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Abstract

In the present dissertation, we propose a simpliĄed mathematical model of
neural dynamics in order to investigate the interplay between synchronization
and communication in biological neural networks. SpeciĄcally, starting from
the physiological aspects of single neurons, we Ąrst examine two of the most
renowned dynamical models used to analytically describe and characterize
the functioning of neurons and neuronal populations. Then, we carefully
analyze a two-dimensional oscillatory model of neural dynamics describing
the Ąring rate activity of excitatory and inhibitory populations of neurons.
Finally, the latter model is exploited to investigate the interplay between
synchronization and communication in networks of neural oscillators, ranging
from simple interconnection conĄgurations to more general topologies.
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Introduction

Consisting of billions of intricately connected neurons, the brain is arguably
one of the most complex dynamical systems in nature, and understanding
the dynamical laws that regulate brain behavior might reveal itself one of the
most challenging and important problems of modern science. The Ąrst mod-
els of brain dynamics date back to the beginning of the 1900s, when Lapique
[8] proposed a simpliĄed electrical model for the generation of spikes in neu-
rons (known as Leaky Integrate-and-Fire, or LIF, model). In 1952 Hodgkin
and Huxley [6] proposed a more sophisticated conductance-based model of
single neuron dynamics by relying on experimental data recorded from a
squid giant axon. Building on these seminal works, computational neurosci-
entists have either focused on more realistic (yet less tractable) conductance-
based models of single neuron dynamics or on analyzing the large-scale
brain behavior arising from many interconnected simple (LIF-like) single-
neuron models [2, 4]. In this thesis, we follow the second route and consider
a simpliĄed model of brain dynamics describing the activity of populations
of excitatory and inhibitory neurons. Precisely, our model is a linear two-
dimensional system where the states describe the (mean) Ąring rate activity
of the excitatory and inhibitory populations. We then model large-scale brain
activity as the interconnection of many of such excitatory-inhibitory (E-I, for
short) systems.

An important feature of our model is that it supports oscillatory behaviors.
Oscillations are ubiquitous features of brain dynamics and many works have
investigated the role of oscillations in the brain, both from an experimen-
tal and theoretical viewpoint. In particular, some works have argued that
oscillations are crucial for the efficient and Ćexible propagation of informa-
tion between different brain areas, see, e.g., [1, 10], or for reliably processing
and storing sensory information, see, e.g., [3]. Other works have linked the
level of synchronization of oscillations between different brain regions to the
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Introduction

correct or pathological functioning of the brain, see e.g., [5, 9].

Building on our simpliĄed networked model of brain activity, here we show
that the level of synchronization between different E-I systems, as captured
by the level of similarity of their natural frequencies, plays a key role in
the information transmission performance of the brain, as quantiĄed by the
Signal-to-Noise ratio (SNR) at the receiver location.

SpeciĄcally, we provide both theoretical and numerical evidence that, if

1. the information content of the to-be-transmitted signal is concentrated
around a single, sufficiently high frequency, and

2. the physical coupling between different E-I systems is dominated by
excitatory connections,

then the best SNR performance is achieved when all E-I systems are charac-
terized by the same natural frequency, i.e., they are completely synchronized.
Although preliminary and based on simplifying assumptions, our analysis
suggest that, to operate efficiently, the brain may require the activity of
different brain regions to be synchronized.

The remainder of the thesis is organized as follows. The Ąrst part is mainly
focused on delineating the simpliĄed neural model that will be exploited to
investigate the relationship between communication and synchronization in
networks of neural oscillators: in the Ąst chapter we start by introducing the
main physiological aspects correlated to the functioning of the neurons and
the nervous system, describing how electrical signals are encoded in action
potentials in order to be effectively carried through networks of neurons, even
over large distances. Chains of actions potentials are usually referred to as
spike trains, which usually convey information through the timing of the ac-
tion potentials. Although spike trains are typically stimulus-dependent as
well as trial-dependent and thus they must be treated probabilistically, they
still can be characterized by the so-called firing rate. In particular, the deĄni-
tions of the Ąring rate will be vastly outlined and explained along the chapter,
where we will also provide some estimation methods of the Ąring rate.

Later on, the second chapter will present two of the most famous neural
models, namely the LIF model and the Firing Rate model. The former is
a renowned single-compartment model that describes the evolution of the
membrane potential of the single neuron through a circuit-like representation,
whereas the latter refers to populations of neurons and focuses on describing
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the evolution of their mean Ąring rates. We will then attempt to establish
a "link" between the two apparently distant models showing how they can
be tightly correlated to each other by means of the deĄnition of Ąring rate.
We will Ąnally derive our simpliĄed Excitatory-Inhibitory model of neural
dynamics by linearizing the equation of the Firing Rate model around an
equilibrium point and assuming that the neuron populations are composed
by either excitatory and inhibitory neurons in accordance with DaleŠs law.
In particular, we will assume that the activity of each neural population can
be described by two variables that encapsulate the averaged dynamics of the
excitatory and inhibitory sub-populations. The end of the chapter will be
largely dedicated to analyzing the Excitatory-Inhibitory model starting from
computing the eigenvalues of its state matrix and ending up into the careful
analysis of its frequency response function: particular emphasis will be put
on the role of the natural frequency of the E-I oscillator and on highlighting
the conditions that allow us to exploit the resonating behaviour of the model.
Despite its simplicity, the Excitatory-Inhibitory (E-I) model will be able to
reveal its effectiveness in the second part of the thesis.

The spotlight of the second part of thesis will be mainly centered on in-
vestigating the relationship between communication and synchronization in
networks of neural oscillators as deĄned with our simpliĄed E-I model. We
will start by outlining our communication framework, in which we assume
that the propagation of the signal is carried out through a noisy channel,
which returns a corrupted output signal. With this in mind, we will then
introduce the main metric that will be used to quantify the level of quality of
the signal propagation throughout the network, namely the Signal-to-Noise
ratio, shortly SNR. As we will show, higher values of SNR will result into a
better communication performance of the channel: as a result, we will make
use of this relationship in order to Ąnd proof that the frequency synchro-
nization of the nodes actually results in higher values of the SNR. The third
chapter concludes with the formulation of the optimization problem that will
be thoroughly tackled in the following chapters: we will be interested in
Ąnding which values of the natural frequencies actually correspond to the
best propagation of the input signal possible, that is the maximum value
of the SNR, aiming to understand whether the frequency synchronization
of the E-I oscillators implies a better propagation of the input signal (when
concentrated on a single high frequency) or not.

The rest of the second part is dedicated to solving the optimization problem
for several conĄgurations and topologies of the E-I networks: starting from
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the single oscillator dynamics and the simplest interconnections of two E-I
oscillator, i.e., the series and the positive feedback conĄgurations, we will
Ąnally analyze more complex conĄgurations with multiple oscillators. More
speciĄcally, the last part will be focused on more general interconnection
patterns based on directed acyclic graphs, shortly DAG. We will prove that
the synchronization of the nodes actually beneĄts the propagation of the
signal, under accurate circumstances, giving insights on why communication
is actually favored by having synchronized E-I systems in the presence of a
majority of excitatory connections, rather than inhibitory ones.

Lastly, we will discuss the intrinsic limits of the thesis and some future re-
search directions aiming at better understanding the functioning and the
underlying complexity of neural clusters, as well as the role of synchroniza-
tion in communication-oriented networks.
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Chapter 1

The Neuron

In this chapter we analyze the importance of the physiology of the neuron
and the topology of neuronal networks in order to propagate signals rapidly
over large distances. We start by describing the physiological structure of
a neuron and the main features of a neuronal network. Then we focus on
the mechanism that underlies the generation of the action potentials, i.e.,
the spikes that can travel down nerve Ąbers carrying the information. We
then introduce the concept of "Ąring rate", which is the central focus of the
chapter and thus it will be thoroughly investigated. Finally, we present a
way to experimentally estimate the "Ąring rate" through different trials.

1.1 Physiological aspects

Neurons (also called nerve cells) are the fundamental units of the brain and
nervous system, the cells responsible for sending motor commands to our
muscles for receiving sensory inputs from the external world and for process-
ing the electrical signals in our brain.

Neurons are embedded in a network of billions of other neurons and glial
cell (i.e., non-neuronal cells that provide physical and metabolic support
to neurons) that form the brain tissue. The brain is organized in different
regions and areas. The cortex can be thought of as a thin but extended
sheet of neurons, folded over other brain structures. Some cortical areas
are mainly involved in processing sensory inputs, other areas are involved in
working memory or motor control.

13



The Neuron

Neurons are typically classiĄed into three types based on their functions:
sensory neurons, which respond to stimuli of sensory organs and send signals
to the spinal cord or the brain; motor neurons, which control different tasks,
from muscle contractions to glandular output; interneurons, which connect
neurons to other neurons within the same region of the brain.

As shown in Fig. 1.1, a typical neuron can be divided into three functionally
distinct parts, called soma, dendrites and axon: the soma is the cell body,
the dendrites are the extensions of the nerve cell that allow the propagation
of the electrical signal, and the axon is a cable-like projection that carries
nerve signals away from the soma and back to it. The typical branching
structure of the dendritic tree allows a neuron to receive inputs from many
other neurons through the synaptic connections located at the end of the
dendrites.

Roughly speaking, the neuron can be thought of as a simple processing device.
The dendrites play the role of the Śinput deviceŠ, which collects signals from
other neurons and transmits them to the soma. The latter is the Ścentral
processing unitŠ that performs an important non-linear processing step: if
the sum of the inputs arriving at the soma exceeds a certain threshold, then
an output signal is generated. The output signal is taken over by the Śoutput
deviceŠ, the axon, which delivers the signal to other neurons.

Figure 1.1: Schematic structure of a neuron cell.

A group of connected neurons is also called a neural circuit, i.e., a population
of nerve cells interconnected by synapses to carry out a speciĄc function when
activated. Neural circuits interconnect to one another to form large scale
brain networks.

Neurons communicate with each other via synapses which can be excitatory
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1.2 – Action Potential

or inhibitory, either increasing or decreasing the activity in the target neu-
ron, respectively. In particular, from a physiological point of view, the cell
membrane of the axon and soma contain voltage-gated ion channels, that
allow ions, predominantly sodium (Na+), potassium (K+), calcium (Ca2+)
and chloride (Cl−), to move in and out of the cell. This particular Ćow of
ions across the membrane is controlled by the gates in response to voltage
changes and to both internal and external signals.

1.2 Action Potential

The electrical signal of relevance to the nervous system is the difference in
electrical potential between the interior of the neuron and the surrounding
extracellular medium. Under resting condition the potential inside the cell
membrane is kept near to -70 mV (relative to the potential of the surround-
ing bath, conventionally deĄned to be 0 mV). In this scenario, the cell is
said to be polarized. Ion pumps located in the cell membrane maintain the
concentration gradient that supports this potential difference.

Current in the form of positively charged ions Ćowing out of the cell through
open channels makes the membrane potential more negative, i.e. process of
hyperpolarization. On the contrary, current Ćowing into the cell reduces the
membrane potential even to positive values, i.e. process of depolarization. If
a neuron is depolarized sufficiently to raise the membrane potential above a
speciĄc threshold level, the neuron generates an action potential, which is a
Ćuctuation of the membrane potential that has an amplitude of about 100
mV and typically a duration of about 1-2 ms, as shown in Figure 1.2a. Thus,
the action potential corresponds to a voltage pulse or spike.

Action potentials are of great importance because they are the only form
of membrane potential Ćuctuation that can propagate over large distances,
while sub-threshold potential Ćuctuations are severely attenuated over dis-
tances. In fact, the shape of electrical pulse, as shown in Figure 1.2a, does
not change as the action potential propagates along the axon. A chain of
action potentials emitted by a single neuron is generally called a spike train,
namely, a sequence of stereotyped events which occur at regular or irregular
intervals. An example of a set of different spike trains is shown in Figure
1.2b where the vertical axis shows the number of trials and the horizontal
axis represents the time. Each bar represents a single action potential oc-
curring at a precise time. Since isolated spikes of a given neuron look alike,
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The Neuron

(a) Action potential (b) Spike trains

Figure 1.2: In Figure 1.2a the typical shape of an action potential is shown:
starting from a resting potential, when the potential crosses a particular
value, called threshold potential, the neuron spikes and the potential reaches
its peak value. After the spike, the potential falls below the resting potential
with an undershooting trajectory and it relaxes again to the resting potential
during its refractory period. In Figure 1.2b a different set of spike trains
during multiple trials is shown. In particular, each bar represents a single
action potential.

the form of the action potential does not carry any information. Rather, it
is the number and the timing of spikes which matter. It is clear that the ac-
tion potential is basically the elementary unit of signal transmission. Action
potentials in a spike train are usually well separated. Even with very strong
inputs, it is impossible to excite a second spike during or immediately after
a Ąrst one. The minimal distance between two spikes deĄnes the absolute
refractory period of the neuron. The absolute refractory period is followed
by a phase of relative refractoriness where it is difficult, but not impossible
to excite an action potential.

1.3 Firing rate

1.3.1 Spike-count rate

Action potentials usually convey information not through their shape, but
through their timing and are typically treated as identical stereotyped events.

16



1.3 – Firing rate

Thus, an action potential sequence can be characterized as a sum of inĄnites-
imally narrow, idealized spikes in form of the Dirac function, namely the δ
function,

ρ(t) =
n
∑

i=1

δ(t − ti). (1.1)

In Equation (1.1) ρ(t) represents the neural response function, i.e., the neural
activity, which is used to express sums over spikes. Note that counting the
number of spikes corresponds to compute integrals over time of the neural
response function, since the δ function has the fundamental property that

∫ ∞

−∞
f(x)δ(x − x0)dx = f(x0)

and so, assuming that f(x) = 1, we can write

∫ ∞

−∞
1 · δ(x − x0)dx =

∫ ∞

−∞
δ(x − x0)dx = 1.

Neural responses can typically vary from trial to trial even when the same
repeated stimulus is presented, due to the multitude of sources of variability
that can affect neural Ąring, such as randomness associated with biophysi-
cal processes and the effects of other cognitive processes happening during
the trial. The overall complexity of characterizing the relationship between
stimulus and neural response due to the trial-to-trial variability of action
potential sequences make it impossible to be able to describe and predict the
timing of each spike deterministically.

Therefore, neuronal responses are typically treated probabilistically, meaning
that we need to introduce a quantity that can take into account and even-
tually describe the probabilities that different spikes are evoked by speciĄc
stimulus. Thus, the sequences of action potentials might be characterized by
a speciĄc firing rate. This term is generically applied to different quantities,
but the simplest one might be the spike-count rate, namely the time average
of the neural response function over the duration of the trial,

rsp =
n

T
=

1

T

∫ T

0
ρ(τ)dτ. (1.2)

where n =
∫ T
0 ρ(τ)dτ is the number of spikes over the interval [0, T ], which

is the duration of the trial.

17



The Neuron

1.3.2 Time-dependent firing rate

The spike-count rate can be determined in a single trial, but this would mean
losing temporal resolution about the variations of the neural response. The
solution is to average over multiple trials, deĄning a time-dependent firing
rate as the trial-averaged number of spikes appeared during a short interval
between t and t + ∆t, divided by the duration of the interval.

The time-dependent Ąring rate for K different trials is given by

r(t) =
1

∆t

∫ t+∆t

t
⟨ρ(τ)⟩dτ (1.3)

where ⟨ρ(τ)⟩ = 1
K

∑K
i=1 ρi(t) is the trial-averaged neural response function,

namely the average over all the trials of the neural responses ρi(t) obtained
exploiting the same stimulus. Note that the value of ∆t must be large enough
so there are sufficient spikes within the interval to obtain a reliable estimate
of the average.

The deĄnition of the time-dependent Ąring rate shown in Equation (1.3) is
particularly relevant because r(t)∆t can also represent the probability of a
spike occurring during a short interval of duration ∆t around the time t.

As an experimental procedure, the time-dependent Ąring rate measure is a
useful method to evaluate the neuronal activity, in particular in the case
of time-dependent stimuli. The obvious problem with this approach is that
it cannot be the encoding scheme used by neurons in the brain: neurons
cannot wait for the stimuli to repeatedly occur in the exactly same manner
before generating a response. Moreover, the dynamics of many environmental
signals are measured in milliseconds and, during these milliseconds, neurons
can only Ąre once or twice, due to their intrinsic refractoriness. With such a
number of spikes, it seems impossible to encode the signal by their average
rate. Hence, the central problems with the Ąring rate approach are that
not all interesting experiments can be forced into a repeated-trial design and
that averaging across trials requires stationarity across trials, which cannot
be always guaranteed.

These particular issues lead to several questions: can the Ąring rate be seen
as a sufficiently good description of the neural activity? Is it then possible to
reduce the spiking interactions of neurons to the interaction of Ąring rates?

18



1.3 – Firing rate

1.3.3 Neural Coding

Neural coding describes the study of information processing by neurons and
particularly the transduction of environmental signals and internal signals
of the body into neural activity patterns. As we have discussed, much is
known about the biophysics aspects of neural responses, i.e. how a spike is
generated and how the signal transmission takes place at the neurons level.
However, the impact of series of spikes is not well known, and it is even less
clear how the information is encoded and how that information is utilized in
subsequent processing stages.

Moreover, the nature of the neural code is a topic of intense debate within
the neuroscience community. Indeed it is still not clear whether neurons use
rate coding or temporal coding to encode information.

Usually information is carried by single neurons, but is typically encoded by
neuronal populations. When studying population coding, it is necessary to
consider whether the neurons are uncorrelated with each other, meaning that
they act independently, or whether the correlations between the neurons can
actually carry additional information. When analyzing the population code it
is common to consider the response of each neuron statistically independent,
meaning that the spike trains can be combined without taking into account
the correlations between the single spikes.

1.3.4 Firing Rate Estimation

Trying to exactly estimate the time-dependent Ąring rate is not an easy
task and this difficulty is especially due to the lack of data available from
a Ąnite number of trials. Moreover there is not a unique expression that
approximates the Ąring rate r(t), thus many methods can be presented to
give an estimate of r(t).

Here we assume that the data from n spikes trains has been recorded in-
dependent and statistically identical trials. Let (0, T ] denote the duration
of the trials and let 0 ≤ t1 < t2 < · · · < tn ≤ T be the spike times for a
particular train of spikes. We will denote the estimated Ąring rate with r̂.

One of the oldest methods of dealing with time-dependent Ąring rate exploits
the concept of "instantaneous Ąring rate" where the reciprocal values of the
interspike intervals (also called ISI) are used to determine the Ąring rate.
The instantaneous Ąring rate for a given spike train t1, t2, . . . , tn, at a time t
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The Neuron

is estimated as:

r̂(t) =
1

ti − ti−1
, ti−1 ≤ t < ti. (1.4)

In order to obtain an approximate estimate of the Ąring rate from a few spike
trains, time averaging over short time intervals is performed. This process
is called binning and it is used in various Ąring rate estimation methods.
For this particular method, n spike trains under independent and identical
statistical trials are taken and superimposed. The observation time T is
divided into Nb discrete time bins of width ∆t and the number of spikes in
the ith bin, across all trials, is denoted by Σi. Thus, the Ąring rate r̂(t) for
the ith bin is estimated as

r̂(t) =
Σi

n∆t
, for t ∈ [(i − 1)∆t, ∆t]. (1.5)

The same process is repeated for each one of the Nb bins to compute a
piece-wise constant function (similar to a time histogram) representing the
estimated Ąring rate. As a consequence, the estimated Ąring rate r̂(t) will
be quantized and although this method is very easy to implement, it might
not portray the Ąring rate Ćuctuations accurately among all the trials. In
particular, the width ∆ of each bin is a critical parameter: decreasing ∆t
would mean increasing the temporal resolution of the resulting Ąring rate, but
this would also mean having a loss of resolution for distinguishing different
rates.

In order to avoid a quantized Ąring rate, we could instead take a moving
average obtained through a sliding window of duration ∆t which slides along
the spiking train counting at each step the number of spikes that are within
the window. Therefore, for spike time data t1, t2, . . . , tN the Ąring rate r(t)
will be approximated as the sum of a window function over the times ti,

r̂(t) =
N
∑

i=1

κ∆(t − ti) (1.6)

where the window function κ∆(t) with bandwidth ∆ is

κ∆(t) :=







1/∆ if − ∆/2 ≤ t ≤ ∆/2

0 otherwise.
(1.7)

Mathematically, this is equivalent to the convolution of the data with the
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1.3 – Firing rate

window function, so Equation (1.6) can be rewritten for ∆ → 0 as the fol-
lowing convolution integral

r̂(t) =
∫ ∞

−∞
κ∆(τ)ρ(t − τ)dτ, (1.8)

where ρ(t) is the neural response and κ∆(t) is the window function, where
∆ is the bandwidth or the so-called smoothing parameter. In particular,
the convolution integral in Equation (1.8) can be seen as the output of a
linear system with input ρ(t) and impulse response κ∆(t), where the latter is
typically referred to as filter kernel or kernel function. The kernel function
must satisfy these condition:

κ∆(t) ≥ 0, (1.9a)

∫ ∞

−∞
κ∆(τ)dτ = 1, (1.9b)

∫ ∞

−∞
τκ∆(τ)dτ = 0. (1.9c)

Instead of a rectangular-shaped sliding window, the window function could
be a Gaussian function, whose plot is presented in Figure 1.3a:

κγ
σ(t) =

1

σ
√

2π
exp

{(

− t2

2σ2

)}

(1.10)

where the parameter σ rules the temporal resolution of the approximated
Ąring rate r̂(t). Using this particular Ąlter kernel, which is a continuous
window function, allows us to obtain a smoother Ąring rate.

Eventually, in order to take into account that each postsynaptic neuron has
access at time t only to the spikes that occurred before t, we could introduce
a causal window function, like the α-function, as exempliĄed in Figure 1.3b:

κexp
α (t) = [α2t exp¶(−αt)♢]+ (1.11)

where by [x]+ we denoted the function

[x]+ =







x if x ≥ 0

0 otherwise.

For the alpha function the temporal resolution of the estimated Ąring rate
r̂(t) is given by the parameter 1/α.
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(a) Gaussian Kernel (b) Alpha function

Figure 1.3: Figure 1.3a shows the plot of the gaussian kernel, where we
set σ = 2. Figure 1.3b shows the plot of the alpha function. where we set
α = 0.8. In this last case, it is possible to notice that the plot is asymmetrical,
since the function is causal.

The choice of the free parameter ∆ is a crucial problem with the kernel
smoothing method since it affects the smoothness of the Ąring rate esti-
mate and highlights the temporal structure of the underlying spiking activity.
There are many ways to compute an optimized kernel bandwidth in order to
minimize the error between the estimate r̂(t) and the Ąring rate r(t). Further
details can be found for example in [11].

Example of estimation of the Firing rate

In this section we show the different estimated Ąring rate plots obtained using
the different kernel functions described and shown above. In particular, we
start from a set of N trials, where each trial is characterized by a different
spike train (plotted with a set of bars representing the sequence of spikes).
Each spike train is generated by means of an apposite Matlab function: we
suppose that the generation of the spikes can be modelled as a Poisson process
with rate (or intensity) λ, and thus we obtain the set of N spike trains
and duration T , as shown in Figure 1.4a. We then Ąlter the data with the
different window functions (respectively, the rectangular window function,
the Gaussian kernel and the alpha function) to estimate the Ąring rate of
the N different trials and obtain an estimation of the Ąring rate through the
trials. The results are shown in Figure 1.4b.
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1.3 – Firing rate

(a) Set of spike trains during N trials.
(b) Firing rate estimation with different
Ąlter functions

Figure 1.4: In Figure 1.4a our set of N = 10 spike trains is shown: each
bar represents a spike occurring at a precise time. The spiking events are
modelled as a Poisson process with rate λ = 10. Figure 1.4b shows the results
of the estimation of the Ąring rate.

The code used to generate the spike trains and the plots can be found in
Appendix C.
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Chapter 2

Neural Models

When modeling neurons, there are two types of complexity that must be
taken into account: the intricate and rich dynamics of the neurons and the
elaborate morphology of the neural networks, which allows neurons to receive
and integrate inputs from so many other neurons. Neural models range from
oversimpliĄed models to highly detailed descriptions, involving lots of differ-
ential equations. It is obvious that oversimpliĄed models can give misleading
results, but they generally help to understand the underlying structure and
behaviour when handling intricate networks of neurons. There should be a
clear trade-off between the amount of detail that can be devoted to modeling
each neuron (or even each synapse) and the size of complexity of the network
that can be reached.

The aim of this text is to present two of the simplest, yet effective, mod-
els that can describe the neuron per se and consequently the network in
which neurons are interconnected: the integrate-and-fire model, also known
as spike-based model, and the firing-rate model. Integrate-and-Ąre models are
generally used to describe the dynamics of single neurons. This particular
model allows simulations of networks with even thousands of neurons, thanks
to its simplicity, and it attempts to describe the single neuron starting from
its biophysical behaviour.

On the other hand, Ąring-rate models avoid the time scale dynamics required
to simulate action potentials and are much easier to simulate and run on
computers. They also allow to treat some aspects of network dynamics that
could not be treated in the case of spike-based models and can actually be
used to build simpliĄed versions of the network by means of "averaging units",
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so that the output of the model unit is simply the average of the Ąring rates
of the neurons that the model collectively represents. However, one of the
Ąring-rate models limitations is that they are usually restricted to cases where
the Ąring of neurons in a network is uncorrelated and with little synchronous
Ąring.

2.1 Integrate-and-Fire Models

To a Ąrst approximation, the neuronal dynamics can be conceived as a sum-
mation (or "integration") process combined with a mechanism that triggers
action potentials above some threshold voltage. In order to build a phe-
nomenological model of neuronal dynamics, we describe the critical voltage
for spike initiation by a formal threshold Vth. If the voltage V (t) (that con-
tains the summed effect of all inputs reaching the neuron) reaches Vth from
below, we say that the neuron spikes. The moment of threshold crossing
deĄnes the Ąring time tf .

This model exploits the fact that neuronal action potentials of a given neuron
usually have the same shape. Under this basic assumption, it is clear that
the shape cannot be used to transmit information: rather information is
contained in the presence or absence of a spike. Thus, action potentials are
reduced to simple ŚeventsŠ that happen at a precise moment in time.

Neuron models where action potentials are described as events are called
ŠIntegrate-and-FireŠ models. Generally speaking, integrate-and-Ąre models
usually comprise two separate components which are apt to describe the dy-
namics of the spiking neuron: Ąrst, a differential equation that describes the
evolution of the membrane potential V (t); and second, an intrinsic mecha-
nism through which the neuron generates spikes when crossing a threshold
value. In the next section we will derive them considering the biophysical
behaviour of a single neuron.

2.1.1 ‘Leaky Integrate-and-Fire’ Model

The term integrate-and-fire model usually refers to many different models,
but here we will introduce and describe the simplest one in the class of spike-
based models, the so-called ŚLeaky Integrate-and-FireŠ model, also called
"LIF model".

As mentioned in the previous chapter, a neuron typically Ąres an action
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2.1 – Integrate-and-Fire Models

potential when its membrane potential V (t) reaches a threshold value Vth

which usually is in the range between −55 and -50 mV. During the action
potential, the membrane potential V (t) follows a stereotyped trajectory and
the returns to its hyperpolarized value, relative to the threshold potential
Vth.

Therefore, the integrate-and-Ąre models exploits this simple mechanism: an
action potential, which basically can be perceived as a spike, occurs whenever
the membrane potential of the neuron reaches a threshold value Vth. After
the action potential, the potential is instantaneously set to a precise reset
value Vreset. Despite its simplicity, due to the absence of further biophysical
descriptions, the integrate-and-Ąre is still an extremely powerful description
of the neuron activity.

In particular, the LIF model is a so-called single-compartment model, mean-
ing that the membrane potential of a single neuron can be described by a
single variable V (t), in contrast with multi-compartment models which can
also describe the spatial variations of the membrane potential. In general, the
cell membrane creates a capacitance Cm (which typically varies from 0.1 to
1 nF) and can be characterized by a membrane resistance Rm (which might
vary considerably among cells, but it is typically in the range from 10 to 100
MΩ). The product of the membrane capacitance Cm and the membrane re-
sistance Rm is a quantity called membrane time constant τm = RmCm which
typically is in the range 10 to 100 ms.

Equation (2.1) shows the dynamics of the membrane potential V (t) for a
single-compartment model, stating that the rate of change of the membrane
potential V (t) is proportional to the total amount of current entering the
neuron:

cm

dV (t)

dt
= −im +

Ie

A
. (2.1)

The membrane current im
1 is usually characterized as a current per unit

area, hence in Equation (2.1) A denotes the surface area of the neuron, cm =
Cm/A is the speciĄc membrane capacitance, while Ie denotes an eventual
external current injected into the cell, for example through an electrode.

1 Each ion channel i of the membrane can be characterized by a speciĄc conductance gi

and with a reversal potential, also called Nernst potential, Ei, such that when V (t) = Ei

there is no Ćow of current through the channel i. The total membrane current im per

unit area can be obtained by summing the currents over the different channels: im =
∑

i
gi(V (t) − Ei).
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The structure of such Equation recalls the model of an electrical circuit,
the so-called equivalent circuit, consisting of a single capacitor and a set of
conductances respectively representing the cell membrane capacitance and
the ion channels in the cell membrane.

In the simplest version of the LIF model, all the active conductances of the
ion channels are ignored and the entire membrane conductance gm = 1/rm

is modeled as a passive leakage term, im, lk = glk(V (t) − Vrest), where glk is
the so-called leakage conductance.

This leads to the following dynamics:











cm

dV (t)

dt
= −glk(V (t) − Vrest) +

Ie

A
, V (t) < Vth,

V (t) = Vreset, V (t) ≥ Vth,
(2.2)

where V (t) is the momentary value of the membrane potential, namely the
momentary value of the action potential of the neuron, Ie(t) the input cur-
rent from a possible external source, and Vrest, Vreset, Vth the resting, reset,
threshold potential, respectively.

By multiplying Equation (2.2) by the speciĄc membrane resistance rm, we
can rewrite the basic Equation (2.3) of the leaky integrate-and-Ąre model as
follows:











τm

dV (t)

dt
= −(V (t) − Vrest) + RmIe(t), V (t) < Vth,

V (t) = Vreset, V (t) ≥ Vth,
(2.3)

where Rm = rm/A is the membrane resistance, τm = rmcm = RmCm is the
membrane time constant.

According to this model, whenever V (t) reaches the threshold value Vth an
action potential, i.e., a spike, is Ąred and the potential V (t) is reset auto-
matically to Vreset. The equivalent electric circuit is depicted in Figure 2.1.

According to this model, whenever V (t) reaches the threshold value Vth an
action potential, i.e. a spike, is Ąred and the potential V (t) is reset automat-
ically to Vreset.

Equation (2.3) also indicates that when Ie = 0 the membrane potential V (t)
relaxes exponentially with time constant τm to its rest value Vrest. As we
mentioned before, for a typical neuron the membrane time constant τm is
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Figure 2.1: Equivalent model of a LIF model.

approximately around 10 ms, and hence rather relevant compared to the
duration of a spike, which is approximately on the order of 1 ms.

In addition, the Ąring rate of a LIF model can be computed analytically
with constant input current Ie: in fact, the subthreshold potential V (t),
meaning the value of the potential V (t) under the threshold value Vth, can be
determined by solving Equation (2.4), which is the solution of the differential
Equation (2.3) for Ie(t) = Ie:

V (t) = Vrest + RmIe + (V0 − Vrest − RmIe) e
− t

τm

= V∞ + (V0 − V∞) e
− t

τm ,

(2.4)

where we denoted with V0 the initial value of the membrane potential V0 =
V (t = 0) and with V∞ = Vrest + RmIe the equilibrium potential.

The subthreshold potential always follows the same trajectory, therefore we
can assume that at t = 0 the neuron is at the reset potential, so that
V0 = Vreset and that the next action potential will occur when the mem-
brane potential reaches the threshold value Vth at time t = tisi.

In case of a constant input current Ie, the interspike interval tisi, which
is deĄned as the time it takes to a membrane potential to reach the Ąxed
threshold value Vth can be computed from Equation (2.4) as a function of Ie

Vth = V∞ + (Vreset − V∞) e
−

tisi

τm . (2.5)
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We can then solve the Equation for tisi:

tisi = τm ln

(

V∞ − Vreset

V∞ − Vth

)

= τm ln

(

RmIe + Vrest − Vreset

RmIe + Vrest − Vth

)

. (2.6)

A Ąnite value of tisi is obtained only if RmIe + Vrest − Vth ≥ 0, meaning that
only currents Ie ≥ (Vth − Vreset)/Rm produce spikes. This can be easily seen
in Figure 2.2 where the evolution of the potential V (t) for different values
of input constant current Ie is shown. The plots were generated with an
apposite Matlab code, which can be found in Appendix C.

Figure 2.2: Plots of the potential V (t) for different values of constant input
current Ie. It is possible to see that, in order to spike, the neuron has to
receive an input current Ie > 1.5 mA.

By exploiting the approximation r ≈ 1
tisi

= risi, it is possible to determine
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the Ąring rate r:

r ≈ risi =
1

tisi

=

(

τm ln

(

RmIe + Vrest − Vreset

RmIe + Vrest − Vth

))−1

=: f(Ie). (2.7)

The last equation is valid if RmIe > Vth − Vreset, otherwise r(t) = 0. The
function f(·) is called activation function, which basically is the function that
relates the input current to the Ąring rate of the neuron in the steady-state
regime. The plot of the activation function is shown in Figure 2.3.

Figure 2.3: Plot of the activation function with the following parame-
ters Rm = 10 MΩ, τm = 10 ms, Vreset = −75 mV , Vrest = −70 mV ,
Vth = −55 mV , Vspike = 20 mV .

Seeking an approximate formula for the interspiking interval tisi, we can write

tisi = τm ln

(

RmIe + Vrest − Vth + Vth − Vreset

RmIe + Vrest − Vth

)

= τm ln

(

1 +
Vth − Vreset

RmIe + Vrest − Vth

)

and exploiting the approximation ln (1 + x) ≈ x, for sufficiently small values
of x, we can obtain, for sufficiently large values of Ie

tisi ≈ τm(Vth − Vreset)

RmIe + Vrest − Vth

,
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and consequently for the Ąring rate

r ≈ 1

tisi

≈ − Vth − Vrest

τm(Vth − Vreset)
+

1

Cm(Vth − Vreset)
Ie = α + βIe, (2.8)

which gives us a linear approximation of the function f(Ie) displayed in
Equation (2.7) and shows that r grows linearly with Ie, for sufficiently large
values of Ie.

In case of a non-constant yet slowly time-varying input current Ie(t), we
can assume that the Ąring rate will eventually follow the Ćuctuations with
an intrinsic delay, therefore it is legit to model the Ąring rate through the
following low-pass Ąlter equation

τr

dr(t)

dt
= −r(t) + f(Ie(t)), (2.9)

where τr is the Ąring rate constant, which describes how rapidly the Ąring
rate r reaches its steady-state value. A similar result will appear in the next
section, in which we will derive the basic equation of a Ąring rate model. For
further details on the LIF model and its properties, see, e.g., [2].

2.1.2 Validity of the model

The leaky integrate-and-Ąre model is an extremely simpliĄed neuron model
and we cannot expect it to explain the complete biochemistry and biophysics
of neurons. However, the integrate-and-Ąre model is surprisingly accurate
when it comes to generating spikes, i.e., precisely timed events in time. Thus,
it could potentially be a valid model of spike generation in neurons, or more
precisely, in the soma.

As discussed above, neurons not only show refractoriness after each spike
but also exhibit adaptation which builds up over hundreds of milliseconds.
A simple leaky integrate-and-Ąre model does not perform well at predicting
the spike times of a real neuron. However, if adaptation (and refractoriness)
is added to the neuron model, the prediction seems to work quite well.

As we will see, it is possible to make the transition from single-neuron mod-
els to large and structured populations. This does not mean that we can
understand the full structure of the brain, but understanding the principles
of large populations of neurons from simpliĄed neuron models is a Ąrst and
important step in this direction.
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2.2 Firing-Rate Models

Firing-rate models are often used when studying networks or populations
of neurons since it does not consider the behaviour of the single neuron, in
particular the action potential as an "event", but the overall Ąring rates of
the network of N neurons.

As we discussed before, the sequence of spikes generated by a neuron is com-
pletely characterized by the neural response function ρ(t), which consists of
δ function spikes located at times when the neuron Ąred action potentials. In
Ąring-rate models the description of a spike sequence provided by the neural
response function ρ(t) is replaced by the approximate description provided
by the Ąring rate r(t). This replacement is justiĄed by the assumption that
each neuron of the network has a large number of inputs. The replacement
is also possible if we assume that the quantities of relevance for network dy-
namics are relatively insensitive to the trial-to-trial Ćuctuations in the spike
sequences represented by ρ(t).

Indeed, for any single synaptic input, the trial-to-trial variability is likely
to be quite large. However, for uncorrelated presynaptic spike trains, using
presynaptic Ąring rates in place of the actual presynaptic spike trains may
not signiĄcantly modify the dynamics of the network. On the other hand,
the Ąring rate model will fail to describe a network where the presynaptic
spike trains are correlated: this could happen for example when the neurons
spike synchronously.

2.2.1 Derivation of the model

In a Ąring-rate model, each neuron i can be described at time t by a Ąring rate
ri(t), where i = 1,2, ..., N and N is the number of neurons in the network.
As shown in Equation (2.7), each Ąring rate relaxes with a time-constant τr

to a steady-state value given by the activation function f , which describes
the relationship between Ąring rate and input current for the neuron.

The total input current I(t) for a neuron i is the sum of the input Ie,i(t) from
sources outside the network, such as sensory input, and a term describing
the total synaptic input Is,i(t) reaching the neuron i from other neurons of
the same network. Building on the Ąring rate analysis of the LIF dynamics
and, in particular, on Equation (2.7), the resulting dynamics for the Ąring
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rate ri(t) of the i-th neuron is taken to be of the form:

τr

dri(t)

dt
= −ri(t) + f (Ie,i(t) + Is,i(t)) (2.10)

where τr is the Ąring rate time constant, which characterizes the time scale
of variation of the Ąring rate, and the function f is the so-called activation
function which is typically taken to be a function similar to the one that
we found in Equation (2.7). In particular, examples of activation functions
include the linear-threshold (or ReLU) function and the sigmoid function2.

In order to describe the synaptic input current Is,i(t), let us now assume that
the postsynaptic neuron i receives M synaptic inputs from M presynaptic
neurons, labeled by j = 1, . . . , M . If an action potential arrives at input j
at time 0, we can write the synaptic current generated in the soma of the
postsynaptic neuron at time t as wijκ(t), where wij is the synaptic weight
and κ(s) is called synaptic kernel, which in particular describes the temporal
evolution of the synaptic current in response to a presynaptic current. In
particular the synaptic weights wij will take positive values for excitatory
synapses, and negative values for inhibitory synapses.

Under the assumption that the effect of the spikes sum linearly at each
synapse, the total synaptic current from input j at time tk can be formulated
as

wij

∑

tk≤t

κ(t − tk) = wij

∫ t

−∞
κ(t − τ)ρj(τ)dτ (2.11)

where ρj(τ) denotes the neural response of the presynaptic neuron j. The
total synaptic current coming from all presynaptic neurons can be computed
by summing over the presynaptic neurons j

Is,i =
M
∑

j=1

wij

∫ t

−∞
κ(t − τ)ρj(τ)dτ. (2.12)

In order to obtain the Ąring-rate model, the neural response of the presynap-
tic neuron ρj(t) is replaced by the Ąring rate of the presynaptic neuron rj(t).

2 A sigmoid function is a mathematical function having a characteristic "S"-shaped

curve or "sigmoid" curve. This function is bounded, differentiable, real and deĄned for all

real input values; it has a non-negative derivative at each point and exactly one inĆection

point.
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This step is typically justiĄed by invoking mean-Ąeld arguments, which ulti-
mately boils down to the application of the central limit theorem [7]. Under
this assumption, Equation (2.12) becomes

Is,i =
M
∑

j=1

wij

∫ t

−∞
κ(t − τ)rj(τ)dτ. (2.13)

The synaptic kernel is usually taken to be an exponential, such as κ(t) =
exp¶(−t/τs)/τs♢, so that we can rewrite (2.13) as follows:

Is,i =
M
∑

j=1

wij

∫ t

−∞

1

τs

e
− (t−τ)

τs rj(τ)dτ. (2.14)

In this case, Equation (2.14) can be seen as the forced response of the fol-
lowing dynamical model of Equation (2.15):

dIs,i

dt
= − 1

τs

Is,i +
M
∑

j=1

(

wij

τs

)

rj, (2.15)

which can be rewritten as

τs

dIs,i

dt
= −Is,i +

M
∑

j=1

wijrj (2.16)

Together, (2.10) and (2.16) can be used to describe the dynamics of a pop-
ulation of neurons. To reduce the analysis to a single rate equation, it is
often assumed that the rate dynamics is signiĄcantly slower than the synap-
tic current dynamics, namely τr ≫ τs. Under this assumption, from (2.16), it
follows that Is,i =

∑M
j=1 wijrj. By substituting the latter expression in (2.10),

we obtain the rate dynamics

τr

dri

dt
= −ri + f





M
∑

j=1

wijrj + Ie,i



 . (2.17)

By introducing the matrix of synaptic weights W = [wij]i,j=1,...,M ∈ R
M×M ,the

vector of Ąring rates r = [r1 · · · rM ]⊤, and the vector of external currents
Ie = [Ie,1 · · · Ie,M ]⊤, (2.17) can be written in compact form as

τr

dr

dt
= −r + f (W r + Ie) , (2.18)

where in this case the function f is applied elementwise to the components
of the vector W r + Ie.
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2.2.2 Linearized model and Dale’s law

It is often relevant to consider the behavior of the Ąring rate around an
operating point of the neural activity, that (2.18) admits an equilibrium r̄

obtained for a constant input current Īe (where we make the implicit as-
sumption that such an equilibrium does exist). To this aim, one can consider
the linearization of (2.18) around such an operating point, which leads to
the linear model:

dx

dt
=

1

τr

(−I + αW ) x + αu, (2.19)

where I denotes the identity matrix, x = r − r̄, u = Ie − Īe, and α =
d

dx
f(x)

∣

∣

∣

x=W r̄+Īe

> 03.

Neurons are usually classiĄed as either excitatory or inhibitory, depending
on the effects they have on all of their post-synaptic nodes. This particular
behaviour of neurons is summarized by DaleŠs principles, which basically
states that that a neuron performs the same chemical action at all of its
synaptic connections to other cells, regardless of the type of the target cell.

To put it simply, the neuron cannot excite some of its post-synaptic neurons
and inhibit others. As a consequence, the entries of any given column of the
synaptic matrix W , must have the same sign, either positive or negative.

By partitioning the vector x in (2.19) into excitatory and inhibitory parts

x =

[

xe

xi

]

,

where xe and xi comprise the excitatory and inhibitory components, respec-
tively, and the synaptic matrix W and input vector u accordingly

W =

[

Wee −Wei

Wie −Wii

]

, u =

[

ue

ui

]

where all blocks Wee, Wei, Wie, Wii have non-negative entries, we can

3 The coefficient α is assumed to be positive since commonly used activation functions

are monotonically increasing.
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rewrite (2.19) as follows



































dxe

dt
=

(

− 1

τr

I + αWee

)

xe − αWeixi + αue

dxi

dt
=

(

− 1

τr

I − αWii

)

xi + αWiexe + αui

(2.20)

Having mixed excitatory-inhibitory subpopulations leads to models that ex-
hibit richer dynamics than single population models. In fact, in models with
excitatory and inhibitory subpopulations, the full synaptic weight matrix is
not symmetric and network oscillations can arise.

The model represented by equations (2.20) will be exploited to investigate
and eventually describe the behavior of interacting populations of inhibitory
and excitatory neurons in the brain.

2.3 Excitatory-Inhibitory Model

As we discussed in the previous chapters, brain functioning depends on the
interaction among different regions of the cortex, which exchange informa-
tion via a complex connectivity network and work together in a coordinated
manner to realize cognitive tasks.

In particular, it is known that the nervous tissue can generate oscillatory
activity in many ways, driven either by the mechanism within the single
neurons or by the interaction between different clusters of neurons.
As for single neurons, oscillations can arise either as oscillations in membrane
potential or as rhythmic patterns of action potentials and spikes, which con-
sequently produce oscillatory activation on the post-synaptic neurons. On
the other hand, at the level of neural populations and networks, synchronized
activity of large numbers of neurons can produce macroscopic oscillations,
which can be measured by techniques such as EEG (i.e. "electroencephalog-
raphy").

The interaction between neurons usually cause oscillations at frequencies
that might differ from the Ąring frequency of individual neurons and a well-
known example of macroscopic neural oscillations is so-called alpha rhythm,
i.e. neural oscillations in the frequency range of 8Ű12 Hz. Moreover, neural
oscillations also play an important role in many neurological disorders and
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are typically characterized by wide-ranging functions that vary for different
types of oscillatory activity.

In this section, we continue with the analysis by presenting a simpliĄed yet
tractable neural model based on the interaction between excitatory and in-
hibitory neurons that will be discussed and then exploited throughout the
text to study the oscillatory phenomena.

More speciĄcally, we will start by analytically investigating the activity of
a simple neuronal model and then we will attempt to show how the model
derived from it can be actually useful to describe and disclose the dynamics
of the underlying neural coding and communication framework.

2.3.1 A simplified E-I model

Let us now consider a simple neural assembly representing a particular neural
population P, shown in Figure 2.4 and comprising two distinct yet interacting
subgroups Se and Si of interconnected neurons, such that the synapses of
the former are excitatory while the synapses of the latter are inhibitory:
this means that they will respectively increase or reduce the likelihood that
the neuron will spike an action potential, as we discussed in the previous
chapters.

Figure 2.4: Schematic representation of the neural assembly we take into
account: in particular, the neural population P is divided into two distinct
subgroups of neurons, respectively Se and Si, according to the type of their
synapses.
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We let the (linearized) Ąring rate dynamics of such neural population be
described by (2.20). To further reduce the complexity of this model, we
assume that each subgroup Sk (with k = e, i) can be described by its mean
activity xk, meaning that we average the neural activity of each subgroup
Sk of the population P, in order to consider separately the two subgroups.
Each subgroup Sk of the population P interacts with the other one Sj (with
j = i, e) through a link of weight ωjk (i.e. from k to j) and with themselves
with a recurrent link of weight γk; we also assume that both the subgroups
Se and Si are susceptible to receive an input, respectively ue and ui, which
may represent an external current impinging on the corresponding subgroup.
The input value uk might also be affected by a bias βk, through which we
can describe a possible input conditioning.

A schematic representation of the system we are considering is illustrated in
Figure 2.6. We can now describe the dynamics of the mean activity xe and

Figure 2.5: This is a schematic representation of a single neural population
P, where the two excitatory and inhibitory subgroups Se and Si are described
through their mean activity, respectively xe(t) and xi(t).
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xi of each subgroup with the following set of differential equations:







ẋe = γexe − ωeixi + βeue

ẋi = ωiexe + γixi + βiui.
(2.21)

We assume that the recurrent weight γe of the excitatory subgroup Se is equal
to the recurrent weight γi of the inhibitory subgroup Si, so that γe = γi = −γ,
with γ ∈ R

+. We make the simplifying assumption that the links between
the subgroups Se and Si have the same weight ω, with ω ∈ R≥0: this means
that we can write ωei = −ω ≤ 0 and consequently ωie = ω ≥ 0.

Figure 2.6: This is a schematic representation of the simpliĄed model, with
γe = γi = −γ and with ωie = −ωei = ω. In particular, the dynamics of the
model is described by the set of differential equations shown in Equations
(2.21).

Please note that the weight ωei will only assume non-positive values, since
it represents the interaction of the inhibitory subgroup Si on the excitatory
one Se, meaning that it will tend to reduce the activity of this last one. On
the other hand, the weight ωie will consequently assume only non-negative
values.

At a Ąrst analysis, all the variables will be considered time-invariant, meaning
that they are not function of the time.
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It is possible to rewrite the set of equations in a matrix form and obtain the
following state-space representation of our LTI system:

ẋ = Ax + Bu =

[

−γ −ω
ω −γ

]

x +

[

βe

βi

]

u, (2.22)

where A ∈ R
2×2 is the state matrix, B ∈ R

2 is the input matrix, x =
[

xe xi

]T
is the state vector, and u =

[

ue ui

]T
is the input of the model,

namely the vector that contains the signals to be transmitted from the par-
ticular node through the network.

It is worth noting that the state matrix A can be written as

A = −γI + W , W =

[

0 −ω
ω 0

]

.

which is a simpliĄed version of the model (2.20) for scalar excitatory and
inhibitory subpopulations.

In order to achieve our Ąnal model, we will need to make another assumption
on the possible interconnections between different populations ¶Pk}, where
k = 1, . . . , N , each of them comprising an excitatory subgroup Se,k and an
inhibitory subgroup Si,k: in fact, it is reasonable to assume that each pop-
ulation Pk can communicate and transmit information with another similar
population Pj, with j /= k, only via excitatory connections and not via the
inhibitory ones, but this will be detailed later in the section.

At Ąrst, let us assume that the output signal is a linear combination of the
state of the excitatory and inhibitory subgroups, respectively xe and xi. This
yields to the following output Equation (2.23):

y(t) = Cx(t) + Du(t)

=
[

ce ci

]

x(t)
(2.23)

where C ∈ R
1×2 is the output matrix that characterizes the output from the

state vector x and D ∈ R
2×1 is the feedforward matrix. In this case, we

assume that D = O2×1, so that we have no feedforward of the input vector.

Finally, the model of the Excitatory-Inhibitory (E-I) system Σ reads as:






























ẋ =





−γ −ω

ω −γ



x +





βe

βi



u

y =
[

ce ci

]

x.

(2.24)
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In order to determine the eigenvalues of the state matrix A we simply need
to compute the solutions of the following characteristic equation:

det(λI − A) = det

[

λ + γ ω
−ω λ + γ

]

= (λ + γ)2 + ω2

= λ2 + 2λγ + γ2 + ω2 = 0

(2.25)

The two solutions λ1,2 ∈ C of Equation (2.25) are

λ1,2 = −γ ± iω, (2.26)

therefore the system has a pair of complex conjugate eigenvalues, meaning
that the model can exhibit stable or unstable oscillations, according to the
value of the parameter −γ, which is the real part of the eigenvalues λ1,2. In
particular, our model Σ will show asymptotic stability and the oscillations
will asymptotically converge to a stable point if the value of γ is strictly
positive, while the model will show instability and the oscillations will expo-
nentially diverge to inĄnity with a strictly negative γ.

If γ = 0 we obtain two imaginary solutions λ1,2 = ±ω of the characteristic
Equation (2.25) and our model Σ will then exhibit simple stability, thus
stable oscillations. It is clear that we are interested in the case where γ
is chosen to be strictly positive, since we aim to obtain a stable oscillating
model.

Let us now consider the transfer function H(s) of the LTI system Σ shown
in equations (6.1), which can be computed as follows:

H(s) = C
(

sI − A
)−1

B =

=
[

ce ci

]

[

s + γ ω
−ω s + γ

]−1 [
βe

βi

]

=

=
[

ce ci

] 1

(s + γ)2 + ω2

[

s + γ −ω
ω s + γ

] [

βe

βi

]

=

=
1

(s + γ)2 + ω2

[

ce ci

]

[

βe(s + γ) − βiω
βeω + (s + γ)βi

]

=

=
[βece + βici](s + γ) + [βeci − βice]ω

(s + γ)2 + ω2
.

(2.27)

If we reasonably assume that for every neural population P we are consid-
ering only the excitatory subgroup Se can receive an input signal ue and
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2.3 – Excitatory-Inhibitory Model

consequently transmit an output signal y to another excitatory subgroup of
a different neural population, we can simplify our model Σ and rewrite the
transfer function H(s) as:

H(s) = K
s + γ

(s + γ)2 + ω2
, (2.28)

where B = β
[

1 0
]⊤

, C = c
[

1 0
]

and K := βc is the gain of the transfer
function.

Please note that, even though this might seem a strong approximation, it
appears signiĄcantly reasonable, since in neural networks the information
is normally conveyed via excitatory synapses, while the inhibitory synapses
typically serve to controlling and thus limiting the overall communication
when needed.
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2.3.2 Frequency response analysis

We will now restrict the analysis of the transfer function H(s) shown in
Equation (2.28) to the particular case where the input signal of the system
Σ is taken to be a sinusoidal signal with amplitude u0 and varying frequency
σ

u(t) = u0e
jσt.

In this case, we will obtain the frequency response H(jσ) of the system Σ in
response to the sinusoidal input u(t), i.e.

H(jσ) = K
γ + jσ

(jσ + γ)2 + ω2
= K

γ + jσ

(γ2 + ω2 − σ2) + j2γσ
. (2.29)

Under the assumption that the input signal is sinusoidal, the output y(t) of
the system Σ can be easily found exploiting the frequency response H(jσ)
shown in Equation (4.2), which yields to

y(t) = A♣H(jσ)♣ · ejσt+arg(H(jσ)) = y0e
jσt+φ. (2.30)

According to Equation (2.30), the output signal y(t) will as well be sinusoidal
with amplitude y0 = ♣H(jσ)♣u0 and shifted by a phase angle equal to arg(y) =
arg(H(jσ)) with respect to the input signal u(t).

Amplitude analysis

First of all, we are interested in Ąnding whether the transfer function H(jσ)
shown in equation 4.2 has a resonance peak and for which values of the
parameters γ and ω, in order to understand at which frequency σ(γ, ω) the
system Σ will give the maximum ampliĄcation of the input signal u.

Lemma 2.3.1. Given the following frequency response

H(jσ) = K
γ + jσ

(γ2 + ω2 − σ2) + j2γσ

with γ and ω strictly positive, the frequency response has a resonance fre-
quency σpk and thus a resonance peak ♣H(jσpk)♣, with σpk /= 0, if and only if

−γ >
(√

2 +
√

5
)

ω.
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If the resonance condition holds true, the resonance frequency σpk is located
exactly at

σpk =

√

−γ2 + ω
√

ω2 + 4γ2.

Proof. Let us start by analytically computing the module of the frequency
response H(jσ):

♣H(jσ)♣ =

(

σ2 + γ2

(γ2 + ω2 − σ2)2 + 4γ2σ2

)

1

2

. (2.31)

In order to Ąnd the resonance frequency σpk, we can compute the derivative
of ♣H(jσ)♣ with respect to σ and then set it equal to zero. Since the square
root is not relevant for the computation of the derivative, we can compute
directly the derivative of ♣H(jσ)♣2

d

dσ

(

♣H(jσ)♣2
)

=
d

dσ

[

σ2 + γ2

(γ2 + ω2 − σ2)2 + 4γ2σ2

]

=
d

dσ

[

n(σ)

d(σ)

]

= 0,

where n(σ) = σ2 + γ2 and d(σ) = (γ2 + ω2 − σ2)2 + 4γ2σ2.

The last equality can be rewritten as

d

dσ

[

n(σ)

d(σ)

]

=
n′(σ)d(σ) − n(σ)d′(σ)

d(σ)2
= 0,

so the analysis ultimately reduces to computing when numerator is equal to
zero,

n′(σ)d(σ) − n(σ)d′(σ) = 0.

Thus, we can write:

2σ
[

(γ2 + ω2 − σ2)2 + 4σ2γ2
]

− (γ2 + σ2)
[

8γ2σ − 4σ(γ2 + ω2 − σ2)
]

= 0,

we then divide by 2σ, by assuming that σ /= 0, which leads to

γ4 + ω4 + σ4 + 2γ2ω2 − 2γ2σ2 − 2ω2σ2 + 4γ2σ2

−
[

2γ4 − 2ω2γ2 + 2γ2σ2 − 2ω2σ2 + 2σ4
]

= 0

which, after some trivial computational steps, can be reduced to the following
biquadratic equation:

σ4 + 2γ2σ2 + γ4 − ω4 − 4ω2γ2 = 0. (2.32)
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Let us now make the following substitution z = σ2, with z > 0, which
consequently yields to the following quadratic equation

z2 + 2γ2z + γ4 − ω4 − 4ω2γ2 = 0.

The discriminant of the equation is always strictly positive

∆

4
= γ4 + ω4 − γ4 + 4γ2ω2 = ω2(ω2 + 4γ2),

and the solutions of the quadratic equation above are

z1,2 = −γ2 ±
√

∆

4
= −γ2 ±

√

ω2(ω2 + 4γ2).

Only the solution with the plus symbol is acceptable, since z must be strictly
positive by assumption. By recalling the substitution z = σ2, we can write

σ2 = −γ2 ±
√

ω2(ω2 + 4γ2),

σ1,2 = ±
√

−γ2 ±
√

ω2(ω2 + 4γ2).

However, since we are dealing with positive frequency, only the solution with
the plus symbol is acceptable and thus we obtain a unique solution for the
peak frequency σpk (except for the trivial solution σ = 0), which Ąnally is

σpk =

√

−γ2 ±
√

ω2(ω2 + 4γ2).

This last expression is valid only when the argument of the square root is
positive, so we also need to understand for which values of γ and ω this is

true. Let us set ε = γ2

ω2 , we can rewrite the argument under the square root
as a function of ε, leading us to

−γ2 + ω2
√

1 + 4 γ2

ω2 > 0

⇔
√

1 + 4ε > ε

⇔ ε2 − 4ε − 1 < 0

and it is particularly easy to verify that the last inequality holds true if and
only if ε ∈ (0; 2 +

√
5], or alternatively when

0 < γ <
(√

2 +
√

5
)

ω. (2.33)
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Remark. Please notice that the resonance condition above can be further ap-

proximated to 0 < γ <
(
√

2 +
√

5
)

ω ≈ 2ω. When this particular condition

does not hold true, the frequency response ♣H(jσ)♣ will not have a resonance
peak, but we showed that it is reasonable to keep the parameter γ quite small
compared to ω, since we are working with an oscillator model: in fact, the
lower γ is and the more the model will show an oscillating behaviour.

In particular, when we consider γ to be much less than ω, thus the ratio ρ
between the parameter γ and the parameter ω, deĄned as

ρ =
γ

ω
,

tends to zero, the resonance condition 0 < γ < 2ω always holds true and σpk

can be approximated with ω,

σpk =

√

−γ2 ±
√

ω2(ω2 + 4γ2) ≈ ω.

This means that, whenever we take ρ to be near to zero, it is possible to
trigger the system Σ with a sinusoidal signal u = u0 sin(ω0t) and obtain the
maximum ampliĄcation of the signal when the parameter ω is very near to
the frequency of the incoming signal, i.e. ω0. We will say that the system
has the be tuned on the same frequency of the input signal, in order to give
rise to the maximum ampliĄcation possible. As we will see, the entity of the
ampliĄcation will not only be ruled by the choice of the parameters ω and γ,
but also by the choice of the parameters β and c, which represent the signal
conditioning on the input signal and on the output signal, respectively.

In Figure 2.7 we show how the bode plots change according to the entity of
γ with respect to ω which is Ąxed and set to be equal to the incoming signal
frequency ω0.

We might also be interested in evaluating the entity of the ampliĄcation,
under the assumption that ρ tends to zero. By substituting σ = σpk ≈ ω in
(2.31) we obtain

♣H(jσpk)♣ ≈ ♣H(jω)♣ = K

(

ω2 + γ2

γ2 + ω2 − ω2 + 4γ2ω2

)

1

2

= K

(

ω2 + γ2

γ2 + 4γ2ω2

)

1

2

,

(2.34)
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Figure 2.7: Bode plots of the frequency response H(jω) for different values
of γ and Ąxed ω. In particular, the natural frequency of the oscillator is Ąxed
to ω0 = 100 rad/s, while b = c = 10. As we can see, as the ratio ρ = γ/ω
gets smaller, the resonance peak gets narrower and the ampliĄcation given
by the resonance increases.

which can be further simpliĄed into (recall that we are assuming ρ → 0)

♣H(jω)♣ = K
1

2γ
. (2.35)

In particular, we will obtain an ampliĄcation of the input signal whenever the
frequency response H(jσ) shows a resonance peak and its module ♣H(jσ)♣ is
greater than 1, thus

♣H(jω)♣ = K
1

2γ
> 1 ⇐⇒ K = βc > 2γ. (2.36)

This last condition seems to be quite legit under the assumption that ρ tends
to zero, in fact if we divide both the terms by the quantity ω we obtain
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βc

ω
>

2γ

ω
= 2ρ ≈ 0, (2.37)

meaning that we will just need that β and c are strictly positive quantities
in order to have an ampliĄcation. This is due to the fact that keeping γ
very low with respect to ω lets us have a highly-responsive system around
the peak frequency.

Phase Analysis

Lemma 2.3.2. Given the following frequency response

H(jσ) = K
γ + jσ

(γ2 + ω2 − σ2) + j2γσ
,

the phase of H(jσ) is zero for

σ = σ∗ =
√

ω2 − γ2.

Proof. Let us start by computing the phase4 of the frequency response H(jσ),

arg (H(jσ)) = arg(K) + arg(γ + jσ) − arg
(

(γ2 + ω2 − σ2) + j2γσ
)

=

= arctan

(

σ

γ

)

− arctan

(

2γσ

γ2 + ω2 − σ2

)

.

We can now set the phase to zero in order to Ąnd the value σ∗

arg(H(jσ∗)) = 0 ⇔ arctan

(

σ∗

γ

)

= arctan

(

2γσ∗

γ2 + ω2 − σ∗2

)

.

This holds true if and only if

σ∗

γ
=

2γσ∗

γ2 + ω2 − σ∗2

and for σ∗ /= 0, γ /= 0 and γ2 + ω2 − σ∗2 /= 0 we can write

γ2 + ω2 − σ∗2 = 2γ2

4For a generic complex number z = a + jb, we recall that the phase can be computed

as arg(z) = arctan(b/a).
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which ultimately leads to

σ∗ =
√

ω2 − γ2.

Remark. Please note that, even in this case, when γ is taken to be much
smaller than ω, we can approximate σ∗ with the parameter ω. If the fre-
quency response H(jσ) has phase approximately equal to zero when σ is
tuned to ω, the output signal phase arg(y), as described in Equation (2.30),
will then be approximately equal to zero. This means that our simpliĄed
model Σ can tune itself on the input signal frequency in order to amplify it
without introducing any delay into the output signal, since the output signal
y shows the same phase as the input signal u.

In the sequel of the chapter, we will refer to a particular communication
framework as shown in the block diagram of Figure 3.1, where a white noise
signal n(t) is added to the system output y(t) in order to take into account
the fact that the communication between different neuron regions, each of
them described by our model Σ, might be disturbed by a background noise.
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Chapter 3

Problem formulation

3.1 Communication framework

From now on, we will be considering the communication framework illus-
trated in Figure 3.1 where u(t) is the input signal, Σtot is a generic network
of N oscillators Σ1, . . . , ΣN with transfer function Htot(s, ¶ωn,i♢N

i=1), which is
itself function of the natural frequencies ωn,i of the single oscillators, y(t) is
the output signal, n(t) is an additive time-varying noise, which represents the
noisiness during the transmission of the signal. Lastly, ỹ(t) = y(t) + n(t) is
the corrupted output signal which contains the information to be transmitted
y(t) and the noise n(t).

In this text, n(t) is considered to be a white noise, meaning that it is a
random signal with equal intensity at different frequencies. In particular,
n(t) will have zero mean and constant variance σ2. Moreover, the input u(t)
is considered to be sinusoidal with constant amplitude and frequency. This
choice is justiĄed by the fact that the frequency content of the sensory inputs
of the brain are often concentrated around a single frequency.

This particular framework will be useful to investigate either how the different
interconnections between different systems affect the communication and how
the natural frequencies ¶ωn,1, . . . , ωn,N♢ of the single systems can be changed,
adapted, or tuned, in order to obtain the best transmission of information
possible.

In order to do so, we will start by studying a single system Σ1(ωn,1) and then
we will study what happens if we add another system Σ2(ωn,2) interconnected
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Figure 3.1: Schematic of the communication framework considered in the
sequel of the text. The noisiness of the channel is described through an
additive white noise signal n(t) which corrupts the output signal y(t) into
the corrupted signal ỹ(t). In particular, Σ is taken to be a generic network
of N different oscillators, where we can deĄne an input node, i.e. the input
signal receiver, and an output node, i.e. the output signal transmitter.

to the Ąrst one: some simpler cases of interconnection will be presented and
analyzed, like the series or the feedback of two systems Σ1(ωn,1) and Σ2(ωn,2).

This appears to be a problem of optimization of the single natural frequencies:
the aim of the next chapters will be based on Ąnding which set of natural fre-
quencies ¶ωn,1, . . . , ωn,N♢ optimize the communication and the transmission
of the information, given the overall transfer function Htot(s; ¶ωn,i♢N

i=1).

One of the simplest, yet reasonable, metric we could exploit in order to thor-
oughly formalize the problem of the optimization of the natural frequencies is
the signal-to-noise ratio, i.e., the ratio between the power of the meaningful
signal, the information to be transmitted, and the power of the additive noise
signal, which corrupts and affects the overall communication. This speciĄc
metric focuses on the propagation of the signal over the background noise,
meaning that it will characterize how powerful is the signal to be transmit-
ted with respect to the disturbing noise. Please notice that the metric to
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be chosen for the optimization problem is arbitrary and thus not constrain-
ing: other metrics could be used to tackle the problem we presented, yet
the signal-to-noise ratio appears to be quite reasonable and appropriate for
the communication framework we are taking into consideration, at least in a
preliminary stage.

The signal-to-noise ratio will be then presented and extensively described in
the next chapter.

3.2 Signal-to-noise Ratio

In this section, we introduce a speciĄc metric which can be used to describe
the effective propagation of a signal in a noisy communication framework as
the one illustrated in the block diagram of Figure 3.1: the signal-to-noise
ratio, namely the ratio between the signal power and the background noise
power. The signal-to-noise ration is often expressed in decibels.

Definition 3.2.1 (Signal-to-noise ratio). The signal-to-noise ratio (or SNR) is
deĄned as the ratio between the power of a signal (meaningful input) and
the power of the background noise (meaningless input):

SNR =
Psignal

Pnoise

.

If the signal s(t) = A sin(ωt) is taken to be a sine wave with constant ampli-
tude A and angular frequency ω, it is possible to demonstrate that the power
of the sinusoidal signal is equal to its squared Root Mean Square (RMS)
value, namely

Ps(t) = Arms =
A2

2
=

(

A√
2

)2

.

The (statistical) power of a white noise n(t) with zero mean µ and variance
σ2 is equal to its variance, namely

Pn = var[n(t)] = σ2.

The SNR can be Ąnally rewritten as

SNR =
A2

2σ2
=

A2
rms

σ2
=

(

Arms

σ

)2

, (3.1)
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and in decibels

SNRdB = 10 log10

(

A2
rms

σ2

)

= 20 log10

(

Arms

σ

)

. (3.2)

As we can deduce from Equation (3.1), the signal-to-noise ratio is strictly
related to the amplitude of the signal to be transmitted, meaning that the
greater the amplitude of the sinusoidal signal is with respect to the noise the
better the propagation of the signal over the background noise will be.

Now we can apply Equation (3.1) to the communication framework described
in the preceding chapter by replacing s(t) with the output signal y(t).

Under the assumption that the input signal is sinusoidal with constant am-
plitude A and angular frequency ω0,

u(t) = A sin(ω0t),

the output signal y(t) can be computed exploiting the frequency response
♣Htot(jω)♣, which leads to

y(t) = A♣Htot(jω0)♣ sin(ω0 + arg(♣Htot(jω0)♣)) = A′ sin(ω0 + φ),

where we denoted with A′ the amplitude of the output signal y(t) and with
φ the phase of ♣Htot(jω)♣ particularly evaluated at ω0.

Thus, the signal-to-noise ratio can be easily derived from Equation (3.1)

SNR =
(A′)2

2σ
=

1

2σ2
A2♣Htot(jω0)♣, (3.3)

where σ and A are given parameters of the noise n(t) and the input signal
u(t), respectively.

3.3 Optimization problem

The focus of this section is centered on deĄning and formalizing the optimiza-
tion problem that was highlighted and pointed out in the previous section:
since the output signal y(t) is corrupted into ỹ(t) by a random additive noise
signal n(t), in order to have the best propagation of the output signal possi-
ble, we will reasonably need to maximize the signal-to-noise ratio. In other
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words, we will need to minimize the inĆuence of the noise signal n(t) over the
information-transmitting signal y(t). In fact, under this circumstance, the
corrupted signal ỹ(t) can be then approximated to the original uncorrupted
signal y(t).

As we can see from (3.3), the signal-to-noise ratio is directly proportional to
the module of the frequency response of Σtot, that is ♣Htot(jω)♣, speciĄcally
evaluated at ω0, since either A and σ are constant, hence Ąxed parameters.

As we discussed before, the frequency response ♣Htot(jω)♣ is also function
of the natural frequencies of the single systems Σ1, . . . , ΣN , i.e. the set of
natural frequencies ¶ωn,1, . . . , ωn,N♢. For simplicity, we will denote the set of
natural frequencies with ¶ωn,i♢.

This also means that the optimization problem boils down to Ąnding for
which set of values of the natural frequencies ¶ωn,i♢ we obtain the maximum
value of the signal-to-noise ratio, which also means having the best propaga-
tion possible of the information-related signal over the random noise in the
communication framework. Please notice that in the analysis the frequency
of the input signal, that is ω0, will be Ąxed and thus constant.

In mathematical terms, in order to Ąnd the optimal choice of the natural
frequencies, we could deĄne our problem in the following way:

arg max
¶ωn,i♢

SNR ⇐⇒ arg max
¶ωn,i♢

♣Htot(jω0; ¶ωn,i♢)♣. (3.4)

Another question that spontaneously arises is related to the relationship be-
tween the natural frequency and the possible synchronization between the
E-I systems taken into consideration. More speciĄcally, with the term "syn-
chronization" we refer to the fact that two or more E-I systems might be
characterized by natural frequencies that are signiĄcantly near to each other,
hence approximately the same. This property seems to be quite interesting
since the potential synchronization between different E-I systems might result
in a better, if not optimal, propagation of signals carrying the information
throughout the network.
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Single E-I system

Let us now suppose that Σtot comprises only one E-I system Σ1, whose
state matrix A1 is characterized by its corresponding natural frequency ωn,1,
namely

A1 =

[

−γ −ωn,1

ωn,1 −γ

]

.

Therefore, we need to evaluate which value of the natural frequency ωn,1

let us maximize the module of the frequency response ♣Htot(jω)♣ = ♣H1(jω)♣
evaluated at the frequency ω = ω0. In particular, in the analysis, ω0 is Ąxed.

The optimization problem can be reformulated as follows:

ω∗
n,1 = arg max

ωn,1

♣H1(jω0; ωn,1)♣. (4.1)

Now, given the following frequency response

H(jω0; ωn,1) = K
γ + jω0

(γ2 + ω2
n,1 − ω2

0) + j2γω0
, (4.2)

the module is given by

♣H(jω0; ωn,1)♣ = K





ω2
0 + γ2

(γ2 + ω2
n,1 − ω2

0)2 + 4γ2ω2
0





1

2

. (4.3)

and the optimal frequency ω∗
n,1 can be found by computing the derivative of

the module with respect to ωn,1 and setting it equal to zero:

d

dωn,1
♣H(jω0; ωn,1)♣ = 0. (4.4)
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For simplicityŠs sake, we will compute the derivative of the squared module
with respect to the natural frequency ωn,1.

d

dωn,1
♣H(jω0; ωn,1)♣2 = K2 −2ωn,1(ω

2
0 + γ2)(γ2 + ω2

n,1 − ω2
0)

(

(γ2 + ω2
n,1 − ω2

0)2 + 4γ2ω2
0

)2 = 0 (4.5)

This equation has a trivial solution ωn,1 = 0, which will be overlooked, and
a second solution ω∗

n,1, that is

ω∗
n,1 =

√

ω2
0 − γ2. (4.6)

We can see that the assumption that ω0 is taken to be much grater than
γ, i.e., the assumption that the ratio ρ′ = γ/ω0 → 0, leads to the following
approximation

ω∗
n,1 ≈ ω0.

Remark. Considering Equation (4.6), it seems clear that the optimal value of
the natural frequency, i.e., ω∗

n,1, is signiĄcantly near to the value ω0, especially
when ρ′ = γ/ω0 → 0. This means that, given an input signal with high
frequency ω0, the E-I system Σ1 must tune its natural frequency at the same
frequency of the incoming signal, in order to maximize the signal-to-noise
ratio, hence the propagation of the signal over the background noise.

Now, in order to understand for which sets of parameters ¶K, γ, ωn,1♢ we
actually obtain an ampliĄcation of the signal, we impose that ρ′ → 0, hence
ω∗

n,1 ≈ ω0: using this approximation the expression of the module of the
transfer function ♣H(jω0; ω∗

n,1)♣ simpliĄes into the following expression:

♣H(jω0; ω∗
n,1)♣ ≈ K

(

ω2
0 + γ2

γ4 + 4γ2ω2
0

)

1

2

, if ω∗
n,1 ≈ ω0. (4.7)

If we take the limit of ♣H(jω0; ω∗
n,1)♣ as ρ = γ/ω∗

n,1 ≈ γ/ω0 = ρ′ approaches
to zero,

lim
ρ→0

♣H(jω0; ω∗
n,1)♣ = lim

ρ→0
K









ω2
0

(

1 + γ2

ω2
0

)

ω2
0

(

γ2

ω2
0

γ2 + 4γ2
)









1

2

=

= lim
ρ→0

K





ω2
0

(

1 + ρ2
)

ω2
0 (ρ2γ2 + 4γ2)





1

2

(4.8)
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we can further simplify the last expression into

lim
ρ→0

♣H(jω0; ω∗
n,1)♣ = K

(

ω2
0

4γ2ω2
0

)

1

2

= K

(

1

4γ2

)
1

2

= K
1

2γ
. (4.9)

In order to have an ampliĄcation, ♣H(jω0; ωn,1)♣ need to be greater than one:
therefore, under the assumption that ρ → 0, we can impose the following
inequality

♣H(jω0; ω∗
n,1)♣ > 1 ⇐⇒ K

1

2γ
> 1 ⇐⇒ γ <

K

2
. (4.10)

Finally, by recalling that the transfer function gain K was deĄned as K = βc,
where β and c are the parameters of the input and output matrix, B1 and
C1 respectively, we can always impose that the condition above always holds
true, for whichever value of γ we choose.

We can also demonstrate that, using the assumption that ρ → 0 is partic-
ularly convenient also for the phase of the frequency response H(jω0; ωn,1)
evaluated at ω0, since it is equal to zero.

Indeed, if we impose that ω∗
n,1 = ω0, we can rewrite (4.2) as follows

H(jω0; ωn,1) = K
γ + jω0

γ2 + j2γω0
, (4.11)

thus the phase of the frequency response is

arg
(

H(jω0; ω∗
n,1)

)

= arg(K) + arg(γ + jω0) + arg(γ2 + j2γω0) =

= arctan

(

ω0

γ

)

− arctan

(

2γω0

γ2

)

=

= arctan

(

ω0

γ

)

− arctan

(

2ω0

γ

)

=

= arctan

(

1

ρ

)

− arctan

(

2

ρ

)

and taking the limit for ρ → 0+ (since ρ is taken to be strictly positive)
Ąnally leads to

lim
ρ→0+

[

arg
(

H(jω0; ω∗
n,1)

)]

= lim
ρ→0+

[

arctan

(

1

ρ

)

− arctan

(

2

ρ

)]

=

=
π

2
− π

2
= 0.
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Chapter 5

Interconnection of 2 E-I
systems

We will now examine simple cases of interconnections between distinct neural
oscillators that might help us to understand the functioning underlying a
more general and complex network of oscillators.

We will start by studying the case where two E-I neural oscillators, i.e., Σ1

and Σ2, are connected in series and then we will move the focus on the
feedback interconnection between two oscillators.

For every conĄguration we analyze, the aim will be to investigate which set
of values of the parameters of each state matrix Ai, with i = 1,2, maximizes
the signal-to-noise ratio, according to the optimization problem we deĄned
and disclosed in Section 3.3. We stress that, in order to simplify the analysis,
we will often assume that the parameters γ of each E-I oscillator is set to be
much smaller than the frequency of the input signal ω0 and approximately
near to zero.

5.1 Series Connection

Let us start by analyzing a simple case of interconnection between two E-I
systems, i.e., Σ1 with input u1, output y1 and natural frequency ωn,1 and
Σ2 with input u2, output y2 and natural frequency ωn,2. The series implies
that the output of the Ąrst system is also the input for the second system,
i.e., u2 = y1. Thus, the series between the two systems Σ1 and Σ2 can be
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Interconnection of 2 E-I systems

perceived as a system with input u1 and output y2 and will be called Σs,
shown in Figure 5.1. We also assume that the state matrices A1 and A2 of
the systems Σ1 and Σ2, respectively, are characterized by the same value of
γi = γ, while the natural frequencies ωn,1 and ωn,2 of the systems can vary,

A1 =

[

−γ −ωn,1

ωn,1 −γ

]

, A2 =

[

−γ −ωn,2

ωn,2 −γ

]

.

In this case, the aim will be to evaluate for which values of the natural
frequencies ωn,1 and ωn,2 we are able to maximize the module of the frequency
response evaluated at ω = ω0, ♣Htot(jω)♣ = ♣Hs(jω)♣. The optimization
problem can be reformulated as follows:

¶ω∗
n,1, ω∗

n,2♢ = arg max
ωn,1,ωn,2

♣Hs(jω0; ¶ωn,1, ωn,2♢)♣. (5.1)

Figure 5.1: A schematic representation of the series between Σ1 and Σ2: the
output of the Ąrst system is also the input of the second system.

The overall transfer function of Hs(s) can be easily computed with the prod-
uct of the transfer functions H1(s) and H2(s) of the single systems

Hs(s) = H1(s) · H2(s)

and the corresponding response function and its module, both evaluated at
ω = ω0, can be easily derived from the preceding equation:

Hs(jω0; ¶ωn,1, ωn,2♢) = H1(jω0; ωn,1)H2(jω0; ωn,2) (5.2)
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5.1 – Series Connection

and
♣Hs(jω0; ¶ωn,1, ωn,2♢)♣ = ♣H1(jω0; ωn,1)♣♣H2(jω0; ωn,2)♣. (5.3)

In order to solve the optimization problem for the series system Σs, it is
possible to exploit what was derived in the previous section for the single E-I
system, since the two frequency responses are functions only of the respective
natural frequency. This means that the optimal natural frequencies ω∗

n,1 and
ω∗

n,2 satisĄes

ω∗
n,1 = ω∗

n,2 =
√

ω2
0 − γ2,

which in turn implies that the two systems must be "synchronized" on the
same natural frequency.

In addition, when
ρ = γ/ω0 → 0

the maximum value of ♣Hs(jω0; ¶ωn,1, ωn,2♢)♣ is obtained when ω∗
n,1 = ω∗

n,2 =
ω0. In this case, by simply tuning the two natural frequencies ωn,1 and ωn,2

on the frequency of the input signal ω0, we obtain the maximum value of the
module of the frequency response of the overall system, resulting also in the
maximum value of the SNR.

65



Interconnection of 2 E-I systems

5.2 Feedback Connection

In this section we will now focus on analyzing a different type of intercon-
nection, in particular the feedback interconnection between two E-I systems,
i.e. Σ1, Σ2. Indeed, the feedback connection appears to be quite explicative
and useful when we try to describe the case where an E-I system interfere
with another system creating a "loop", as represented below in Figure 5.2.

In order to analyze the more realistic case where the output of the reverse-
path system Σ2 adds up to the input of the forward-path system Σ1, we
will from now on consider only the positive feedback scenario, since we are
assuming that the communication among different populations is carried out
only by the excitatory connections.

Figure 5.2: Schematic representation of the positive-feedback system that
will be analyzed in this section. The feedback signal coming from the system
in the reverse path adds up to the incoming signal, thus the name "positive
feedback".

The transfer function of the overall system ΣF BP with positive feedback can
be easily found as follows:

HF BP (s) =
H1(s)

1 − H1(s)H2(s)
. (5.4)

where H1(s) and H2(s) are respectively the transfer function of Σ1 and Σ2.
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5.2 – Feedback Connection

The expression above leads us to the following transfer function

HF BP (s) =

K1
(s + γ)

s2 + ω2
n,1 + γ2 + 2γs

1 − K1K2
(s + γ)2

(s2 + ω2
n,1 + γ2 + 2γs)(s2 + ω2

n,2 + γ2 + 2γs)

, (5.5)

which, after few simpliĄcation steps, resolves into

HF BP (s) =
n(s)

d(s)

=
K1(s + γ)(s2 + ω2

n,2 + γ2 + 2γs)

(s2 + ω2
n,1 + γ2 + 2γs)(s2 + ω2

n,2 + γ2 + 2γs) − K1K2(s + γ)2

(5.6)

First of all, we need to understand for which values of the parameters K1,
K2, γ, ωn,1 and ωn,2 we actually have a stable system. As we already know,
ΣF BP will be stable if the denominator of its transfer function HF BP (s) has
roots with negative real part. In order to discuss the stability of ΣF BP we
will use the Routh-Hurwitz criterion on the stability of dynamic systems.

5.2.1 Stability of the closed-loop system

The Routh-Hurwitz criterion is a mathematical test that provide a necessary
and sufficient condition for the stability of a linear time invariant dynamical
system. In particular, the test can be used to determine whether all the roots
of the characteristic polynomial of a linear system have negative real parts. If
any control system does not satisfy the necessary condition, then we can say
that the dynamical system is unstable. But, if the dynamical system satisĄes
the necessary condition, then it may or may not be stable. So, the sufficient
condition is helpful for knowing whether the control system is stable or not.

In this case, the characteristic polynomial corresponds to the denominator
of the closed-loop transfer function HF BP (s), that is

d(s) = s4 + 5γs3 + (6γ2 + ω2
n,2 + ω2

n,1 − K1K2)s
2

+ (4γ3 + 2γ(ω2
n,1 + ω2

n,2) − 2K1K2γ)s+

(γ4 + γ2(ω2
n,1 + ω2

n,2) + ω2
n,1ω

2
n,2 − K1K2γ

2). (5.7)
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As we can see, the characteristic polynomial is a fourth-order polynomial in
the form

d(s) = a4s
4 + a3s

3 + a2s
2 + a1s + a0.

The necessary condition states that the coefficients of the characteristic poly-
nomial must be positive, in order to guarantee that all roots are located in
the open left half-plane

ai > 0 for i = 0, . . . ,4. (5.8)

The sufficient condition is that all the elements of the Ąrst column of the
Routh array should have the same sign, meaning that all the elements of the
Ąrst column of the Routh array should be either positive or negative. For a
fourth-order polynomial, the Routh array correspond to

R(d) =



















a4 a2 a0

a3 a1 0
b3 b2 0
c2 0 0
d1 0 0



















(5.9)

where the elements bi, ci and di are computed as

ri,j =

∣

∣

∣

∣

∣

ri−2,i ri−2,j+1

ri−1,i ri−1,j+1

∣

∣

∣

∣

∣

−ri−1,i

.

Thus, the stability of the closed-loop system is guaranteed when

a4, a3, b3, c2, d1 > 0. (5.10)

In particular, the elements on Routh array correspond to:

b3 =

∣

∣

∣

∣

∣

a4 a2

a3 a1

∣

∣

∣

∣

∣

−a3
= 5γ2 − K1K2

2
+

Ω1,2

2
,

b2 =

∣

∣

∣

∣

∣

a4 a0

a3 0

∣

∣

∣

∣

∣

−a3
= a0,

c2 =

∣

∣

∣

∣

∣

a3 a1

b3 b2

∣

∣

∣

∣

∣

−b3
=

γ

b3

[

(K1K2 − 4γ2)2 + Ω2
1,2 + 2Ω1,2(4γ2 − K1K2)

]

,

d1 =

∣

∣

∣

∣

∣

b3 b2

c2 0

∣

∣

∣

∣

∣

−c2
= b2 = a0,
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5.2 – Feedback Connection

where we denoted with Ω1,2 the sum of the squared natural frequencies, i.e.
Ω1,2 = ω2

n,1 + ω2
n,2.

Hence, the closed-loop system is stable if























































a4 = 1 > 0

a3 = 4γ > 0

b3 = 5γ2 − K1K2

2
+

Ω1,2

2
> 0

c2 =
γ

b3

[

(K1K2 − 4γ2)2 + Ω2
1,2 + 2Ω1,2(4γ2 − K1K2)

]

> 0

d1 = a0 = γ2Ω1,2 + ω2
n,1ω

2
n,2 + γ2(γ2 − K1K2) > 0

(5.11)

Since K1, K2, γ > 0, the conditions above are satisĄed ∀ωn,1, ωn,2 ≥ 0 if and
only if



































γ > 0

5γ2 − K1K2

2
> 0

4γ2 − K1K2 > 0

γ2 − K1K2 > 0

⇐⇒ 0 <
√

K1K2 < γ. (5.12)

Please notice that this particular condition also satisĄes the necessary con-
ditions shown in Equation (5.8). Thus, as we can see, the condition above
guarantees that all the poles of its transfer function have negative real part
and that the closed-loop system ΣF BP is stable.
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5.2.2 Numerical insights on the optimal frequencies

In this case, the optimization problem presented in Section 3.3 will resort to
Ąnding for which values of the natural frequencies ¶ωn,1, ωn,2♢ we obtain the
maximum value of the module of the frequency response function HF BP (jω)
when evaluated at ω = ω0, i.e.

¶ω∗
n,1, ω∗

n,2♢ = arg max
ωn,1,ωn,2

(♣HF BP (jω0; ¶ωn,1, ωn,2♢)♣) (5.13)

where HF BP (jω0; ¶ωn,1, ωn,2♢) can be written as

K1(γ + jω0)(ω
2
n,2 − ω2

0 + γ2 + j2γω0)

(ω2
n,1 − ω2

0 + γ2 + j2γω0)(ω2
n,2 − ω2

0 + γ2 + j2γω0) − K1K2(γ + jω0)2
.

(5.14)

In the closed-loop conĄguration, the optimization problem appears to be way
more difficult to solve than the problem with two E-I systems in series. In
order to get some insights on the solution to this problem, we Ąrst evaluate
where the optimal frequencies are located via numerically methods. There-
fore, we prepared a code where, for different values of the natural frequencies
of the systems, i.e., ωn,1 e ωn,2, we compute the SNR in response to a sinu-
soidal signal u(t) = A0 sin (ω0t).

We started by creating two arrays of natural frequencies centered around the
frequency of the incoming signal, i.e., ω0. Then, for each combination of the
natural frequencies, we computed the SNR through the transfer function of
the closed-loop system. The matrix of values of the SNR are then plotted in
a colormap with scaled colors, where each hue correspond to a different value
of the SNR and each point of the map to a value of the SNR computed with
the corresponding natural frequencies on the horizontal and vertical axes. An
example of the colormap obtained with the code is shown if Figure 5.3. The
code and the values of the parameters chosen for this particular simulation
are included in the Appendix D.

Please notice that, in order to get a valid representation of the matrix of SNR
values, we need to make sure that the stability condition shown in Equation
(5.8) holds true. In this case, for example, we chose γ = 10, ω0 = 100,
and K1 = K2 = 9: with these values, the stability condition holds true
and the closed-loop system is stable. As we can see from the Figure 5.3,
the maximum values of the SNR (which are also the brightest points on the
colormap) are condensed in a circular neighbourhood around the optimal
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5.2 – Feedback Connection

Figure 5.3: Colormap of the values of the SNR found with the simulation.

frequencies ¶ω∗
n,1, ω∗

n,2♢. In particular, we can also notice that the center of
the circular neighbourhood has its coordinates exactly at the center of the
values on the horizontal and vertical axes. This also means that we will have
the maximum value of the SNR when the natural frequencies are located
very closely to each other, i.e., when the two E-I systems are "synchronized".
Interestingly, it turns out that the natural frequencies are also close to the
frequency of the input signal (ω0 = 100 in the simulation of Figure 5.3).

Hence, in the next section the main attempt will be focused on investigating
the case in which the two natural frequencies are set to be exactly equal to
the frequency of the incoming signal, resulting in an overall synchronization
of the feedback system. Particular attention will be given to the magnitude
of the closed-loop transfer function, which is also directly proportional to the
Ąnal SNR value.
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5.2.3 The case ωn,1 = ωn,2 = ω0

The case where the two natural frequencies ωn,1 and ωn,2 are taken to be
equal seems particularly interesting, since it might happen that both the E-I
systems Σ1 and Σ2 tune their respective natural frequency on the frequency of
the incoming signal, in order to preserve the synchronization, as we discussed
previously.

Thus, we can start the analysis by rewriting the transfer function of ΣF BP

shown in Equation (5.6) with ωn,1 = ωn,2 = ωn:

HF BP (s) = K1
(s + γ)(s2 + ω2

n + γ2 + 2γs)

(s2 + ω2
n + γ2 + 2γs)2 − K12(s + γ)2

= K1
n(s)

d(s)
, (5.15)

where with K12 we denoted the product between the two gains K1 and K2,
with n(s) and d(s) the numerator and denominator of HF BP (s), respectively.

From now, we are going to analyze the numerator and denominator individ-
ually, in order to get to the Ąnal expressions of the transfer function of the
closed-loop system when the two natural frequencies are set to be same.

After some trivial algebraic steps, the numerator n(s) can be simpliĄed into

n(s) = (s + γ)(s2 + ω2
n + γ2 + 2γs) =

= s3 + ω2
ns + γ2s + 2γs2 + γs2 + γω2

n + γ3 + 2γ2s =

= s3 + 3γs2 + (ω2
n + 3γ2)s + γ3 + ω2

nγ.

(5.16)

Then, we can evaluate n(s) at s = jω0 in order to obtain the numerator of
the frequency response at the particular frequency ω0

n(jω0) = −jω3
0 − 3γω2

0 + j(ω2
n + 3γ2)ω0 + γ3 + ω2

nγ, (5.17)

and setting the natural frequencies of the systems equal to ω0, i.e. ωn = ω0,
Ąnally leads us to the following expression

n(jω0)♣ωn=ω0
= −jω3

0 − 3γω2
0 + j(ω2

0 + 3γ2)ω0 + γ3 + ω2
0γ =

= −jω3
0 − 3γω2

0 + jω3
0 + j3γ2ω0 + γ3 + ω2

0γ =

= −2γω2
0 + γ3 + j3γ2ω0.

(5.18)

On the other hand, the denominator of the transfer function d(s) can be
further simpliĄed into

d(s) = s4 + (4γ)s3 + (6γ2 + 2ω2
n − K12)s

2

+ (4γω2
n + 4γ3 − 2K12γ)s + ω4

n + γ4 + 2γ2ω2
n − K12γ

2. (5.19)
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In an analogous way, we can evaluate the denominator d(s) at s = jω0, in
order to obtain the denominator of the frequency response evaluated at the
frequency of interest ω0

d(jω0) = ω4
0 − j(4γ)ω3

0 − (6γ2 + 2ω2
n − K2

12)ω
2
0

+ j(4γω2
n + 4γ3 − 2K2

12γ)ω0 + ω4
n + γ4 + 2γ2ω2

n − K2
12γ

2, (5.20)

and Ąnally, by setting the natural frequencies of the E-I systems equal to ω0,
i.e. ωn = ω0, we obtain the following expression:

d(jω0)♣ωn=ω0
= ω4

0 − j(4γ)ω3
0 − (6γ2 + 2ω2

0 − K12)ω
2
0 + j(4γω2

0

+ 4γ3 − 2K12γ)ω0 + ω4
0 + γ4 + 2γ2ω2

0 − K12γ
2, (5.21)

which results into

d(jω0)♣ωn=ω0
= (4γ2 − K12) − K12γ

2 + j(2K12γ − 4γ3)ω0. (5.22)

Thus, combining the expressions in equations (5.18) and (5.22), the Ąnal
expression of the frequency response function HF BP (jω) of the positive-
feedback system ΣF BP evaluated at the frequency of the input signal ω0

and with ωn = ω0 results into

HF BP (jω0)♣ωn=ω0
= K1

2γω2
0 − γ3 + j3γ2ω0

(4γ2 − K12)ω2
0 + K12γ2 + j(2K12γ − 4γ3)ω0

. (5.23)

If γ is taken to be much less than the input frequency ω0, i.e.,

ρ = γ/ω0 → 0

the expression shown in Equation (5.23) can be further simpliĄed both at
the numerator and denominator by ignoring the terms that are not function
of ω0, leading us to

HF BP,simp(jω0)♣ωn=ω0
= K1

2γω2
0 + j3γ2ω0

(4γ2 − K12)ω2
0 + j(2K12γ − 4γ3)ω0

. (5.24)

Lastly, by dividing for ω0 both at the numerator and denominator, we reach
the Ąnal expression of the frequency response function we were seeking

HF BP,simp(jω0)♣ωn=ω0
= K1

2γω0 + j3γ2

(4γ2 − K12)ω0 + j(2K12γ − 4γ3)
. (5.25)
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We are now able to compute the module of the frequency response function
shown in Equation (5.25), in order to Ąnd for which set of values of the
parameters γ, K1, K2 we actually have an ampliĄcation of the incoming
signal.

The module of the frequency response function HF BP,simp(jω0)♣ωn=ω0
shown

in Equation (5.25) can be easily computed and results in

♣HF BP,simp(jω0)♣ωn=ω0
♣ = K1

(

4γ2ω2
0 + 9γ4

(4γ2 − K12)2ω2
0 + (2K12γ − 4γ3)2

)

1

2

(5.26)

which, under the initial hypothesis that γ ≪ ω0, can be further simpliĄed
into

♣HF BP,simp(jω0)♣ωn=ω0
♣ = K1

(

4γ2ω2
0

(4γ2 − K12)2ω2
0

)

1

2

(5.27)

and Ąnally into

♣HF BP,simp(jω0)♣ωn=ω0
♣ = K1

(

4γ2

(4γ2 − K12)2

)

1

2

. (5.28)

According to the signs of K12 and γ we can split the equation above into the
following system:

♣HF BP,simp(jω0)♣ωn=ω0
♣ =



































K1
2γ

(4γ2 − K12)
if 0 <

√
K12 < 2γ

∞ if
√

K12 = 2γ

−K1
2γ

(4γ2 − K12)
if

√
K12 > 2γ.

(5.29)

As we can see, when
√

K12 approaches the value 2γ, we are more likely to
have an ampliĄcation of the incoming signal. However, we also need to recall
the stability condition of Equation (5.8) we found in the previous section: in
fact,

0 <
√

K12 < γ

is a even stricter condition and this means that, under the stability condition,
the module of the frequency response function turns out to be

♣HF BP,simp(jω0)♣ωn=ω0
♣ = K1

2γ

(4γ2 − K12)
⇐⇒ 0 <

√

K12 ≤ γ. (5.30)
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As we can derive from the equation above, the most reasonable and optimal
choice of the parameters K1 and K2 is to set their product K12 equal to γ2,
in order to have the maximum ampliĄcation possible while stabilizing the
closed-loop system.

On the other hand, the stability condition may vary and be slightly wider if
we assume that Ω1,2 = ω2

n,1+ω2
n,2 ≫ γ, K12. In this case, the equations shown

in (5.11) hold true ∀ωn,1, ωn,2 only if 4γ2 − K1K2, and thus 0 <
√

K12 < 2γ.
This might also be explanatory of the results presented in (5.29), since we
assumed that ωn = ωn ≫ γ. Consequently, under the main assumption that
Ω1,2 = ω2

n,1 + ω2
n,2 ≫ γ, K12, the optimal choice for the systems gains turns

out to be slightly different: in fact, we will obtain the maximum ampliĄcation
possible when K12 is set to be equal to 4γ2.
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Chapter 6

General Interconnection of
N E-I Systems

In this chapter we will examine the more generic case where we have N
interconnected E-I systems. Similarly to what we outlined in the previous
chapter, after deriving the general equations that describe the dynamics of
the network, we investigate its stability by taking into account its adjacency
matrix and the relationship between the latter and the overall state matrix
of network. Then, in order to extend the implications and the results that
were found and highlighted in the previous sections, we will attempt to solve
the optimization problem for particular conĄgurations, i.e., the series of N
oscillators and networks of oscillators built upon speciĄc types of graphs, i.e.
directed acyclic graph.

6.1 Equations of the Network

In this chapter we will consider the more generic case where N systems are
interconnected to form a network of oscillator systems Σi with i = 1, . . . , N
and N > 2, as those described in equations (6.1):

Σi :



















ẋi = Aixi + Biui

yi = Cixi.

(6.1)
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where Ai =

[

−γi −ωi

ωi −γi

]

∈ R
2×2, Bi =

[

βi

0

]

∈ R
2×1 and Ci =

[

ci 0
]

∈
R

1×2 are the state matrix, the input matrix and the output matrix of the
i-th system Σi, respectively.

We will start by assuming that the systems Σ1, . . . , ΣN deĄne the nodes of a
directed graph Γ(S,E), where S = ¶1, . . . , N♢ is the set of nodes of the graph,
with node i corresponding to system Σi, and E the set of edges. The graph Γ
can be characterized by its adjacency matrix H ∈ R

N×N , which is going to
be binary, according to the edges E, and in general asymmetric, because we
are considering directed graphs. For more details, please see Appendix A.

The aim will be to reach a compact expression for the state matrix, input
and output matrices of the network of systems described over the graph Γ.

In particular, the equations we are seeking will be in the following form:

ΣΓ :



















ẋtot = Atotxtot + Btotutot

ytot = Ctotxtot,

(6.2)

where we denoted with xtot ∈ R
2N the vector that contains all the state

vectors of the nodes of the network, i.e. xtot = ¶x1, . . . , xk−1, xk, . . . , xN♢,
with utot ∈ R and ytot ∈ R the input and output of the network, respectively.
We also recall that each state vector will be composed of two components,
i.e. xk = ¶xk,e, xk,i♢⊺ representing the temporal evolution of the excitatory
and inhibitory population of the system Σk, respectively.

In this case, Atot ∈ R
2N×2N will be the new state matrix of the network,

Btot ∈ R
2N×1 the new input matrix and Ctot ∈ R

1×2N the new output
matrix.

First, we are going to consider the k-th node of the network, corresponding to
system Σk: we suppose that it has in-degree din(k) = h, meaning that it has
h inputs coming from the nodes at the previous step k −1, i.e. y1

k−1, . . . , yh
k−1

and out-degree dout(k) = 1, i.e. one output, i.e., yk, as depicted in Figure 6.1.

In particular, each input yk−1 can be rewritten as the product of the state
vector xk−1 with the output matrix Ck−1 of the respective system Σk−1. Each
input yk−1 will be then multiplied by the input matrix Bk of the k-th system
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6.1 – Equations of the Network

Figure 6.1: Schematic representation of the k-th node Σk.

Σk. Thus, the overall input uk can be formulated as

uk = Bky1
k−1 + · · · + Bkyh

k−1 = Bk

h
∑

j=1

C
j
k−1x

j
k−1, (6.3)

while the equations describing the system Σk will result into

Σk :



















ẋk = Akxk + Bk
∑h

j=1 C
j
k−1x

j
k−1

yk = Ckxk.

(6.4)

Assuming that the input and output matrices are the same for all the nodes,
i.e. Bk = B and Ck = C for k = 1, . . . , N , we can further simplify the
equations above into

Σk :



















ẋk = Akxk + BC
∑h

j=1 xj
k−1

yk = Ckxk.

(6.5)

Now it is possible to exploit the adjacency matrix H, since it displays in an
analytical way the topology and the connections between the several nodes
of the graph Γ. In fact, whenever we have a connection between two nodes,
for example Σk and Σk−1, the element hk−1,k will be equal to one, if we have
an edge that goes from node k − 1 to node k.

In order to deĄne the matrices of the overall network we are going to introduce
a mathematical tool, the so-called Kronecker product.
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Definition 6.1.1 (Kronecker product). Given a matrix A ∈ R
n×m and a ma-

trix B ∈ R
p×q, the Kronecker product between A and B is the np × mq

matrix A ⊗ B given by









a11B . . . a1nB
...

. . .
...

an1B . . . anmB









.

This particular product between matrices will let us compact the expressions
above. In fact the state matrix of the network Atot can be formulated as

Atot = diag(A1, . . . , AN) + H ⊗ (BC), (6.6)

where we can see that the state matrices of the single systems occupy the
main diagonal, while the term BC is distributed along the overall state
matrix according to the adjacency matrix.

As to the input and output matrices Btot and Ctot, they will be given by

Btot = ein ⊗ B, Ctot = e⊤
out ⊗ C (6.7)

where we denoted with in and out the input and output node, respectively,
and with e the standard basis vector in R

N .

Remark. Please notice that the choice of the input and output nodes is still
arbitrary and is going to be a degree of freedom when simulating what hap-
pens at the network for different sets of the adjacency matrix, that is also
the topology of the network. The most interesting case will be the one where
the input and output nodes are chosen to be the furthest possible.

Now that we have obtained the matrices of the state-space representation of
the network, we can compute the transfer function of the network, that is

HΓ
tot(s) = Ctot (sI − Atot)

−1
Btot (6.8)

where we denoted with I the identity matrix of size 2N .

In the next section we will analyze what happens to network when we have
different topologies, that is different adjacency matrices, also depending on
the choice of the input and output nodes and on the choice of the natural
frequencies of the nodes. To do so, as we will see, we will need to run some
simulations.
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6.2 – Stability of the Network

6.2 Stability of the Network

In order to study the behaviour of the network, we have to understand be-
forehand when and under which particular conditions the network is actually
"stable". In fact, we are only interested in the scenario in which our network
of oscillators is actually capable of amplifying in a stable way the input signal,
without eventually diverging to inĄnity.

To study the stability of the network we will now need to focus on the state
matrix of the network, i.e., Atot. As we have seen in the previous section,
the state matrix of the network Atot is deĄned as









A11 . . . A1N
...

. . .
...

AN1 . . . ANN









.

where the matrix block on the main diagonal are exactly the state matrices of
the nodes of the network, while the elements that are outside the diagonal de-
rive from the product between the adjacency matrix H and the matrix BC.

As a consequence, the terms that do not belong to the main diagonal can be
written as

Aij =







O2×2 if ¶i, j♢ /∈ E, i /= j

BC if ¶i, j♢ ∈ E, i /= j

More speciĄcally, in order to study the stability of the network, we will be
interested in analyzing the spectrum of the state matrix, i.e. the set of its
eigenvalues,

λ(Atot) = ¶λ1, λ2, . . . , λ2N , ♢
since the stability of the network is strictly correlated to them, more partic-
ularly to the sign of their real part.

However, the real problem arises when we try to analytically compute the
eigenvalues of such a matrix. In fact, Atot is deĄned as a square block matrix
in R

2N , meaning that even with two nodes the computation of the eigenvalues
of the matrix can get trickier, and eventually almost impossible to solve by
hand for greater values of N .

Nevertheless, we can still try to set our attention to some particular cases,
in which the computational problem can be easily overcome or bypassed.
We will omit the trivial case where all the block matrices outside the main
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diagonal are equal to O2×2, since it would imply that we have no connections
between the nodes.

One of the simplest and yet interesting study case is when the state matrix
Atot is a triangular block matrix. More speciĄcally, the block matrix is said
to be upper (lower) triangular when the block matrices under (above) the
main diagonal are all equal to the zero matrix.

For example,

Atot =















A11 A12 . . . A1N

O12 A22 . . . A2N
...

. . . . . .
...

ON1 ON2 . . . ANN















is an upper triangular block matrix Atot.

Remark. These types of state matrices can be obtained from a particular
form of the adjacency matrix, which is in turn related to a particular class
of digraphs, more speciĄcally acyclic digraphs. These last class of digraphs
will be thoroughly described and studied in the a subsequent section, where
we will focus on interconnection patterns of the network based over acyclic
digraphs.

Furthermore, it is possible to prove that the eigenvalues of a triangular block
matrix are exactly the eigenvalues of the matrices on the main diagonal. In
fact, if we suppose that Atot is a triangular block matrix, its determinant can
be written as

det(Atot) =
N
∏

i=1

det(Ai).

As a consequence, also the matrix Atot − λI is a triangular block matrix and
thus, by solving the following equation

det(Atot − λI) =
N
∏

i=1

det(Ai − λI) = 0,

we can Ąnally obtain the eigenvalues of Atot.

It appears also clear that, since

λ(Atot) =
N
⋃

i=1

λ(Ai),
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we will simply need to compute the eigenvalues of the N matrices on the
main diagonal, i.e., the state matrices of each node, in order to obtain the
eigenvalues of Atot, i.e., the state matrix of the overall network.

Remark. Please notice that this simpliĄcation is feasible only because the
starting matrix is a triangular block matrix. Although this might seem quite
a drastic simpliĄcation of the network, it lets us exploit all the results we
have presented and discussed in the previous chapters.

In fact, we already know that, according to Equation (2.26), the couple of
eigenvalues of each state matrix Ai are

λi
1,2 = −γi ± ωn,i,

where we recall that γi is assumed to be the damping parameter of the i-th
neural population and ωn,i its natural frequency.

In the deĄnition of our model, the parameters γi are always taken to be
strictly positive, since negative values of this parameter would result into an
unrealistic scenario. As a direct consequence, the real part of each eigenvalue
we have just deĄned is always strictly negative, i.e.

Re¶λi
1,2♢ = −γi < 0,

resulting in an overall stability of the single i-th node. Since the eigenvalues
of the network are deĄned as the set that includes all the eigenvalues of the
single nodes composing the network, we will clearly obtain a stable network
whenever its state matrix is deĄned as a triangular block matrix.

For more general interconnection patterns, the stability of the overall system
can be assessed via numerical evaluation of the eigenvalues of Atot.
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6.3 Series of N E-I Systems

Now, let us suppose that we have N E-I systems connected in series, as
shown in Figure 6.2. In order to solve the optimization problem formulated
in Section 3.3, we can extend what we found in Section 5.1 for the simpler
case with two interconnected systems.

The overall transfer function of the system ΣS can be found by simply mul-
tiplying the transfer functions of the single E-I systems,

Htot(s) = Hs(s) = H1(s)H2(s) . . . HN(s) =
N
∏

i=1

Hi(s), (6.9)

where we recall that each transfer function Hi(s) is also function of the
natural frequency ωn,i of the corresponding E-I system. In this case, we
will need to Ąnd for which values of the natural frequencies ¶ωn,i♢i=1,...,N we
obtain the maximum ampliĄcation of the incoming sinusoidal signal, hence
the maximum value of ∥Htot(jω0)∥, i.e.

¶ω∗
n,1, . . . , ω∗

n,N♢ = arg max
¶ωn,i♢

(♣Htot(jω0; ¶ωn,i♢)♣),

where ω∗
n,i are the optimal frequencies.

Figure 6.2: Schematic representation of the system ΣS with N E-I systems
interconnected in series.

Assuming also that the incoming signal is a sinusoidal signal u(t) = A0 sin ω0t,
the output signal y(t) can be easily expressed as

y(t) = A0 ♣Htot(jω0; ¶ωn,i♢)♣ sin [ω0t + arg(Htot (jω0; ¶ωn,i♢))], (6.10)
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where

♣Htot(jω0; ¶ωn,i♢)♣ =

∣

∣

∣

∣

∣

∣

N
∏

i=1

Hi(jω0; ¶ωn,i♢)

∣

∣

∣

∣

∣

∣

and

arg(Htot(jω0; ¶ωn,i♢)) =
N
∑

i=1

arg(Hi(jω0; ¶ωn,i♢)).

Similarly to what done before, we can exploit the analysis of the single E-I
system to Ąnd solve the above optimization problem, since ♣Htot(jω0; ¶ωn,i♢)♣
is the product of the modules of the frequency responses of the N individual
E-I systems. In particular in the limit case ρ = γ/ω0 → 0 we can easily
prove that, in order to maximize the module of the overall frequency response
function, we will only need to tune each natural frequency ωn,1, . . . , ωn,N on
the frequency of the incoming signal ω0.

In fact, since
∣

∣

∣

∣

∣

∣

N
∏

i=1

Hi(jω0; ωn,i)

∣

∣

∣

∣

∣

∣

=
N
∏

i=1

♣Hi(jω0; ωn,i)♣

we can reformulate the optimization problem as

¶ω∗
n,1, . . . , ω∗

n,N♢ = arg max
¶ωn,i♢

(
N
∏

i=1

♣Hi(jω0; ωn,i)♣).

It appears clear that the product of the frequency response functions will have
its maximum value when each frequency response function is tuned through
their respective natural frequency exactly on the resonance peak value. In
other words, this happens when all the nodes have its natural frequency equal
to the frequency of the incoming signal resulting in an overall synchronization
of the E-I systems. In mathematical terms, in this case, the optimization
problem for the series of N E-I systems is solved for

ωn,1 = ωn,2 = · · · = ωn,N = ω0.

In fact, by doing so, each E-I system will be able to provide the maximum
ampliĄcation possible. Furthermore, if we assume that each E-I oscillator of
the series have the same parametrization and hence can be described through
the same transfer function H̃(s), we can show that the ampliĄcation has an
exponential growth with N .
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In fact, let N be the number of equal E-I oscillators with transfer function
H̃(s), then the output signal y(t) will result into

y(t) = A0♣H̃(jω0)♣N sin
[

ω0t + N arg(H̃(jω0))
]

. (6.11)

Remark. Please note that, with the optimal choice of the natural frequencies

¶ω∗
n,1, . . . , ω∗

n,N♢,

we will also be able to prevent the series system from introducing an excessive
delay into the output signal y(t): in fact, with this particular choice, each E-I
system will be able to maintain its phase approximately near to zero, as we
derived in Section 5.1. As a result, the phase of the overall transfer function
will be constrained and the synchronization in frequency might as well give
rise to an overall synchronization in time.
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6.4 Interconnection Pattern over Acyclic Graph

In this section we will present and analyze the particular case where the
interconnections between the E-I oscillators of the network is based upon a
directed acyclic graph. In particular, an acyclic graph is a graph without
cycles or loops: in other words, when following the graph edges from node
to node, you will never run into the same node twice. More speciĄcally, a
directed acyclic graph (or acyclic digraph or "DAG") is an acyclic graph in
which the edges have a precise orientation, as well as a lack of cycles.

An example of a directed acyclic graph with Ąve nodes is shown in Figure
6.3, whose adjacency matrix H corresponds to

H =



















0 1 1 1 0
0 0 1 1 0
0 0 0 1 1
0 0 0 0 1
0 0 0 0 0



















.

Figure 6.3: Example of a digraph acyclic graph with Ąve nodes.

In particular, the following lemma provides an interesting condition on the
adjacency matrix in order to understand if the graph is acyclic or not.

Lemma 6.4.1. Let Γ be a directed graph with adjacency matrix H and let N
be the number of nodes of Γ. If H is nilpotent, i.e. H

k = 0 for k ≤ N , then
the directed graph Γ is acyclic.

We can provide an intuitive proof to it, by recalling that the powers of
the adjacency matrix have quite an interesting interpretation: in fact, the
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element h
k
ij of the matrix H

k gives us the number of walks of length k from
node i to node j. If we assume that H is nilpotent, then there exists an
integer number k ≤ N , also called nilpotency index, so that H

k = 0: this
also means that there are no walks of length k or even longer in the graph Γ.

Conversely, if HN /= 0, there certainly is a walk of length N and since there
are N nodes in the graph, then the same node must appear on the walk more
than once, thus creating a cycle.

In particular, any n-dimensional strictly triangular matrix is also nilpotent.
Therefore, whenever we have an adjacency matrix which is strictly triangular,
the graph derived from the adjacency matrix is going to be acyclic. The
contrary in not necessarily true: in fact, we might have a nilpotent adjacency
matrix which is not strictly triangular. However, it is possible to demonstrate
that the adjacency matrix of an acyclic graph can always be transformed
into a strictly triangular matrix through a permutation matrix P (which
simply corresponds to a relabelling of the nodes of the network), so that
P ⊺

HP = H
′, where H

′ is exactly a strictly triangular matrix.

As a result, it is possible to prove that, given an acyclic graph Γ with N nodes
and with adjacency matrix H, the eigenvalues of the overall state matrix Atot

are exactly the eigenvalues of the state matrices Ai.

From now on, we will only take into account adjacency matrices that are
stricly triangular, in order to present an analytical solution to the optimiza-
tion problem. However it is possible to extend the analysis to any kind of
nilpotent adjacency matrix by computing a suitable permutation matrix, as
explained above.

For example, the state matrix Atot of the network based on the graph shown
in Figure 6.3 can be computed through Equation (6.6), leading us to

Atot =



















A1 BC BC BC O

O A2 BC BC O

O O A3 BC BC

O O O A4 BC

O O O O A5



















where Ai =

[

−γ −ωi

ωi −γ

]

is the state matrix of the i-th node, BC is exactly

the matrix given by the product between the vectors B and C and O is the
zero matrix O2×2.
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Remark. Please note that, for consistencyŠs sake with the previous chap-
ters, we will assume that, for each node of the network, B =

[

β 0
]⊺

and

C =
[

c 0
]

: this choice will let us take into consideration only the case in
which the excitatory subgroups of each neural population is responsible for
transmitting signals and communicating with other neural populations.

Under this assumption, the product BC results into

BC =

[

β
0

]

[

c 0
]

=

[

βc 0
0 0

]

.

We can clearly see that, since the state matrix of the network Atot is a
block triangular matrix, its eigenvalues are exactly the eigenvalues of the
single state matrices on the main diagonal. As a result, we can infer that
any network of E-I oscillators built upon a directed acyclic graph is stable
whenever each E-I oscillator of the network is stable itself, which by deĄnition
is true, since γ is always taken to be strictly positive.

Furthermore, it is also possible to show that each walk of a directed acyclic
graph can be thought of as a series of different nodes of precise length. In
fact, by deĄnition, a directed acyclic graph does not comprise any loop or
cycle and every edge has a precise orientation, making it possible to deĄne a
topological order of the nodes. And since any directed acyclic graph can be
reduced to a set of directed walks, which per se are simply sequences of nodes
in which each node appear only once, we might be able to exploit the results
we presented for the series interconnection, in order to solve the optimization
problem and Ąnd the optimal frequencies in the DAG conĄguration.

Now, let Γ be a directed acyclic graph with N nodes and let N be the network
of N E-I oscillators built upon Γ. Let us now choose two different nodes u
and v of Γ, such that u is the input node, i.e. the node that receives the input
signal u(t), and v is the output node, i.e. the node that emits the corrupted
output signal ỹ(t). We also suppose that v is reachable by u, meaning that
there certainly exists at least one directed walk starting from u and ending
in v. If not, the output signal is automatically set to zero and any choice the
optimization problem is not interesting since Htot(s) = 0.

Under these assumptions, the optimization problem results into Ąnding which
values of the natural frequencies maximize the module of the frequency re-
sponse function Htot(jω0) of the network evaluated at ω0:

¶ω∗
n,1, . . . , ω∗

n,N♢ = arg max
¶ωn,i♢i=1,...,N

(Htot(jω0))
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where we recall that Htot(jω0) is obtained from the network transfer function
Htot(s) computed through Equation (6.8). And since any directed walk from
u to v can be though as a determined set of nodes starting from u and ending
in v where all the nodes from u to v are interconnected in series, we can
deduce that the optimization problem is solved when all the E-I oscillators
are synchronized and tuned on the frequency of the incoming signal u(t). In
other words, the optimal natural frequencies that maximize the SNR are

ωn,1 = ωn,2 = · · · = ωn,N = ω0.

In this case of degree of ampliĄcation depends on the length of the walks
connecting u to v. More precisely, the longer such walks are, the greater the
ampliĄcation is. With this in mind, Equation (6.11) appears to be quite ex-
emplary: in fact, the module of the output signal ♣y(t)♣ shows an exponential
growth with N , meaning that increasing the number of nodes in the series
interconnection gives rise to a drastic ampliĄcation of the input signal. In
the case of a DAG, the ampliĄcation is dictated by the walk (or the walks)
with maximum length kmax.

We also provide a code to validate our Ąndings, i.e., that the frequency syn-
chronization of the nodes solve the optimization problem we outlined. The
code can be found in Appendix E with some comments on the parameters
and the variables involved. In particular, the algorithm is designed to Ąnd
the optimal frequencies of a network of N = 6 E-I oscillators built upon any
type of topology, that is given by the adjacency matrix. The code can be
easily extended to larger networks comprising more than six nodes: how-
ever, Ąnding the optimal values of the natural frequencies needs some heavy
computation and increasing the number of nodes of the network is likely to
drastically increase the running time of the code. We will now summarize
the functioning of the algorithm.

We start by creating N equal arrays of frequencies starting from w_start and
ending with w_end with step w_step. For the input signal u(t), we deĄne
the amplitude Amp and the frequency w0, whereas for the noise we deĄne
the variance var. For every combination of the natural frequencies, after
deĄning the state matrix, the input and output matrices of the network and
its state-space representation, we compute the SNR value through nested
for loops and we store it in SNR_now: in particular, if the value of SNR_now

at the step i is bigger than the value of SNR_before at the previous step
i − 1, the code updates the value of SNR_before and saves in w_SNR_max the
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frequencies at the step i. At the end of the nested for loops, the variable
w_SNR_max returns the set of natural frequencies that maximizes the SNR.
Please note that the choice of the input and output nodes is crucial and it
might happen that the selected output node is not reachable by the selected
input node: consequently, particular attention must be given to the choice
of the topology as well as to the choice of input/output nodes.

To conclude, the code proves that, when we have a network of E-I oscillator
whose interconnection pattern is based over an acyclic graph, in which the
output node is actually reachable by the input node and the input signal is
characterized by a single, sufficiently high frequency:

• the network is always stable when the single nodes are stable, since the
set of eigenvalues of the former is exactly given by the union of all the
eigenvalues of the single nodes;

• the SNR (with which we characterized the quality of the propagation of
the signal along the network) is maximized through the synchronization
of the nodes on the same frequency, which is exactly the frequency of
the input signal.
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6.5 General Interconnection Pattern and Future
Research

Expanding the optimization problem to networks of E-I oscillators with more
general topologies appears to be quite difficult and cumbersome to approach
from an analytical and theoretical point of view: in fact, when considering,
for example, directed cyclic graphs or, more generally, random graphs we
must deal with topologies that may give rise to an unstable network. As we
outlined in Section 6.2, the computation of the eigenvalues of the network
state block matrix is hardly solvable by hand or analytically, unless we resort
to simpler conĄgurations, as we did with the DAG conĄguration or the series
conĄguration, which can be obviously seen as a particular case of the former.

Along with the stability of the network, the optimization problem we deĄned
and presented throughout the previous sections might turn out to be even
more difficult to solve then the stability problem. In fact, we encountered an
analogous complexity when we attempted to solve the optimization problem
for the positive-feedback interconnection (which basically is the simplest case
of a cyclic graph) and the Ąnal results turned out to be bounded either by
the stability conditions on the parameters of the E-I oscillators and by the
several simpliĄcations that were carried out along the analysis.

However, we still had the chance to Ąnd some interesting numerical evidence.
In particular, when dealing with high frequency signals, the optimal value
of the SNR is numerically achieved when all E-I systems are synchronized
with one another, i.e., they have the same natural frequency, or very close
to be synchronized. In particular, the parameters of the single nodes must
be chosen with special attention, in order to preserve the overall stability
of the network: in fact, dealing with higher values of γ with respect to
the corresponding gains of the oscillators may help to stabilize the network,
whereas lower values of γ might hinder its overall stability, thus originating an
unstable network. This constraint reĆects what was outlined in the positive-
feedback conĄguration, where the parameter γ was actually bounded from
below by a quantity that was strictly correlated to the gains of the single
oscillators.

In order to numerically solve the optimization problem for general topologies,
we suggest using the same code that was presented and outlined in the previ-
ous section. The code can be found in Appendix E along with some comments
on its functioning and some functions that automatically generate particular
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types of adjacency matrices, such as strictly triangular or random ones.

To better understand the validity and implications of these numerical results,
future studies are needed, which may possibly give some theoretical evidence
on why the synchronization of brain areas is beneĄcial for information trans-
mission. In particular, a Ąrst fundamental step may consist in providing
analytic conditions for the stability of E-I systems interconnected through
graphs with cycles.
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Conclusion

The present thesis aimed at investigating the interplay between communica-
tion and synchronization in neural networks, as well as at giving a brief and
concise insight into the wide and intricate world of neural models. Based
on both analytical and numerical results, it can be concluded that the syn-
chronization is actually a crucial factor in improving communication and
information transmission through different brain regions. The results sug-
gest that, in order to enhance the communication and thus the propagation
of signals along neuronal clusters and networks, the synchronization between
different brain regions is needed, if not essential.

Modelling neural regions with the simple and effective E-I model we proposed
in this paper helped us examining many different topologies and interconnec-
tion patterns and for each of them we found clear evidence that brain regions
synchronize with one another in order to strengthen and enhance information
transmission along the neural network. Moreover, the E-I model we proposed
grounds itself on the main assumption that communication throughout the
network is carried out mainly by excitatory connections: we showed how
the synchronization among the oscillators is preserved thanks to this par-
ticular feature, providing also an idea on why neural networks show a net
preponderance of excitatory connections over inhibitory connections.

Although the analysis we carried out throughout the work was inĆuenced
by some simpliĄcations as well as by few (strong) assumptions, the results
we highlighted are remarkably interesting and they might pave the way the
future studies and research on the signiĄcantly crucial role of synchronization
in communication-oriented networks, such as the neural networks.
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Appendix A

Graph theory

In this chapter we will introduce some basic deĄnitions and key concepts of
graph theory that will be helpful in order to analyze the more general case
where different neural oscillators are interconnected in a generic network.

A.1 Undirected graph

Definition A.1.1 (Graph). A graph, also called undirected graph, consists of
a set V of nodes and of a set E of unordered pairs of nodes, called edges. For
u, v ∈ V and u /= v, the set ¶u, v♢ ∈ E denotes an unordered edge.

Am example of an undirected graph can be found in Figure A.1.

Figure A.1: Here is shown an example of an undirected graph Γ =
(V, E) with 5 nodes. In this case V = ¶v1, v2, v3, v4, v5♢ and E =
¶(1,2), (2,3), (2,4), (3,4), (2,5), (4,5)♢.
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Definition A.1.2 (Neighbors and degrees in graphs). Two nodes u and v of a
given graph are neighbors if ¶u, v♢ is an undirected edge. Given a graph Γ,
let N(v) denote the set of neighbors of v.

The degree of v is deĄned as the number of neighbors of v. A graph Γ is
called regular if all the nodes have the same degree.

We can deĄne several basic graphs of dimension n: the path graph, where
nodes are ordered in a sequence and edges connect subsequent nodes; cycle
graph, where all the nodes and the edges can be arranged as the vertices and
edges of a regular polygon; the complete graph where every pair of nodes is
connected by an edge.

(a) An example of a path
graph.

(b) An example of a cycle
graph.

(c) An example of a star
graph.

Definition A.1.3 (Path). A path, or walk, in a graph Γ is an ordered sequence
of nodes such that any pair of consecutive nodes in the sequence is an edge
of the graph Γ.

Definition A.1.4 (Connected graph). A graph Γ is said to be connected if
there exists a path between any two nodes.

A.2 Directed graph

Definition A.2.1 (Directed graph). A directed graph, also called digraph, of
order n is a pair Γ = (V, E), V is a set of n elements called nodes and E is
a set of ordered pairs of nodes called edges. For u, v ∈ V, the ordered pair
(u, v) denotes an edge from u to v. A digraph is undirected if (u, v) ∈ E

anytime (v, u) ∈ E. In a directed graph a self-loop is deĄned as an edge from
a node to itself.

An example of a directed graph, or digraph, of order 5 is shown in Figure
A.3a. In Figure A.3b a graph with a self-loop is shown.
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(a) An example of a directed graph of
order 5, meaning with 5 nodes.

(b) An example of a digraph with a
self-loop edge on node v2.

The deĄnition of path can be extended for a directed graph: a directed path
is an ordered sequence of nodes such that any pair of consecutive nodes in
the sequence is a directed edge of the directed graph.

A directed graph Γ is called strongly connected if there exist a directed path
from any node to any other node, weakly connected if the undirected version
of the digraph is connected.

In a directed graph with an edge (u, v) ∈ E, u can be called an in-neighbor
of v, while we refer to v as the out-neighbor of u.

We can also extend the deĄnition of degree for a generic node of a directed
graph, introducing the in- and out-degree. In particular, the in-degree din(v)
and out-degree dout(v) of a generic node v are the number of in-neighbors and
out-neighbors of v, respectively. A graph is deĄned as topologically balanced
if each node has the same in-degree and out-degree. Moreover, every node
with in-degree equal to 0 is called a source, while every node with out-degree
equal to 0 is called a sink.

For example, in Figure A.3a, v1 is the source of the graph, since it does not
have any in-neighbor, while v5 is the sink of the graph, since it does not have
any out-neighbor.

A.3 Weighted graphs

We could also be assigning a weight to the edges of the directed graph in
order to obtain a so-called weighted graph.

Definition A.3.1 (Weighted graph). A weighted graph is deĄned as Γ =
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(V,E, ¶we♢e∈E), where the pair (V, E) is a directed graph and where ¶we♢e∈E

is a set of strictly positive weights for the edges E.

An example of a weighted graph can be found in Figure A.4.

Figure A.4: An example of a weighted graph, where a weight wij is associated
to each edge (i, j).

A digraph, or unweighted digraph, Γ = (V,E) can be perceived as a weighted
graph where all the weights associated to the edges are set to 1, hence we = 1
for all e ∈ E.

The concepts of connectivity and the deĄnitions of in-neighbors and out-
neighbors deĄned for the directed graph are still valid for a weighted directed
graph. We can extend the concept of in-degree and out-degree of a generic
node v by summing the weights of each in-neighbor and out-neighbor of
v, respectively. Therefore, we will then obtain a weighted in-degree and a
weighted out-degree. If each node as the same weighted in-degree and out-
degree, the weighted graph is said to be weight-balanced.
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A.4 Adjacency matrix

In order to represent in a more concise way the graph and its interconnections
we will now introduce the so-called adjacency matrix.

Definition A.4.1 (Adjacency Matrix). Given a weighted directed graph Γ =
(V,E, ¶we♢e∈E), the weighted adjacency matrix of Γ is the n×n non-negative
matrix A where each entry (i, j) of A is equal to the weight w(i,j) of the edge
(i, j) ∈ E and all the remaining entries are set to zero.

For an unweighted digraph γ = (V,E) the adjacency matrix A is deĄned as

ai,j =







1 if (i, j) ∈ E,

0 otherwise.

For an undirected graph the adjacency matrix A is a binary matrix which is
also symmetric. If there are no self-loops all the elements on the diagonal of
A, i.e. aii for i = 1, . . . , n, are set to zero.

For example, let us consider the graph presented in A.1, the adjacency matrix
Aundirected associated to the undirected graph is the following:

Aundirected =



















0 1 0 0 0
1 0 1 1 1
0 1 0 1 0
0 1 1 0 1
0 1 0 1 0



















,

where we can notice that the matrix is symmetric, all the values are either 1
or 0 and the values on the main diagonal are set to zero.

The adjacency matrix Aweighted associated to the weighted graph shown in
Figure A.4 is

Aweighted =



















0 w12 w13 0 0
0 0 0 0 w25

0 0 0 0 0
0 w42 w43 0 0
0 0 0 0 0



















.

Since the labels of a graph may be permuted without changing the underlying
graph being represented, there are in general multiple possible adjacency
matrices for a given graph.
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The relationship between a graph and the eigenvalues and eigenvectors of its
adjacency matrix is studied in spectral graph theory and the set of eigenvalues
of the adjacency matrix is usually called graph spectrum.

In case of an undirected graph, the adjacency matrix is a real symmetric ma-
trix and therefore orthogonally diagonalizable, meaning that its eigenvalues
are real algebraic integers.

The adjacency spectrum of some basic graphs, such as a path graph or a cycle
graph, can be computed in closed form for arbitrary dimension n.

102



Appendix B

LIF model

clear all;close all;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% GOAL:

% Verify the relationship of the firing rate with constant

% injected current and compare the theoretic firing rate

% with the spike count rate for different values of the

% injected current

% Hypothesis:

%−>single trial

%−>constant input current

%−>neuron = 'leaky' capacitor C_m + resistance R_m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% MODEL PARAMETERS

dt = 0.1; %time step [ms]

t_end = 1000; %total time of run [ms]

t_StimStart = 100; %time to start injecting current [ms]

t_StimEnd = 800; %time to end injecting current [ms]

V_rest = −70; %resting membrane potential [mV]

V_th = −55; %voltage threshold [mV]

V_reset = −75; %reset voltage [mV]

V_spike = 20; %spike voltage [mV]

R_m = 10; %membrane resistance [MOhm]

tau = 10; %membrane time constant [ms]

% VECTORS

t_vect = 0:dt:t_end; %time vector
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V_vect = zeros(1,length(t_vect)); %voltage vector

V_plot_vect = zeros(1,length(t_vect)); %voltage plot vector

I_Stim_vect = 1.5:0.05:1.6;

%magnitudes of injected current[nA]

% Integrate LIF model equation

% tau*dV/dt = −(V − V_rest) + R_m I_e

plot_num = 0; %number of plots

for I_Stim = I_Stim_vect

%for−loop over different I_Stim values

i = 1; %loop index

plot_num = plot_num + 1;

V_vect(i) = V_rest;% set the first value of V equal to V_rest

V_plot_vect(i) = V_vect(i);% if no spike, plot actual voltage V

I_e_vect = zeros(1,t_StimStart/dt);

%from 0 to t_StimStart

I_e_vect = [I_e_vect, I_Stim*ones(1,1+((t_StimEnd−t_StimStart)/dt

))];

%from t_StimStart to t_StimEnd

I_e_vect = [I_e_vect, zeros(1,(t_end−t_StimEnd)/dt)];

%from t_StimEnd to t_end

num_spikes = 0;

for t=dt:dt:t_end

% for−loop through all values of t

V_inf = V_rest + I_e_vect(i)*R_m;

V_vect(i+1) = V_inf + (V_vect(i) − V_inf)*exp(−dt/tau);

if (V_vect(i+1) > V_th)

%cross threshold value

V_vect(i+1) = V_reset;

V_plot_vect(i+1) = V_spike;

num_spikes = num_spikes + 1;

%count the number of spikes

else

%did not cross threshold value

% −> plot the actual voltage
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V_plot_vect(i+1) = V_vect(i+1);

end

i = i + 1;

end

av_rate_vect(plot_num) = 1000*num_spikes/(t_StimEnd − t_StimStart

);

%average firing rate [Hz]

% note: 1000 because we treated time in [ms]

figure(1)

subplot(length(I_Stim_vect), 1, plot_num)

plot(t_vect, V_plot_vect)

subtitle(['I_e = ',num2str(I_Stim),' mA']);

if plot_num == 1

title("LIF model with constant input current I_e")

end

if (plot_num == length(I_Stim_vect))

xlabel("time [ms]")

end

ylabel("V [mV]")

ylim([−80, 25]);

grid on

end

%saveas(gcf,'different_current.png');

% firing rate obtained from computing the reverse

% of the interspike interval

I_th = (V_th − V_rest)/R_m; %current threshold: below this value −>

no spikes

dI = 0.001; %[nA]

maxI = 2; %[nA]

I_vect = I_th:dI:maxI;

r_isi = 1000./(tau*log((R_m*I_vect+V_rest−V_reset)./(R_m*I_vect+

V_rest−V_th)));

% note: 1000 because we treated potential in [mV] and current in [mA]

figure(2)

plot(I_vect,r_isi,'k')
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hold on

plot(I_Stim_vect,av_rate_vect, 'rx')

title('r_{isi} − r_{ave}')

xlabel('Injected current [nA]')

ylabel('Firing rate [Hz]')

legend('r_{isi}','r_{ave}',"Location","best")

hold off

%saveas(gcf,'t_isi.png');

figure(3)

plot(I_vect,r_isi,'k');

xlabel('Injected current I_e [nA]');

ylabel('firing rate [Hz]');

title('r_{isi}');

xlim([1.4,maxI]);

%saveas(gcf,'r_isi.png');

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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Firing rate estimation

[Main Program]

close all;clear all;clc;

%% Parameters

N = 10; % number of trials

T = 20; % time window rectangular kernel [ms]

sigma = 2; % variance Gaussian kernel

alpha = 0.8; % parameter of alpha function

rate = 10; % Poisson rate

time = 1; % time interval of each trial [ms]

[spikeMat, tVec] = poissonSpikeGen(rate, time, N); % tVec = vector of

simulation times [ms]

% Time Vectors

dt = 0.01;

t1 = −100:dt:100;

t2 = 0:dt:100;

x = −length(tVec):length(tVec);

y = 0:length(tVec);

%% Kernel Function

rect = [zeros(1,length(tVec)) ones(1,T) zeros(1,length(tVec)−T)]/T; %

Causal rectangular kernel defined on interval x

gauss = exp(−(x/(sigma)).^2/2)/(sigma*sqrt(2*pi)); % Gaussian kernel

defined on interval x
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cexp = [zeros(1,length(tVec)) alpha^2*y.*exp(−alpha*y)]; %Alpha

function defined on interval y

%% Plot the Kernels

gauss_t = exp(−(t1/(sigma)).^2/2)/(sigma*sqrt(2*pi));

cexp_t = [zeros(1,length(t2)−1) alpha^2*t2.*exp(−alpha*t2)];

figure(1)

plot(t1,cexp_t,'k','linewidth',1.5);

xlabel('Time [ms]');

title('Alpha function')

xlim([−2,10]);

ylim([0,0.35]);

%saveas(gcf,'alphafunction.png');

figure(2)

plot(t1,gauss_t,'k','Linewidth',1.5);

xlabel('Time [ms]');

title('Gaussian kernel')

xlim([−10,10]);

ylim([0,0.25]);

%saveas(gcf,'gaussiankernel.png');

%% Firing rate estimation

z = zeros(N,length(tVec));

z2 = zeros(N,length(tVec));

z3 = zeros(N,length(tVec));

for i=1:N

spk=spikeMat(i,:); %take the ith row of the matrix

% convolution with the rectangular kernel

z_tmp=conv(spk,rect,'same'); % option = 'same': takes central

part of convolution signal

z(i,:)=z_tmp;

% convolution with the gaussian kernel

z_tmp2=conv(spk,gauss,'same');

z2(i,:)=z_tmp2;

% convolution with the exponential kernel (alpha function)

z_tmp3=conv(spk,cexp,'same');

z3(i,:)=z_tmp3;
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end

figure(3)

plotRaster(spikeMat, 1:length(tVec));

title(['Spike trains: N=', num2str(N)]);

xlabel('Time [ms]');

ylabel('Spike signal');

xlim([−0 500]);

%saveas(gcf, 'trials.png');

figure(4)

subplot(3,1,1);

stairs(sum(z,1)/N,'k')

title('Rectangular Window');

xlabel('Time [ms]');

ylabel('Firing Rate [Hz]');

xlim([−0 500]);

subplot(3,1,2);

plot(sum(z2,1)/N,'k')

title('Gaussian Kernel');

xlabel('Time [ms]');

ylabel('Firing Rate [Hz]');

xlim([−0 500]);

subplot(3,1,3);

plot(sum(z3,1)/N,'k')

title('Alpha Function');

xlabel('Time [ms]');

ylabel('Firing Rate [Hz]');

xlim([−0 500]);

%saveas(gcf, 'trials_kernels.png');

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

[Spike Generator]

% FUNCTION: poissonSpikeGen(fr, tSim, nTrials)

% Function that simulates a Poisson process

% fr = rate of the Poisson Process

% tSim = simulation time

% nTrials = number of trials

% output −> matrix of 1/0 representing the spikes for each trial
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function [spikeMat, tVec] = poissonSpikeGen(fr, tSim, nTrials)

dt = 1/1000; % s

nBins = floor(tSim/dt);

spikeMat = rand(nTrials, nBins) < fr*dt;

tVec = 0:dt:tSim−dt;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

[Plot Raster]

% FUNCTION: plotRaster(spikeMat, tVec)

% Function to translate the matrix of 1/0 into rasters of spikes

function [] = plotRaster(spikeMat, tVec)

hold all;

for trialCount = 1:size(spikeMat,1)

spikePos = tVec(spikeMat(trialCount, :));

for spikeCount = 1:length(spikePos)

plot([spikePos(spikeCount) spikePos(spikeCount)], ...

[trialCount−0.4 trialCount+0.4], 'k');

end

end

ylim([0 size(spikeMat, 1)+1]);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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SNR in the FBP
Configuration

clear all; clc;

% Input Signal

A0 = 10; %amplitude

w0 = 100; %frequency

% Damping factor

g = 10;

% Natural frequencies

dw = 0.1; % step

dI = 5; % interval width

wn1 = w0−dI:dw:w0+dI; % E−I system 1

wn2 = w0−dI:dw:w0+dI; % E−I system 2

% Noise variance

var = 1; % variance

% System parameters

b = 3; % input conditioning

c = 3; % output conditioning

K1 = b*c; % System 1 gain

K2 = b*c; % System 2 gain
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% System Matrices

A1 = []; % System 1 Status matrix

A2 = []; % System 2 Status matrix

B = [b; 0]; % Input matrix

C = [c 0]; % Output matrix

D = 0; % Feedforward matrix

% SNR matrix

SNR = zeros(length(wn1),length(wn2));

for i=1:length(wn1)

A1 = [−g −wn1(i); wn1(i) −g];

SYS1 = ss(A1,B,C,D);

for j=1:length(wn2)

A2 = [−g −wn2(j); wn2(j) −g];

SYS2 = ss(A2,B,C,D);

SYS_fbp = feedback(SYS1,SYS2,1); % closed−looop system

H_fbp = tf(SYS_fbp); % closed−looop system

trasfer function

[mag,phase,w] = bode(H_fbp,w0); % evaluate @w0 −> magnitude

SNR(i,j) = 0.5*(A0*mag/var)^2; % compute the SNR

end

end

%% Visualization of the results

imagesc(wn1,wn2,SNR);

colorbar;

xlabel('\omega_1');

ylabel('\omega_2');

%saveas(gcf,"fbp_simulation",'pdf');
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Optimal Frequencies
Simulation

[Main Program]

clear all;clc;

% NETWORK PARAMETERS

dim = 6; % number of nodes

g = 1; % inhibitory parameter

b = 2; % input conditioning

c = 2; % output conditioning

w_start = 97; % start freqeuncy [rad/s]

w_end = 103; % end freqeuncy [rad/s]

w_step = 1; % step

w_dim = (w_end−w_start)/w_step;

for i = 1:dim

wn(i,:) = w_start:w_step:w_end; % natural frequencies [rad/s]

end

% INPUT SIGNAL PARAMETERS

w0 = 100; % input frequency [rad/s]

Amp = 1; % input amplitude

% WHITE NOISE PARAMETER

var = 10;
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%% ADJACENCY MATRIX

% Acyclic Graph

H_adj_acyclic = [ 0 1 1 0 1 0;

0 0 0 1 0 0;

0 1 0 1 0 0;

0 0 0 0 0 0;

0 0 1 1 0 1

0 1 1 0 0 0];

% Cyclic Graph

H_adj_cyclic = [ 0 1 1 1 1 0;

0 0 0 1 0 0;

0 1 0 1 0 0;

1 0 0 0 0 0;

0 0 1 1 0 1

1 1 1 0 0 0 ];

H_adj_1 = createAdjTriangSup(dim); % triangular superior

H_adj_2 = createAdjZeroOnes(dim); % random

H_adj_3 = createAdjSymmetric(dim); % random symmetric

H_adj = H_adj_acyclic;

% choose the adjacency matrix to be used in the simulation

%% Input and Output nodes

in_node = 1;

out_node = 4;

in_v = zeros(1,dim);

out_v = zeros(1,dim);

for i=1:dim

if i == in_node

in_v(i) = 1;

end

if i == out_node

out_v(i) = 1;

end

end

% Variables for the simulation

gamma = g.*ones(dim,1); %vector of gammas
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omega = w0.*ones(dim,1); %vector of omegas

I = eye(2*dim);

Ablk = zeros(2*dim);

SNR_before = 0;

SNR_now = 0;

w_SNR_max = 0; % frequencies −> SNR_max

% Node Matrices

A = []; % status matrix (to compute)

B = [b; 0]; % input matrix

C = [c 0]; % output matrix

D = 0; % feedforward matrix

%% OPTIMUM FREQUENCIES

for i1 = 1:w_dim

omega(1) = wn(1,i1);

for i2 = 1:w_dim

omega(2) = wn(2,i2);

for i3 = 1:w_dim

omega(3) = wn(3,i3);

for i4 = 1:w_dim

omega(4) = wn(4,i4);

for i5 = 1:w_dim

omega(5) = wn(5,i5);

for i6 = 1:w_dim

omega(6) = wn(6,i6);

for i = 1 : dim

%%%%

% generate the diagonal matrix with status

matrices

%%%%

A(:,:,i) = [−gamma(i) −omega(i); omega(i) −

gamma(i)];

end

j2 = 1;

for j1 = 1:dim

%%%%

% generate the block status matrix of the

network

115



Optimal Frequencies Simulation

%%%%

Ablk(j2:j2+1,j2:j2+1) = A(:,:,j1);

j2 = j2+2;

end

Atot = Ablk + kron(H_adj,B*C);

% network state matrix

Btot = kron(in_v',B);

% network input matrix

Ctot = kron(out_v, C);

% network output matrix

Dtot = D;

% network feedforward matrix

[n,d] = ss2tf(Atot,Btot,Ctot,Dtot);

% ss −> tf

sys_tf = tf(n,d);

% transfer function

[mag, phase] = bode(sys_tf,w0);

% evaluate @ w0 = input fr.

SNR_now = 0.5*(mag*Amp/var)^2;

% compute SNR

if SNR_now > SNR_before % if SNR now is

bigger −> substitute

SNR_before = SNR_now;

w_SNR_max = omega;

end

end

end

end

end

end

end

% w_SNR_max stores the value of the natural frequencies

% that let us have the maximum value of the SNR

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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Function: createAdjTriangSup(dim)

% Function: createAdjTriangSup(dim)

% creates a strictly triangular adjacency matrix

function [H_adj] = createAdjTriangSup(dim)

H_start = zeros(dim,dim);

for i = 1 : dim−1

for j = i+1 : dim

H_start(i,j) = randi([0 1]);

end

end

H_adj = H_start;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Function: createAdjSymmetric(dim)

% Function: createAdjSymmetric(dim)

% creates a random symmetric adjacency matrix

function [H_adj] = createAdjSymmetric(dim)

H_start = zeros(dim,dim);

for i = 1 : dim−1

for j = i+1 : dim

H_start(i,j) = randi([0 1]);

if H_start(i,j) == 1

H_start(j,i) = 1;

end

end

end

H_adj = H_start;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Function: createAdjZeroOnes(dim)

% Function: createAdjZeroOnes(dim)

% creates a random adjacency matrix

function [H_adj] = createAdjZeroOnes(dim)

H_start = zeros(dim,dim);

for i = 1 : dim

for j = 1 : dim

if i == j

H_start(i,j) = 0;

else

H_start(i,j) = randi([0 1]);
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end

end

H_adj = H_start;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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