

DIPARTIMENTO DI SCIENZE CHIMICHE CORSO DI LAUREA IN SCIENZA DEI MATERIALI

TESI DI LAUREA

Materiali resistenti alle alte temperature depositati attraverso tecniche PVD.

Studente: Filippozzi Davide Matricola: 2008638

Relatore: Prof. Antonella Glisenti

COSA SONO LE BARRIERE TERMICHE E COME SONO FATTE?

STATO DELL'ARTE – MATERIALI E TECNICHE DI DEPOSIZIONE

L'attuale stato dell'arte di questa tecnologia consiste nella produzione di barriere termiche a due strati separate da un sottile starto di ossido:

- Top coat:6-8YSZ depositata con tecnica <u>EB-PVD</u>.
- Thermally grown oxide: Al₂O₃ formato con ossidazione isotermica ad alte temperature.
- Bond coat: MCrAlY (M = Ni, Co), Plasma spraying.

È una forma particolare di physical vapour deposition.

ELECTRON BEAM – PHYSICAL VAPOUR DEPOSITION

ELECTRON BEAM – PHYSICAL VAPOUR DEPOSITION

Elementi principali della camera di deposizione:

- Cannone elettronico
- Lingotti di materiale target
- Crogiolo di fusione
- Camera pre-vuoto e camera di deposizione
- Supporto rotante per il campione

Schema camera di deposizione dispositivo UE205

MICROSTRUTTURA DEL TOP COAT

Struttura colonnare tipica delle deposizioni PVD.

La presenza di <u>porosità aperte</u> e <u>chiuse</u> è fondamentale per ridurre la conducibilità termica del materiale.

Immagine SEM della microstruttura di un top coat di composizione standard (7-8% wt YSZ)

Immagine SEM dello strato di YSZ depositato a 45KW e 20rpm

ELECTRON BEAM – PHYSICAL VAPOUR DEPOSITION

2022/2023

EFFETTI DEI PARAMETRI DI DEPOSIZIONE SULLA MICROSTRUTTURA DEL TOP COAT

EFFETTI DEI PARAMETRI DI DEPOSIZIONE SULLA MICROSTRUTTURA DEL TOP COAT

MECCANISMI DI ROTTURA DEL COATING

LA ROTTURA PUÒ AVVENIRE PER TRE CAUSE PRINCIPALI

Formazione di Spinelli tra il TGO ed il bond coat o tra il TGO ed il top coat

Urti con altre particelle

Crescita eccessiva o imperfezioni nel TGO

MECCANISMI DI ROTTURA DEL COATING – CRESCITA ECCESSIVA E/O PRESENZA DI IMPERFEZIONI NEL TGO

A causa delle impurità e della differenza di coefficiente di espansione durante il raffreddamento si formano <u>stress compressivi</u> elevati nel TGO.

Deformazione fuori dal piano del TGO a seguito del raffreddamento

Imperfezioni più comuni nel TGO

Immagine SEM della formazione di crepe a causa di stress nel TGO

MECCANISMI DI ROTTURA DEL COATING – FORMAZIONE DI SPINELLI

Reazioni di equilibrio tra la lega di Ni-Al con l'ossigeno

1) $2AI + 3O \leftrightarrow AI_2O_3$

2) Ni + 2Al + 4O \leftrightarrow NiAl₂O₄

3) Ni + O \leftrightarrow NiO

4) $3Ni + 4Al_2O_3 \leftrightarrow 3NiAl_2O_4 + 2Al$

5) $3Ni + NiAl_2O_4 \leftrightarrow 4NiO + 2Al$

L'attività dell'alluminio nella lega è legata alla sua frazione molare tramite il coeff. di attività:

$$\gamma_{AI} = \frac{a_{AI}}{\chi_{AI}}$$

L'attività del nichel, invece, è legata a quella dell'alluminio dell'equazione di Gibbs-Duhem:

$$\log \gamma_{\rm Ni} = -\int_{X_{\rm Ni}=1}^{X_{\rm Ni}} \left(\frac{X_{\rm Al}}{X_{\rm Ni}}\right) d\log \gamma_{\rm Al}$$

MECCANISMI DI ROTTURA DEL COATING

POSSIBILI SVILUPPI FUTURI

Modifiche al materiale volte a ridurre la conduzione termica:

- Doping di YSZ con uno o più dopanti (NiO, Nd₂O₃, Gd₂O₃, Er₂O₃,, Y₂O₃,).
- Utilizzo di nuovi materiali a bassa conducibilità termica (Ossidi con struttura della fluorite, RE₂Zr₂O₇, LHA, materiali nanocristallini).

Modifiche alla microstruttura del materiale:

 Variando i paramatri di deposizione si possono ottenere strutture con una porosità diversa o con una diversa morfologia delle colonne (struttura a "zig zag"). Differenti tecniche di deposizione:

- Solution precursor plasma spray.
- Electron beam directed vapour deposition.

BIBLIOGRAFIA

[1] Thermal Barrier Coatings (Woodhead Publishing in Materials) (Huibin Xu, Hongbo Guo)

[2] Ostadi, Ali, Seyyed Hojjatollah Hosseini, and Mohammadreza Ebrahimi Fordoei. "The Effect of Temperature and Roughness of the Substrate Surface on the Microstructure and Adhesion Strength of EB-PVD ZrO2-%8wtY2O3 Coating." *Ceramics International* 46, no. 2 (February 2020): 2287–93.

[3] Evans, A.G., D.R. Mumm, J.W. Hutchinson, G.H. Meier, and F.S. Pettit. "Mechanisms Controlling the Durability of Thermal Barrier Coatings." *Progress in Materials Science* 46, no. 5 (January 2001): 505–53.

[4] Hass, D.D., A.J. Slifka, and H.N.G. Wadley. "Low Thermal Conductivity Vapor Deposited Zirconia Microstructures." *Acta Materialia* 49, no. 6 (April 2001): 973–83.

[5] Leyens, C., U. Schulz, B.A. Pint, and I.G. Wright. "Influence of Electron Beam Physical Vapor Deposited Thermal Barrier Coating Microstructure on Thermal Barrier Coating System Performance under Cyclic Oxidation Conditions." *Surface and Coatings Technology* 120–121 (November 1999): 68–76.

BIBLIOGRAFIA

[6] Schulz, Uwe, Jan Miinzer, and Uwe Kaclen. "Influence of Deposition Conditions on Density and Microstructure of EB– PVD TBCs." In *Ceramic Engineering and Science Proceedings*, edited by Hau-Tay Lin and Mrityunjay Singh, 23:353–60. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2002.

[7] Norio Yamaguchi, Kuninhiko Wada, Kazushige Kimura, Hideaki Matsubara. "Microstructure Modification of Yttia-Stabilized Zirconia Layers Prepared by EB-PVD." In *Journal of the Ceramic Society of Japan 111 [12] 883-889 (2003)*

[8] Renteria, A. Flores, B. Saruhan, U. Schulz, H.-J. Raetzer-Scheibe, J. Haug, and A. Wiedenmann. "Effect of Morphology on Thermal Conductivity of EB-PVD PYSZ TBCs." *Surface and Coatings Technology* 201, no. 6 (December 2006): 2611–20.

[9] Tzimas, E, H Müllejans, S.D Peteves, J Bressers, and W Stamm. "Failure of Thermal Barrier Coating Systems under Cyclic Thermomechanical Loading." Acta Materialia 48, no. 18–19 (December 2000): 4699–4707.