to introduce a new hashing primitive
to overcome the weaknesses of the SHA family.

Algorithm 7 (SHA1 algorithm [1, 67]).

INPUT :

X b-bit message x = x[0]....x[b − 1], where b is an arbitrary non-negative integer;

OUTPUT :

X 160-bit message-digest of x.

4for certain applications, a stronger hash function would be desirable; hence, other functions
such as SHA2 [68] were designed.

5data transmitted by sensor nodes typically consists of locally and instantly sensed values
(e.g., temperatures) that are meaningful only for a limited period of time.

52

Chapter 4 : Authentication Techniques applied to Data Aggregation

ALGORITHM :

1. Preprocessing

• Padding

(identical to MD5 padding) pad input x so that its length in bits is congruent to
448 modulo 512; padding is always performed, even if the length of the message is
already congruent to 448 modulo 512.
Padding is performed according to the following procedure: firstly, a single bit “1′′

is appended to the message and, then, r − 1 “0′′ bits are appended so that the
bit-length of the padded message is equal to 448 modulo 512. Therefore, at least
1 bit and at most 512 bits are appended.

• Append length

Append the two 32-bit words specifying the bit-length b, with the most significant
word preceding the least significant one.

As in MD5, the result is a bit-string with a length that is an exact multiple of 512 bits,
i.e. 16 32-bit words. Summarising, let m be the number of 512-bit blocks in the resulting
string, being b+ r + 64 = 512m = 32 · 16m. The formatted input consists of 16m 32-bit
words: x0, x1, ..., x16m−1.

• Initialise SHA1 buffer

Similarly to MD5, SHA1 uses a five-word buffer (h0, h1, h2, h3, h4) to compute the
message digest. (h0, h1, h2, h3, h4) are 32-bit registers, initialised with the following
hexadecimal values:

(a) h0 = 0x67452301;

(b) h1 = 0xEFCDAB89;

(c) h2 = 0x98BADCFE;

(d) h3 = 0x10325476;

(e) h4 = 0xC3D2E1F0;

2. Processing

• Preliminary definitions

SHA1 uses three auxiliary functions, each taking three 32-bit words as input and
producing a 32-bit word as output:

– f(x, y, z) = xy ∨ xz

– g(x, y, z) = xz ∨ yz

– h(x, y, x) = x⊕ y ⊕ z

where uv denotes the bitwise AND between u and v, ∨ denotes the bitwise inclusive
OR, ⊕ the bitwise exclusive OR and u denotes the bitwise complement of u.

Furthermore, in the SHA1 algorithm 4 per-round additive constants are defined,
namely:

(a) y1 = 0x5A827999;

(b) y2 = 0x6ED9EBA1;

(c) y3 = 0x8F1BBCDC;

(d) y4 = 0xCA62C1D6;

Conversely to MD5, no order for accessing bit positions, nor definition of bit posi-
tions for left shifts are defined.

• Processing

53

Chapter 4 : Authentication Techniques applied to Data Aggregation

for i = 0 to m− 1 {
for j = 0 to 15 {

X [j]← x16i+j ;
}
for j = 16 to 79 {

Xj ← ((Xj−3 ⊕Xj−8 ⊕Xj−14 ⊕Xj−16)←↩ 1)
}
(A,B,C,D,E)← (h0, h1, h2, h3, h4);
Round 1

for j = 0 to 19 {
t← ((A←↩ 5) + f(B,C,D) + E +Xj + y1);
(A,B,C,D,E)← (t, A,B ←↩ 30, C,D);

}
Round 2

for j = 20 to 39 {
t← ((A←↩ 5) + h(B,C,D) + E +Xj + y2);
(A,B,C,D,E)← (t, A,B ←↩ 30, C,D);

}
Round 3

for j = 40 to 59 {
t← ((A←↩ 5) + g(B,C,D) + E +Xj + y2);
(A,B,C,D,E)← (t, A,B ←↩ 30, C,D);

}
Round 4

for j = 60 to 79 {
t← ((A←↩ 5) + h(B,C,D) + E +Xj + y4);
(A,B,C,D,E)← (t, A,B ←↩ 30, C,D);

}
Update chaining values

(h0, h1, h2, h3, h4)← (h0 +A, h1 +B, h2 + C, h3 +D,h4 + E).
}

3. Completion

The final hash value is the concatenation: h0||h1||h2||h3||h4.

4.3.3 The keyed-hash message authentication code (HMAC)

As widely anticipated in §4.3, the standard for implementing hash-based authenti-
cation is the HMAC. This standard is described in the FIPS (Federal Information
Processing Standards) publication 198 [69].

HMAC shall be used in combination with an approved cryptographic hash
function and needs a secret key for the calculation and the verification of the
MACs. While designing it, the authors planned to achieve the following goals:

• Black-box approach: use available hash functions without modifications;
enable easy replacement of the underlying hash function.

• Preserved performance: HMAC should essentially have the same perfor-
mance of the underlying hash function; additional complexity should be
nearly negligible.

• Simple key management : keys should be used and handled in a simple way.

54

Chapter 4 : Authentication Techniques applied to Data Aggregation

• Provable security : it should be easy to prove the algorithm security, assum-
ing the security of the underlying hash function.

The HMAC algorithm

Algorithm 8 (HMAC algorithm).

PRELIMINARY DEFINITIONS :

• B: block size (in bytes) of the input to the approved hash function.

• H : an approved hash function.

• L: block size (in bytes) of the output of the approved hash function.

• ipad: inner pad = 0x36 repeated B times.

• opad: outer pad = 0x5C repeated B times.

• t: number of bytes of the MAC.

• K: secret key shared between the originator of the message and the intended receiver(s).

INPUT :

X text: n-byte message, where 0 ≤ n < 2B − 8B;

X K: secret key shared between the originator of the message and the intended receiver(s).

OUTPUT :

X t-bytes message-digest of x.

ALGORITHM :

1. Key derivation

(a) if length(K) = B: K0 ← K;

(b) if length(K) > B: hash K to obtain a L-byte string, then append B − L zeros in
order to create a B-byte string: K0 ← H(K)||00...0;

(c) if K < B: append zeros at the end of K in order to create a B-byte string;

2. Inner processing

(a) XOR K0 with ipad to produce a B-byte string: Kin ← K0 ⊕ ipad;

(b) Append text to Kin: datain ← Kin||text;
(c) Apply H to datain: hashin ← H(datain) = H(K0,ipad||text);

3. Outer processing

(a) XOR K0 with opad: Kout ← K0 ⊕ opad;

(b) ConcatenateKout with hashin: dataout ← Kout||hashin = K0⊕opad||H(K0,ipad||text);
(c) Apply H to dataout: hashout ← H(dataout) = H(K0 ⊕ opad||H(K0,ipad||text));

4. Completion

Select the leftmost t bytes of hashout as the MAC.

Summarising, the final result of the HMAC algorithm can be expressed as:

MAC(text)t = HMAC(K, text)t = H((K0 ⊕ opad)||H((K0 ⊕ ipad)||text))t.

55

Chapter 4 : Authentication Techniques applied to Data Aggregation

On HMAC cryptographic keys. The size of the secret key K should be
equal to or greater than L/2. In [69], the authors advise that:

• keys greater than L bytes do not increase significantly HMAC security.

• keys longer than B-bytes should first hash the key using H and then use
the resulting L-bytes string as the HMAC key.

• keys should be chosen at random using an approved key generation method
and shall be changed periodically.

HMAC Security. The security of the described authentication scheme is lower-
bounded by the one of the underlying hash function (a theoretical proof is given
in [38]), but the actual security is higher than the one of the hash function,
especially thanks to the use of the random cryptographic key.

As stated in [70], “the strongest attack known against HMAC is based on the
frequency of collisions for the hash function H (i.e. a birthday attack [1]) and is
totally impractical for minimally reasonable hash functions”.

Suffice it to say that HMAC-MD5 and HMAC-SHA1 (at least at presently(
do not suffer from those attacks the respective cryptographic hash functions are
vulnerable. This is due to the way these hash functions are used in the construc-
tion of HMAC. This means that, as long as a specific attack against HMAC-MD5
or HMAC-SHA1 is not discovered, both of them can ensure authenticity; the use
of HMAC-SHA1 would be, however, recommendable, as the MD5 security flaws
are by far more exploitable.

4.4 The quest for the aggregated MAC

By definition, the message authentication codes described above require the orig-
inal data on which the MAC was computed in order to be verified. If we want to
ensure end-to-end data authenticity in a data aggregation protocol, this becomes
a major issue.

First of all, why would we want to achieve end-to-end and not just hop-by-
hop authenticity in a data aggregation protocol? The answer is straightforward:
because no assumptions can be made on the trustworthiness of sensor nodes
and, in particular, of aggregator nodes. Under these conditions, hop-by-hop
authentication does not ensure that aggregators perform aggregation only using
authentic submitted data; for example, a compromised aggregator node6 could
receive authentic data, forge a fake aggregate, authenticate it with its legitimate
key (shared with the upper level aggregator) and forward the result to its next
hop, with the forgery being unnoticed (as the message that it has generated is

6a compromised node, as explained in §2.2.2, has access to all keying material of the cor-
rupted sensor.

56

Chapter 4 : Authentication Techniques applied to Data Aggregation

indeed authentic from a hop-by-hop point of view). Therefore, in order to provide
effective authentication of aggregated data, we need to keep track, somehow, of
all the authenticity information of the data involved in the aggregation process.
Thus, to some extent, we need to ensure end-to-end authenticity, as, ideally, the
BS needs to verify the authenticity of all the sensor readings which took part in
the aggregation process.

Clearly, this requirement is in sharp contrast with the base principle of data
aggregation. In fact, while in-network aggregation aims at reducing the amount
of data transmitted to the next hop of the aggregation tree, end-to-end authen-
ticity verification requires the whole non-aggregated data to be available at the
designated verifying end-point (e.g., the BS).

Providing stringent end-to-end authenticity while performing in-network ag-
gregation is therefore a challenging task and, to the best of the author’s knowl-
edge, no effective solution has been found yet. In addition [73] shows that even a
straightforward and intuitive refinement of the MAC security model (in the data
aggregation setting) is not achievable.

Given the present impossibility of ensuring end-to-end authentication within
a data aggregation protocol, an effective relaxation of the authenticity notion
should be found. Several approaches can be pursued while looking for the best
trade off between efficiency and security guarantees.
In the next section, a possible solution, the ESAWN protocol [51], is thoroughly
described and analysed.
Before describing this proposal, however, two more considerations on the problem
of aggregated MAC are provided.

On signing schemes

A partial solution to the authentication problem could be the use of a signing
scheme like ECDSA [42] (used for example in [39]). This approach, though, is no
longer based on traditional MACs, but on public key cryptography.

The basing principle of a signing scheme is that all the sensor nodes partici-
pating in the aggregation process, should sign with their own keys the aggregate
produced by the aggregator node. The partial signatures produced by sensor
nodes are then merged into a single signature, that is sent to the BS. The BS,
which knows the corresponding public key, can finally check the authenticity.
Note that, since the attacker does not know all the keys used by sensor nodes
to sign the aggregate, he cannot generate the whole signature for the aggregated
data by himself. However, there are at least two reasons why a signing scheme is
not optimal for the purposes of this thesis.
Firstly, it suits to networks where only one aggregation cycle is performed be-
fore sending the result to the BS. If consecutive aggregations must take place on
the path to the BS, the signing scheme does not provide end-to-end authenticity
anymore.
Secondly, it is based on public key cryptography and, hence, energy consumption
is not comparable to that required by traditional MACs.

57

Chapter 4 : Authentication Techniques applied to Data Aggregation

In conclusion, in the context of this thesis, signing schemes are not considered
to be a suitable solution for the considered problem.

On aggregating MACs

A widely used expedient to approach authentication in a data aggregation proto-
col is that of aggregating MACs. A possible technique is suggested in [72], where
the authors prove that MACs can be aggregated by means of bitwise XORing
operations and that the result still enables authenticity verification. Specifically,
given n MACs, MAC1, ...,MACn, the aggregated MAC can be computed as

MACagg = MAC1 ⊕MAC2 ⊕ ...⊕MACn.

It is proven that an adversary, in order to forge MACagg, should be able to forge
at least one MACi (which is assumed to be unfeasible).
Unfortunately, while achieving the compression of multiple MAC tags into a single
one, the aggregated MAC, MACaggr , still needs all the original data on which all
MACs where computed in order to be verified.

4.5 ESAWN - Relaxed authenticity for data ag-

gregation in WSNs

The ESAWN protocol [51] addresses the problem described in the previous sec-
tion, proposing a probabilistic relaxation of the authenticity requirement in the
presence of a fraction of compromised nodes; its objective is to provide an ad-
justable trade off between probabilistic authenticity and data aggregation.
Specifically, the authors of [51] observe that, in the presence of compromised
nodes, an honest node cannot verify the authenticity of a received aggregate
without additional data from nodes contributing to this aggregate. Yet, send-
ing additional data to the verifying node is in contrast with the idea of data
aggregation.

The basic idea of ESAWN is to use a configurable number of redundant aggre-
gation paths along the aggregation tree towards the BS. The aggregated values
travel along the redundant paths and are compared by different nodes. The
comparison can be used to detect and (under certain conditions) correct false
aggregation values.
An efficient parametrised protocol is proposed; ESAWN performances can be
tuned according to the following parameters:

• β, the percentage of compromised nodes;

• P, the percentage of authentic aggregates finally received at the BS.

According to the framework proposed in [76], ESAWN, with slight modifica-
tions, can provide one or more of the following properties:

58

Chapter 4 : Authentication Techniques applied to Data Aggregation

X Completeness : honest nodes detect forged aggregates.

X Soundness : by means of a majority vote, forged aggregates are discarded
and correct aggregates are accepted.

X Non-repudiation: previously sent messages cannot be repudiated, thus al-
lowing malicious aggregators identification.

In this thesis, however, only the first two properties are considered, as ensur-
ing the third one is believed to introduce an excessive communication overhead.
Moreover, the original ESAWN protocol is based on authenticated encryption [77];
here, only traditional authentication primitives, such as CBCMAC and HMAC,
are considered, as confidentiality is not the main interest of the present work.
The choice of using plain authentication leads to a protocol optimisation, which
will be described in §4.5.2.

ESAWN supports arbitrary aggregation functions, scales well with increasing
network complexity and is based on efficient symmetric key cryptographic prim-
itives.
In order to provide an in-depth analysis of the protocol, preliminary definitions
and model assumptions are provided in the following paragraphs.

4.5.1 Definitions and model assumptions

Aggregation tree and network topology

The sensor network is modelled as an aggregation tree, i.e. a connected graph
G(V,E), where V is the set of vertices and E the set of directed edges; |V | = n
and it is assumed that there are no cycles in the tree. Edges represent aggregation
relationships, which are denoted by “→” and satisfy the following properties:

1. there exists a unique node r ∈ V that has only incoming edges; this node
is called root node.

2. every node v ∈ V \{r} has exactly one outgoing edge, v → v′. The node v′

is called the parent of v and v is called source of v′.

Furthermore, the following definitions are given:

- a path in T is a sequence of nodes P = {v1, v2, ..., vl} such that ∀i ∈ {1, ..., l−
1} : vi → vi+1.

- for a path P = {v1, v2, ..., vl}, node vi+1 is called the 1-ancestor of vi; the
k-ancestor of a node vi is defined recursively as the (k-1)-ancestor of the
1-ancestor of vi.

- the i-descendant of vi is the node for which vi is the i-ancestor.

- FV is the aggregation function.

59

Chapter 4 : Authentication Techniques applied to Data Aggregation

- AV is the set of aggregation nodes.

- δv denotes the number of source nodes for every aggregation node v ∈ AV .

- δ = meanv∈AV
(δv).

According to the definitions provided above, the total number of nodes is
approximately

n =
h∑

i=0

δi =
δh+1 − 1

δ − 1
(4.1)

and therefore the tree depth can be expressed as

h = logδ(1 + (δ − 1)n)− 1. (4.2)

Finally, the following assumptions are made:

- all communications in the network are performed by means of multi-hop
transmissions.

- in-network aggregation is accomplished according to the periodic per-hop
aggregation paradigm described in 2.1.1; therefore aggregation is performed
periodically as soon as the aggregator hears from all of its sources.

- pair-wise keys are deployed a-priori, among those nodes that need to com-
municate with each other, through the use of a suitable secure key distri-
bution algorithm [74, 75].

- nodes that take part in the same verification process has to be synchronised;
synchronisation can be implemented providing a pseudo-random number
generator (PRNG) with a shared seed or an internal state. This issue will
be analysed in detail later on.

- any node v can take measurements, perform aggregation, or both at the
same time.

Attacker model and security parameters

The authors of [51] assume a uniformly distributed, static attacker. Thereby, the
attacker is assumed to be capable of compromising a certain fraction β of nodes in
advance, but he cannot modify his choice dynamically (i.e. adaptive attacks are
not allowed7). Furthermore, compromised nodes are chosen uniformly at random
among the set of all sensor nodes.

The choice of β determines the security parameter (t, k), which should be in-
terpreted as follows: ESAWN is able to detect aggregation misbehaviour when at

7the authors of ESAWN claim that it is not possible, under the specified conditions (arbitrary
aggregation functions, end-to-end authenticity requirement, etc.), to provide full protection
against an adaptive attacker.

60

Chapter 4 : Authentication Techniques applied to Data Aggregation

Figure 4.3: ESAWN nomenclature for t = 3.

most k nodes out of t consecutive nodes on any path in the aggregation tree are
compromised. The actual meaning of this security parameter will be clarified as
soon as the protocol is thoroughly described; intuitively, however, t is the redun-
dancy introduced by ESAWN in the aggregation process (e.g. t = 2 means that
aggregation is performed twice at two different aggregators), while k indicates
the resiliency of the scheme with respect to node compromise (e.g. k = 1 means
that at most 1 node out of t can be compromised, in order to allow ESAWN to
detect forgeries).

A further assumption of ESAWN is that the adversary does not perform any
kind of Denial of Service attack, such as selective forwarding. This is a reasonable
assumption, as the adversary presumably aims to remain unnoticed while trying
to inject false data in order to alter the final aggregation result. A deeper analysis
of this topic, however, has not been accomplished yet.

The BS, of course, is assumed to be honest, as authentic aggregation would
be impossible otherwise.

4.5.2 ESAWN Protocol

Overview

As widely anticipated, the basic idea of ESAWN is that of propagating aggregates
(and the original data on which they were computed) on redundant paths, thus
allowing other nodes to check if the aggregation result is authentic in a strict
sense (i.e., if it was computed using all the submitted authentic data).

The protocol is founded on two fundamental concepts: witness and decider
nodes. A witness node of v is one of v’s j-descendants, where 0 ≤ j ≤ t. On the
other hand, a decider node of v is the t-ancestor of v. It should be noticed that
the t-witness of v is the decider node of v as well. A clarifying representation can
be found in figure 4.3.

Intuitively, v’s witnesses verify that v performed the aggregation in a legit-
imate way. Then, the decider node of v uses the information provided by its
witnesses to determine the correct aggregate (performing a majority vote) or to

61

Chapter 4 : Authentication Techniques applied to Data Aggregation

detect a forgery attempt. Whether the decider is able just to detect forgery or
to correct the altered aggregate depends on the security parameter (t, k). In the
first case only the completeness property is ensured, whereas in the second on also
soundness is provided. Of course, if correction is required, a higher redundancy
(and hence a higher energy consumption) is needed. How these considerations
translate in terms of the security parameter (t, k) will be clarified in the following
sections.

ESAWN step-by-step description

The ESAWN protocol, as presented in [51, 76], follows the rules listed below:

1. a measuring node v regularly measures its environment and sends the mea-
surements to its t witnesses and to its decider.

2. an aggregating node v waits for sensor readings from all of its sources,
applies the aggregation function Fv to the received values and sends the
resulting aggregate to v’s decider.

3. a witness of a node v waits for values from all the sources of v, computes the
aggregation function Fv on those values and sends the resulting aggregate
to the decider of v.

4. the decider v′ of a node v waits for messages from all the witnesses of v.
If only completeness is required, the protocol raises an alarm whether two
different aggregates are reported, otherwise no action is taken (the aggregate
is assumed to be authentic, w.r.t. the relaxed authenticity notion). If
soundness is required, a majority vote is performed and the aggregate with
most instances is chosen as the correct one.

5. witnesses calculations and the majority vote at the decider node are per-
formed synchronously with probability p (the synchronisation mechanisms
is described later on).

In the following, ESAWN pseudocode is reported:

Algorithm 9 (ESAWN Protocol).

Code for aggregating node v
// v as decider of v′

for all t-descendants v′ of v {
wait for data from v′ and all j-witnesses of v′, 0 < j < t;
if (SOUNDNESS is required)

perform majority vote;
if (mismatch is detected)

if (only COMPLETENESS is required)
stop protocol;

}
// v as j-witness of v′, 0 < j < t

62

Chapter 4 : Authentication Techniques applied to Data Aggregation

for all j from t− 1 downto 1 do {
for all j-descendants v′ of v {

wait for data from all sources of v′;
compute the result r of the aggregation function Fv with received data;
send r to decider of v′;

}
} // v as aggregator
wait for data from all sources of v;
compute the aggregation function Fv with the received data;
send result to decider of v

Code for measuring node v
// v as leaf node
wait for next timing period to begin;
measure value;
send value to all j-witnesses of v, 0 < j < t, and to the decider of v.

On the use of plain authentication in place of authenticated encryption

The ESAWN protocol proposed in [51] was slightly modified for the purposes of
this thesis. Specifically, while the original ESAWN instance is based on authen-
ticated encryption [77], the one considered here is based on plain authentication
(i.e. on traditional MACs such as CBCMAC and HMAC). Confidentiality, in
fact, is not regarded as a primary goal.

This leads to an important protocol optimisation, which enables a potentially
considerable performance improvement8. In fact, since the payload sent by each
node is not encrypted, each node can send it only once (instead of t times, as
required by the original ESAWN instance) in a single message together with t
MACs. Furthermore, sending one message per node instead of t, decreases the
overhead due to message headers, which for a WSN are typically of 10 bytes
[78] per message. Thus, the overall network energy consumption can be notably
reduced.

On the choice of the security parameter

The security parameter (t, k) should be chosen carefully by the user, according
to the level of security that is required to the authentication scheme. There are
mainly two elements that jointly influence the choice of (t, k), namely:

• the fraction of compromised nodes β, which binds the choice of k;

• the required security properties, i.e. completeness and/or soundness, which
bind the choice of t.

If the user wants to provide protection against a fraction β of compromised
nodes, he should set k = β · t. With such a choice, the protocol can ensure
authenticity in the presence of a fraction β of compromised nodes on any path of

8the (eventual) performance improvement depends on the performances of the authentication
scheme chosen in place of the authenticated encryption primitive.

63

Chapter 4 : Authentication Techniques applied to Data Aggregation

t consecutive nodes in the aggregation tree. If the adversary compromises more
than k nodes, instead, authenticity cannot be guaranteed any more.

On the other hand, the value of tmust be chosen as the minimum value needed
to assert the security requirements. If only completeness has to be provided, t ≥
k+1 has to be chosen, so that at least one honest node out of t consecutive nodes
on any path to the root is trustworthy and can detect eventual forgeries. Instead,
in order to achieve soundness together with completeness, it takes t ≥ 2k + 1, so
that the majority of nodes in any path of t consecutive nodes is honest and, thus,
the voting scheme can extract the correct value.

Summarising, choosing the lower bound in the aforementioned inequalities
and combining them, the following reference values are obtained:

• if completeness is required

⇒ t = k + 1, k = d β

1− β
e. (4.3)

• if completeness and soundness are required

⇒ t = 2k + 1, k = d β

1− 2β
e. (4.4)

Therefore, requiring soundness in addition to completeness involves a much
higher redundancy to be introduced in the network. At the same time, though,
soundness allows the protocol to work properly even in the presence of compro-
mised nodes, while, if only completeness is ensured, ESAWN just detects forgeries
and is successively forced to stop the current aggregation process.

Probabilistic relaxation

Since the redundancy introduced by ESAWN can significantly increase the net-
work communications required with respect to a non-authentic aggregation pro-
tocol (which is indeed a lower bound for an authentic one, at least in terms of
communication overhead), the authors of [51] propose a probabilistic relaxation
of the authenticity notion. Specifically, verifications are triggered only with a
certain probability p, 0 < p ≤ 1. Therefore p is a further parameter by which the
ESAWN protocol can be adjusted.

Synchronisation among sensor nodes. Nodes taking part into the verifica-
tion process need to be time-synchronised, so that they can activate the verifica-
tion protocol simultaneously. In ESAWN, synchronisation is achieved by means
of a pseudo-random number generator (PRNG), fed with a seed or internal state
shared by all the sensor nodes that take part in the verification.

The random verification, referred to an aggregation node v, is performed
according to the following steps:

64

Chapter 4 : Authentication Techniques applied to Data Aggregation

1. all sources of v, the k-ancestors of v and v itself pick the same pseudo-
random number r, 0 < r ≤ 1, using a PRNG initialised with a shared
seed.

2. if r ≤ p, the ESAWN verification described in algorithm 9 (§4.5.2) is exe-
cuted, otherwise v just forwards its aggregate to its 1-ancestor in G.

3. all children, the k-ancestors and v itself update their PRNG’s internal state.

As at most k nodes in a row are compromised, the attacker possibly knows
the PRNG seed and can then forecast when the verification process is performed.
The authors of ESAWN claim that this is not a security problem, since “[...]
although the attacker will know when successful forgery is possible , he cannot
control p or whether an actual aggregation from v is verified. The attacker can
still successfully forge aggregates with probability (1 − p)”. This argument can
be argued, as the possibility for a node v to predict verifications within a range
of t nodes could be a serious security flaw. Therefore, we believe that other
synchronisation techniques should be investigated9.

Defining P. Given p, i.e. the probability of triggering the verification process,
it is desirable to estimate the overall probability of having authentic aggregates
at the root node; this probability is denoted by P.
First of all, the probability that an aggregate is authentic can be expressed as the
sum of the probability that the aggregating node is honest and of the probability
that the aggregating node is compromised, but verification is triggered. Namely:

pauth = (1− β) + (β · p).
Assuming that each individual aggregation is statistically independently au-

thentic with probability p, the overall probability P is given by:

P = (1− β + β · p)|Av|,

where |Av| is the cardinality of the set of aggregators Av, which, recalling
eq.4.2, can be computed as:

|AV | =
h−1∑

i=1

δi =

logδ(1+(δ−1)n)−2∑

i=1

δi =
n− 1

δ
− 1.

therefore the following equalities hold:

P = (1− β + β · p)n−1

δ
−1, (4.5)

p = 1− 1− n−δ−1
√
Pδ

β
. (4.6)

9for example, assuming that the any t nodes taking part in the verification process of the
aggregate submitted by v are in transmission range of one another, the decider node could
broadcast a verification request; this, however, would violate the multihop nature of communi-
cation and, furthermore, is not always a reasonable assumption.

65

Chapter 4 : Authentication Techniques applied to Data Aggregation

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p (verification probability)

P
Probability P of having an authentic aggregate at the root node,

given the ESAWN verification probability p, for n = 1000, beta = 1%

delta = 6

delta = 4

delta = 2

Figure 4.4: Overall probability P of having authentic aggregates at the BS as a
function of the ESAWN verification probability p, given β = 1%.

Figure 4.4 shows how P scales with p, for different values of δ and for β = 0.01.

4.5.3 Protocol evaluation

In order to evaluate its performances, ESAWN is compared with two simple pro-
tocols, which somehow provide an upper and a lower bound. The two considered
protocols are:

• Non-authentic aggregation (NON-AUTH) - the protocol performs standard
aggregation and does not include any security or authenticating mechanism;
thus, NON-AUTH provides a lower bound to ESAWN complexity.

• Authentic without aggregation (NON-AGGR) - the protocol does not per-
form any data aggregation, but provides full authentication. NON-AGGR
provides an upper bound to ESAWN complexity.

Under a suitable parameter choice, ESAWN is expected to have better per-
formances than NON-AGGR, whereas it cannot outperform the non-authentic
aggregation (NON-AUTH).

Evaluation metrics

A set of metrics has been chosen in order to evaluate ESAWN performances.
Firstly, some preliminary definitions are given; in particular, let

• nnodes be the total number of nodes in the tree, including the root node.

66

Chapter 4 : Authentication Techniques applied to Data Aggregation

• node(i, j) represent the j-th node at level i, 1 ≤ i ≤ h.

• nsrc(i, j) be the number of sources (i.e., children) of the j-th node at level
i, 1 ≤ i ≤ h.

• t′i = min(t, i − 1) (for a given tree level i, 1 ≤ i ≤ h) be the minimum
between t and the distance (in number of hops) from the root (i.e. i− 1).

• nodes(i) be the number of nodes at level i.

• hdr be the size (in bytes) of the packet header, pld the size (in bytes) of the
packet payload and MAC the size (in bytes) of the authentication code.

Futhermore, please note that all communications are assumed to be multi-
hop.
Hence, the following metrics are defined:

1. Number of sent bytes:

(a) NON-AGGR: Since there is no aggregation in the network, each node
(except the root) generates one message and each message, whose size
is equal to (hdr + pld + MAC), has to be transmitted over (i − 1)
hops in order to reach the root node. Hence, the transmitted bytes
generated by node(i, j) is:

n
(1),node(i,j)
bytes = (hdr + pld+MAC) · (i− 1). (4.7)

Starting from the previous equation, the overall number of bytes trans-
mitted over the network can be computed as

n
(1),TOT

bytes =

h∑

i=2

nodes(i)∑

j=1

n
(1),node(i,j)
bytes . (4.8)

Finally, the average number of sent bytes per node is

n
(1),AV G

bytes = n
(1),TOT

bytes /nnodes. (4.9)

Given (4.2) and considering that the dominating term of (4.8) is (h−
1) · nodes(h), the overall number of sent bytes using the NON-AGGR
protocol scales with O(n · log(n)) and, therefore, the number of sent
bytes per node scales with O(log(n)).

(b) NON-AUTH: Thanks to aggregation, each node transmits only one
non-authenticated message, whose size is equal to (hdr+ pld). There-
fore, the number of bytes transmitted due to node(i, j) is

n
(2),node(i,j)
bytes = (hdr + pld), (4.10)

67

Chapter 4 : Authentication Techniques applied to Data Aggregation

the overall number of transmitted bytes over the networks, which scales
with O(n), is

n
(2),TOT

bytes =

h∑

i=2

nodes(i)∑

j=1

n
(2),node(i,j)
bytes , (4.11)

and the average number of sent bytes per node, which scales with O(1),
is

n
(2),AV G

bytes = n
(2),TOT

bytes /nnodes. (4.12)

(c) ESAWN: Each node node(i, j) causes the transmission of just one mes-
sage of size hdr+pld+MAC with probability (1−p) (i.e., if upper level
witnesses do not prompt for an ESAWN verification, see §4.5.2). If a
verification is requested (probability p), node(i, j) transmits its pay-
load plus t′i MACs to its parent node, who has to transmit node(i, j)’s
payload plus (t′i − 1) MACS to its parent and so on; therefore, the
overall number of bytes transmitted due to node(i, j) is

n
(3),node(i,j)
bytes = hdr + (pld+MAC)(1 − p) + (

t′i∑

l=1

(pld+ l ·MAC))p =

= hdr + (pld+MAC)(1− p) + (t′i · pld+
t′i(t

′
i + 1)

2
·MAC) · p.(4.13)

Hence, the overall number of transmitted bytes over the network,
which scales with O(n), is

n
(3),TOT

bytes =
h∑

i=2

nodes(i)∑

j=1

n
(3),node(i,j)
bytes , (4.14)

and the average number of sent bytes per node, which scales with O(1),
is

n
(3),AV G

bytes = n
(3),TOT

bytes /nnodes. (4.15)

2. Number of aggregation operations.

(a) NON-AGGR:

Since there is no aggregation operation in NON-AGGR, all the relative
metrics are identically equal to zero, that is:

n(1),node(i,j)
agg.ops. = 0, (4.16)

n(1),TOT
agg.ops. =

h−1∑

i=2

nodes(i)∑

j=1

n(1),node(i,j)
agg.ops. = 0, (4.17)

68

Chapter 4 : Authentication Techniques applied to Data Aggregation

n(1),AV G
agg.ops. = n(1),TOT

agg.ops. /nnodes = 0, (4.18)

where n
(1),node(i,j)
agg.ops. is the number of aggregation operations caused by

node(i, j), n
(1),TOT
agg.ops. is the overall number of aggregation operations

performed in the whole network and n
(1),AV G
agg.ops. is the average number of

aggregation operations per node.

(b) NON-AUTH :

In NON-AUTH protocol, each node, except the leaves and the BS
(which is not considered in this analysis, as it is not a classical sensor
node, but rather a powerful device, possibly with unlimited energy
resources), performs exactly one aggregation operation. Therefore,
the overall number of aggregation operations, which scales with O(n),
is

n(2),TOT
agg.ops. =

h−1∑

i=2

nodes(i)∑

j=1

n(2),node(i,j)
agg.ops. , (4.19)

and the average number of aggregation operations per node, which
scales with O(1), is

n(2),AV G
agg.ops = n(2),TOT

agg.ops. nnodes. (4.20)

(c) ESAWN :

In ESAWN, each node node(i, j), except the leaves and the BS (for
the same reasons as for NON-AUTH), performs only one aggregation
operation with probability (1−p) and t′i = min(t, i−1) operations with
probability p. Summarising, the number of aggregation operations
performed by node(i, j) is

n(3),node(i,j)
agg.ops. = 1 · (1− p) + t′i · p = (1− p) +min(t, i− 1) · p, (4.21)

and the overall number of aggregation operations performed in the
whole network is

n(3),TOT
agg.ops. =

h−1∑

i=2

node(i)∑

j=1

n(3),node(i,j)
agg.ops. . (4.22)

Again, while the overall number of aggregation operations scales with
O(n), the number of aggregation operations per node scales with O(1).

3. Number of computed MACs.

(a) NON-AGGR:

69

Chapter 4 : Authentication Techniques applied to Data Aggregation

In the NON-AGGR protocol, each node, except the BS, computes a
single MAC, that is

n(1),node(i,j)
mac.ops. = 1. (4.23)

Therefore, the overall number of computed MACs is given by

n(1),TOT
mac.ops. =

h∑

i=2

nodes(i)∑

j=1

n(1),node(i,j)
mac.ops. = nnodes − 1. (4.24)

(b) NON-AUTH :

Of course, in NON-AUTH no MAC is computed, therefore

n(2),node(i,j)
mac.ops. = 0. (4.25)

n(2),TOT
mac.ops. =

h∑

i=2

nodes(i)∑

j=1

n(2),node(i,j)
mac.ops. = 0. (4.26)

(c) ESAWN :

In ESAWN, each node node(i, j) has to compute only two MACs with
probability (1 − p), while, with probability p, it causes (2 · t′i) MAC
computations, of which t′i are performed by node(i, j) itself and t′i are
performed by node(i, j)’s t′i witnesses. Therefore, the average number
of MAC computations caused by node node(i, j) is

n(3),node(i,j)
mac.ops. = 2 · (1− p) + 2 · t′i · p. (4.27)

The overall number of MAC computations in the network is

n(3),TOT
mac.ops. =

h∑

i=2

nodes(i)∑

j=1

n(3),node(i,j)
mac.ops. . (4.28)

Using the metrics defined above, the overall protocol energy consumption for
NON-AGGR, NON-AUTH and ESAWN can be approximated with the sum of
the energy spent for radio transmissions (which is directly proportional to the
number of sent bytes) and of the energy spent for local computations (which is
mainly influenced by MAC computations and, thus, is directly proportional to
the number of computed MACs). In the following chapter experimental results,
based on different authentication schemes and on random aggregation trees, are
provided.

70

Chapter 4 : Authentication Techniques applied to Data Aggregation

On ESAWN memory consumption

ESAWN’s memory consumption scales with O(1) with respect to the number
of network nodes. Each node(i, j), in fact, has to manage at most t · nsrc(i, j)

t

incoming messages and at most t authentication keys.

4.5.4 Summary

In the previous sections the ESAWN protocol was thoroughly described and some
contributions were given. Firstly, the use of traditional authentication schemes
in place of authenticated encryption, which, together with some modifications in
the way of assembling data for transmission, leads to a considerable performance
improvement, as described in §4.5.2. Secondly, a suitable framework for perfor-
mance evaluation was defined. In particular, the adjustable protocol parameters
were considered together with their potential impact on the protocol security and
on its performance.

ESAWN, while trying to address the problem of end-to-end authenticity in a
data aggregation protocol, offers a good trade off between energy consumption
and probabilistic authenticity. Unfortunately, there are some issues that should
be further investigated; in particular, the synchronisation mechanism has to be
improved, in order not to be predictable by the attacker.

In the next chapter, performance of ESAWN is experimentally evaluated by
means of simulations. Its achievements and its weaknesses are analysed in de-
tail as applied to a randomly generated wireless sensor network; the results are
combined with those obtained by the implementation of some MAC algorithms
on real sensor nodes, in order to yield a more accurate estimate of ESAWN’s
performance.

71

Chapter 4 : Authentication Techniques applied to Data Aggregation

72

Chapter 5

Experimental results

As a conclusion to the study of joint secure data aggregation and authentication
techniques in wireless sensor networks, some experimental results are presented
in this chapter.

Firstly, three authentication algorithms, CBCMAC-RC5, HMAC-MD5 and
HMAC-SHA1, has been implemented for TelosB motes [81] and their perfor-
mances are evaluated directly on this platform.

Secondly, the ESAWN protocol has been analysed. Specifically, its metrics
has been evaluated by means of Monte-carlo simulations and energy consumption
has been estimated by exploiting the experimental results achieved for the three
selected MAC schemes.

In the remainder of this chapter, the overall outcomes of the aforementioned
analysis are presented.

5.1 Evaluation of MAC protocols on TelosB motes

5.1.1 Experimental settings

TelosB motes

For the implementation of authentication algorithms, the chosen platform are
TelosB motes [81]. TelosB mote is an open source platform designed for low
power wireless sensor networks. The one used in this thesis is TPR2420, which is
provided with a CC2420 radio chip [82] together with a MSP430 (MSP430F1611)
microcontroller. TPR2420 main features are:

• IEEE 802.15.4/ZigBee compliant RF transceiver.

• 2.4 to 2.4835 GHz transmission band (globally compatible ISM).

• 250 Kbps data rate.

• integrated onboard antenna.

• 8 MHz TI MSP430 16-bit microcontroller with 10 KB of RAM.

73

Chapter 5 : Experimental results

• low current power consumption.

• 1 MB external flash for data logging.

• programming and data collection via USB.

• sensor suite including integrated light, temperature and humidity sensor.

• runs TinyOS 1.1.10 or higher.

TPR2420 is powered by two AA batteries. If the TPR2420 is plugged into the
USB port for programming, power is provided by the host computer. A detailed
description is beyond the scope of this thesis; further information can be found
in [81].

TinyOS and nesC

TelosB motes operate on TinyOS, which is the de-facto standard for wireless sen-
sor nodes operating systems. TinyOS, developed by UC Berkeley, is a lightweight
operating system specifically designed for low-power wireless sensors and differs
from most other operating systems in that its design focuses on ultra low-power
operation.

TinyOS applications and systems, as well as the OS itself, are written in the
nesC language. nesC is a C dialect optimised to reduce RAM and code size,
enable significant performance improvements and help in preventing low-level
bugs like race-conditions. A nesC application consists of one or more components
wired to form an application executable. Each component defines a set of used
and provided interfaces and provides their implementation.

There are two types of components in nesC: modules and configurations. Mod-
ules provide implementations for one or more interfaces, while configurations wire
other components together, connecting interfaces used by components to inter-
faces provided by others. On the other hand, interfaces may specify a set of
commands, i.e., functions to be implemented by the interface provider, and/or a
set of events, i.e., functions to be implemented by the interface user.

An in-depth presentation of TinyOS programming is not in the purposes of
this thesis; thereby, the reader interested in a comprehensive description should
refer to, e.g, [83].

5.1.2 MAC schemes experimental results

Three MAC schemes were implemented on TelosB motes, namely CBCMAC-
RC5, HMAC-MD5 and HMAC-SHA1 (theoretical descriptions can be found in
chapter 4). The algorithms were written in nesC, basing on the ones provided
in [80, 79]; further improvements to these algorithms performances would be
desirable, though they already ensure good performances. In the following para-
graphs, a performance evaluation and a comparison among the different schemes
is provided. Three main metrics are chosen to compare the aforementioned MAC

74

Chapter 5 : Experimental results

schemes: ROM and RAM size, time complexity and throughput, complexity at
the aggregator node. The algorithms were run on TelosB motes and metrics has
been computed and averaged over 250 iterations.

ROM and RAM size

Memory consumption, both in ROM and in RAM, is a crucial aspect to consider
while evaluating an algorithm. The memory consumptions of the considered MAC
schemes are listed in table 5.1.

Algorithm ROM Size (bytes) RAM Size (bytes)
CBCMAC-RC5 2924 132
HMAC-MD5 11578 88
HMAC-SHA1 4438 28

Table 5.1: ROM and RAM occupation of the considered MAC schemes.

Furthermore, considering that TinyOS default memory occupation is equal
to 1398 bytes in ROM and 4 bytes in RAM, the introduced overhead can be
computed; results are shown in table 5.2.

Algorithm % ROM Overhead % RAM Overhead
CBCMAC-RC5 109 3200
HMAC-MD5 728 2100
HMAC-SHA1 217 600

Table 5.2: ROM and RAM occupation overhead of the considered MAC schemes.

We observe that HMAC-MD5 consumes much more ROM than the other
two schemes. This is due to the MD5 hash function (see §4.3.1), which requires
a considerable amount of ROM for storing its predefined parameters, such as
the order for accessing source words and the number of bit positions for left
shift. On the contrary, CBCMAC-RC5 consumes less bytes in ROM, but needs
a considerable amount of RAM to be executed, probably in order to perform
the key expansion algorithm (algorithm 4) and to store the temporary encrypted
blocks of the CBCMAC scheme. HMAC-SHA1 appears to be the best trade off
between ROM and RAM usage, though, as described later on, this comes at the
price of a considerably increased time complexity.

MAC Time complexity and throughput

In figure 5.1 the time complexity of the considered MAC schemes is plotted against
the number of bytes over which the MAC is computed. The time values were
computed as the mean of the times measured over 250 iterations performed by a
TelosB mote. Several observations arise while looking at this figure.

75

Chapter 5 : Experimental results

0 50 100 150 200 250
5

10

15

20

25

30

35

40

45

50

55

bytes

tim
e

[m
s]

MAC Time Complexity

HMAC−SHA1
HMAC−MD5
CBCMAC−RC5

Figure 5.1: Average MAC time complexity as a function of the input size (average
over 1000 algorithm iterations).

First of all, it is evident that HMAC-MD5 definitely outperforms the other
two schemes. The notable speed achieved by HMAC-MD5 is mainly due to the
one of the underlying hash function, i.e., MD5, which was indeed designed to be
a very fast algorithm. This comes at the price of a higher ROM usage and of
weakened security level (as explained in §4.3.1), that, anyways, at the present
moment, is suitable for WSN applications.

The second important feature that emerges from figure 5.1 is the different
trend of HMAC-MD5 and HMAC-SHA1 with respect to the one of CBCMAC-
RC5. In fact, while the latter scales almost linearly with the size of the authenti-
cated data, the one of HMAC-MD5 and HMAC-SHA1 is locally constant with a
step in correspondence of each multiple of 56 bytes. This is due to the definition
of MD5 and SHA1, which operate on blocks whose length has to be a multiple
of 448 bits (i.e. 56 bytes); therefore, if their input length does not comply with
this condition, the message is padded so that its length becomes a multiple of
448 bits.

Finally, it should be noticed that, for inputs with size greater than approxi-
mately 150 bytes, CBCMAC-RC5 yields the worst performance among all consid-
ered schemes. Therefore, if authentication of long messages is required, HMAC-
MD5 and HMAC-SHA1 are preferable.

Similar considerations can be made by observing figure 5.2, which shows the
average throughput of the considered MAC schemes. Again, while the trend of
CBCMAC-RC5 is regular, the one of HMAC-MD5 and HMAC-SHA1 presents
discontinuities in correspondence of multiples of 56 bytes, for the same reason
explained above. The higher throughput is the one achieved by HMAC-MD5,

76

Chapter 5 : Experimental results

0 50 100 150 200 250
0

2000

4000

6000

8000

10000

12000

14000

16000

Bytes

B
yt

e/
s

Throughput

HMAC−SHA1
HMAC−MD5
CBCMAC−RC5

Figure 5.2: MAC throughput as a function of the payload size.

while CBCMAC-RC5 ensures better performances of HMAC-SHA1 only up to
150 bytes; after this threshold CBCMAC-RC5 throughput degrades, though the
disadvantage on HMAC-SHA1 is not remarkable.

MAC complexity at the aggregator node

Finally, the MAC time complexity at the aggregator node is considered. For the
purposes of the present thesis, this time complexity is evaluated when authentic-
ity verification is performed hop-by-hop, as the ESAWN protocol requires.
Figure 5.3 shows the overall time required by MAC computations at the aggre-
gator node, depending on the payload size and on the number of sources of the
considered aggregator node. These times include the time spent by all the aggre-
gator sources for computing their own MAC and the time spent by the aggregator
node itself in order to compute the MAC of the aggregate.
Of course, the time complexity grows linearly with the number of sources, but
a couple of issues should be observed. Firstly, the time spent by an aggregator
for MAC computations could range from a few milliseconds to some seconds,
depending on the payload size and on the number of sources of the aggregator
node. Spending several seconds of CPU time for MAC computations, involves an
excessive overhead for a resource-scarce aggregator; thus, it would be desirable to
lower the payload size (e.g. exploiting some efficient data representation) and to
limit the number of children, so that the authentication overhead does not grow
excessively. On the other hand, the higher the number of sources, the higher is
the advantage ensured by data aggregation. Therefore, a suitable trade off be-
tween optimal data aggregation and acceptable authentication overhead should
be found.

77

Chapter 5 : Experimental results

Figure 5.3: Overall MAC time complexity at the aggregator node, assuming hop-
by-hop authentication, depending on the payload size and on the number of
sources.

Summary and conclusions

From the previous metrics evaluation, the following facts emerges:

1. HMAC-MD5 is globally the fastest among the proposed authentication
schemes. This comes at a price of a much higher ROM occupation, which
could possibly be a problem in certain applications. Furthermore, HMAC-
MD5 is presumably the weaker among the considered authentication schemes,
as the MD5 hash function was found to be vulnerable to several attacks;
it seems, anyways, that HMAC-MD5 does not suffer from the same vul-
nerabilities as the MD5 algorithm alone and, therefore, its use can still be
considered a suitable choice.

2. HMAC-SHA1 can be regarded as the strongest authentication algorithm
among the three presented here. Its ROM and RAM occupation is rather
low and balanced, while its time complexity is typically higher than in the
other schemes, which could be a major problem in certain applications.

3. CBCMAC-RC5 performance is between those of HMAC-MD5 and HMAC-
SHA1 for inputs of size up to 150 bytes, but they degrade afterwards.
Furthermore, even though CBCMAC-RC5 ROM occupation is the lowest
among the three algorithms, its RAM occupation is considerably higher
than for the other solutions.

78

Chapter 5 : Experimental results

Summarising:

• HMAC-MD5 is the best choice when ROM occupation is not a concern
and as long as MD5 vulnerabilities are not found to threaten HMAC-MD5
security.

• CBCMAC-RC5 is a suitable choice for applications where RAM occupation
is not a major concern and where the message to authenticate is smaller than
approximately 150 bytes. Furthermore, as explained in §4.2.3, a CBCMAC
can be used only when inputs are of fixed size; therefore, for applications
with varying input sizes, CBCMAC-RC5 should be discarded a-priori.

• HMAC-SHA1 offers a good trade off between the two previous solutions,
providing stronger security, a balanced ROM and RAM occupation and
acceptable performance.

5.2 Experimental evaluation of ESAWN

5.2.1 Experimental settings

In order to evaluate the performance of ESAWN, an algorithm for creating a
random tree was used. This algorithm takes as input the number of tree levels h
and the range [n1, n2] of children (sources) each node can have. At each iteration,
a random value in [n1, n2] is picked for each node, starting from the root node
and descending to the leaves. For each set of values (h, n1, n2) the random tree
generation algorithm is run several times. Furthermore, in order to compute the
metrics described in §4.5.3, the specification of the path redundancy t and of the
verification probability p are required.

Metrics are calculated for a single complete cycle of data gathering and aggre-
gation, starting from data sensing and ending with the final aggregates reported
to the BS. Metrics are evaluated for randomly generated trees over a number iter
(in the order of a few hundreds or thousands) of iterations and finally the average
of all gathered values is computed.

To summarise, metrics are estimated depending on the following parameters:

• h, the number of tree levels, with h > 0;

• [n1, n2], the range of possible sources of each node;

• t, the path redundancy of ESAWN;

• p, the ESAWN verification probability;

• iter, the number of algorithm iterations

79

Chapter 5 : Experimental results

The performance of ESAWN is compared against those of NON-AGGR (the
authenticated, non-aggregated protocol) and with the ones of NON-AUTH (the
non-authenticated, aggregated protocol), which, ideally, should bound ESAWN
performance, at least in terms of energy consumption. In the remainder of this
section, the analysis of simulation results is presented.

5.2.2 ESAWN simulation results

Number of sent bytes

According to the metric definitions given in §4.5.3, the number of bytes trans-
mitted by the ESAWN protocol depends on the following parameters:

1. the number of levels h in the aggregation tree,

2. the number of sources for each aggregation node (picked up uniformly at
random in [n1, n2],

3. the header size hdr, the payload size pld and the MAC size MAC,

4. the path redundancy t,

5. the verification probability p,

while for the other two protocols the number of bytes transmitted depends only
on the first 3 parameters.

For the present evaluations, the following sizes for the packet header, payload
and MAC are assumed:

• hdr = 15 bytes, as specified by TinyOS jointly with the 802.15.4 standard;

• pld = 2 bytes, as this value is assumed to be sufficient to store a single
sensor reading;

• MAC = 4 bytes (truncated MAC), as it is considered to provide enough
security for a WSN [38].

Please note that increasing the size of these fields improves the advantage of
ESAWN over the NON-AGGR protocol, as ESAWN has to send less packets than
NON-AGGR, thanks to its nature (each sensor measurement has to be forwarded
for at most t levels) and to the optimisation introduced in §4.5.2.

In figure 5.4, the total number of transmitted bytes for each of the three
protocols is reported, with h varying between 4 and 8, [n1, n2] = [2, 8], t = 2 and
p = 1. Results are averaged over 100 iterations.

It can be noticed that, using ESAWN and the NON-AUTH protocol, the
overall number of bytes transmitted in the network does not increase its growth
rate with the number of tree levels h, i.e., their slope remains constant for different
tree depths. Furthermore, the straight line of ESAWN has a slope that is slightly

80

Chapter 5 : Experimental results

0 100 200 300 400 500 600 700 800 900 1000
0

2

4

6

8

10

12

14

16

x 10
4

nodes

by
te

s

Number of sent bytes depending on the tree depth, 100 iterations

NON−AGGR, h = 5

NON−AGGR, h = 6

NON−AGGR, h = 7

NON−AGGR, h = 8

ESAWN

NON−AUTH

NON−AGGR, h = 4

Figure 5.4: Total number of transmitted bytes for NON-AGGR, NON-AUTH and
ESAWN, with h varying between 4 and 8, [n1, n2] = [2, 8], t = 2 and p = 1

higher than NON-AUTH’s, because of the MACs that have to be transmitted by
ESAWN in addition to the payload.

On the contrary, the slope of the lines corresponding to NON-AGGR suffers
a considerable increase for each newly added tree level; this is due to the fact
that each forwarded packet has to be transmitted to the root node by means
of multihop communication. For example, in a complete tree with δ children
per node, raising the tree depth from h to h + 1 involves the transmission of
h · δh · (hdr + payload+MAC) additional bytes.

In terms of sent bytes, the advantage of ESAWN with respect to NON-
AGGR is shown in figure 5.5, where the percentage reduction of transmitted
bytes achieved by ESAWN w.r.t. NON-AGGR is plotted for different values of
h. The simulation parameters are p = 1, t = 2, [n1, n2] = [2, 8], iter = 100.
As it can be noticed, this advantage grows for increasing tree levels and ranges
from approximately 25% for h = 3 to nearly 80% for h = 8. Furthermore, for
a fixed value of t, the gap between percentage reductions relative to consecutive
values of h gets smaller as the tree depth increases. This happens because the
path redundancy t is spread across the whole tree; therefore, for higher values of
h, the impact of a fixed t-redundancy over the total number of bytes sent in the
network is reduced.

In ESAWN, the number of sent bytes depends also on t, i.e., the redundancy
in the aggregation paths, and on p, i.e., the probability that the ESAWN veri-
fication is performed. Obviously, the higher t and p are, the higher the number
of transmitted bytes is and, as a consequence, the advantage over NON-AGGR
is lower. Figures 5.6 and 5.7 show the percentage reductions in sent bytes for
varying t and p, respectively, while the other parameters are fixed. Specifically,

81

Chapter 5 : Experimental results

0 500 1000 1500 2000 2500 3000
20

30

40

50

60

70

80

nodes

%
 r

ed
uc

tio
n

ESAWN: Percentage reduction of sent bytes w.r.t. NON−AGGR,
depending on the tree depth, 100 iterations, p=1,t=2

h=2
h=3
h=4
h=5
h=6
h=7
h=8

Figure 5.5: Percentage reduction of transmitted bytes achieved by ESAWN w.r.t.
NON-AGGR, with h varying between 2 and 8, [n1, n2] = [2, 8], t = 2 and p = 1

figure 5.6 assumes h = 6, [n1, n2] = [2, 8], t ∈ [2, 4] , p = 0.8 and iter = 100;
figure 5.7 assumes p ∈ [0.2, 0.5, 0.8, 1], h = 6, [n1, n2] = [2, 8], t = 3. There is no
particular observation that has to be made with regard to these figures, except
that their trend asymptotically tends to a constant value, which is reached as
soon as the number of nodes allows a proper spreading of the redundancy across
the whole tree.

Number of aggregation operations

The second evaluated metric is the number of aggregation operations; the results
achieved by ESAWN are compared with those of NON-AGGR and NON-AUTH.
According to the metric definition provided in §4.5.3, the number of in-network
aggregation operations depends on:

• the tree depth h;

• the number of sources for each aggregator (picked up at random in [n1, n2]);

• the ESAWN path redundancy t;

• the ESAWN verification probability p

Figures 5.8 and 5.9 show how the overall number of aggregation operations
and the average number of aggregation operations per node scale with the num-
ber of nodes, for different values of h and given [n1, n2] = [2, 8], t = 2 and p = 1.
As expected, for the same value of h, the number of aggregation operations per-
formed by ESAWN is approximately t times the one of NON-AUTH, while NON-
AGGR does not perform any aggregation operation.

82

Chapter 5 : Experimental results

500 1000 1500 2000 2500 3000
40

45

50

55

60

65

70

75

80

85

90

nodes

%
 r

ed
uc

tio
n

ESAWN: Percentage reduction of sent bytes
depending on the tree depth, 200 iterations, h=6,p=0.8

t=2
t=3
t=4
NON−AGGR
NON−AUTH

Figure 5.6: Percentage reduction of transmitted bytes achieved by ESAWN w.r.t.
NON-AGGR, with t varying between 2 and 4, [n1, n2] = [2, 8], h = 6 and p = 0.8

500 1000 1500 2000 2500 3000
50

55

60

65

70

75

80

85

90

nodes

%
 r

ed
uc

tio
n

ESAWN: Percentage reduction of sent bytes
depending on the tree depth, 200 iterations, h=6,t=3

p=0.2
p=0.5
p=0.8
p=1
NON−AGGR
NON−AUTH

Figure 5.7: Percentage reduction of transmitted bytes achieved by ESAWN w.r.t.
NON-AGGR, with p ∈ [0.2, 0.5, 0.8, 1], h = 6, [n1, n2] = [2, 8], t = 3.

83

Chapter 5 : Experimental results

500 1000 1500 2000 2500 3000 3500 4000

500

1000

1500

2000

2500

3000

nodes

ag
g.

 o
ps

.

Number of aggregation operations depending on the tree depth, 600 iterations

	NON−AUTH, h=8

	NON−AUTH, h=7

	NON−AUTH, h=6
	ESAWN, h=8, p=1,t=2

	ESAWN, h=7, p=1,t=2

	ESAWN, h=6, p=1,t=2

Figure 5.8: Overall number of aggregation operations, with h ∈ {6, 7, 8}, [n1, n2] =
[2, 8], t = 2 and p = 1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

nodes

ag
g.

op
s.

/n
od

e

Number of aggregation operations per node depending on the tree depth, 600 iterations

ESAWN, h = 5, t = 2, p = 1

ESAWN, h = 6, t = 2, p = 1

ESAWN, h = 8, t = 2, p = 1

NON−AUTH, h = 8NON−AUTH, h = 7
NON−AUTH, h = 6NON−AUTH, h = 5

ESAWN, h = 7, t = 2, p = 1

Figure 5.9: Average number of aggregation operations per node, with h ∈
{5, 6, 7, 8}, [n1, n2] = [2, 8], t = 2 and p = 1

84

Chapter 5 : Experimental results

500 1000 1500 2000 2500 3000
0

0.5

1

1.5

nodes

ag
g.

op
s.

/n
od

e

ESAWN: Number of aggregation operations per node depending on the tree depth, 200 iterations, h=7,p=0.8

t=2
t=3
t=4
NON−AGGR
NON−AUTH

Figure 5.10: Average number of aggregation operations per node for t ∈ [2, 4],
with h = 7, [n1, n2] = [2, 8], p = 0.8 and iter = 200

Furthermore a second important observation has to be made; the discontinuities
that, for a fixed h, can be observed both in figure 5.8 and in figure 5.9, are due
to the fact that the number of sources for each aggregator is picked up uniformly
at random in [n1, n2]. This implies that, once h is fixed, a certain network size is
achievable only for higher values of the average number of sources per aggregator
node; at the same time, if the number of sources per aggregator node increases,
the overall number of aggregation operations required in the whole network pro-
portionally decreases, and so do the corresponding line slope and the average
number of aggregation operations per node.

As stated earlier, the number of aggregation operations in ESAWN depends
also on the value of t and on the value of p; again, the higher t and p, the higher
the number of performed aggregation operations will be.
Figure 5.10 and figure 5.11 show how the number of aggregation operations scales
for different values of t and p. Looking at figure 5.10, it can be noticed that,
with respect to NON-AUTH, the average number of aggregation operations for
ESAWN is approximately increased by (1−p)+p · t times. As a consequence, the
discontinuity steps increase their amount for higher values of t, as the discontinu-
ity of NON-AUTH is amplified proportionally to t. On the other hand, observing
figure 5.11, we can see that the overhead introduced by ESAWN in terms of av-
erage number of aggregation operations per node is, analogously, approximately
proportional to (1− p) + p · t.

Number of computed MACs

Finally, the number of computed MACs is considered. According to the metric
definition provided in §4.5.3, the number of computed MACs depends on:

85

Chapter 5 : Experimental results

500 1000 1500 2000 2500 3000 3500 4000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

nodes

ag
g.

op
s.

/n
od

e
ESAWN: Number of aggregation operations per node depending on the tree depth, 200 iterations, h=7,t=3

p=0.2
p=0.5
p=0.8
p=1
NON−AGGR
NON−AUTH

Figure 5.11: Average number of aggregation operations per node for p ∈
{0.2, 0.5, 0.8, 1}, with h = 7, [n1, n2] = [2, 8], t = 3 and iter = 200

• the tree depth h,

• the number of sources for each aggregator (picked up at random in [n1, n2]);

• the ESAWN path redundancy t;

• the ESAWN verification probability p.

Figure 5.12 shows how the total number of computed MACs scales with the
number of nodes in the network, for h ∈ [4, 8], t = 2 and p = 1. Observing this
figure, two facts should be noticed.
Firstly, both for NON-AGGR and ESAWN the line slope does not change for
different values of h (for NON-AUTH the line is identically equal to 0).
Secondly, the ESAWN line slope is considerably higher than the NON-AGGR one;
specifically it is approximately equal to 2·(1−p)+2t·p times the NON-AGGR one.
This is a consequence of the ESAWN approach, which trades off communication
complexity for computational complexity (since local computations are assumed
to consume less energy than radio transmissions).

Looking at figure 5.13, the same phenomenon can be observed from another
point of view, namely in terms of average MAC computations per node for dif-
ferent values of t. The considered figure assumes h = 7 and p = 0.8. Here, the
proportion between ESAWN and NON-AGGR MAC complexity becomes even
more apparent: while NON-AGGR performs only on one MAC computation per
node, the average number of computed MACs in ESAWN asymptotically tends
to 2 · (1− p) + 2t · p.
The asymptotic value, however, is reached only if the tree depth allows it. As the
careful reader surely has noticed, in fact, the nodes at a distance smaller than t

86

Chapter 5 : Experimental results

50 100 150 200 250 300 350 400 450 500
0

500

1000

1500

nodes

M
A

C
 o

ps
.

Number of MAC operations depending on the tree depth, 600 iterations

NON−AGGR, h=4
NON−AUTH, h=4
ESAWN (p=1,t=2,h=4)
NON−AGGR, h=5
NON−AUTH, h=5
ESAWN (p=1,t=2,h=5)
NON−AGGR, h=6
NON−AUTH, h=6
ESAWN (p=1,t=2,h=6)
NON−AGGR, h=7
NON−AUTH, h=7
ESAWN (p=1,t=2,h=7)
NON−AGGR, h=8
NON−AUTH, h=8
ESAWN (p=1,t=2,h=8)

NON−AGGR
h ∈ [4,8]

NON−AUTH
h ∈ [4,8]

ESAWN, t = 2, p = 1
h ∈ [4,8]

Figure 5.12: Overall number of MAC operations for h ∈ [4, 8],with [n1, n2] = [2, 8],
t = 2, p = 1 and iter = 200

200 400 600 800 1000 1200 1400
0

1

2

3

4

5

6

nodes

M
A

C
 o

ps
./n

od
e

ESAWN: Number of MAC operations per node depending on the tree depth, 200 iterations, h=7,p=0.8

t=2
t=3
t=4
NON−AGGR
NON−AUTH

Figure 5.13: Average number of MAC operations per node for t ∈ [2, 4], with
h = 7, [n1, n2] = [2, 8], t = 3 and iter = 200

87

Chapter 5 : Experimental results

500 1000 1500 2000 2500 3000 3500 4000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

nodes

M
A

C
 o

ps
./n

od
e

ESAWN: Number of MAC operations per node
depending on the tree depth, 200 iterations, h=8,t=2

p=0.2
p=0.5
p=0.8
p=1
NON−AGGR
NON−AUTH

Figure 5.14: Average number of MAC operations per node for p ∈ {0.2, 0.5, 0.8, 1},
with h = 8, [n1, n2] = [2, 8], t = 2 and iter = 200

from the root do not send t different MACs, but just t′i = min(t, i − 1), where
(i − 1) is the distance from the root. Therefore if h, i.e., the number of tree
levels, is not high enough, the average number of computed MACs does not top
2 · (1− p) + 2t · p, but it stabilises to a smaller value.

The number of performed MAC operations depends also on p and, in figure
5.14, this dependency is shown, when h = 8 and t = 2. Also in this case,
the average number of MAC operations per node in ESAWN is, as expected,
2 · (1 − p) + 2t · p. This, however, is just an asymptotic value and, as explained
for figure 5.13, is reached only if the tree depth allows it.

Summary

In the previous paragraphs ESAWN performance was evaluated according to
different metrics and compared with the ones of the NON-AGGR and NON-
AUTH protocols. The influence of the choice of t and p was shown, as well as the
impact of the network topology (number of nodes, number of levels, children per
node, etc.).

The results achieved in this section enable, together with the ones from §5.1,
the evaluation of the ESAWN energy consumption, even if with some minor
simplifications. This estimate is presented in the next section.

5.3 Energy consumption

Combining the results presented in §5.1 and in §5.2, it is finally possible to es-
timate the overall ESAWN energy consumption for the TelosB platform, with

88

Chapter 5 : Experimental results

respect to the NON-AGGR and to the NON-AUTH protocol and while authen-
tication is provided either with CBCMAC-RC5, HMAC-MD5 or HMAC-SHA1.

The estimated energy consumption is expressed in terms of current absorption
(as in [51]), i.e., in mA·s, according to the reference values that can be found in
CC2420 and MSP430 datasheets.

In order to perform this evaluation, some simplifying assumptions are made:

1. the estimated current absorption for radio transmissions considers only the
current needed to transmit the plain messages at the predefined bitrate;
specifically, the radio start up time, the time for transmitting the preamble,
eventual retransmissions (managed by the link layer), etc. are assumed
to be negligible with respect to transmission and thus not included in the
computation. Disregarding this aspects actually reduces ESAWN advantage
over NON-AGGR, as ESAWN sends less messages and, thus, the additional
overhead involved by start-up time, preamble transmission, etc. would be
smaller than the one entailed by NON-AGGR.

2. the time for performing aggregation is assumed to be negligible with respect
to the one needed by MAC operations; this is a reasonable assumption if
the aggregation operation is simple, e.g., a mean, and the number of sources
per aggregator is not excessive; since in this evaluation it is assumed that
the aggregation operation is the mean and that the number of sources per
aggregator is at most 8, the aggregation complexity is in the order of 1 ms
and, therefore, neglecting it does not have a considerable impact on the
estimate.

3. only the radio and the CPU current absorption are considered; other cir-
cuitry is not taken into account.

4. the radio is assumed to transmit at 0 dBm.

According to these assumptions, in the following sections ESAWN current
absorption is evaluated for a network based on TelosB motes. The current ab-
sorbed for transmissions and the one used for local computations are evaluated
separately in first place and finally combined into the overall protocol current
absorption. As for the ESAWN metrics evaluation, also the current absorption
estimation is performed over a single cycle of data gathering and aggregation,
i.e., starting from data sensing and ending with the final aggregates delivered to
the BS.

5.3.1 Radio current absorption

According to [82], the CC2420 radio chip consumes 17.4 mA while transmitting at
0 dBm and 19.7 mA while receiving and it provides a bitrate of 250 Kbps. Assum-
ing the simplifying hypothesis that CC2420 energy consumption is approximated
by the energy needed for the plain transmission/reception of the message bytes

89

Chapter 5 : Experimental results

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

20

40

60

80

100

120

140

160

180

200

nodes

m
A

*s
Energy spent for TX and RX depending on the tree depth, 200 iterations

NON−AGGR, h=4
NON−AUTH, h=4
ESAWN (p=1,t=2,h=4)
NON−AGGR, h=5
NON−AUTH, h=5
ESAWN (p=1,t=2,h=5)
NON−AGGR, h=6
NON−AUTH, h=6
ESAWN (p=1,t=2,h=6)
NON−AGGR, h=7
NON−AUTH, h=7
ESAWN (p=1,t=2,h=7)
NON−AGGR, h=8
NON−AUTH, h=8
ESAWN (p=1,t=2,h=8)

NON−AGGR, h = 8

NON−AGGR, h = 7

NON−AGGR, h = 6

NON−AGGR, h = 5

NON−AGGR, h = 4

ESAWN, t = 2, p = 1 NON−AUTH

Figure 5.15: Overall TX and RX current absorption for h ∈ [4, 8], [n1, n2] = [2, 8],
t = 2, p = 1 and iter = 200

at the predefined bitrate, the current absorption caused by the transmission of 1
byte is:

Iradio(1) = (17.4 mA+ 19.7 mA) · 8 bit

250 kbps
= 2.968 · 10−4 mA/byte (5.1)

In order to estimate the current absorption associated to the three different pro-
tocols, Iradio(1) should be multiplied for the overall number of transmitted bytes.
Again, it is assumed that the sensor measurements are composed by 2 bytes and
that the MAC size is 4 bytes. Figure 5.15 shows how the overall current absorbed
in the network for sending and receiving data scales with the number of sensor
nodes, for h ∈ [4, 8], [n1, n2] = [2, 8], t = 2 and p = 1. The behaviour of the
three protocols is expectedly similar to the one observed for the number of sent
bytes, as the radio energy consumption is directly proportional to that value.
Again, the slope of lines associated to NON-AGGR increases while adding new
tree levels; conversely, the one of ESAWN and NON-AUTH remains constant.
Furthermore, the slope difference between the line associated to ESAWN and the
one associated to NON-AUTH is due to the authentication overhead introduced
by ESAWN.

Figures 5.16(a) and 5.16(b) show how the current absorption scales for differ-
ent values of t and p respectively. Considerations on these figures are analogous
to that made for the overall number of sent bytes (see §5.2).

5.3.2 CPU current absorption

The MSP430 is the microcontroller used by TelosB motes in order to perform
local computations. According to its datasheet, the MSP430 typically consumes

90

Chapter 5 : Experimental results

500 1000 1500 2000 2500 3000
0

50

100

150

200

250

300

nodes

m
A

*s

ESAWN: Energy spent for TX and RX depending on the tree depth, 200 iterations, h=7,p=0.8

t=2
t=3
t=4
NON−AGGR
NON−AUTH

(a) For different values of t, h = 7, p = 0.8

500 1000 1500 2000 2500 3000
0

50

100

150

200

250

300

350

400

nodes

m
A

*s

Energy spent for TX and RX depending on the tree depth, 200 iterations, h=8,t=2

p=0.2
p=0.5
p=0.8
p=1
NON−AGGR
NON−AUTH

(b) For different values of p, h = 8, t = 2

Figure 5.16: Overall TX and RX current absorption for h ∈ [4, 8], [n1, n2] = [2, 8],
t = 2, p = 1 and iter = 200

91

Chapter 5 : Experimental results

500 µA while used in active mode. Therefore, in order to evaluate the CPU
current absorption, one should multiply this reference value for the amount of
time the CPU was used for. In this evaluation, only the CPU time for computing
MACs is considered and, furthermore, it is assumed that the message over which
the MAC is computed has a payload of 2 bytes.

In figures 5.17(a), 5.17(b), 5.18(a), 5.18(b), 5.19(a), 5.19(b), it is shown how
the CPU current absorption scales for different MAC algorithms and for different
values of t and p.
Assuming the hypothesis described in §5.3, the CPU current absorption is directly
proportional to the number of computed MACs. Therefore the same consider-
ations made for the MACs are valid. Nevertheless, here we can observe the
influence that the chosen MAC algorithm has on CPU current absorption.

HMAC-SHA1 is, as expected, the most expensive authentication algorithm,
while HMAC-MD5 and CBCMAC-RC5 have approximately the same cost, which,
for the chosen parameters, is nearly the half of that of HMAC-SHA1.

5.3.3 Overall current absorption

Exploiting the results achieved in the previous sections, it is now possible to
estimate how the ESAWN overall current absorption scales with respect to the
one of NON-AGGR and NON-AUTH, for different values of h, t and p. Please
note that the radio and the CPU current absorption can be summed up, as the
CC2420 and the MSP430 operate at the same voltage (i.e. 3 V). Furthermore, it
is important to notice that the CPU current absorption overhead introduced by
ESAWN w.r.t. NON-AGGR is proportionally smaller than the radio consumption
overhead of NON-AGGR w.r.t. ESAWN. This fact confirms that trading off
communication complexity for local computation complexity is advantageous in
the context of WSNs.

Firstly, it is interesting to look at the percentage reduction of the overall
current absorption achieved by ESAWN with respect to NON-AGGR. Figures
5.20(a), 5.20(b) and 5.20(c) show this percentage reduction for h ∈ [3, 8], t = 2
and p = 1. As it can be noticed, for almost all the values of h, using HMAC-
MD5 or CBCMAC-RC5 ensures an advantage of approximately the 10% over
HMAC-SHA1. In fact ESAWN, together with HMAC-MD5 or CBCMAC-RC5,
ensures the best performance, achieving up to a 80% reduction, while HMAC-
SHA1 reaches at most a 70%. Furthermore, it should be observed that, for h = 3,
t = 2 and p = 1, ESAWN causes the absorption of even more current than NON-
AGGR (i.e., the percentage reduction is negative, as the current absorption is
actually increased), due to the excessive redundancy introduced for the considered
tree depth.

Figures 5.21 and 5.22 show how the overall current absorption scales with
respect to different values of t and p respectively. It is evident that, even for high
values of t and p, ESAWN consumes much less energy than the NON-AGGR
protocol. In particular, the average current absorption per node is shown in
figures 5.23 and 5.24 for different values of t and p.

92

Chapter 5 : Experimental results

500 1000 1500 2000 2500 3000
0

20

40

60

80

100

120

140

160

180

200

nodes

m
A

*s

ESAWN: Energy spent for CPU computations using HMAC−SHA1
 depending on the tree depth, 200 iterations, h=7,p=0.8

t=2
t=3
t=4
NON−AGGR
NON−AUTH

(a) For different values of t, h = 7, p = 0.8

500 1000 1500 2000 2500 3000
0

20

40

60

80

100

120

140

nodes

m
A

*s

ESAWN: Energy spent for CPU computations using HMAC−SHA1
depending on the tree depth, 200 iterations, h=8,t=2

p=0.2
p=0.5
p=0.8
p=1
NON−AGGR
NON−AUTH

(b) For different values of p, h = 8, t = 2

Figure 5.17: Current absorbed for CPU computations using HMAC-SHA1,
[n1, n2] = [2, 8] and iter = 200

93

Chapter 5 : Experimental results

500 1000 1500 2000 2500 3000
0

10

20

30

40

50

60

70

nodes

m
A

*s

ESAWN: Energy spent for CPU computations using HMAC−MD5 depending on the tree depth, 200 iterations, h=8,t=2

p=0.2
p=0.5
p=0.8
p=1
NON−AGGR
NON−AUTH

(a) For different values of t, h = 7, p = 0.8

500 1000 1500 2000 2500 3000
0

20

40

60

80

100

120

140

nodes

m
A

*s

ESAWN: Energy spent for CPU computations using HMAC−SHA1
depending on the tree depth, 200 iterations, h=8,t=2

p=0.2
p=0.5
p=0.8
p=1
NON−AGGR
NON−AUTH

(b) For different values of p, h = 8, t = 2

Figure 5.18: Current absorbed for CPU computations using HMAC-MD5,
[n1, n2] = [2, 8] and iter = 200

94

Chapter 5 : Experimental results

500 1000 1500 2000 2500 3000
0

10

20

30

40

50

60

70

80

90

nodes

%
 r

ed
uc

tio
n

ESAWN: Percentage reduction (w.r.t. NON−AGGR) in energy consumption using CBCMAC−RC5
depending on the tree depth, 200 iterations, h=7,p=0.8

t=2
t=3
t=4
NON−AGGR
NON−AUTH

(a) For different values of t, h = 7, p = 0.8

500 1000 1500 2000 2500 3000
0

20

40

60

80

100

120

140

nodes

m
A

*s

ESAWN: Energy spent for CPU computations using HMAC−SHA1
depending on the tree depth, 200 iterations, h=8,t=2

p=0.2
p=0.5
p=0.8
p=1
NON−AGGR
NON−AUTH

(b) For different values of p, h = 8, t = 2

Figure 5.19: Current absorbed for CPU computations using CBCMAC-RC5,
[n1, n2] = [2, 8] and iter = 200

95

Chapter 5 : Experimental results

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−40

−30

−20

−10

0

10

20

30

40

50

60

70

nodes

%
 re

du
ct

io
n

ESAWN: Percentage reduction (w.r.t. NON−AGGR) in energy consumption using HMAC−SHA1
depending on the tree depth, 200 iterations, p=1,t=2

h=3
h=4
h=5
h=6
h=7
h=8

(a) HMAC-SHA1

0 500 1000 1500
−10

0

10

20

30

40

50

60

70

nodes

%
 re

du
ct

io
n

ESAWN: Percentage reduction (w.r.t. NON−AGGR) in energy consumption using HMAC−MD5
depending on the tree depth, 200 iterations, p=1,t=2

h=3
h=4
h=5
h=6
h=7
h=8

(b) HMAC-MD5

0 500 1000 1500
−10

0

10

20

30

40

50

60

70

nodes

%
 re

du
ct

io
n

ESAWN: Percentage reduction (w.r.t. NON−AGGR) in energy consumption using CBCMAC−RC5
 depending on the tree depth, 200 iterations, p=1,t=2

h=3
h=4
h=5
h=6
h=7
h=8

(c) CBCMAC-RC5

Figure 5.20: Percentage reduction (w.r.t. NON-AGGR) in current absorption
with h ∈ [3, 8], [n1, n2] = [2, 8], t = 2, p = 1 and iter = 200

96

Chapter 5 : Experimental results

500 1000 1500 2000 2500 3000
0

100

200

300

400

500

600

nodes

m
A*

s

ESAWN: Overall current absorption using HMAC−SHA1
 depending on the tree depth, 200 iterations, h=7,p=0.8

t=2
t=3
t=4
NON−AGGR
NON−AUTH

(a) HMAC-SHA1

500 1000 1500 2000 2500 3000
0

50

100

150

200

250

300

350

400

450

500

nodes

m
A*

s

ESAWN: Overall current absorption using HMAC−MD5
depending on the tree depth, 200 iterations, h=7,p=0.8

t=2
t=3
t=4
NON−AGGR
NON−AUTH

(b) HMAC-MD5

500 1000 1500 2000 2500 3000
0

50

100

150

200

250

300

350

400

450

500

nodes

m
A*

s

ESAWN: Overall current absorption using CBCMAC−RC5
 depending on the tree depth, 200 iterations, h=7,p=0.8

t=2
t=3
t=4
NON−AGGR
NON−AUTH

(c) CBCMAC-RC5

Figure 5.21: Overall current absorption for different values of t, h = 7, [n1, n2] =
[2, 8], p = 0.8 and iter = 200

97

Chapter 5 : Experimental results

500 1000 1500 2000 2500 3000
0

100

200

300

400

500

600

nodes

m
A*

s
ESAWN: Overall current absorption using HMAC−SHA1

depending on the tree depth, 200 iterations, h=8,t=2

p=0.2
p=0.5
p=0.8
p=1
NON−AGGR
NON−AUTH

(a) HMAC-SHA1

500 1000 1500 2000 2500 3000
0

100

200

300

400

500

600

nodes

m
A*

s

ESAWN: Overall current absorption using HMAC−MD5
 depending on the tree depth, 200 iterations, h=8,t=2

p=0.2
p=0.5
p=0.8
p=1
NON−AGGR
NON−AUTH

(b) HMAC-MD5

500 1000 1500 2000 2500 3000
0

100

200

300

400

500

600

nodes

m
A*

s

ESAWN: Overall current absorption using CBCMAC−RC5 depending on the tree depth, 200 iterations, h=8,t=2

p=0.2
p=0.5
p=0.8
p=1
NON−AGGR
NON−AUTH

(c) CBCMAC-RC5

Figure 5.22: Overall current absorption for different values of p, h = 8, [n1, n2] =
[2, 8], t = 2 and iter = 200

98

Chapter 5 : Experimental results

500 1000 1500 2000 2500 3000
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

nodes

m
A*

s/
no

de

ESAWN: Average current absorption per node using HMAC−SHA1
depending on the tree depth, 200 iterations, h=7,p=0.8

t=2
t=3
t=4
NON−AGGR
NON−AUTH

(a) HMAC-SHA1

500 1000 1500 2000 2500 3000
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

nodes

m
A*

s/
no

de

ESAWN: Average current absorption per node using HMAC−MD5 depending on the tree depth, 200 iterations, h=7,p=0.8

t=2
t=3
t=4
NON−AGGR
NON−AUTH

(b) HMAC-MD5

500 1000 1500 2000 2500 3000
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

nodes

m
A*

s/
no

de

ESAWN: Average current absorption per node using CBCMAC−RC5
depending on the tree depth, 200 iterations, h=7,p=0.8

t=2
t=3
t=4
NON−AGGR
NON−AUTH

(c) CBCMAC-RC5

Figure 5.23: Average current absorption per node for different values of p, h = 7,
[n1, n2] = [2, 8], p = 0.8 and iter = 200

99

Chapter 5 : Experimental results

500 1000 1500 2000 2500 3000
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

nodes

m
A*

s/
no

de

ESAWN: Average current absorption per node using HMAC−SHA1
 depending on the tree depth, 200 iterations, h=8,t=2

p=0.2
p=0.5
p=0.8
p=1
NON−AGGR
NON−AUTH

(a) HMAC-SHA1

500 1000 1500 2000 2500 3000
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

nodes

m
A*

s/
no

de

ESAWN: Average current absorption per node using HMAC−MD5 depending on the tree depth, 200 iterations, h=8,t=2

p=0.2
p=0.5
p=0.8
p=1
NON−AGGR
NON−AUTH

(b) HMAC-MD5

500 1000 1500 2000 2500 3000
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

nodes

m
A*

s/
no

de

ESAWN: Average current absorption per node using CBCMAC−RC5
 depending on the tree depth, 200 iterations, h=8,t=2

p=0.2
p=0.5
p=0.8
p=1
NON−AGGR
NON−AUTH

(c) CBCMAC-RC5

Figure 5.24: Average current absorption per node for different values of p, h = 8,
[n1, n2] = [2, 8], t = 2 and iter = 200

100

Chapter 5 : Experimental results

5.4 Summary

In the previous sections it was shown that ESAWN achieves considerable re-
ductions in terms of energy consumption. The advantage over the NON-AGGR
protocol varies according to the considered tree depth h, to the introduced re-
dundancy t, to the verification probability p and to the use MAC algorithm.
Regarding the choice of this parameters, several observations should be made.

Firstly, the choice of the ESAWN parameters should be made in accordance
with the required level of security (see §4.5.2), but without disregarding the tree
topology. For example, choosing t = 4 in a tree with 4 levels would make no
sense and, on the contrary, it would cause ESAWN to achieve worse performance
than NON-AGGR. On the other hand, t should take into account the fraction β
of compromised nodes (see §4.5.2). Therefore, in order to achieve optimal perfor-
mances, the value of t and the value of h have to be considered jointly, recalling
also that the security parameter (t, k) depends, firstly, on the value of β. In
particular for values of h that are considerably higher (at least twice) than t,
the introduced redundancy is compensated by a much more consistent reduction
in terms of communication overhead with respect to NON-AGGR protocol (i.e.,
transmitting t packets per node and performing aggregation is more convenient
than sending one packet per node without performing aggregation). As a con-
sequence, topologies with higher values of h are better suited to the ESAWN
protocol.

Secondly, the choice of p should comply with the required overall probabil-
ity that the aggregates reaching the BS are authentic, as seen in section §4.5.2.
Therefore, p ≥ 0.8 would be desirable. Moreover, comparing the current absorp-
tion per node for different values of t and p, it is interesting to observe that t is
the parameter that most influences the current absorption, i.e., the gaps between
the lines associated with consecutive values of t are by far more consistent than
the ones obtained, for a fixed t, for different values of p.

The final remark is focused on the choice of the MAC scheme to be embedded
in ESAWN. It was shown, through the direct implementation of each scheme on
a TelosB platform, that HMAC-MD5 and CBCMAC-RC5 achieve better perfor-
mance than HMAC-SHA1. The following facts, however, should be considered:

• HMAC-SHA1 is expected, accordingly to the present studies in cryptogra-
phy, to ensure a higher level of security.

• CBCMAC-RC5 is not actually suitable for implementation when its inputs
are of variable size; embedding it in ESAWN (at least when the optimisation
described in §4.5.2 is adopted) would thus compromise the security of the
system, as, depending on whether the ESAWN verification takes place or
not, messages can have variable sizes.

• as reported in §5.1, time complexity is not the only parameter that char-
acterises a MAC algorithm, though it is for sure the most remarkable; also
ROM and RAM consumption should be taken into account, especially when

101

Chapter 5 : Experimental results

the ESAWN protocol has to be integrated with other applications on a sin-
gle sensor node.

Summarising, assuming a proper choice of its parameters and the use of one
of the proposed MAC schemes, the ESAWN protocol allows a significant reduc-
tion in the overall network energy consumption, without introducing an excessive
overhead with respect to the NON-AUTH protocol. Therefore, ESAWN can be
considered as a suitable solution to the problem of ensuring end-to-end authentic-
ity in a data aggregation protocol. Further improvements in its performance, both
in terms of energy consumption and of ensured authenticity, should, however, be
investigated, as described in the next chapter.

102

Chapter 6

Conclusion and future works

Data aggregation is a fundamental component in a wireless sensor network pro-
tocol. It enables a considerable reduction in communication overhead, at a price
of a just slightly increased computational complexity. Since a wireless sensor
network, however, could be subject to malicious attacks, at the same time it is
important to provide a certain level of security.

In the previous chapters of this thesis, issues related to secure data aggregation
protocols were investigated, starting from the definition of what data aggregation
and security in a WSN are (chapter 2), and proceeding with the analysis of some
of the most valuable proposals for secure data aggregation protocols (chapter 3).
Starting from chapter 4, the focus was moved to the specific problem of providing
authenticity in a data aggregation protocol. Three different MAC schemes were
studied and implemented on a TelosB mote; in chapter 5, their performances
has been evaluated, analysed and compared. Furthermore, ESAWN, a protocol
proposed in [51], was described and analysed as a solution to the end-to-end
authentication problem in a data aggregation protocol. Successively, ESAWN
performances has been evaluated and commented.

The main contributions of the present work are the following:

• focused analysis of the end-to-end authentication problem, in the context
of data aggregation protocols;

• evaluation of actual performance of some of the most widely deployed MAC
schemes, namely CBCMAC and HMAC, as applied to the TelosB platform;

• optimisation of the ESAWN protocol for providing plain data authentication
in place of authenticated encryption; by means of some adaptations (see
§4.5.2), a considerable reduction of the number of transmitted bytes and,
therefore, of energy consumption, is achieved.

• theoretical analysis (according to some specifically defined metrics) and
experimental evaluation of the optimised ESAWN protocol.

Several issues, however, still have to be considered and provide a wide range
of possible future works. Some of them are listed below:

103

Chapter 6 : Conclusion and future works

• as stated in §4.5.2, the ESAWN verification synchronisation mechanism
seems to be intrinsically insecure, as an attacker can predict verifications.
Therefore, other techniques should be investigated.

• a filtering mechanism, able to detect eventual outliers in the submitted
sensor readings, would be desirable to be implemented in ESAWN, as long
as it is not too demanding in terms of system resources.

• additional cooperation techniques between sensor nodes, aimed to detect
malicious nodes misbehaviours, could help in further reducing the ESAWN
protocol overhead; thus, it would be interesting to investigate this direction.

• faster and less computationally expensive MAC schemes, optimised for im-
plementation on a sensor node would be desirable, so that additional energy
saving could be achieved.

• a more accurate evaluation of ESAWN power consumption would be con-
venient, namely:

– the analysis should take into account eventual link layer retransmis-
sions due to packet loss;

– radio start up time, preamble transmission, etc. should be considered;

– estimation of aggregation cost for different aggregation functions could
be an interesting issue;

– performance should be evaluated according to different payload and
MAC sizes.

As a conclusion, the ESAWN optimised protocol appears to be an efficient
solution for ensuring end-to-end authenticity (even if in a relaxed way) in a data
aggregation protocol. Its performance evaluation, in fact, shows that it achieves
a considerable advantage in terms of energy consumption with respect to an
authenticated, non-aggregated protocol. Several improvements, though, can be
investigated and could lead to a higher level of probabilistically ensured end-to-
end authenticity, together with a further reduction in power consumption.

104

Acknowledgements
(Ringraziamenti)

Nel congedare il presente lavoro, desidero rivolgere, innanzitutto, un grazie ri-
conoscente al prof. Zorzi, per avermi offerto la possibilità di sviluppare questa
ricerca. Un grazie anche all’ing. Angelo P. Castellani, per l’attenzione e il tempo
che mi ha dedicato, e al dott. Paolo Casari, per la disponibilità, la cordialità e il
prezioso sostegno, ma anche per la fiducia e la stima che ha saputo transmettermi.

Un grazie di cuore ai miei genitori, Roberto e Rita, per avermi accompagnato
fino a qui, incoraggiandomi e sostenendomi sempre. Grazie a Chiara e Pietro,
per essere sempre stati al mio fianco.

Infine, un grazie sincero ai miei compagni di corso, per avermi regalato anni
meravigliosi in loro compagnia, pieni di stimoli e soddisfazioni condivise. In
particolare, grazie a Bruno, Carlo, Caterina, Francesco, Giulia, Marco, Mattia e
Nicola.

105

Chapter 6 : Conclusion and future works

106

Bibliography

[1] A.J. Menezes, Paul C. van Oorscht, Scott A. Vanstone, “Handbook of ap-
plied cryptography”, CRC Press, October 1996, ISBN 0849385237.

[2] J. D. Tygar, et al, “SPINS: Security Protocols for Sensor Networks”, Wire-
less Networks, vol. VIII, no. 5, Sept. 2002, pp. 521-534.

[3] Joan Daemen and Vincent Rijmen, “The Design of Rijndael: AES - The
Advanced Encryption Standard.” Springer-Verlag, 2002. ISBN 3540425802.

[4] R.L. Rivest, “The RC5 Encryption Algorithm”, Proceedings of the Second
International Workshop on Fast Software Encryption (FSE) 1994. pp. 86-
96, http://theory.lcs.mit.edu/ rivest/Rivest-rc5rev.pdf

[5] A. Biryukov and E. Kushilevitz , Improved Cryptanalysis of RC5, EURO-
CRYPT 1998.

[6] National Bureau of Standards, Data Encryption Standard, FIPS-Pub.46.
National Bureau of Standards, U.S. Department of Commerce, Washington
D.C., January 1977.

[7] Original RSA Patent as filed with the U.S. Patent Office by Rivest, Ronald
L. (Belmont, MA), Shamir Adi (Cambridge, MA), Adleman Leonard M.
(Arlington, MA), December 14, 1977.

[8] V. Miller, Use of elliptic curves in cryptography, CRYPTO 85, 1985.

[9] Taher ElGamal, “A Public-Key Cryptosystem and a Signature Scheme
Based on Discrete Logarithms”, IEEE Transactions on Information Theory,
v. IT-31, n. 4, 1985, pp.469-472 or CRYPTO 84, pp.10-18, Springer-Verlag.

[10] W. Diffie and M. E. Hellman, “New Directions in Cryptography”, IEEE
Transactions on Information Theory, vol. IT-22, Nov. 1976, pp: 644-654.

[11] T. Roosta, S. Shieh, S. Sastry , Taxonomy of security attacks in sensor net-
works, in ‘The First IEEE International Conference on System Integration
and Reliability Improvements’, IEEE International, 2006, Washington, DC,
USA.

107

Chapter 6 : BIBLIOGRAPHY

[12] H. Alzaid, E. Foo, and J.G. Nieto, Secure data aggregation in wireless sensor
network: A Survey, In Proceedings of the Sixth Australasian Conference on
information Security - Volume 81 (Wollongong, NSW, Australia, January 01
- 01, 2008). L. Brankovic and M. Miller, Eds. ACM International Conference
Proceeding Series, vol. 328. Australian Computer Society, Darlinghurst,
Australia, 93-105.

[13] E. Fasolo, M. Rossi, J. Widmer, M. Zorzi, In-network aggregation tech-
niques for wireless sensor networks: a survey, IEEE Wireless Commun. 14
(2) (2007) 70-87.

[14] M. Ding, X. Cheng, and G. Xue, “Aggregation Tree Construction in Sensor
Networks”, IEEE VTC ’03, Orlando, FL, Oct. 2003

[15] K. Dasgupta, K. Kalpakis, and P. Namjoshi,“An Efficient Clustering-based
Heuristic for Data Gathering and Aggregation in Sensor Networks”, IEEE
WCNC ’03, New Orleans, LA, Mar. 2003.

[16] A. Harris III, R. Kravets, and I. Gupta, “Building Trees Based On Ag-
gregation Efficiency in Sensor Networks”, Med-Hoc-Net 2006, Lipari, Italy,
June 2006.

[17] S. Madden et al.,“TAG: a Tiny AGgregation Service for Ad Hoc Sensor
Networks”, OSDI 2002, Boston, MA, Dec. 2002.

[18] C. Intanagonwiwat et al., “Directed Diffusion for Wireless Sensor Network-
ing”, IEEE/ACM Trans. Net., vol. 11, no. 1, Feb. 2002, pp. 2-16.

[19] S. Lindsey, C. Raghavendra, and K. M. Sivalingam, “Data Gathering Al-
gorithms in Sensor Networks using Energy Metrics”, IEEE Trans. Parallel
Distrib. Sys., vol. 13, no. 9, Sept. 2002, pp. 924-35.

[20] W. B. Heinzelman, A. P. Chandrakasan, and H. Balakrishnan, “An
application-Specific Protocol Architecture for Wireless Microsensor Net-
works”, IEEE Trans. Wireless Commun., vol. 1, no. 4, Oct. 2002, pp. 660-
70.

[21] Y. Yao and J. Gehrke, “Query Processing for Sensor Networks”, ACM
CIDR 2003, Asilomar, CA, Jan. 2003.

[22] B. Zhou et al., “A Hierarchical Scheme for Data Aggregation in Sensor
Network”, IEEE ICON ’04, Singapore, Nov. 2004.

[23] A. Mahimkar and T. S. Rappaport, “SecureDAV: A Secure Data Aggrega-
tion and Verification Protocol for Sensor Networks”, IEEE GLOBECOM
2004, Dallas, TX, Nov. 2004

[24] S. Nath et al., “Synopsis Diffusion for Robust Aggregation in Sensor Net-
works”, ACM SenSys 2004, Baltimore, MD, Nov. 2004.

108

Chapter 6 : BIBLIOGRAPHY

[25] A. Manjhi, S. Nath, and P. B. Gibbons, “Tributaries and Deltas: Efficient
and Robust Aggregation in Sensor Network Stream”, ACM SIGMOD 2005,
Baltimore, MD, June 2005.

[26] S. Chen and Z. Zhang, “Localized Algorithm for Aggregate Fairness in
Wireless Sensor Networks”, ACM/SIGMOBILE MobiCom 2006, Los An-
geles, CA, Sept. 2006.

[27] A. Manjhi, S. Nath, and P. B. Gibbons, “Tributaries and Deltas: Efficient
and Robust Aggregation in Sensor Network Stream”, ACM SIGMOD 2005,
Baltimore, MD, June 2005.

[28] M. Sartipi and F. Fekri, “Source and Channel Coding in Wireless Sensor
networks using LDPC Codes”, IEEE SECON ’04, Santa Clara, CA, Oct.
2004.

[29] K. Akkaya, M. Demirbas, R.S. Aygun, The impact of data aggregation on
the performance of wireless sensor networks, Wiley Wireless Communica-
tions and Mobile Computing (WCMC), J.8, 2008, 171-193.

[30] Y. Wang, G. Attebury, B. Ramamurthy, A survey of security issues in
wireless sensor networks, IEEE Communications Surveys and Tutorials,
2006.

[31] Y. Zhou, Y. Fang, Y. Zhang, Securing Wireless Sensor Networks:A Survey,
IEEE Communications Surveys, Vol.10, No.3, 3rd Quarter 2008.

[32] J. D. Tygar, et al, “SPINS: Security Protocols for Sensor Networks”, Wire-
less Networks, vol. VIII, no. 5, Sept. 2002, pp. 521-534.

[33] A. Perrig, R. Canetti, J.D. Tygar, D. Song, The TESLA broadcast authen-
tication protocol, RSA CryptoBytes, 2002.

[34] Anthony D. Wood, John A. Stankovic, “Denial of Service in Sensor Net-
works”, Computer, vol. 35, no. 10, pp. 54-62, Oct. 2002

[35] R. L. Rivest, L. Adleman, and M. L. Dertouzos. On data banks and privacy
homomorphisms. In Foundations of Secure Computation, 1978.

[36] B. Przydatek, D. Song, A. Perrig, SIA : secure information aggregation in
sensor networks, in: Proceedings of SenSys ’03, 2003, pp. 255-265.

[37] Ralph C. Merkle. A certified digital signature. In Proc. Crypto ’89, pages
218-238, 1989.

[38] Mihir Bellare, Ran Canetti, and Hugo Krawczyk, Keying hash functions for
message authentication, In: Advances in Cryptology - CRYPTO ’96, pages
1-15, 1996.

109

Chapter 6 : BIBLIOGRAPHY

[39] A. Mahimkar, T.S. Rappaport, SecureDAV: a secure data aggregation and
verification protocol for wireless sensor networks, in: Proceedings of the
47th IEEE Global Telecommunications Conference (Globecom), November
29 - December 3, Dallas, TX,2004.

[40] N. Koblitz, Elliptic curve cryptosystems, in Mathematics of Computation
48, 1987, pp. 203-209

[41] V. Miller, Use of elliptic curves in cryptography, CRYPTO 85, 1985.

[42] D. Johnson, A. Menezes and S. Vanstone, “The Elliptic Curve Digital Sig-
nature Algorithm (ECDSA)”, Springer-Verlag, 2001.

[43] Yang, Y., Wang, X., Zhu, S., and Cao, G. 2008. SDAP: A secure hop-by-
hop data aggregation Protocol for sensor networks. ACM Trans. Inf. Syst.
Secur. 11, 4, Article 18 (July 2008).

[44] Frank, G. 1969. Procedures for detecting outlying observations in samples.
Technometrics 11, 1 (February), 1-21.

[45] H. Çam, S. Ozdemir, P. Nair, D. Muthuavinashiappan, H.O.Sanli, Energy-
efficient and secure pattern based data aggregation for wireless sensor net-
works, Comput. Commun., Elsevier 29 (4) (2006) 446-455

[46] S. Ozdemir, Secure and reliable data aggregation for wireless sensor net-
works, in: H. Ichakawa et al. (Eds.), LNCS 4836, 2007, pag. 102-109.

[47] Niels Ferguson, Bruce Schneier, “Practical Cryptography”, John Wiley &
Sons (2003). ISBN 0471223573.

[48] A. Josang, E. Ismail, “The beta reputation system”, in: Proceedings of the
15th Bled Conference Electronic Commerce, 2002.

[49] S. Ganeriwal, M.B. Srivastava, “Reputation-based framework for high in-
tegrity sensor networks”, in: Proceeding of the Second ACM Workshop on
Security of Ad Hoc and Sensor Networks.

[50] Suat Ozdemir, “Functional Reputation Based Reliable Data Aggregation
and Transmission for Wireless Sensor Networks”, Computer Communica-
tions, Elsevier, vol. 31, no. 17, pp. 3941-3953, Nov. 2008.

[51] BlaßErik-Oliver, Wilke Joachim and Zitterbart Martina, “Relaxed authen-
ticity for data aggregation in wireless sensor networks”, SecureComm ’08:
Proceedings of the 4th international conference on Security and privacy in
communication networks, pag. 1-10, Istanbul (Turkey), 2008

[52] E. Mlaih, S.A. Aly, “’Secure Hop-by-Hop Aggregation of End-to-End Con-
cealed Data in Wireless Sensor Networks, in: IEEE Infocom 2008 Proceed-
ings.

110

Chapter 6 : BIBLIOGRAPHY

[53] F. Adachi, M. Sawahashi, K. Okawa, “Tree-structured generation of orthog-
onal spreading codes with different length for forward link of DS-CDMA
mobile radio”, Electronic Letters 33 (1) (1997) 27-28.

[54] D. Westhoff, J. Girao, M. Acharya, “Concealed data aggregation for reverse
multicast traffic in sensor networks: encryption key distribution and routing
adaptation”, IEEE Trans. Mobile Comput. 5 (10) (2006) 1417-1431.

[55] J. Domingo-Ferrer, A provably secure additive and multiplicative privacy
homomorphism, in: Proceedings of the Information Security Conference,
2002, pp. 471-483.

[56] T. Okamoto, S. Uchiyama, “A New Public-key Cryptosystem as Secure as
Factoring”, in: Proc. Conf. Advances in Cryptology (EUROCRYPT ’98),
pp. 208-318, May 1998.

[57] D. Wagner, “Cryptanalysis of an Algebraic Privacy Homomorphism”, in:
Proceeding of the 6th Information Security Conference (ISC03), Bristol,
UK, October 2003.

[58] S. Ozdemir, “Secure data aggregation in wireless sensor networks via ho-
momorphic encryption”, Journal of The Faculty of Engineering and Archi-
tecture of Gazi University 23 (2) (2008) 365-373. ISSN:1304-4915.

[59] R.M. Kling, Intel Mote: an Enhanced Sensor Network Node,
http://www.intel.com/research/exploratory/motes.htm

[60] C. Castelluccia, E. Mykletun, G. Tsudik, “Efficient aggregation of en-
crypted data in wireless sensor networks, in: Proceedings of the Conference
on Mobile and Ubiquitous Systems: Networking and Services, 2005, pp.
109-117.

[61] M.J.B. Robshaw, Stream Ciphers, RSA Laboratories Technical Report TR-
701, Version 2.0, July 25, 1995 RSA Laboratories

[62] Mihir Bellare, Joe Kilian, Phillip Rogaway, “The Security of the Cipher
Block Chaining Message Authentication Code”, Journal of Computer and
System Sciences, Volume 61, Issue 3, December 2000, Pages 362-399, ISSN
0022-0000, DOI: 10.1006/jcss.1999.1694.

[63] RFC1321 - The MD5 Message-Digest Algorithm

[64] Xiaoyun Wang and Hongbo Yu, “How to Break MD5 and Other Hash
Functions”, Retrieved December 21, 2009

[65] Xiaoyun Wang, Dengguo Feng, Xuejia Lai, Hongbo Yu, “Collisions for
Hash Functions MD4, MD5, HAVAL-128 and RIPEMD”, Cryptology ePrint
Archive Report 2004/199, 16 Aug 2004, revised 17 Aug 2004.

111

Chapter 6 : BIBLIOGRAPHY

[66] J. Black, M. Cochran, T. Highland, “A Study of the MD5 Attacks: Insights
and Improvements”, March 3, 2006.

[67] RFC3174 - US Secure Hash Algorithm (SHA1)

[68] Secure Hash Signature Standard (SHS), FIPS PUB 180-2, 2002.

[69] The keyed-hash message authentication code (HMAC), FIPS PUB 198,
issued March 6,2002 by the NIST Information Technology Laboratory.

[70] RFC2104 - H. Krawczyk, M. Bellare, R. Canetti, “HMAC: Keyed-Hashing
for Message Authentication”, February 1997

[71] Wang, X., Yu, H., Wang, W., Zhang, H., and Zhan, T. , “Cryptanaly-
sis on HMAC/NMAC-MD5 and MD5-MAC”, In Proceedings of the 28th
Annual international Conference on Advances in Cryptology: the theory
and Applications of Cryptographic Techniques (Cologne, Germany, April
26 - 30, 2009). A. Joux, Ed. Lecture Notes In Computer Science, vol. 5479.
Springer-Verlag, Berlin, Heidelberg, 121-133.

[72] J. Katz and Y. Lindell, “Aggregate Message Authentication Codes”, In
CT-RSA, Springer-Verlag (LNCS 4964), pages 155-169, 2008.

[73] Castelluccia, C., Chan, A. C., Mykletun, E., and Tsudik, G., “Efficient and
provably secure aggregation of encrypted data in wireless sensor networks”,
ACM Trans. Sen. Netw. 5, 3 (May. 2009), 1-36.

[74] L. Eschenauer and V. Gligor, “A key management scheme for distributed
sensor networks”, In: Proceedings of ACM Computer and Communications
Security, Washington D.C. USA, Nov 2002, pp. 41-47.

[75] M. Zitterbart and E.-O. Blaß, “An Efficient Key Establishment Scheme for
Secure Aggregating Sensor Networks”, In: ACM Symposium on Informa-
tion, Computer and Communications Security, Taipei, Taiwan, Mar. 2006,
pp. 303-310, ISBN 1-59593-272-0.

[76] Jochim Wilke, Erik-Oliver Blass, Felix Freiling, Martina Zitterbart, “A
framework for probabilistic, authentic aggregation in wireless sensor net-
works”, PIK Vol. 32(2), pages 116-126, April 2009. (ISSN 0930-5157)

[77] H.C. van Tilborg, Encyclopedia of Cryptography and Security, Secaucus,
NJ, USA: Springer-Verlag New York, Inc., 2005.

[78] http://www.tinyos.net/tinyos-2.1.0/doc/html/tep125.html

[79] http://www.ist-ubisecsens.org/download.php

112

Chapter 6 : BIBLIOGRAPHY

[80] Karlof, C., Sastry, N., and Wagner, D., “TinySec: a link layer security
architecture for wireless sensor networks”, In Proceedings of the 2nd inter-
national Conference on Embedded Networked Sensor Systems (Baltimore,
MD, USA, November 03 - 05, 2004). SenSys ’04.

[81] Moteiv Corporation, “Telos (Rev B) Datasheet”, http://www.moteiv.com,
Dec. 2004.

[82] CC2420 datasheet, January 2008, available at:
http://inst.eecs.berkeley.edu/ cs150/Documents/CC2420.pdf

[83] Levis, P. and Gay, D., “TinyOS Programming, 2009”, 1st. Cambridge Uni-
versity Press.

113

