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Abstract

The discovery of new sequencing technologies, with the consequent reduction
of the cost of sequencing and the increasing interest on rare genetic variants,
are pushing the research community towards the analysis of bigger and big-
ger datasets. Such data should be 1) compressed efficiently, in order to be
storable occupying the minimum space and transmissible minimizing time,
and 2) fast to retrieve, in order to minimizing data processing time.
For those reasons it is important to improve the performance of compression
algorithms specifically designed to handle genetic data.
This thesis presents several improvements to SNPack 1.0, a state of the art
algorithm for compressing and retrieving SNP data, designed for large scale
association studies.
The algorithm has been improved in terms of compression time, compression
ratio, loading time and type of data that can be handled. In fact, two of
those improvements works on the compression algorithm leading the library
to compress SNP data sparing a great amount of time and, at the same time,
increasing the compression ratio. The lower loading time is a consequence of
the smaller compressed data size.
The third of those improvements is an extension of the kinds of variants that
can be compressed, in fact it has been designed and developed an algorithm
for the compression of the other kinds of variants (such as multiallelic vari-
ants and structure variants) to provide a more complete library.
The new SNPack version is compared with several state of the art algorithms
on the 1000G phase 3 release dataset, which is a detailed catalogue of human
genetic variations consisting of 84801880 variants typed for a population of
2504 human individuals from 26 different populations.
A comparison with SNPack 1.0 exhibits a drastic reduction of the compres-
sion time and, simultaneously, an increment of the compression factor. This,
indirectly affects the loading time, which is reduced because of the smaller
file size.
Also the comparison with the other formats and tools highlights the supe-
rior performance of the new SNPack version for the compression on both the
biallelic and the multiallelic variants.



2



Introduction

A genome-wide association study (GWAS) [Bush and Moore, 2012] analyses
large sets of common and rare genetic variants in different individuals to find
some significant correlation between some of those variants (typically SNPs)
and a specific phenotypic trait (typically a disease).
The SNP (single nucleotide polymorphism) is the most common type of ge-
netic variant and it consists in the mutation of a single nucleotide in the
genome. New technologies for the sequencing of the DNA (the Next Genera-
tion Sequencing [Grada and Weinbrecht, 2013]) allow to easily produce huge
amounts of GWAS data that can lead to the discovery of new associations
between variants and traits.
The increasing amount of data brings to the pressing need for efficiently com-
pression and fast retrieval of GWAS data. The popular genome wide analysis
tool PLINK has introduced the binary PED (BED) format, which uses only
two bits to store one genotype for one subject. This compression factor is
not always sufficient, since the increasing dataset size can anyhow reach tens
of Gigabytes on disk.
In the literature there are many algorithms for the storage of genome data
of a small number of subjects [Brandon et al., 2009; Wang and Zhang, 2011;
Christley et al., 2009]. Those methods usually store a reference genome and
a map containing all the genetic variations and are not much efficient for the
compression of GWAS data, which comprise bigger number of subjects and
where the proportion of identical base pairs between subjects is lower.
Qiao et al. [2012] proposed SpeedGene which can compress biallelic SNPs.
The genotype data is stored one SNP at a time and each of them is com-
pressed using the best performing among three coding algorithms on the
basis of the frequency of the SNP alleles. In fact, for each SNP, SpeedGene
at first evaluates the space on disk required to store the SNP with each of the
three compressing code, then it adopts the best performing one. The tool
has been revealed good for compressing GWAS data and does not require
the entire decompression to access a specific part of the genotype.
Sambo et al. [2014] proposed SNPack 1.0, a library based on an algorithm
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which inherits and improves the SpeedGene compressing algorithms, further-
more it exploits the strong local similarity of the SNP data to ensure a more
compact representation.
This thesis will present several improvements to SNPack 1.0 which make it
more efficient and more complete.
In particular, those improvements lead the library to compress SNP data
sparing a great amount of time and, at the same time, increasing the compres-
sion factor. Furthermore, the reduced compressed file size leads, indirectly,
to a smaller loading time. All those improvements are produced without
changing the file format, i.e. from a compressed file is impossible to know if
it is built by SNPack 1.0 or by this new version.
In addition, it has been designed and developed an algorithm for the compres-
sion of the other kinds of variants (such as multiallelic variants and structure
variants) to provide a more complete library.
The new SNPack version is compared with the state of the art algorithms on
the 1000G phase 3 release dataset, which is a detailed catalogue of human
genetic variations consisting of 84801880 variants typed for a population of
2504 human individuals from 26 different populations.
The obtained results show the outstanding performance of the new SNPack
version. A comparison with SNPack 1.0 exhibits a drastic reduction of the
compression time and, simultaneously, an increment of the compression fac-
tor. Also the comparison with the other formats and tools highlights the
superior performance of the new SNPack version for the compression on both
the biallelic and the multiallelic variants, in fact it performs better on each
of the performance parameter took in consideration (which are compression
time, loading time and storage space).
This thesis is composed of 5 chapters: Chapter 1 briefly summarizes the
minimal biology notions which are essential to understand the mechanisms
at the basis of the algorithms treated on this essay. Chapter 2 describes the
main characteristics of the state of the art algorithms for compressing and
retrieving genetic data, among which SNPack 1.0, the algorithm improved by
the work described on this thesis. Chapter 3 illustrates the different improve-
ments developed during this work. Chapter 4 describes the dataset adopted
for the tests, what kind of tests has been conducted and what performance
parameters are taken in consideration. At last, it analyses the results ob-
tained by the tests.



Chapter 1

The DNA structure

This chapter briefly summarizes the minimal biology notions which are es-
sential to understand the mechanisms at the basis of the algorithms treated
on this essay. The information reported in this chapter are taken from [Neri
and Genuardi, 2010] and [Allison, 2011], further reading on this topics may
be found in the cited text as in any other genetic textbook.

1.1 The DNA
The DNA (acronym for deoxyribonucleic acid) is a molecule that encodes the
genetic instructions used in the development and functioning of all known
living organisms and many viruses.
It is a long chain of repetitive elements called nucleotides: each nucleotide is
composed of:

• One pentose (which is a monosaccharide sugar with 5 atoms of carbon):
the deoxyribose

• One phosphate group that gives the property of acid

• One nucleobase (or nucleotide base). The nucleobases are only four and
are divided in two subcategories: the purines (adenine and guanine)
and the pyrimidines (cytosine and thymine)

Therefore the DNA can be viewed like a very long string, unique for each liv-
ing organism, where the characters are only four: A (adenine), G (guanine),
C (cytosine) and T (thymine).
In the long chain of DNA can be identified sequences of three adjacent nu-
cleotides called codons. Each codon can correspond to a single amino acid
which is the basic element of the protein, or it can correspond to a starting
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or stopping signal. In fact each protein starts with a start codon, followed
by a sequence of amino acid codons and it ends with a stop codon.
DNA generically exists as two interwound strands, indeed two complemen-
tary strands in opposite directions are paired and bound by hydrogen bonds
between the nucleobases. Adenine normally pairs with thymine and guanine
pairs with cytosine. Due to this pairing, the basis lying on a strand are a
sort of mirror image of the basis on the other strand hence the genetic infor-
mations carried by the two strands are the same.
The results of this pairing is the well known shape of the double helix [Wat-
son et al., 1953].
As stated before, the DNA is a very long chain, indeed the cellular DNA can
be many hundred million nucleotides long, as the human DNA is long more
than 3 billion pairs. The number of base pairs bp is thereby used as a metric
of DNA length but, due to the size of the DNA chain, in practice the unit of
length is either the kilobase (kb or kbp) or the megabase (Mb or Mbp).

1.2 Genome organization

DNA is organized in chromosomes which are thread like structures composed
mostly by proteins and DNA. Eukaryotic organisms such as human store the
chromosomes in the the cell nucleus.
Human DNA has 23 pairs of chromosomes: one pair of sex chromosomes,
which keeps most of the genetic traits linked to the sex of the individual and
22 pairs of autosomes, which contain all the other genetic hereditary infor-
mation. Each chromosome is formed by non-coding and coding sequences
(which are about only the 3% of the entire genome), the latter of the two are
composed mostly by genes.
A gene can be considered the basic unit of heredity of a living organism, it
holds the information to build and maintain an organism’s cells and to pass
genetic traits to the offspring. Every human has two copies for each gene,
one inherited from each parent.
Most genes are the same for each people but a small part (less than 1%)
changes from a person to another one and the different variants of those
genes are called alleles.
The specific position of a gene (and of course, of an allele) on the chromo-
some is named locus (plural loci).
In a certain locus, each individual has two alleles: one belongs to the maternal
chromosome and one belongs to the paternal chromosome. The information
about which of the two alleles belongs to the maternal chromosome and which
belongs to the paternal chromosome is called phase.
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If, in a certain locus, the two alleles are different, the individual is said het-
erozygous, otherwise is said homozygous.
The complete set of genetic information in a organism is called genotype.
This is to be distinguished from the phenotype, that is the organism’s actual
observable properties, such as morphology, development or behaviour.

1.3 Mutations
The 99,9% of the human genome is the same for each person. In the remain-
ing 0.1% lies the genetic code which is responsible for the trait differences
between individuals. Therefore, on average between two people one base pair
over one thousand is different and, because the DNA base pairs are more than
6 billions, between two people there are more than 3 million different base
pairs.
Those differences are caused by some genetic variations which can be classi-
fied in this way:

• Small scale mutations: mutations that affect a gene in one or few nu-
cleotides. Those mutations are subdivided in:

◦ Point mutations: this kind of mutations affect one single nu-
cleotide. A point mutation occurring in a protein coding region
can be classified in three type, depending upon what erroneous
codon codes for.

� Silent mutations: it codes for the same amino acid. In this
case the coded protein will be the same.
� Missense mutations: it codes for a different amino acid.
� Nonsense mutations: it codes for a stop codon and can trun-

cate the protein.

◦ Insertions: in this case one or more nucleotides are added in the
DNA.

◦ Deletions: one or more nucleotides are deleted from the DNA.

• Large scale mutations: those mutations involve the chromosomal struc-
ture.

◦ Amplifications: duplications of an entire chromosomal region, lead-
ing to multiple copies of all the genes in these regions

◦ Deletions: deletions of a large chromosomal region, leading to loss
of the genes within those regions
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◦ Mutations: whose effect is to juxtapose previously separate pieces
of DNA.

� Chromosomal translocations: interchanges of genetic parts
from non-homologous chromosomes.
� Interstitial deletions: an intra-chromosomal deletion that re-

moves a segment of DNA from a single chromosome, thereby
apposing previously distant genes.
� Chromosomal inversions: reversing the orientation of a chro-

mosomal segment.

◦ Loss of heterozygosity: loss of one allele in an organism that pre-
viously had two different alleles.

1.3.1 Single Nucleotide Polymorphism

A single nucleotide polymorphism (SNP, pronounced snip) is a point muta-
tion occurring commonly within a population (e.g. 1%) in which a single
nucleotide differs between individuals of the same species. Theoretically, a
SNP could have four different alleles, one for each nucleotide, but in prac-
tice most of the SNPs have only two different alleles. This means that, in
this case, the feasible configurations are three if the phase is not considered
(homozygous of the first allele, heterozygous and homozygous of the second
allele) and four if the phase is considered (because there are two different
feasible heterozygous configurations).
Within a population, SNPs can be assigned a minor allele frequency (MAF)
which is the lowest allele frequency at the SNP’s locus that is observed in this
particular population. This kind of mutation is the most common, indeed
it’s estimated that the 95% of all the mutations are SNPs [1000 Genomes
Project Consortium, 2012].
A genome wide association studies (GWAS) analyses large sets of genetic
variants (mostly SNPs) in different individuals in order to find some signif-
icant correlations between haplotypes and a specific phenotypic trait (typi-
cally a disease). Haplotypes are patterns of sequence variation, like stretches
of continuous DNA containing a specific set of alleles.
SNPs do not necessarily cause disease, but they can help to determine the
likelihood that someone will develop a particular disease.
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A

Individual 1

A G C C T A G C A

A A G C T T A G C A

Individual 2

Paternal chr

Maternal chr

Paternal chr

Maternal chr

A A G C C T A G C A

A A G C C T A G C A

Figure 1.1: A single nucleotide polymorphism example. In this example the
difference between the two DNA fragments consist of a single nucleotide.
In a certain locus, the individual 1 has a homozygous genotype, because it presents
the nucleobase C in both the copies of the chromosome. In the same locus, the
individual 2 has a heterozygous genotype of the allele C and T.

1.4 Linkage disequilibrium

Linkage disequilibrium (LD in shorter) measures the degree to which alleles
at two loci are associated.
The explanation of this phenomenon is clearer with an example.
Let us take into consideration two biallelic loci A and B, with alleles A1, A2

and B1, B2, respectively. Let xij be the frequencies of the individuals with
both Ai and Bj alleles in the population and pi and qj be the frequencies of
individuals with alleles Ai and Bj, respectively (see Table 1.1a and 1.1b). If
the two loci A and B are independent from each other, the frequency of the
haplotype AiBj should be equal to the product piqj, as shown in Table 1.1c
(that is xij = piqj).
Then, let D = x11− p1q1, if D = 0 there is linkage equilibrium, which means
that the loci are independent from each other. Otherwise there is linkage
disequilibrium: if D > 0 the haplotype A1B1 is overrepresented, on the other
hand if D < 0 the same haplotype is subrepresented.
Therefore in a population, SNPs in high LD have identical genotype for the
majority of subjects.
Linkage disequilibrium is a consequence of the crossing over, a process in
which two homologous chromosomes exchange some genetic code. The two
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Haplotypes Frequencies

A1 B1 x11

A1 B2 x12

A2 B1 x21

A2 B2 x12

(a) Haplotype frequencies
based on the population.

Allele Frequencies

A1 p1 = x11 + x12

A2 p2 = x21 + x22

B1 q1 = x11 + x21

B2 q2 = x12 + x22

(b) Allele frequencies based
on the population.

p1 p2

q1 p1q1 p1q1

q2 p1q2 p2q2

(c) Haplotype frequencies
for independent loci.

Table 1.1: Linkage disequilibrium. Let us take into consideration two biallelic loci A
and B, with alleles A1, A2 and B1, B2, respectively. Let pi and qj be the frequencies of
the alleles Ai and Bj in the population, respectively, If the frequency xij of the haplotype
AiBj is different to the product piqj , the two loci are in linkage disequilibrium, otherwise
they are in linkage equilibrium.

homologous chromosomes break at the same locus and then exchange a piece
of DNA reconnecting to the different end piece.
If two genes are close together on a chromosome, the likelihood that during
a crossing over these two genes will be separated is lower than if they were
farther apart. The closer together are the loci took in exam, thus the higher
is the linkage disequilibrium degree.
The DNA is known for exhibiting regions with strong similarity which are
called LD blocks, separated by small regions in linkage equilibrium [Wall and
Pritchard, 2003].



Chapter 2

State of the art

Several different standards for compressing genetic variations data are present
in the literature.
Those standards have different characteristics, they are differentiated by what
kinds of variants they can store (i.e. only biallelic SNPs rather than several
different kinds of variations) and how they store the the data (i.e. some
standards store data in plain text, other standards store the substantial part
of the data in binary form).
The key aspects on which we mainly focus on are two: 1) the kind of variants
stored with those standards and 2) the performance achieved adopting those
standards (obviously storing data in binary form permits to save a significant
quantity of disk space but many types of compression require a complete
decompression during the access to the data, this means long time to load in
memory).
This chapter will briefly describe the most used formats, the last of those is
SNPack which is the standard targeted by the improvements treated in this
thesis.

2.1 VCF (Variant Call Format)

The Variant Call Format [Danecek et al., 2011] is an uncompressed text-
based format which can store all kinds of variants in an unique file. This
format is currently one of the most adopted standards to store the GWAS
data and its most recent version is 4.2.
The VCF files are formed by two parts: the first part is composed by meta-
informations and the second part is composed by the data (the body).
The meta-informations are represented by lines starting with a ## and are
placed on the top of the file. This part contains informations like the vcf file
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format and the descriptions of the fields which will be used in the body.
The body is formed by one line for each variant present on the dataset. It
starts with a standard header line which names eight mandatory fields that
contain informations like chromosome, position, variant id, reference allele,
alternative alleles, other variant’s informations and, if present, genotype of
the individuals.
This kind of representation is very flexible, indeed it can store SNPs, indels
(either biallelic or multiallelic) and large structure variants.
VCF is a pure text file format, hence the data can be easily read with a
simple text editor, but the disadvantage is the huge file size. For this reason
the VCF files are often compressed with a general purpose tool. Further
details can be found in [Danecek et al., 2011].
The following is a simple VCF file toy example which contains three variants
(all of them belong to the chromosome 22) and two subjects.

##fileformat=VCFv4.1
##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">
#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT HG00096 HG00097
22 16050075 . A G 100 PASS . GT 0|0 0|0
22 16050678 rs139377059 C T 100 PASS . GT 0|0 0|0
22 16053659 rs141264943 A C 100 PASS . GT 0|0 1|0

Note that the first SNP does not present the ID, this means that no identifier
is available for that variant. The genotype is encoded like m|n (where m
and n are non negative integers), the 0 represents the reference allele, the 1
represents the first alternative allele, 2 represents the second alternative allele
(if present) and so forth. In this thesis we call VCF code the integer number
which represents the variant allele (m and n). For example, the first subject
of the third SNP is homozygous with allele A, while the second subject is
heterozygous with alleles A and C.

2.1.1 BCF2

BCF2 [Danecek et al., 2011] is the binary counterpart of the VCF file format.
A BCF2 file is composed of a mandatory header, followed by a series of BGZF
compressed blocks of BCF2 records. The BGZF is a GZIP variant, it is bigger
than a GZIP traditional file but it is faster for random access. The BCZF
blocks allow this kind of files to be indexed with tabix [Li, 2011] which is a
generic tool that indexes position sorted files in TAB-delimited formats and
quickly retrieves features overlapping specified regions.
For efficiency reason only a subset of VCF is supported by BCF2.
To manipulate and get informations from VCF and BCF files the standard
software is the widely adopted program package vcftools, which is composed
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by some modules written in perl and some binary executable. Recently,
bcftools has been developed, this new tool presents most of the functionalities
offered by vcftools but with better performance.

2.2 PLINK

PLINK [Purcell et al., 2007] is a widely used tool for genome wide association
analysis. It has two different versions of file format: one to store data com-
pletely in a text-based format (on files .ped/.map) and the other one to store
the consistent part of the data in a binary format (on files .bed/.bim/.fam).
Both file types are designed to compress biallelic SNPs (which are the most
common variants in the genome by far).
The following sections describe the two file formats.

2.2.1 The text-based file format

The .map/.ped PLINK format is composed of two text files and it stores the
genotype in an uncompressed manner.

• .map: this text file contains all the information about the genetic
markers.
It is composed of four columns which are: chromosome, SNP ID, ge-
netic distance (morgans) and base pair position (bp units). Each line
corresponds to a single marker.
The following is a simple MAP file (there are three SNPs):

1 rs123456 0 1234555
1 rs234567 0 1237793
1 rs233556 0 1337456

It contains three markers belonging to the chromosome 1, each of them
has an unique identifier and it has the genetic distance set to 0 (which
is missing value). The last value is the base pair position in the chro-
mosome.

• .ped: this text file contains the information about all the individuals
(one per line), including their genotype.
It is a white spaced file containing six mandatory columns which are:
family ID, individual ID, paternal ID, maternal ID, sex and phenotype.
These columns are followed by the genotype, which is encoded with a
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character (all the markers should be allelic).
The following is a simple PED file (there are two individuals and three
SNPs):

FAM001 1 0 0 1 2 A A G G A C
FAM001 2 0 0 1 2 A A A G 0 0

This example shows two subjects, with the same family ID (but dif-
ferent individual ID), the same sex, the same phenotype and missing
paternal and maternal ID. For each subjects three SNPs are recorded,
the last of which is missing for the second individual.
This file type is completely text-based, hence for big dataset that means
long loading time and big data sizes.

2.2.2 The binary file format

The binary counterpart of the PED file type is the binary PED (BED).
It is composed of two text files which contain the basic information about
the individuals and the SNPs, plus a binary file containing all the genotype
in a compressed format:

• .fam: this text file contains all the information about the individuals.
It is composed by the firsts six PED file columns which are: family ID,
Individual ID, paternal ID, maternal ID, sex and phenotype. Each line
corresponds to one individual.

• .bim: this text file contains all the informations about the SNPs.
This is an extended MAP file, it contains the MAP file’s four columns
plus two extra columns which globally are: chromosome, SNP ID, ge-
netic distance (morgans), base pair position (bp units), first allele name,
second allele name. Each line corresponds to one SNP.

• .bed: this binary file contains all the genotype in a compress format.
The header is composed by three fixed bytes, the remaining of the file
is the genotype data. Each genotype is encoded in two bits, 00 stands
for first allele homozygous, 01 stands for heterozygous, 11 stands for
second allele homozygous and 10 stands for missing genotype.

The binary PLINK file format compresses all the genotype data with a good
compression ratio (with respect to the plain text format) and permits the
access to a single genotype without the complete decompression of the data.
Further details on the PLINK tool can be found in [Purcell et al., 2007].
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2.3 SNPack

The SNPack algorithm [Sambo et al., 2014] is designed for the compression
and the fast retrieval of biallelic SNPs. It exploits the SNPs Minor Allele
Frequency (MAF) and the strong local similarity typical of SNP data (link-
age disequilibrium).
The compression is decomposed in two tasks: first the linkage disequilibrium
blocks are detected and summarised, in terms of differences with a common
nearby reference SNP, then the reference SNPs are compressed efficiently ex-
ploiting the information on their MAF.
When compressing an LD block, thus, it suffices to store one of the SNPs
in its entirety and use it as a reference to summarise the other SNPs in the
block, storing just their variations with respect to the common SNP. The
former is named reference SNP and the latter summarised SNPs.
The compression of the reference SNPs is performed using the best perform-
ing among five compression algorithms, or codes, which are an improvement
of the SpeedGene’s sub-algorithms [Qiao et al., 2012].
This algorithm stores the genotype data in a binary format and does not
require the full decompression of the data prior to the access to a single
genotype. The information about the individuals and the SNPs is stored
in the PLINK file format .fam and .bim respectively. All the details and
the tests on SNPack can be found in [Sambo et al., 2014]. The compression
codes, used to store the reference and the summarised SNPs, are described
in the following subsection.

2.3.1 The compression codes

The reference SNPs are stored using the best performing among those five
code:

• The code 1 encodes the genotype of a subject in a two digits number
representing the number of copies of the minor allele (which can be 00,
01, 10 to represent 0, 1 or 2 copies) or the missing genotype (11).

• The code 2 is designed for SNPs with low MAF and records only the
subjects with the heterozygous and rare homozygous genotype, plus
the ones with missing genotype. For each subject category (rare ho-
mozygous, heterozygous and missing), rather than storing each subject
index, the first index is stored, followed by the differences between
all pairs of consecutive indices. In this way, only bdiff aA, bdiff aa and
bdiff miss bits are required to represent both the first index and a dif-
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ference between consecutive indices of rare homozygous, heterozygous
and missing genotype, respectively.

• The code 3 is designed for SNPs exhibiting a large number of heterozy-
gous subjects. It uses a binary array of n digits to indicate the subjects
with the homozygous genotype. If the jth subject has a heterozygous
genotype then a 1 is put in position j.
The indices of the missing and the rare homozygous genotypes are
recorded in the same way adopted in the code 2.

• The code 4 is similar to code 2 but swaps the role of the missing value
with the one of frequent homozygous subjects. This works well if there
is a majority of missing values.

• The code 5 is similar to code 3 and swaps the role of the missing values
with the one of heterozygous subjects.

The compression of the summarized SNPs is performed using the code 6,
which store the index distance from the reference SNP and the genotype
variations with respect to the reference SNP.
A descriptive image of the codes composition can be viewed in Figure 2.1.
As shown by the figure, each code starts with the code ID stored in three
bits. Code 1 ignores the subsequent five bits, then stores the genotype of 4
subjects for each Byte.
Code 2 exploits the last 5 bits of the first Byte and the two subsequent
Bytes to store bdiff aA, bdiff aa and bdiff miss . The code, then, stores the num-
ber of rare homozygous, heterozygous and missing subjects, each requiring
dlog2(n)e bits, followed by, for each of the three set of indices, the first index
and the differences between pairs of consecutive indices.
Code 3, similarly to the previous code, stores bdiff aa and bdiff miss into the
first two Bytes, followed by the number of rare homozygous and the number
of missing genotypes and by the two sets of indices. Code 3 ends with a
binary array of n digits, where a 1 at the ith position means the ith subject
has an heterozygous genotype.
Code 4 is similar to code 2 but it stores explicitly the indices of frequent
homozygous, rare homozygous and heterozygous.
Code 5 is similar to code 3 but it stores explicitly the indices of rare homozy-
gous and heterozygous, exploiting the binary array of n digits to indicate the
missing genotypes.
Code 6, after the code ID, records the index of the reference SNP by storing
the index distance using 1 bit for the sign (upstream or downstream) and 20
bits for the distance. Then it stores the number of genotype variations with
respect to the reference SNP followed by the list of their indices and values.
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2.3.2 The compression algorithm

As said at the end of the Section 1.4, in a population SNPs in high LD have
identical genotypes for the majority of subjects, therefore it is sufficient store
one SNP and use it as a reference to summarise the other SNPs in the LD
block, storing just the differences with respect to the common SNP. The for-
mer is called reference SNP and the latter summarised SNP.
The algorithm (whose pseudocode is reported in Algorithm 1) starts by com-
puting the best of the 5 codes for each SNP and the corresponding cost in
Bytes (the cost to store one variant is simply the space required to store it).
Then, for each SNP i, the algorithm searches its neighbourhood N [i], which
consist of all the SNPs j that can be effectively summarised by i. To do
this, it computes partial gain[i, j] that is the subtraction between the cost of
summarising j with i and the cost of storing j.
All the SNPs j with positive partial gain are added to the set of useful neigh-
bourhoods of i, uN [i], and the sum of their gain constitute gain[i] using i as
reference SNP for summarising all the SNPs in the uN [i].
Once the gain of all the SNPs has been computed, the algorithm builds up
the summary, either assigning to a SNP the role of reference or the role of
summarized by indicating which reference should summarised it, in a greedy
fashion.
The algorithm, in fact, selects iteratively the SNP m with the highest gain
and sets it as reference of all the SNPs in its useful neighbourhood, which
are set to summarised SNPs.
Then it sets to 0 the gain of m and, for each SNP j in uN [m], it sets to 0 the
gain of j and it updates all the gains of the SNPs which have j in their useful
neighbourhood (because a SNP can be summarised by only one reference).
The depth of the summary is limited to 1 (it could be not limited), in fact
one summarised SNP cannot be a reference SNP for other SNPs. This de-
sign choice is meant to limit the time complexity of the decompression phase,
which is described in the Subsection 2.3.4.
Finally, the data is written to disk using one of the 5 aforementioned codes
to store the reference SNPs and a sixth code (named Summarised), to store
the summarised SNPs.
The computational complexity of the algorithm is dominated by two opera-
tions: 1) the computation of the genotype variations between each SNP and
its neighbours and 2) the iterated computation of the maximum element of
the vector gain. If n is the number of subjects, p is the number of SNPs and
|N | is the number of SNPs in a neighbourhood, the former operation has
complexity O(pn|N |) and the latter O(p2).
To limit the complexity of computing genotype variations and to cope with
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the variable patterns of linkage disequilibrium throughout the genome, a
heuristic procedure (described in the Subsection 2.3.3) is adopted for adap-
tively setting the size of the neighbourhood of a SNP. The limitation of the
neighbourhood size, when possible, limits the complexity factor.
Since the LD on the border of the chromosomes is not expected, this com-
pression algorithms is thought to be run separately on each chromosome.
Moreover, to take advantage of the parallelism of the compression task, the
chromosome is split into several chunks of equal size (the number of which
can be chosen in input) and each chunk is compressed by a different thread.

Algorithm 1 The SNPack compression algorithm
1: Load SNP data
2: for all SNP i do
3: cost [i] ← Byte size of the best code for i
4: end for
5: for all SNP i do // useful neighbours, i.e. SNPs worth being summarised by i
6: uN [i]← ∅
7: for all SNP j ∈ N [i] do // Neighbourhood of i
8: Compute genotype variations between i and j
9: pg [i, j]← cost [j] - cost of summarising j with i // partial gain
10: if pg[i, j] > 0 then
11: uN [i]← uN [i] ∪ j
12: end if
13: end for
14: gain[i]←

∑
j∈uN [i] pg [i, j]

15: end for
16: m ← argmaxi(gain[i])
17: while gain[m] > 0 do
18: summary[uN[m]]← m
19: gain[m]← 0
20: gain[uN[m]]← 0
21: for all j ∈ uN[m] do
22: for all k such that j ∈ uN[k] do
23: gain[k]← gain[k]− pg[j, k]
24: end for
25: end for
26: m← argmaxi(gain[i])
27: end while
28: Write data to disk according to summary
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2.3.3 The JIT heuristic

The JIT heuristic procedure is designed for adaptively setting the size of the
neighbourhood of a SNP, which permits to limit the complexity of computing
genotype variations and to cope with the variable patterns of linkage dise-
quilibrium throughout the genome.
This procedure (whose pseudocode is reported in Algorithm 2) incremen-
tally grows the neighbourhood, starting from a neighbourhood of 10 SNPs
and doubling the neighbourhood size if a new useful neighbour SNP is found
among the newly added SNPs in the neighbourhood. Thus, the size growth
of the neighbour stops if no new SNPs are added to the useful neighbourhood
in an iteration or if a maximum extension w (received as input from the user)
is reached.
This algorithm prevents unprofitable computation in that zones of DNA with
low LD degree.

Algorithm 2 JIT heuristic used in the SNPack original version
1: for all SNP i do
2: jit← 10
3: oldjit← 0
4: improved← true
5: while improved = true ∧ oldjit < w do // w is the max neighb. size
6: improved← false
7: for all j ∈ [i− jit, i+ jit] \ [i− oldjit; i+ oldjit] do
8: pg[i, j]← compute_pg(i, j)
9: if pg[i, j] > 0 then
10: improved← true
11: add j to the i’s useful neighbourhood
12: gain[i]← gain[i] + pg[i, j]
13: end if
14: end for
15: oldjit← jit // Increase jitter
16: jit← min(2 · jit, w)
17: end while
18: end for
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2.3.4 Decompression

The decompression is made on a chromosome at a time: initially the entire
compressed chromosome is loaded, then with a first scan the algorithm locates
and decodes all the reference SNPs (which are encoded with the firsts five
codes). With a second pass the decompression algorithm reconstructs all
the summarized SNPs (using the the information about the reference SNPs
which are all already decoded).
These two passes are sufficient to decode all the genomic data because of the
summary depth limited to 1. If the summary depth were not limited to 1,
more than two passes could be necessary to decompress all the data, leading
to a slower decompression phase.
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Chapter 3

Methods

One of the SNPack’s strengths is the extremely short loading time, which is
guaranteed by the unitary summary depth level.
This algorithm performs very well even for what concerns two other impor-
tant points: it is characterized by a high compression factor and a short
compressing time. Those results are achieved due to the use of the 5 codes
and to the exploitation of the local similarities typical of the SNP data.
Nevertheless, there are some points in which SNPack can be improved. Ac-
cording to Sambo et al. [2014] the core of the compression algorithm is the
choice of which SNP should be coded as reference and which SNP should be
summarised by each reference SNP. In general, the problem is NP-complete
and the adopted solving strategy is based on greedy choices, which give sat-
isfactory results in short time. Actually, both the compression factor and the
compressing time are characteristics of the utmost importance.
As will be shown in the following sections the compressing time, although
short, is improvable.
The fact that SNPack is designed to compress only biallelic SNPs, even
though those are the most common variants by far, is a weakness.
For this reason, a new compression technique has been developed to store
the other kinds of variants, in order to provide a more complete tool.

3.1 Optimization of the summarized SNPs

A simple algorithm which works on the allocation of the SNPs as reference
and as summarized SNP has been developed.
This algorithm starts from a feasible solution, thus it assumes that all the
SNPs are already allocated either as reference or as summarized SNP (and,
in the latter case, it is already recorded which reference SNP summarises it).
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The purpose of this algorithm is to find the optimal summary once the sta-
tus of reference SNP and summarized SNP are fixed. All the SNPs are still
either reference SNP or summarized SNP as they were before but, for each
summarized SNP s, the algorithm searches for the best reference SNP that
summarizes it effectively (i.e. the reference SNP that can summarize s pro-
ducing the higher gain).
The algorithm is applied after the compression algorithm, when the role of
reference or summarised is assigned to all the SNPs. As shown by the pseu-
docode in Algorithm 3, the algorithm, for each summarised SNP s, searches
the reference SNP r which can summarises s obtaining the highest gain. Af-
ter that, if the reference SNP r can summarise s better than the previous
one, then r became the reference SNP of s (as shown in lines 4− 6).
To do this, the algorithm performs approximatively a number of comparison
equal to the size of a neighbourhood for each summarized SNP, hence the
computational complexity is O(p|N |) where p is the number of SNPs and |N |
is the size of a neighbourhood.
The toy example reported in Figure 3.1 shows exactly the behaviour of this

Algorithm 3 Optimize summary
1: for all summarized SNP s do
2: ractual ← the reference SNP of s
3: for all reference SNP r that could summarize s do
4: if r summarizes s better than ractual then
5: r became the reference SNP of s
6: ractual ← r
7: end if
8: end for
9: end for

algorithm. In fact, the status of reference and summarised SNPs remains
unaltered, but the allocation of the SNPs changes (in this example one allo-
cation is modified). SNP 7, which was summarised by SNP 4, is summarised
by SNP 5 after the optimization algorithm, with a gain of 20 instead of 5.
This simple and artificially crafted example shows one single change which
increases the total gain from 45 to 60.
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SNP 1 SNP 2 SNP 3 SNP 4 SNP 5 SNP 6 SNP 7
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reference SNP
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(a) Situation before the optimization.

SNP 1 SNP 2 SNP 3 SNP 4 SNP 5 SNP 6 SNP 7
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205 5

5 20
30

5

15

5

30

(b) Situation after the optimization.

Figure 3.1: This is a toy example to explain the effects of the optimization. The
white rectangles represent summarized SNPs and the shaded rectangles represent reference
SNPs. The straight arrows start from a reference SNP and end to a summarized SNP and
indicate that the reference SNP summarises the summarized SNP. The dotted arrows start
from a reference SNP and end to a summarized SNP and indicate that the reference SNP
could summarise the summarized SNP with a positive gain. The arrow’s label is a number
which indicates the gain obtained using that reference SNP to summarise that summarized
SNP.
The left figure shows a situation similar to which can occur at the end of the compression
algorithm. The right figure shows how the optimization algorithm change the situation in
this case.

3.2 Speed up of the gain computation

The greedy allocation of the SNP as reference or as summarized is composed
of two main phases.
In the first phase, the useful neighbourhood for each SNP and its related gain
are computed. The second phase is composed of the greedy iterations until
all the SNPs are marked as reference or as summarized (see Subsection 2.3.2).
Recalling what said in the previous chapter, in SNPack 1.0, the first phase
is done comparing each SNP i with all the SNPs in its neighbourhood.
To limit the computational complexity, the neighbourhood size is incremen-
tally increased, starting from a dimension of 10 SNPs and doubling its size if
new SNPs are added to the useful neighbourhood. The growth of the neigh-
bourhood size is stopped either if no SNPs are added to the useful neigh-
bourhood or if a maximum size w is reached (the algorithm’s pseudocode is
shown in Algorithm 2).
The enhancement described in this subsection has the purpose of drastically
lower the time spent during the first phase of the compression algorithm
(with a more incisive effect than the JIT heuristic).



26 CHAPTER 3. METHODS

The proposed improvement works mainly on the first phase and requires
another parameter besides the maximum neighbourhood size w. The new
parameter is a real number 0 < r <= 1, and it defines a small neighbour-
hood of size rw.
The computation of the useful neighbourhood and the gain of each candidate
reference SNP, during the first phase, is made on this small neighbourhood
of size rw (which is smaller than the neighbourhood of size w adopted in
SNPack 1.0).
The change on the second phase is small but very important. In fact, when a
SNP is chosen to be a reference SNP, the entire neighbourhood of maximum
size w is examined and all the SNPs which can be positively summarized are
added to the useful neighbourhood (while in SNPack 1.0 only the SNPs in
the useful neighbourhood became summarised SNP).
Except for this variation, the second phase remains unaltered.
This version of the algorithm makes the SNP choice more greedy than the
original version, in fact the choice is based on a lower amount of informa-
tion. The procedure, however results much faster (as shown in the results
in Chapter 4). In fact, the entire exploration of the neighbourhood is done
only for those SNP which will surely be reference SNP, unlike in the original
version where this exploration is performed for all the SNPs, saving in this
way a great amount of time.
The purpose of this enhancement is to drastically lower the time spent during
the first phase. For this reason, it makes the JIT heuristic not essential, in-
deed the adoption of that is suggested only to reach the shortest compression
time (in spite of the compression ratio).
The compression algorithm workflow of the new SNPack version (which in-
cludes the improvements described in the Section 3.1 and in the Section 3.2)
is reported in the Algorithm 4. As shown by the pseudocode, first the data
is loaded, then the algorithm compress the data (the compression algorithm
is composed of two main phases) and, at last the algorithm performs the
summary optimization which improves the quality of the compression.

Algorithm 4 Compression algorithm workflow of the new SNPack version
1: Load data to be compressed
2: First phase: computation of the candidate reference SNPs gain on a

restricted neighbourhood of size rw
3: Secon phase: greedy choices of the reference SNPs. The summarised

SNPs are searched in the extended neighbourhood of size w
4: Optimization of the summarized SNPs
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3.3 Compression of other variants

The SNPack 1.0 file format cannot handle some kinds of variants such as mul-
tiallelic SNPs, multiallelic indels and structure variants (which includes nu-
clear mitochondrial insertions, duplications, copy number variations). Those
variants are not covered by SNPack 1.0 because they need a more complex
set of information.
Note that, due to the SNPack’s algorithm and file format .pck and due to
the .bim file format (which stores the basic information about the variants),
the SNPack format can store not only biallelic SNPs, but also biallelic indels.
In fact, the .bim file has two columns for the two alleles which are, in case
of biallelic SNPs, two letters (one for each allele). In case of indels, those
columns can be filled with two strings representing the alleles.
In order to provide a more complete tool we developed a new file format and
a new compression algorithm for the compression of all the variant types not
covered by SNPack 1.0 (which are all the kinds of variant except biallelic
SNPs and biallelic indels).
The variant which are not covered by SNPack are only a small fraction of
the total, for this reason the main goal during the development of this new
format has been the flexibility.
Note that the SNPack file format, such as other file formats, does not keep
the information on the phase, that is, in the case of the heterozygous geno-
type, the information about which copy of the gene has a particular allele.
For this reason, we decided that the phase information would not be kept
even for coding the other kinds of variants.
To store the genotype a Huffman encoding [Huffman et al., 1952] is adopted.
A prior analysis showed that most variants manifest an allele with a fre-
quency higher than the 90%, for this reason a Huffman encoding results a
good choice because it stores the most common genotype configurations us-
ing a minor number of bits.
The compression algorithm requires a PLINK .fam file with the information
about the individuals (that is the same used to compress the biallelic vari-
ants) and a VCF file with the variants to store.
The new file format is composed by three files:

• The PLINK .fam file which describes the individuals.

• A VCF file which contains all the variants information (it has the role
of the .bim file for the PLINK format).
This file is composed by the firsts eight columns of the VCF file required
by the algorithm.
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• A binary file containing all the genotype data in a compressed format.

The genotype data are stored in the binary file following the order of chromo-
somes specified in the VCF file. For each chromosome the file contains four
bytes for storing the chromosome length (in bytes). Then, for each variant
lying in that chromosome two bytes are reserved to store the variant length
(in bytes). Information on lengths are useful to browse quickly through the
variants and through the chromosomes.
The encoding of all the chromosome variants follows this little header. For
each variant the Huffman codebook (i.e. the list of symbols and codewords)
is stored, followed by the Huffman encoding of all the individuals.
The codebook of the classic Huffman code is a list containing the symbols,
which are the alleles in this case, and their respective codewords. Obviously,
the codebook must be stored with the encoded data because it is essential
for the decoding of the compressed payload.
The adopted Huffman encoding is the Canonical Huffman code, which has
properties that allow to store its codebook in a compact manner i.e. stor-
ing only the symbols and their codelength (which is the codeword lenght) is
enough to describe the code.
The codebook is composed by: two bytes which indicates the number of sym-
bols that compose the codebook and, for each symbol, two bytes for storing
the symbol and two other bytes to store the codelength associated.
Then, the genotype of all the individuals, encoded with the Huffman code,
is stored following the individual order specified in the .fam file (detailed in-
formation about the encoding of the genotypes and the Canonical Huffman
code are described respectively in Subsection 3.3.1 and in Subsection 3.3.2).
A scheme of the binary format can be viewed in Figure 3.2.

3.3.1 Encoding the genotype

Encoding those kind of variants with a Huffman code requires to deal with
a couple of obstacles. This is a piece of a hypothetical VCF file:

22 16051443 . A C,G 100 PASS . GT 0|0 1|0 0|0 0|0 0|0 0|1
22 16349650 . G GT,T 100 PASS . GT 0|0 0|1 0|2 0|0 1|2 0|0

This piece of file shows two multiallelic variants. The first nine columns con-
tain information about the variants (like chromosome, position and alleles),
from the tenth columns is stored, for each individual, the genotype configu-
ration in a vcf cod Recalling that the new file format does not keep track of
the genotype phase, the heterozygous genotype configurations with the same
alleles should be encoded with the same symbol. In the example above, for
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chromosome length var 1 length var 2 length var k length variants encoding

var 1 encoding var 2 encoding var k encoding

# symbols symbol 1 codelength 1 Huffman codesymbol h codelength h

var j encoding

4 Bytes 2 Bytes 2 Bytes 2 Bytes

chromosome length

var 1 length var 2 length var j length var k length

8 bits 8 bits 8 bits 8 bits 8 bits

Figure 3.2: A schematic representation of the binary file which stores the genotype
of the variants. This figure shows how a chromosome is stored.

the first variant, the second and the sixth individuals are both heterozygous
of the alleles A and C and should be encoded with the same symbol although
they have different phases. The second variant shows four different genotypes
(but theoretically could be more).
The number of genotypes depends on the number of possible alleles. The
original version of SNPack works on biallelic variants which lead to three pos-
sible genotypes: in that case, thus, for each individual two bits are enough
to store its genotype (including the missing genotype configuration). In a
multiallelic scenario, on the other hand, the number of bits required depends
on the number of alleles. For example, if the number of the variant alleles is
three, three homozygous genotype and three heterozygous genotype are pos-
sible (plus one missing genotype configuration), this means that the number
of bits required to store this variant is 3 (because dlog2 7e = 3).
We decided to assign a number to each of the possible genotype configu-
rations (this number will be called internal code), Figure 3.3a shows in a
graphical representation an example of a variant which presents five different
alleles. Clearly, due to the fact that the same heterozygous genotypes are
coded with the same symbol, the encoding scheme is a symmetric matrix.
This means that, as shown in Figure 3.3b, only the triangular lower matrix
can be considered, where Allele m is the allele with the smaller VCF code
and Allele M is the allele with the other allele.
Let N be the number of the variant alleles, the number of possible genotypes
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Figure 3.3: Matrix that shows the internal genotype representation. It defines a
relationship between an unordered pair of allele and a positive integer value.

is easy to calculate:
N∑
i=1

i =
N(N + 1)

2

The conversion from the VCF values to the internal code is simple: let m
and M be the smaller and the bigger VCF allele code (0 ≤ m ≤ M < N)
respectively, the internal code c is:

c =
M(M + 1)

2
+m

The conversion in the other direction requires the solution of the equation:

c =
x(x+ 1)

2

and the VCF allele values are:

M = bxc =

⌊
−1 +

√
1 + 8c

2

⌋
and m = c− M(M + 1)

2
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This defines a simple one to one relationship between an (unordered) pair
of alleles and an integer value. Note that the conversion from the internal
code and the pair of alleles requires the computation of a square root which
is expensive. For this reason, the implementation of the algorithm uses a
precomputed table to decode small c up to 64 (obviously, if c is not present
in the table m and M are calculated at runtime).
The number of alleles for indels and structure variations can be indefinitely
high but, in practice, it is very hard to find a variant with a number of
alleles higher than five or six (that leads to a maximum c value of 21), this
means that the adoption of the precomputed table avoids the square root
computation for almost all the variants.

3.3.2 The Canonical Huffman code

The Canonical Huffman code is an equivalent variant of the classic Huffman
code [Huffman et al., 1952]. Its strength is the compact representation of the
codebook, i.e. only the list of symbols and codelengths is enough to describe
exhaustively the codebook.
This property is guaranteed by the construction procedure of the code which
is composed of few simple steps:

1. Computation of the classic Huffman code.

2. Sort the N codewords firstly by ascending codelength and secondly by
alphabetical value (or according another sorting criteria).
Let si, ci and li be respectively the symbol, the codeword and the
codelength at position i (0 ≤ i < N).

3. Replace c0 with a string of li zeroes.

4. Replace ci with the binary number ci−1 + 1. If li > lj append li − li−1
zeroes at the end of the codeword to reach the codeword lenght li.

A Canonical Huffman code construction example is shown in Figure 3.4.
Another property of this code is that if a codeword ci is longer than a code-
word cj (that is li > lj), then the relation between the two binary codes is
ci > cj.
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Figure 3.4: Example of a construction of a Canonical Huffman code starting from
a classic Huffman code.



Chapter 4

Experimental results

In this chapter will be described the dataset adopted for the tests, what kind
of tests has been conducted, how those tests has been conducted and what
performance parameters are taken in considerations.
All the tests are applied to the 1000G phase 3 release dataset described in
the Section 4.1.
Due to the different nature of the algorithms, the dataset has been split in
two: one part includes all the biallelic SNPs and indels, while the other part
includes the remaining variants. Some algorithms have been tested only on
the biallelic SNPs and indels, while other algorithms have been tested on the
entire dataset.
All the tests have been performed on a machine equipped with two quad core
Intel Xeon E5450 and 16GB of RAM.

4.1 Dataset

The dataset adopted for the experiments is the 1000G phase 3 release con-
ceived and developed by the 1000 Genome Project.

4.1.1 1000 Genome Project

1000 Genome Project [1000 Genomes Project Consortium, 2012] is one of
the major human genome projects and it has the purpose of establishing the
most detailed catalogue of human genetic variations.
To do this it was planned to sequence the DNA of at least one thousand of
anonymous individuals from different ethnics groups.
The aim of the 1000 Genomes Project is to discover, genotype and provide
accurate haplotype information on all forms of human DNA polymorphism in
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multiple human populations. Specifically, the goal is to characterize over 95%
of variants that are in genomic regions accessible to current high-throughput
sequencing technologies and that have allele frequency of 1% or higher in each
of five major population groups (populations in or with ancestry from Europe,
East Asia, South Asia, West Africa and the Americas). Because functional
alleles are often found in coding regions and have reduced allele frequencies,
lower frequency alleles (down towards 0.1%) will also be catalogued in such
regions.

4.1.2 Dataset characteristics

The dataset on which the tests are done is the 1000G phase 3 release of the
1000 Genome Project, consisting of 84801880 variants typed for a population
of 2504 human individuals from 26 populations which can be categorised into
five super-populations by continent: East Asia, South Asia, Africa, Europe
and America. The dataset composition can be viewed in Table 4.1.
The dataset is provided in the VCF (Variant Call Format) 4.1 file format
[Danecek et al., 2011], which is a text-based file format for storing genetic
variations (briefly described in the Section 2.1).
One file is provided for each chromosome containing, for each variant present
in the chromosome, a set of basic information (among which there are posi-
tion, alleles, variant ID) and the genotype for each each individual.
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Chr Biallelic variants Other variants Total variants

1 6433177 34917 6468094

2 7042490 39110 7081600

3 5799246 33030 5832276

4 5698914 33671 5732585

5 5235101 30662 5265763

6 4994406 29713 5024119

7 4689479 27236 4716715

8 4569575 27530 4597105

9 3539764 20923 3560687

10 3969255 22964 3992219

11 4022210 23418 4045628

12 3846032 22396 3868428

13 2841459 16457 2857916

14 2639628 15439 2655067

15 2410945 13744 2424689

16 2681010 16939 2697949

17 2315827 13461 2329288

18 2254078 13107 2267185

19 1820925 11581 1832506

20 1802645 10196 1812841

21 1098435 7103 1105538

22 1096485 7062 1103547

X 3435430 32663 3468093

Y 61932 110 62042

Total 84298448 503432 84801880

Table 4.1: The dataset composition. The table reports the number of biallelic variants
(i.e. biallelic SNPs or indels) and the number of the other kind of variants for each
chromosome and for the whole dataset.

4.2 Parameter tuning

The proposed improvements bring new parameters that affect the perfor-
mance of the compression of biallelic SNPs and indels, i.e. the percentage
of the maximum neighbourhood size r and the chance of enabling/disabling
the JIT heuristic (used for the calculation of the gain in the first phase of
the greedy allocation of the variants).
Those parameters are in addition to the parameters used in the SNPack 1.0
library, which are the maximum extension of the neighbourhood w and the
number of chunks in which the chromosomes are split for parallelising the
computation.
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Figure 4.1: Tests performed in order to find the best parameter configuration.
Each circle represents a single configuration, each line indicates a set of tests with
a fixed r (reported in the legend) and a variable w which goes from 10 kb to 200
kb. The test reported in this figure have the JIT Heuristic disabled.
The black circles indicate the Pareto front identified among those configurations.

Several parameter configurations are tested to tune the parameters. The
tests have been performed on chromosome 22, supposing that the obtained
results on this chromosome are similar to those obtained if the algorithm was
applied to the entire dataset.
The tested parameter configurations are all the combination for r from 0.001
to 0.5, w from 10 kb to 200 kb, with and without the JIT heuristic. Then,
we plotted the obtained results on a graph with compression time on the
abscissa and the occupied space on the ordinate.
On this graph, we identified the Pareto front (which is the set of solutions
that are optimal according to one or both the two criteria, it can be viewed in
Figure 4.1) and we selected eight optimal configurations, from the one with
the highest compression ratio (but with the highest compression time), to
the one with the smallest compression time (but with the smallest compres-
sion ratio). Those configurations are wrapped in a new parameter named
compression level (and are reported in Table 4.2).
The compression of the other variants does not require any parameter, there-
fore it does not need to be tuned.
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compression level 1 2 3 4 5 6 7 8

w[kb] 10 10 10 10 20 20 20 50

r 0.001 0.002 0.005 0.010 0.005 0.010 0.050 0.050

JIT heuristic yes yes no no no no no no

Table 4.2: Selected parameter configurations.
Recall w is the maximum neighbourhood window and r is the fraction of w used gain
computation first phase.
The higher is the compression level, the higher is the compression ratio, the lower is the
compression level, the smaller is the compression time.
In those configuration the chunk number is not present because its effects on the perfor-
mance depend on the machine parallelism capabilities. The default chunk number setting
is 4 times the number of processor cores.

4.3 Tests
The different file formats and tools have different characteristics, such as the
capability to compress some kinds of variants or the file type required in
input. For this reason, a set of file types has been selected to be the starting
point of the tests. These file formats are: the PLINK text-based format
(.ped/.map), the PLINK binary format (.bed/.bim/.fam) and the VCF file.
The tools used for the tests are:

• new SNPack version: it can compress biallelic variants starting from
.bed/.bim/.fam files. It can compress all the other variants starting
from a VCF file that contains those variants.

• SNPack 1.0 library: it can compress biallelic variants starting from
.bed/.bim/.fam files.

• PLINK 1.07: it can compress biallelic variants. Three tests are per-
formed on the PLINK file formats: the tests involve the binary format,
the gzipped version of the binary format and the text-based format.
The PLINK version used in the tests is the current stable version, the
1.07. Since the starting file format of this test is the .bed/.bim/.fam,
the PLINK compression time is 0 (but for the last PLINK test the gzip
compression time is considered).
The comparison with the PLINK file formats (both the binary form
.bed/.bim/.fam and the text-based form .ped/.map) are based on the
space on disk required and the loading time.

• bcftools 1.1: this is the tool adopted to test the BCF2 file format.
The BCF2 file format can compress all kind of variants from the VCF
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file. The bcftools version adopted is the 1.1.

4.4 Results
This chapter shows the computational results on the tests described previ-
ously. For each format is reported the compression time, the space on disk
required, and the loading time.

4.4.1 Comparison with SNPack 1.0

The comparison with the previous version of the software shows the perfor-
mance improvements produced. The change performed to the code affect
only the compression algorithm (and not the decompression algorithm), in
fact the compression time is drastically reduced and, at the same time, the
compression factor is increased. This, however, affects indirectly the loading
time, because a smaller file requires less time to be read.
Ah shown in Table 4.3, the new SNPack version is characterized by com-
pression time extremely shorter than the SNPack 1.0. Only one parameter
configuration shows a compression time higher than the SNPack 1.0, but it
stores the dataset using only two thirds of the disk space.
The new SNPack version has a compression ratio higher than the SNPack
1.0 (even with the fastest parameter configuration which obtains the smallest
compression ratio).
The loading time is similar for both versions because the loading algorithm is
the same. The new SNPack version has a loading time slightly shorter than
the previous version because of the smaller size of the compressed files.
Figure 4.2 shows a plot in which the compression time (in a logarithmic scale)
and the space required by the two versions are compared.
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Tool Compr. level Compr. time (s) Disk space (MB) Loading time (s)

SNPack 1.0 - 12867 6730,416 880

SNPack new version

1 2445 6148,312 728

2 2500 5873,073 703

3 2632 5564,953 697

4 2880 5394,967 695

5 3087 5282,891 679

6 3560 5174,409 665

7 7467 5037,106 660

8 18276 4995,943 662

Table 4.3: Compression performance of the two versions of SNPack.
The space required includes, beside the .pck file, the .fam and the .bim files which are
necessary to decompress the data.
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Figure 4.2: Space required (on the X axis) and the compression time (on the Y
axis in a logarithmic scale) of both the SNPack 1.0 and the new version. The circle
represents the SNPack 1.0 and the squares represent the eight compression levels
of the SNPack new version.
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4.4.2 Comparison with the other formats

The comparison with the other file formats are made either on the biallelic
SNPs and indels dataset or on the entire dataset, depending on the charac-
teristics of the format.

Comparison on the biallelic variants dataset

The comparison on the biallelic variants is conducted on the file formats
which are not able to compress the other kind of variants, listed in the Ta-
ble 4.4. The table reports also the performance of the associated tools.
Since the PLINK’s formats are considered as starting points, the compres-
sion time related to those format is 0 (the GZIPped version compression time
consists on the GZIP compression time).
The new SNPack version is run with a compression level of 5, which is a good
trade-off between compression time and compression ratio.
As shown by the table, only the GZIPped version of both the binary PLINK
and the new SNPack format have an higher compression ratio than the new
SNPack version.
The cons of those configuration is the need of a fully decompression of the
GZIP file to access the data, that leads to a high loading time (which, in
the case of the GZIPped binary PLINK, reaches and exceeds ten times the
new SNPack version loading time) and an additional great amount of space
to store the uncompressed files.
The new SNPack version performs extremely better than all the other tools,
with respect to the loading time. It is also characterised by excellent perfor-
mance with respect to both the compression time and the disk space required.

Format Compr. time (s) Disk space (MB) Loading time (s)

PLINK text-based 0 877476,633 237344

PLINK binary 0 54807,274 8481

GZIPped PLINK binary 1495 3707,188 9344

SNPack 1.0 12867 6730,416 880

New SNPack version 3087 5282,891 679

GZIPped new SNPack version 3624 2917,913 805

Table 4.4: Compression performance of the tools working on the biallelic variant dataset.
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Format Compr. time (s) Disk space (MB) Loading time (s)

New SNPack version 4532 5717,431 896

Bcftools 26919 11958,774 8894

Table 4.5: Compression performances of the tools working on the whole dataset.
The new SNPack version ran with a compression level 5.

Comparison on the entire dataset

This test involves the file formats which can compress even the multiallelic
variants. The tools included in this test are listed in the Table 4.5.
The new SNPack version performs extremely better than the other tools for
what concerns all the performance parameters took in consideration. The
main factor at the basis of this is the well performing algorithm for the
biallelic variants which constitute the greater part of the dataset.
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Conclusions and future works

The main purpose of this work was to improve the state of the art SNPack
1.0 library, which is an algorithm for the compression and fast retrieval of
biallelic variants data.
The improvements produced work in two directions: 1) improvement of the
performance of biallelic variants compression algorithm and 2) design and
development of a flexible algorithm for the compression and fast retrieval
of all other kinds of variants (which are all the multiallelic variants). The
improvements on the compression of the biallelic variants are two: the sum-
mary optimization and the speed up of the gain computation.
The summary optimization algorithm leads to a consistent gain in terms of
compression factor with an almost negligible time cost.
The speed up of the gain computation drastically accelerates the first phase
of the compression algorithm and makes unnecessary the adoption of the JIT
heuristic unless one wants to trade compression rate for shorter compression
time.
All the improvements on the compression of the biallelic data are produced
without changing the SNPack 1.0 file format, i.e. from a compressed file is
impossible to know if it is built by SNPack 1.0 or by this new version, thus
retaining consistency and usability of files compressed with the older version
of the library.
The experimental results, obtained on the 1000G phase 3 release dataset,
show the outstanding performance of the new SNPack version. This new
version presents better compression time and compression ratio than SNPack
1.0 (with a consequently shorter loading time due to the smaller file size).
Furthermore, the comparison with the other formats and tools highlights
the superior performance of the new SNPack version for the compression on
both the biallelic and the multiallelic variants. If one wants to obtain even
higher compression rates, our new format can be further GZIPped, obtain-
ing a smaller file than the corresponding GZIPped binary PLINK file. This
consequently leads to the best performances in terms of compression rate but
it requires the complete unpacking of the GZIP archive before the access to
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the data, this consequently leads to a high loading time and it requires an
additional great amount of space to store the uncompressed files.
In the immediate future a tool for the compression and fast retrieval of ge-
netic variants based on the SNPack library will be developed. The reason for
this is to provide a tool for easily compressing and accessing genetic data in
the SNPack format that can be used directly by the command line interface.
Another, perhaps more ambitious, enhancement is the adaptation of the
SNPack algorithm to the probabilistic variant data (used for example in IM-
PUTE [Marchini et al., 2007]) which, for each individual genotype and for
each variant, is composed of a probability distributions on the possible vari-
ant alleles.
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