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Abstract

Arterial blood pressure (ABP) monitoring is a fundamental method in preventing and detect-
ing different cardiovascular health diseases such as hypertension, which represent one of the
leading causes of death in the world. Currently, the most commonly adopted noninvasive
blood pressure measurement system is the sphygmomanometer, while continuous monitor-
ing of this parameter still often requires an invasive process.
For this reason, recent research has been highly conducted on the measurement of the ABP us-
ing signals that can bemeasured with a non-invasive process, such as the photoplethysmogram
(PPG) and electrocardiogram (ECG).

After briefly introducing some of the state-of-the-art methodologies involved in this mea-
surement, this work proposes a Deep Convolutional Neural Network Architecture (DCNN)
that uses only a photoplethysmogram signal (PPG) as input to estimate continuous arterial
blood pressure (ABP) signal non-invasively. This study also aims to measure and analyze sys-
tolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP)
from the estimated ABP waveform and covers the data pre-processing techniques used.
The method was carried out on a subset of 942 patients of two publicly available datasets:
MIMIC-II and MIMIC-III, resulting in a Mean Absolute Error (MAE) of 42.96 mmHg for
SBP, 27.82 for DBP, 9.56 for the MAP value and a Root Mean Squared Error (RMSE) of
49.49 mmHg for SBP, 34.84 for DBP and 12.27 for the MAP value.
The results show that the proposed architecture is able tomodel the dependency between PPG
and ABP, making it a good process to estimate continuous blood pressure using only a non-
invasive photoplethysmography signal.
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1
Introduction

In recent years studies have highlighted the clinical importance of continuous blood pressure
monitoring [1]. Fluctuation in BP has, in fact, in the case of hypertension, a direct correlation
with a variety of cardiovascular diseases (CVDs) [2].
For a long time these diseases have remained the leading causes of death globally [3] and ac-
cording to theWorld Heart Federation, about the half of ischemic strokes are caused by hyper-
tension [4]. Furthermore, it also increases the risk of hemorrhagic stroke, heart failure, heart
attack, and chronic kidney disease.

ConstantBPmeasuring andmonitoring is thus fundamental for the general population, but
particularly important for people already suffering fromhypertension or related cardiovascular
diseases, as such people are highly vulnerable to elevated blood pressure [5].
Despite Blood pressure (BP) measurement is the most commonly performed medical office
test [6], there are not proper standard to easily monitory blood pressure. In particular, cur-
rent clinical practice for the diagnosis of hypertension includes bloodpressuremonitoringwith
two different non-invasive methods: Ambulatory Monitoring (ABPM) and Home Monitor-
ing (HBPM) [7]. Cuff-based devices are the standard for non-invasive measurements and are
commonly recommended by physicians. These devices offer the highest measurement accu-
racy, however, they require a relatively strict measuring protocol in order to ensure the mea-
sured values are correct. The measuring procedure can be tedious and requires dedicated time
and effort, also, physical activity typically does not allow for simultaneous measuring of BP
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with a cuff [8]. On the other hand, is possible to have also an invasive continuous BPmeasure-
ment technique, which is also known as direct BP measurement or invasive ABP. A catheter
is inserted into an artery to perform real-time blood pressure monitoring. It can complete BP
estimation in every cardiac cycle andmonitor BP changes more precisely. Therefore, it is recog-
nized internationally as the gold standard of BPmonitoring methods [9]. But this approach is
used only for critical patients and it has the risk of a range of complications, including infection
[10].
Furthermore, there are cases in which hypertension does not manifest clearly to the patient: it
is the case of white coat hypertension (WHT). It is a conditionwhere a patient’s blood pressure
is higher when taken in amedical setting, while it is normal during daily activities. It is believed
that the phenomenon is due to anxiety experienced during a clinic visit [11].

In recent years, since biological parameters such as blood volume, flowandpulsewave are eas-
ily collectable in patients peripheries with non-invasive techniques and and hold a non-linear
correlation with blood pressure, research has driven into the use of Machine Learning (ML)
to solve this problem. In particular through a Neural Network framework, is possible to ex-
tract the optimal features required to monitor SBP and DBP and developing algorithm able
to produce values that meet system validation requirements defined by the Association for the
Advancement of Medical Instrumentation (AAMI) [12].

In the next part of this introductory chapter will be discussed the related works in this field
of research.
In the second chapter will be a brief overview of the biomedical background, will be discussed
the concepts of arterial blood pressure and plethysmography and their relevant proprieties.
In the third chapter are introduced the basic deep learning tools and the complex deep learning
framework used in this type of signal regression.
The fourth chapter describes themethodologyused, explaining thedata acquisitionpre-processing
and augmentation, as well as the deep learning architecture used and the experimental setup.
The last two chapters describe the experimental results, and the conclusion of this work, as well
as final considerations and possible future developments.
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Figure 1.1: Number of PubMed publications that utilized single‐measurement PPG to estimate BP (January 2010 ‐ January
2019).

1.0.1 RelatedWorks

With the adventof digital sensors, signal-processing and artificial intelligencemodels help gather
important human vital signs using wearable sensors [13] [14].
In particular photoplethysmography (PPG) reveled being a good signal, demonstrating a clear
correlation with the ABP signal, as well as having a versatile and low-cost technology [15] [16].

As represented in Figure 1.1, the number of studies relative to single-measurement PPG for
BP estimation has increased exponentially over the last decade.

In the beginning research were focused towards more indirect approaches using the combi-
nation of two signals PPG and ECG: [17] [18] for example, showed a strong negative corre-
lation between signals such as BP and pulse transit time (PTT), but also pulse wave velocity
(PWV) and pulse arrival time (PAT) [19].

In 2013 [20] showed that artificial neural networks (ANN) can perform better than stan-
dard linear regression. The study used a feed forward ANN with two hidden layers, with 35
neurons on the first layer and 20 neurons on the second one.
The signals analyzed were taken from the Multiparameter Intelligent Monitoring in Intensive
Care (MIMIC) database [21], with a quite small sample of size 15000 pulsations (∼ 4 hours
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of recording), resulting in 3.80±3.46 mmHg for systolic and 2.21±2.09 mmHg for diastolic
pressure, meeting the American National Standards of the Association for the Advancement
of Medical Instrumentation (AAMI), where the maximal accepted errors is 5±8 mmHg.
[22] used a complex recurrent network on 22 features extracted from thePPGandECGsignals,
root-mean-square error (RMSE) is used as metric and achieved good performances: RMSE of
3.63 on SBP and 1.48 on DBP.
It is important to note though, that models performances are very dependent on the dataset
choice and on sample selection. In particular, having a data subset with a low variation of val-
ues, for example in BP, could influence the performances of the network, resulting in a smaller
error if compared with a model utilizing a dataset with a wider range of BP values.
Reviewing the difficulties of using a combination of signals, and as PPG is the most conve-
nient signal to be used in wearable devices, contrary to the ECG data acquisition that results
very complex and expensive, some researchers are trying to measure BP using only the PPG
signal.
Already in 2003 [23] explored the possibility to measure BP using only PPG signals, with the
requirement of calibration, involving three sessions: rest, step-climbing exercise, and recovery
from exercise. This publication was one of the first study based only on PPG signals, proving
possible to compute BP values from photoplethysmography.

In recent years with the the advancements in deep neural techniques new approaches were
evaluated, one of the very first studies based on complex deep learning frameworks is [24], that
used the PPG alongside its first and second derivative as inputs into a novel spectro-temporal
deep neural network with residual connections. This study analyzed the MIMIC III database,
resulting in over 700 h of signals after preprocessing, and achieved mean absolute errors of
9.43 mmHg for SBP and 6.88 mmHg for DBP. Despite the fact that this ResNet-GRU-based
model resulted computationally expensive andwith a slow convergence, it pointed that person-
alization of models is important and substantially improves the results, as well as showing the
potential of deep convolutional neural network (DCNN) for this type of task.
Similarly, another research work [25], modelled an optimized gated recurrent unit (OGRU)
neural network, a variant of the Long short-term memory (LSTM) neural network. Their
method still does not satisfy the Association for the Advancement of Medical Instrumenta-
tion (AAMI) standard error range.
Another relevant result was obtained recently in [26], that has managed to model a lighter and
faster deep convolutional U-Net, using PPG only, without computing the signal derivatives.
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The model was evaluated on a subset of 100 subjects from MIMIC and MIMIC-III dataset
and resulted in a mean absolute error of 3.68 ± 4.42 mmHg for SBP, 1.97 ± 2.92 mmHg for
DBP, satisfying the AAMI requirements.
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2
Biomedical background

The biomedical background of this work is related to the cardiovascular system, more specifi-
cally to the arterial blood pressure (ABP), his monitoring and the implications that hyperten-
sion have on the human health. Along with the ABP and its signal, is relevant the understand-
ing of another body functional measurement: the plethysmography.
Will therefore follow a brief introduction of these concepts.

2.1 Cardiovascular system

The cardiovascular system is the system responsible for delivering blood to different parts of
the body. It consists of the following organs and tissues [27]:

• The heart is the key organ of the cardiovascular system, as it enables the continuous
blood flow.
It is composed of a particular muscle cells tissue, called myocardium, and a specialized
conduction system. The combination of these two elements produce a physiological
pump for the blood inside the body.
The human heart is composed of four chambers, two atria and two ventricles: while the
atria receive the blood, the ventricles pump it by mean of a strong myocardium contrac-
tion

• A closed system of blood vessels: these vessels include:

– Arteries: vessels that carry blood away from the heart.
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Figure 2.1: Cardiovascular system.

– Veins: vessels that bring blood back to the heart.

– Capillaries: tiny vessels that branch off from arteries to deliver blood to all body
tissues.

There are two blood circulatory systems in the body. The first is the systemic circulatory
system. This is the main blood circulatory system that transports blood to the organs, tissues,
and cells throughout the body.
The second is the pulmonary circulatory system. This circulatory system moves blood be-
tween the heart and lungs. It is where oxygen enters the blood and carbon dioxide leaves the
blood. Fig.(2.1)
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2.2 Arterial blood pressure (ABP)

In general, systemic arterial pressure or simply blood pressure (BP), refers to the pressure mea-
sured within large arteries in the systemic circulation, and among the respiratory rate, heart
rate, oxygen saturation, and body temperature, reflects the status of the circulatory system.

Arterial pressure levels are determined by many factors. These include age, gender, body
weight, cardiac output, peripheral vascular resistance, volumeandviscosity of circulatingblood,
as well as agents like mental stress and hormonal levels.
It can also be influenced by many behaviors like eating, drinking, physical conditioning and
drug use [28][29][30].

The arterial blood pressure derives from the pumping action of the left ventricle of the heart;
therefore, the level of arterial pressure at any point in the arterial vascular compartment re-
flects functioning of the left ventricle. During each contraction of the left ventricle (termed
systole), the highest systemic pressure generated within the arteries is termed the systolic pres-
sure (SBP).
When the left ventricle stops contracting, the heart valve controlling outflow from the left ven-
tricle into the aorta closes and the left ventricle relaxes and refills (between beats). This phase
of the heart is termed diastole. During diastole the arterial pressure drops as the arterial blood
rapidly flows out of the arterial compartment into the capillaries. The lowest arterial pressure
during this rest phase of the left ventricle is termed the diastolic pressure (DBP) [31].

2.2.1 ABPwaveform

The arterial waveform is produced through the dynamic interactions between the volume of
blood ejected by the heart during each beat, also called stroke volume (SV), the speed with
which this volume is ejected by the heart, the ability of the vascular tree to distend and accom-
modate this ejected volume and finally the rate at which the ejected volume of blood is able to
flow away from the central arterial compartment into the peripheral tissues.
The waveform also depends on where it is recorded, narrower arteries (usual in the periphery
of the body) are less compliant, therefore, the pressure here has different shapes, in particular
the anacrotic limb (the ascending part of the wave) is steeper and the SBP is generally higher.
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sion pressure (∆P). The ideal blood pressure irrorate all of the various organ systems without
causing damage. Any organ not adequately perfused will suffer ischemic damage and will be
unable to perform adequately [34] [35].
For this reason another way to find theMAP is to use the Systemic Vascular Resistance (R) and
the total flow through the vasculature (Q), which is representedmathematically by the formula
2.3:

R = ΔP/Q (2.3)

2.2.2 Hypertension

SP andDP values are used to understand if the pressure status is within specific healthy ranges.
In fact, a too low SP means that the peripheral body regions are not perfused enough with nu-
trients and oxygen, while a too high SP is a risk for the vessels and organs integrity.

Hypertension, also called high blood pressure, is a long term pathology where the arterial
blood pressure is persistently elevated. Hypertension is called a ”silent killer” due to the fact
that most people with hypertension are unaware of the problem, because it may have no warn-
ing signs or symptoms. For this reason, it is essential that blood pressure is measured regularly.
Long-term high blood pressure is a major risk factor for stroke, coronary artery disease, heart
failure, atrial fibrillation, peripheral arterial disease, vision loss, chronic kidney disease, and de-
mentia [36] [37] [38].

Theprevalenceofhypertensionvaries across regions andcountry incomegroups. TheWHO
African Region has the highest prevalence of hypertension (27%) while the WHO Region of
the Americas has the lowest prevalence of hypertension (18%) [39].
The number of adults with hypertension increased from 594million in 1975 to 1.13 billion in
2015, with the increase seen largely in low- and middle-income countries. This increase is due
mainly to a rise in hypertension risk factors in those populations [39].

Figure 2.3 represented a simple and most commune used classification of hypertension by
SBP and DBP values.

TheAmericanCollege ofCardiology and theAmericanHeartAssociationdividebloodpres-
sure into four general categories:

• Normal blood pressure. Blood pressure is between 90-119 mmHg for the SBP and
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Figure 2.3: Classification of BP values into categories according to the American College of Cardiology and the American
Heart Association.

60-79 mmHg for the DBP. Values below this threshold are considered hypotension.

• Elevated blood pressure or pre-hypertension. The top number ranges from 120 to
139 mmHg and the bottom number is between 80 and 89 mmHg.

• Stage 1 hypertension. The top number ranges from 140 to 159 mmHg or the bottom
number is between 90 and 99 mmHg. These values covers the most cases and are typi-
cally caused by genetic or lifestyle factors.

• Stage 2 hypertension. The top number is 160mmHg or higher or the bottom number
is 100 mmHg or higher. It is often related to a specific disorder.

• Blood pressure higher than 180/120 mmHg is considered a hypertensive emergency
and requires urgent medical care.

2.2.3 ABP monitoring methods

There here exist several methods for (BP) measurement, usually divided in two categories: in-
vasive blood pressure (IBP) monitoring and non invasive blood pressure (NIBP) monitoring.
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Figure 2.4: Cuff pressure during deflation on blood pressure during auscultatory method.

IBP is commonly used in the intensive care unit (ICU) and avoided in hypertensivepatients.
This technique involves the use of a cannula inserted in a suitable artery (radial, femoral or
brachial).
Themain advantages are the continuous monitoring (beat-to-beat) of the patient’s blood pres-
sure, which may undergo rapid changes, the displaying of the corresponding waveform, the
accurate measurement at very low pressure values (e.g shocked patients) and in people not suit-
able for NIBP (e.g obese patients).

An invasive set up is not appropriate in routine clinical practice; non-invasive methods are
of common use in ambulatory measurements.
The most used technique is represented by the auscultatory method, using a mercury sphyg-
momanometer and a stethoscope. The cuff pressure, positioned around the upper portion of
the arm, is brought up to a level higher than the SP, up to the total compression of the artery,
determined by the palpatory method in the distal side of the hand. Once the cuff is gradually
deflated, with the stethoscope, it is possible to hear the appearance of the Korotkoff sounds,
used to determine SP and its disappearance to determine DP (Figure 2.4)[40] [7].

A minimum systolic value can be roughly estimated by palpation, most often used only in
emergency situations since it could result imprecise. A third non-invasive technique is the oscil-
lometric method and involves the observation of oscillations in the sphygmomanometer cuff
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pressure which are caused by the pulse pressure (PP) oscillations. It employs either deformable
membranes that aremeasured using differential capacitance, or differential piezoresistance, and
they include a microprocessor to automatically interpret the sensor results. In order to main-
tain accuracy the pressure sensor should be calibrated periodically [41].

2.3 Photoplethismograpy

The termPhotoplethysmography (PPG), introduced in the1930sbyHertzmanandcolleagues,
refers to a non -invasive technique for measuring the volume of blood flowing within the ves-
sels [42]. It overcomes some of the limits of the classical methods for detecting cardiovascular
diseases, such as ECGwhere the device need to acquire the signal from at least two points of the
body. The PPG devices in fact require only a sensor that is usually integrated into the device
case, resulting in an easier and more comfortable set up for low specificity heart monitoring
[43].

The device used formeasuring a PPG signal use a sensor to detect the pulse of the oxygenated
blood to the periphery, that causes the relaxation of arteries and arterioles in the subcutaneous
tissue.
This change in volume is detected by illuminating the skin with the light from a light-emitting
diode (LED) and then measuring the amount of light either transmitted or reflected to a pho-
todiode or photodetector.

The skin illumination by the LED has to be calibrated in order to reduce the ionization of
skin cell an organic tissues. Furthermore, wavelength choice is also important and depends on
the application and must be considered both susceptibility to motion artifacts and sensitivity
in poor skin perfusion. Still, because of its relative freedom from artifacts, green light is often
used in ambulatory monitoring applications.
Wearable PPG sensors have two operating modes (Figure 2.5):

• Transmission mode: light source and photodetector are placed in diametrically oppo-
site sides, facing each other. The photodetector catches the light not absorbed by the
tissues. Only a few quite thin body regions are suitable for this technique, however, this
technique allows to isolate in a better way the sensor from the environmental light, so as
to collect higher quality signals [44].
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Figure 2.5: Basic principle of PPG sensors working in: (a) transmission, (b) reflection modes.

• Reflection mode: light source and photodetector are placed on the same side. Not
requiring special conditions, it can be applied to thicker sites of the body, for instance:
wrist, forehead and chest. On the other hand its high sensitivity to motion artifacts and
to the presence of ambient light, limits the accuracy of the physiological measure [44].

2.3.1 PPGwaveform

The PPG waveform is composed by a pulsatile (AC) physiological waveform attributed to car-
diac synchronous changes in the blood volume with each heart beat, and is superimposed on a
slowly varying (DC) baseline with various lower frequency components attributed to respira-
tion, sympathetic nervous system activity and thermoregulation (Image 2.7) [43].
The analysis of the AC component is very important for heart activity monitoring and has a
charateristic periodic shape composed by two phases: the anacrotic phase that represents the
rising edge of the pulse so the contraction of the heart during the systolic phase, and the cat-
acrotic phase that is identified with the diastolic phase.

The anacrotic phase is the characteristic that changes the most from subject to subject; it is
in fact affected by subjective vascular conditions like arteries stiffness. Usually it is composed
of three phases: an initial first pre-dicrotic dip, a successive dicrotic notch, and a final dip at the
end [45] (Figure 2.7). The dicrotic notch is due to a reflexed wave, caused from arterial elastic-
ity. An important aspect is the fact that the anacrotic phase is the characteristic lost when the
monitored patient suffers from vascular diseases that increase the vascular resistance. For this
reason, when this occurs, the dicrotic notch can be invisible if the signal is acquired in periph-
ery.

The pulse wave begin (PWB), indicates the beginning of the systolic phase, that finish at the
pulse wave systolic peak. The pulse wave (PWE) indicates the end of the diastolic phase. The
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Figure 2.6: PPG waveform propagation from the photopletysmogram sensor.

time between these two phases is called pulse wave duration (PWD). The time elapsing from
a pulse wave systolic peak to the consecutive is usually expressed in milliseconds and is called
inter-beat interval (IBI) (Figure 2.7).

One of the most popular usage by PPG waveform is the heart rate for sport and daily home
monitoring, since can be placed in multiple comfortable body regions without being invasive
[46]. Furthermore, due to the recent COVID-19 pandemic crysis the research activity and the
commercialization of PPG based devices increased [47], proving the importance given to this
type of not invasive and accessible monitoring methods.
Some examples of wearable photoplethysmography devices (Figure 2.8).
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Figure 2.7: Representation of PPG waveform descriptors.

Figure 2.8: Some different types of wearable photoplethysmography devices.
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3
Deep LearningMethods

Machine Learning (ML) is a subfield of Artificial Intelligence (AI) that gives calculators the
ability to learn to perform a specific task without being explicitly programmed to do so, that
consist into the development of computational models of learning.
Deep Learning (DL) in particular employs models that are inspired by human brain structure,
in order to achieve computational capabilities such as data sensing and data understanding, as
well as decision making based on previous and present outcomes, common capability of the
networks of biological systems [48].

While classical Machine Learning algorithm are model based, i.e. human comprehensible,
Deep Learning discovers intricate structure in large data sets in order to automatically learn
and capture hierarchical features.

3.1 Machine learning regression techniques

The Regression [49] is a statistical process used to estimate relationships between variables. In
particular, regression determines the functional relation between the independent variables (x
vectors) and the dependent target variables (y vector). Inmachine learning regression, the target
values (y) are numerical and continuous (inR), and the goal of training is to learn a function f ,
such that f(x) −→ y. It is considered that the independent variable is exact while the dependent
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variable is affected by error (e.g. measurement inaccuracy).

The simplest method for regression is linear regression. This model establishes a linear pre-
dictor function between the dependent variables (Y) and the independent ones (X). There are
many ways to find the best regression line that fits the data distribution, and they are based on
the minimization of the distance. The linear regression equation is 3.1:

yi = α+ βxi + εi (3.1)

where α and β are the parameter of the curve. The objective of the regression is to find the
best α̂ and β̂ for the fitting of the data thatminimize the error termQ, i.e. the sumof the squared
residuals εi (equation3.2).

Q(α̂, β̂) =
n∑

i=1

ε̂2 (3.2)

Still there are application where linear regression is not enough for modelling the data, in
those cases other types data representations in the space are considered like polynomial regres-
sion.
Furthermore, other two concepts are needed to model regression algorithm:

1. Bias: error due to inaccurate assumption or simplification made by the model. It is a
measure of howmuch does the average model over all training sets from the true model.

2. Variance: metric for evaluating the dependence of the model from the input data. It is
a measure of how much models estimated from different training sets differ from each
other.

When a model has high bias and low variance means that there are few parameters for the
modelling, in this case we can say that themodel is underfitting. A low bias and a high variance
instead, indicates overfitting and it happenswhen themodel is too accurate just for the training
data. For this reason, is important to make a variance and bias trade-off that keep the model
accurate in learning from the training data but stillmaintaining good generalization capabilities
(figure 3.1).
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Figure 3.1: Representation of underfitting, good fit and overfitting models on the same data.

3.2 Deep LearningModels Structure

DeepLearningmodels are composedbyhierarchically simple computational units, callednodes
or neurons, connected by links or edges. In DL implementations, the value at each connection
is a real number, and the output of each neuron is computed by some non-linear function
of the sum of its inputs. This function is called activation function and emulates the human
biological process of neuron activation and firing in the brain, resulting in a more expressive
network, capable to compute highly complicated tasks, like for instance pattern recognition,
classification/clustering, prediction.
The weights are modified by a learning algorithm according to a loss function, which models
the observed errors. Adjusting these weights the network can learn and improve the accuracy
of its predictions. Learning is complete when examining additional observations do not use-
fully reduce the error rate.

A Neural network is a Deep Learning model defined by several elements. Will therefore
follow a quick outline of his structure and components (Figure 3.2):

• Neurons: the neurons are the basic information processing units of a NN, they receive
an input, pass it through an activation function, and produce an output using an output
function. The activation function limits the amplitude of the output of the node and
adds some non linearity.

• Architecture: defines the network structure that is the number of artificial neurons in
the network and their inter-connectivity.

• Learning algorithm: is the procedure used to perform the learning process, it modifies
the weights to compensate for each error found during learning. One of the most popu-
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Figure 3.2: Single neuron structure.

lar learning algorithmsmethods is based on gradient descent and it is called backpropaga-
tion or generalized delta rule. For each training instance the backpropagation algorithm
first makes a prediction (forward pass), measures the error, then goes through each layer
in reverse to measure the error contribution from each connection (reverse pass), and
finally tweaks the connection weights to reduce the error (Gradient Descent step). How
much the weights are modified in a single step is computed by different optimizers algo-
rithms according to a parameter specified as learning rate.

3.2.1 Fully Connected Layer

The first modeled layer is the fully-connected layer, where the totality of the nodes in previous
layer are connected to each neuron in the target layer. It represents a function fromR toRn.

In this architecture the nodes are disposed in an input layer receiving data in input, one or
more hidden layers, and an output layer producing the final output of the network. Since the
layers are fully connected, when they are stacked one after another they create a deeper model,
called Feed Forward Neural Network (FFNN), capable to capture higher level features.
The layers close to the input layer are usually called the lower layers, and the ones close to the
outputs are usually called the upper layers. With one hidden layer we can represent any contin-
uous function of the input data, and with two hidden layers even discontinuous functions can
be represented.
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Figure 3.3: Feed Forward Neural Network structure.

Feed Forward Neural Network models are computationally demanding due to the number
of connections, and have complexityO(mn) for each layer: for this reason they are usually used
as last layers to encode high level features, or as final outputs.

3.2.2 Convolutional Layer

Convolutional neural network (CNN) were inspired by the functionality of visual cortex and
are mainly known for their applications with two-dimensional data like for instance image
recognition. NeverthelessCNNs are not restricted to visual perception, they are also successful
at many other tasks, such as voice recognition, natural language processing and in general time
series analysis.

In the visual cortex neurons usually have a small local receptive field, reacting only to visual
stimuli located in a limited field of view. Other neurons instead have larger receptive fields, and
they react to more complex patterns that are combinations of the lower-level patterns. These
observations led to the idea that the higher-level neurons are based on the outputs of neighbor-
ing lower-level neurons.

The core building block of a CNN is the convolutional layer, a layer based on convolution,
a linear operation that involves the multiplication of a set of two dimensional array of weights,
called filter or kernel, with the array of input data.
This model allows the NN to focus on small low-level features in the first hidden layer, then
collects them into larger higher-level features in the next hidden layer, and so on.
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Figure 3.4: Basic CNN with a single layer convolutional block and pooling.

During the forward phase each convolutional kernel is convolved on its input producing a
two-dimensional activation map of that kernel. This map is called feature map.
Convolutional layers usually have more than one filter, returning in outputs one feature map
per filter.
Since a neuron receptive field extends across all the previous layers’ feature maps, the network
can learn through filters that activate when it detects some specific type of feature at some spa-
tial position in the input, characteristic that can be also defined as translation invariance.
Furthermore, in convolutional layers all neurons within a given feature map share the same
weights and bias term, reducing drastically the number of parameters in the model, that com-
bined with the lower number of connections required in convolutional layers, generally make
themmore efficient with respect to fully-connected ones.

Another important concept in CNNmodels is pooling, which is a type of non-linear down-
sampling, with the function to create a lower resolution version of the input signal, that still
contains the large or important structural elements. It also reduces the number of parameters
and memory usage.
The pooling layer has a receptive field but with no weights associated to it, it just aggregates
the inputs using an aggregation function. There are several non-linear functions to implement
pooling, among which max pooling is the most common. This last one partitions the input
image into a set of non-overlapping rectangles and, for each such sub-region, outputs the max-
imum.
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tion problems (equation 3.5).

tanh(x) =
ex − e−x

ex + e−x (3.5)

• Rectified Linear Unit function (ReLU): the function output is returned in the range
[0,∞), if the input is smaller than zero the function return as output zero while if the
input equal or greater than zero (x >= 0) the function will be linear returning as output
x. It is preferred to the Sigmoid and Tanh functions, because it greatly accelerates the
convergence during the training (equation 3.6).

ReLU(x) = max(0, x) (3.6)

• LeakyRectified Linear Unit function (LeakyReLU): it is based on the ReLU, but it has
a small slope for negative values instead of a flat slope. In this way the function output
is returned in the range (-∞,∞). Having a small negative slope is one attempt to fix the
problem that in some cases affect the ReLU, when his gradient tend to converge to zero.

3.2.4 Loss Functions

The loss function is used to compute the difference distance between the output of aDLmodel
and the expected output. It’s a method to evaluate how your network models the data.
The purpose in the majority of the cases is to minimize or maximize loss by updating the net-
work weights with an optimization algorithm. The loss function has to be chosen according
to the problem that we want out model to perform: for a regression task is usually used Mean
Absolute Error (MAE) or Mean Squared Error (MSE) while for binary class classification task
is used the Binary Cross Entropy (BCE) (equations , , ).

MAE =
1
N

∑

i

|yi − ŷi| (3.7)

MSE =
1
N

∑

i

(yi − ŷi)
2 (3.8)

BCE = −
1
N

∑

i

yi · log(P(yi)) + (1− yi) · log(1− P(yi)) (3.9)

26



3.2.5 Optimizers

An optimization algorithm is a procedure computed iteratively, used to minimize a derivable
convex function obtained as output of a deep learning model. The principle behind optimiza-
tion is the fact that the gradient is point towards the direction of the largest increase of the
function in the region close to w and this implies that moving in the opposite direction equals
to moving towards a minimum point.

Gradient Descent (GD) is one of the most used optimization algorithms to optimize deep
learning models. The aim of gradient Descent is to minimize the target function J(Θ), with
the model parameter Θ ∈ Rd. The parameters are updated in the opposite direction of the
gradient of the objective function∇ΘJ(Θ) with respect to the parameters.
The parameter η is the learning rate and is used to control the step-size in each update.
Since the classic GD computes the gradients for the whole dataset to perform single update, it
can be very slow when applied to large datasets. For this reason in this case is more optimal to
apply the Stochastic Gradient Descent (SGD) optimization algorithm, that computes an up-
date for a subset of the training samples instead.
It is faster compared to GD and allows to learn with new examples on-the-fly, but it is also less
stable [50].

A relevant problemwith all the gradient descentmethods discussed above, is the long time it
takes for the algorithm to update significantly when the gradient is small, for example around
a saddle point. To solve this problem is used the idea of momentum incorporated to gradient
descent.
Momentum is a parameter used to accelerate descent in the relevant direction by adding a frac-
tion γ of the update vector of the past steps to the current update. In this way if the updates
points on the same direction formultiple iterations, theywill be accumulated and the updating
step size is increased by the momentummultiplier [51] [50].

Nesterov accelerated gradient (NAG) is a method that implement concept of the momen-
tum (momentum-based gradient descent) but improving his capabilities to predict and ”slow
down”when the gradient is about to increase again after aminima. Standardmomentum com-
putes first the current gradient and then takes a big jump in the direction of the previous ac-
cumulated gradient. Differently, NAG firstly move with a big update in the direction of the
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Figure 3.6: Representation of the difference between the use of momentum in gradient descent.

previous accumulated gradient, then estimates the next position of the parameters and makes
a correction in the gradient direction, avoiding to moving too fast [52].

AdaptiveMoment Estimation (ADAM) is a second order optimizer that computes adaptive
learning rates for each parameter, keeping an exponential decaying average variable, obtained
from the estimates of themean and variance of the past squared gradients [52] [53]. ADAMbe-
comemore popular due to the faster convergence speed respect toGradientDescent, even if on
longer training GD has shown better generalization. Nesterov Accelerated Adaptive Moment
Estimation (NADAM)combinesADAMandNAG,with the idea to compute an accurate step
in the gradient, assisting the ADAMoptimizer with the generalization capabilities of Gradient
Descent [53].

3.3 U-Net

The U-NET is an end-to-end fully convolutional network (FCN) firstly developed by Olaf
Ronneberger in [54] in order to work on biomedical images segmentation. The architecture
contains two paths. First path is the contraction path, also called as the encoder, which is used
to capture the context in the image. The encoder is just a standard sequence of convolutional
layers and max pooling layers. The second path is the symmetric expanding path, also called as
the decoder, which is used to enable precise localization using transposed convolutions.
The name comes from the ”U” shape structure, where the input passmultiple down-sizing and
expanding stage. In figure 3.7 is represented the original U-Net model structure.
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Figure 3.7: Original U‐Net model structure. It present 4 down/up sampling stages.

29



30



4
Methodology

4.1 Dataset

4.1.1 MIMIC Clinic Database

In recent years there has been a concerted move towards the adoption of digital health record
systems in hospitals. In the US, for example, the number of non-federal acute care hospitals
with basic digital systems increased from 9.4 to 75.5% over the 7 year period between 2008 and
2014 [55].

To evaluate how PPG and ABP are related was used the Multi-Parameter Intelligent Mon-
itoring in Intensive Care (MIMIC-III) waveform database, because of his size and relevance
in past works, and also because the MIMIC collection of signals are representative of the full
range of pathophysiologies that result in sudden blood pressure changes [21].
MIMIC is a large, freely-available database comprising deidentified health-related data associ-
ated with over forty thousand patients who stayed in critical care units of the Beth Israel Dea-
coness Medical Center (Boston, Massachusetts, United States) between 2001 and 2012. The
database includes information such as demographics, vital signmeasurementsmade at the bed-
side (∼ 1 data point per hour), laboratory test results, procedures, medications, caregiver notes,
imaging reports, and mortality (including post-hospital discharge) [56].
MIMIC-III waveform is a subset of the MIMIC database which contains 67,830 records of
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Figure 4.1: Part of record 3460718 visualized using LightWAVE. ECG, ABP and PPG waveform are present.

multiple physiologic signals (“waveform”) and time series of vital signs (“numerics”) collected
from approximately thirty thousand bedside patient, in adult and neonatal intensive care units
(ICUs).
Waveform almost always include one ormore types of ECG signals, and often include continu-
ous arterial bloodpressure (ABP)waveform, fingertipphotoplethysmogram (PPG) signals, and
respiration, with additionalwaveform (up to 8 simultaneously) as available. Numerics typically
include heart and respiration rates, SpO2, and systolic, mean, and diastolic blood pressure, to-
gether with others as available. Recording lengths also vary; most are a few days in duration,
but some are shorter and others are several weeks long [57].
The recordings vary in length from 1 to 80 hours depending on patients. The data obtained
from the bedside monitors are divided into files each containing 10 minutes of recorded sig-
nals, which can then be assembled without gaps to form a continuous recording. The data
were written in ten-minute segments in order to limit possible loss of data from power inter-
ruptions. The ECG, PPG and ABP signals are sampled at 125 Hz with 8, 10 or 12-bit preci-
sion. It is common for the physiologic signals to be interrupted or changed occasionally during
recordings of such long duration. When using a viewer such as LightWAVE (Figures 4.1, 4.2),
all signals available at any time during a record are listed, although in most cases only a subset
is visible at any given time.
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Figure 4.2: Part of record 3605744 visualized using LightWAVE. All 8 possible waveform are present in this record,
including respiration rates, different ECG and BP signals.

4.2 Data pre-processing and augmentation

Since the total uncompressed size of the MIMIC-III waveform database is large (6.7 TB), ini-
tially the data extraction of this work planned to code an automatic algorithm based on the
WFDB python library, with the possibility to discard every record without the requested sig-
nals.
However during this implementation we discovered some technical limitation related to the
use of this database: waveform or numerics missing, a signal could not be available throughout
an entire record, gaps and patient identification, but above all, inter-waveform alignment prob-
lems and not uniform bit-rate.
For this reason, in this work has been decided to use the Cuff-Less Blood Pressure Estimation
Dataset [58] from the UCI Machine Learning Repository [59]. The UCI Dataset is a filtered
version of the MIMIC-III Waveform database, only the instances presenting simultaneously
ABP, PPG, and ECG signals where filtered, resulting in 12000 records of 942 patients.

The selected records of the UCI Dataset were uniformly divided into four parts, each part
containing 3000 instances, and the data is available in MATLAB file format (.mat).
After the data loading and removing the ECG waveform from the records, were performed
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Figure 4.7: PPG and ABP signal slicing.

baseline drift removal algorithm used in the second method resulted too impactful on the sig-
nal dynamic where simply filtering the lower frequencies could obtain it with more success.

The second phase of the processing pipeline was windowing both the PPG and the ABP sig-
nals. The PPG and ABP signals were divided into windows of 350 samples sequentially, with
overlapping of 100 samples (Figure 4.7) [26].

After windowing the signals, for each segment was performed a bad signal detection. This
algorithm check if both the PPG and the ABP segments presents anomalies such as flat lines
and/or flat peaks, and if theABP segment has dysfunctional systolic or diastolic pressure values,
or if they present anomalies with the frequency of the peaks (Figure 4.8). The segments which
presented these type of anomalies were thus discarded.
Flat lines are usually indication of a device disconnection during the parameter measurement,
or an incorrect memory saving of the signal while flat peaks reveal the saturation of the signal.
In order to detect these problems is checked if are present 6 consecutive samples (2% of the
total segment length) with unchanged values.
In order to detect ABP segments with missing peaks has been used a find-peaks function that
given an one dimensional array, finds all local maxima by simple comparison of neighboring
values. With the list of peaks values, the algorithm simply checked if the time between a peak
and the next was greater than 5 seconds [24]. In that case the anomaly was detected.

Then the algorithm check the systolic and diastolic range in the ABP segments. In [58] are
considered only signals with a range of (60 mmHg ≤ DBP ≤ 130 mmHg) and (80 mmHg ≤
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Figure 4.8: Representation of flat lines and saturated peaks in ABP waveforms.

Min Max Mean Std
SBP 68.40 199.99 133.79 22.91
DBP 50.00 174.49 63.85 10.76
MAP 58.49 184.99 88.84 13.73

Table 4.1: Distribution of the dataset ABP

SBP ≤ 180 mmHg). However in this work, similarly to [66] we wanted to set our algorithm
on a broader range of pressure segments since a real-world application scenario might exhibit
extremely small and high BP values. Therefore, we considered signals with DBP as low as 50
mmHg and as hight as 140, and SBP as low as 70 and high as 190 mmHg.
The distribution of the dataset ABP are presented also in Table 4.1. It can be observed that the
systolic pressure has a greater value of standard deviation; as stated in [58] this large range is
more likely to cause difficulties when computing a SBP prediction.

The fourth phase in the preprocessing pipeline is the phase-matching between the PPG seg-
ment and the corresponding target ABP segment.
In order to compute the location difference between the two signal windows, cross-correlation
was performed. The sample position indicated by the maximum value of the cross-correlation
indicates the time lag between the two segments. Keeping the position PPG window fixed the
ABP signal was then translated by the computed time difference. In figure 4.11 is represented
the effect of the time-shift processing on the PPG and ABP windows.
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After phase-matching the segments, both the PPG and ABP signals were further windowed
into 256 sample segments. This is due the fact that the tried architectures is 256 as input size.
In this way the total time duration of each window is 2.048 s.

Finally the PPG and ABP segments were normalized using the equation 4.1 where xi refers
to i-th signal window, and xmax and xmin are the respectively maximum and minimum values
of all the signals after the filtering and bad signal detection process. The normalized PPG and
ABP are then stored in order to prepare the train validation and test dataset.
Since the training setup in use has very limited computational limits compared to themachines
used in the recent studies, withonly a gtx1060GPUand6GBofRAM, after thepre-processing
pipeline the segments were saved in .h5 format. This prevents some of the computational prob-
lems, reducing the processor memory usage that will otherwise overflow interrupting the pro-
cess.

Xnormalized(i) =
xi − xmin

xmax − xmin
(4.1)

The SBP andDBP distribution after the processing pipeline is represented in the figures 4.9
and 4.10.
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4.3 Deep LearningModels

4.3.1 BaseUnet

The models have been implemented using the Anaconda framework. The main dependencies
of the work are: Python 3.9, cudatoolkit 11.3.1, cudnn 8.2.1, tensorflow 2.9.1 and pytorch
1.12.0.
The setup includes a single machine with a gtx1060 GPUwith 6 GB of GDDR5 RAM.
Though the original U-Net is designed to perform semantic segmentation on images, for our
purpose, we tried to follow the recent trends of models for this type of problem, using this ar-
chitecture to reconstruct 1-dimensional signals, which is primarily a regression task. The scope
of the modeling phase was to find the best performing U-Net architecture which can be used
as an autoencoder for optimum feature extraction.

The first configuration implemented is a UNet with some modifications respect to the one
used in [67].
The coded model is represented in 4.1. The structure present:

• The input of the network is a PPG signal with a length of 256 samples of 1 dimensional
(1D) convolution layer.

• On each layers are applied two 3 × 1 convolution layers with a Leaky Rectified Linear
Unit activation function, Max pooling and batch normalization.
The Leaky ReLU activation function was used to avoid the dying ReLU problem.

• The number of feature channels after each block doubles in the contracting path so that
the architecture can learn the complicated structures effectively. As the original model,
the structure present a total of 4 down and up sampling stages. The respective features
for contracting phase are 64 in input, 128, 256, 512, 1024.

• The bottleneck present two 3 × 1 convolution layers followed by a 2 × 1 up-sampling
layer. This path can create a feature space able to generates relevant features.

• A dropout block of 50% has been applied at the last layers of the contracting path and
on bottleneck path in order to reduce the overfitting of the model.

• The expansion path is symmetric to the contracting one, each expansion block passes the
input to one 2× 1 and two 3× 1 convolution layers followed by a LeakyReLU activation
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function after each convolution layer and a 2 × 1 up-sampling layer. The number of
feature channels used in the expansion path is halved to maintain symmetry.

• Finally, at the last expansion path, two extra 3 × 1 convolution layers are used to map
each 64 feature vector equal to the input dimension. Using this network, the PPG signal
window of 256 samples is mapped into the ABP signal window of 256 samples.

Has been used 70% of the four .mat dataset total data for training our model, 15% for val-
idation, and the remaining 15% for testing. Previous shuffling at fixed random seed has been
performed on the dataset.

1 def DUnet(input_size = (256,1)):
2

3 inputs = Input((input_size))
4

5 conv1 = Conv1D(64, 3, activation = 'leaky_relu', padding = 'same',
kernel_initializer = 'he_normal')(inputs)

6 conv1 = Conv1D(64, 3, activation = 'leaky_relu', padding = 'same',
kernel_initializer = 'he_normal')(conv1)

7 pool1 = MaxPooling1D(pool_size=(2))(conv1)
8 conv2 = Conv1D(128, 3, activation = 'leaky_relu', padding = 'same',

kernel_initializer = 'he_normal')(pool1)
9 conv2 = Conv1D(128, 3, activation = 'leaky_relu', padding = 'same',

kernel_initializer = 'he_normal')(conv2)
10 pool2 = MaxPooling1D(pool_size=(2))(conv2)
11 conv3 = Conv1D(256, 3, activation = 'leaky_relu', padding = 'same',

kernel_initializer = 'he_normal')(pool2)
12 conv3 = Conv1D(256, 3, activation = 'leaky_relu', padding = 'same',

kernel_initializer = 'he_normal')(conv3)
13 pool3 = MaxPooling1D(pool_size=(2))(conv3)
14 conv4 = Conv1D(512, 3, activation = 'leaky_relu', padding = 'same',

kernel_initializer = 'he_normal')(pool3)
15 conv4 = Conv1D(512, 3, activation = 'leaky_relu', padding = 'same',

kernel_initializer = 'he_normal')(conv4)
16 drop4 = Dropout(0.5)(conv4)
17 pool4 = MaxPooling1D(pool_size=(2))(drop4)
18

19 conv5 = Conv1D(1024, 3, activation = 'leaky_relu', padding = 'same',
kernel_initializer = 'he_normal')(pool4)

20 conv5 = Conv1D(1024, 3, activation = 'leaky_relu', padding = 'same',
kernel_initializer = 'he_normal')(conv5)
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21 drop5 = Dropout(0.5)(conv5)
22

23 up6 = Conv1D(512, 2, activation = 'leaky_relu', padding = 'same',
kernel_initializer = 'he_normal')(UpSampling1D(size = (2))(drop5))

24 merge6 = concatenate([drop4,up6], axis = 2)
25 conv6 = Conv1D(512, 3, activation = 'leaky_relu', padding = 'same',

kernel_initializer = 'he_normal')(merge6)
26 conv6 = Conv1D(512, 3, activation = 'leaky_relu', padding = 'same',

kernel_initializer = 'he_normal')(conv6)
27

28 up7 = Conv1D(256, 2, activation = 'leaky_relu', padding = 'same',
kernel_initializer = 'he_normal')(UpSampling1D(size = (2))(conv6))

29 merge7 = concatenate([conv3,up7], axis = 2)
30 conv7 = Conv1D(256, 3, activation = 'leaky_relu', padding = 'same',

kernel_initializer = 'he_normal')(merge7)
31 conv7 = Conv1D(256, 3, activation = 'leaky_relu', padding = 'same',

kernel_initializer = 'he_normal')(conv7)
32

33 up8 = Conv1D(128, 2, activation = 'leaky_relu', padding = 'same',
kernel_initializer = 'he_normal')(UpSampling1D(size = (2))(conv7))

34 merge8 = concatenate([conv2,up8], axis = 2)
35 conv8 = Conv1D(128, 3, activation = 'leaky_relu', padding = 'same',

kernel_initializer = 'he_normal')(merge8)
36 conv8 = Conv1D(128, 3, activation = 'leaky_relu', padding = 'same',

kernel_initializer = 'he_normal')(conv8)
37

38 up9 = Conv1D(64, 2, activation = 'leaky_relu', padding = 'same',
kernel_initializer = 'he_normal')(UpSampling1D(size = (2))(conv8))

39 merge9 = concatenate([conv1,up9], axis = 2)
40 conv9 = Conv1D(64, 3, activation = 'leaky_relu', padding = 'same',

kernel_initializer = 'he_normal')(merge9)
41 conv9 = Conv1D(64, 3, activation = 'leaky_relu', padding = 'same',

kernel_initializer = 'he_normal')(conv9)
42 conv9 = Conv1D(2, 3, activation = 'leaky_relu', padding = 'same',

kernel_initializer = 'he_normal')(conv9)
43 conv10 = conv10 = Conv1D(1, 1)(conv9)
44

45 model = Model(inputs=[inputs], outputs=[conv10])
46

47 model.summary()
48
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49 return model

Listing 4.1: UNet architecture

4.3.2 DUNet

Another configuration implemented is a different U-Net variation. It also present 4 down/up
sampling stages, the number of feature utilised are reduced to 16, 32, 64, 128, 256, in order to
decrease the computational complexity of themodel and the time needed to the training phase.
For both the contraction and the expanding phase has been chosen two 3 × 1 convolution lay-
ers, followed by batch normalization. ReLu activation has been chosen 4.2.

1 def UNet(length=256, n_channel=1):
2

3 x = 16
4

5 inputs = Input((length, n_channel))
6 conv1 = Conv1D(x,3, activation='relu', padding='same')(inputs)
7 conv1 = BatchNormalization()(conv1)
8 conv1 = Conv1D(x,3, activation='relu', padding='same')(conv1)
9 conv1 = BatchNormalization()(conv1)
10 pool1 = MaxPooling1D(pool_size=2)(conv1)
11

12 conv2 = Conv1D(x*2,3, activation='relu', padding='same')(pool1)
13 conv2 = BatchNormalization()(conv2)
14 conv2 = Conv1D(x*2,3, activation='relu', padding='same')(conv2)
15 conv2 = BatchNormalization()(conv2)
16 pool2 = MaxPooling1D(pool_size=2)(conv2)
17

18 conv3 = Conv1D(x*4,3, activation='relu', padding='same')(pool2)
19 conv3 = BatchNormalization()(conv3)
20 conv3 = Conv1D(x*4,3, activation='relu', padding='same')(conv3)
21 conv3 = BatchNormalization()(conv3)
22 pool3 = MaxPooling1D(pool_size=2)(conv3)
23

24 conv4 = Conv1D(x*8,3, activation='relu', padding='same')(pool3)
25 conv4 = BatchNormalization()(conv4)
26 conv4 = Conv1D(x*8,3, activation='relu', padding='same')(conv4)
27 conv4 = BatchNormalization()(conv4)
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28 pool4 = MaxPooling1D(pool_size=2)(conv4)
29

30 conv5 = Conv1D(x*16, 3, activation='relu', padding='same')(pool4)
31 conv5 = BatchNormalization()(conv5)
32 conv5 = Conv1D(x*16, 3, activation='relu', padding='same')(conv5)
33 conv5 = BatchNormalization()(conv5)
34

35 up6 = concatenate([UpSampling1D(size=2)(conv5), conv4], axis=2)
36 conv6 = Conv1D(x*8, 3, activation='relu', padding='same')(up6)
37 conv6 = BatchNormalization()(conv6)
38 conv6 = Conv1D(x*8, 3, activation='relu', padding='same')(conv6)
39 conv6 = BatchNormalization()(conv6)
40

41 up7 = concatenate([UpSampling1D(size=2)(conv6), conv3], axis=2)
42 conv7 = Conv1D(x*4, 3, activation='relu', padding='same')(up7)
43 conv7 = BatchNormalization()(conv7)
44 conv7 = Conv1D(x*4, 3, activation='relu', padding='same')(conv7)
45 conv7 = BatchNormalization()(conv7)
46

47 up8 = concatenate([UpSampling1D(size=2)(conv7), conv2], axis=2)
48 conv8 = Conv1D(x*2, 3, activation='relu', padding='same')(up8)
49 conv8 = BatchNormalization()(conv8)
50 conv8 = Conv1D(x*2, 3, activation='relu', padding='same')(conv8)
51 conv8 = BatchNormalization()(conv8)
52

53 up9 = concatenate([UpSampling1D(size=2)(conv8), conv1], axis=2)
54 conv9 = Conv1D(x, 3, activation='relu', padding='same')(up9)
55 conv9 = BatchNormalization()(conv9)
56 conv9 = Conv1D(x, 3, activation='relu', padding='same')(conv9)
57 conv9 = BatchNormalization()(conv9)
58

59 conv10 = Conv1D(1, 1)(conv9)
60

61 model = Model(inputs=[inputs], outputs=[conv10])
62

63 return model

Listing 4.2: DUNet architecture
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4.3.3 LiteUnet

Due to the problems had with computational complexity required on the previous one, the
third model implemented is a lite version of the last architecture 4.3.
It present two reduced down/up sampling stages. The number of feature channels after each
block has been increased to still maintain the feature learning capabilities of the model. They
are respectively 32, 64, 128. The convolutional setting configuration remains the same of the
first implemented UNet model.

1 def UNetLite(length = 256, n_channel=1):
2

3 inputs = Input((length, n_channel))
4 conv1 = Conv1D(32,3, activation='relu', padding='same')(inputs)
5 conv1 = BatchNormalization()(conv1)
6 conv1 = Conv1D(32,3, activation='relu', padding='same')(conv1)
7 conv1 = BatchNormalization()(conv1)
8 pool1 = MaxPooling1D(pool_size=2)(conv1)
9

10 conv2 = Conv1D(64,3, activation='relu', padding='same')(pool1)
11 conv2 = BatchNormalization()(conv2)
12 conv2 = Conv1D(64,3, activation='relu', padding='same')(conv2)
13 conv2 = BatchNormalization()(conv2)
14 pool2 = MaxPooling1D(pool_size=2)(conv2)
15

16 conv3 = Conv1D(128,3, activation='relu', padding='same')(pool2)
17 conv3 = BatchNormalization()(conv3)
18 conv3 = Conv1D(128,3, activation='relu', padding='same')(conv3)
19 conv3 = BatchNormalization()(conv3)
20 pool3 = MaxPooling1D(pool_size=2)(conv3)
21

22

23

24 up8 = concatenate([UpSampling1D(size=2)(conv3), conv2], axis=2)
25 conv8 = Conv1D(64, 3, activation='relu', padding='same')(up8)
26 conv8 = BatchNormalization()(conv8)
27 conv8 = Conv1D(64, 3, activation='relu', padding='same')(conv8)
28 conv8 = BatchNormalization()(conv8)
29

30 up9 = concatenate([UpSampling1D(size=2)(conv8), conv1], axis=2)
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31 conv9 = Conv1D(32, 3, activation='relu', padding='same')(up9)
32 conv9 = BatchNormalization()(conv9)
33 conv9 = Conv1D(32, 3, activation='relu', padding='same')(conv9)
34 conv9 = BatchNormalization()(conv9)
35

36 conv10 = Conv1D(1, 1)(conv9)
37

38 model = Model(inputs=[inputs], outputs=[conv10])
39

40 return model

Listing 4.3: LiteUNet architecture
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5
Hyperparameters and experimental results

We report the metrics obtained from the training and validation set with the different models.
Multiples configuration of parameters has been tried on the different networks architectures.
The best configuration tried on the first network featured the use of Adam with 0.0001 learn-
ing rate as optimizer, 40 epochs, batch size = 8, Mean Square Error (MSE) as loss (Figure 5.1).
We kept low learning rate due to the small batch size, to avoid unstable fluctuations. For each
epoch we decided to save the model only if the performance in test-set is better than the pre-
vious, in order to avoid over-fit. Already with 40 max iterations the full process lasted about
an day, while the training loss had still to fully converge, the test MSE settled on around 200
pretty quickly. For this reason, selecting a larger iteration number would lead only to a more
overfitting network.

On the second network has been tried a configuration with Adamwith 0.0008 learning rate
as optimizer, 45 epochs, batch size = 8, Mean Square Error (MSE) as loss (Figure 5.2).
Unfortunately this training process did not produced better result, computing for almost 2
days but failing to converge after few epochs.

In order to reduce the computational complexity and to have a model with faster training
phase has been tried the lite U-Net configuration using both a larger batch size and learning
rate and slighter increase number of iterations: Adamwith 0.001 learning rate as optimizer, 50
epochs, batch size = 32, Mean Square Error (MSE) as loss (Figure 5.3).
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Figure 5.8: BaseUNet architecture
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Figure 5.9: DUNet architecture
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Figure 5.10: LiteUNet architecture
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6
Conclusion

In this work we studied the use of Deep Learning models, in particular Deep Convolutional
U-Net architectures, for the prediction of the arterial blood pressure (ABP) directly from the
photoplethysmography (PPG) signal. We then implemented different U-Netmodels that took
256 samples PPG segments, computing the ABP prediction.

We briefly introduced the ABP measuring methods and his problems, as well as providing
context to the related works and to state of the art methods used in this type of problem.
Then has been briefly described the medical background of this work, more specifically to the
arterial blood pressure, his monitoring and the implications that hypertension have on the hu-
man health, as well as describing the photoplethysmography measurement and his waveform.
Later we introduced the basic concepts ofMachine Learning andDeep Learning, in particular
describing the main components used on Deep Convolutional Neural Networks.

We then explained the pipeline used for the dataset acquisition and the data processing, start-
ing from the raw set of signals of the MIMIC-III database, data pre-processing and data aug-
mentation. We developed several U-Net based models, trying to improve the performance to
better results, still keeping an eye to the complexity of each architecture, given the quite low
computational potential of our experimental setup.
For this reason has been tried also lighter versions of some models, presenting a least number
of variables.
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The best performing model is a variant of the first implemented, BaseUNet, that received in
input 1024 samples segments instead of 256 samples ones, resulting in a prediction of Mean
Absolute Error (MAE) of 42.96 [mmHg] for SBP, 27.82 forDBP and 9.56 for theMAP value.

Since this type of Deep Learning data-basedmodels are very dependent on the quantity and
quality of the data in input is quite possible to imagine an improved version of the model pre-
sented.
Future developments can obtain better results not only by increasing the size of the dataset but
also considering more complex configurations and processing pipelines, possible by more per-
forming experimental setups.
In future studies will be crucial also to find a balance between model complexity and perfor-
mances, in order to consider an architecture that could be embedded in wearable portable de-
vices. This would bring an important advancement in the field, enabling an easy method to
perform continuous healthcare monitoring of arterial blood pressure, to prevent the onset of
irreversible damages, such us cardiovascular diseases and hypertension.
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