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Abstract

Here we present a minimal mathematical model for the Sphingomyelin synthase 1 (SMS1)

driven conversion of ceramide to sphingomyelin based on chemical reaction kinetics. We

demonstrate, via sampling-based parameter estimation and mathematical analysis, that

this model is not able to qualitatively reproduce experimental measurements on lipid com-

positions after altering SMS1 activities. We conclude that a positive feedback mechanism is

required from the products to the reactants of the reaction, which in fact exists in vivo via

protein kinase D and the ceramide transfer protein CERT. Accordingly, a modified model

that comprises this feedback mechanism was able to reproduce experimental findings.
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Sommario

In questa tesi presentiamo un modello matematico minimo per la conversione di un ce-

ramide in sfingomielina catalizzata dall’enzima sfingomielina sintasi 1 (SMS1) basato sulle

leggi della cinetica chimica. Viene dimostrato, utilizzando tecniche di sampling per la

stima parametrica e metodi di analisi matematica, che questo modello non è in grado di

riprodurre qualitativamente delle misure sperimentali sulla composizioni dei lipidi in se-

guito ad alterazione dell’attività enzimatica di SMS1. Concludiamo quindi che è necessario

considerare un meccanismo di feedback positivo fra i prodotti e i reagenti della reazione,

che esiste effettivamente in vivo tramite la proteina chinasi D e la proteina di trasporto

di ceramide CERT. Di conseguenza, proponiamo un secondo modello modificato in modo

da comprendere questo meccanismo di feedback, che risulta essere in grado di spiegare i

risultati sperimentali.
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Introduction

The process of secretion of proteins in mammalian cells is one of the most highly controlled

processes of living beings, since it underlies the regulation of a lot of biochemical functions

throughout the entire organism. A detailed understanding of the secretory pathway and of

the underlying regulatory network is the basis for targeted intervention and is thus highly

relevant for pharmaceutical applications.

The use of formal mathematical models to describe complex biochemical reaction net-

works is an important approach to study the properties of such biological systems, and to

be able to simulate the effects of external intervention.

The main focus of this thesis is the systematic study of the functioning of a small

but relevant subsystem of the secretion regulatory pathway at the trans-Golgi network:

the enzymatic conversion of ceramide to sphingomyelin driven by the catalysing enzyme

sphingomyelin synthase 1 (SMS1). In particular the aim is to propose an ordinary differ-

ential equation (ODE) model to formally describe the biochemical reactions under study

and to partially validate the model by fitting it to a given experimental dataset, using

sampling-based statistical approaches for parameter estimation. Discrepancies encoun-

tered between simulated model predictions and experimental observations have led to the

formulation of a final model, which considers a particular positive feedback mechanism

between two reactants of the reaction. Using mathematical analysis we demonstrate that

the proposed model including such feedback regulation is sufficient to qualitatively repro-

duce experimental measurements on lipid compositions after altering SMS1 activities. This

theoretical result is supported by an improved statistical model fit.
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2 Introduction

In Chapter 1 we introduce some general biological notions concerning the secretion

of proteins. We give a brief idea of the underlying regulatory network and we highlight

in particular the role of the reaction of interest in the regulation of secretion: the SMS1

driven conversion of ceramide into sphingomyelin at the trans-Golgi network. Moreover

we present how chemical reactions can be modelled with ordinary differential equation

systems. Chapter 2 presents in more detail the reaction of interest, and the related param-

eterized ODE system. From some experimental findings we can show that, considering the

reaction in isolation, the simple model is not able to capture the presented experimental

data, and that there is the need to develop a modified model that takes into account a

positive feedback regulation between two reactants of the reaction. We conclude this Chap-

ter with a mathematical proof of this theory, rejecting analytically the first model, while

showing that the introduction of a feedback control ensures a qualitative explanation of

the experimental findings. These theoretical expectations were tested against experimental

data by applying, for parameter estimation, the statistical inference approach of the max-

imum likelihood estimation, and a sampling-based Bayesian approach, whose theory and

results are presented in Chapters 3 and 4, respectively. These results confirm our theoreti-

cal investigations supporting the hypothesis of the feedback regulation, while rejecting the

model without feedback. The sampling method provides also interesting results concerning

model predictions and further information about the distribution of parameters, through

the marginal posterior density functions.



Chapter 1

Biological context

In this Chapter we want to give a general overview of the biological context underlying

this thesis, focusing on the description of the process of secretion of proteins in mam-

malian organisms and on the explanation of the functioning of the enzymatic reaction that

metabolises sphingomyelin from ceramide, driven by the enzyme sphingomyelin synthase

1, that takes place at the trans-Golgi network. In particular we want to highlight the

connection between the biochemical reaction of interest and the control of the secretory

pathway.

Afterwards we want to briefly present the basic concepts of the mathematical modelling

of cellular biochemical reactions by means of ordinary differential equation systems, that

will be used in our subsequent analysis of Chapter 2.

3



4 1 Biological context

1.1 Biological background

1.1.1 Regulation of secretion of proteins in mammalian cells

Most human cells secrete proteins. Secretory proteins include many hormones, enzymes,

toxins, and antimicrobial peptides and they are synthesized in the endoplasmic reticulum

(ER). When they are assembled and folded correctly they are transported to the Golgi

apparatus by means of special vesicles. Passing through the cisternae of the Golgi apparatus

these proteins are further elaborated. In particular at the trans-Golgi network proteins to

be secreted are sorted and segregated from lysosomal enzymes. When they are ready for

secretion, secretory proteins leave the Golgi apparatus, packed in specialized vesicles, to be

transported towards the cellular membrane. Finally the vesicle membrane fuses with the

cell membrane and so the proteins leave the cell. This last process of fusion of the vesicle

with the plasma membrane and the following release of its contents is called exocytosis.

More detailed informations about the process of secretion can be found in [5] and [27, Chap.

8]. In Figure 1.1 the main steps of the secretory pathway are graphically represented.

This complex secretory process is highly controlled and regulated at different stages

within mammalian cells. In particular we mention an important regulation mechanism,

based on the interdependence of protein kinase D (PKD) and of the ceramide transport pro-

tein CERT, which influences the formation of secretory vesicles at the trans-Golgi network

(TGN). In fact PKD has been identified as a crucial regulator of the secretory transport

at the TGN [9]. Recruitment and activation of PKD at the TGN is regulated by binding

with the lipid diacylglycerol (DAG) [3], a pool of which is produced by sphingomyelin

synthase (SMS) from ceramide (Cer) and phosphatidylcholine (PC) taking place at the

TGN. The non-vesicular transfer of ceramide from the endoplasmic reticulum (ER) to the

Golgi complex is mediated by the ceramide transport protein CERT [19, 20, 21, 22, 23].

Moreover CERT is critical for PKD activation and for PKD-dependent protein transport

at the plasma membrane. Thus the interaction between PKD and CERT has a key role

for the maintenance of Golgi membrane integrity and secretory transport [9].
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Figure 1.1: Representation of the secretory pathway within human cells: secretory proteins

are synthesized in the ER, transported to the Golgi apparatus, where they are post-modified

and sorted, and finally, packed in specialized vesicles, transported to the plasma membrane.

Copyright c©The McGraw-Hill Companies, Inc.

1.1.2 Sphingomyelin synthase 1: SMS1 driven conversion of ce-

ramide into sphingomyelin at the TGN

Due to the facts described at the end of the previous Subsection, we maintain that an

interesting subsystem of the secretion regulatory network to analyse is the metabolic con-

version of ceramide (Cer) into sphingomyelin (SM) catalysed by the enzyme sphingomyelin

synthase (SMS) at the TGN, yielding diacylglycerol (DAG) as a side product [33, 37].
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Each organism capable of SM production displays a multiplicity of SM synthase (SMS)

genes. The mammalian genome contains two SMS isoforms, named SMS1 and SMS2. SMS1

and SMS2 are co-expressed in a wide range of human cell types and the corresponding

enzymes reside in organelles where SMS synthesis is known to occur: SMS1 is localised to

the Golgi, while SMS2 resides primarily at the plasma membrane [25, 44]. Moreover they

operate as the key Golgi- and plasma membrane-associated SM synthases, respectively

[39].

Now we want to present in detail the enzymatic reaction taking place at the trans-Golgi

network, referring in this way specifically to the enzyme SMS1. In fact, in the study of the

regulation of protein trafficking and secretion, we have prevalent interest in the reaction

taking place at the Golgi apparatus, and in this work we will not consider the reaction

localised at the cell membrane.

The enzyme “Sphingomyelin Synthase 1 ” (SMS1, UniProt identifier: Q86VZ5) consists

in a transmembrane protein, with sequence length of 419 amino acids, and molecular mass

of 49,208 kDa. SMS1 is an integral membrane protein of the trans-Golgi membrane [25, 39].

It is supposed that SMS1 possesses six transmembrane domains and that both the carboxy

terminus and the amino terminus face the cytoplasmic side of the trans-Golgi membrane

[25]. Instead the potential catalytic amino acids of SMS1 are probably oriented towards

the lumen side, the exoplasmic leaflet, of the trans-Golgi membrane.

SM synthesis is mediated by a phosphatidylcholine:ceramide cholinephosphotransferase,

i.e. SM synthase 1, and the reaction takes place in the lumen of the trans-Golgi [25]. It

consists in an enzyme that catalyses the transfer of a phosphocholine head group from

phosphatidylcholine (PC) to ceramide, thus generating SM and DAG [25, 38]. Moreover

SMS1 is also able to catalyse the reverse reaction at the trans-Golgi membrane, namely

the formation of PC and ceramide from SM and DAG. For this reason SMS1, rather than

functioning strictly as SM synthase, is a bi-directional transferase capable of using PC or

SM as phosphocholine donors to produce PC or SM, and the specific direction depends on

the relative concentrations of DAG and ceramide as phosphocholine acceptors present in

the membrane, respectively [25]. Some studies provide also evidence that SMS1 represents
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a major SM synthase activity in mammalian cells, compared to SMS2, with a critical role

in cell growth [38, 39].

Figure 1.2: Putative reaction mechanism of

SMS1-mediated SM synthesis (Figure 3 in

[38]).

The putative reaction mechanism of the

SM synthesis catalysed by SMS1 proceeds

through the following steps, as outlined in

Figure 1.2 [25, 38]:

1. binding of a two-chain choline phos-

pholipid, PC or SM, to a single bind-

ing site of the enzyme SMS1;

2. the phosphocholine head group of the

donor is transferred to a conserved

histidine residue in the enzyme’s ac-

tive site;

3. formation of DAG or ceramide ac-

cording to the used phosphocholine

donor, and release of the produced

DAG or ceramide, while the head

group stays bound to the enzyme;

4. the phosphocholine head group is

transferred to the phosphocholine ac-

ceptor bound to the enzyme, ce-

ramide or DAG, forming SM or PC;

5. release of the synthesised SM or PC

from the active site of the enzyme to

allow another round of catalysis.

As already highlighted all steps in this reaction mechanism are reversible, thus satisfying

the experimental observation that SM and DAG can also be converted to PC and ceramide.
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1.2 Modelling cells as systems

The main goal of the quite recent field of research named “Systems Biology” is the sys-

tematic study of complex biological systems using the precise mathematical structure of

Systems Theory, and at the same time cooperating with the advanced experimental knowl-

edge and results of Biology.

In order to study complex relations between biochemical networks of reactions and to

describe them in a mathematical way, it is important to structure the problem in a simple

way. Some basic hypotheses and simplifications are needed to allow quantitative under-

standings and realistic predictions of cellular processes and of the underlying regulatory

mechanisms. For more details about this whole Section we refer to standard texts such as

[1, 2] and [32].

1.2.1 Biochemical reactions

The dynamics of intracellular processes, such as signal transduction or metabolic pathways,

are often described by homogeneous systems of chemical reactions, named chemical reaction

networks (CRN). In this simplified modelling approach, the cellular system is considered

as a homogeneous system, and concentration gradients or spatial differences are ignored.

Some examples of such chemical reaction equations are:

• degradation of molecules, A −→ ∅

• dimerization (reversible), 2 A −−⇀↽−− A2

• activation (e.g. phosphorylation), A −−⇀↽−− A∗

• more complex reversible reactions, 2 A + B −−⇀↽−− C

where A,B,C represent the molecular concentrations of three different reactants. In gen-

eral the single arrow indicates that the reaction can go only one way, while the double

arrow symbol indicates that the reaction is reversible.
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1.2.2 ODE models based on chemical reaction kinetics

In order to define the dynamics of cellular reactions, translating chemical reaction systems

into ordinary differential equation (ODE) models, we have to determine the velocity of

each chemical reaction, named reaction rate. In this way we can express the conversion

rate at which a particular reactant’s concentration changes, d
dt

[A(t)], where [A(t)] is the

concentration of the molecular species A as a function of time.

The “law of mass action” (LMA) is a standard way to assign reaction rates to chemical

reactions, allowing the construction of differential equation systems. ODE models are

deterministic models, and they are appropriate to describe the behaviour of an average cell

or a cell population, rather than a single cell. Formally, the law of mass action states that

the rate at which a reaction takes place is proportional to the product of the concentrations

of the molecular species participating in the reaction. The factor of proportionality is called

reaction rate constant.

To make some examples we present the reaction rates relative to some simple chemical

reactions (with the cursive capital letters in the rate equations indicating the concentrations

of the reactants):

A
k−→ Rate: v = kA (1.1a)

A + B
k−→ Rate: v = kAB (1.1b)

2 A + B
k−→ Rate: v = kA2B (1.1c)

where we employ the law of mass action. We can define all quantities v also with the concept

of flux, in the sense of velocity at which the molecular mass of the reactant changes in a

time unit. Applying these rules, and considering all fluxes contributing to the conversion

rate of each specific reactant, we are able to translate complex chemical reaction systems

into parametric ODE systems.
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For example, for a generic reversible reaction such as 2 A + B
k+−−⇀↽−−
k−

C the corresponding

ODE model reads:

Ȧ(t) = −2k+A
2B + 2k−C (1.2a)

Ḃ(t) = −k+A
2B + k−C (1.2b)

Ċ(t) = k+A
2B − k−C. (1.2c)

1.2.3 Michaelis-Menten enzyme kinetics

Now we briefly present one of the most used models for enzymatic reactions, proposed

by Michaelis and Menten (1913), which describes the conversion of a substrate S into a

product P , via an enzyme catalyst E. For details we refer to the texts [1, 2, 32].

In this reaction the substrate S reacts with the enzyme E, and they bind to form an

intermediate complex C, that can reversibly dissociate to form again S and E. Finally the

complex C decays into a product P and the original enzyme E. The considered chemical

reaction is:

S + E
k1−−⇀↽−−
k−1

C
k2−→ P + E (1.3)

The reaction rate constants are defined as k1, k−1 and k2. Instead of formulating the

complete ODE model corresponding to this chemical system, we are going to simplify the

equations through some hypotheses in order to express the reactions in a single differential

equation, the so-called Michaelis-Menten (MM) enzyme kinetics.

We assume that the reaction C
k2−→ P + E is slow compared to the time scale of the

reversible reaction S + E
k1−−⇀↽−−
k−1

C. This assumption leads to the so-called “Quasi-steady

state approximation” (QSSA). This means that the fast reversible reaction is always in

equilibrium (with slowly changing substrate concentration). Considering the total amount

of the enzyme ET , that represents the sum of the free molecules E and the ones bound

to the complex at steady state CS, and solving the differential equation for the product P

with respect to the substrate concentration S, we obtain the desired MM equation:

Ṗ = k2 · CS = k2 ·
ET · S
Km + S

. (1.4)
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The constant Km is called Michaelis-Menten constant and it equals:

Km =
k− + k2

k+

. (1.5)

To conclude this topic we highlight the fact that for small concentrations of the substrate

S the MM kinetics provides a linear relation between the synthesis rate of the product P

and the substrate level. Instead at high concentrations of the substrate, in particular for

S � Km, this relation becomes a constant, i.e. the synthesis rate is no more influenced by

differences in the levels of the substrate and the enzymes are limiting.
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Chapter 2

SMS1 reaction system

The enzyme sphingomyelin synthase (SMS) uses ceramide and phosphatidylcholine as sub-

strates in the reaction that synthesizes sphingomyelin and diacylglycerol, as described in

detail in Chapter 1, Section 1.1, from a biological point of view.

The concentrations of SMS1 and SMS2, the two isoforms of mammalian SMS, play a

fundamental role in the control of SM, DAG and ceramide levels within human cells, and

is thus strongly related with a lot of important cellular functions, as it will be described in

Section 2.1.

The main focus of this Chapter is to present a mathematical dynamical model (ODEs)

of the subsystem of the secretion regulatory pathway catalysed by SMS1 at the trans-

Golgi network, based on chemical reaction kinetics. The aims are to investigate the role

of SMS1 activity, to understand the underlying relations between educts and products of

this reaction and to describe as good as possible experimental data taken from biological

literature.

13



14 2 SMS1 reaction system

2.1 Impact of SMS on multiple cellular functions

Sphingomyelin (SM) is the most abundant sphingolipid species in mammalian cells, com-

prising 5-15% of total phospholipids [39], and it represents an important component of

cellular membranes.

As already described in Chapter 1, SM sythase (SMS) is a class of enzymes that catal-

yse the reaction that produces SM from ceramide, by transferring a phosphocholine head

group from phosphatidylcholine (PC) to ceramide, with the additional production of dia-

cylglycerol (DAG) as byproduct, an important bioactive lipid. Therefore this enzyme plays

a central role in the metabolism of sphingolipids and glycerolipids reacting together, which

are involved also in different important cellular processes [38, 39]. In nature there exist

two known isoforms of human SMS, named SMS1 and SMS2. They reside in different or-

ganelles, where SM synthesis in known to occur: SMS1 is located on the cis-medial aspect

of the Golgi apparatus, and SMS2 on the plasma membrane [25].

Several biological findings show that the concentrations of these two isoforms of SMS,

expressed in all major human tissues [25], are fundamental for the control of the endogenous

levels of the lipids taking part in this reaction, in particular ceramide, SM and DAG, at

the Golgi apparatus and at the plasma membrane, respectively [8, 39, 42]. The artificial

manipulation of both enzymes can in principle influence the metabolism of all four bioactive

lipids participating in the reaction, and thus we assume that SMS behaves as an important

potential regulator of many cellular processes linked to these particular lipids.

Ceramide is a proapoptotic factor and has antimitogenic properties while DAG behaves

as a mitogenic factor, i.e. that induces mitosis, the process in cell division in eukaryotes in

which the nucleus divides to produce two new nuclei, each having the same number and

type of chromosomes as the original. Moreover DAG, gathered in subcellular pools at the

Golgi apparatus, binds with protein kinase D (PKD) mediating in this way its recruitment

at the trans-Golgi, where, once activated, it efficiently regulates the formation of Golgi-

derived secretory vesicles that are specifically destined to the cell surface [3], a process that

is essential also for cell growth.
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Finally SM has a high-packing density when accumulating in the plasma membrane,

and a high affinity with cholesterol, contributing in this way to the barrier function of

the membrane. Cooperating with cholesterol and glycosphingolipids, SM has a strong

ability to form lipid “rafts” in the plasma membrane [36] 1, which are known to have an

important role as a platform for signal transduction and protein sorting and trafficking in

cell membranes.

Some interesting publications, which we are going to illustrate, maintain that SMS is

involved, via regulation of endogenous levels of those lipids, in the regulation of multiple

biological cellular functions, such as: signal transduction, functional modulation of cell

membrane structure, in particular of plasma membrane lipid rafts [28], cell proliferation,

differentiation, apoptosis [8], cell growth and survival [39], PKD recruitment at the TGN

and activation [39, 42], which in turn is tightly related with regulation of secretion [3, 9].

Since in this study we are specifically interested only in the reaction that takes place

at the trans-Golgi apparatus, where SMS1 is located, from this point forward we will refer

mainly to the experiments and results relative to this SMS isoform, avoiding to mention

the information concerning the other enzyme SMS2.

In the study of Tafesse et al. [39] human cervical carcinoma HeLa cells underwent RNA

interference, in order to specifically deplete SMS1 and SMS2 expression. Their analysis

focused to grasp the effects of these manipulations on the Golgi- and plasma membrane-

associated SM synthase activities, SM production levels, overall lipid composition and

cell growth. After 7 days of siRNA (small interfering RNA) treatment, the SM synthase

activity in SMS1-depleted cells was reduced by 80% respect to control cells. The impact of

this SMS1 depletion on the total lipid composition of HeLa cells was a 20% reduction in SM

levels compared with controls and a 1.8-fold increase in ceramide levels. The decrease in

SM levels seemed to the authors quite minor compared with the strongly reduced enzyme

SMS activity. They state later that this is due to a growth arrest of the cell, which is

accompanied by a general down-regulation of phospholipid synthesis. The effect on the

1The “rafts” are cholesterol- and SM-enriched membrane regions, also known as liquid-ordered domains

[36], which are known to have an effect on multiple signaling pathways.
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levels of PC, cholesterol and DAG was not significant. The last impact of SMS silencing

underlined in [39] by the authors was the connection between SMS and growth in HeLa

cells. In fact a growth arrest occurred in cells treated with SMS1 siRNAs within 3 days

after transfection2, regardless of the culture conditions. A 2-fold increase in cells undergoing

apoptosis was also observed.

Ding et al. [8] proposed some experimental results that demonstrate that SMS1 and

SMS2 are key factors in the control of endogenous cellular SM and DAG levels and further-

more that there exists an important relationship between SMS activity and cell apoptosis.

The experimental findings about the effects of SMS1-expression modulation on the lipid

composition of the cells will be described in detail in Section 2.3, since we will use these ex-

perimental data for the validation of the model and for parameter estimation. To evaluate

the role of SMS in apoptosis, the authors in [8] applied SMS1 and SMS2 gene overexpres-

sion and silencing techniques to CHO cells and THP-1-derived macrophages, respectively.

The overexpression led to an increase in the SMS1 activity and significantly higher intra-

cellular SM, DAG and ceramide levels with respect to controls. CHO cells overexpressing

SMS1 were more likely to undergo lysis mediated by lysenin, proving SM enrichment of

the plasma membrane. Then they showed an incrementation of plasma membrane lipid

rafts and of tumor necrosis factor-α-induced apoptosis, compared with wild-type CHO

cells. On the other hand, SMS1 siRNA was used to knock down SMS1 activity in human

macrophages. This led to significantly reduced intracellular and plasma membrane SM

levels, reduced DAG and ceramide levels, and finally a decreased rate of LPS-mediated

macrophage apoptosis, compared with the control case. Change in the differences in cel-

lular PC levels was not significant in both cases of overexpression and silencing. Finally

the authors suppose that both SMS1 and SMS2, regulating SM and DAG levels, could

contribute to change lipid rafts on the plasma membrane and thus affect protein kinase C

(PKC) activity in certain disease states [15, 26].

2Transfection is the process of deliberately introducing nucleic acids into cells. The term is used notably

for non-viral methods in eukaryotic cells. Genetic material (such as plasmid DNA or siRNA constructs),

or even proteins such as antibodies, may be transfected.
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As last work we consider the one of Villani et al. [42]. In this study the authors inves-

tigated the role of the enzymes SMS1 and SMS2 on the regulation of DAG by modulating

their expression. In particular they inquired into the possibility that SMSs could mod-

ulate subcellular pools of DAG, once acute activation of the enzymes is induced. Their

experimental results showed that regulation of SMS affected the formation of DAG at the

TGN, and SMS knockdown reduced the recruitment of the DAG-binding protein PKD at

the Golgi apparatus. These findings proved that both enzymes are able to regulate the

formation of DAG in HeLa cells, that this pool of DAG is biologically active and directly

implicate SMS1 and SMS2 as regulators of DAG-binding proteins at the Golgi apparatus.

All of these findings demonstrate that an important relationship exists between SMS

activity and cell membrane SM concentrations and thus between SMS activity and cellular

functions. In particular manipulation of SMS1 cellular levels, exclusively located at the

trans-Golgi apparatus, influences the secretion of proteins through the regulation of local

lipid pools (DAG) and their consequent effects on protein kinase D (PKD) and ceramide

transfer protein (CERT) [41].

2.2 Chemical reaction and ODE model

2.2.1 Chemical reaction

As starting point for the construction of a dynamic mathematical model that describes the

conversion of ceramide (Cer) into sphingomyelin (SM) in dependence of the activity of the

enzyme SMS1, we consider the following chemical reaction:

Cer + PC ↽−−−−−
p2,SMS1

p1,SMS1−−−−−−−⇀ DAG + SM (2.1)

The SMS1 driven reaction is reversible and this fact is represented by the double arrow

between the two substrates (Cer and PC) and the two products (SM and DAG), where

the parameters p1 and p2 indicate the forward and backward reaction rate constants. It is

however known that effectively, in vivo, the net reaction is always to the right, since SM is
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constantly removed from the Golgi apparatus to form the vesicles that transport secretory

proteins to the plasma membrane [41].

To complete the graphical representation of this chemical reaction we need to take into

account some further biological knowledge. In fact this is not a closed subsystem and

there are some in- and outflows that have to be further considered. Thus there is no mass

conservation of the four reactants participating in the reversible reaction, and the net flux

of the entire reaction does not constantly equal zero, i.e. the difference between the two

unidirectional fluxes of the reactions does not vanish.

Describing the reaction using mass action kinetic, lipids’ concentrations reach a steady

state value, and the corresponding derivatives are zero. However the effective in vivo

situation is a “dynamic” equilibrium, due to these fluxes that are constantly carried into

and out from the system [41].

First of all there is an influx Cin of ceramide, that represents the quantity of this

sphingolipid that is produced at the endoplasmic reticulum (ER) and transported, through

the ceramide transfer protein (CERT), to the Golgi apparatus, where the reaction occurs.

For now we consider this flux as a constant value, postponing the consideration that the

influx Cin could be a function of other chemical reactants.

Then we consider for every reactant, except for PC, a simple linear degradation factor,

that takes into account both the degradation and the outflux due to transportation, like

in the case of SM.

Finally we assume the concentration of phosphatidylcholine (PC) to be constant, ac-

cording to some experimental results taken from the literature, which show that the concen-

tration of PC does not significantly change if the value of SMS1 is manipulated [8, 39, 42].

This assumption can be interpreted as a dominant regulation of PC by other chemical

pathways, which balance the effect of SMS1, or by a large overall pool of PC, which does

not notice changes of small fractions [41].

Taking all these effects into account, the chemical reaction of interest can be represented

like in Figure 2.1.
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Figure 2.1: SMS1 driven conversion of ceramide to sphingomyelin.

2.2.2 Parameterized differential equation model

Referring to the chemical reaction just described, we now want to develop a dynamical

model for this process of the form ẋ = f(x, θ), using mass action kinetics to translate

chemical reaction systems into ordinary differential equations systems, as described in the

introductory Chapter 1, Section 1.2. In this way we obtain a deterministic mathematical

model for the biochemical system in the form of differential equations that represent the

first derivatives w.r.t. time of the concentrations of the reactants taking part in the reaction.

To describe the two enzymatic forward and backward reactions with two substrates we

use Michaelis-Menten enzyme kinetics, presented in Chapter 1, Section 1.2. Our theoretical

analysis about the dynamical ODE system are, however, independent of the exact choice of

the functions modelling these fluxes, and they could be represented with two generic fluxes

v1(SMS1, Cer, PC) for the forward reaction, and v2(SMS1, DAG, SM) for the backward

one, expressions that we will consider in the last Section 2.4 of this Chapter. To simplify

the notation we define the concentration of ceramide with the initials C, and moreover we

write simply SMS to express the total concentration of the enzyme SMS1.

This model will be of course a function of a certain number of parameters, namely: the

influx of ceramide (Cin), the reaction rate constants of the degradation effects (dC , dDAG

and dSM) and the two reaction rate and two Michaelis-Menten constants of the forward

and backward enzymatic reactions (p1, p2, k1 and k2).



20 2 SMS1 reaction system

The developed parametric differential equation system, for the lipids and proteins re-

acting together, is presented as follows:

Ċ = Cin − dC C − p1 SMS
C · PC

C · PC + k1

+ p2 SMS
DAG · SM

DAG · SM + k2

(2.2a)

˙DAG = −dDAGDAG+ p1 SMS
C · PC

C · PC + k1

− p2 SMS
DAG · SM

DAG · SM + k2

(2.2b)

˙SM = −dSM SM + p1 SMS
C · PC

C · PC + k1

− p2 SMS
DAG · SM

DAG · SM + k2

(2.2c)

˙PC = 0 (2.2d)

˙SMS = 0. (2.2e)

We present now a simplified and more compact version of this ODE model, that will be

considered for the future analysis and considerations about the system. This notation is

also used in Matlab for the computational simulations (see Appendix A).

First of all we set SMS1 = u, because it is the input (or control) of our system,

which is defined a priori to simulate different experiments. It expresses the “activity” of

the enzyme SMS1 compared to a reference situation, in the sense that its value is 1 in

the control case, and it can vary taking larger or smaller values, in dependence to which

experiment is considered. More precisely u > 1 in the case of SMS1 overexpression, and

u < 1 in the case of silencing (knockdown) of the enzyme, in the sense that consequently to

these manipulations the cellular SMS1 activity is subject to a u-fold increase or decrease.

We consider only the first three differential equations, considering u and PC among

the other parameters, given that their value remains constant by hypothesis. We redefine

also the state variables as x = (x1, x2, x3) = (C,DAG, SM), and the three corresponding

degradation rates as d1, d2 and d3. In this way the system can be rewritten as follows:

ẋ1 = f1(x) = Cin − d1 · x1 − p1 u
x1 · PC

x1 · PC + k1

+ p2 u
x2 · x3

x2 · x3 + k2

(2.3a)

ẋ2 = f2(x) = −d2 · x2 + p1 u
x1 · PC

x1 · PC + k1

− p2 u
x2 · x3

x2 · x3 + k2

(2.3b)

ẋ3 = f3(x) = −d3 · x3 + p1 u
x1 · PC

x1 · PC + k1

− p2 u
x2 · x3

x2 · x3 + k2

. (2.3c)
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Our model is thus of the form ẋ = f(x, θ), with the state: x = (x1, x2, x3) ∈ R3
+,

belonging to the positive orthant of R3, referring to the fact that concentrations are positive

quantities, and the parameter being a 10-dimensional vector:

θ = (Cin, p1, p2, d1, d2, d3, k1, k2, u, PC) ∈ R10
+ (2.4)

also made up of all positive quantities. The first 8 parameters (Cin, p1, p2, d1, d2, d3, k1, k2)

will have to be estimated from experimental data taken from biological literature, that will

be described in the next Section 2.3, while u and PC have constant values defined by the

experimental conditions.

To complete this Section we list the units of measurement of the variables and param-

eters of the system. Since we will use non-dimensional values for all lipid concentrations

and for the input u by normalizing to some control measurement values, we assume the

variables x1, x2 and x3 and the two constants u and PC to be dimensionless. Consequently

k1 and k2 are dimensionless too, while Cin, p1, p2, d1, d2 and d3 are [min−1] 3.

2.3 Experimental data from literature

The aim of the deterministic mathematical model just presented is to predict, for specific

values of the 8 parameters, θ = θ0, real data of the concentrations of the four reactants

participating in the reaction, and in this way to describe in a formal way the dynamics of the

reaction. The first step is thus to gather experimental datasets of the concentrations of the

reactants at particular instants of time, measured through biochemical experiments that

reproduce the enzymatic reaction in specific cells expressing human SMS1. The second step

is to estimate a specific value for the parameter vector θ, such that the model can explain

as good as possible the given data obtained under the specific experimental conditions,

and finally predict other datasets under different experimental conditions.

3We could generalize defining the unit of measurement of all these parameters as [time−1]. In fact we

are interested in the steady state values of the concentrations so we do not need a specific unit for the

time, and we could let it not specified.



22 2 SMS1 reaction system

For this purpose we use some experimental datasets provided in [8]. In this article the

authors explain the effects of manipulation of both SMS isoforms, using gene overexpression

and knockdown techniques, on the levels within the cell of the following lipids: ceramide

(Cer), phosphatidylcholine (PC), diacylglycerol (DAG) and sphingomyelin (SM).

We will consider only the experiments concerning the manipulation of SMS1 activity,

and its influence on the metabolism of all four lipids of the reaction. That’s because, as

already underlined in Section 2.1, we consider only the reaction that takes place at the

trans-Golgi apparatus, where this specific SMS isoform (SMS1) is located, while SMS2 is

located at the plasma membrane which is beyond the scope of this thesis.

2.3.1 Overexpression

Overexpression was carried out in genetically modified CHO (Chinese hamster ovary) cells,

that stably express human SMS1 and SMS2 [8]. This procedure increased SMS1 and SMS2

mRNA levels, and this fact resulted in an incrementation of cellular SMS activity, compared

with control CHO cells. In particular SMS1 overexpression resulted in a 2.2-fold increase

in cellular SMS activity, compared with wild type cells (Fig. 1B in [8]). Enzymatic assays

were used to measure cellular lipid levels, whose absolute values are reported in Table 2.1

(Table 1 in [8]).

Table 2.1: Lipid concentrations in CHO cells overexpressing SMS1.

Exp.# Type of cell u Cer PC DAG SM

1. Control 1 0.96± 0.09 294± 23 2.45± 0.51 25± 3

2. Overexpressing SMS1 2.2 1.38± 0.08a 283± 37 3.31± 0.66a 31± 3a

The units of measurement of all quantities are nmol/mg protein, and the values of the

concentrations of four lipids are given as mean ± standard deviation (SD), and derived

from five repeated experiments. The meaning of the superscript a in the second line of

Table 2.1 is that differences between these data and the values of the control experiment
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in the same column are statistically significant (P < 0.01 by ANOVA and P < 0.05 by

Student-Newman-Keuls test).

As results in Table 2.1 show, cells in which SMS1 was overexpressed contained sig-

nificantly higher SM and DAG levels, as it was expected. Not expected instead was the

significant increase of ceramide levels, compared with controls. Finally PC levels showed

no significant changes between the control experiment and the one with overexpression.

This aspect was already considered in our mathematical ODE model, by defining the con-

centration of phosphatidylcholine as constant.

From data it was not possible for the authors in [8] to understand which particular

SM was increased by overexpression, representing SM levels reported in Table 2.1, the

total amount of SM present in all cellular membranes, including ER, Golgi apparatus and

also plasma membrane. With some further considerations the authors explain that SMS

overexpression increases the lipid rafts, or raft-like domains, in the plasma membrane. This

means that SMS overexpression has an important effect on SM levels specifically in the

plasma membrane, where signal transduction begins, because it changes the overall cell

membrane structure [8].

2.3.2 Silencing

To further evaluate the relationship between SMS activity and cellular lipid levels, the

authors of [8] used SMS1 and SMS2 small interfering RNA (siRNA) to knock down the

respective mRNA in THP-1-derived macrophages, that are human macrophages. They

explain that one reason to use a different type of cells w.r.t. the overexpression experiment

is that hamster SMS1 and SMS2 cDNA sequences are not known, and so the siRNA

approach to knock down these two enzymes in CHO cells would not yet be plausible.

This procedure caused a significant decrease in cellular SMS activity, in particular SMS1

siRNA reduced it by 23% compared with control cells (Fig. 4A in [8]). With enzymatic

assays they measured cellular levels for the same four lipids of interest, whose absolute

concentrations are shown in Table 2.2, as in the case of overexpression (Table 2 in [8]).
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Table 2.2: Lipid concentrations in SMS1 knockdown macrophages.

Exp.# Type of cell u Cer PC DAG SM

3. Control 1 0.77± 0.06 320± 33 2.26± 0.12 44± 5

4. SMS1 siRNA 0.77 0.73± 0.09 339± 19 1.71± 0.23a 35± 4a

From these data it results that total intracellular SM and DAG levels were significantly

decreased in cells that had been transfected with SMS1 siRNA, compared with wild type

cells. Instead no significant change was measured in ceramide cellular levels, as for PC

levels. Like in Table 2.1 concerning the experiment of overexpression, the units of mea-

surement of all quantities are nmol/mg protein, and the values of the concentrations of

lipids are given as mean ± SD, and are the average of five experiments. Also the meaning

of the superscript a is the same, indicating statistically significant data compared with con-

trol in the same column (P < 0.01 by ANOVA and P < 0.05 by Student-Newman-Keuls

test).

2.3.3 Normalization of the two datasets

All the data relating to the four experiments (two controls, one overexpression and one

silencing) will be the starting point for the parameter estimation of the model.

In order to use these experimental data for this purpose, we interpret the measurements

as dynamic equilibrium states (steady states) x̄(u) = (x̄1(u), x̄2(u), x̄3(u)), functions of the

input u. In this situation the concentrations and hence the reaction fluxes are constant,

i.e. ẋi = fi(x̄) = 0, ∀ i = 1, 2, 3. Nevertheless we have to consider that those datasets

are obtained from two different types of cells, Chinese hamster ovary cells and human

macrophages, respectively. In the two datasets concerning the two control experiments

(the first and the third) in the two different kinds of cells, one can notice at once that the

absolute concentrations of all four reactants are quite different. Therefore the two datasets

given in Tables 2.1 and 2.2 are not consistent, being measured in two different cellular

systems. For this reason we cannot compare directly the absolute concentration values in
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the parameter estimation procedure. To make our analysis possible and to be able to test

hypotheses across cell lines, we normalize the concentrations of every reactant, i.e. mean

and standard deviation, w.r.t. the corresponding value of the control experiment, namely

the mean value measured in the wild type cell. We do that separately for the two different

cells, so that all concentrations (the mean values) in the first and third experiment will

be equal to 1, with normalized SD, and the ones in the second and forth experiment will

be normalized w.r.t. the control absolute levels. In Table 2.3 we present all these values,

which we will use for parameter estimation and further analyses. For the relative PC levels,

we consider only the normalized mean values and not the standard deviations, because in

the model we define PC as a constant parameter, as we do also for u. In fact for each

experiment we define the specific value of PC, and we do not consider it as a measurement,

like the other three lipids with statistical description, to be used for parameter estimation.

Every lipid normalized concentration reported in Table 2.3 is thus dimensionless, being

normalized w.r.t. control levels, and it justifies the consideration made in Subsection 2.2.2

about the units of measurement of the state variables xi.

Table 2.3: Lipid concentrations for all 4 experiments normalised w.r.t. control levels in

wild type cells, relative to the same cell, expressed as mean value ± SD.

Exp.# Type of cell u Cer PC DAG SM

1. Control 1 1± 0.09 1 1± 0.21 1± 0.12

2. Overexpressing SMS1 2.2 1.44± 0.08a 0.96 1.35± 0.27a 1.24± 0.12a

3. Control 1 1± 0.08 1 1± 0.05 1± 0.11

4. SMS1 siRNA 0.77 0.95± 0.12 1.06 0.76± 0.10a 0.8± 0.09a

In this way from now on we consider relative changes of lipid levels in response to

manipulation of SMS1 activity (overexpression and knockdown), and we analyse the be-

haviour of the model in a qualitative way. In fact this normalization has the effect that

both quantitative datasets relative to the two different cell types are transformed into one

rather semi quantitative dataset to test our hypothesis.
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2.4 Analysis of the ODE system

In this Section we want to make some simple considerations about the model before dealing

with the estimation of parameters and the problem of identification of parameters, that

will be discussed in the next Chapters.

We will prove that the hypothesis of a simple constant ceramide influx Cin is not

adequate to explain the qualitative trend of steady state levels in response to different

SMS activities.

For this reason we will present a second revised model, in which the constant ceramide

influx is replaced by an influx that is a function of another reactant (i.e. diacylglycerol),

taking the form of a feedback regulation term Cin(DAG) = f(DAG) between a product

and an educt. We will explain why a feedback of this form is the next logical extension

of the first model, supporting this choice with effective biological findings about the regu-

lation through diacylglycerol of the transport of ceramide at the TGN. We want to show

theoretically that this second modified model can better reproduce biochemical data in a

qualitative way.

2.4.1 Ceramide influx: feedback regulation?

Changes in the activity of the enzyme SMS1 produce the alteration of the fluxes of the

reversible reaction (2.1), and consequently of the steady state concentrations of the four

reactants participating in the reaction. From experimental data, given in Tables 2.1 and

2.2, we can notice that the increase and decrease of SMS1 activity (u), produce a significant

increase and decrease of SM and DAG cellular levels, respectively. This fact let us presume

that SMS1 overexpression increases the net flux of the reversible reaction to the right

side. Considering this statement as true, and under the hypothesis of constant Cin, we

conclude that ceramide level should decrease after SMS1 is overexpressed, and should

increase after the enzyme is knocked down, while we already know that PC level remains

almost constant following to u-level alteration [41]. In fact, if we consider the biochemical

reaction, represented in Figure 2.1, in isolation, the changes of steady state concentrations
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of lipids SM and DAG after SMS manipulation should have opposite sign with respect to

the change of steady state ceramide level. This statement is also proven in Section 2.4 in

a formal mathematical way.

But if we consider the real trend of ceramide levels at steady state after overexpression

and silencing, looking at Table 2.3, we notice a completely different behaviour. In fact

in the case of overexpression the quantity x̄1(u) (steady state concentration of ceramide)

significantly increases, while in the case of SMS1 knockdown, it slightly decreases, although

not marked as significant in [8].

In Table 2.4 we summarize the real trend of lipid concentrations at the equilibrium

after SMS manipulation (Data), together with the expected trend given by the model

(2.3) (Expected), highlighting with double arrows the contradiction in the ceramide’s

trends.

Table 2.4: Trend of lipid levels compared to controls after overexpression and silencing:

comparison between trend of experimental data and what is expected from the ODE model

with Cin constant.

u x̄1(u) (Cer) x̄2(u) (DAG) x̄3(u) (SM) PC

Overexpression: Data SMS1↑ ⇑ ↑ ↑ –

Overexpression: Expected SMS1↑ ⇓ ↑ ↑ –

Silencing: Data SMS1↓ – (⇓) ↓ ↓ –

Silencing: Expected SMS1↓ ⇑ ↓ ↓ –

In this way we can already underline that the first model ẋ = f1(x, θ), defined by the

equations (2.3), fails to explain experimental findings qualitatively and we need to extend

our hypothesis, modifying the structure of the differential equation system.

From biological knowledge we know that there exists an indirect feedback regulation

from DAG to the transport of ceramide to the TGN, via protein kinase D and the ceramide

transfer protein CERT (see the graphical scheme in [41]). Therefore we want to describe

this phenomenon in our dynamic mathematical model, trying to change the equations
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in order to explain qualitatively better the experimental results of the changes in lipid

composition in response to SMS perturbations, given in Table 2.4. In particular we assume

that the velocity of transport of ceramide to the TGN, where the reaction takes place,

represented by the influx Cin, is a function of the DAG concentration, becoming in this

way a term of the form Cin(DAG). Moreover we assume that this regulation takes place

without this last reactant being consumed, and hence we do not have to change or add

some extra terms in the other differential equations of system (2.3).

In this sense we describe the indirect regulation from DAG to ceramide levels at the

TGN in a very simplified way. In fact the term Cin(DAG) summarizes all biochemical

reactions that occur in the pathway between DAG and Cer with a unique effective direct

regulation term [41].

One has to be aware of the strong simplification adopted in this context, but we will

show that it is sufficient to explain qualitatively the experimental results of the changes in

lipid levels at the TGN consequently to SMS1 manipulation.

2.4.2 Choice of the feedback function Cin(DAG) = f(DAG)

The question that arises now is which function f(DAG) should be chosen to represent this

ceramide influx at the TGN, in order to explain experimental data in a proper way.

Unfortunately this indirect feedback effect that binds DAG levels at the TGN to the

transport of ceramide via CERT is not yet well understood in detail. Moreover this process

could be differently regulated depending on the specific cellular system. What is known

is that DAG at the TGN can influence the transport of ceramide from the endoplasmic

reticulum to the Golgi apparatus both in a positive and in a negative way, trough different

chemical pathways, and for this reason it is not so clear how to represent this effect by a

mathematical function of the concentration of diacylglycerol, x2 in our model (2.3).

We try to approximate the relation between DAG levels at steady state and the influx

Cin, by comparing the outputs of the model (2.3) with the available lipid measurements

for the different experimental conditions, as it is shown in Table 2.4. From these data we
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can understand that the feedback regulation function should be monotonically increasing.

First of all it can be observed that the concentration of ceramide at steady state x̄1(u)

is monotonically increasing with Cin, ensured by the effect of mass balance considering the

system in isolation in a situation of dynamic equilibrium. Afterwards we can make the

following considerations: as depicted in the first panel of Figure 2.2, we fix a point in the

plane (DAG,Cin) that refers to the control experiment, (x̄control2 = 1, Ccontrol
in ). In the case

of SMS1 overexpression the DAG level increases significantly. This means that the net flux

increases to the right, with consequently more production of SM from ceramide. As we

already explained, without the feedback regulation there should be a consequent decrease in

the steady state level of ceramide, but the experimental results show an opposite behaviour.

For this reason we assume that an increased DAG concentration should also increase the

influx Coverexpr
in w.r.t. the control experiment (second panel of Figure 2.2).

In the opposite case of SMS1 silencing, the DAG level decreases significantly compared

with the control level, due to a smaller net flux of the reversible reaction to the right

direction. In the hypothesis of constant influx Cin, ceramide levels at equilibrium should

increase, since it is less consumed by the reaction. But also in this case experimental

data give controversial results, since when SMS1 is knocked down the ceramide level at

steady state slightly decreases. This fact means that there should be a decreased influx of

ceramide Csilencing
in at the TGN with respect to the control case (third panel of Figure 2.2).

All these considerations bring us to assume that the function Cin(DAG) is monotoni-

cally increasing, and, in a first attempt, the simplest approximation of such a function that

can be chosen is a linear one, as shown also in the last panel of Figure 2.2, of the form:

Cin(DAG) = f(DAG) = a ·DAG a > 0. (2.5)
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Figure 2.2: Steps for the choice of a linear feedback function Cin(DAG).

The second modified model ẋ = f2(x, θ), with this new feedback function, reads as

follows (using the same notation of model (2.3)):

ẋ1 = f1(x) = a · x2 − d1 · x1 − p1 u
x1 · PC

x1 · PC + k1

+ p2 u
x2 · x3

x2 · x3 + k2

(2.6a)

ẋ2 = f2(x) = −d2 · x2 + p1 u
x1 · PC

x1 · PC + k1

− p2 u
x2 · x3

x2 · x3 + k2

(2.6b)

ẋ3 = f3(x) = −d3 · x3 + p1 u
x1 · PC

x1 · PC + k1

− p2 u
x2 · x3

x2 · x3 + k2

. (2.6c)

We could have added in equation (2.5) also a constant term, writing in this way

Cin(DAG) = a · DAG + b, avoiding to have for the new system a fixed point in the

origin, x̄ = (0, 0, 0), and moreover having one more degree of freedom. But using the

parametrization of equation (2.5), we have in the model (2.6) the same number of param-

eters of the first model (2.3), so that we can compare directly the goodness of the data fits

for the two models, without using other criteria of model comparison.

A short explanation is also needed for reasons about why we chose a linear approx-

imation of the feedback function. For example we could have chosen also functions of

higher orders, having no clear idea of how this feedback effect acts biologically on the

regulation of the transport of ceramide. With Matlab we carried out a maximum like-

lihood parameter estimation, method explained in Chapter 3, in order to estimate the

three different influxes for the three different experimental conditions: Ccontrol
in , Coverexpr

in

and Csilencing
in . After plotting the three obtained Cin as function of the three respective
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normalized DAG concentrations (the three normalized DAG measurements reported in

Table 2.3), which are represented in Figure 2.3 with three bold points (Data), we per-

formed a linear and quadratic interpolation of the three points, passing through the origin,

to compare which function could better represent the three available points. These two

different interpolations are also depicted in Figure 2.3, with a continuous straight line for

the linear interpolation and a dotted line for the quadratic one. As one can observe in the

figure the linear approximation is sufficient to represent the feedback function Cin(DAG).
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Figure 2.3: Linear (continuous line) and quadratic (dotted line) approximations of the

feedback function Cin(DAG).
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2.4.3 Steady state analysis with different SMS concentrations

In this Subsection we want to prove mathematically that the original model (2.3), with

constant ceramide influx, can never be able to explain the experimental results given in

Table 2.3, especially the trends of steady states of lipid levels in response to a variation

of the value of the input u, which represents the activity of the enzyme SMS1. Instead

the second modified model (2.6) in principle can explain the experimental findings for

particular values of some parameters.

To prove these facts it is sufficient to consider the differential equations of the two ODE

models at the equilibrium, and make some elementary considerations. Moreover these

theoretical results are independent of the choice of the particular form for the fluxes of

the two forward and backward enzymatic reactions, and can be proven employing, instead

of the Michaelis-Menten terms considered in the two models (2.3) and (2.6), two generic

fluxes v1(u, x1, PC) and v2(u, x2, x3), in both ODE systems.

These analytical results will be confirmed also by the simulated results that follow the

estimation of parameters with the methods of maximum likelihood and of sampling, de-

scribed in the next Chapters 3 and 4.

Theorem 2.4.1:

Given the ODE model (2.3), of the form ẋ = f(x, θ), where all fi(x, θ) are continuous in

x ∈ R3
+, ∀ i = 1, 2, 3, and assuming that the hypotheses of the Implicit function theorem

are satisfied, there exist the following relations between the partial derivatives of the three

states x1, x2 and x3 at equilibrium w.r.t. the input u:

∂x̄1(u)

∂u
= −d2

d1

· ∂x̄2(u)

∂u
(2.7a)

∂x̄3(u)

∂u
=

d2

d3

· ∂x̄2(u)

∂u
. (2.7b)

This means that the variation of x̄1(u) when u is varied, has always opposite sign compared

to the corresponding variations of the other two steady states x̄2 and x̄3.
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Theorem 2.4.2:

Given the ODE model (2.6), of the form ẋ = f(x, θ), where all fi(x, θ) are continuous in

x ∈ R3
+, ∀ i = 1, 2, 3, and assuming that the hypotheses of the Implicit function theorem

are satisfied, there exist the following relations between the partial derivatives of the three

states x1, x2 and x3 at equilibrium w.r.t. the input u:

∂x̄1(u)

∂u
=

1

d1

· (a− d2) · ∂x̄2(u)

∂u
(2.8a)

∂x̄3(u)

∂u
=

d2

d3

· ∂x̄2(u)

∂u
. (2.8b)

This means that, if a > d2, the variation of x̄1(u) when u is varied has the same sign as the

corresponding variations of the other two steady states x̄2 and x̄3, and so the three partial

derivatives ∂x̄i/∂u all have the same sign.

Now we prove both theorems together, since the procedure is the same.

Proof. To apply the Implicit function theorem (IFT) we consider that for both dynamical

models:

f : R3
+ × R8

+ → R3
+ ∈ C1 : (x ∈ R3

+, θ ∈ R8
+) 7→ x ∈ R3

+. (2.9)

If the hypotheses of the IFT are satisfied, it follows that there exist neighbourhoods U(θ0) ⊆
R8

+ and V (x̄(θ0) := x̄0) ⊆ R3
+ and a unique and smooth function x̄ : U → V : θ 7→ x̄(θ),

that represents the steady state of the system as a continuous function of parameters. For

this reason we can consider the partial derivative of every variable at steady state x̄i(θ)

w.r.t. the parameter u, the input of the model.

If we consider the first model (2.3) at steady state we obtain:

0 = Cin − d1 · x̄1 − v1(u, x1, PC) + v2(u, x2, x3)

0 = −d2 · x̄2 + v1(u, x1, PC)− v2(u, x2, x3)

0 = −d3 · x̄3 + v1(u, x1, PC)− v2(u, x2, x3).

We notice that the term v1(u, x1, PC) − v2(u, x2, x3) is the same for all three equations,

and thus we can obtain the following equalities:

Cin − d1 · x̄1 = d2 · x̄2 = d3 · x̄3. (2.11)
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Considering the first equality we obtain:

x̄1 =
1

d1

· (Cin − d2 · x̄2),

and thus if we differentiate with respect to u, we easily obtain the relation of equation

(2.7a). If we consider the second equality instead we obtain:

x̄3 =
d2

d3

x̄2,

from which the second relation (2.7b) derives.

For the second modified model (2.6) one can do the same considerations just presented

above for the first model. The model at steady state reads:

0 = a · x̄2 − d1 · x̄1 − v1(u, x1, PC) + v2(u, x2, x3)

0 = −d2 · x̄2 + v1(u, x1, PC)− v2(u, x2, x3)

0 = −d3 · x̄3 + v1(u, x1, PC)− v2(u, x2, x3)

and in this case the following relations hold:

a · x̄2 − d1 · x̄1 = d2 · x̄2 = d3 · x̄3. (2.13)

As before we obtain the following relations between the steady states:

x̄1 =
1

d1

· (a− d2) · x̄2;

x̄3 =
d2

d3

x̄2;

from which we derive equations (2.8a) and (2.8b). With all parameters and variables being

positive quantities, the considerations about the signs of this partial derivatives follow

easily.



Chapter 3

MLE-based statistical inference

approach for parameter estimation

To describe mathematically the dynamics and the equilibrium state of the chemical reaction

of interest we presented in the previous Chapter 2 two different deterministic dynamical

ODE models based on chemical reaction kinetics: the first one, given by the differential

equations (2.3), considering a constant ceramide influx Cin, and the second one, model

(2.6), taking into account a positive feedback regulation between the level of DAG and the

influx of ceramide at the TGN.

As already underlined both systems have the same number of parameters, represented

compactly by the vector θ, whose values have to be estimated with particular techniques,

in order to explain the considered experimental dataset and to respect some criteria of

optimality and goodness of fit.

The main content of this Chapter is the description of the results obtained for both

ODE models using a particular statistical method for the estimation of parameters, the

Maximum Likelihood Estimation (MLE). This statistical approach provides a specific value

for the parameter vector θ̂MLE as result of an optimization problem. A comparison of the

results of the simulations obtained for the two ODE models with the estimated parameter

value confirms the analytical result of Section 2.4 that asserts that the feedback term is

necessary to explain qualitatively the experimental findings of Section 2.3.

35
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3.1 Maximum likelihood parameter estimation

As first topic of this Chapter we want to present a brief overview of the concept of maximum

likelihood estimation of parameters, introducing both the formal statistical definition and

the practical optimization problem that has to be implemented, describing some related

questions and problems that arise in the search of the optimal solution.

3.1.1 Statistical definition

We want to present here only the basic concepts and definitions concerning the statistical

method of maximum likelihood for parameter estimation. For further and more specific

details about the theory we refer to standard statistical texts, such as [35].

Suppose that we have a random vector y ∈ Rq distributed with unknown probability

density function that belongs to the parameterized family {py(y|θ), θ ∈ Θ}. We consider

the observation yi ∈ Rn, i = 1, ..., N , where n is the number of measured outputs, and i

representing the index of the N observed experiments. In this way we set q = n ·N , and

the vector y is simply the sequence of all observations yi.

The likelihood function of the set of observations y0 = {yi, i = 1, ..., N} ∈ Rq is the

function Ly0 : Θ→ R+ defined by:

Ly0(θ) = py(y0|θ). (3.1)

The “maximum likelihood principle”, introduced by Gauss in 1856 and subsequently

popularized by R.A. Fisher, suggests to take as estimate of θ, referring to the observed

data y0, the vector θ̂ ∈ Θ that maximizes Ly0(θ):

Ly0(θ̂MLE) = max
θ∈Θ

Ly0(θ); (3.2)

that means:

θ̂MLE = arg max
θ∈Θ

Ly0(θ); (3.3)

assuming implicitly that the maximum exists. In this way the value of the vector θ̂MLE is

the one that maximizes the probability to see “a posteriori” the observation y0.
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3.1.2 Prior distribution over parameters

As concerns the practical resolution of this optimization problem the main question that

arises is where the solution θ̂MLE has to be searched in the parameter space. In a general

framework we expect that the desired result should be a global one, but most of the times

finding the global maximum is a very difficult and complex problem. This occurs especially

if the dimension p of the given parameter vector θ is large and in some cases if the likelihood

function is a very irregular function, with many local maxima and minima or with stiffness

properties.

Moreover in a biological framework the considered parameters represent reaction rate

constants, specific fluxes of concentrations of reactants or other particular parameters, like

for example the Michaelis-Menten parameter. Therefore estimated parameter values should

be compatible with their biological meaning, e.g. half-lives, synthesis rates, diffusion rates,

and a partial knowledge of the biochemical context under study can be useful to set some

constraints for parameters, e.g. at least positivity.

For these reasons to implement the optimization problem of interest the solution can

not be easily searched in the entire space Rp and we need constraints for our problem. In

this sense we need to impose bounds for each parameter that has to be estimated, and

it would be reasonable to set these bounds in a region where we expect that the solution

should lie.

This can be interpreted as an a priori information about the distribution of parameters,

and in a statistical framework this information can be expressed by a probability density

function (pdf) p(θ), that represents the a priori knowledge about θ before having seen the

data y, and for this reason it is defined prior distribution over parameters.

From a practical point of view imposing bounds on parameters is a useful strategy for

ensuring convergence of MLE optimization algorithms by avoiding, during intermediate

optimization steps, inadmissible parameter values, e.g. negative values under positivity

constraints, that may either hinder recovery to the admissible parameter region or even

cause failure of numerical algorithms such as integration procedures. In a probabilistic
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context, imposing hard bounds on parameters by means of lower and upper limits, e.g.

θmin ≤ θ ≤ θmax, can be interpreted as assuming a uniform prior distribution on parame-

ters, i.e. θ ∼ U(θmin, θmax). If the parameter bounds are wide enough that the maximum of

the likelihood function is attained inside the admissible parameter region then the bounds

are not influential and the MLE estimate coincides with the maximum a posteriori (MAP)

estimate, i.e. the parameter value that maximizes the posterior distribution of the param-

eters given the data, under the assumption of a uniform prior. This links the MLE and

the Bayesian inference considered in the next Chapter.

As last consideration, we underline the fact that building quantitative dynamic models

for intracellular processes is only possible for specific parts of a cell, for which we have

to assume that they function autonomously and can be described in isolation. Anyway

external manipulations made on the specific subsystem do not act only locally but have

certainly multiple effects on other parts spread all over the cell. These effects could involve

unmodeled components that are not considered in the simplified model, and there could

be unexpected results that cannot be explained by the model under study [41].

It is clear how choosing model constraints and bounds for parameters has a very impor-

tant meaning and at the same time it consists in a very difficult task in the construction

of predictive models.

3.1.3 Constrained nonlinear optimization problem

As described above, the computation of the maximum likelihood estimate for the parameter

θ consists, from a practical point of view, in a local optimization problem, being the solution

searched in a subspace of the parameter space Rp.

The choice of the bounds for each parameter is the first effective problem to be consid-

ered by the computational algorithm that solves the MLE problem, defining the knowledge

about the prior distribution.

Another practical problem of the algorithm is the search of the optimum itself, i.e. the

value of the parameter that maximizes the likelihood function in the considered space.
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In particular, if a maximum exists, it could be not unique, or there could be many local

maxima inside the constrained subspace and the algorithm could converge to a wrong

solution.

Finally an important problem that has to be considered in the field of the estimation of

parameters is the one of the structural identifiability of parameters. In a very simple way

we can define the probability parameterized family py(y|θ), or the parameter θ itself, to

be locally identifiable in θ0, if there exists an opened region Θ0 around θ0 where py(y|θ1) =

py(y|θ2) implies θ1 = θ2, ∀ θ1, θ2 ∈ Θ0 [35]. It means that a parameter is not identifiable if

the probability to see the data given the parameter, i.e. the likelihood function, takes the

same value for two different parameter vectors. Written in a mathematical way if:

Ly(θ1) = Ly(θ2), θ1 6= θ2. (3.4)

3.2 Statistical model

The computation of the likelihood function Ly(θ), where y is the given dataset, and the

consequent possibility to estimate a specific set of parameters that maximizes it, require

obviously to define the likelihood function itself, i.e. to introduce the statistical model that

will be considered for the simulations and the estimation problem.

We report now the first considered deterministic model, represented by the ordinary

differential equation system (2.3) for the lipid concentrations, introducing also the outputs

zi that we used in our simulations with Matlab. We define them as the natural logarithm

of the three state variables (see equations (3.6)), and the reason of this choice has to do

with the form of the statistical model that will be explained just afterwards. The equations

of the model and of the outputs are:

ẋ1 = Cin − d1 · x1 − p1 u
x1 · PC

x1 · PC + k1

+ p2 u
x2 · x3

x2 · x3 + k2

ẋ2 = −d2 · x2 + p1 u
x1 · PC

x1 · PC + k1

− p2 u
x2 · x3

x2 · x3 + k2

ẋ3 = −d3 · x3 + p1 u
x1 · PC

x1 · PC + k1

− p2 u
x2 · x3

x2 · x3 + k2
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z1 = log x1 (3.6a)

z2 = log x2 (3.6b)

z3 = log x3. (3.6c)

The same output equations apply also to the second ODE model (2.6), which differs only

by parameter Cin being replaced with the term a · x2.

To introduce the chosen statistical model, we assume that the observed data, that are

the three steady state lipid concentrations for the three different experimental conditions,

defined as ȳi,u, are given by the steady state concentrations predicted by the model as

function of the parameter θ multiplied by the errors ηi,u. The index i represents the three

different state variables x1, x2 and x3 of the ODE systems, i.e. the normalized concentra-

tions of ceramide, diacylglycerol and sphingomyelin, while u represents the different values

of the input for the three different experimental conditions, control, overexpression and

silencing, respectively. The equations for the measurements are:

ȳi,u = x̄i,u(θ) · ηi,u i = 1, 2, 3, u = 1, 2.2, 0.77. (3.7)

The choice of this particular relation between data and measurement errors arises from

the fact that biological concentration measurements are strictly nonnegative, such that

an additive measurement noise model may not adequately describe experimental data.

Moreover measurement errors increase often with the measure itself, as with the constant

coefficient of variation model in which (additive) measurement noise has a standard devi-

ation proportional to the measure, e.g. y = x+ x · ε = x · (1 + ε) with ε zero mean random

noise with standard deviation equal to the coefficient of variation. A convenient proba-

bilistic representation of measurements that combines both nonnegativity and increase of

noise with measurement levels, is given by the log-normal distribution, described in the

next Subsection.

As already presented in the equations (3.6) after the ODE model above, we define the

outputs of the model to be the natural logarithm of the state variables, and this relation
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is valid in particular for the equilibrium situation:

z(θ) = log(x(θ))⇐⇒ z̄(θ) = log(x̄(θ)). (3.8)

3.2.1 Log-normal distribution error model

The properties of the stochastic model are determined in our case by the definition of the

statistical error model, i.e. the distribution of the measurement errors ηi,u, for each vari-

able and experimental condition. For our simulations we chose a log-normally distributed

measurement noise.

In probability theory, a log-normal distribution is a continuous probability distribution

of a random variable whose natural logarithm is normally distributed. It means that if

Y is a log-normally distributed random variable, then X = log(Y) has a normal distribu-

tion. The log-normal distribution is a distribution of a random variable that assumes only

positive real values, [12, pp. 578] and [29].

In our study it means that the natural logarithm of the errors ηi,u is normally dis-

tributed, and we can summarize this fact with the following equation:

ηi,u ∼ logN (0, σ2
i,u)⇐⇒ log(ηi,u) ∼ N (0, σ2

i,u). (3.9)

The normal distribution at the right side is characterized by mean zero and variance σ2
i,u.

The values of the standard deviations σi,u that we considered in our simulations are the

ones listed in Table 2.3 together with the observed data ȳi,u, that had been normalized

w.r.t. the control values.

If we consider equation (3.7), that expresses the observed data as function of the sim-

ulated state variables and of the measurement noise, and we take the natural logarithm of

both sides we obtain the relation:

ỹi,u = log(ȳi,u) = log(x̄i,u(θ)) + log(ηi,u) = z̄i,u(θ) + log(ηi,u). (3.10)

In this way we obtain a linear relation between the logarithm of the data ỹi,u, the outputs

of our model at steady state z̄i,u(θ) and the logarithm of the errors. This relation allows
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us to find a specific expression of our stochastic model, given by the probability density

function p(y|θ), i.e. the likelihood function, that describes the stochastic data generation

process given the parameters of the model θ.

In fact from the equations (3.9) and (3.10) we derive that also the natural logarithm of

data is normally distributed, with mean z̄i,u(θ) and same variance of the errors σ2
i,u:

ỹi,u ∼ N (z̄i,u(θ), σ
2
i,u). (3.11)

Assuming all measurement errors to be independent and log-normally distributed, as de-

fined in equation (3.9), we obtain the following expression for the likelihood function:

Lỹ(θ) = p(ỹ|θ) =
∏
u,i

p(ỹi,u|θ) =
∏
u,i

1

σi,u
√

2π
exp

[
−1

2

(
ỹi,u − z̄i,u(θ)

σi,u

)2
]
. (3.12)

We underline again the fact that the considered distribution is relative to the logarithm

of the dataset, otherwise we should have used in (3.12) the expression of the pdf of a log-

normal distribution, but in general the normal distribution has a lot of more interesting

properties and we prefer to consider the given expression (3.12).

3.3 Simulations and results on simulated data

In this Section we report some details about the simulations concerning the maximum

likelihood parameter estimation (MLE), and the results relative to both ODE systems

(2.3) and (2.6) without and with the feedback regulation term. This analysis regarding

the MLE was carried out mainly to investigate a first model fit for both ODE systems,

to check the hypothesis of the feedback control effect and to determine the prior support

region of the parameters to be used also for the sampling analysis that will be described

in the next Chapter 4.

All simulations were carried out with the numerical computing environment Matlab,

with the additional utilization of the toolboxes Sbpd, Sbtoolbox2 , which offer specif-

ically a powerful environment in which to build models of biological systems, and finally

Mcmcstat. This last toolbox was used exclusively for the simulations described in the
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next Chapter 4 to carry out the sampling from the posterior distribution with a Markov

Chain Monte Carlo method.

For more information all specific details about the program and the code written in

Matlab are reported in the Appendix A.

3.3.1 Estimation of parameters in logarithmic scale

For all simulations concerning the estimation of parameters, we applied a logarithmic

transformation to base 10 to the parameter vector, so that the objective function Ly(θ),

that was originally function of the vector θ, becomes function of the new vector ψ = log10 θ.

This means formally that θ in the dynamic models is replaced by 10log10 θ = 10ψ. Practically

in the two ODE systems we defined the previous parameter vectors, θ1 for the first model

and θ2 for the second one, to equal:

θ1 = 10ψ1 = (Cin, p1, p2, d1, d2, d3, k1, k2) (3.13a)

θ2 = 10ψ2 = (a, p1, p2, d1, d2, d3, k1, k2) (3.13b)

so that the new parameters to estimate are:

ψ1 = log10 θ1 (3.14a)

ψ2 = log10 θ2. (3.14b)

If we define as θ̂ the estimated solution of the optimization problem (without active con-

straints):

θ̂ = arg max
θ

Ly(θ) (3.15)

then the following optimality condition holds:

∇θLy(θ)|θ=θ̂ = 0. (3.16)

If we suppose that θ̂ > 0, then we can state that the optimal solution does not change with

the logarithmic transformation, obtaining:

ψ̂ = ˆlog10 θ = log10 θ̂ = arg max
log10 θ

Ly(10log10 θ). (3.17)
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In fact with the logarithmic transformation the condition of positivity of (3.15) is fulfilled

and, moreover, the following optimality condition for the new estimated parameter vector

(3.17) holds:

∇log10 θLy(10log10 θ)
∣∣
log10 θ=

ˆlog10 θ
= log 10 · diag(θ)∇θLy(θ)|θ=θ̂ = 0 (3.18)

where

diag(θ)∇θLy(θ) = [θ1
∂Ly(θ)

∂θ1

, θ2
∂Ly(θ)

∂θ2

, . . .]T (3.19)

being θi = 10log10 θi . We can notice in particular that, with the considered transformation,

the two optimality conditions (3.16) and (3.18) are equivalent, holding θ̂ > 0.

In this way the elements of the gradient (3.18) are given by:

∂Ly(10log10 θ)

∂log10 θi
= log 10 · ∂Ly(θ)

∂θi
θi = log 10 · ∂Ly(θ)

∂θi/θi
(3.20)

and in principle the logarithmic transformation of parameters causes the only fact that the

derivative of the objective function Ly(θ) with respect to the components of the vector θ

becomes scaled by the value of the corresponding component and in some way it is replaced

by the derivative of Ly(θ) w.r.t. relative changes of parameters.

Such non-linear transformation of parameters has a positive effect on the properties of

convergence of the optimization algorithm towards the optimum (maximum or minimum)

solution, because it reduces the problems with parameter scaling, especially if the final

parameter values are very distant from the initial conditions of the algorithm. At the same

time the transformation into logarithmic scale implicitly guarantees the constraint that all

parameters remain positive.

The details of how these transformations were implemented in the model in the Matlab

code are reported in Appendix A.

In the next subsection we will explain the choice of the prior distribution of parameters

p(ψ) = p(log10 θ), and we will assume a log-uniform prior distribution for the model param-

eter θ, i.e. the log-transformed random variable ψ is assumed to be uniformly distributed.
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3.3.2 Choice of bounds for parameters

To solve with Matlab the constrained optimization problem of determining a maximum

likelihood estimate θ̂MLE for the parameter vector θ, we employed the Matlab function

fmincon which attempts to find a constrained minimum of a scalar multivariable function

starting at an initial estimate.

As optimization algorithm was chosen OPTIONSfmincon.Algorithm=’interior-point’,

the tolerance on the constraint violation and the termination tolerance on the function value

were set to OPTIONSfmincon.TolCon = 1e-6 and OPTIONSfmincon.TolFun = 1e-6. The

objective function given as input to the optimization algorithm was minus the logarithm of

the likelihood function, i.e. − logLỹ(θ), having to find the maximum of the likelihood, and

since the logarithm does not change the optimal solution being a monotonically increasing

function.

The main issue of this analysis was the choice of the constraints for the 8 parameters

that had to be estimated. In fact we had no information at all about some possible values

of the constant rates coming from biological knowledge and we had even no indicative

awareness about the order of magnitude of such parameters. In the statistical framework

this means that there wasn’t any knowledge about the prior distribution of parameters.

In order to find the optimal solution, we made multiple attempts to detect where (in the

parameter space) the objective function assumed larger values. Some useful information

during these trials was given by the fact that, for some of the 8 parameters, the final

values were at one of the edges imposed by the constraints on the parameters. Thus in

the following attempts the specific bounds were expanded or moved to the right or left

direction in accordance with where the previous respective values had been estimated.

We decided to choose a width of the intervals of all parameters of 4 units, that in a

logarithmic scale is equivalent to four orders or magnitude. Since we had no information

about those values a priori, as already explained, we consider it a reasonable choice to start

with. After multiple attempts to find a good estimate of the parameter ψ̂MLE, we set the

intervals to be approximately symmetric around the final values. These bounds will be
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kept fixed also for the simulations concerning the sampling from the posterior distribution,

described in Chapter 4. This procedure is a sort of empirical Bayes method, in which the

prior distribution is estimated from the data. Of course the boundaries relative to two

ODE systems resulted very different for almost the totality of all 8 parameters. All the

details and specific results will be explained in the two next Subsections, for the model

without and with feedback term, respectively.

3.3.3 Model without feedback

As first point of our simulations, we carried out the maximum likelihood estimation for

the first model, given by the differential equation system (2.3), with outputs (3.6). We

underline again the fact that in the implementation with Matlab we effectively defined

the parameters in logarithmic scale, as defined in equation (3.14). After many attempts to

define the bounds for each parameter θi ∈ R8
+, we determined boundaries for each ψi ∈ R8

that cover intervals of four units around the MLE parameters ψ̂MLE, that, considering the

real model parameter θ = 10ψ, are equivalent to intervals of four orders of magnitude.

We calculated a specific set of values defining the maximum likelihood estimate ψ̂MLE =

log10 θ̂MLE by maximization of the likelihood function Lỹ(ψ) = Lỹ(log10 θ).

In Table 3.1 are reported the MLE values of the parameters and the respective bounds

that define the support region of the log-uniform prior distribution. The log likelihood

value calculated for this specific maximum likelihood estimate, which is a measure of the

overall data fit quality, is logLỹ(θ̂MLE) = 7.3.

Afterwards we simulated the first ODE model (2.3) with the specific parameter values

reported in Table 3.1 (to be more precise θ̂MLE = 10ψ̂MLE), considering especially the

equilibrium situation. The main interest is to compare the experimental dataset with the

steady state lipid concentrations predicted by the particular differential equations model

ẋ = f1(x, θ̂MLE).
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Table 3.1: MLE parameters for the first ODE model (2.3) without feedback and respective

prior support regions.

Parameter ψ̂ ψ̂MLE Prior support region

log10 Ĉin 3.1015 [1,5]

log10 p̂1 -1.9265 [-4,0]

log10 p̂2 1.3463 [-1,3]

log10 d̂1 3.0591 [1,5]

log10 d̂2 -2.0617 [-4,0]

log10 d̂3 -2.0513 [-4,0]

log10 k̂1 -4.0847 [-6,-2]

log10 k̂2 3.7859 [2,6]

In Figure 3.1 we can see the simulated trajectories of the lipid concentrations for ce-

ramide, DAG and SM. Starting from random initial conditions, the model ẋ = f1(x, θ̂MLE)

was simulated for the three different experimental conditions, i.e. for the three different

values of the input u = 1, 2.2, 0.7, that are represented in the first, second and third panels

of Figure 3.1, respectively. We can at first notice how the simulated trajectories, and con-

sequently the steady states, of ceramide remain always constant for all three experimental

conditions, as though the SMS1 activity manipulations, obtained through overexpression

and silencing, had no effect on the concentration of this lipid. As already mentioned,

and even mathematically proved at the end of Section 2.4, we affirm that the considered

ODE model is not able to fit the qualitative changes of the steady state levels of ceramide

in response to the alteration of the activity of the enzyme, and for this reason the pre-

dicted steady state concentration is simply the mean between all measurements, because

the model prediction in response to SMS1 manipulation would have an opposite behaviour

respect to the effective trend of data. Instead the simulated steady states of DAG and

SM appear to be more sensitive to the changes of the amount of SMS1, significantly in-

creasing and decreasing w.r.t. the control level in the cases of overexpression and silencing,

respectively.
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Figure 3.1: Trajectories of lipid concentrations obtained with the ODE model with constant

ceramide influx Cin simulated with the MLE parameters of Table 3.1, plotted together with

the experimental data at steady state for the three different experimental conditions.

These results are reached by a high turnover rate for ceramide in comparison to its

conversion in the SMS1 driven enzymatic reaction, i.e. ceramide has a high production

(Ĉin ' 1.26 · 103) and high degradation rate (d̂1 ' 1.15 · 103) compared to the forward

rate constant for the reversible reaction (p̂1 ' 1.18 ·10−2). SMS1 manipulations thus effect

ceramide steady state levels only marginally. On the other side the degradation rates of
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DAG and SM are almost the same (d̂2 ' 0.87 · 10−2, d̂3 ' 0.89 · 10−2) and much slower

that the one of ceramide. We can also notice that these last two parameters are of the

same order of magnitude as the forward rate constant of the reversible reaction, and for

this reason their steady state levels can be highly regulated by the activity of SMS1. The

two Michaelis-Menten constants differ in several orders of magnitude (k̂1 ' 8.23 · 10−5

and k̂2 ' 6.11 · 103) but we can maintain that the estimates of these parameters are not

reliable, since the model does not depend linearly on them, and thus we do not pay too

much attention on the significance of these values [41].

We can notice that the concentrations of DAG at steady state, predicted by the model

for this particular MLE parameter vector, are always slightly higher than the SM level for all

experimental conditions. The experimental data instead show a different behaviour, with

DAG slightly above SM in the overexpression experiment, and on the contrary slightly

beneath SM in the silencing experiment. Since the same amounts of DAG and SM are

produced or consumed by the enzymatic reversible reaction, and moreover there is no

significant difference in the estimated degradation rate constants d2 and d3, the model

cannot explain at the same time both effects just presented and the trend of the increase

and decrease for a single reactant is the same for all experiments. Anyway the experimental

data of DAG and SM are still well captured by the model.

3.3.4 Model with feedback

We report now the same kind of results described in the previous Subsection obtained

this time for the second ODE model (2.6) that takes into account the positive feedback

regulation from the concentration of DAG on the influx of ceramide at the TGN.

In the implemented differential equation for the concentration of ceramide, with all

parameters expressed in logarithmic scale, the constant term 10log10 Cin is replaced by the

term 10log10 a · x2.

Table 3.2 reports the MLE values for all 8 parameters, and the respective bounds, that

define the support regions for the log uniform prior distributions. The 8 real estimated
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model parameters are given by θ̂MLE = 10ψ̂MLE . The log likelihood value calculated for this

specific maximum likelihood estimate is in this case logLỹ(θ̂MLE) = 14.3, which is twice

the one obtained for the first model (2.3). This result is already an interesting information

about the fact that the second modified model can better fit the given dataset.

Table 3.2: MLE parameters for the second ODE model (2.6) with feedback and respective

prior support regions.

Parameter ψ̂ ψ̂MLE Prior support region

log10 â 2.9391 [1,5]

log10 p̂1 1.5896 [0,4]

log10 p̂2 3.4195 [1,5]

log10 d̂1 2.9116 [1,5]

log10 d̂2 1.0208 [-1,3]

log10 d̂3 1.0302 [-1,3]

log10 k̂1 0.0974 [-3,1]

log10 k̂2 2.5266 [0,4]

One can immediately notice that the maximum likelihood estimates are in this case

very different from those obtained in the first model, reported in Table 3.1, and thus also

all prior support intervals. While the synthesis and degradation rates of ceramide are of the

same order of magnitude than before (â ' 0.87 · 103 and d̂1 ' 0.82 · 103), the SMS1 driven

forward and backward reaction rate constants p1 and p2 are several orders of magnitude

larger in this second model (p̂1 ' 0.39 · 102 and p̂2 ' 2.63 · 103). As a consequence the

ceramide level at equilibrium is much more influenced by manipulations of the input u than

with the first model. Also the degradation rate constants of DAG and SM are larger than

before but always very similar (d̂2 ' 0.1 · 102 and d̂3 ' 0.11 · 102) and finally the Michaelis-

Menten constants are different in the modified model (k̂1 ' 1.25 and k̂2 ' 3.36 · 102)

[41].
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To see effectively the change of the quality of the data fit for this second revised model,

we simulated it with the estimated set of parameter values of Table 3.2. The resulting

trajectories for the three lipid concentrations in the three different experimental conditions

are shown in Figure 3.2.
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Figure 3.2: Trajectories of lipid concentrations obtained with the second ODE model with

the feedback regulation simulated with the MLE parameters of Table 3.2, plotted together

with the experimental data at steady state for the three different experimental conditions.
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One can immediately observe that in this case the steady state ceramide levels predicted

by this second model can qualitatively follow the real trend of the experimental data in

response to manipulations of the input u. As before the steady state level of DAG is always

above the level of SM for all three experiments, observing only the experimental finding

relative to the overexpression experiment, and not the one of silencing. The explanation is

the same of that described for the first ODE model.

3.3.5 Comparison of the results of the two models

The results obtained with the simulations of the two ODE models (2.3) and (2.6) for

the particular values of the parameter vectors estimated with the method of maximum

likelihood estimation θ̂MLE = 10ψ̂MLE confirm the theoretical investigations of the steady

state analysis, described in Section 2.4, and moreover showed a good fit quality.

Since the qualitative behaviour of ceramide steady state levels cannot be captured by

the first model (2.3) in all three experiments, the most likely parameters are those that

leave ceramide levels constant across all three experiments, as can be seen in Figure 3.1.

Instead, with the introduction of the hypothesis of the feedback regulation from DAG

to ceramide, the second model (2.6) is able to qualitatively capture the changes of ceramide

endogenous levels in response to SMS1 manipulation.

Besides this fundamental outcome, that corroborates our biological hypothesis and also

our formal mathematical results, these statistical simulations were interesting to detect

the prior support regions of the parameter distribution, that will be used for the Bayesian

estimation approach of the sampling from the posterior distribution described in the next

Chapter. Considering intervals of four orders of magnitude we maintain that in this way

we can evaluate a wide range of possible values for parameters and this is also interesting

for the reason that we do not have any a priori information about the values of such

parameters.



Chapter 4

Sampling-based Bayesian approach

for parameter estimation

In addition to the statistical inference approach of MLE presented in the previous Chapter,

we used also another method for parameter estimation, that consists in a sampling-based

statistical Bayesian approach.

This technique for parameter estimation has the big advantage that it provides not

only best point estimates (e.g. MAP: maximum a posteriori probability estimation) but

also the entire a posteriori distribution of parameters, allowing the assessment of confidence

intervals for parameters and of model predictions.

In this Chapter we will present a general overview of the idea of Bayesian learning, in-

troducing the concept of sampling from the posterior distribution, and a particular method

to realize it: the Metropolis-Hastings algorithm from the class of the Markov chain Monte

Carlo sampling methods. We applied this statistical technique to the two considered ODE

parametric models (2.3) and (2.6) to carry out the parameter estimation, and also in this

case we found that the model with feedback can fit the experimental data in the right way,

while this does not hold for the first ODE model with constant ceramide influx.

Besides the results concerning the data fit, we will present also interesting information

about the predictions of the two models and about the marginal posterior distributions,

quantities that supply a first understanding of the distribution and the identification of

the single parameters.
53
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4.1 Introduction: Bayesian learning

In this introductory Section we want to present the basic general concepts of the statistical

method of Bayesian learning. For more details about the theory we refer to standard books

such as [12, 43].

In general statistical inference is concerned with drawing conclusions about unobserved

quantities starting from the knowledge of experimental numerical data.

In particular Bayesian inference is the process of fitting a stochastic model to a dataset

and summarizing the result by a probability distribution on the model parameters θ and

on unobserved quantities, such as predictions for new observations z [12, Chap. 1].

These probability models that characterize Bayesian conclusions about the quantities

of interest, θ and z, are conditional on the observed data y. This feature of conditioning

on observed data distinguishes Bayesian inference from common approaches to statistical

inference that aim to estimate θ (or z) over the distribution of possible y values conditional

on the true unknown value of θ, as in the case of the maximum likelihood estimation (MLE).

In a Bayesian framework we need stochastic models for quantities that we observe and

for quantities about we wish to learn. Data y and parameter θ are interpreted as random

variables, with respective probability density functions often referred to as data distribution

(or sampling distribution) p(y|θ) and prior distribution p(θ). These two densities describe

the stochastic data generation process given model parameter θ and the a priori knowledge

about θ itself before having observed the data. For given θ, p(y|θ) is a probability distri-

bution over all possible observations y. Instead for given data y, and as a function of the

unknown parameter θ, it expresses how probable it is to observe the data for each value of

the model parameter, and in this context it is called the likelihood function p(y|θ) = Ly(θ),

as described in Section 3.1.

In this way we can obtain a model providing the joint probability distribution for θ and

y, whose density function is given by the product of the two previous densities:

p(θ, y) = p(θ) · p(y|θ) = p(θ) · Ly(θ). (4.1)
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4.1.1 Posterior distribution

The main function of interest in a Bayesian framework is the posterior distribution, which

is the distribution over the parameter θ conditioned on the observed value of the data y.

By applying the basic property of conditional probability known as Bayes’ rule, we obtain

the following expression for the posterior density function:

p(θ|y) =
p(θ) · Ly(θ)

p(y)
, (4.2)

where p(y) is the marginal likelihood given by:

p(y) =

∫
p(y|θ) p(θ)dθ. (4.3)

Often one can express equation (4.2) by omitting the factor p(y), which does not depend

on θ and, given fixed y, can thus be considered as a constant, albeit unknown. In this way

we obtained an unnormalized posterior distribution, that reads:

p(θ|y) ∝ p(θ) · Ly(θ). (4.4)

This last expression of the posterior distribution will be, in particular, the starting point

for the resolving algorithm for parameter estimation, described in the following Section

4.2.

We can notice that using Bayes’ rule and given a specific stochastic model, the posterior

distribution (4.4) is influenced by data y only through the likelihood function Ly(θ). In

this regard the chosen statistical model, which comprises the deterministic structure of the

system and the stochastic nature of parameters and measurement errors, plays a funda-

mental role in the analysis of experimental data and determines results and conclusions

[12, Chap. 1].

4.1.2 Model prediction

In a Bayesian learning approach also unknown observable quantities are often important

objects of interest, like in the case of predictions for new outputs of the model that have

not yet been observed.



56 4 Sampling-based Bayesian approach for parameter estimation

Following a similar logic like the one used to obtain the posterior distribution, we can

introduce the density function of the unknown but observable data y as:

p(y) =

∫
p(y, θ)dθ =

∫
p(θ) p(y|θ)dθ =

∫
p(θ)Ly(θ)dθ. (4.5)

Previously we had defined this quantity as marginal distribution of y, but a more in-

formative name is prior predictive distribution, indicating that it is a distribution over an

unknown observable quantity (prediction) that is not conditional on previous observations.

Introducing the knowledge of the observed data y, we can predict a new unknown

observable quantity z, generated from the same process, through the definition of the

posterior predictive distribution p(z|y), posterior because it is conditional on the observed

data y, and predictive because it is a prediction for the observable z [12, Chap. 1].

4.2 Sampling from the posterior distribution

4.2.1 Monte Carlo integration

Before dealing with the concept of sampling from the posterior distribution p(θ|y), we want

to present the Monte Carlo method for numerical integration. The main application of this

method is the computation of complex integrals of multivariate functions, such as expected

values of the form:

Ep[f(x)] =

∫
Rn

f(x)p(x) dx x ∼ p(x), x ∈ Rn (4.6)

approximating this integral through a sample mean.

In fact, if {xt, t = 1, ..., N} are N independent and identically distributed realizations

of the random process x, following the distribution p, then, for the strong law of large

numbers, the sample average converges almost surely towards the expected value (4.6).

Formally this reads:

Pr

(
lim
N→∞

f̄N(x) = lim
N→∞

1

N

N∑
t=1

f(xt) = Ep[f(x)]

)
= 1 (4.7)
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where

xt ∼ p(x) i.i.d. ∀ t = 1, ..., N, xt ∈ Rn. (4.8)

In this way it is possible to numerically calculate multidimensional integrals that are usually

not solvable in an analytical way, because of the high dimension of the problem, and this

represents one of the most important and common issues in Bayesian statistics.

The question that arises now concerns the simulation of the samples xt from the random

distribution of interest p(x), as indicated in equation (4.8). There are particular cases

in which it is possible to sample directly from the desired density function, e.g. from

uniform or normal distributions. If the direct sampling from p(x) is not possible (or not

computationally efficient), we have to consider other strategies, like the Markov chain

Monte Carlo methods, described in the next Subsection, which use computer simulation

of Markov chains in the parameter space.

4.2.2 Markov chain Monte Carlo methods: MCMC

Markov chain Monte Carlo (MCMC) methods are a class of algorithms for sampling from

probability distributions based on constructing a Markov chain whose equilibrium distri-

bution is the desired one. In a Bayesian approach the Markov chain is defined in such a

way that the posterior distribution p(θ|y), in the given statistical inference problem, is the

asymptotic distribution, and each state of the chain represents a sample of the parameter

vector, named θk. The samples are drawn iteratively from approximate distributions, with

the distribution of the sampled θk given all previous drawn values depending only on the

last drawn value θk−1. Hence they represent draws form a Markov chain, but lose the

property of independence between them. The key to the method’s success, however, is not

the Markovian property but rather the fact that, under suitable hypotheses, the gener-

ated chain {θk} has as asymptotic distribution the target posterior distribution p(θ|y) [12,

Chap. 11].
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This allows to use ergodic sample averages:

Ĵ = f̄Ns(θ) =
1

Ns

Ns∑
k=1

f(θk) θk ∼ p(θ|y), θk ∈ Rp (4.9)

to approximate desired posterior expectations:

J = E[f(θ)] =

∫
Rp

f(θ)p(θ|y) dθ θ ∼ p(θ|y), θ ∈ Rp (4.10)

as described in the previous Subsection. In fact in a Bayesian framework the posterior

distribution p(θ|y) contains all relevant information on the unknown parameter θ given the

observed data y, and all statistical inference can be deduced from the posterior distribution,

typically by evaluating integrals of the form (4.10). For example, point estimate for the

parameter can be given by the posterior mean, i.e. f(θ) = θ, or prediction for unobserved

data z is based on the posterior predictive distribution p(z|y) =
∫
p(z, θ|y)dθ, for which

we obtain f(θ) = p(z|θ) (see also equation (4.18) in Section 4.4). Another quantity of

interest could be the marginal posterior distribution for each single parameter composing

the vector θ ∈ Rp:

p(θi|y) =

∫
...

∫
p(θ|y)dθ1...dθi−1dθi+1...dθp, (4.11)

that can be calculated by means of Monte Carlo estimation too.

Hence the art of MCMC simulation is to set up a Markov process whose stationary

distribution is the desired posterior p(θ|y), and run the simulation long enough that the

distribution of the current draws is close enough to this stationary distribution. Practi-

cally one cannot however prove convergence, but only diagnose a negative result on non

convergence [12, Chap. 11] and [31].

Several standard approaches to define such Markov chains exist, e.g. the Gibbs sampler

or the Metropolis-Hastings algorithm, which is described in the next Subsection. Using

these algorithms it is possible to implement posterior simulation in essentially any problem

which allows pointwise evaluation of the prior distribution p(θ) and of the likelihood func-

tion Ly(θ) [12, Chap. 11] and [31]. Once the simulation algorithm has been implemented,

and the samples generated, then it is absolutely necessary to check the convergence of the

simulated sequence [12, Chap. 11]. We discuss how to check convergence in Section 4.3.
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4.2.3 Metropolis-Hastings (MH) algorithm

There are cases in many statistical models in which the complete conditional posterior

distributions p(θj|θi, i 6= j, y) assume the expression of some known distributions from

which direct sampling is possible, allowing efficient random variate generation. In these

cases the Gibbs sampler represents an interesting simulation algorithm. But there are also

many important applications in which this is not the case, requiring alternative MCMC

algorithms.

The most general Markov chain simulation method is the Metropolis-Hastings (MH)

algorithm [14, 24], of which the Gibbs sampler and the Metropolis scheme [30] are special

cases. The algorithm proceeds as follows [12, Chap. 11] and [31]:

1. initialise θ0, for which p(θ0|y) > 0, from a starting distribution p0(θ);

2. at time k ≥ 1, generate a proposal θ∗ from some proposal distribution (or jumping

distribution) Jk(θ
∗|θk−1), where θk−1 is the current state of the Markov chain (the

choice of the proposal distribution Jk(.) is discussed later);

3. compute the ratio

r =
p(θ∗|y)

p(θk−1|y)
· Jk(θk−1|θ∗)
Jk(θ∗|θk−1)

(4.12)

(N.B. the ratio r is always defined, since a jump from θk−1 to θ∗ can only occur if

both p(θk−1|y) and Jk(θ
∗|θk−1) are greater than zero);

4. compute the acceptance factor α(θk−1, θ
∗) = min{1, r} and set

θk =

θ
∗, with probability α(θk−1, θ

∗)

θk−1, otherwise

(4.13)

5. increase k by one unit and return to point 2.
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The Metropolis algorithm [30] is a special case of the MH, in which the proposal distri-

bution is a symmetric function, satisfying the condition Jk(θa|θb) ≡ Jk(θb|θa), ∀ θa, θb and

k. In this case the acceptance factor becomes:

α(θk−1, θ
∗) = min

{
1,

p(θ∗|y)

p(θk−1|y)

}
. (4.14)

The acceptance/rejection rule of the Metropolis algorithm can be stated as follows: if the

candidate θ∗ at time k has probability p(θ∗|y) > p(θk−1|y), then α(θk−1, θ
∗) = 1, i.e. all

parameters with posterior probability greater than the one of θk−1 are accepted. Otherwise

if p(θ∗|y) < p(θk−1|y), then θ∗ is accepted with probability α(θk−1, θ
∗) < 1. In this way

there can be also jumps towards regions with smaller posterior density, that otherwise

would never be explored.

Both for the basic Metropolis algorithm and for the more general Metropolis-Hastings,

some regularity conditions are requested to be able to prove the convergence of the Markov

chain to the target posterior distribution, showing first that the simulated sequence is

a Markov chain with a unique stationary distribution and second that this stationary

distribution equals the target distribution. These properties requested for the Markov

chain are: ergodicity (which comprises the properties of irreducibility, aperiodicity and

recurrence), and reversibility respect to the distribution p(θ|y), that implies the property

of invariance w.r.t. the same posterior distribution.

Under these mild regularity conditions the MCMC estimator (4.9) is also proved to be

asymptotically unbiased and normally distributed.

We notice that to solve the MH algorithm it is necessary to be able to calculate the ratio

r in (4.12) for all parameters (θ, θ∗), and to draw a sample θ∗ from the proposal distribution

Jk(θ
∗|θ), for all θ and k. The first point is ensured by the fact that in (4.12) we have a

ratio of the posterior distributions calculated for θ∗ and for θk−1. In fact in general the

normalization factor p(y) in the equation (4.2) is extremely difficult to compute, and in

this way the presented algorithm can generate samples from p(θ|y) without knowing this

constant of proportionality. It requires only that a function proportional to the desired

density p(θ|y) be calculable, represented in this context by the product of the prior and of
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the likelihood, as highlighted by equation (4.4). Finally step 4 requires the generation of

uniform distributed random numbers [12, Chap. 11].

The choice of the proposal distribution Jk(θ
∗|θk−1) is essentially arbitrary, and subject

only to some technical constraints. The ideal jumping rule would be to sample the proposal

θ∗ from the target distribution, i.e. to have J(θ∗|θ) ≡ p(θ∗|y), ∀ θ. In this way the ratio r in

(4.12) is always 1, and the draws θk are a sequence of independent samples from p(θ|y) [12,

Chap. 11]. Since usually this algorithm is applied to problems for which direct sampling

is not possible, some good properties for the proposal distribution are necessary and the

success of the MCMC methods depends in general on how well the proposal distribution

fits the target distribution. Allowing asymmetric jumping rules (in the case of MH), for

example, could be useful in increasing the speed of the random walk. Other interesting

and useful ideas to define an efficient jumping rule are presented in [11] and in [12, Chap.

11].

In the next Subsection we present an efficient variation of the MH simulation algorithm.

4.2.4 DRAM: Delaying Rejection Adaptive Metropolis

An efficient variation of the MCMC method consists in the delaying rejection adaptive

Metropolis (called DRAM). The authors in [18] propose some strategies to combine effi-

ciently two powerful ideas appeared in the literature about MCMC: adaptive Metropolis

samplers [16, 17] and delaying rejection [40].

Delaying rejection (DR) is a strategy to modify the standard MH algorithm that is

proved to outperform the original method in the Peskun absolute efficiency ordering [40].

This means that, using the DR, we obtain MCMC estimators (4.9) that have a smaller

asymptotic variance for every function f , whose expectation relative to p(θ|y) we want to

estimate [18]. The basic idea of this method is that, upon rejection happened in a MH step,

instead of advancing time and saving the current position, a second stage move is proposed.

The probability of the second proposal to be accepted is computed so that reversibility of

the Markov chain relative to the target distribution is preserved. Such a process of delaying
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rejection can be iterated for a fixed or random number of stages. Moreover DR allows

partial adaptation of the proposal within each iteration of the simulation, since the higher

stage proposals can depend on the candidates so far proposed and rejected. DR can be

considered as a way of combining different proposals for MH: in order to better explore the

parameter space, global moves are tried first and local moves follow later. Specific details

about the DR algorithm are given in [18].

The adaptive Metropolis (AM) algorithm can be considered as a global adaptive strategy

that in the DRAM method is combined with the local adaptive strategy provided by the

DR. The main intuition behind this method is that updating the Metropolis jumping rule

during the simulation can improve the value of the acceptance rate, i.e. the proportion of

jumps that are accepted. There are in fact some proposed optimal values for the acceptance

rate (see [11] and [12, Chap. 11]), relating to the specific proposal distribution being used,

that can be better obtained with some adaptive simulation algorithms. In particular in

the AM approach on-line tuning, that means modifying while the simulation is running,

the Metropolis proposal distribution can be based on the past history of the chain. Due to

this adaptation, the chain looses its Markovian and reversibility properties. Anyway the

authors in [17] show that, under some regularity conditions on the adaptation scheme of

the proposal, the AM preserves the desired stationary distribution [18]. More details and

theory about the implementation of this method are presented in [16, 17, 18].

The intuition behind adaptive strategies is to learn from the information obtained

during the simulation, and to tune the proposal to work in a more efficient way. There are

in general plenty of strategies of combining AM or MH together with the DR approach, as

highlighted in [18]. The authors show how a successful combination of the two algorithms,

that modify the standard MH sampler, outperforms the original simple methods: the

adaptation AM enhances the efficiency of the delaying rejection algorithm in cases where

good candidates for the proposal distributions are not available. On the other hand the

DR provides a systematic remedy for cases where the adaptation has difficulties to get

started [18]. In their work the authors also prove the ergodicity of the combined approach

and demonstrate with some test examples the efficiency of the method.
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4.3 Convergence test

As already mentioned, the use of the MCMC estimator (4.9) requires the verification

of two conditions related to convergence. First of all, the Markov chain has to converge

asymptotically, i.e. for Ns →∞, to the desired posterior distribution p(θ|y). Second, even if

this theoretical convergence is established, we need a convergence test to assess when to stop

simulations in the practical implementation of the algorithm. The regularity conditions

necessary to ensure the convergence to the target posterior distribution, mentioned also

in Section 4.2 in the description of the MH algorithm, are: ergodicity, which includes

irreducibility, aperiodicity and recurrence, and invariance, for which reversibility represents

a sufficient condition. These properties have to be verified in the implementation of Gibbs

or MH algorithms, especially when choosing the proposal distribution.

Practically more important than establishing theoretical convergence, is to recognize

practical convergence. In fact a critical issue when using MCMC methods is how to deter-

mine when it is safe to stop sampling and use the samples to estimate characteristics of the

distribution of interest. Practically we have to judge when sufficiently many transitions Ns

have been simulated to obtain ergodic averages Ĵ of equation (4.9) close to the desired pos-

terior expectation J , equation (4.10). Several formal convergence tests have been proposed

in the recent literature [7]. For example Gelman and Rubin [10] propose to consider several

independent parallel runs of the MCMC simulations. Convergence is then diagnosed if the

differences of Ĵ across the parallel runs are within a reasonable range. Another famous

convergence test was proposed by Geweke [13] and it is presented in the following Subsec-

tion. To better assess convergence of iterative simulation, it is recommended to compare

different independently simulated sequences (at least two), with starting points drawn from

an overdispersed distribution [12, Chap. 11].

4.3.1 Geweke test

In his work [13], Geweke recommends the use of methods from spectral analysis to assess

convergence of MCMC sampler when the intent of the analysis is to estimate the mean
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of some function f of the parameter θ. The sequence f(θk) computed with the simulated

samples can be regarded as a time series.

The Geweke method rests on the assumption that the nature of the MCMC process

and of the function f imply the existence of a spectral density Sf (ω) for this time series,

that has no discontinuities at the frequency 0, i.e. there exists the finite value Sf (0). If

this assumption holds, then for the MCMC estimator (4.9) (f̄Ns(θ)) of the expectation

E[f(θ)] given by equation (4.10), based on Ns iterations of the algorithm, the asymptotic

variance is Sf (0)/Ns. The square root of this asymptotic variance can be used to estimate

the standard error of the mean. Geweke’s convergence diagnostic after Ns draws of the

MCMC sampler is calculated by taking the difference between the means f̄A(θ), based on

the first nA iterations, and f̄B(θ), based on the last nB iterations:

f̄A(θ) =
1

NA

NA∑
k=1

f(θk) (4.15a)

f̄B(θ) =
1

NB

Ns∑
k=n∗

f(θk) (4.15b)

where 1 < nA < n∗ < Ns and nB = Ns − n∗ + 1, and dividing by the asymptotic standard

error of the difference, computed from spectral density estimates ŜAf (0) and ŜBf (0) for the

two different pieces of the sequence. If the ratios nA/Ns and nB/Ns are fixed, with

nA + nB
Ns

< 1, (4.16)

and if the sequence f(θk) is stationary, then by the central limit theorem, the distribution

of this diagnostic tends to a standard normal distribution as Ns tends to ∞:

ZNs =
f̄A(θ)− f̄B(θ)(
ŜA
f (0)

NA
+

ŜB
f (0)

NB

)1/2

d−−−−→
Ns→∞

N (0, 1) (4.17)

Thus the value ZNs can be used to test the null hypothesis of f̄A(θ) = f̄B(θ) and if this

is rejected then it indicates that the chain has not converged yet. Geweke suggests taking

nA = Ns/10 and nB = Ns/2 [4, 7].
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4.4 Results on simulations: quality of data fit

With the support of the Matlab toolbox Mcmcstat, we estimated the model parameter

θ by sampling from the posterior distribution p(θ|y), as explained in the first Sections 4.1,

4.2 and 4.3 of this Chapter.

In this Section we present and compare the results for both ODE models (2.3) and (2.6)

obtained with the considered Bayesian approach, in particular the simulated trends of the

steady state lipid levels in response to the different experimental conditions defined by the

activity of the enzyme SMS1 (value of the input u).

Having a wide set of estimated parameters θk, k = 1, ..., Ns, obtained by sampling

from the posterior distribution inside the prior support region (the orders of magnitude

are 105 samples for the first model and 106 for the second one), an interesting analysis

concerns the predictive power of the two models, evaluated in terms of their ability to fit

the experimental data.

The idea of prediction of a model falls within the concept of making inference about

an unknown observable quantity of interest, and in our practical case it consists in the

computation of the distribution over all possible outputs of the model, i.e. the steady

state solutions z̄i,u, i = 1, 2, 3, u = 1, 2.2, 0.77, given the knowledge of the dataset y. This

concept can be formally expressed by the posterior predictive distribution p(z̄i,u|ỹ), already

presented in Section 4.1, where we consider the logarithm of the measurements, as explained

in Section 3.2 about the statistical model:

p(z̄i,u|ỹ) =

∫
p(z̄i,u, θ|ỹ) dθ Marginalization (4.18a)

=

∫
p(z̄i,u|θ, ỹ) p(θ|ỹ) dθ Factorization of the joint distribution (4.18b)

=

∫
p(z̄i,u|θ) p(θ|ỹ) dθ z̄i,u is independent of ỹ given θ (4.18c)

Also in this context concerning the sampling from the posterior distribution, for all simu-

lations the estimation of parameter was carried out in logarithmic scale with a log-uniform

bounded prior distribution p(θ), spanning over four orders of magnitude, like in the previ-

ous case of the MLE, explained in Section 3.3. In this way the model parameter is expressed
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as θ = 10ψ and what the sampling algorithm estimates is a set of possible values for the

log-transformed parameter ψ = log10 θ.

As concerns the bounds defining the prior distributions over all parameters we consid-

ered the interval values reported in the Tables 3.1 and 3.2, for the two dynamical models

(2.3) and (2.6), respectively. Such support regions were centred approximately around the

values of the maximum likelihood estimates ψ̂MLE.

4.4.1 Bayesian estimation results of the model without feedback

Considering the differential equation model (2.3), that describes the biochemical system

using the hypothesis of constant ceramide influx at the TGN, represented by the parameter

Cin, we carried out the sampling from the posterior distribution p(θ|ỹ) to estimate a set

of possible values for the model parameter θ = (Cin, p1, p2, d1, d2, d3, k1, k2) ∈ R8
+, and

afterwards we used these parameters for predictions of the model.

From a practical point of view we carried out the estimation of the log-transformed

parameter ψ = log10 θ, inside the prior support regions listed in Table 3.1. To do this we

employed the algorithm offered by the Matlab function mcmcrun, choosing the “DRAM”

sampling method, from the mcmcstat toolbox (see Appendix A).

Before performing the main run, a warm-up/tuning of the covariance based proposal

distribution was carried out by simulating a sample of size 104, while in the subsequent

main run we generated a chain of size of 8·106. Moreover to speed up the MCMC simulation

and to have more samples of the parameter to analyse, two independent Markov chains

of the same dimension were started in parallel. The acceptance rate was almost 58% for

both chains. To test the convergence of the two Markov chains to the desired posterior

distribution we used the Geweke method implemented inside the mcmcstat toolbox. In

the considered simulation both chains and also the resulting merged chain obtained by

concatenation of the two (consisting of 1.6 million samples for the parameter vector) passed

the convergence test with a p-value of at least 0.9 in each sub-dimension, attesting the

occurred convergence. Further details about the simulation can be obtained directly in the
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Matlab code reported in Appendix A.

In Figure 4.1 we can observe the trajectories of the three lipid concentrations relative

to the three experiments, generated with 1000 different MCMC estimated values of the

model parameter vector θ extracted from the posterior distribution p(θ|ỹ), according to

the considered bounded prior distribution. We highlight with a continuous line, together

with the new presented trajectories, also that simulated using the MLE parameter vector

θ̂MLE. We can notice that all trajectories simulated using the samples θk are spread in

a region around the MLE generated trajectories for each lipid and each experiment, and

moreover also in this context the general trends of such trajectories are similar to those

relative to the maximum likelihood estimate.

The most interesting result is that, considering a single estimated value θk for the

parameter vector, the respective simulated ceramide levels are constant and assume the

same value for each experiment (see the first line of plots), as it happens also with the

the maximum likelihood estimation applied to the first ODE model without feedback (see

Section 3.3). This means that even the estimation by sampling from the posterior dis-

tribution p(θ|ỹ) gives as most likely resulting parameters those that leave the ceramide

levels constant across all three experiments, since the considered model cannot capture the

qualitative behaviour of ceramide at steady state in response to changes of the enzyme

activity.

Figure 4.2 represents the posterior predictive distributions of the outputs of the model

at steady state p(z̄i,u|ỹ), i = 1, 2, 3 and u = 1, 2.2, 0.77, relative to the model (2.3) with-

out feedback, estimated from the MCMC samples using equation (4.18). This calculated

density of the predicted steady state solutions is represented with continuous dark grey

lines, that have a characteristic bell-shape centred approximately around the maximum

likelihood estimates. The maximum likelihood estimates are marked with a black vertical

straight line, while the normalized experimental data are plotted with vertical grey lines

with the respective normalized standard deviations marked also in grey with dotted lines.

The panels of Figure 4.2 are transposed compared to that of Figure 4.1 for better

comparison. From this Figure we can observe the same results, already highlighted by
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Figure 4.1: Trajectories of the concentrations of ceramide, DAG and SM obtained with the

ODE model (2.3) with constant ceramide influx Cin simulated with the MCMC samples

drawn from the posterior distribution and with the MLE parameters of Table 3.1, plotted

together with the experimental data at steady state for the three different experimental

conditions.

the previous Figure 4.1, that confirm also the hypothesis of our theoretical investigations

described in Section 2.4. In fact we see in the first column of plots how the steady state

levels of ceramide predicted by the model are constant across all the three experiments,

since the qualitative behaviour of ceramide for different experimental conditions cannot

be described by this model in the right way. The two panels of the Figure relative to the

posterior predictive distribution of ceramide steady states in the cases of overexpression

and silencing are identified with two black exclamation marks, because these are the cases
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Figure 4.2: Posterior predictive distributions of the steady state levels of ceramide, DAG

and SM for model (2.3).

in which the model fails to explain the experimental data relative to the changes of the con-

centrations of ceramide in response to SMS1 manipulations. Instead the predicted steady

state levels of DAG and SM are more sensitive to the changes of the SMS1 activity, showing

a significant increase or decrease in the overexpression and silencing experiments, respec-

tively, compared to the control case. Moreover the posterior predictive distributions of the

steady state levels of DAG and SM are estimated to be very similar in each experimental

condition, capturing quite well the experimental results.
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Finally one can notice that the variances of the model predictions are rather small,

especially in the case of ceramide. The largest variances can be seen in the overexpression

case for DAG and SM. This fact can be a hint that this first model is wrong or nor flexible

enough, such that it cannot well capture all experimental data.

4.4.2 Bayesian estimation results of the model with feedback

In this Subsection we report the results of the MCMC sampling relatively to the modified

ODE system (2.6), that considers the feedback regulation term Cin(DAG) = a · DAG in

the place of the simple constant ceramide influx Cin. Considering this model we carried

out the sampling from the posterior distribution p(θ|ỹ) to estimate a set of possible values

for the model parameter θ = (a, p1, p2, d1, d2, d3, k1, k2) ∈ R8
+, and consequently used these

parameters for predictions of the model. The technical details for the estimation and the

employed algorithm are the same described in the previous Subsection.

A warm-up/tuning of the covariance based proposal distribution was performed by

simulating a sample of size 104, as in the case of the first model, while in the subsequent

main run we generated a larger chain of size of 3 · 106, having encountered more difficulties

to reach the convergence to the desired posterior distribution. Also in this case two Markov

chains of the same dimension were started in parallel. The acceptance rate was about 32%

for both chains. As regards the convergence test, in the considered simulation both chains

and also the resulting merged chain obtained by concatenation of the two (consisting of 6

million samples for the parameter vector) passed the convergence test with a p-value of at

least 0.8 in each sub-dimension, attesting the occurred convergence. Further details about

the simulation can be obtained directly in the Matlab code reported in Appendix A.

Figure 4.3 shows the trajectories of the three lipid concentrations relative to the three

experiments, generated with 1000 different MCMC estimated values of the model parameter

vector θ extracted from the posterior distribution p(θ|ỹ), according to the considered log-

uniform bounded prior distribution, whose boundaries are listed in Table 3.2.

Also in this case all trajectories simulated using the samples θk are spread in a region
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around the trajectories obtained with the MLE, following the same trend of these last, with

different densities or width of the trajectory distributions depending on the particular lipid

or experiment.

Figure 4.3: Trajectories of the concentrations of ceramide, DAG and SM obtained with the

ODE model (2.6) with feedback regulation Cin(DAG) simulated with the MCMC samples

drawn from the posterior distribution and with the MLE parameters of Table 3.2, plotted

together with the experimental data at steady state for the three different experimental

conditions.

As most interesting result we can immediately notice how in this second case there is a

very different behaviour of the simulated trajectories of ceramide across the three different

experiments. Unlike the constant trend of the trajectories of ceramide predicted by the

first model without feedback (see Figure 4.1), in this case we observe that such trajectories
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simulated with the modified model are more sensitive to the manipulation of SMS1 activity

compared with the original model and they follow in a qualitative way the trend of the

experimental data.

Figure 4.4 shows the posterior predictive distributions of the simulated steady state

levels p(z̄i,u|ỹ).
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Figure 4.4: Posterior predictive distributions of the steady state levels of ceramide, DAG

and SM for model (2.6).

While the distributions relative to DAG and SM look very similar to those of Figure 4.2,

even though the MLE and hence the prior support regions are very different from those of
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model (2.3), the main difference, as already underlined, can be seen in the ceramide steady

state levels. These are in fact now more sensitive to the changes of the enzyme activity,

and ceramide shows an increase after SMS1 overexpression and a less pronounced decrease

after silencing. This is in accordance with the data and thus confirms the hypothesis

that the model including the feedback regulation term is qualitatively able to capture the

experimental findings.

4.4.3 Marginal parameter distribution

In this Subsection we present the results concerning the computation of the marginal

posterior distributions for each single parameter θi relative to both ODE models (2.3) and

(2.6), calculated using the formula (4.11). In practice the computed marginal distributions

are all relative to the components of the log-transformed parameter ψ = log10 θ. We

highlight another time the fact that we chose the boundaries for the log-uniform prior

distributions taking intervals of 4 orders of magnitude centred around the values of the

maximum likelihood estimated parameter vector ψ̂MLE. This can be easily noticed in

the two following Figures 4.5 and 4.6, which represent the considered marginal posterior

distributions for the two different ODE models. Figure 4.5 shows the marginal distributions

p(ψi|ỹ) relative to the first ODE model (2.3), with:

ψi ∈ {log10Cin, log10 p1, log10 p2, log10 d1, log10 d2, log10 d3, log10 k1, log10 k2}.

These distributions were generated by kernel density estimation from the obtained MCMC

samples, and they are plotted in the Figure together with the maximum likelihood esti-

mates, marked with dark grey vertical lines, and with the 5% and 95% percentiles, marked

with grey dotted lines. We can observe that the marginals of the ceramide production, Cin,

of the ceramide degradation rate, d1, and of the forward Michaelis-Menten constant, k1,

are almost uniform over the intervals of the prior distribution. This result highlights the

fact that data provide little information about these parameters and demonstrates that

within the given prior support no particular model parametrization better explains the
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data. The marginals of the other 6 parameters are slightly more informative, although all

parameters remain only vaguely determined over several orders of magnitude.
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|ỹ
)

1 2 3 4 5
0

0.2

0.4

log10d1

p
(l
og

1
0
d
1
|ỹ
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Figure 4.5: 1D Marginals of log-transformed model parameters estimated by Monte Carlo

integration from MCMC sampling relative to the ODE model (2.3).

As regards the modified ODE model (2.6), the relative parameters’ marginal posterior

distributions are plotted in Figure 4.6. We notice that in this case we can derive more

information about the distribution of parameters, since the variances of the marginal dis-

tributions are slightly smaller, in particular for the parameters a and d1. Nevertheless, also

in this case concerning the revised model, parameters are not determined in a precise way,

and this fact suggests that a lot of different parametrizations could reproduce the good fit

quality.

4.4.4 Comparison of the results of the two models

Summarizing the results of the two previous Subsections, now we want to make a com-

parison between the features of the two ODE models. We can maintain that, overall, the

results obtained with the parameter estimation by sampling from the posterior distribution
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|ỹ
)

 

 

Marginal posterior distribution

MLE parameter value

5% and 95% percentiles

Figure 4.6: 1D Marginals of log-transformed model parameters estimated by Monte Carlo

integration from MCMC sampling relative to the ODE model (2.6).

p(θ|ỹ) confirm our theoretical analysis described in Section 2.4, concerning the qualitative

changes of the steady state lipid composition in response to SMS1 manipulation, and also

the results of the simulations of the MLE, presented in Section 3.3.

First of all we can affirm, in general, that the first model (2.3) with constant ceramide

influx Cin is not able to capture qualitatively the experimentally observed changes of the

steady state ceramide concentrations following manipulations of the activity of the enzyme

SMS1 that drives the considered reaction. In fact all parameter estimations produce as

most probable value of the estimated parameter vector the one that leaves the concentra-

tion of ceramide constant across all experiments, since the model would predict changes

of such steady state levels in the opposite direction with respect to that observed in the

experimental results. Besides the results of this Bayesian analysis, the mathematical in-

vestigation of Section 2.4 proves that, regarding the chemical reaction in isolation, i.e.

without considering the feedback term, the changes in lipid steady state levels of both

sides of the reaction must have opposite signs in response to changes in SMS1 activity, and
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this outcome holds independently of the exact kinetics modelling the reversible enzymatic

reaction. In this way both analytical and statistical results qualitatively reject model (2.3).

Instead the modified differential equation system (2.6) that includes the positive feed-

back regulation from DAG level to ceramide presents a highly improved data fit quality.

In fact in this case the changes in ceramide levels in response to SMS1 manipulations can

qualitatively be captured for a wide range of estimated parameter values.

Even though the marginal posterior distributions of the single components of the model

parameter are not so informative also in the considered revised model, and the parameters

remain vaguely determined over several orders of magnitude, we obtain anyway a significant

improvement of the data fit, and the predictions of the model can capture the qualitative

behaviour of the experimental findings.



Conclusions

Summary of results and discussion

The aim of this thesis was to build a dynamic mathematical model, based on chemical reac-

tion kinetics, in order to describe the reversible metabolic conversion of ceramide (Cer) and

phosphatidylcholine (PC) into sphingomyelin (SM) and diacylglycerol (DAG), catalysed

by the enzyme sphingomyelinsynthase 1 (SMS1). As experimental dataset to be used for

model parameter estimation, we considered lipid concentrations at steady state, measured

under different experimental conditions in which the activity of SMS1 was altered. In re-

sponse to these SMS1 manipulations, changes in lipid composition were observed and we

aimed at describing qualitatively these results with our mathematical model. We proved

that a simple model that considers the reversible reaction in isolation fails to explain the

considered experimental findings. In particular, changes of ceramide levels at steady state

in response to SMS1 overexpression and silencing could not be captured by the model.

Consequently to these results, and based on biological knowledge, we modified the first

ODE model by considering a positive feedback regulation from DAG to ceramide, and

thus modelling the influx of this last lipid at the TGN as an increasing linear function of

the concentration of DAG. The validity of this choice to improve our dynamical model was

demonstrated both in a theoretical way, using the hypothesis of the Implicit function the-

orem, and with statistical inference approaches. In fact, using MLE- and sampling-based

statistical methods, we showed that a simple linear feedback term was sufficient to explain

the observed data qualitatively, with a significant improvement of the quality of fit.
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We underline the fact that, even though we used dynamic models (differential equation

systems) to describe the SMS1 driven reaction, what influences the parameter estimation

is only the equilibrium situation of the system, since all measurements are steady state

lipid concentrations. This means to consider the system at steady state, i.e. f(x̄, θ) = 0.

From the obtained results we maintain that feedback regulation might be an essential

feature of the SMS1 driven conversion of ceramide into SM, and that the effects caused

in vivo by this feedback control may not be explained by a model that considers the

reversible reaction in isolation. In this study we have motivated the existence of such

a feedback regulation with an indirect influence of DAG on the efficiency of ceramide

transport to the trans-Golgi network, regulated by protein kinase D (PKD) and by the

ceramide transport protein CERT [41]. Anyway we cannot affirm with certainty that this

biochemical pathway has the principal contribution to the studied feedback regulation. In

fact, there could be other unknown causes that underlie this phenomenon, and moreover

the effects on ceramide levels in response to modulation of the activity of SMS could be

differently regulated depending on the specific cellular context. From a biological point of

view, a precise knowledge about this reaction taking place at the trans-Golgi network is

not yet available, and further research should be conducted. For this reason we have to

pay attention about the conclusions that we draw from our results, even if we maintain

that further investigation in the direction of the feedback regulation should be supported.

Besides these considerations concerning the biological fundamentals of this thesis, we have

to be careful about the meaning that we attribute to the obtained results. In fact, our

study clearly shows that model errors can have a drastic effect on parameter estimation.

For example, as we described in detail in Sections 3.3 and 4.4 concerning the results

of parameter estimation, we can notice that the estimated parameters for the two ODE

models, which differ formally only for the single term Cin, show differences for several orders

of magnitude. Moreover we can notice that the choice of model parameter boundaries is

extremely influential on the predictive power of the ODE model, and in general it is

an important aspect in the construction of mathematical models describing biochemical

cellular reaction networks. These facts put parameter values estimated from experimental
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data and simple models much into question, and moreover justify the use of statistical

sampling methods, which also provide information about uncertainties due to modelling

errors.

Future work

As already underlined, from a biological point of view it would be fundamental to further

investigate the functioning of the complex secretion regulatory network, in particular the

dynamic relations between the lipids involved in the SM synthesis reaction, in order to

bring interesting improvements and future possible developments of this study.

Additional investigation of the revealed feedback mechanism could be developed and

supported by other experimental datasets. In particular, from a modelling point of view,

time series data of lipid concentrations would bring much more information for estimat-

ing model parameters, improving in this way also the investigation of parameter bounds.

Finally it would be interesting to consider different cellular systems, to have a general

overview of the problem and to understand possible similarities and differences.
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Appendix A

Programming with Matlab

All basic numerical computations have been performed using the software Matlab, ver-

sion R2010b (32 bit). For the definition of the model and the management of the ex-

perimental data the toolboxes Sbpd and Sbtoolbox2 [34] have been used, which offer

specifically a powerful environment in which to build models of biological systems. For

the numerical integration of the differential equation systems (2.3) and (2.6) the toolbox

Sbtoolbox2 employs the particular integrator CVODE from Sundials1, which is a solver

for stiff and non-stiff ordinary differential equation (ODE) systems (initial value problem)

given in explicit form [6]. As options for the absolute and relative error tolerances of the

MEX integrator in the case of the first model we set to at least options.abstol=1e-12 and

options.reltol=1e-12. Instead for the second ODE model, having difficulties to carry out

the integration of the ODE system, we used less strict constraints (options.abstol=1e-6

and options.reltol=1e-6), and moreover, to avoid the error CV TOO MUCH WORK that oc-

curred during the simulation with Matlab caused by stiffness problems, we increased the

number of maximum internal steps to options.maxnumsteps=1000000.

1https://computation.llnl.gov/casc/sundials/
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A.1 Project internal structure

To employ the toolboxes Sbpd and Sbtoolbox2 we need a precise structure of the project,

in which we define the model, the experimental data (measurements) and the different ex-

periments. In practice our project consists of two folders for the simulations relative to

the two different ODE models (2.3) and (2.6). Each project-folder must contain in par-

ticular two specific subfolders: (1) subfolder “models”, in which we put the files with

the definition of the ordinary differential equation models (e.g. modelName.txt) (2) sub-

folder “experiments”, which contains other subfolders, with particular files describing the

experiments (e.g. experiment1.exp contained in the folder Experiment1).

In this Section we describe in particular all details relative to the first ODE model

without the positive feedback term, since, from the informations already given in the

text about some simulations’ details, one can easily obtain the code for the simulations

concerning the second ODE model with feedback. In Table A.1 are presented the specific

subfolders and files contained in the project-folder relative to the simulations for the first

ODE model.

Table A.1: Project folder: SMS1 Project 1.

Folder Contained subfolders and files

models SMS1 model noFB.txt

experiments Experiment1 → experiment1.exp

Experiment2 → experiment2.exp

Experiment3 → experiment3.exp

Experiment4 → experiment4.exp

A.1.1 ODE model and experiments

The code written in the file SMS1 model noFB.txt, defining all properties of the ODE

model without feedback is:
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********** MODEL NAME

SMS1 Reaction system 1

********** MODEL NOTES

First model, where Cin = constant.

All variables are dimensionless (normalized) and parameters have physical units.

PC and u are considered as parameters, and their values are specified

for each experiment. There are 10 parameters, but only 8 (without u and PC)

are estimated.

State variables:

x1 = Cer; x2 = DAG; x3 = SM

Parameters:

Cin, p1, p2, d1 = dC, d2 = dDAG, d3 = dSM, k1, k2, u = SMS, PC

Parameters are estimated in logarithmic scale.

The outputs are defined as logarithm of the state variables,

because we use a log-normal distribution error model.

********** MODEL STATES

d/dt(x1) = s1 - s4*x1 - s2*u*x1*PC/(x1*PC+s7) + s3*u*x2*x3/(x2*x3+s8)

d/dt(x2) = - s5*x2 + s2*u*x1*PC/(x1*PC+s7) - s3*u*x2*x3/(x2*x3+s8)

d/dt(x3) = - s6*x3 + s2*u*x1*PC/(x1*PC+s7) - s3*u*x2*x3/(x2*x3+s8)

x1(0) = 1

x2(0) = 1

x3(0) = 1

********** MODEL PARAMETERS

Cin = 1

p1 = 1

p2 = 1

d1 = 1

d2 = 1

d3 = 1
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k1 = 1

k2 = 1

u = 1

PC = 1

********** MODEL VARIABLES

Cer = log(x1)

DAG = log(x2)

SM = log(x3)

s1 = 10^Cin

s2 = 10^p1

s3 = 10^p2

s4 = 10^d1

s5 = 10^d2

s6 = 10^d3

s7 = 10^k1

s8 = 10^k2

********** MODEL REACTIONS

********** MODEL FUNCTIONS

********** MODEL EVENTS

********** MODEL MATLAB FUNCTIONS

We report also as example the code contained in the file experiment1.exp relative to the

description of the first experiment, in which we considered the values taken from [8]:

********** EXPERIMENT NAME

Experiment 1 for SMS1 Reaction system 1

********** EXPERIMENT NOTES

The input u expresses the SMS1 activity (% of WT-control).

PC is considered constant in the model (dPC/dt = 0), the value set for this

experiment is the one given in the table, considering only the mean without
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SD, normalized to the value of the control experiment.

In this experiment there is no SMS1 overexpression or knockdown.

********** EXPERIMENT INITIAL PARAMETER AND STATE SETTINGS

u = 1

PC = 294/294

********** EXPERIMENT PARAMETER CHANGES

********** EXPERIMENT STATE CHANGE

A.1.2 Structure of the main script

We present here an itemized scheme of the steps constituting the main Matlab script for

the simulations.

• Enable the parallel language features in the Matlab language (e.g. parfor) by cre-

ating a special job on a pool of workers for parallel computation, using the Matlab

function matlabpool.

• Create a new SBmodel from the text file with extension .txt containing the descrip-

tion of the model, using the Matlab function

model = SBmodel(’SMS1 model noFB.txt’).

• Define random initial conditions for the state variables xi(0), i = 1, 2, 3.

• Convert the SBmodel to a high performance “Matlab EXecutable C-code” (MEX)

model and link it with the CVODE integrator from Sundials, using the Matlab

function SBPDmakeMEXmodel.

• Prepare a special experiment project structure, named expStruct, containing the

description and the features of each of the four experiments.

• Read all experimental data from the excel file containing the normalised mean values

and standard deviations for the three lipids concentrations Cer, DAG and SM, using

the function BioDataImport.
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• Using the instruction RelDataCruncherAdv(model,expStruct), process the data for

a MEX based parameter estimation.

• Translate data in logarithmic scale and enhance the time vector, with the function

PEenhanceTvector.

• Define the lower and upper bounds for each of the parameters to be estimated.

• Start the constrained optimization to maximize the likelihood function and thus find

the MLE parameter vector θ̂MLE, giving minus the logarithm of the likelihood as

input of the optimizing function fmincon.

• Merge the SBmodel with all 4 defined in silico experiments using the function

SBmergemodexp, and simulate it with the estimated MLE parameter vector θ̂MLE

using the function SBPDsimulate, in order to obtain the relative trajectories of the

three state variables, i.e. the three lipid concentrations of Cer, DAG and SM.

• Run the burn-in sampling, defining dram as adaptation method, and afterwards the

sampling main run with two parallel Markov chains, using the function mcmcrun from

the Matlab toolbox mcmcstat.

• Chain merging and convergence analysis using the function geweke, always offered

by the toolbox mcmcstat.

• Computation of posterior predictive distributions of the model steady states and

of the one dimensional marginals of the parameter posterior distribution, using the

Matlab function ksdensity.

A.1.3 Matlab functions

In Table A.2 we report a list of all self-written functions and of the most important functions

already implemented in Matlab that we used in our code. For each method we specify

the usage code and a brief description of the specific function.

2http://helios.fmi.fi/ lainema/mcmc/mcmcrun.html
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Table A.2: Matlab functions.

Method Usage and Specific function

BioDataImport [stdv MuN] = BioDataImport(’*.xls’)

→ imports *.xls data and produces *.csv files for each experiment and

calculates standard deviation cell variable following four diffent rules.

RelDataCruncher [timevector, ISvalues, IPvalues, stdv0, expmodel,

Iparametervector]= RelDataCruncher(SBmodel, expStruct)

→ preprocesses the data for a MEX based parameter estimation.

PErelativeHTspeed → forms objective function (likelihood) to be optimized

fmincon [x,fval,exitflag,output,lambda,grad,hessian] =

fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)

→ finds the minimum of constrained nonlinear multivariable function.

mcmcrun [results,chain,s2chain,sschain] =

mcmcmrun(model,data,params,options)

→Matlab function for the MCMC run. The user provides her own Matlab

function to calculate the ”sum-of-squares” function for the likelihood part,

e.g. a function that calculates minus twice the log likelihood 2.

geweke [z,p] = geweke(chain,a,b)

Geweke’s MCMC convergence diagnostic. Test for equality of the means of

the first a% (default 10%) and last b% (50%) of a Markov chain.

ksdensity [f,xi] = ksdensity(x)

→ computes a probability density estimate of the sample in the vector x. f

is the vector of density values evaluated at the points in xi. The estimate is

based on a normal kernel function, using a window parameter (width) that

is a function of the number of points in x.
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