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Sommario 

I materiali usati nell’industria automobilistica devono soddisfare requisiti sempre più 

stringenti, come la leggerezza, la resistenza all’urto e la duttilità. Una valida soluzione 

risiede nei 3rd generation Advanced High-Strength Steels (AHSS), molti dei quali 

godono del TRIP effect, per cui l’austenite residua, normalmente metastabile a 

temperatura ambiente, si trasforma in martensite durante la deformazione plastica del 

materiale, migliorandone le proprietà meccaniche. Sebbene la relazione tra la stabilità 

dell’austenite residua e lo stato di tensione sia stata ampiamente analizzata in 

condizioni quasi-statiche, pochi studi dinamici esistono a riguardo, motivo dell’origine 

del progetto europeo Dynaustab. 

Il lavoro qui presentato è parte di tale progetto ed è stato svolto presso la Ghent 

University all’interno del programma Erasmus+. In particolare, esso è composto da una 

parte sperimentale e da una parte numerica, entrambe mirate a migliorare le qualità 

degli esperimenti dinamici, realizzati tramite il principio della Split-Hopkinson Bar. In 

prove di questo tipo, il provino è vincolato tra due lunghe barre di alluminio e, a causa 

di un impatto esterno contro una delle due, è percorso da un’onda elastica. Attraverso 

un sistema di estensimetri montati sulle barre, è possibile risalire allo stato di tensione 

e di deformazione imposto al provino.  

Poiché si osservano discordanze tra le misure dei diversi estensimetri, lo scopo della 

parte sperimentale del lavoro è la calibrazione diretta di tali strumenti di misura, 

prendendo a riferimento una cella di carico. I risultati mostrano come tutti gli 

estensimetri, resistivi e a semiconduttore, sottostimino le misure di circa il 5 % e 22 %, 

rispettivamente. Per gli estensimetri resistivi, i motivi sono da ricercare nel possibile 

disallineamento tra la direzione di misura e l’asse longitudinale della barra, mentre per 

quelli a semiconduttore nella non-linearità del ponte di Wheatstone, che a riposo risulta 

non bilanciato.



 

 

La parte numerica del lavoro ha lo scopo di ottimizzare una particolare geometria del 

provino, variando due parametri dimensionali della regione centrale: la larghezza e il 

raggio di raccordo. Lo scopo è quello di ottenere alti valori del fattore di triassialità, i 

più costanti possibile durante la prova dinamica e nella regione centrale del provino. I 

risultati dell’ottimizzazione mostrano come la geometria ottimale sia quella 

caratterizzata da alti valori della larghezza e bassi valori del raggio di raccordo. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Abstract 

Materials used in the automotive industry must meet increasingly stringent 

requirements, such as lightness, crashworthiness and ductility. A viable solution is 

represented by 3rd generation Advanced High-Strength Steels (AHSS), many of which 

are characterised by the TRIP effect, whereby retained austenite, typically metastable 

at room temperature, transforms into martensite during plastic deformation of the 

material, improving its mechanical properties. Although the relationship between the 

stability of retained austenite and stress state has been widely investigated in quasi-

static conditions, few dynamic counterparts exist, which lies at the origin of the 

European project Dynaustab. 

The work here presented is part of this project and has been developed at Ghent 

University within the Erasmus+ programme. In particular, it is composed of two parts, 

one experimental and the other numerical, both aimed at improving the quality of 

dynamic tests, performed through the Split-Hopkinson Bar principle. In such 

experiments, the sample is sandwiched between two long aluminium bars. Due to an 

external impact against one of the two bars, an elastic wave propagates through it. By 

means of a system of strain gauges mounted on the bars, it is possible to evaluate the 

stress and deformation state imposed to the sample. 

Since discrepancies are observed between the measurements of the different strain 

gauges, the experimental part consists in the direct calibration of these measuring 

instruments, by considering a load cell as reference. The results show that all strain 

gauges, both resistive and semiconductor, underestimate the measurements by 

approximately 5 % and 22 %, respectively. For the resistive strain gauges, the reasons 

are to be found in the possible misalignment between their measuring direction and the 

longitudinal axis of the bar, while for the semiconductor ones in the non-linearity of 

Wheatstone bridge, which is not balanced under unstrained conditions.



 

 

The numerical part of the work aims to optimize a particular sample geometry by 

changing two dimensional parameters of the central region: the width and the fillet 

radius. The purpose is to obtain high values of stress triaxiality, as constant as possible 

during the dynamic test and in the central region of the sample. The optimization results 

show that the optimal geometry is characterised by high values of width and low values 

of fillet radius. 
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1. Introduction 

The choice of materials in the automotive industry is driven by increasingly stringent 

requirements. In particular, the body in white material must be lightweight to minimize 

carbon dioxide emissions, while at the same time guaranteeing excellent 

crashworthiness, necessary for passengers’ safety, and high ductility, so that 

complicated design can be obtained during production. A viable solution is represented 

by 3rd generation Advanced High-Strength Steels (AHSS), many of which are 

characterised by Transformation-Induced Plasticity (TRIP) effect, consisting in the 

transformation of retained austenite to martensite during plastic deformation of the 

material. The resulting excellent mechanical properties are influenced by the stability 

of retained austenite, which is in turn dependent on stress and deformation state. 

Although these relationships have been widely investigated for quasi-static conditions, 

few dynamic counterparts exist, which lies at the origin of the European project 

Dynaustab.  

A fundamental part of this program is carried out at Ghent University and consists in 

the analysis of the dependence between the stability of retained austenite and stress 

triaxiality, a dimensionless parameter expressing the relative degree of hydrostatic 

stress in a given stress state. The dynamic tests, necessary to investigate this 

dependence, are performed through the Split-Hopkinson Tensile Bar (SHTB) present 

in the DyMaLab laboratory of Ghent University. In this apparatus, the sample is 

sandwiched between two long aluminium bars, called “input” and “output” bar, 

respectively. When the input bar is subjected to an external impact, an elastic wave 

propagates through it reaching first the sample and then the output bar. By means of 

strain gauges mounted on both bars, it is possible to measure the amplitude of strain 

waves travelling through them and, by applying one-dimensional wave propagation 

theory, to evaluate the stress state of the sample. The main issue observed in such 
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measurements lies in discrepancies between the values read by the different types of 

strain gauges, resistive and semiconductor, which are mounted on the output bar. The 

first part of the work here presented aims to investigate, through an experimental study, 

the reasons of such discrepancies. 

Another aspect to consider during dynamic tests is the value of stress triaxiality. In fact, 

in order to obtain a precise correlation between the stability of retained austenite and 

this parameter, the latter must remain as constant as possible during the test and in a 

specific region at the centre of the sample, where the microstructure is analysed after 

the experiment by means of X-ray diffraction (XRD) techniques. In addition, another 

requirement is to have values of stress triaxiality as high as possible. Since the value of 

this parameter is influenced by sample geometry, a geometric optimization is a fast and 

efficient way to meet the mentioned requirements, which is the reason why the second 

part of the work is numerical in nature. 

In the second chapter of the thesis, an overview of the materials used in the automotive 

industry is provided, focusing in particular on their evolution over the years and the 

requirements they must meet. Subsequently, the main reasons for the birth of 

Dynaustab project are listed. In the third chapter, the experimental apparatus of 

DyMaLab laboratory is described and the fundamentals of one-dimensional wave 

propagation theory are reported. In the fourth chapter, the experimental work of strain 

gauges calibration is presented. The mechanical system designed for this purpose and 

the procedures followed in the test are described in detail. Then, the obtained results 

are discussed. In the fifth chapter, the numerical work of sample geometric 

optimization, performed in the finite element analysis software Abaqus FEA, is 

described. After a thorough explanation of the way the scripts developed in MATLAB 

and Python work, the optimal geometry is presented and discussed. Finally, in the sixth 

chapter, the conclusions of the works carried out are reported and some insights for 

possible future developments are given.



 

 

2. Overview of automotive materials 

2.1 Material requirements for car body in white (BIW)  

The material composing the body in white (BIW) of a car must satisfy several 

requirements. 

The first one regards the safety, which means that during a crash the material has to be 

strong enough to absorb the impact energy and not to crumple, so that it can protect the 

passengers. As second requirement, its formability must be high in order to enable the 

more complicated designs during the production process. Lastly, the third requirement 

is environmental. Nowadays, due to the wide exploitation of nature carried out by 

humans, the air pollution is getting more and more severe, amplifying the so-called 

“greenhouse effect”: due to some gas emissions, the thermal energy coming from the 

solar radiation is partly trapped in the Earth’s atmosphere, causing a global warming 

that is harmful to our planet. Since one of the main substances responsible for this 

phenomenon is carbon dioxide, highly released by means of transport, the world 

government authorities have been trying for many years to reduce their average 

emissions through increasingly stricter regulations. The latest one issued by the 

European Parliament states that starting from 2021 the average emissions of all the cars 

in UE shall not exceed 95 g/km [1], which corresponds to a reduction of 27% with 

respect to the amount allowed in the previous regulation [2]. 

It should be noted that this requirement is amplified by the increasing development of 

pure and hybrid electric vehicles, characterised by well to wheel emissions of carbon 

dioxide lower than those of thermal vehicles. Hence, in order to compete against the 

former, the latter need to reduce the carbon dioxide emissions as much as possible [3]. 

Since in a car the fuel consumption, therefore the amount of the gas emissions, are 

proportional to its mass, its material has to be light enough. Several studies prove how 
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a 10% reduction of the car mass brings to a 6 ÷ 8% reduction of fuel consumption and 

consequently of carbon dioxide emissions [4]. Other requirements, definitely not least, 

are the possibility of large-scale production, the weldability and the corrosion 

resistance, each of them achievable through a reasonable cost.  

It is clear that many of all aforementioned requirements are conflicting, which implies 

a constant research for an optimal solution as a compromise. For this reason, the 

automotive industry has always been characterised by an ongoing innovation. 

2.2 History 

Steel began to be the main material in the automotive industry in the 1920s, fully 

replacing the wood that previously had been in part used for the BIW [5]. The 

fundamental characteristic that made it become the automotive leader material was the 

great combination of high mechanical strength and low cost. Nowadays, it represents 

about the 65% of the car weight and is the primary component of the BIW. However, 

over the last hundred years, it has been subjected to a deep evolution aiming to research 

solutions as optimal as possible that satisfied the requirements mentioned in §2.1, in 

particular the most conflicting ones: the high mechanical strength, necessary for 

passengers’ safety, and the great formability, allowing complicated design. For this 

reason, in Figure 2.1Figure 2.1 the main steel types, which have been used over the 

years for the BIW and will be presented below, are represented in an ultimate tensile 

strength (UTS) vs total elongation graph. At first sight, it is easy to observe that all the 

steels are arranged following a sort of hyperbole, proving the conflicting nature of these 

two mechanical properties. 
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Figure 2.1 Overview of the automotive steels classes, arranged in an ultimate tensile 

strength – total elongation graph. The 3rd generation yellow area refers 

to both current and possible future developments. 

The first special steels developed were the mild steels, also known as low-carbon (LC) 

steels, first used in the 1980s. They are composed of a single phase, ferrite, with a small 

carbon content, generally lower than 220 ppm in weight, that can reach even lower 

values (< 30 ppm in weight) for a particular type, the interstitial free (IF) steels. 

Although the total elongation of this steel family is relevant (until 60%), its UTS is 

relatively low (< 280 MPa). To overcome this issue, a new design solution was 

implemented for the BIW, which started to be fabricated in two parts, each of them 

satisfying a different requirement: the external one, composed of a thin formable layer, 

enabled complicated designs, whereas the internal one, not visible and composed of a 

structure made of beams and pipes, gave a high mechanical strength [6]. 
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Subsequently, the 1990s saw the development of the so-called conventional high 

strength steels (HSS), in which the UTS was significantly increased (200 ÷ 800 MPa), 

at the expense of a decrease in the total elongation (10 ÷ 40%). Once again, they are 

single-phase steels and the strengthening mechanism is achieved by means of solid-

solution hardening. This family includes bake hardening (BH), carbon manganese 

(CMn) and high-strength low-alloy (HSLA) steels. 

The next step was to improve, with the same UTS, the total elongation, representing 

the critical point of HSS. Thus, were born the Advanced High-Strength Steels (AHSS) 

which, thanks to the ULSAB programme, promoted in 1995 and involving 35 steel 

companies from 18 different countries, massively replaced the materials previously 

used for the BIW. These steels have a UTS greater than 500 MPa and a composite-like 

microstructure. In fact, they consist of two or more phases that synergically give the 

material better properties than those of the individual phases themselves.  

The first to be developed were the 1st generation AHSS, to which belong the Dual-

Phase (DP) steels, based on studies carried out few decades before [7]. They are 

composed of ferrite and martensite, where the former gives formability to the material 

and the latter, varying from 5 to 50 % in volume, gives the mechanical strength. In this 

way, it became possible to reach UTS between 550 and 1000 MPa and total elongation 

slightly higher than that achievable by the HSS, with the same UTS. 

Later, developing the studies of Wassermann [8], Transformation-Induced Plasticity 

(TRIP) steels began to be produced. These steels are based on the so-called “TRIP 

effect”: when the steel contains a sufficiently metastable austenite and is plastically 

deformed, the austenite loses the stability and turns into martensite. The austenite 

stability is meant as its tendency to preserve the chemical composition, in fact, from a 

thermodynamic point of view, a substance is stable if it is in its lowest energy state, 

that is in chemical equilibrium with the environment. The formed martensite brings an 

additional work hardening which raises the UTS (590 ÷ 1180 MPa) and delays necking, 
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thus increasing the total elongation that, with the same UTS, is in fact greater than that 

of DP steels.  

However, since the austenite is normally unstable at room temperature, a special 

thermal process, reported in Figure 2.2, is necessary. 

 

Figure 2.2    Representation of thermal process adopted for TRIP steels. 

An austenitization at a temperature between 𝐴𝑒1 and 𝐴𝑒3, that is within the intercritical 

range where austenite and ferrite are in equilibrium, produces a microstructure in which 

the volume amount of each phase is generally 50%. Then, the material is quenched to 

a temperature below 𝐵𝑠 to avoid any perlite precipitation and kept at this temperature, 

so that the austenite can transform to low-carbon bainite. In this step, thanks to the 

presence of some alloy elements such as silicon and aluminium, the carbide formation 

is suppressed and the untransformed austenite experiences a carbon enrichment.It 

follows that, after the subsequent cooling to room temperature, the austenite is no 

longer unstable. The final microstructure is typically composed of about 50% of ferrite, 

35 to 40% of bainite and 10 to 15% of austenite. However, the volume fraction of 
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retained austenite that can be obtained, so the martensite amount after the 

transformation, are low due to the limited amount of carbon. This results in a limited 

work hardening which badly affects especially the total elongation.  

Other 1st generation AHSS are the martensitic steels (MS), mostly formed by a 

martensitic structure surrounded by small amounts of ferrite and bainite. They have the 

highest UTS (900 ÷ 1700 MPa) of all the automotive steels but, at the same time, a 

very low total elongation, which is generally a critical issue of all the 1st generation 

steels. 

For this reason, starting in the 2000s, the 2nd generation AHSS began to be developed, 

still exploiting the TRIP effect like those of the previous generation. The substantial 

difference, however, lies in the relevant amount of alloy elements such as manganese 

(up to 30%), which stabilises austenite at room temperature and allows it to reach much 

higher percentages, even up to 100%. It follows that under plastic deformation a high 

amount of martensite, proportional to the amount of austenite, is generated, thus giving 

the material a great mechanical strength; at the same time, the necking is delayed and 

therefore the total elongation is just as great. As shown in Figure 2.1, the UTS - total 

elongation combination is the best among all automotive steels, however there are two 

major limitations, which are low weldability and high cost, both due to the massive 

amount of expensive alloying elements such as manganese, necessary for the 

stabilisation of austenite at room temperature. 

To overcome the low total elongation of 1st generation AHSS and the high cost of 2nd 

generation AHSS, in the mid-2000s the 3rd generation AHSS began to be developed. 

First of all were the Quench and Partitioning (Q&P) steels, based on the approach 

proposed by Speer et al. in 2003 and shown in Figure 2.3 [9]. 
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Figure 2.3    Representation of the quenching and partitioning process with the 

microstructure evolution. 

A cold rolled thin sheet is austenitized above 𝐴𝑒3 and then quenched at a temperature 

between 𝑀𝑠 and 𝑀𝑓 , so that a controlled portion of austenite turns into martensite. 

Subsequently, an isothermal process called "partitioning" is performed at a higher 

temperature and the diffusion of carbon from supersaturated martensite takes place. 

However, if normally at this temperature bainite would form, some alloying elements 

such as silicon and molybdenum retard this transformation by directing carbon to 

austenite. This implies that: 

1. Austenite is more stable at room temperature, which enhances the TRIP effect. 

2. Martensite is annealed, which improves its damage resistance properties. 

Finally, a cooling to room temperature is performed. It is clear how this process avoids 

stabilising the austenite by a further addition of high-cost alloying elements, such as 

manganese, or of carbon, which would penalize the weldability. The resulting steels 

are characterised by values of total elongation up to 20% and UTS between 1000 and 

1500 MPa, which makes them much more performing than those of the previous 

generations. 
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Another type of 3rd generation AHSS is represented by the medium-Mn steels. The 

lower amount of manganese (4 ÷ 12 wt%), with respect to the 2nd generation AHSS, 

makes the stabilisation of austenite at room temperature through alternative ways 

necessary. This is achieved by a special thermal process, called Austenite-Reverted-

Transformation (ART) annealing, that is an intercritical annealing between 𝐴𝑒1 and 

𝐴𝑒3, shown in Figure 2.4 [10]. Before undergoing this heat treatment, the steel is 

usually composed of ferrite, austenite and martensite thanks to previous processes. 

During ART annealing, by means of the reversed transformation from martensite to 

austenite, the latter is enriched in carbon and manganese, which provide its stabilisation 

at room temperature. It has been proved that the resultant mechanical strength and total 

elongation can reach 1600 MPa and 30% respectively. 

 

Figure 2.4    Representation of ART annealing process used for medium-Mn steels. 

Over the last 20 years, thanks to great improvements in the research, the materials 

previously used for BIW have been almost completely replaced by AHSS, in particular 

by the 3rd generation ones, as shown in Figure 2.5, representing the BIW of the Volvo 

V60 in 2011. 
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Figure 2.5    The body in white composition of the Volvo V60 (2011). Ultra, Extra and 

Very High-Strength Steels belong to Advanced High-Strength Steel family. 

2.3 State of the art  

One of the factors determining the excellent mechanical properties of 3rd generation 

AHSS is the stability of retained austenite, which is meant, as already mentioned, as its 

tendency to preserve the chemical composition. In the past years, many studies have 

been carried out to clarify the factors affecting the austenite stability and the following 

have been found to be the most relevant ones: 

⎯ stress state 

⎯ temperature 

⎯ strain rate 

⎯ chemical composition 

⎯ microstructural parameters. 
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With regard to stress state, since the austenite to martensite transformation is linked to 

a volume increase, a compression load inhibits the transformation, stabilising the 

retained austenite.  

Jacques et al. investigated this dependence statically testing two different materials, 

both TRIP steels: High Silicon Steel (HSi), a conventional TRIP-assisted multiphase 

steel with a silicon content of 1.5 wt%, and Low Silicon Steel (LSi), a TRIP-aided steel 

with a lower content of silicon and a Dual-Phase-like chemical composition [11]. Some 

relevant results are shown in the graph of Figure 2.6, reporting the ratio 𝛼′ 𝛾0⁄  of 

martensite to austenite amount as a function of plastic equivalent strain 𝜀𝑒
𝑝
. The curves 

are parametric with respect to different values of stress triaxiality 𝑇, a dimensionless 

parameter expressing the relative degree of hydrostatic stress in a given stress state.  

 

Figure 2.6    Experimental data reporting the ratio 𝛼′ 𝛾0⁄  of martensite to austenite 

amount as a function of plastic equivalent strain 𝜀𝑒
𝑝

. The results have been 

obtained for two different materials (HSi and LSi) and for different values 

of stress triaxiality 𝑇 [11]. 
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It is possible to observe that both steels exhibit the same trend, that is with increasing 

stress triaxiality the martensitic transformation rate increases, thus decreasing the 

austenite stability. Moreover, the effect of triaxiality 𝑇 on 𝛼′ 𝛾0⁄  is more relevant in the 

transformation of the last 50% of retained austenite. Finally, the whole transformation 

occurs in the first 10% of effective plastic strain 𝜀𝑒
𝑝
, except for the HSi loaded in 

uniaxial tension (𝑇 = 1/3). 

Some years later Jacques et al. themselves further investigated the problem by statically 

testing two other TRIP-steels with different values of stress triaxiality. The results 

showed that the transformation rate is not, as observed in the previous study, a 

monotonically increasing function of stress triaxiality because, after a certain value of 

the latter, the former starts to decrease [12]. This proves that stress triaxiality is not the 

only loading factor affecting the martensitic transformation rate. 

As far as temperature is concerned, Blondé et al. carried out tensile experiments on 

TRIP-steels at different temperatures, observing an increase of the stability of retained 

austenite when the material is heated up, as shown from the graph in Figure 2.7 [13]. 

 

Figure 2.7    Experimental data reporting the austenite fraction as a function of macroscopic 

engineering strain. The curves are parametric with respect to temperature [13]. 
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With regard to the dependence between the stability of retained austenite and strain 

rate, Zou et al. investigated it by loading in uniaxial tension QP980 steel samples over 

a wide range of strain rates and temperatures. Precisely, the strain rate range (0.0002 ÷ 

175 s-1) was chosen to study the problem both statically and dynamically and, in 

particular, at strain rates corresponding to real-case scenarios, that are sheet metal 

forming (2 s-1) and car collision conditions (175 s-1). The results showed how the effect 

of strain rate on the mechanical stability of retained austenite is non-monotonic. In fact, 

at low strain rates (0.0002 ÷ 0.1 s-1) the stability of retained austenite increases with 

increasing strain rate, vice versa for high strain rates (0.1 ÷ 175 s-1), as shown in the 

graph of Figure 2.8, reporting the volume fraction of retained austenite 𝑓𝑦 as a function 

of true strain at different strain rates [14]. 

 

Figure 2.8    Experimental data representing the volume fraction of retained austenite as 

a function of true strain at different strain rates. After the measurements, 

curve fitting, represented by the solid lines, was carried out [14]. 
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This non-monotonically trend results from the combination of two different effects, 

both caused by the increase in strain rate: 

⎯ Mechanical effect, that is more martensite nucleation sites are generated so the 

martensitic transformation is accelerated, penalising the stability of austenite. 

⎯ Thermal effect, that is temperature increases because of the adiabatic heating and 

the local heating which is generated by the exothermic martensitic transformation 

and, as mentioned before, the stability of austenite is improved. 

The thermal and the mechanical effect would be dominant respectively at low (0.0002 

÷ 0.1 s-1) and high strain rates (0.1 ÷ 175 s-1), which justifies the trend observed. Similar 

considerations were carried out by another study [15]. 

For what mentioned above, it is clear that in addition to the dependence of the retained 

austenite stability on stress state, temperature and strain rate, it is also necessary to 

investigate the way these factors interact with each other. Although such studies have 

been extensively carried out for quasi-static cases, few exist for the dynamic 

counterpart, corresponding to real-case scenarios like crash impacts, where high strain 

rates and many different stress states occur.  

From these needs, the Dynaustab project, of which the current work is part, was born. 

Funded by the Research Fund for Coal and Steel (RFCS), the project aims to investigate 

the stability of retained austenite under such conditions. 

 

 



 

 

 

 

 

 

 

 

 

 

 



 

 

3. Experimental apparatus  

3.1 Fundamentals 

The experimental apparatus on which the work presented in chapter §4 is focused is 

the Split-Hopkinson Tensile Bar (SHTB), located in the DyMaLab laboratory of the 

Faculty of Engineering and Architecture at Ghent University. 

The Split-Hopkinson Tensile Bar, from now on referred to simply as "Hopkinson Bar", 

is an apparatus useful for testing the mechanical response of materials under dynamic 

conditions, that is at strain rates in the range of 102 ÷104 s-1. 

Before 1949, when the first Hopkinson Bar was built by Kolksy, who exploited the 

theoretical principles developed by Hopkinson in 1914, materials were dynamically 

tested by the direct impact of a hammer against the sample [16], a procedure which 

presented, however, two main issues: 

1. The conditions of the sample were not well controllable. 

2. Detailed information about the state of the sample could not be recorded. 

The Hopkinson Bar was able to overcome these two issues with an innovative design, 

schematically illustrated in Figure 3.1, which refers to compression loading. 

 

Figure 3.1    Schematic representation of the Hopkinson Bar loaded in compression. 
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Instead of loading the sample by a direct impact, in the Hopkinson Bar the sample is 

sandwiched between two elastic rods and one of the two is subjected to an external 

impact. The first bar, between the external impact point and the sample, is called “input 

bar”, while the other is called “output bar”. After the external impact against the input 

bar, an elastic wave, called “incident wave”, travels from left to right, with reference 

to Figure 3.1. Once it reaches the input bar-sample interface, the incident wave is 

subjected to two different phenomena: 

1. A reflection, giving rise to the reflected wave which travels through the input 

bar back to the external impact point, from right to left with reference to Figure 

3.1.  

2. A transmission, giving rise to the transmitted wave which crosses the sample, 

loading it, and propagates through the output bar, from left to right with 

reference to Figure 3.1. 

By means of a suitable instrumentation, presented in §3.2, it is possible to record the 

amplitude of the strain waves travelling through the input and the output bar and, 

through them, to derive the loading state of the sample, as explained in §3.3. Therefore, 

it is clear that, unlike the techniques characterised by a direct impact against the sample, 

the Hopkinson Bar allows to control and quantify the impact event. 

3.2 Components  

The Hopkinson Bar is schematically represented in Figure 3.2, which again refers to 

compression loading. 
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Figure 3.2    Schematic representation of the Hopkinson Bar present in DyMaLab. The 

configuration refers to compression loading. 

The whole apparatus consists of the following components. 

⎯ Loading device, composed of the air gun and the striker. The latter, partially 

surrounded by the former, is pushed against the incident bar, under the action 

of compressed air filling the air gun. The impact velocity, a relevant parameter 

for the purposes of the experiment, can be controlled by suitably varying the air 

pressure inside the air gun. 

⎯ The input and the output bar. As already discussed in §3.1, the input bar is 

loaded by the striker and, due to the impact, is crossed by the incident wave. 

This wave, after reaching the input bar-sample interface, is partly reflected back 

to the input bar and partly transmitted through the sample and then through the 

output bar. The input and output bars of DyMaLab are 6000 mm and 3000 mm 

long, respectively, while their diameter is 25 mm. The material they are made 

of is 5083 aluminium, ensuring that during the experiments these two 

mechanical components exhibit a linear elastic behaviour, which makes it 

possible to use simple linear relationships between the recorded strain and 

stress.  

⎯ Shock absorber, whose function is to brake the output bar, which would 

otherwise continue its motion. 

⎯ Measuring system. Four pairs of strain gauges, mounted on the input and output 

bar, record the strain on them. Then, each of the four Wheatstone bridges 
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amplifies the signal acquired by the pair of strain gauges it is connected to and 

transfers the signal to an oscilloscope. 

The experimental apparatus present in DyMaLab is shown in Figure 3.3, where all the 

aforementioned components are indicated. 

 

Figure 3.3    Hopkinson Bar present in DyMaLab. 

3.3 Loading state of the sample 

As mentioned in §3.2, the measuring system records the strain on the input and output 

bars. Since the material of the two bars ensures that during the experiment they exhibit 

a linear elastic behaviour, the strain to which they are subjected can be traced back to 

stress through linear relationships. However, it is not immediate to obtain the loading 

state on the sample from this information. 
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The step lies in applying the one-dimensional wave propagation theory to the 

Hopkinson Bar [17]. Several assumptions underlie this theory: 

⎯ Homogeneous material. 

⎯ Plane, parallel cross-sections remain plane and parallel. 

⎯ Uniaxial longitudinal stress state. 

⎯ Uniform distribution of stress along the cross-section. 

⎯ Absence of any body forces. 

⎯ Bar of semi-infinite length. 

Referring to Figure 3.4, let 𝑢(𝑥, 𝑡) be the longitudinal displacement of the bar at the 

cross-section of coordinate 𝑥 and at a generic time instant 𝑡. 

 

Figure 3.4    Bar of semi-infinite length with displacement 𝑢(𝑥, 𝑡) of a generic cross-section. 

Respecting the aforementioned assumptions, it is possible to impose the mechanical 

equilibrium along 𝑥 on a generic bar segment of infinitesimal length, obtaining with 

some mathematical steps the general equation of the waves 

 𝜕2𝑢

𝜕𝑥2
=

1

𝑐0
2

𝜕2𝑢

𝜕𝑡2
, 

 

(3.1) 

where 𝑐0 = √𝐸 𝜌⁄  represents the propagation speed of the elastic wave in the bar, 𝐸 

the Young’s modulus of the bar material and 𝜌 its density. 

The solution 𝑢(𝑥, 𝑡) of (3.1), in the absence of wave dispersion, is given by d’Alembert 

formula. 
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 𝑢(𝑥, 𝑡) = 𝑓(𝑥 − 𝑐0𝑡) + 𝑔(𝑥 + 𝑐0𝑡) (3.2) 

𝑓(𝑥 − 𝑐0𝑡) e 𝑔(𝑥 + 𝑐0𝑡) represent generic waves propagating, at speed 𝑐0, along the 

positive and negative 𝑥-direction, respectively. Thus, the solution 𝑢(𝑥, 𝑡) is given by 

the overlapping of two different waves travelling along opposite directions. 

By deriving (3.2), with respect to 𝑥, the longitudinal strain 𝜀(𝑥, 𝑡) of the bar can be 

obtained. 

 
𝜀(𝑥, 𝑡) =

𝜕𝑢

𝜕𝑥
= 𝑓′(𝑥 − 𝑐0𝑡) + 𝑔′(𝑥 + 𝑐0𝑡) 

 

(3.3) 

𝑓′(𝑥 − 𝑐0𝑡) and 𝑔′(𝑥 + 𝑐0𝑡) indicate the derivative, with respect to the corresponding 

entire argument, of 𝑓(𝑥 − 𝑐0𝑡) and 𝑔(𝑥 + 𝑐0𝑡), respectively. 

Then, by deriving (3.2) with respect to 𝑡, the velocity 𝑣(𝑥, 𝑡) of the material particle 

hit by the wave can be written as follows. 

 
𝑣(𝑥, 𝑡) =

𝜕𝑢

𝜕𝑡
= 𝑐0[−𝑓′(𝑥 − 𝑐0𝑡) + 𝑔′(𝑥 + 𝑐0𝑡)] 

 

(3.4) 

In relation to the Hopkinson Bar, it is now possible to obtain (3.2), (3.3) and (3.4) for 

each of the two bars. With reference to Figure 3.5, let 𝐿𝑠 and 𝐴𝑠 be the length of the 

sample and the area of its cross-section, respectively. Moreover, let 𝜀𝑖, 𝜀𝑟, 𝜀𝑡 be the 

amplitudes of the incident, reflected and transmitted strain waves in the bars at the 

cross-sections 1 and 2, located at the input bar-sample and output bar-sample 

interafaces, respectively. Finally, let the subscript "1" indicate the input bar quantities 

corresponding to cross-section 1 and the subscript "2" the output bar quantities 

corresponding to cross-section 2. 
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Figure 3.5    Incident, reflected and transmitted waves at sample-bars interfaces.   

Considering that the functions 𝑓(𝑥 − 𝑐0𝑡) e g(𝑥 + 𝑐0𝑡) represent elastic waves which 

propagate along the positive and negative 𝑥-direction, respectively, and calling 𝑢𝑖, 𝑢𝑟 

and 𝑢𝑡 the longitudinal displacements of the bars particles due to elastic waves at the 

cross-sections 1 and 2, it follows that:  

⎯ 𝑓(𝑥 − 𝑐0𝑡) + 𝑔(𝑥 + 𝑐0𝑡) = 𝑢𝑖 + 𝑢𝑟 for the input bar at cross-section 1. 

⎯ 𝑓(𝑥 − 𝑐0𝑡) + 𝑔(𝑥 + 𝑐0𝑡) = 𝑢𝑡 + 0 for the output bar at cross-section 2. 

(3.2), (3.3) e (3.4) become, for the two bars: 

 𝑢1
𝐼𝑁𝑃𝑈𝑇(𝑥, 𝑡) = 𝑢𝑖 + 𝑢𝑟 , (3.5) 

 𝜀1
𝐼𝑁𝑃𝑈𝑇(𝑥, 𝑡) = 𝜀𝑖 + 𝜀𝑟 , (3.6) 

 𝑣1
𝐼𝑁𝑃𝑈𝑇(𝑥, 𝑡) = 𝑐0(−𝜀𝑖 + 𝜀𝑟), (3.7) 

 𝑢2
𝑂𝑈𝑇𝑃𝑈𝑇(𝑥, 𝑡) = 𝑢𝑡 , (3.8) 

 𝜀2
𝑂𝑈𝑇𝑃𝑈𝑇(𝑥, 𝑡) = 𝜀𝑡, (3.9) 
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 𝑣2
𝑂𝑈𝑇𝑃𝑈𝑇(𝑥, 𝑡) = 𝑐0(−𝜀𝑡). (3.10) 

By means of (3.5) ÷ (3.10) it is possible to trace back to the loading state of the sample, 

in particular to stress, force, strain rate and strain. 

3.3.1 Stress 

By imposing the mechanical equilibrium on the sample along 𝑥, it follows that 

 𝐹1,𝑠 = 𝐹2,𝑠 (3.11) 

where 𝐹1,𝑠 and 𝐹2,𝑠 represent the magnitude of the forces loading the sample at the 

cross-sections 1 and 2, respectively.  

Because of Newton’s third law, 𝐹1,𝑠 and 𝐹2,𝑠 are also the forces magnitudes on the input 

and the output bar at the cross-section 1 and 2, respectively. Thus, (3.11) can be 

rewritten by expressing each of these forces as the product of the stress 𝜎 on the bar by 

the area 𝐴 of the corresponding cross-section. 

 𝜎1
𝐼𝑁𝑃𝑈𝑇 ∙ 𝐴1 = 𝜎2

𝑂𝑈𝑇𝑃𝑈𝑇 ∙ 𝐴2 (3.12) 

Considering that both bars have equal diameter (𝐴1 = 𝐴2 = 𝐴𝑏) and that their linear 

elastic behaviour makes possible to express the longitudinal stress 𝜎 as the product of 

the longitudinal strain 𝜀 and the Young’s modulus 𝐸, the following equation is 

obtained. 

 𝜀1
𝐼𝑁𝑃𝑈𝑇 = 𝜀2

𝑂𝑈𝑇𝑃𝑈𝑇 (3.13) 

Because of (3.6) and (3.9), it follows that 

 𝜀𝑖 + 𝜀𝑟 = 𝜀𝑡, (3.14) 

which expresses, in terms of strain, the condition of mechanical equilibrium. 
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The longitudinal stress 𝜎𝑠 on the sample is assumed to be the average of the stresses on 

it at the cross-sections 1 and 2. With some simple mathematical steps already seen in 

this chapter, the following equation is obtained. 

 
𝜎𝑠 =

1

2
∙

𝐹1,𝑠 + 𝐹2,𝑠

𝐴𝑠
 

 

(3.15) 

 

 
=

1

2
∙

𝜎1
𝐼𝑁𝑃𝑈𝑇 ∙ 𝐴1 + 𝜎2

𝑂𝑈𝑇𝑃𝑈𝑇 ∙ 𝐴2

𝐴𝑠
 

 

 
=

𝐸

2
∙

𝐴𝑏

𝐴𝑠
∙ (𝜀1

𝐼𝑁𝑃𝑈𝑇 + 𝜀2
𝑂𝑈𝑇𝑃𝑈𝑇) 

 

Given (3.6), (3.9) and (3.14), the final expression of 𝜎𝑠 results in (3.16). 

 
𝜎𝑠 = 𝐸 ∙

𝐴𝑏

𝐴𝑠
∙ 𝜀𝑡 

 

(3.16) 

3.3.2 Force 

The force 𝐹𝑠 loading the sample is nothing but the product between the stress 𝜎𝑠 of 

(3.16) and the cross-sectional area of the sample 𝐴𝑠. 

 𝐹𝑠 = 𝜎𝑠 ∙ 𝐴𝑠 = 𝐸 ∙ 𝐴𝑏 ∙ 𝜀𝑡 (3.17) 

3.3.3 Strain rate 

The expression of strain rate 𝜀𝑠̇ of the sample can be obtained by deriving the 

longitudinal strain 𝜀𝑠 with respect to time 𝑡 . 

 
𝜀𝑠̇ =

𝜕𝜀𝑠

𝜕𝑡
=

𝜕

𝜕𝑡
(

𝑢1,𝑠 − 𝑢2,𝑠

𝐿𝑠
) 

 

(3.18) 

For the congruence condition, the longitudinal displacements of the sample 𝑢1,𝑠 and 

𝑢2,𝑠 must be the displacements of the input bar at the cross-section 1 and of the output 

bar at the cross-section 2, respectively. Therefore, (3.18) becomes: 

 
𝜀𝑠̇ =

𝜕

𝜕𝑡
(

𝑢1
𝐼𝑁𝑃𝑈𝑇 − 𝑢2

𝑂𝑈𝑇𝑃𝑈𝑇

𝐿𝑠
) =

𝑣1
𝐼𝑁𝑃𝑈𝑇 − 𝑣2

𝑂𝑈𝑇𝑃𝑈𝑇

𝐿𝑠
 

 

(3.19) 

Considering (3.7) and (3.10), it follows that 
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𝜀𝑠̇ =

𝑐0(−𝜀𝑖 + 𝜀𝑟 + 𝜀𝑡)

𝐿𝑠
. 

 

(3.20) 

Then, by combining (3.20) and (3.14), the final expression of 𝜀𝑠̇ can be obtained. 

 
𝜀𝑠̇ =

2𝑐0

𝐿𝑠
𝜀𝑟 

 

(3.21) 

3.3.4 Strain 

The longitudinal strain 𝜀𝑠 is nothing but the integral over time of strain rate 𝜀𝑠̇. 

 

𝜀𝑠 = ∫ 𝜀𝑠̇ 𝑑𝑡 =

𝑡

0

2𝑐0

𝐿𝑠
∫ 𝜀𝑟 𝑑𝑡

𝑡

0

 

 

(3.22)   

It is therefore clear that through the knowledge of 𝜀𝑖, 𝜀𝑟 e 𝜀𝑡, recorded by the strain 

gauges mounted on the bar, it is possible to come to the loading state on the sample 

through (3.16), (3.17), (3.21) and (3.22), obtained by applying the one-dimensional 

wave propagation theory to the two bars. However, in the data processing the length 𝐿𝑠 

considered in (3.21) and (3.22) is related to the central region of the sample, called 

“gauge region”, because it is assumed that the whole deformation occurs there. In a 

real-case scenario this assumption is not true because the deformation of the transition 

zones, connecting the gauge region to the rest of the sample, is not neglectable, so 

(3.21) and (3.22) lead to an overestimation of strain rate and strain, respectively. 

Moreover, another assumption of these two formulae is that strain is homogeneously 

distributed in the gauge section, but especially for notched samples this is not true. For 

these reasons, only stress and force are evaluated according to the equations presented 

in this chapter. 

 



 

 

4. Strain gauges calibration 

4.1 Overview 

An electric strain gauge is a sensor able to measure the strain of an object. To do so, it 

converts the strain to an electrical signal. By means of proper correlations, it is possible 

to obtain the input signal, that is the strain, from the output one.  

4.1.1 Resistive strain gauges 

A resistive gauge can convert the strain signal to a change in resistance. Regarding the 

theoretical principles on which it is based, consider a wire made of conductor material 

of resistivity 𝜌 and let 𝐿 and 𝐴 be its length and cross-sectional area, respectively. The 

resistance 𝑅 of the wire can be expressed as follows. 

 
𝑅 =

𝜌𝐿

𝐴
 

 

(4.1) 

Differentiating the (4.1) and considering that the longitudinal strain 𝜀 of the wire can 

be expressed as  

 
𝜀 =

𝑑𝐿

𝐿
, 

 

(4.2) 

the following can be obtained. 

 𝑑𝑅

𝑅
=

𝑑𝜌

𝜌
−

𝑑𝐴

𝐴
+ 𝜀 

 

(4.3) 

Then, expressing the cross-sectional area 𝐴 in terms of the wire diameter 𝐷 and 

considering that 𝜀 is linked to the lateral strain 𝜀𝑡𝑟 through Poisson’s ratio 𝜈, it follows 

that  
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 𝑑𝐴

𝐴
= −2𝜈𝜀. 

 

(4.4) 

Thus, if (4.3) and (4.4) are combined in terms of finite differences, the following can 

be obtained. 

 ∆𝑅

𝑅
=

∆𝜌

𝜌
+ 𝜀(1 + 2𝜈) 

 

(4.5) 

From (4.5), it turns out that both the strain on the wire and the change in resistivity of 

its material causes a change in resistance. However, for the temperature ranges which 

usually characterise the measurement environment of these gauges, the resistivity 𝜌 is 

approximately constant, so the relative change in resistance ∆𝑅 𝑅⁄  can be assumed to 

be linearly dependent on the strain 𝜀. Hence, it is possible to define a proportional 

relationship between these two quantities by means of the gauge factor 𝐾. 

 
𝐾 =

∆𝑅 𝑅⁄

𝜀
 

 

(4.6) 

The typical design of a resistive gauge is shown in Figure 4.1. 

 

Figure 4.1    Typical design of a resistive gauge. 
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A grid made of conductor material, usually constantan alloy, is cemented on a flexible 

backing support and connected to an external electrical circuit by means of two solder 

pads and two leads. The connection between the gauge and the object is carried out 

through an adhesive so that, when the object is deformed along the strain direction, so 

is the resistive grid, which therefore changes its resistance, according to (4.5). 

The value of 𝐾 for commercial resistive gauges is around 2 and the typical value of the 

initial resistance 𝑅 of the grid is 120 Ω. This means that if the gauge measures a strain 

𝜀 equal to 2000 μstrain, which may be close to the elastic limit for several basic 

aluminium alloys, the change in resistance ∆𝑅 is 

 ∆𝑅 = 𝐾𝑅𝜀 = 2 ∙ 120 ∙ 2000 ∙ 10−6 = 0.48 Ω. (4.7) 

Such a value is difficult to measure through a normal ohmmeter, so an amplification of 

the output signal turns out to be necessary. The device able to do it is the Wheatstone 

bridge, shown in Figure 4.2, where 𝑅𝑖 (𝑖 = 1, 2, 3, 4) represent the resistances, 𝑉𝐸𝑋 the 

supply voltage and 𝑉𝑜 the output voltage, which is the measured quantity. 

 

Figure 4.2    Representation of the Wheatstone bridge. 

Through electrical considerations and simple mathematical steps, it is possible to 

obtain the following. 
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 𝑉𝑜

𝑉𝑒𝑥
=

𝑅1𝑅3 − 𝑅2𝑅4    

(𝑅1 + 𝑅4)(𝑅2 + 𝑅3)
 

 

(4.8) 

The bridge is said to be “balanced” if the output voltage 𝑉𝑜 is equal to zero. From (4.8), 

this occurs if the following condition is satisfied. 

 𝑅1𝑅3 = 𝑅2𝑅4     (4.9) 

Assume now that resistor 1 is nothing but a resistive gauge and that is deformed, so 

that a change in resistance ∆𝑅1, and consequently a change in the output voltage ∆𝑉1, 

are observed. Thus, (4.8) becomes the following. 

 𝑉𝑜 + ∆𝑉1

𝑉𝑒𝑥
=

(𝑅1 + ∆𝑅1)𝑅3 − 𝑅2𝑅4   

(𝑅1 + ∆𝑅1 + 𝑅4)(𝑅2 + 𝑅3)
 

 

(4.10) 

If all the resistances have the same value 𝑅, the bridge turns out to be balanced from 

(4.9), so (4.10) becomes 

 ∆𝑉1

𝑉𝑒𝑥
=

∆𝑅1    

2(2𝑅 + ∆𝑅1) 
. 

 

(4.11) 

As reported in (4.7), the change in resistance ∆𝑅1 is neglectable with respect to 𝑅, so 

(4.11) can be rewritten as follows. 

 ∆𝑉1

𝑉𝑒𝑥
=

∆𝑅1 

4𝑅
 

 

(4.12) 

If the same passages are done for the three other resistances separately and the 

superposition principle is applied, it turns out that ∆𝑉, sum of the single effects ∆𝑉𝑖 (𝑖 =

1, 2, 3, 4) can be expressed as 

 ∆𝑉

𝑉𝑒𝑥
=

∆𝑅1 − ∆𝑅2 + ∆𝑅3 − ∆𝑅4

4𝑅
 

 

(4.13) 

which, considering (4.6), becomes 
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 ∆𝑉

𝑉𝑒𝑥
=

𝐾

4
(𝜀1 − 𝜀2 + 𝜀3 − 𝜀4) 

 

(4.14) 

Thus, it is clear how it is possible, from the measurement of  ∆𝑉, to obtain the generic 

strain 𝜀𝑖 at the generic ith leg (𝑖 = 1, 2, 3, 4). 

In general, the gauges can be arranged in a Wheatstone bridge in three different ways: 

1. Full-bridge configuration, when each of the four legs is occupied by a gauge. 

2. Half-bridge configuration, when the gauges occupy two legs only, whereas the 

two others are occupied by passive resistors, not mounted on the object. 

3. Quarter-bridge configuration, when only one leg is occupied by a gauge, while 

in each of the three others a passive resistor is present. 

4.1.2 Semiconductor strain gauges 

The semiconductor gauges began to be produced in the 1950s as a result of the studies 

carried out by Smith [18]. The design of such sensors is similar to the one of the 

resistive gauge, shown in Figure 4.1. In the semiconductor gauges, however, instead of 

the resistive grid there is a thin strip of semiconductor material that has been cut from 

a single crystal of silicon or germanium, with the former typically doped with an 

element improving the gauge characteristics. These two materials have a high 

piezoresistive effect, meant as the ability to generate voltage when subjected to 

mechanical stress. This means that when strain is applied to an object on which the 

gauge is mounted, the change in resistivity ∆𝜌 in (4.5) is not neglectable, so the 

dependence between ∆𝑅 𝑅⁄  and 𝜀 is not linear anymore. For this particular 

characteristic, semiconductor gauges exhibit gauge factors varying with strain and from 

fifty to hundred times greater than the ones of resistive gauges. Because of the latter 

characteristic, such gauges are typically used for measuring small levels of strain. 

A comparison between the gauge factors of semiconductor and resistive gauges is 

shown in Figure 4.3, where the relative change in resistance ∆𝑅 𝑅⁄  is plotted as function 

of strain 𝜀 for typical P-type semiconductor and resistive gauges. 
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Figure 4.3    Relative change in resistance as a function of applied strain for typical P-

type semiconductor and resistive gauges, respectively. 

For resistive gauges, the slope of the curve, that is the gauge factor, is approximately 

constant over a wide range of strain, whereas for P-type semiconductor gauges it 

increases with strain. Moreover, the gauge factor of the latter is from 50 to 100 times 

greater than the one of the former.  

4.1.3 DyMaLab strain gauges 

In the experimental apparatus of DyMaLab there are in total eight strain gauges 

arranged in four pairs. Three of these pairs consist of resistive gauges, the fourth of 

semiconductor gauges and their main characteristics are reported in Table 4.1.  

Gauge type Manufacturer Model R [Ω] K 

Semiconductor Kyowa KSP-2-120-E4 125.8 ± 2 % 130 ± 3 % 

Resistive Tokyo Measuring 

Instruments 

Laboratory Co. 

FLA-2-11 120 ± 0.3 2.14 ± 1 % 

Table 4.1    Main characteristics of resistive and semiconductor gauges of DyMaLab. 
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With reference to Figure 4.4, all the eight gauges are mounted on the bars at 

diametrically opposed positions. On the input bar there are two pairs of resistive 

gauges, whereas on the output bar one pair of resistive gauges and another one of 

semiconductor gauges are present. The reason in using semiconductor gauges lies in 

the fact that this kind of sensors, thanks to the high value of gauge factor, enables to 

obtain reliable strain measurements up to nanostrain, which is about three orders of 

magnitude lesser than the microstrain provided by common resistive gauges. This 

feature is particularly important when the forces in the bars are low, as it happens when 

samples made of composite material are dynamically tested. 

 

Figure 4.4    Strain gauges arrangement on the bars. 

Each pair of gauges is connected, according to a half-bridge configuration, to a 

different Wheatstone bridge, supplied by a constant voltage of 5 V. With reference to 

Figure 4.2, the pairs of resistive gauges are placed in legs 1 and 3, in order to 

compensate bending effect. Since the value of the fixed resistances 𝑅2 and 𝑅4, 120 Ω, 

is the equal to the gauges one, the condition (4.9) is satisfied and the bridge is balanced. 

As far as the semiconductor gauges are concerned, they are arranged as shown in Figure 

4.5. 
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Figure 4.5    Wheatstone bridge configuration for the pair of semiconductor gauges. 

The two gauges are positioned in opposite legs of the bridge, in order to compensate 

bending effect, however, with respect to the traditional configuration, in each of legs 2 

and 4 a parallel resistor is placed in parallel to the original one. The resistance values 

𝑟2 and 𝑟4 of the added resistors, equal to 2600 Ω, are considerably high if compared to 

the values 𝑅2 and 𝑅4 of the original ones, equal to 120 Ω. In this way, the resultant 

resistance in each of legs 2 and 4, equal to 114.7 Ω, is lower than the original values 

𝑅2 and 𝑅4, so the current through the gauges increases, with the same supply voltage 

𝑉𝑒𝑥. The global results is a stabilisation of the signal mean value which would otherwise 

exhibit significant changes, however, the bridge is no longer balanced because (4.9) is 

not satisfied. Therefore, before performing any dynamic experiments, the output 

voltage is manually balanced by injecting an equal and opposite voltage. Even though 

this procedure results in a null output, the bridge is still resistively unbalanced, so non-

linearity is induced.  
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4.2 Motivation and aim 

As discussed in §3.3, the strain gauges function is relevant because, through their 

measurement of strain waves amplitude, it is possible to obtain the loading state of the 

sample. In particular, stress and force can be evaluated through (3.16) and (3.17), 

respectively, which require the knowledge of the transmitted strain wave amplitude 𝜀𝑡 

at the output bar-sample interface, recorded by the resistive and semiconductor pairs 

of gauges mounted on the output bar. Although the strain levels obtained from the two 

measurements should be approximately equal, it has been experimentally observed that 

the ratio between the signal of latter and the signal of the former is always lesser than 

one and the reason is unknown. Moreover, this ratio is not constant but varies, in an 

apparently random way, from 0.78 to 0.88, which corresponds to a relative error in the 

signal of semiconductor gauges between 22 and 12 %, with respect to the resistive 

gauges signal. Thus, when an experiment has to be carried out, the semiconductor pair 

is calibrated with respect to the resistive one, whose measurement is assumed to be 

correct.  

Moreover, the aforementioned equations (3.16) and (3.17) require, in addition to the 

quantity 𝜀𝑡, the Young’s modulus 𝐸 of the bars material. Its value is assumed equal to 

70000 MPa, corresponding to the value given by the manufacturer, however, it may 

slightly differ from the actual one.  

For what mentioned, it turns out that, because of the uncertainty in the values of 𝜀𝑡 and 

𝐸, the estimation of force and stress through the sample may not be precise. This is the 

reason why a calibration of these sensors, through a load cell, is necessary. This 

process, presented in the following subchapters, is carried out for the resistive gauges 

mounted on the input bar, too, in order to investigate the quality in their measurements 

of incident and reflected strain wave amplitudes 𝜀𝑖 and 𝜀𝑟, necessary for the evaluation 

of strain rate and strain through (3.21) and (3.22), respectively.  
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4.3 Methods  

To calibrate a Wheatstone bridge, there are basically two different ways, direct and 

indirect, respectively.  

In the indirect method, a voltage output, obtained by simulating the deformation of the 

gauge, is compared to the one observed when the gauge is effectively loaded. The 

simulation of gauge deformation is carried out by unbalancing the bridge through an 

increase or decrease of one leg resistance, which can be obtained through the 

positioning of a precisely known resistor in parallel to the original resistor of that leg.  

In the direct method an accurately known load is applied to the bridge and its output is 

properly adjusted. The current work is based on this method and thought in a relatively 

simple way. In fact, by loading the input and the output bar separately and in static 

conditions, it is possible to compare the signals of the gauges to the ones given by a 

load cell, assumed to be the reference measuring instrument. The input bars are loaded 

in compression by means of a hydraulic cylinder and below the elastic limit. Moreover, 

the loading process is carried out for different force levels, by varying the pressure of 

the hydraulic oil in the cylinder. 

The load cell is a C2 model built by HBM and is able to measure compressive and 

tensile forces. As shown in Figure 4.6, such a sensor consists of a cable connected to a 

measuring body, above which a button, where the load is applied, is. An additional 

component, called “thrust piece”, is placed on the button to avoid the effects of 

potential lateral forces. 

 

Figure 4.6    The C2 load cell used in the calibration. 
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The sensitivity of the load cell is equal to 2 mV/V ± 2 % at the nominal force, in turn 

equal to 50 kN, a value greater than the forces loading the input and output bars in a 

typical tensile or compressive experiment. This means that an investigation of the 

whole operating range of the gauges is possible. Precisely, during dynamic tests, the 

maximum force is always observed in the input bar and can reach 15 ÷ 20 kN. Finally, 

the supply voltage provided to the load cell is controlled through a closed loop system, 

thanks to the six-wire technique which compensates the electric losses in the cables 

caused by wire resistance.  

Regarding the hydraulic cylinder, shown in Figure 4.7, it is a RC51 model built by 

Enerpac and it can apply a maximum force of 45 kN which, again, is greater than the 

maximum one observable in the input bar in a tensile or compressive experiment.  

 

Figure 4.7    The RC51 hydraulic cylinder used in the calibration. 

The high pressure oil is supplied to the cylinder by a manual and double acting 

hydraulic pump, which is a P77 model built by Enerpac as well and shown in Figure 

4.8. 
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Figure 4.8    The P77 hydraulic pump used in the calibration. 

4.3.1 Design of the calibration apparatus 

In order to load the bars through the cylinder and record the force signal by means of 

the load cell, a mechanical support system must be designed. The schematic 

representation of such an apparatus is shown in Figure 4.9. 

 

Figure 4.9    Schematic representation of the mechanical support apparatus for the 

calibration. 

At point A, the hydraulic cylinder mounted on a support loads in compression the bar 

and the load cell, mounted on another support at point E, measures the longitudinal 

force that is applied. In order to avoid any buckling issues, a proper number of evenly 

spaced supports constraints the vertical displacement of the bar at points B, C and D. 

The number of these supports is determined according to the formula for Euler’s critical 

load. 

However, if the supports avoiding bucking are already present in DyMaLab, so are not 

the ones of cylinder and load cell. Therefore, these mechanical components need to be 
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designed according to conventional procedures. In the current subchapter, the whole 

design process is not presented because of the basic concepts behind it, however, the 

technical drawings of all the produced components are reported in the appendix. 

With regard to assembly supporting the cylinder, it is shown in Figure 4.10. 

  

(a) (b) 

Figure 4.10    Anterior (a) and posterior (b) view of the assembly supporting the cylinder. 

A big block (in yellow) made of AlMgSi1, an aluminium alloy, is placed on the 

aluminium guide (in grey), already present in laboratory. A hole in the big block houses 

the cylinder (in red), that is fixed, through a thread, to a flange made of steel S235 (in 

light blue). Then, the flange is in turn connected to the big block by means of four 

horizontal M10 bolts. Since the cylinder loads the bar in compression, the whole 

support assembly would tend to detach from the latter, moving towards left with 

reference to Figure 4.10 (a), so it is necessary to fix it to the guide. This connection 

would be easily carried out by means of some vertical bolts connecting the two parts 

but this would imply drilling holes in them. For this reason, another approach, based 

on friction between the contact surfaces of the big block and the guide, is followed in 

order to keep the guide unchanged. Hence, two small blocks of AlMgSi1 (in green) are 

connected to the big block by means of three vertical M14 bolts each. By means of 
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torque tightening, these bolts press the big block against the guide and a horizontal 

frictional force is developed at the guide-big block interface, loading the latter. The 

design process makes sure that this force is always greater than the one applied by the 

cylinder to the bar, so that the whole assembly can be kept motionless. 

In Figure 4.11, the assembly supporting the load cell is represented. The load cell (in 

red) is connected to the big block (in yellow) by means of four horizontal M10 bolts, 

positioned in holes passing through the whole thickness. The aforementioned thrust 

piece (in light blue) is placed on the load cell button in order to neutralise any lateral 

forces. The method followed to fix the big block to the guide (in grey) is the same used 

for the cylinder support, and so are the materials used for the big and small blocks, 

where the latter are represented in green in Figure 4.11. 

  

(a) (b) 

Figure 4.11    Anterior (a) and posterior (b) view of the assembly supporting the load cell. 

4.3.2 Procedure 

After the support assemblies of Figure 4.10 and Figure 4.11 are mounted and placed 

on the guide, the bar is placed in between them and on the supports avoiding buckling. 

Then, the cylinder is connected to the hydraulic pump and the load cell to the 

oscilloscope. After properly set Perception, the software connected to the oscilloscope 
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and able to control load cell and gauges, the whole apparatus, shown in Figure 4.12, is 

ready for the calibration. 

  

(a) (b) 

Figure 4.12    Calibration apparatus for the output bar seen from the load cell (a) and 

from the cylinder (b). 

When the bar is still unloaded, the potential residual voltage is compensated for each 

of the three measuring instruments through Perception  ̧the software connected to the 

oscilloscope. Then, the three signals are simultaneously acquired, in order to evaluate 

again potential residuals. If the signals coming from the gauges are strains, recorded in 

microstrain, the one coming from the load cell is a force, recorded in newton. 

Subsequently, the loading process can begin. As mentioned §4.3, the capacities of load 

cell and cylinder enable to explore the behaviour of the bars over the whole range of 

forces usually loading them during dynamic experiments. For this reason, it is chosen 

to load the bars from 0 to 20 kN, which corresponds to the oil pressure varying in the 

range of 0 ÷ 300 bar. The step increment in the loading process is set equal to 20 bar 
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because well controllable through a manometer attached to the pump, as shown in 

Figure 4.13.  

 

Figure 4.13    The manometer attached to the pump. The inner and outer tick marks refer 

to bar and psi, respectively. 

For each loading condition, so for each pressure level, the signals coming from the 

gauges and the load cell are recorded three different times, in order to avoid potential 

bias.  

For what regards the signals acquisition, the sampling rate must be properly set. In a 

typical experiment with the Hopkinson Bar, its value is 1 MHz in order to clearly record 

all the strain waves, however, since the calibration process is static, a lower value can 

be chosen. Thus, the sampling rate is set equal to 1 kHz and the duration of each 

acquisition equal to 1 second, so that 1000 data points are recorded for each instrument 

and 3000 in total. 

Finally, a critical issue regards the unavoidable hydraulic losses in the circuit composed 

of pump, pipe and cylinder. When the oil pressure in the pump is manually set to a 

certain value, these losses progressively lower it, so the three different acquisitions 
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refer to pressure levels that are slightly different. In order to make the acquisitions 

statistically comparable, these levels must be kept as close as possible to each other, 

thus previous acquisitions are carried out in order to evaluate the time interval in which 

the change in the pressure value is minimal. Figure 4.14 shows the typical trend 

observed for the load cell signal right after a pressure increase of 20 bar. 

 

Figure 4.14    Typical trend observed for the load cell signal over time, right after a 

pressure increase of 20 bar. 

It is possible to observe that after a steep decrease, the signal, so the oil pressure, are 

approximately constant from 60 to 80 seconds. Therefore, for each pressure level, the 

first acquisition starts 60 seconds after increasing the pressure and the two others 

subsequently, making sure that the whole process does not last more than 20 seconds. 

It is also true that a horizontal plateau, where the oil pressure is approximately constant, 

occurs also after 80 seconds, however, it is preferable to consider only the first 

horizontal plateau (60 ÷ 80 s), so that the pressure value is closer to the one initially set 

in the pump. 
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4.3.3 Data processing  

As mentioned in §4.3.2, each acquisition consists of 3000 data points and, for each of 

the several pressure levels investigated, three acquisitions are carried out. This means 

that at the end of the calibration a huge number of data is obtained, so a processing is 

needed before discussing the results. In the following points the steps of this procedure 

are explained, where points 1, 2, 4, 6 refer to a single measuring instrument. 

1. With reference to the acquisition carried out when the bar is unloaded, the 

residual 𝑞 is evaluated as the mean value of the 1000 data points, as shown for 

the load cell in Figure 4.15. 

 

Figure 4.15    Data points and residual of load cell signal at 0 bar. 

Because of the compensation manually carried out through Perception, the 

value of 𝑞 is always close to zero. 

2. For the generic kth pressure level (𝑘 = 0, 20, 40, . . . , 300), the jth acquisition 

(𝑗 = 1, 2, 3) is corrected by means of the residual 𝑞. Because of the small value 

of 𝑞, this correction does not produce considerable differences in the signal. 

-100

-50

0

50

100

0.0 0.2 0.4 0.6 0.8 1.0

F
o

rc
e

 [
N

]

Time [s]

Data points Residual



Strain gauges calibration 45 

 

3. In order to compare the gauges signals to the load cell one, the former are 

converted from microstrain to newton, according to the following equation. 𝐴𝑏 

is the cross sectional area of the bar and 𝐸 its Young’s modulus, assumed equal 

to 70000 MPa. Moreover, 𝐹𝑖,𝑗,𝑘 is the force obtained from 𝜀𝑖,𝑗,𝑘, which is are 

the ith data point (𝑖 = 1, 2, . . . , 1000) of the jth acquisition of gauge signal at the 

kth pressure level. 

 𝐹𝑖,𝑗,𝑘  = 𝜀𝑖,𝑗,𝑘 ∙ 𝐸 ∙ 𝐴𝑏 (4.15) 

4. The quantity 𝑥𝑗,𝑘 (𝑗 = 1, 2, 3) is calculated as the mean value of the 1000 data 

points of the jth acquisition and assumed to well represent the signal. The 

comparison between 𝑥𝑗,𝑘 and the original data points is shown in Figure 4.16, 

corresponding to the first acquisition of the load cell signal (𝑗 = 1) for a 

pressure level of 100 bar (𝑘 = 100). 

 

Figure 4.16    Data points and mean value x1,100 of load cell first signal at 100 bar. 
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5. The quantity 𝑋𝑘, representative value of the kth pressure level, is calculated as 

the arithmetic mean of 𝑥𝑗,𝑘 (𝑗 = 1, 2, 3), as reported in Figure 4.17, in which all 

these four quantities are plotted over time for the load cell signal at 100 bar. 

The differences in the three values 𝑥𝑗,𝑘 is caused by the aforementioned 

hydraulic losses which lower the pressure level, in fact  𝑥1,100 > 𝑥2,100 >

𝑥3,100. 

 

Figure 4.17    Mean values x1,100 (i=1, 2, 3) and representative mean value X100 of 

load cell signal at 100 bar. 

6. Thanks to the conversion of point 3, all the signals are now expressed in newton. 

Thus, for the kth pressure level, the ratio 𝑟𝑗,𝑘  between the quantity 𝑥𝑗,𝑘 of the 

two gauges and the same quantity of the load cell is calculated, in order to 

evaluate how close the gauges signals are to the load cell one. The same 

procedure is applied to the quantity 𝑋𝑘, in order to obtain the ratio 𝑅𝑘, 

representative of the kth pressure level. 
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4.4 Results and discussion 

4.4.1 Output bar 

In Figure 4.18 the signals ratio 𝑅𝑘 is plotted for different levels of oil pressure, with 

reference to resistive (RG) and semiconductor (SG) gauges. The coloured dots, 

corresponding to the experimental data, are connected through a dashed grey line in 

order to quickly visualize the trend, whereas the vertical solid black lines refer to the 

maximum deviations or 𝑟𝑗,𝑘 (𝑖 = 1, 2, 3) from 𝑅𝑘. As discussed in §4.3.2, these 

deviations occur because of the unavoidable hydraulic losses which lower the pressure 

level and make the three different acquisitions less comparable from a statistical point 

of view. It is possible to observe that the deviations from 𝑅𝑘 are higher for lower 

pressures and reach a more stable value for pressures greater than 120 bar. This may 

lie in the fact that the entity of such hydraulic losses is approximately the same, so for 

lower pressures the relative change in pressure is more relevant. 

For what regards the signal ratios 𝑅𝑘 of resistive and semiconductor gauges, even 

though they both do not reach a clear horizontal plateau, the stabilisation of the trend 

is observed to happen for pressure levels greater than 200 bar, corresponding to 

longitudinal strain and force in the bar around 400 μstrain and 13 kN, respectively. This 

is mainly caused by the late stabilisation of the load cell signal. In fact, if the gauges 

are thought to measure deformation at least up to microstrain, the load cell is not that 

accurate up to this level because of its high capacity, equal to 50 kN, which makes it 

more suitable for forces greater than the ones usually loading the bars.  

Thus, the resistive gauges exhibit a relative error around 5 % with respect to the load 

cell signal. Of course, the potential slight bending caused by a not perfectly longitudinal 

load is not the reason of such a deviation, because the bridge configuration of these 

gauges ensures bending compensation. Instead, because of the gauges misalignment 

with respect to the longitudinal axis of the output bar, the measured strain would not 

correspond to the longitudinal one and would be, for this reason, lower.  
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Figure 4.18    The ratio Rk between the signals of gauges and load cell for the first 

experiment on the output bar. The vertical black lines refer to the 

maximum deviations of rj,k from Rk 
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Another reason which may justify the value of ratio 𝑅𝑘 could be the uncertainty in the 

value of Young’s modulus 𝐸, involved in the conversion of the gauges signal from 

microstrain to newton. In particular, a value of 𝐸 around 73400 MPa would make the 

ratio 𝑅𝑘 approximately 1. If this value was correct, the value given by the manufacturer, 

equal to 70000 MPa, would be affected by an error of 4.6 %, which is unlikely because 

of the instrumentation used in the determination of such quantities during the 

production process. Moreover, a value of 𝐸 around 73400 MPa would potentially 

explain the difference between the signals of resistive gauges and load cell, but not 

between resistive and semiconductor gauges. For these reasons, other possible reasons 

for such signal differences are further discussed. 

As already mentioned, the ratio 𝑅𝑘 for the semiconductor gauges is far from one and 

corresponds to a relative error around 22 % with respect to the load cell. This results in 

a relative error around 18 % with respect to the resistive gauges signal, which is within 

the range of 12 ÷ 22 % observed during dynamic tests. One possible reason of such a 

great deviation can lie in the fact that, because of the piezoresistive effect, the gauge 

factor of a semiconductor gauge, that is the slope of the curve of Figure 4.3, changes 

with strain, which means that the gauge factor value set in Perception and equal to 130 

can differ from the actual one. However, for the level of strain investigated, this change 

is neglectable, in fact the trend of the ratio 𝑅𝑘 for the semiconductor and resistive 

gauges is very similar. The real issue lies in the fact that when the semiconductor gauge 

is cemented onto the backing, the adhesive dries and compresses the gauge which, 

because of the piezoresistive properties, changes its resistance. With reference to 

Figure 4.3, it means that the unstrained condition goes from the origin to some point of 

the third quadrant, where the gauge factor is lesser. Thus, it turns out that in a real-case 

scenario the nominal gauge factor, equal to 130, differs from the actual one and this 

may be one of the most relevant reasons why such values or the ratio 𝑅𝑘 are observed. 

In order to further investigate this aspect of the problem, the resistance of the gauges 

mounted on the bar should be measured in unstrained conditions and then compared to 

the nominal one indicated by the manufacturer.  
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Moreover, as discussed in §4.1.3, the Wheatstone bridge configuration for 

semiconductor gauges does not provide resistive balance so, even though a 

compensation of the output voltage is carried out before any experiments, non-linearity 

remains. Since this is probably the second main cause of a ratio 𝑅𝑘 as low, it is 

suggested to increase the values of resistances 𝑅2 and 𝑅4 in order to balance the bridge 

as much as possible.  

Finally, another possible improvement could be reached by lowering the supply 

voltage, currently equal to 5 V. High voltages would in fact heat up the gauge, causing 

an unwanted change in its gauge factor. In particular, the value of 5 V is the maximum 

suggested by the manufacturer, so by lowering it the operating conditions would be 

brought farther from the limit. 

One day after the experiment whose results are shown in Figure 4.18, another identical 

one has been carried out and its results are shown in Figure 4.19. 

Considering again only the pressure range of 200 ÷ 300 bar, where the load cell signal 

is stable and the hydraulic losses neglectable, it is possible to observe that the ratio 𝑅𝑘 

for the resistive gauges exhibits the same values of the first experiment, around 0.95. 

Instead, for what regards the semiconductor gauges, even though the trend is similar to 

the one of the first experiment, the stabilised error, approximately 24 %, is different 

from the one observed in the first experiment, around 22 %. Since the conditions of the 

two experiments are completely the same, the only possible difference regards the 

slight changes in temperature, humidity and light. Thus, the reason why the ratio 

between the signals of semiconductor and resistor gauges changes from time to time 

can be attributed to the influence of these three parameters on semiconductor gauges 

measurements. Temperature, humidity and light, however, are not controlled during 

the presented experiments so, even though the causes of such fluctuations are 

identified, they are not here quantifiable. Thus, an interesting further investigation 

would consist in repeating the experiments while accurately monitoring these three 

parameters, in order to investigate how the measurements are affected by them. 
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Figure 4.19    The ratio Rk between the signals of gauges and load cell for the second 

experiment on the output bar. The vertical black lines refer to the 

maximum deviations of rj,k from Rk. 

0.58

0.62

0.66

0.70

0.74

0.78

0.82

0.86

0.90

0.94

0.98

0 100 200 300

S
ig

n
a

ls
 r

a
ti
o
 R

k

Oil pressure [bar]

RG / LC

SG / LC



52 Strain gauges calibration 

 

4.4.2 Input bar 

The same experiments carried out for the gauges of the output bar are performed for 

the input bar as well and the results are shown in Figure 4.20. 

With regard to the signals ratio 𝑅𝑘 for the first pair of resistive gauges (RG1), the 

hydraulic losses become neglectable and the load cell stabilises for pressures greater 

than 120 and 220 bar, respectively. For this reason, the region of interest is in the 

pressure range of 220 ÷ 300 bar, where the value of ratio 𝑅𝑘 is approximately 0.94. 

Again, this means that the measurements of gauges RG1 are affected by a relative error 

around 6 %, similar to the one observed for the resistive gauges RG on the output bar. 

As discussed for the resistive gauges RG on the output bar, the reasons is not likely to 

be found neither in the value of Young’s modulus nor in the potential bending effect, 

but in the mounting conditions. In fact, slight misalignments of the gauges with respect 

to the longitudinal axis of the input bar could worsen the measurements. 

Regarding instead the second pair of resistive gauges (RG2), because of the 

aforementioned reasons, the pressure range of interest is 260 ÷ 300 bar. Here, the ratio 

𝑅𝑘 is approximately 0.92 and corresponds to a relative error around 8 %: again, one 

possible reason could be again the misalignment of the gauges with respect to the 

longitudinal axis of the input bar. However, the ratio 𝑅𝑘 is slightly lower than the one 

observed for the gauges RG1, so possible electrical errors may occur in the 

measurement chain. For all the aforementioned reasons, it is suggested to mount these 

gauges on the bars again, making sure, through proper instrumentation, that the 

measuring direction effectively corresponds to the longitudinal axis of the bar. 

Finally, as done for the output bar, one day after the discussed experiment another one 

has been performed under the same conditions, except for temperature, humidity and 

light, which have not been controlled. The obtained results are consistent with to the 

ones of Figure 4.20 and for this reason not reported. This proves how the resistive 

gauges are much less sensitive to slight changes in temperature, humidity and light with 

respect to semiconductor ones. 
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Figure 4.20    The ratio Rk between the signals of gauges and load cell for the 

experiment on the input bar. The vertical black lines refer to the maximum 

deviations of rj,k from Rk. 
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5. Optimization of sample geometry 

5.1 Motivation and aim 

As already discussed in §2.3, one of the factors affecting the stability of retained 

austenite is stress state. Though this dependence has been widely investigated for static 

cases [11] [12], few dynamic counterparts exist, that is one of the reasons why the 

Dynaustab project was born. 

A quantity of relevant importance for stress state definition is a dimensionless 

parameter called “stress triaxiality” and defined as follows. 

 𝑇 =
𝜎𝑚

𝜎𝑉𝑀
 

 

(5.1) 

In (5.1), 𝜎𝑚 e 𝜎𝑉𝑀 represent hydrostatic stress and von Mises equivalent stress, 

respectively, therefore 𝑇 expresses the relative degree of hydrostatic stress in a given 

stress state. The expressions of 𝜎𝑚 e 𝜎𝑉𝑀 are reported in (5.2) and (5.3), where the term 

𝜎𝑖𝑗  (𝑖, 𝑗 = 1, 2, 3) is the generic component of Cauchy stress tensor. 

 
𝜎𝑚 =

1

3
(𝜎11 + 𝜎22 + 𝜎33) 

 

(5.2) 

𝜎𝑉𝑀 = √
(𝜎11 − 𝜎22)2 + (𝜎22 − 𝜎33)2 + (𝜎33 − 𝜎11)2 + 6(𝜎12

2 + 𝜎23
2 + 𝜎31

2)

2
 

 

(5.3) 

Moreover, 𝑇 can be an indicator of the type of fracture, ductile or brittle, of the material. 

In fact, the lower its value, the closer the stress state to shear and therefore the more 

possible the slip motion between adjacent crystal planes. For this reason, lower values 

of 𝑇 promote ductile fracture. On the other hand, the higher 𝑇, the more hampered the 

slip motion and a brittle fracture is more likely to occur.  
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During a generic car collision, stress triaxiality can take many different values and this 

justifies that one of the aims of the Dynaustab project is to investigate the dependence 

of austenite stability on this stress parameter under dynamic conditions, according to 

the following workflow. 

1. Optimization of already developed sample geometries, each one characterised 

by a different global value of stress triaxiality 𝑇. The aim of the optimization is 

to reach, for each geometry, values of 𝑇 as constant as possible both in a specific 

space region and over time, in order to associate a single value of 𝑇 to each 

experiment. Moreover, the other aim of the optimization is to have values of 𝑇 

as high as possible. 

2. Development of techniques to interrupt dynamic tests when certain strain levels 

are achieved. 

3. Dynamic tensile tests on the optimized samples carried out through the 

Hopkinson Bar. 

4. Microstructural analysis of the austenite and martensite content through X-Ray 

Diffraction (XRD) techniques. 

The work presented in this chapter regards the point 1 of the previous list. In the recent 

years, more and more optimization studies like this have been found in the literature 

[19] [20], especially because their bottom-up approach is much less time-consuming 

than a traditional top-down method.  

The current work aims to optimize a particular sample geometry, shown in Figure 5.1. 

The function of the two clamp regions, shown in light blue, is to connect the sample to 

the input and output bar, by means of the pin holes. The gauge region, in yellow, 

represents the region of interest for the measurements. 
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Figure 5.1    The sample geometry that is considered in the optimization work 

presented in this chapter. 

As it is possible to see in Figure 5.2, two pins (in yellow) are inserted the corresponding 

pin holes and make the connection between the sample (in light blue) and a small 

clamping component (in red) possible. After that, the assembly composed of the two 

clamping components and the sample is glued to the bars (in grey). 

 

Figure 5.2    The assembly composed of the sample (in light blue), the pins (in 

yellow), the clamping components (in red) and the bars (in grey). 
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When the tensile experiment is performed, the transmitted wave generating at the input 

bar-sample interface is propagated through the sample and travels through the gauge 

region, loading it. In general, the shape of the gauge region affects the global value of 

stress triaxiality that can be obtained. The particular geometry shown in Figure 5.1 

makes it possible to reach high values, especially at the centre of the sample. 

As already mentioned, the goal of defining a single correlation between the stability of 

retained austenite and stress triaxiality makes necessary that the latter remains as 

constant as possible both during the duration of the experiment and in a specific space 

region, to be later scanned through XRD techniques and from now on called “XRD 

volume”. Because of the characteristics of the instrumentation available for this kind 

of analysis, an accurate investigation of the microstructure requires at least 0.4 mm of 

material to be considered, therefore the XRD volume is chosen to be a cube of material 

of side 1 mm located at the centre of the sample, as shown in Figure 5.3, because there 

the highest values of stress triaxiality occur. 

 

Figure 5.3    The gauge region with the cube of material on which the optimization 

process focuses. 

The optimal solution, that is the one characterised by values of stress triaxiality 

satisfying the aforementioned requirements, is searched among different combinations 
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of two geometric parameters: the width 𝑊 of the gauge region and the radius 𝑅 of the 

fillet, both shown in Figure 5.4.  

 

Figure 5.4    Gauge region with its width W and the fillet radius R. 

Finally, since stress triaxiality is a function of the equivalent plastic strain 𝜀𝑝, the 

comparison between different combinations of 𝑊 and 𝑅 has to be made with reference 

to the same level of 𝜀𝑝, that is again chosen according to physical considerations. In 

fact, because it has been experimentally observed that most of the austenite to 

martensite transformation occurs in the 0 ÷ 5% range of strain, the results coming from 

the different combinations of 𝑊 and 𝑅 are compared as long as the mean value of 

equivalent plastic strain in the XRD volume is lower than 10%.  

5.2 Methods  

The developed optimization process is based on the synergy between MATLAB 

R2019a and Abaqus FEA 6.14 and the corresponding scripts are reported in the 

appendix. The procedure followed in the search for the optimal combination of width 

𝑊 and radius 𝑅 is shown in Figure 5.5. 
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Figure 5.5    Procedure followed in the optimization process. The blue frames refer to a 

generic ith iteration. 

Firstly, the user defines some input parameters, among which the most relevant ones 

are the starting point (𝑊0, 𝑅0) and the upper and lower bounds (𝑊𝑚𝑎𝑥, 𝑅𝑚𝑎𝑥) and 

(𝑊𝑚𝑖𝑛, 𝑅𝑚𝑖𝑛), defining the range to be investigated in the optimization. Secondly, a 

MATLAB script called LevMarq.m receives these input parameters and starts the 

optimization process by setting (𝑊0, 𝑅0) as the first combination to be investigated. 

Then, the first iteration, whose steps are represented in blue in Figure 5.5, is carried 
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out. Another MATLAB script, called AbaqusExe.m, modifies a pre-existing Python 

template script called PlaneStrain.py, according to the user-defined input parameters 

and to the combination (𝑊0, 𝑅0) to be investigated. The script PlaneStrain.py is later 

executed in Abaqus FEA and the results of the Finite Element Method (FEM) analysis 

are obtained. Based on them, LevMarq.m carries out the optimization by means of 

Levenberg-Marquadt algorithm (LMA), which is presented in §5.2.3 and aims to 

minimize an objective function. Therefore, the jump to the next iteration by changing 

the values of (𝑊0, 𝑅0) to (𝑊1, 𝑅1) is attempted: if both step differences |𝑊1 − 𝑊0| and 

|𝑅1 − 𝑅0| are lesser than 0.05, the process ends because (𝑊0, 𝑅0) is found to be the 

optimal combination, otherwise the next iteration takes place with the new combination 

(𝑊1, 𝑅1). 

Since the MATLAB function in LevMarq.m, performing the optimization and 

presented in §5.2.3, does not allow to control the precision of 𝑊 and 𝑅, the optimal 

combination coming from the process has five decimal digits. This is not physically 

meaningful because the accuracy of the machine tool that cuts the steel sheet to get the 

sample is approximately 0.1 mm. For this reason, at the end of the process shown in 

Figure 5.5, a loop cycle investigates, in the neighbourhood of the optimal solution, the 

combinations of 𝑊 and 𝑅 with one decimal digit only. 

5.2.1 Preprocessing in Abaqus FEA 

As discussed in the previous section §5.2, for each algorithm iteration a FEM analysis 

is carried out through the execution in Abaqus FEA of the Python script PlaneStrain.py. 

In the current subchapter, all the relevant features of this analysis are reported, 

following the order of the different modules in the FEM software. 

Firstly, only the gauge region, the area of interest, is modelled, in order to speed up the 

FEM analysis. In this way, the whole clamp region is not taken into account but it is 

possible to prove that the effect on the results is neglectable if compared to the case in 

which the whole sample is modelled. The only possible issue in not considering the 
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clamp region is that in this part of the sample stress concentration can occur in two 

different areas, shown in Figure 5.6. 

1. The roots of the pin hole, represented in black. 

2. The fillet roots at the transition zone from the clamp to the gauge region, 

represented in red. 

 

Figure 5.6    The whole sample with the areas of the clamp region in which stress 

concentration can occur. 

However, with some FEM analyses considering the whole sample, it is possible to 

observe that that highest stress always occurs in the gauge region and not in these two 

areas, so the clamp region loses its relevance and can be neglected. 

Regarding now the gauge region, the three symmetries make possible to model just 

one-eighth of the sample, so that the FEM analysis is further speeded up. The modelled 

part is shown in Figure 5.7, where the three symmetries are with respect to the XY, YZ 

and XZ-plane, respectively. 
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Figure 5.7    The modelled part, corresponding to one-eighth of the whole gauge region.  

Subsequently, the material has to be defined. Among all the different steels to be 

investigated in the Dynaustab project, the one with the highest work-hardening 

coefficient is considered, assuming that in such a condition a maximum strain-induced 

transformation from austenite to martensite occurs. Thus, the choice falls on a medium-

Mn steel that has been subjected to a double annealing heat treatment process at the 

temperatures of 900 °C and 720 °C, respectively. 

The experimental data obtained for the material through a static tensile test consist of 

an engineering stress-strain curve. However, since the conversion to the true curve is 

only valid up to necking, the experimental data are processed following three different 

steps which aim to build the curve also after necking. 

1. The Young’s modulus is determined through a least squares linear regression 

in a limited part of the experimental curve, where the behaviour of the material 

is assumed to be perfectly linear.  

2. The offset yield point is taken as the one at which the plastic strain reaches 

0.2 %, so that the plastic part of the curve can be isolated. 

3. This plastic part up to necking is modelled by means of the Swift hardening 

model, whose fundamental equation is  
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 𝜎𝑝 = 𝐴(𝜀0 + 𝜀𝑝)𝑛, (5.4) 

where 𝜎𝑝 is the true stress, 𝜀𝑝 the true plastic strain and 𝐴, 𝜀0, 𝑛 constants for 

a particular material, usually determined through uniaxial tensile tests.  

Since 𝐴, 𝜀0 and 𝑛 are not available from the tensile test, they are first arbitrarily set and 

then determined by making use of a least squares regression between the experimental 

curve up to necking and the curve given by the Swift hardening model. Hence, (5.4) 

becomes the following. 

 𝜎𝑝 = 2545.680 ∙ (0.019 + 𝜀𝑝)0.426 (5.5) 

Finally, the curve is built from (5.5) for values of true plastic strain 𝜀𝑝 up to 1.5, 

assuming the material to fail at a true plastic strain beyond 100 %. The benefits of such 

a process is shown in Figure 5.8, reporting the experimental curve and the curve 

obtained from (5.5), where both are represented until a level of 𝜀𝑝 equal to 18.34 %, 

corresponding to necking.  

 

Figure 5.8    True stress as a function of true plastic strain up to necking. The curves are 

obtained from the Swift model of (5.5) and from the experimental data, 

respectively. 
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It is possible to observe how the curve obtained from the Swift model exhibits 

continuity over the whole range of true plastic strain 𝜀𝑝, whereas for the curve coming 

from experimental data this condition is not always satisfied, especially for lower 

values of 𝜀𝑝. If the latter were used in Abaqus FEA, it would badly affect the FEM 

analysis. 

Then, a static standard analysis is defined and the boundary conditions are set on the 

model. With reference to Figure 5.7, in addition to the three aforementioned 

symmetries, displacement is applied to the superior face along the positive y-direction, 

and this face is also bounded not to move along the x-direction. This particular 

boundary condition derives from the fact that in the real-case scenario, the x-

displacement of the clamp region is partly constrained because of the way the sample 

is clamped to the bars, as shown in Figure 5.2. As this region is not modelled in the 

FEM analysis, it is assumed that this constraint affects the superior face of the gauge 

region, too. 

Finally, as shown in Figure 5.9, the mesh is refined at the centre of the sample, because 

there the highest values of stress triaxiality can be observed. 

 

Figure 5.9    FEM model with mesh refinement at the centre of the sample. 
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5.2.2 Post-processing in Abaqus FEA 

After the analysis is completed, results are extracted and processed.  

First, stress triaxiality is obtained at the 𝐽 evenly spaced points of the XRD volume and 

at each of the 𝐾 time instants considered. Then, in order to link the particular 

combination of 𝑊 and 𝑅 to a single value of stress triaxiality, the quantity 𝑇̅ is defined 

as the mean value of 𝑇𝑗,𝑘 among all the 𝐾 time instants and all the 𝐽 points of the XRD 

volume.  

 

𝑇̅ =
1

𝐾 ∙ 𝐽
∑ ∑ 𝑇𝑗,𝑘

𝐽

𝑗=1

𝐾

𝑘=1

 

 

(5.6) 

 

⎯ 𝑇𝑗,𝑘 is the value of stress triaxiality at a generic jth point of the XRD volume and 

at the kth time instant. 

⎯ 𝐾 is set equal to 25. 

⎯ 𝐽 is set equal to 1331. 

Subsequently, in order to plot the stress triaxiality as a function of equivalent plastic 

strain, the quantities 𝑇̅𝑘 and 𝜀𝑘
𝑝̅̅ ̅ are evaluated. They are defined as the mean value of 

𝑇𝑗,𝑘 and 𝜀𝑗,𝑘
𝑝

, respectively, among all the 𝐽 points of the XRD volume and at the 𝑘𝑡ℎ 

time instant. 

 

𝑇̅𝑘 =
1

𝐽
∑ 𝑇𝑗,𝑘

𝐽

𝑗=1

 

 

(5.7) 

 

𝜀𝑘
𝑝̅̅ ̅ =

1

𝐽
∑ 𝜀𝑗,𝑘

𝑝

𝐽

𝑗=1

 

 

(5.8) 

Another important quantity is 𝑇̅𝑗, mean value of stress triaxiality of the 𝑗𝑡ℎ point of the 

XRD volume among all the 𝐾 time instants. 
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𝑇̅𝑗 =
1

𝐾
∑ 𝑇𝑗,𝑘

𝐾

𝑘=1

 

 

(5.9) 

Finally, the objective function 𝑂𝐹 to be minimized can be defined as  

 

𝑂𝐹 = ∑ ∑(𝑇𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑇𝑗,𝑘)2

𝐽

𝑗=1

𝐾

𝑘=1

, 

 

(5.10) 

where 𝑇𝑡𝑎𝑟𝑔𝑒𝑡 is the target value of stress triaxiality. Since one of the optimization aims 

is to obtain 𝑇𝑗,𝑘 as high as possible, 𝑇𝑡𝑎𝑟𝑔𝑒𝑡 is set equal to 0.8, a value that, however, is 

not achievable by any combinations of 𝑊 and 𝑅. 

Because of the definition of the objective function in (5.10), its minimization decreases 

the dispersion of 𝑇𝑗,𝑘 from 𝑇𝑡𝑎𝑟𝑔𝑒𝑡, both over time and in the XRD volume. However, 

it is not guaranteed that this optimization process simultaneously minimizes the 

dispersion of 𝑇𝑗,𝑘 from 𝑇̅𝑘 and 𝑇̅𝑗, respectively, which is the reason why two indicators, 

expressing these two dispersions phenomena, are evaluated by means of the definition 

of standard deviation, in order to monitor this other aspect of the problem. 

 

𝑖𝑛𝑑𝑠𝑝𝑎𝑐𝑒 = ∑ √
1

𝐽 − 1
∑(𝑇̅𝑘 − 𝑇𝑗,𝑘)2

𝐽

𝑗=1

𝐾

𝑘=1

 

 

(5.11) 

 

𝑖𝑛𝑑𝑡𝑖𝑚𝑒 = ∑ √
1

𝐾 − 1
∑(𝑇̅𝑗 − 𝑇𝑗,𝑘)2

𝐾

𝑘=1

𝐽

𝑗=1

 

 

(5.12) 

5.2.3 Algorithm  

In Figure 5.5 the optimization procedure has been discussed, with a particular focus on 

how the different MATLAB and Python scripts interact with each other. However, few 

things have been mentioned regarding the algorithm itself and the way it works in 
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jumping from the ith to the (i+1)th iteration, so a deeper view is provided in the current 

subchapter. 

The optimization algorithm is developed in the MATLAB script LevMarq.m, which 

makes use of lsqnonlin function, already integrated in MATLAB Optimization 

Toolbox. This function is based on Levenberg-Marquardt algorithm (LMA), typically 

used in minimization of non-linear functions expressed as residual sum of squares and 

dependent on more parameters [21]. LMA combines two numerical minimization 

algorithms: the gradient descent method and the Gauss-Newton method, behaving 

more like the former when the parameters are far from optimal and more like the latter 

when the parameters are close to optimal. In problems with multiple minima, LMA is 

more likely to find the global minimum if the starting point is close to the solution.  

In the current case, the objective function to be minimized is (5.10) and the parameters 

on which it depends are the width 𝑊 and the radius 𝑅. With reference to a generic ith 

iteration, in Figure 5.10 the steps used by the solver to jump to the (i+1)th iteration are 

shown.  

Firstly, the objective function 𝑂𝐹 corresponding to the ith iteration is evaluated through 

a FEM analysis. Then, four other FEM analyses are carried out in the neighbourhood 

of (𝑊𝑖, 𝑅𝑖) and the correspondent objective functions are evaluated. In particular, the 

parameters combinations that are investigated are (𝑊𝑖 ± 0.1 𝑚𝑚, 𝑅𝑖) and (𝑊𝑖, 𝑅𝑖 ±

0.1 𝑚𝑚). Based on the values of the four objective function, the Jacobian matrix, 

needed for LMA, is approximated through the finite-difference method and LMA is 

able to jump to the (i+1)th iteration through the definition of new parameters 

(𝑊𝑖+1, 𝑅𝑖+1). Therefore, the whole iteration consists of five FEM analyses. 
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Figure 5.10    Steps of LMA to jump from the ith to the (i+1)th iteration. 

The optimal combination of 𝑊 and 𝑅 is searched in between an upper bound 

(𝑊𝑚𝑎𝑥, 𝑅𝑚𝑎𝑥) and a lower bound (𝑊𝑚𝑖𝑛, 𝑅𝑚𝑖𝑛). The determination of such bounds is 

carried out by detecting, through some FEM analysis previous to the optimization 

process, the range of 𝑊 and 𝑅 guaranteeing high values of stress triaxiality. However, 

some particular conditions must be satisfied in this choice. 

⎯ From experimental evidence, the maximum longitudinal force that loads the 

sample tested with the Hopkinson Bar is in the range of 8 ÷ 10 kN. Since the 

greater its width 𝑊, the higher the longitudinal force, the maximum width 

𝑊𝑚𝑎𝑥 is chosen according to this requirement. 
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⎯ It is better to avoid dimensions that might lead to heat affected zones, which 

can locally change the microstructure. For this reason, the minimum radius 

𝑅𝑚𝑖𝑛 cannot be lesser than a threshold value.  

From all these considerations, it is set (𝑊𝑚𝑖𝑛, 𝑅𝑚𝑖𝑛) = (2.0, 0.8) and (𝑊𝑚𝑎𝑥 , 𝑅𝑚𝑎𝑥) =

(12.0, 5.0). 

5.3 Results and discussion 

As discussed in the previous subchapter §5.2.3, LMA is more likely to find the global 

minimum if the starting point is close to the optimal. For this reason, three 

optimizations are carried out with the same input parameters except for the starting 

point (𝑊0, 𝑅0), in order to check if the solver returns the same optimal solution in all 

the cases. The three starting points are chosen as follows. 

 (𝑊0
1, 𝑅0

1) = (𝑊𝑚𝑖𝑛, 𝑅𝑚𝑖𝑛) (5.13) 

 (𝑊0
2, 𝑅0

2) = (𝑊𝑚𝑎𝑥, 𝑅𝑚𝑎𝑥) (5.14) 

 
(𝑊0

3, 𝑅0
3) = (𝑊𝑚𝑖𝑛 +

𝑊𝑚𝑎𝑥 − 𝑊𝑚𝑖𝑛

2
, 𝑅𝑚𝑖𝑛 +

𝑅𝑚𝑎𝑥 − 𝑅𝑚𝑖𝑛

2
) 

 

(5.15) 

The three curves reporting the objective function 𝑂𝐹 as a function of the iteration 

number are shown in Figure 5.11. 

It is possible to observe that, despite the different starting points, all the optimizations 

converge to the same value of 𝑂𝐹 and after the same number of iterations. Moreover, 

this value corresponds to the same particular combination of width and radius 

(𝑊𝑜𝑝𝑡, 𝑅𝑜𝑝𝑡). 

 (𝑊𝑜𝑝𝑡, 𝑅𝑜𝑝𝑡) = (12.0, 0.8) [𝑚𝑚] (5.16) 
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Figure 5.11    Objective function as a function of the iteration number for the three 

optimizations carried out. 

In Figure 5.12 the same curves of  Figure 5.11 are shown but, instead of the objective 

function 𝑂𝐹, the global value of stress triaxiality 𝑇̅ of (5.6) is plotted on the y-axis. The 

three optimizations converge to the same value of 𝑇̅, equal to 0.573. 

 

Figure 5.12    Global value of stress triaxiality as a function of the iteration number 

for the three optimizations carried out. 

Since the trends of  𝑇̅ and 𝑂𝐹 are opposite, that is when the latter decreases the former 

increases, the minimization of the objective function 𝑂𝐹 effectively corresponds to the 

maximization of the global value of stress triaxiality 𝑇̿, as previously assumed. 
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As already discussed §5.2.2, the primary goal in the minimization of the objective 

function is to decrease the dispersion of 𝑇𝑗,𝑘 from 𝑇𝑡𝑎𝑟𝑔𝑒𝑡 as less as possible, both over 

time and in the XRD volume. However, this does not necessarily imply the 

minimization of the dispersions of 𝑇𝑗,𝑘 from 𝑇̅𝑘 and 𝑇̅𝑗, respectively. This is observable 

in Figure 5.13, where the indicators of (5.11) and (5.12), needed to quantify these two 

dispersions, are plotted as functions of the iteration number. 

 

(a) 

 

 

(b) 

 

Figure 5.13    The space (a) and time (b) indicators as functions of the iteration 

number for the three optimizations carried out. 
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It is possible to observe that if 𝑖𝑛𝑑𝑠𝑝𝑎𝑐𝑒 is effectively minimized, 𝑖𝑛𝑑𝑡𝑖𝑚𝑒 increases as 

the optimization process goes on. Therefore, the optimal geometry exhibits the highest 

global stress triaxiality achievable, a low dispersion in the XRD volume, but a 

pronounced dispersion over time. This lies in the fact that the definition of the objective 

function favours the maximization of stress triaxiality values rather than the 

minimization of the dispersion of those values both in the XRD volume and over time. 

Thus, further investigation is needed to simultaneously satisfy all these three 

requirements. 

To give a clearer view of the optimization process, a three-dimensional graph, reporting 

the objective function 𝑂𝐹 as a function of the pairs (𝑊, 𝑅), is shown in Figure 5.14 for 

the first optimization. The black circles refer to the iterations, whereas the yellow ones 

correspond to the function evaluations needed to determine the Jacobian matrix. As 

mentioned before, the observed trend is the same for the two other optimizations. 

 

Figure 5.14    Objective function as a function of width and radius. The black circles 

refer to the iterations, the yellow ones to the function evaluations needed 

to determine the Jacobian matrix. 
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As reported in (5.16), the optimal values 𝑊𝑜𝑝𝑡 and 𝑅𝑜𝑝𝑡 are nothing but 𝑊𝑚𝑎𝑥 and 

𝑅𝑚𝑖𝑛, respectively. Therefore, a particular trend linking the geometry of the sample to 

the global value of stress triaxiality can be defined, that is the greater 𝑊 and the lesser 

𝑅, the greater 𝑇̅. In Figure 5.15 and Figure 5.16 the contour plots of plastic equivalent 

strain and von Mises equivalent stress are shown for two different combinations of 

width and radius, the former corresponding to the optimal solution, the latter to the 

combination (𝑊, 𝑅) = (3, 4) [𝑚𝑚]. 

 

(a) 

 

 

(b) 
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(c) 

Figure 5.15    Contour plot of equivalent plastic strain (a), von Mises equivalent stress (b) 

and the opposite hydrostatic stress (c) for the FEM analysis with W=10 mm 

and R=0.8 mm. The results correspond to a mean equivalent plastic strain 

in the XRD volume equal to 10 %. 

 

(a) 
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(b) 

 

 

(c) 

Figure 5.16    Contour plot of equivalent plastic strain (a), von Mises equivalent stress 

(b) and the opposite of hydrostatic stress (c) for the FEM analysis with 

W=3 mm and R=4 mm. The results correspond to a mean equivalent 

plastic strain in the XRD volume equal to 10 %. 

In general, for a given width, if the radius decreases, the stress concentration at the 

notch becomes more relevant and the stress and strain gradients along the thickness in 

this region prove it, as shown in Figure 5.15. For this reason, the stress and strain 

gradients along the three directions concentrate at the notch, which promotes stress and 

strain heterogeneity and decreases von Mises equivalent stress at the centre. Moreover, 

because the displacement of upper face is constrained along the x-direction, a x-

component of stress develops at the centre, increasing hydrostatic stress. The global 
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result is an increase in stress triaxiality. The same effects are obtained also through an 

increase in width, for a given radius. 

Finally, during the deformation of the sample it is possible to observe that 𝑇̅𝑘, mean 

value of stress triaxiality in the XRD volume, is approximately constant for 𝜀𝑘
𝑝̅̅ ̅ greater 

than 2 %, as shown in Figure 5.17.  

 

Figure 5.17    Mean stress triaxiality in the XRD volume as a function of mean equivalent 

plastic strain in the XRD volume. 
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6. Conclusions 

In the work presented in this thesis, two investigations, one experimental and one 

numerical, are carried out in order to improve the quality of dynamic experiments with 

the Split-Hopkinson Tensile Bar (SHTB).  

The experimental study consists in calibrating the strain gauges mounted on the input 

and the output bar. A direct calibration method is preferred to an indirect one because 

of its higher precision. Each of the two bars is statically loaded in compression by a 

hydraulic cylinder and the strain gauge signals are compared with the values of a load 

cell attached to the bar and considered as reference. The longitudinal forces on the bar 

that are considered, in the range of 0 ÷ 20 kN, correspond to those observed during 

typical dynamic tests. 

The results of the first experiment on the output bar show that the resistive and 

semiconductor strain gauges are affected by a negative error with respect to the load 

cell around 5 % and 22 %, respectively, thus underestimate the measurement. As far as 

the former are concerned, the reason of this deviation is to be found in the mounting 

process, when small misalignments between the strain gauge measuring direction and 

the longitudinal axis of the bar can lead to considerable errors. On the other hand, with 

regard to the latter, the Wheatstone bridge to which they are connected is not resistively 

balanced, so non-linearity develops and is amplified by the high value of the gauge 

factor, typical of semiconductor gauges. Furthermore, the supply voltage of the bridge, 

equal to 5 V, can excessively overheat the strain gauges, whose temperature sensitivity 

is considerable. The results obtained for the input bar show that the two pairs of 

resistive strain are still affected by a negative error with respect to the load cell, around 

6% and 8%, respectively. As already discussed for the resistive strain gauges on the 

output bar, the reason for this deviation is to be found in possible misalignments during 
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the mounting process, however, this does not justify the difference, although small, 

between the signals of the two pairs of strain gauges. 

In order to investigate repeatability, a new test is performed on the bars keeping all the 

conditions unchanged, except for temperature, humidity and light, which are not 

controlled. Regarding the output bar, although the results obtained for the resistive 

strain gauges are consistent with those of the first experiment, the relative error of the 

semiconductor strain gauges, equal to 24 %, deviates from the one observed previously, 

equal to 22 %. The reason for this deviation lies in the fact that this instrument is highly 

sensitive to slight changes in the three aforementioned parameters. On the other hand, 

as far as the input bar is concerned, the resistive strain gauges exhibit neglectable 

sensitivity, since the results obtained are consistent with the previous ones. 

Therefore, further investigation is necessary to better analyse the reason for the 

discrepancies observed in the measurements. With regard to resistive strain gauges, it 

is advisable to mount them again on their corresponding bar, making sure that its 

longitudinal axis coincides with the measurement direction of the instrument. Instead, 

for semiconductor strain gauges, the resistive balance of Wheatstone bridge to which 

they are connected and a lower supply voltage may reduce the observed errors. 

In the numerical study, geometric optimization of the sample is carried out. The aim of 

this work is to obtain high values of stress triaxiality and keep them as constant as 

possible during the dynamic test and in a specific region at the centre of the sample. 

These requirements can be satisfied by the minimization of a properly defined objective 

function. The optimization, performed using Abaqus FEA and automated by the 

development of MATLAB and Python scripts, consists in analysing the values of this 

objective function, dependent on stress triaxiality, as width and fillet radius of the 

sample change. The results obtained show how the optimization process converges to 

the same geometry even if starting from different combinations of width and radius. 

Precisely, the optimal geometry is characterised by a large value of width and a small 

value of radius. This is due to the fact that a decrease in the fillet radius leads to stress 



Conclusions 81 

 

concentration at the notch, decreasing the equivalent von Mises stress at the centre of 

the sample. In addition, an increase in width makes the stress component along that 

dimension more relevant at the centre of the sample, which increases the hydrostatic 

component of stress. This dual effect results in an increase in stress triaxiality. 

However, in the optimal solution, the dispersion of this quantity over time is not 

effectively minimized, which is caused by the definition of the objective function, 

favouring values of stress triaxiality which are high rather than constant over time and 

in the region of interest. Thus, further investigation is needed in order to simultaneously 

satisfy all three requirements. 
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Appendix 

LevMarq.m 

%{ 

This script is able to perform the geometry optimization by means of 

the 'lsqnonlin' function, already implemented in MATLAB. To make 

this function work, the script calls another MATLAB user-defined 

function, called 'AbaqusExe.m', able to run the analysis in Abaqus. 

 

It is mandatory to set the necessary input parameters ('NECESSARY 

INPUT PARAMETERS' section). If desired, it is also possible, but not 

mandatory, to modify the pre-existing optional ones ('OPTIONAL INPUT 

PARAMETERS' section). 

%} 

 

clear; 

close all; 

clc; 

NECESSARY INPUT PARAMETERS 

%-------------------------------------------------------------------                                                                                                                      

%Set the input parameters with consistent units of measurement (MPa, 

mm, N, ...)                                                                                                                           

%------------------------------------------------------------------- 

 

%Starting value (W0), upper (W_max) and lower (W_min) bounds for the 

width 'W' 

W0=2; 

 

W_max=12; 

 

W_min=2; 
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%Starting value (RAD0), upper (RAD_max) and lower (RAD_min) bounds 

for the fillet radius 'RAD' 

RAD0=0.8; 

 

RAD_max=5; 

 

RAD_min=0.8; 

 

%Target value of stress triaxiality 

trx_obj=0.8; 

 

%Number of processors 

nProc=3; 

 

%Final displacement 

uY=1; 

 

%Path for the 'GeometryOptimization' folder 

main_path= 'C:\\Users\\Claudio 

Lonardi\\Desktop\\GeometryOptimization'; 

OPTIONAL INPUT PARAMETERS  

%------------------------------------------------------------------- 

%Set the input parameters with consistent units of measurement (MPa, 

mm, N, ...)                                                                                                                       

%------------------------------------------------------------------- 

 

%Thickness 

Tck=1.2; 

 

%Rounding angle [degrees] 

alphaG=85; 

 

%Young's modulus 

E=204102.28; 

 

%Poisson's ratio 

ni=0.33; 
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%Side dimension of volume of material cube  to be analyzed with XRD 

XRD=1; 

 

%Distance between two adjacent points of XRD-volume where the 

quantities of interest are evaluated 

dist=0.05; 

 

%Experiment duration 

dT=0.001; 

 

%PEEQ limit 

PEEQ_lim=0.1; 

 

%Number of elements along the semi-width at the center of the sample 

nE_w =60; 

 

%Number of elements along the semi-thickness at the center of the 

sample 

nE_t =12; 

 

%Number of elements along the semi-width at the shoulder of the 

sample 

nE_wSh =60; 

 

%Number of time intervals, at which the outputs quantities must be 

evaluated 

nInt=25; 

LEVENBERG-MARQUARDT ALGORITHM 

%Builds the array of the input parameters 

inp=[Tck, alphaG, E, ni, XRD, dist, dT, uY, PEEQ_lim, nE_w, nE_t, 

nE_wSh, nInt, nProc]; 

 

%Sets the 'GeometryOptimization' folder as the work directory 

cd (main_path); 

 

%Defines the path for the 'AbaqusData' folder, where the several 

data of the FEM analysis will be saved 

abaqusData_path=append(main_path, '\\AbaqusData'); 
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%Deletes a possible pre-existing folder 'AbaqusData', containing all 

the Abaqus folders that will be generated during the analyses 

if isfolder('AbaqusData')==1 

 

    rmdir AbaqusData s; 

end 

 

%Creates a new folder 'AbaqusData' 

mkdir('AbaqusData'); 

 

%Deletes a possible pre-existing text file 'AlgorithmResults.txt', 

containing the algorithm results data 

if isfile('AlgorithmResults.txt')==1 

 

    delete('AlgorithmResults.txt'); 

end 

 

%Initializes the text file 'AlgorithmResults.txt', that will contain 

the algorithm results data 

fileID = fopen('AlgorithmResults.txt', 'at'); 

 

fprintf(fileID, '%s \n \n', 'ALGORITHM'); 

 

header= ["W [mm]    ", "RAD [mm]  ", "peeqMax   ", "FY_max [N]", 

"indTime   ", "indSpace  ",  "objFunc   ",  "trx_avav  "]; 

 

fprintf(fileID, '%s \t %s \t %s \t %s \t %s \t %s \t %s \t %s \t \n 

\n', header); 

 

separator="-"; 

 

while strlength(separator) <= 120 

 

    separator=append(separator, "-"); 

 

end 

 

fprintf(fileID, '%s \n', separator); 

 

delimiter="_"; 
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while strlength(delimiter) <= 120 

 

    delimiter=append(delimiter, "_"); 

 

end 

 

fclose(fileID); 

 

%Sets the starting point array 'par0' (2x1), input parameter for the 

'lsqnonlin' function 

par0=[W0, RAD0]; 

 

%Sets the lower bound array 'par_min' (2x1), input parameter for the 

'lsqnonlin' function 

par_min=[W_min; RAD_min]; 

 

%Sets the upper bound array 'par_max' (2x1), input parameter for the 

'lsqnonlin' function 

par_max=[W_max, RAD_max]; 

 

%Defines the objective function to be minimized 

objFunc_mat = @(par) AbaqusExe(par, inp, trx_obj, main_path, 

abaqusData_path, separator); 

 

%Sets the options for the optimization 

options=optimoptions(@lsqnonlin, 'Algorithm', 'levenberg-marquardt', 

'DiffMinChange', 1e-01, 'FiniteDifferenceType', 'central', 

'FunctionTolerance', 1e-04, 'StepTolerance', 5e-

02,'MaxFunctionEvaluations', 500, 'MaxIterations', 500, 'Display', 

'iter'); 

 

%Runs the optimization 

[par,resnorm,residual,exitflag,output] = lsqnonlin(objFunc_mat, 

par0, par_min, par_max, options); 

DETECTION OF THE OPTIMAL SOLUTION 

%Appends to the text file 'AlgorithmResults.txt' the new section 

header 
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fileID = fopen('AlgorithmResults.txt', 'at'); 

 

fprintf(fileID, '%s \n', delimiter); 

 

fprintf(fileID, '%s \n \n', 'OPTIMUM DETECTION'); 

 

fprintf(fileID, '%s \t %s \t %s \t %s \t %s \t %s \t %s \t %s \t \n 

\n', header); 

 

fprintf(fileID, '%s \n', separator); 

 

fclose(fileID); 

 

%Sets the 'AbaqusData' folder as the work directory 

cd (abaqusData_path); 

 

%Extracts all the files in the 'AbaqusData' folder 

allFiles = dir; 

 

allFiles=allFiles(~ismember({allFiles.name},{'.','..'})); 

 

%Extracts all the folders from 'allFiles' 

allDir=allFiles([allFiles.isdir]); 

 

%Finds the number of folders in 'AbaqusData' 

nDir=length(allDir); 

 

%Sorts the folders by date 

[~,idx] = sort([allDir.datenum]); 

 

allDir = allDir(idx); 

 

%Extracts the folder name 'fName' correspondent to the final 

iteration 

fName=string({allDir(nDir-4).name}); 

 

%Extracts the values of width 'Wf' and radius 'RADf' correspondent 

to the final iteration 

Wf = str2double(extractBetween(fName, '_W', '_R')); 

 

RADf = str2double(extractAfter(fName, '_R')); 
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%Sets the 'GeometryOptimization' folder as the work directory 

cd (main_path); 

 

%Defines the array W_det (3x1), containing the values of width in 

the neighborhood of the final algorithm iteration 

if round(Wf,1)==W_max 

 

    W_det=[round(Wf,1)-0.2, round(Wf,1)-0.1, round(Wf,1)]; 

 

elseif round(Wf,1)==W_min 

 

    W_det=[round(Wf,1), round(Wf,1)+0.1, round(Wf,1)+0.2]; 

 

else 

 

    W_det=[round(Wf,1)-0.1, round(Wf,1), round(Wf,1)+0.1]; 

 

end 

 

%Defines the array RAD_det (3x1), containing the values of radius in 

the neighborhood of the final algorithm iteration 

if round(RADf,1)==RAD_max 

 

    RAD_det=[round(RADf,1)-0.2, round(RADf,1)-0.1, round(RADf,1)]; 

 

elseif round(RADf,1)==RAD_min 

 

    RAD_det=[round(RADf,1), round(RADf,1)+0.1, round(RADf,1)+0.2]; 

 

else 

 

    RAD_det=[round(RADf,1)-0.1, round(RADf,1), round(RADf,1)+0.1]; 

 

end 

 

%Runs Abaqus to find the best combination of width and radius values 

contained in W_det and RAD_det, respectively 

for i=1:length(W_det) 

 

    for j=1:length(RAD_det) 
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        par=[W_det(i), RAD_det(j)]; 

 

        AbaqusExe(par, inp, trx_obj, main_path, abaqusData_path, 

separator); 

 

    end 

end 

AbaqusExe.m 

FUNCTION DEFINITION 

function objFunc_mat=AbaqusExe(par, inp, trx_obj, main_path, 

abaqusData_path, separator) 

%{ 

This function receives as inputs the width 'par(0)', the fillet 

radius 

'par(1)', the other input parameters 'inp', the target value of 

stress 

 triaxiality 'trx_obj', the path for the GeometryOptimization folder 

'main_path', the path for AbaqusData folder 'abaqusData_path' and 

the 

string 'separator', useful for the exportation of the results in a 

.txt 

file. Based on these inputs, the script modifies a pre-existing 

basic Python script 'PlaneStrain.py', and runs it in Abaqus. 

 

The outputs is the matrix 'objFunc_mat', representing the difference 

between the target value of stress triaxiality 'trx_obj' and the 

stress 

triaxiality of the points in the XRD-volume over the time. 

%} 
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MODIFCATION OF THE PYTHON TEMPLATE SCRIPT 

%Defines the variables of width 'W' and radius 'RAD' for the sake of 

simplicity 

W=par(1); 

 

RAD=par(2); 

 

%Sets 'scriptName', the name of the script that will be run in 

Abaqus 

scriptName=append('PlaneStrain_W', num2str(W), '_R', num2str(RAD)); 

 

scriptName = replace(scriptName, '.', '-'); 

 

scriptName = append(scriptName,'.py'); 

 

%Defines the new strings of the necessary input parameters in the 

'PlaneStrain.py' script 

W_new=append('W=', num2str(W)); 

 

RAD_new=append('RAD=', num2str(RAD)); 

 

mainPath_new=main_path; 

 

%Defines the array 'inpStr', containing the strings of the optional 

input parameters symbols 

inpStr=["Tck"; "alphaG"; "E"; "ni"; "XRD"; "dist"; "dT"; "uY"; 

"PEEQ_lim"; "nE_w"; "nE_t"; "nE_wSh"; "nInt"; "nProc"]; 

 

%Finds the number 'nInp' of optional input parameters 

nInp=length(inpStr); 

 

%Reads the template script 'PlaneStrain.py' 

py = fileread('PlaneStrain.py'); 

 

%Initializes the 'pyNew' character array, necessary for the next 

loop cycle 

pyNew=py; 

 

%Builds the 'pyNew' character array, containing the Python script 

with the new other input parameters 
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for i=1:nInp 

 

    old=append(inpStr(i), '=000'); 

 

    new=append(inpStr(i), '=', num2str(inp(i))); 

 

    pyNew=strrep(pyNew, old, new); 

 

end 

 

%Fills in 'pyNew' with the new necessary parameters 

pyNew=strrep((strrep(strrep(pyNew, 'W=000', W_new), 'RAD=000', 

RAD_new)), 'mainPath=000', append("mainPath='", mainPath_new, "'")); 

 

%Sets the 'AbaqusData' folder as the work directory 

cd (abaqusData_path); 

 

%Opens the 'PlaneStrain_W!_R!.py' script, that will be run in Abaqus 

fid = fopen(scriptName, 'w'); 

 

%Writes 'pyNew' in 'PlaneStrain_W!_R!.py' 

fwrite(fid, pyNew); 

 

%Closes 'PlaneStrain_W!_R!.py' 

fclose(fid); 

SCRIPT EXECUTION 

%Runs the 'PlaneStrain_.py' script in Abaqus 

system(append('abaqus cae noGUI=', scriptName)); 

 

%Extracts 'folder_path', the path name of the 'PlaneStrain_W!_R!' 

folder, where the Abaqus data for the actual combination of width 

and radius have been stored 

fileID=fopen('folderPath.txt'); 

 

folder_path=string(textscan(fileID, '%q', 'delimiter', '\n')); 

 

fclose(fileID); 
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%Sets the 'PlaneStrain_W!_R!' folder as the work directory 

cd (folder_path); 

 

%Extracts 'XRD', the side dimension of material cube to be analyzed 

with XRD 

XRD=inp(inpStr=='XRD'); 

 

%Extracts 'dist', the distance between two consecutive measures of 

the quantities with XRD 

dist=inp(inpStr=='dist'); 

 

%Evaluates 'nP' the number of evenly spaced points in the XRD-volume 

where to measure the triaxiality 

nP=(XRD/2/dist+1)^3; 

 

%Extracts 'nSteps', the number of time instants, at which the 

outputs quantities must be evaluated 

nSteps=inp(inpStr=='nInt')+1; 

RESULTS IMPORTATION 

%Imports the matrix 'trx' (nSteps x nP), containing the stress 

triaxiality of all the points in the XRD-volume and for each time 

instant 

fileID = fopen('TRIAX.txt', 'r'); 

 

trx = fscanf(fileID, '%f'); 

 

trx = reshape(trx, [nP,nSteps])'; 

 

fclose(fileID); 

 

%Imports the scalar 'trx_avav', containing the global mean value of 

stress triaxiality 

fileID = fopen('TRIAX_avav.txt', 'r'); 

 

trx_avav = fscanf(fileID, '%f'); 

 

fclose(fileID); 
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%Imports the scalar 'peeqMax', containing the maximum value of PEEQ 

in the sample 

fileID = fopen('PEEQ_max.txt', 'r'); 

 

peeqMax= max(fscanf(fileID, '%f')); 

 

fclose(fileID); 

 

%Imports the scalar 'FY_max', containing the maximum value of the Y-

component of the force loading the superior face of the sample at 

each time instant 

fileID = fopen('FORCE_Y.txt', 'r'); 

 

FY_max=max(fscanf(fileID, '%f')); 

 

fclose(fileID); 

OUTPUTS DEFINITION 

%Defines the residuals matrix 'objFunc_mat' ((nSteps-2) x nP) of the 

objective function 'objFunc' to be minimized 

objFunc_mat= trx_obj*ones(nSteps-2, nP) - trx(3:nSteps, :); 

 

%Evaluates the objective function 'objFunc', representing the 

dispersion of stress triaxiality in the XRD-volume and over the time 

objFunc= sum(sum(objFunc_mat.^2)); 

 

%Evaluates the time dispresion indicator 'indTime', representing the 

standard deviation of triaxiality over the time 

indTime= sum(std(trx)); 

 

%Evaluates the space dispresion indicator 'indSpace', representing 

the standard deviation of stress triaxiality in the XRD-volume 

indSpace= sum(std(trx, 0, 2)); 

OUTPUTS EXPORTATION 

%Exports the objective function 'objFunc' in a .txt file 

fileID = fopen('objFunc.txt','w'); 
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fprintf(fileID,'%f', objFunc); 

 

fclose(fileID); 

 

%Exports the time indicator 'indTime' in a .txt file 

fileID = fopen('indTime.txt','w'); 

 

fprintf(fileID,'%f', indTime); 

 

fclose(fileID); 

 

%Exports the space indicator 'indSpace' in a .txt file 

fileID = fopen('indSpace.txt','w'); 

 

fprintf(fileID,'%f', indSpace); 

 

fclose(fileID); 

MOVING OF FILES 

%Sets the 'AbaqusData' folder as the work directory 

cd (abaqusData_path); 

 

%Extracts 'folderName', the name of the 'PlaneStrain_W!_R!' folder 

folderName = extractAfter(folder_path, 'AbaqusData\'); 

 

%Moves the 'PlaneStrain_W!_R!.py' script in the 'PlaneStrain_W!_R!' 

folder 

movefile(scriptName, folderName) 

 

%Moves 'folderPath.txt' in the 'PlaneStrain_W!_R!' folder 

movefile('folderPath.txt', folderName) 

 

%Moves 'abaqus.rpy', the Abaqus replay file, in the 

'PlaneStrain_W!_R!' folder 

movefile('abaqus.rpy', folderName) 

 

%Builds the row array 'resCurrent', containing the current results 

data 
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resCurrent = [W, RAD, peeqMax, FY_max, indTime, indSpace, objFunc, 

trx_avav]; 

 

%Appends to the text file 'AlgorithmResults.txt' the current results 

data array 'resCurrent' 

allFiles = dir; 

 

nDir=sum([allFiles(~ismember({allFiles.name},{'.','..'})).isdir]); 

 

fileID = fopen(append(main_path, '\\', 'AlgorithmResults.txt'), 

'r'); 

 

fileStr=fscanf(fileID, '%s'); 

 

fileID = fopen(append(main_path, '\\', 'AlgorithmResults.txt'), 

'at'); 

 

if isempty(strfind(fileStr,'OPTIMUMDETECTION'))==1 

 

    if mod((nDir-1),5)==0 

 

        fprintf(fileID, '%f \t %f \t %f \t %f \t %f \t %f \t %f \t 

%f \n \n', resCurrent); 

 

    elseif mod(nDir,5)==0 

 

        fprintf(fileID, '%f \t %f \t %f \t %f \t %f \t %f \t %f \t 

%f \n ', resCurrent); 

 

        fprintf(fileID, '%s \n', separator); 

 

    else 

 

        fprintf(fileID, '%f \t %f \t %f \t %f \t %f \t %f \t %f \t 

%f \n ', resCurrent); 

 

    end 

 

else 

 

    fprintf(fileID, '%f \t %f \t %f \t %f \t %f \t %f \t %f \t %f 
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\n', resCurrent); 

 

end 

 

fclose(fileID); 

 

%Sets the 'GeometryOptimization' path as the work directory 

cd (main_path) 

PlaneStrain.py 

MODULES IMPORT 

# coding=utf-8 

 

 

from abaqus import * 

from abaqusConstants import * 

from driverUtils import executeOnCaeStartup 

from __main__ import * 

from section import * 

from regionToolset import * 

from part import * 

from material import * 

from section import * 

from assembly import * 

from step import * 

from interaction import * 

from load import * 

from mesh import * 

from optimization import * 

from job import * 

from sketch import * 

from visualization import * 

from connectorBehavior import * 

from xyPlot import * 

from sys import * 
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import os.path 

import displayGroupMdbToolset as dgm 

import displayGroupOdbToolset as dgo 

import numpy as np 

INPUT PARAMETERS 

#The geometric considerations refer to a frame of reference centered 

at the center of the sample, with the X-axis along the width and 

pointing to the right, the Z-axis along the thickness and going out 

the sheet and the Y-axis along the height and pointing upwards.                         

 

#The input parameters must be set with consistent units of measurement 

(MPa, mm, N,...)                                                                                             

 

#Width 

W=000                                                                      

 

#Fillet radius 

RAD=000 

 

#Thickness 

Tck=000 

 

#Rounding angle of the fillet [degrees]      

alphaG=000                                                                            

 

#Young's modulus 

E=000                                                                                        

 

#Poisson's ratio 

ni=000                      

     

#Side dimension of the material cube to be analyzed with XRD 

XRD=000 

 

#Distance between two consecutive quantities evaluations with XRD 

dist=000 

 

#Experiment duration   

dT=000  
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#PEEQ limit     

PEEQ_lim=000 

 

#Final Y-displacement        

uY=000 

 

#Number of elements along the semi-width at the center of the sample 

(at y=0)         

nE_w=000 

 

#Number of elements along the semi-thickness at the center of the 

sample (at y=0) 

nE_t=000 

 

#Number of elements along the semi-width at the top of the sample (at 

y=H/2) 

nE_wSh=000 

 

#Number of time intervals, each of which the outputs quantities must 

be evaluated at  

nInt=000 

 

#Number of processors        

nProc=000 

 

#String of the 'GeometryOptimization' folder path 

mainPath=000 

 

INPUT PARAMETERS AS FLOATS 

#Makes all the input parameters floats in order to be able to use them 

in division without unwanted roundings 

W=float(W) 

 

RAD=float(RAD) 

 

Tck=float(Tck) 

 

alphaG=float(alphaG) 
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E=float(E) 

 

ni=float(ni) 

 

XRD=float(XRD) 

 

dist=float(dist) 

 

dT=float(dT) 

 

PEEQ_lim=float(PEEQ_lim) 

 

uY=float(uY) 

 

nE_w=float(nE_w) 

 

nE_t=float(nE_t) 

 

nE_wSh=float(nE_wSh) 

 

nInt=float(nInt)        

INITIALIZATION 

#Sets the option 'COORDINATE' for the replay file (.rpy) 

session.journalOptions.setValues(replayGeometry=COORDINATE, 

recoverGeometry=COORDINATE) 

 

#Sets the 'GeometryOptimization' folder as the work directory 

os.chdir(mainPath) 

 

#Imports the plastic data 'plData' from the text file 'PlasticData.txt' 

plData=np.array([0, 0]) 

 

fid=open('PlasticData.txt', 'r') 

 

for line in fid: 

 

    sigmaPl=line.split('\t')[0] 
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    epsPl=line.split('\t')[1] 

 

    plData_line=np.array([float(sigmaPl), float(epsPl)]) 

 

    plData=np.vstack((plData, plData_line)) 

 

fid.close() 

 

plData=plData[1:len(plData)] 

     

#Defines the path name where all the folders of the Abaqus analyses 

will be saved 

abaqusDataPath=mainPath + '\\AbaqusData' 

 

#Defines the folder specification for the current work  

specFolder='W'+str(W)+'_R'+str(RAD) 

     

#Defines the job specification for the current work  

specJob=specFolder.replace('.', ',') 

 

#Defines the analysis name    

WorkName='PlaneStrain_' + specFolder 

 

#Checks if any folders with the same actual 'WorkName' exist, in order 

not to try to create duplicates 

listDir=os.listdir(abaqusDataPath) 

 

count=0 

 

for s in range(len(listDir)): 

 

    listAct=listDir[s] 

     

    listAct.count(specFolder) 

 

    count=count + listAct.count(specFolder) 

     

if count==0: 

 

    WorkName=WorkName 
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else: 

 

    WorkName=WorkName + '_(' + str(count) + ')' 

     

#Creates the work directory 

folderPath= abaqusDataPath +'\\' + WorkName 

 

os.mkdir(folderPath) 

 

#Changes the work directory 

os.chdir(folderPath) 

 

EVALUATION OF OTHER PARAMETERS 

#Semi-width 

w=W/2 

 

#Fillet radius 

R=RAD 

 

#Semi-thickness 

t=Tck/2 

 

#Semi-side dimension of the material cube to be analyzed with XRD 

xrd= XRD/2 

 

#Rounding angle of the fillet [rad] 

alpha = alphaG/180*pi 

 

#Semi-width of the shoulder (at y=H/2) 

w_sh=w+R*(1-cos(alpha)) 

 

#Semi-height  at the shoulder 

h_sh=R*sin(alpha) 

 

#Size of the smallest element 

s_min=t/nE_t 

 

#Size of the biggest element  

if w_sh/nE_wSh > s_min: 
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    s_max=w_sh/nE_wSh 

     

else: 

     

    s_max=s_min     

 

#Size of the smallest element at the fillet shoulder 

s_fil=s_max/3 

 

#Semi-height at the inferior partition to be created 

#   -because the whole cell will be partitioned to make the mesh 

transition possible 

h_inf=xrd 

 

#Semi-height at the superior partition to be created 

#   -because the whole cell will be partitioned to make the mesh 

transition possible 

h_sup=h_sh-s_max 

 

#Fillet angle at the inferior partition  

alpha_inf=asin(h_inf/R) 

 

#Fillet angle at the superior partition  

alpha_sup=asin(h_sup/R) 

 

#Semi-width at the inferior partition to be created 

w_inf=w+R*(1-cos(alpha_inf)) 

 

#Semi-width at the superior partition to be created 

w_sup=w+R*(1-cos(alpha_sup)) 

 

#Number of time steps when to get the quantities of interest  

nSteps=nInt+1 

   

PART 

#Creates the sheet 

mdb.models['Model-1'].ConstrainedSketch(name='__profile__', 

sheetSize=200.0) 
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#Creates the lines 

mdb.models['Model-1'].sketches['__profile__'].Line(point1=(0.0, 0.0), 

point2=( 

    w, 0.0)) 

 

mdb.models['Model-1'].sketches['__profile__'].Line(point1=(w_sh, 

    h_sh), point2=(0, h_sh)) 

 

mdb.models['Model-1'].sketches['__profile__'].Line(point1=(0, h_sh), 

point2=(0.0, 0.0)) 

 

#Creates the fillet  

mdb.models['Model-

1'].sketches['__profile__'].ArcByCenterEnds(center=(w+R, 0.0), 

    point1=(w, 0), point2=(w_sh, h_sh), direction=CLOCKWISE) 

 

#Creates the part 'Gage region' 

mdb.models['Model-1'].Part(dimensionality=THREE_D, name='Gage 

region', type= 

    DEFORMABLE_BODY) 

 

#Extrudes the part  

mdb.models['Model-1'].parts['Gage region'].BaseSolidExtrude(depth=t, 

sketch= 

    mdb.models['Model-1'].sketches['__profile__'])                

 

#Creates a point lying on each frontal face (i.e. perpendicular to Z-

axis, at z=T/2) 

infFace_Z = (w/3, h_inf/3, t) 

 

medFace_Z = (w/3, h_inf+(h_sup-h_inf)/3, t) 

 

supFaceLeft_Z = (w/3, h_sup+(h_sh-h_sup)/3, t) 

 

supFaceRight_Z = (w_sup+(w_sh-w_sup)/100, h_sh-(h_sh-h_sup)/100, t) 

 

#Creates a point lying on each lateral face (i.e. perpendicular to X-

axis, at x=0) 

infFace_X = (0, h_inf/3, t/3) 
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medFace_X = (0, h_inf+(h_sup-h_inf)/3, t/3) 

 

supFace_X = (0, h_sup+(h_sh-h_sup)/3, t/3) 

 

#Creates a point lying on the inferior face (i.e. perpendicular to Y-

axis, at y=0) 

infFace_Y = (w/3, 0, t/3) 

 

#Creates a point lying on each superior face (i.e. perpendicular to Y-

axis, at y=H/2) 

supFaceLeft_Y = (w/3, h_sh, t/3) 

 

supFaceRight_Y = (w_sup+(w_sh-w_sup)/3, h_sh, t/3) 

 

#Cell inferior partition  

mdb.models['Model-1'].ConstrainedSketch(gridSpacing=0.08, 

name='__profile__',  

    sheetSize=3.3, transform= 

    mdb.models['Model-1'].parts['Gage region'].MakeSketchTransform( 

    sketchPlane=mdb.models['Model-1'].parts['Gage 

region'].faces.findAt(infFace_Z, ), 

    sketchPlaneSide=SIDE1, sketchUpEdge=mdb.models['Model-

1'].parts['Gage region']. 

    edges.findAt((0, h_sh/3, t), ), sketchOrientation=LEFT, origin=(0, 

0, t))) 

     

mdb.models['Model-1'].parts['Gage 

region'].projectReferencesOntoSketch(filter= 

    COPLANAR_EDGES, sketch=mdb.models['Model-

1'].sketches['__profile__']) 

     

mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(0, 

0),  

    point2=(w_sh, h_inf)) 

     

mdb.models['Model-1'].parts['Gage 

region'].PartitionFaceBySketch(faces= 

    mdb.models['Model-1'].parts['Gage 

region'].faces.findAt((infFace_Z, )),  

    sketch=mdb.models['Model-1'].sketches['__profile__'],  
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    sketchUpEdge=mdb.models['Model-1'].parts['Gage 

region'].edges.findAt((0, h_sh/3, t), )) 

     

del mdb.models['Model-1'].sketches['__profile__'] 

 

mdb.models['Model-1'].parts['Gage 

region'].PartitionCellByExtrudeEdge(cells= 

    mdb.models['Model-1'].parts['Gage 

region'].cells.findAt((infFace_Z,  

    )), edges=(mdb.models['Model-1'].parts['Gage 

region'].edges.findAt((w/3,  

    h_inf, t), ), ), line= 

    mdb.models['Model-1'].parts['Gage region'].edges.findAt((0, 0, 

t/3), ),  

    sense=REVERSE) 

     

#Cell superior left partition 

mdb.models['Model-1'].ConstrainedSketch(gridSpacing=0.08, 

name='__profile__',  

    sheetSize=3.3, transform=mdb.models['Model-1'].parts['Gage 

region']. 

    MakeSketchTransform(sketchPlane=mdb.models['Model-1'].parts['Gage 

region'] 

    .faces.findAt(medFace_Z, ), sketchPlaneSide=SIDE1,  

    sketchUpEdge=mdb.models['Model-1'].parts['Gage 

region'].edges.findAt((0,  

    h_sh/3, t), ), sketchOrientation=LEFT, origin=(0, 0, t))) 

     

mdb.models['Model-1'].parts['Gage 

region'].projectReferencesOntoSketch(filter= 

    COPLANAR_EDGES, sketch=mdb.models['Model-

1'].sketches['__profile__']) 

     

mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(0, 

0),  

    point2=(w_sh, h_sup)) 

     

mdb.models['Model-1'].parts['Gage 

region'].PartitionFaceBySketch(faces= 

    mdb.models['Model-1'].parts['Gage 

region'].faces.findAt((medFace_Z, )), 
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    sketch=mdb.models['Model-1'].sketches['__profile__'],  

    sketchUpEdge=mdb.models['Model-1'].parts['Gage 

region'].edges.findAt((0, h_sh/3, t), )) 

     

del mdb.models['Model-1'].sketches['__profile__'] 

 

mdb.models['Model-1'].parts['Gage 

region'].PartitionCellByExtrudeEdge(cells= 

    mdb.models['Model-1'].parts['Gage 

region'].cells.findAt((medFace_Z,  

    )), edges=(mdb.models['Model-1'].parts['Gage 

region'].edges.findAt((w/3,  

    h_sup, t), ), ), line=mdb.models['Model-1'].parts['Gage region']. 

    edges.findAt((0, 0, t/3), ), sense=REVERSE)  

     

#Cell superior right partition 

mdb.models['Model-1'].ConstrainedSketch(gridSpacing=0.08, 

name='__profile__',  

    sheetSize=3.3, transform=mdb.models['Model-1'].parts['Gage 

region']. 

    MakeSketchTransform(sketchPlane=mdb.models['Model-1'].parts['Gage 

region'] 

    .faces.findAt(supFaceLeft_Z, ), sketchPlaneSide=SIDE1,  

    sketchUpEdge=mdb.models['Model-1'].parts['Gage 

region'].edges.findAt((0,  

    h_sh/3, t), ), sketchOrientation=LEFT, origin=(0, 0, t))) 

     

mdb.models['Model-1'].parts['Gage 

region'].projectReferencesOntoSketch(filter= 

    COPLANAR_EDGES, sketch=mdb.models['Model-

1'].sketches['__profile__']) 

     

mdb.models['Model-

1'].sketches['__profile__'].rectangle(point1=(w_sup, h_sup),  

    point2=(w_sh, h_sh)) 

     

mdb.models['Model-1'].parts['Gage 

region'].PartitionFaceBySketch(faces= 

    mdb.models['Model-1'].parts['Gage 

region'].faces.findAt((supFaceLeft_Z, )), 

    sketch=mdb.models['Model-1'].sketches['__profile__'],  
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    sketchUpEdge=mdb.models['Model-1'].parts['Gage 

region'].edges.findAt((0, h_sh/3, t), )) 

     

del mdb.models['Model-1'].sketches['__profile__'] 

 

mdb.models['Model-1'].parts['Gage 

region'].PartitionCellByExtrudeEdge(cells= 

    mdb.models['Model-1'].parts['Gage 

region'].cells.findAt((supFaceLeft_Z,  

    )), edges=(mdb.models['Model-1'].parts['Gage 

region'].edges.findAt 

    ((w_sup, h_sup+(h_sh-h_sup)/3, t), ), ), line=mdb.models['Model-

1'].parts['Gage region'].edges.findAt((w_sh, h_sh, t/3), ), 

sense=REVERSE)  

PROPERTIES 

#Defines the material 

mdb.models['Model-1'].Material(name='Steel') 

 

#Elastic properties 

mdb.models['Model-1'].materials['Steel'].Elastic(table=((E, ni), )) 

     

#Plastic properties 

mdb.models['Model-1'].materials['Steel'].Plastic(table=plData) 

     

#Creates the section 

mdb.models['Model-1'].HomogeneousSolidSection(material='Steel', name= 

    'Section-1', thickness=None) 

     

#Assigns the section to each cell separately 

mdb.models['Model-1'].parts['Gage 

region'].SectionAssignment(offset=0.0,  

    offsetField='', offsetType=MIDDLE_SURFACE, region=Region( 

    cells=mdb.models['Model-1'].parts['Gage region'].cells[0:4]), 

sectionName= 

    'Section-1', thicknessAssignment=FROM_SECTION) 

ASSEMBLY 

   #Creates the assembly  
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mdb.models['Model-1'].rootAssembly.Instance(dependent=ON, name='Gage 

region-1',  

    part=mdb.models['Model-1'].parts['Gage region'])    

STEP 

#Defines the static step  

mdb.models['Model-1'].StaticStep(description='Imposes vertical 

displacement uY', 

    initialInc=dT, maxInc=0.001, minInc=1e-08, name='Pulling', 

previous='Initial',  

    timePeriod=dT, nlgeom=ON) 

 

#Sets the field outputs to be exported 

mdb.models['Model-1'].FieldOutputRequest(createStepName='Pulling',            

    exteriorOnly=OFF, name='F-Output-1', region=MODEL, 

timeInterval=dT/nInt,  

    variables=('S', 'PEEQ', 'U', 'NFORC')) 

 

#Sets the history outputs to be exported   

mdb.models['Model-1'].HistoryOutputRequest(createStepName='Pulling',  

    timeInterval=dT/nInt, name='H-Output-1', variables=('ETOTAL', ))    

LOAD 

#Sets the X-symmetry boundary condition 

mdb.models['Model-1'].rootAssembly.Set(faces= 

    mdb.models['Model-1'].rootAssembly.instances['Gage region-1']. 

    faces.findAt((infFace_X, ), (medFace_X, ), (supFace_X, ), ), 

name='Faces_Xsym') 

     

mdb.models['Model-1'].XsymmBC(createStepName='Initial', 

localCsys=None, name= 

    'X-symmetry ', region=mdb.models['Model-

1'].rootAssembly.sets['Faces_Xsym']) 

 

#Sets the Y-symmetry boundary condition 

mdb.models['Model-1'].rootAssembly.Set(faces= 

    mdb.models['Model-1'].rootAssembly.instances['Gage region-1']. 

    faces.findAt((infFace_Y, ), ), name='Face_Ysym') 
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mdb.models['Model-1'].YsymmBC(createStepName='Initial', 

localCsys=None, name= 

    'Y-symmetry ', region=mdb.models['Model-

1'].rootAssembly.sets['Face_Ysym']) 

    

#Sets the Z-symmetry boundary condition 

mdb.models['Model-1'].rootAssembly.Set(faces=mdb.models['Model-1']. 

    rootAssembly.instances['Gage region-1'].faces.findAt((infFace_Z, 

), 

    (medFace_Z, ), (supFaceLeft_Z, ), (supFaceRight_Z, )), 

name='Faces_Zsym') 

     

mdb.models['Model-1'].ZsymmBC(createStepName='Initial', 

localCsys=None, name= 

    'Z-symmetry ', region=mdb.models['Model-

1'].rootAssembly.sets['Faces_Zsym']) 

         

#Sets the final displacement  

mdb.models['Model-1'].rootAssembly.Set(faces= 

    mdb.models['Model-1'].rootAssembly.instances['Gage region-1']. 

    faces.findAt((supFaceLeft_Y, ), (supFaceRight_Y, ) ), 

name='Face_Displ') 

     

mdb.models['Model-1'].DisplacementBC(amplitude=UNSET, 

createStepName='Initial',  

    distributionType=UNIFORM, fieldName='', localCsys=None, 

name='Displacement',  

    region=mdb.models['Model-1'].rootAssembly.sets['Face_Displ'], 

u1=SET, u2=SET,  

    u3=UNSET, ur1=UNSET, ur2=UNSET, ur3=UNSET) 

     

mdb.models['Model-

1'].boundaryConditions['Displacement'].setValuesInStep(stepName= 

    'Pulling', u1=0, u2=uY)     

MESH 

#Creates a geometric entity corresponding to each cell  

infCell = mdb.models['Model-1'].parts['Gage 

region'].cells.findAt((infFace_Z, ), ) 
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medCell = mdb.models['Model-1'].parts['Gage 

region'].cells.findAt((medFace_Z, ), ) 

 

supCellLeft = mdb.models['Model-1'].parts['Gage 

region'].cells.findAt((supFaceLeft_Z, ), ) 

 

supCellRight = mdb.models['Model-1'].parts['Gage 

region'].cells.findAt((supFaceRight_Z, ), ) 

  

#Sets sweep mesh for the medial cell  

mdb.models['Model-1'].parts['Gage 

region'].setMeshControls(algorithm=ADVANCING_FRONT, 

    regions=medCell, technique=SWEEP, elemShape=HEX) 

     

#Sets sweep mesh for the superior right cell 

mdb.models['Model-1'].parts['Gage 

region'].setMeshControls(algorithm=ADVANCING_FRONT, 

    regions=supCellRight, technique=SWEEP, elemShape=HEX_DOMINATED) 

     

#Sets the elements size on the inferior cell lines 

mdb.models['Model-1'].parts['Gage 

region'].seedEdgeBySize(constraint=FINER,  

    deviationFactor=0.1, edges= 

    mdb.models['Model-1'].parts['Gage region'].edges.findAt(((w/3, 0 

, t), ), 

    ((0, h_inf/3 , t), ), ((w, 0, t/3), ),  

    ((w+R*(1-cos(alpha_inf/3)), R*sin(alpha_inf/3), t), ), ), 

size=s_min) 

  

#Sets the elements size on the medial cell lines 

mdb.models['Model-1'].parts['Gage 

region'].seedEdgeByBias(biasMethod=SINGLE,  

    constraint=FINER, end1Edges=    mdb.models['Model-1'].parts['Gage 

region']. 

    edges.findAt(((0, h_inf+(h_sup-h_inf)/3, t), )), end2Edges= 

    mdb.models['Model-1'].parts['Gage region'].edges.findAt 

    (((w+R*(1-cos(alpha_inf+ (alpha_sup-alpha_inf)/3)), 

    R*sin(alpha_inf+(alpha_sup-alpha_inf)/3), t), )), maxSize=s_max, 

minSize=s_min) 

 

#Sets the elements size on the superior left and right cell lines 
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mdb.models['Model-1'].parts['Gage 

region'].seedEdgeBySize(constraint=FIXED,  

    deviationFactor=0.1, edges=mdb.models['Model-1'].parts['Gage 

region']. 

    edges.findAt(((w/3, h_sup, t), ), ((0, h_sup+(h_sh-h_sup)/3, t), 

), 

    ((w_sup, h_sup+(h_sh-h_sup)/3, t), ), ), size=s_max) 

     

mdb.models['Model-1'].parts['Gage 

region'].seedEdgeBySize(constraint=FINER,  

    deviationFactor=0.1, edges= 

    mdb.models['Model-1'].parts['Gage region'].edges.findAt 

    (((0, h_sh, t/3), ), ((w_sh, h_sh, t/3 ), ), ), size=s_min) 

 

mdb.models['Model-1'].parts['Gage 

region'].seedEdgeByBias(biasMethod=SINGLE,  

    constraint=FINER, end1Edges=mdb.models['Model-1'].parts['Gage 

region'].edges.findAt 

    (((w+R*(1-cos(alpha_sup+ (alpha-alpha_sup)/3)), 

    R*sin(alpha_sup+(alpha-alpha_sup)/3), t), )), end2Edges= 

    mdb.models['Model-1'].parts['Gage region'].edges.findAt 

    (((w_sup+(w_sh-w_sup)/3, h_sh, t ), )), maxSize=s_max, 

minSize=s_fil) 

     

#Generates the mesh      

mdb.models['Model-1'].parts['Gage region'].generateMesh(regions= 

    infCell) 

     

mdb.models['Model-1'].parts['Gage region'].generateMesh(regions= 

    medCell) 

     

mdb.models['Model-1'].parts['Gage region'].generateMesh(regions= 

    supCellLeft) 

     

mdb.models['Model-1'].parts['Gage region'].generateMesh(regions= 

    supCellRight)  

INITIAL JOB 

#Defines the job name 

JobName='PlaneStrain_'+specJob 
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#Creates the job 

mdb.Job(name=JobName, model='Model-1', description='', type=ANALYSIS,  

    atTime=None, waitMinutes=0, waitHours=0, queue=None, memory=90,  

    memoryUnits=PERCENTAGE, getMemoryFromAnalysis=True,  

    explicitPrecision=SINGLE, nodalOutputPrecision=SINGLE, 

echoPrint=OFF,  

    modelPrint=OFF, contactPrint=OFF, historyPrint=OFF, 

userSubroutine='',  

    scratch='', resultsFormat=ODB, multiprocessingMode=DEFAULT, 

numCpus=int(nProc),  

    numDomains=int(nProc), numGPUs=0)                         

 

#Saves the work in a .cae file 

mdb.saveAs(pathName=folderPath+'\\'+JobName) 

 

#Submits the job  

mdb.jobs[JobName].submit(consistencyChecking=OFF)  

 

#Waits for the job to be completed 

mdb.jobs[JobName].waitForCompletion() 

THRESHOLD STEP DETECTION 

#Opens and displays the results file (.odb) 

session.Viewport(name='Viewport: 1', origin=(0.0, 0.0), width=100,  

    height=150) 

    

session.viewports['Viewport: 1'].makeCurrent() 

 

session.viewports['Viewport: 1'].maximize() 

 

session.viewports['Viewport: 

1'].partDisplay.geometryOptions.setValues( 

    referenceRepresentation=ON) 

    

session.viewports['Viewport: 

1'].viewportAnnotationOptions.setValues(title=OFF) 

 

odb=session.openOdb(JobName+'.odb') 
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session.viewports['Viewport: 1'].setValues(displayedObject=odb) 

 

#Evaluates the number of evenly spaced points along one single 

direction (X, Y or Z) where to measure the quantities of interest 

nP_XYZ=int(xrd/dist+1) 

 

#Evaluates the number of evenly spaced points in the XRD volume to be 

analyzed 

nP=nP_XYZ**3 

 

#Initializes the 'XRD_path_ar' matrix (nP x 3), that will contain the 

coordinates of the points in the volume to be analyzed with XRD 

XRD_path_ar=np.array([], dtype=np.int64).reshape(0,3) 

 

#Fills out the 'XRD_path_ar' matrix 

for itY in range(nP_XYZ): 

 

    v=np.zeros((nP_XYZ,3)) 

 

    v[:,0]=np.linspace(0, xrd, nP_XYZ) 

 

    v[:,1]=itY*dist*np.ones(nP_XYZ) 

 

    for itZ in range(nP_XYZ): 

 

        v[:,2]=(t-itZ*dist)*np.ones(nP_XYZ) 

 

        XRD_path_ar=np.vstack((XRD_path_ar,v)) 

         

#Converts the 'XRD_path_ar' matrix to a list 

XRD_path=XRD_path_ar.tolist()          

 

#Creates the path for the points of the volume to be analyzed with XRD        

session.Path(name='XRD_path', type=POINT_LIST, expression=XRD_path) 

 

#Creates the path representing a single point on the superior face, in 

order to extract later the displacement u2 along the Y-axis        

session.Path(name='Displacement_path', type=POINT_LIST, 

expression=[[0, h_sh, t]]) 

 

#Initializes the 'K' index, necessary to let the next loop cycle run 
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K=0 

 

#Initializes the 'peeq_av_XRD' scalar, representing the mean PEEQ in 

the XRD-volume and necessary to let the next loop cycle run  

peeq_av_XRD=0 

 

#Runs the 'while' loop cycle, able to find the time instant when 

'peeq_av_XRD' =~ 'PEEQ_lim'              

while peeq_av_XRD <= PEEQ_lim: 

 

    #Exports the PEEQ for the 'XRD_path' at the Kth time instant 

    session.viewports['Viewport: 1'].odbDisplay.setFrame(step=0, 

frame=K) 

         

    session.viewports['Viewport: 1'].odbDisplay.setPrimaryVariable( 

        variableLabel='PEEQ', outputPosition=INTEGRATION_POINT) 

         

    session.XYDataFromPath(name='XRD_'+str(K), 

path=session.paths['XRD_path'], 

        includeIntersections=False, projectOntoMesh=False, 

pathStyle=PATH_POINTS, 

        numIntervals=1, projectionTolerance=0, shape=UNDEFORMED, 

labelType=TRUE_DISTANCE, 

        variable=(('PEEQ', INTEGRATION_POINT), )) 

 

    session.xyDataObjects.changeKey(fromName='XRD_'+str(K), 

toName='XRD_'+str(K)+'-PEEQ') 

 

    del session.xyDataObjects['XRD_'+str(K)] 

 

    #Converts the PEEQ data object to the 'peeq' array (nP x 2) 

    peeq = np.array(session.xyDataObjects['XRD_'+str(K)+'-PEEQ']) 

 

    #Deletes the PEEQ data object          

    del session.xyDataObjects['XRD_'+str(K)+'-PEEQ'] 

 

    #Removes the possible duplicated rows from the 'peeq' array 

    if len(np.unique(peeq[:,0])) != len(peeq[:,0]): 

 

        while len(np.unique(peeq[:,0])) < len(peeq[:,0]): 
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            aux=np.unique(peeq[:,0])-peeq[0:nP,0] 

 

            aux=[ '%.5f' % elem for elem in aux.tolist()]  

 

            aux=aux[::-1]    

 

            ind=len(aux)- 1 - aux.index('0.00000') 

 

            peeq[ind:nP]=peeq[ind+1:nP+1] 

 

            peeq=np.delete(peeq, (nP-1), axis=0) 

         

    #Removes from the 'peeq' array the column representing the true 

distance along the 'XRD_path' , making 'peeq' a column array (nP x 1)  

    peeq=peeq[:,1]   

     

    #Evaluates the scalar 'peeq_av_XRD', mean value of PEEQ in the 

XRD-volume at the Kth time instant 

    peeq_av_XRD=np.average(peeq) 

         

    #Exports u2 for the 'Displacement_path' at the Kth time instant 

    session.XYDataFromPath(name='Displacement_'+str(K), 

path=session.paths['Displacement_path'], 

        includeIntersections=False, projectOntoMesh=False, 

pathStyle=PATH_POINTS, 

        numIntervals=1, projectionTolerance=0, shape=UNDEFORMED, 

labelType=TRUE_DISTANCE, 

        variable=(('U', NODAL, ((COMPONENT, 'U2'), )), )) 

      

    session.xyDataObjects.changeKey(fromName='Displacement_'+str(K), 

toName='Displacement_'+str(K)+'-U2')  

     

    del session.xyDataObjects['Displacement_'+str(K)] 

     

    #Converts the U2 data object to the 'u2' array (1 x 2) 

    u2 = np.array(session.xyDataObjects['Displacement_'+str(K)+'-

U2']) 

 

    #Deletes the U2 data object          

    del session.xyDataObjects['Displacement_'+str(K)+'-U2'] 
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    #Removes from the 'u2' array the column representing the true 

distance along the 'Displacement_path' , making 'u2' a scalar 

    u2=u2[:,1]  

     

    #Updates the 'K' index     

    K=K+1 

     

#Evaluates the threshold displacement, at which 'peeq_min_XRD' =~ 

'PEEQ_lim' 

uY_thsd= u2[0]   

UPDATED JOB 

#Sets the updated final Y-displacement, so that when it is reached it 

is 'peeq_av_XRD' =~ 'PEEQ_lim' 

mdb.models['Model-

1'].boundaryConditions['Displacement'].setValuesInStep(stepName= 

    'Pulling', u2=uY_thsd)  

     

#Defines the job name 

JobName='PlaneStrain_'+specJob 

 

#Creates the job 

mdb.Job(name=JobName, model='Model-1', description='', type=ANALYSIS,  

    atTime=None, waitMinutes=0, waitHours=0, queue=None, memory=90,  

    memoryUnits=PERCENTAGE, getMemoryFromAnalysis=True,  

    explicitPrecision=SINGLE, nodalOutputPrecision=SINGLE, 

echoPrint=OFF,  

    modelPrint=OFF, contactPrint=OFF, historyPrint=OFF, 

userSubroutine='',  

    scratch='', resultsFormat=ODB, multiprocessingMode=DEFAULT, 

numCpus=int(nProc),  

    numDomains=int(nProc), numGPUs=0)                         

 

#Saves the work in a .cae file 

mdb.saveAs(pathName=folderPath+'\\'+JobName) 

 

#Submits the job  

mdb.jobs[JobName].submit(consistencyChecking=OFF)  

 

#Waits for the job to be completed  
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mdb.jobs[JobName].waitForCompletion()         

RESULTS 

#Opens and displays the results file (.odb) 

session.Viewport(name='Viewport: 1', origin=(0.0, 0.0), width=100,  

    height=150) 

    

session.viewports['Viewport: 1'].makeCurrent() 

 

session.viewports['Viewport: 1'].maximize() 

 

session.viewports['Viewport: 

1'].partDisplay.geometryOptions.setValues( 

    referenceRepresentation=ON) 

    

session.viewports['Viewport: 

1'].viewportAnnotationOptions.setValues(title=OFF) 

 

odb=session.openOdb(JobName+'.odb') 

 

session.viewports['Viewport: 1'].setValues(displayedObject=odb) 

 

#Creates the 'TIME' array (nSteps x 1), containing all the time 

instants (in [ms]) when the quantities of interest have been evaluated 

TIME=1000*np.linspace(0, nInt*(dT/nInt), nSteps) 

 

#Creates the empty matrix 'PEEQ' (nSteps x nP), to be filled out with 

the plastic equivalent strain data of the XRD-volume points over time  

PEEQ=np.zeros((nSteps, nP)) 

 

#Creates the empty matrix 'TRIAX' (nSteps x nP), to be filled out with 

the stress triaxiality data of the XRD-volume points over time  

TRIAX=np.zeros((nSteps, nP)) 

 

#Creates the empty array 'PEEQ_max' (nSteps x 1), to be filled out 

with the minimum PEEQ evaluated over time  

PEEQ_max=np.zeros(nSteps) 

 

#Creates the empty array 'PEEQ_min_XRD' (nSteps x 1), to be filled out 

with the minimum PEEQ evaluated in the XRD-volume over time  
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PEEQ_min_XRD=np.zeros(nSteps) 

 

#Creates the empty array 'PEEQ_av_XRD' (nSteps x 1), to be filled out 

with the mean value of PEEQ evaluated in the XRD-volume over time  

PEEQ_av_XRD=np.zeros(nSteps) 

 

#Creates the empty array 'PEEQ_max_XRD' (nSteps x 1), to be filled out 

with the maximum PEEQ evaluated in the XRD-volume over time  

PEEQ_max_XRD=np.zeros(nSteps) 

 

#Creates the empty array 'TRIAX_av' (nSteps x 1), to be filled out 

with the mean values of stress triaxiality evaluated in the XRD-volume 

over time  

TRIAX_av=np.zeros(nSteps) 

 

#Creates the empty array 'U2' (nSteps x 1), to be filled out with the 

Y-displacement of the superior face over time  

U2=np.zeros(nSteps) 

 

#Creates the empty array 'FORCE_Y' (nSteps x 1), to be filled out with 

the Y-force acting on the whole superior face over time  

FORCE_Y=np.zeros(nSteps)   

 

#Initializes the 'for' loop cycle, able to get the data of interest at 

each time instant                 

for J in range(int(nSteps)): 

 

    #Exports the data objects for the 'XRD_path'  

    session.viewports['Viewport: 1'].odbDisplay.setFrame(step=0, 

frame=J) 

 

    session.viewports['Viewport: 1'].odbDisplay.setPrimaryVariable( 

        variableLabel='S', outputPosition=INTEGRATION_POINT, 

refinement=(INVARIANT,  

        'Mises')) 

         

    session.viewports['Viewport: 1'].odbDisplay.setPrimaryVariable( 

        variableLabel='PEEQ', outputPosition=INTEGRATION_POINT) 

         

    session.XYDataFromPath(name='XRD_'+str(J), 

path=session.paths['XRD_path'], 
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        includeIntersections=False, projectOntoMesh=False, 

pathStyle=PATH_POINTS, 

        numIntervals=1, projectionTolerance=0, shape=UNDEFORMED, 

labelType=TRUE_DISTANCE, 

        variable=(('S', INTEGRATION_POINT, ((INVARIANT, 'Mises' ), 

(INVARIANT, 'Pressure' ), ), ), 

        ('PEEQ', INTEGRATION_POINT), )) 

 

    session.xyDataObjects.changeKey(fromName='XRD_'+str(J), 

toName='XRD_'+str(J)+'-PEEQ') 

 

    del session.xyDataObjects['XRD_'+str(J)] 

 

    #Exports u2 for the 'Displacement_path'  

    session.XYDataFromPath(name='Displacement_'+str(J), 

path=session.paths['Displacement_path'], 

        includeIntersections=False, projectOntoMesh=False, 

pathStyle=PATH_POINTS, 

        numIntervals=1, projectionTolerance=0, shape=UNDEFORMED, 

labelType=TRUE_DISTANCE, 

        variable=(('U', NODAL, ((COMPONENT, 'U2'), )), )) 

      

    session.xyDataObjects.changeKey(fromName='Displacement_'+str(J), 

toName='Displacement_'+str(J)+'-U2')  

     

    del session.xyDataObjects['Displacement_'+str(K)] 

     

    #Converts the data objects to arrays                        

    peeq = np.array(session.xyDataObjects['XRD_'+str(J)+'-PEEQ']) 

 

    mises = np.array(session.xyDataObjects['XRD_'+str(J)+'-Mises']) 

 

    pressure = np.array(session.xyDataObjects['XRD_'+str(J)+'-

Pressure']) 

     

    u2 = np.array(session.xyDataObjects['Displacement_'+str(J)+'-

U2']) 

 

    #Deletes the data objects            

    del session.xyDataObjects['XRD_'+str(J)+'-PEEQ'] 
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    del session.xyDataObjects['XRD_'+str(J)+'-Mises'] 

 

    del session.xyDataObjects['XRD_'+str(J)+'-Pressure'] 

     

    del session.xyDataObjects['Displacement_'+str(J)+'-U2'] 

 

    #Removes the possible duplicated rows from the 'peeq' array 

    if len(np.unique(peeq[:,0])) != len(peeq[:,0]): 

 

        while len(np.unique(peeq[:,0])) < len(peeq[:,0]): 

 

            aux=np.unique(peeq[:,0])-peeq[0:nP,0] 

 

            aux=[ '%.5f' % elem for elem in aux.tolist()]  

 

            aux=aux[::-1]    

 

            ind=len(aux)- 1 - aux.index('0.00000') 

 

            peeq[ind:nP]=peeq[ind+1:nP+1] 

 

            peeq=np.delete(peeq, (nP-1), axis=0) 

         

    #Removes the possible duplicated rows from the 'mises' array 

    if len(np.unique(mises[:,0])) != len(mises[:,0]): 

 

        while len(np.unique(mises[:,0])) < len(mises[:,0]): 

             

            aux=np.unique(mises[:,0])-mises[0:nP,0] 

 

            aux=[ '%.5f' % elem for elem in aux.tolist()]  

 

            aux=aux[::-1]    

 

            ind=len(aux)- 1 - aux.index('0.00000') 

 

            mises[ind:nP]=mises[ind+1:nP+1] 

 

            mises=np.delete(mises, (nP-1), axis=0) 

          

    #Removes the possible duplicated rows from the 'pressure' array 
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    if len(np.unique(pressure[:,0])) != len(pressure[:,0]): 

 

        while len(np.unique(pressure[:,0])) < len(pressure[:,0]): 

 

            aux=np.unique(pressure[:,0])-pressure[0:nP,0] 

 

            aux=[ '%.5f' % elem for elem in aux.tolist()]  

 

            aux=aux[::-1]    

 

            ind=len(aux)- 1 - aux.index('0.00000') 

 

            pressure[ind:nP]=pressure[ind+1:nP+1] 

 

            pressure=np.delete(pressure, (nP-1), axis=0) 

 

    #Removes from the arrays the column representing the true distance 

along the 'XRD_path', making them column arrays (nP x 1)   

    peeq=peeq[:,1] 

 

    mises=mises[:,1] 

 

    pressure=pressure[:,1]      

             

    #Removes from the 'u2' array the column representing the true 

distance along the 'Displacement_path' , making 'u2' a scalar 

    u2=u2[:,1]  

     

    #Inserts the 'peeq' array in the Jth row of the 'PEEQ' matrix 

    PEEQ[J,:]=peeq 

     

    #Inserts the 'u2' scalar in the Jth row of the 'U2' array 

    U2[J]=u2 

 

    #Inserts the 'peeq_max' scalar in the Jth spot of the 'PEEQ_max' 

array 

    PEEQ_max[J]=peeq_max 

     

    #Evaluates the 'triax' array (1 x nP), representing the stress 

triaxiality of the points in the XRD-volume at the Jth time instant 

    triax=-pressure/(mises + (mises==0)) 
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    #Inserts the 'triax' array in the Jth row of the 'TRIAX' matrix 

    TRIAX[J,:]=triax 

                 

    #Evaluates the scalar 'triax_av', mean value of stress triaxiality 

in the XRD volume at the Jth time instant  

    triax_av=np.average(triax) 

 

    #Inserts the 'triax_av' scalar in the Jth spot of the 'TRIAX_av' 

array 

    TRIAX_av[J]=triax_av 

         

    #Creates the free body cut 'FreeBody', in order to get the value 

of the Y-force acting on the superior face 

    eLeaf = dgo.LeafFromElementSets(elementSets=('FACE_DISPL', )) 

 

    nLeaf = dgo.LeafFromNodeSets(nodeSets=('FACE_DISPL', )) 

 

    session.FreeBodyFromNodesElements(name='FreeBody', 

elements=eLeaf,  

        nodes=nLeaf, summationLoc=NODAL_AVERAGE,  

        componentResolution=NORMAL_TANGENTIAL) 

         

    session.viewports['Viewport: 

1'].odbDisplay.setValues(freeBodyNames=( 

        'FreeBody', ), freeBody=ON) 

 

    #Creates the 'FORCE_Y' data object 

    odbName=session.viewports[session.currentViewportName]. 

        odbDisplay.name 

 

    session.odbData[odbName].setValues(activeFrames=(('Pulling', (J, 

)), )) 

 

    session.XYDataFromFreeBody(odb=odb, force=ON, moment=OFF, 

resultant=OFF,  

        comp1=ON, comp2=OFF, comp3=OFF) 

 

    #Converts the 'FORCE_Y' data object to the 'force_Y' scalar 

    force_Y=np.array(session.xyDataObjects['FreeBody force component 

1'])[:,1] 
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    #Deletes the FORCE_Y' data object 

    del session.xyDataObjects['FreeBody force component 1'] 

     

    #Inserts the 'force_Y' scalar in the Jth spot of the 'FORCE_Y' 

array 

    FORCE_Y[J]=force_Y 

  

    J=J+1 

 

#Turns from '-0' to '0' the first row of 'TRIAX' matrix, for a better 

visualization  

TRIAX[0,:]=-TRIAX[0,:] 

  

#Evaluates the scalar 'TRIAX_avav', mean value of the mean values 

stored in the 'TRIAX_av' array  

TRIAX_avav=np.average(TRIAX_av[1:nSteps]) 

EXPORT TO FILE 

#Sets the number of space characters between two columns in the .txt 

files that are going to be exported 

Space = '       ' 

 

#Exports the 'TIME' array in a .txt file 

np.savetxt('TIME.txt', TIME, fmt='%4.4f', delimiter=Space) 

 

#Exports the 'PEEQ' matrix in a .txt file 

np.savetxt('PEEQ.txt', PEEQ, fmt='%4.3f', delimiter=Space) 

 

#Exports the 'TRIAX' matrix in a .txt file 

np.savetxt('TRIAX.txt', TRIAX, fmt='%4.3f', delimiter=Space) 

 

#Exports the 'PEEQ_min_XRD' array in a .txt file 

np.savetxt('PEEQ_min_XRD.txt', PEEQ_min_XRD, fmt='%4.5f', 

delimiter=Space) 

 

#Exports the 'PEEQ_av_XRD' array in a .txt file 

np.savetxt('PEEQ_av_XRD.txt', PEEQ_av_XRD, fmt='%4.5f', 

delimiter=Space) 
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#Exports the 'PEEQ_max_XRD' array in a .txt file 

np.savetxt('PEEQ_max_XRD.txt', PEEQ_max_XRD, fmt='%4.5f', 

delimiter=Space) 

 

#Exports the 'PEEQ_max' array in a .txt file 

np.savetxt('PEEQ_max.txt', PEEQ_max, fmt='%4.4f', delimiter=Space) 

 

#Exports the 'TRIAX_av' array in a .txt file 

np.savetxt('TRIAX_av.txt', TRIAX_av, fmt='%4.5f', delimiter=Space) 

 

#Exports the 'TRIAX_avav' array in a .txt file 

np.savetxt('TRIAX_avav.txt', np.array(TRIAX_avav).reshape(1,), 

fmt='%4.5f', delimiter=Space) 

 

#Exports the 'U2' array in a .txt file 

np.savetxt('U2.txt', U2, fmt='%4.5f', delimiter=Space) 

 

#Exports the 'FORCE' matrix in a .txt file 

np.savetxt('FORCE_Y.txt', FORCE_Y, fmt='%4.3f', delimiter=Space) 

 

#Changes the work directory 

os.chdir(abaqusDataPath) 

 

#Exports the string 'folderPath', the name of the work directory, in 

a .txt file 

fid = open('folderPath.txt', 'w') 

 

fid.write(folderPath) 

 

fid.close() 
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Technical drawings 
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