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Sommario

Il lavoro di ricerca ha l’obiettivo di investigare problemi di tempo minimo relativi
a vetture da corsa. Innanzitutto sarà sviluppata un’attenta attività di modellizza-
zione, con differenti livelli di complessità per quanto riguarda i modelli di veicolo
e i tracciati percorsi. Il problema verrà quindi trascritto, mediante il software
GPOPS-II, nella formulazione tipica di un problema NLP. La soluzione è dun-
que ottenuta grazie all’utilizzo di un codice di ottimizzazione, ovvero IPOPT, che
permette di risolvere problemi con un numero molto elevato di variabili. Succes-
sivamente sarà considerata la validazione del modello numerico con riferimento ai
test su strada, oltre ad un’analisi dei risultati e delle peculiarità derivanti da di-
verse strategie di modellizzazione. Infine verrà sviluppata un’analisi parametrica
relativa ai principali parametri che influenzano la prestazione della vettura.
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Abstract

The work investigates minimum lap time problems of race cars. A careful mod-
elling activity is carried out first, with different levels of complexity both in the
vehicle and road models. The problem is then transcribed in a form suitable for the
solution as an NLP problem, using the software GPOPS-II. The solution is then
achieved by means of an optimizer used for large scale problems, namely IPOPT.
A validation of the numerical model against road tests is provided, together with
a focus on the results and peculiarities resulting from the different modelling ap-
proaches. Finally, a parametric analysis on the main parameters affecting vehicle
performance is carried out.
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Introduction

Nowadays we are witnesses of an increasing importance of the “technological”
aspects related to the vehicles; this evident trend conveys only a mere consumeris-
tic meaning of the word “technology” and, in front of that, the study of vehicle
mechanics and dynamics seems to be an outmoded discipline, in which nothing
more should be investigated. Nevertheless, the many systems implemented in the
modern vehicles are absolutely not independent from a mechanics-based modelling
point of view; because of that, vehicle engineering offers a huge amount of research
topics tightly connected to the proper technological improvements, which are go-
ing to define the future development of cars and motorcycles.
The modern progress in safety, performance and comfort of cars and motorcycles
is significantly related with the possibility of describing these mechanical systems
and their dynamic behaviour, with accurate models that implement the capability
of predicting and suggesting real improvements in the everyday life. Self-driving
vehicles, optimization of components and smart control and compensation of hu-
man mistakes are the very topics at the core of the vehicle dynamics research;
moreover, at this point of investigation, for these topics can be taken into con-
sideration many significant areas of improvement, imposing new targets in the
technological evolution of the vehicle.
One of these is the development of optimal control problems, in which the Univer-
sity of Padua has been having an important contribution, in particular concerning
the motorcycle simulations of minimum time problems [11]. The main advantage
of these nonlinear methods is that they allow to simulate the ideal behaviour of
the vehicle: the optimal control solution, in fact, represents the best performance
achievable by the vehicle considered, as if an ideal driver was capable of exploiting
all the possibilities offered by the vehicle dynamics; the vehicle is modelled using
the equations of motion and the constraint equations that characterize its compo-
nents.
There are mainly two different approaches to the optimal control problems: direct
and indirect methods; the direct methods transcribe the problem into a proper
Non Linear Programming (NLP) and discrete-domain minimum problem [1], while
the indirect methods apply the Pontryagin Minimum Principle (PMP) and com-
pute the stationary points of the target function [4]. During the last years a lot
of research has been performed applying these two methods separately to vehicle
dynamics problems.
A popular implementation of a direct method is GPOPS (General Purpose Op-
timal Control Software) which has been developed by Patterson at al. and takes
advantage of a user-friendly interface, based on the MATLAB code [5]. Limebeer
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xii INTRODUCTION

et al. [12] have studied a vast amount of topics regarding the direct methods, such
as the optimal simulation of Formula One hybrid powertrains; they used a simple
model of powertrain, assuming a different power displacement in every different
condition imposed by the pilot, and a basic car model, obtained considering the
vehicle as a moving rigid body with concentrated mass and forces applied to the
ideal points of contacts of the wheels.
On the other hand, one of the most efficient implementations of the indirect
method is XOPTIMA, developed by Da Lio et al. [11] and Bertolazzi et al. [4].
Also this method has produced very significant results in vehicle dynamics re-
search, both with regards to cars and motorcycles; referring to motorbikes, Bobbo
et al. [14] developed a model which takes into account the most important rigid
body dynamics and a linear tyre model, with the forces limited into adherence
ellipses, and two controls applied on the steering angle and on the longitudinal
forces at the contact points. Moreover the indirect strategy has been adopted to
develop parametric optimizations: for instance Tremlett et al. [15] have recently
simulated the control of a race car considering the model of a self-locking differen-
tial in different maneuvers; the dynamics has been simulated for different values
of the differential viscosity constant and the dependency of the lap time has been
studied.
Lot et al. [13] and Perantoni et al. [9] have developed a model of a tridimensional
track for optimal control simulations, with indirect and direct methods respec-
tively: the track data is obtained from a point to point reconstruction of the road
from satellite images while the optimization of the raw data is achieved by an op-
timal control problem that optimizes the road curvature to get rid of the typical
data noise, due to the segmented acquisition.
In this work a full development of an optimal control problem applied to a four-
wheeled vehicle will be provided to obtain a minimum time simulation, starting
from the system multi-body modelling and proceeding to the setup of the prob-
lem, the solution and the post-processing analysis. In particular two models will
be investigated (ch. 2): the basic model, in which the tyre forces are calculated
with a saturation formula and their combination is related only to a constant con-
straint, and the so-called slip-slip model, that include a Pacejka implementation
of the tyre formulas and a full slip combination, in which the longitudinal slip
quantities are function of each other and vary with the normal load. Moreover a
tridimensional dynamics will be considered, including the slope variation during
the track. For each model a step by step formulation will be deduced, in order
to obtain a state space formulation, that is fundamental for the description of the
optimal control problem.
To simulate the vehicle it is fundamental to gain a complete representation of the
road, or rather the full track and the curvilinear coordinates that connect the track
to the vehicle trajectory. The track data is obtained from satellite images and an
optimal control elaboration, to reduce the noise and the sampling mistakes. Three
different circuits of the GT3 championship will be taken into consideration: the
Adria International Raceway, in which the vehicle is usually tested, the Autodromo
Nazionale di Monza and the Autodromo Internazionale Enzo e Dino Ferrari of
Imola, where the variation of elevation allows to simulate the tridimensional model.



xiii

Starting from a data set of a GT3 vehicle, a setup for the problem will be defined
considering the main vehicle parameters, the boundary conditions and the con-
straints that characterize and limit the vehicle dynamics. The optimal solution
will be achieved adopting a direct method, that makes use of the transcription
code GPOPS and the NLP solver IPOPT (ch. 1). As for the transcription phase,
GPOPS provides a method based on the Randau quadrature orthogonal colloca-
tion method, while, for each iteration of the solver, the code implements a mesh
refinement based on the adaptive hp refinement method. Furthermore the solver
enforces a solution using a barrier function and controls the tolerance reached in
each iteration, in order to respect the maximum error imposed by the user.
First of all a validation of the model will be considered (ch. 3), in order to compare
the simulation results to the real behavior of the GT3 car; afterwards the focus
will be drawn to the evaluation and analysis of the results on each track, for both
the models developed, and to the comparison between different modelling strate-
gies, that reflect different levels of complexity and different possibilities to capture
the vehicle behaviors. Finally a parametric optimization will be developed (ch. 4),
evaluating the best lap time achieved with different values of the parameters that
characterize the car. The parameters of interest are related to the position of the
centre of mass, the aerodynamics, the dimensions of the vehicle, the yaw inertia
and the viscosity constant of the differential. This study will permit to find the
effect of each parameter to the system and their importance and trend in term of
reducing the lap time and optimizing the performance.
This work represents, for the University of Padua, the first all-rounded optimal
control analysis with the adoption of direct methods; although most of the mod-
elling and control techniques used are well consolidated in the optimal control
research, a deep level of complication is reached with the slip-slip model, that
implements a complete tyre forces formulation and an in-depth dynamics repre-
sentation. Moreover an inedited comparison between the main models is provided
and a parametric analysis for all the main vehicle characteristics is developed with
this model for the first time.
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Chapter 1

Optimal Control

1.1 Introduction

The optimal control problems are based on the research of a minimum of the cost
functional F(u) in terms of the state function x(t) and control u(t):

F(u) = ϕ(x(ti),x(tf )) +

∫ tf

ti

L(x(t),u(t))dt, (1.1)

considering a dynamic system defined by the following state space equations:

ẋ(t) = f(x(t),u(t), t); x(ti) = xi; t ∈ (ti, tf ). (1.2)

The function ϕ(x(ti),x(tf )) is called the Mayer part of the cost function and
determines the initial/final payoff, while L(x(t),u(t)) represents the Lagrange
term or running payoff ; the entire formulation is usually associated to the Bolza
problem.
There are two different methods to solve the optimal control problem implement-
ing different strategies: the direct method and the indirect one; basically the first
strategy is focused on the research of the minimum of F(u), using an approxi-
mate formulation of the problem obtained dividing the state space into a mesh of
points, from which it is possible to find a solution of the differential equations; this
method is based on the transcription of the optimal control problem into a non-
linear programming problem, converting the infinite-dimensional representation in
a finite-dimensional approximation [1]. Differently, the indirect strategy is based
on the research of a stationary point of the cost function (1.1), determining the
root of the necessary condition, obtained imposing the first variation of the cost
functional equal to zero.

1.2 Indirect Methods

The indirect methods are basically obtained considering the calculus of variations
and the minimum principle; a deeper description can be found in [2] and [3].
Considering by definition the Hamiltonian H(x,λ,u, t), it is possible to write the
equation (1.1) conveniently in terms of the Lagrangian multipliers or costates λ(t):

1
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H(x,λ,u, t) = L(x,u, t) + λ · f(x,u, t), (1.3)

J (x,λ,u) = ϕ(x(ti),x(tf )) +

∫ tf

ti

H(x,λ,u, t)− λ(t) · ẋ(t) dt. (1.4)

Introducing the integration by parts of the last term of the integral in the (1.3)
the equation becomes:

J (x,λ,u) = ϕ(x(ti, tf ))− λ(x(tf )− x(ti)) +

∫ tf

ti

Hdt+
∫ tf

ti

λ̇(t) · x dt. (1.5)

The research of the stationary points of the cost functional can be translated
in the necessary condition δJ = 0 as follows:

δJ = ϕxδx(tf )− λ(δx(tf )− δx(ti)) +

∫ tf

ti

Hxδx+Huδu+ λ̇(t) · δx dt. (1.6)

In order to satisfy this condition, the following set of equations must be verified:

ẋ(t) = f(x(t),u(t), t), (1.7)

Hx + λ̇ = 0, (1.8)

Hu = 0, (1.9)

with the following BCs:

ϕx − λ(tf ) = 0, (1.10)

x(ti) = xi. (1.11)

The (1.8) are called co-equations, the (1.9) are called optimality equations and
the (1.10) are the transversality conditions ; note that δx(ti) = 0 to match the
initial boundary condition.
If the stationary point found represents a minimum of the cost function, then it
must be true the condition δ2J ≥ 0; this inequality can be reduced in the form
of: ∫ tf

ti

δuTHuu(x,λ,u, t)δu dt ≥ 0; (1.12)

Because of δu(t) is an arbitrary function, and considering the equations (1.12)
and (1.9), it is possible to state that the solution is a stationary point forH(x,λ,u, t)
with x,λ and t fixed: in particular the solution represents a local minimum. There-
fore the solution u(t) can be written for a more general problem:

u(t) = argmin{v ∈ Rm |H((x,λ,v, t)}; (1.13)
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in other terms the second variation of the Hamiltonian must be a semi-definite
positive matrix. Applying the boundary conditions at both ti and tf permits to
define this as a two-point boundary value problem (TPBVP).
The derivation of a necessary condition such as the (1.12) is actually complicated
considering that the controls u(t) are typically bounded in defined limits of vari-
ation (u(t) ∈ U); because of that δu(t) is not arbitrary and it must be adopted a
different strategy to obtain a necessary condition. A simple heuristic, based on the
Pontryagin Minimum Principle, that can solve this problem is defined considering
a barrier function p(u, ε):

p(u, ε) = −ε log[ dist(u,Rm\U)], dist(u,A) = inf {|u− v|,v ∈ A}; (1.14)

it should be noticed that p is small positive if u ∈ U and is ∞ for u /∈ U . Adding
the barrier function to the expression of the cost functional the result is:

F̃(u) = ϕ(x(ti),x(tf )) +

∫ tf

ti

L(x(t),u(t) + p(u(t), ε) dt. (1.15)

Therefore, deriving the boundary value problem from an unconstrained u(t)
and considering ε as an infinitesimal quantity, the controls result:

u(t) = argmin{v ∈ U |H((x,λ,v, t)}. (1.16)

An efficient and reliable implementation of optimal control indirect techniques
for solving the TPBVP con be found in [4].

1.3 Direct Methods

The direct implementations of the optimal control problems have their foundations
on the transcription method ; this strategy allows to convert a formulation that
involves continuous functions, in order to describe the states x(t) and the controls
u(t), into an NLP problem with a finite set of discrete variables and constraints.
These concepts are deeply investigated in [1].
The solution of the problem is based on three main points:

1. convert the dynamic system into an NLP problem with a set of discrete
variables;

2. solve the finite-dimensional problem using a parameter optimization method;

3. check the accuracy of the approximation and, if necessary, repeat transcrip-
tion and optimization.

Referring to the same formulation used for the indirect methods, it is now
possible to introduce a discrete approximation of the state equations (1.7):

ẋ = f(x(t),u(t)) ≈ xk+1 − xk
h

; (1.17)
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in the NLP the controls and states are evaluated at t1, t2, . . . , tM with tk+1 = tk+h
and h = tf/M . Therefore the (1.7) becomes a constraint equation for the new
discrete problem:

ck(x,u) = xk+1 − xk − h f(x(t),u(t)) = 0, k = 1, . . . ,M − 1. (1.18)

Defining the Lagrangian as:

L(x,u,λ) = F(x(t),u(t))− λT c(x,u) =

=F(xM)−
M−1∑
k=1

λTk (xk+1 − xk − h f(xk,uk)),
(1.19)

then it is possible to determine the necessary conditions for this problem, con-
sidering the gradient of the Lagrangian with respect of x,u,λ equal to zero:
∇L(x,u,λ) = 0; therefore the necessary equations become1

∂L
∂λk

= xk+1 − xk − h f(xk,uk) = 0, (1.20)

∂L
∂xk

= (λk − λk−1) + hλTk
∂f

∂xk
= 0, (1.21)

∂L
∂uk

= hλTk
∂f

∂uk
= 0, (1.22)

∂L
∂xM

= −λM +
∂F
∂xM

= 0. (1.23)

It is important to underline that with M → ∞ and consequently h → 0 the
necessary conditions for the NLP become equal to the conditions found for the op-
timal control problem in section 1.2; in particular the (1.20) become the state equa-
tions (1.7), the (1.21) become the adjoint equations (co-equations) (1.8), equations
(1.22) become the control equations (1.9) and the (1.23) become the transversality
conditions (1.10): in other words, the necessary conditions for the NLP, approach
the optimal control conditions increasing the number of discrete intervals of the
mesh.
In addition to the other constraints, the direct formulation allows a robust imple-
mentation of algebraic path constraints which can be written in the form

g(x(t),u(t), t) = 0, (1.24)

and consequently the Hamiltonian can be expressed in the form

H = λT f + µTg. (1.25)

It is also important, with reference to a physical problem, to define inequality
path constraints that must be verified at each t ∈ [ti, tf ]:

1in this case it is supposed that the cost function depends only in the final state (e. g. minimize
the final time).
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g(x(t),u(t), t) ≥ 0. (1.26)

The transcription method discussed basically employs an approximation of
the state function derivates, that can be referred to the Euler method considering
equation (1.18); this step of the problem is a peculiar point for the implementation
of the direct method because different strategies of discretization can change the
form of the solution significantly. There is a huge number of transcription or col-
location methods that can be obtained modifying the approaches to the derivate’s
approximation: one of the most consolidated is the Randau collocation method
employed in the software GPOPS-II.

1.3.1 GPOPS-II

GPOPS-II, that stands for General Purpose Optimal Control Software, represents
a robust implementation of the direct methods for the solution of optimal control
problems [5]; the software takes advantage of a MATLAB integration that allows
the user to build the problem defining the fundamental parameters and functions
that describe the system dynamics.
The software has its core in the first and final steps of the direct optimal control
problem, or rather the transcription method and the control of the accuracy of
the results with a possible mesh refinement ; the “real” optimization, or rather the
solution of the problem reached optimizing the variables, is actually performed by
the solver such as IPOPT (sec. 1.3.2) or SNOPT.
In general an optimal control problem can be described with a finite number of
phases P ; for each phase p is also defined a series of equations which, only in part,
have just been taken into consideration in the previous paragraphs. In addition to
the dynamic constraints from (1.7) and the inequality constraints from (1.26), it
is important to consider also the event constraints that relate the beginning and
the end of each phase,

bmin ≤ b(e(p), s) ≤ bmax, (1.27)

the static parameter constraints

smin ≤ s ≤ smax, (1.28)

and the integral constraints

q
(p)
min ≤ q(p) ≤ q(p)

max, (1.29)

with

e(p) = [x(p)(t
(p)
i ), t

(p)
i ,x(p)(t

(p)
f ), t

(p)
f ,q(p)], (1.30)

and

q
(p)
i =

∫ t
(p)
f

t
(p)
i

y
(p)
i (x(p),u(p), t(p), s) dt i = 1, . . . , n(p)

q ; p = 1, . . . , P. (1.31)
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Considering now for simplicity a single-phase problem, in order to employ the
collocation method, it is fundamental to define each function in terms of a new
independent variable τ ∈ [−1, 1], while t becomes:

t =
tf − ti

2
τ +

tf − ti
2

; (1.32)

in other terms the independent variable is now dimensionless, with a variation
between -1 and 1.
The interval considered is furthermore divided into K sub-intervals [Tk−1, Tk] with
k = 1, . . . K and Tk are the mesh points in which it will be calculated the solution.
The proper discretization of the problem is implemented by GPOPS using the
Randau quadrature orthogonal collocation method with the following approxima-
tion, valid in each interval k:

x(k) ≈ X(k)(τ) =

Nk+1∑
j=1

X
(k)
j l

(k)
j , (1.33)

l
(k)
j (τ) =

Nk+1∏
l=1

τ − τ
(k)
l

τ
(k)
j − τ

(k)
l

, l ̸= j, (1.34)

τ, l
(k)
j (τ), j = 1, . . . , Nk+1 is a basis of Lagrange polynomials, while τ

(k)
1 , . . . , τ

(k)
Nk

are the Legendre-Gauss-Randau (LGR) collocation points with τ (k) ∈ [Tk−1, Tk).
Considering now a convenient formulation of the state constraints, employing the
new independent variable:

dx(k)(τ (k))

dτ (k)
=
tf − ti

2
f(x(k)(τ (k)),u(k)(τ (k)), τ (k), ti, tf ), (1.35)

and differentiating in the same way X(k)(τ) the result is:

dX(k)(τ)

dτ
=

Nk+1∑
j=1

X
(k)
j

d l
(k)
j (τ)

dτ
; (1.36)

introducing the approximation in equation (1.35), or rather collocating the dy-
namics at the LGR points the result is

Nk+1∑
j=1

D
(k)
ij X

(k)
j − tf − ti

2
f(X

(k)
i ,U

(k)
i , τ (k), ti, tf ) = 0, (1.37)

where U
(k)
i represents the approximation of the controls and D

(k)
ij is an element of

the LGR differentiation matrix :

D
(k)
ij =

[
d l

(k)
j (τ)

dτ

]
τ
(k)
i

. (1.38)

Furthermore, also the other constraint relations are made discrete, coherently
with the states and controls; the path constraints become
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gmin ≤ g(X
(k)
i ,U

(k)
i , τ (k), ti, tf ) ≤ gmax, (1.39)

while the integral constraints are traduced using the LGR quadrature weights
w

(k)
j , j = 1, . . . , Nk as follows:

qj ≈
K∑
k=1

Nk∑
i=1

tf − ti
2

w
(k)
i yj(X

(k)
i ,U

(k)
i , τ (k), ti, tf ); (1.40)

the events constraints becomes

bmin ≤ b(X
(1)
1 , ti,X

(K)
Nk+1

, tf ,q) ≤ bmax, (1.41)

where X
(1)
1 and X

(K)
Nk+1

represents the state functions calculated at the beginning
and at the end of the time interval of the simulation respectively. It is important
to notice that the continuity in each sub-interval must be constrained considering
the identity X

(k)
Nk+1

= X
(k+1)
1 : these further equations are actually eliminated from

the problem because the software uses the same variable for both these values.
The transcription method described represents only the first step of the direct
implementation; the problem is then built up generalizing the formulation for all
the phases and summarizing the equations in form of vector and matrices that
must interface with the solver. This re-formulation will be omitted because it
goes beyond the purposes of this work.
Moreover GPOPS, after calling the solver and presenting the conveniently-written
equations to obtain the optimal solution, provides the final step of the method: it
consists in the check of the accuracy and the consequent refinement of the mesh
in order to reach the desired level of reliability of the solution defined by the user-
specified tolerance. This step is implemented trough an adaptive hp refinement
method that allows a variation of the number of mesh intervals, the width of
each interval and the degree of the Lagrange polynomial which approximate the
functions, in order to give a proper integration of the equations. The estimate
of the solution error, that must be compared with the tolerance defined for the
problem, is calculated using a relative difference between the state estimate and
the integral of the dynamics obtained after modifying the set of LGR points;
summing up, in GPOPS are implemented two different strategies to achieve a
refinement of the mesh: if the estimate of the polynomial degree is lower than
the user-defined limit, the method increases the polynomial degree within a mesh
interval or, in other words, generates a denser number of sub-intervals; differently,
if the upper allowed limit for the polynomial degree is exceeded, the software
provides an increment of mesh intervals.
Another important aspect to underline is represented by the scaling of the NLP
problem, that allow a faster and more robust convergence to the optimal solution:
the software employs an automatic scaling approach, that transforms a generic
variable x ∈ [a, b] to a new scaled variable x̃ ∈ [−1/2, 1/2] considering the following
expressions:
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x̃ = vxx+ rx, (1.42)

vx =
1

b− a
, (1.43)

rx =
1

2
− b

b− a
. (1.44)

1.3.2 IPOPT

IPOPT (Interior Point Optimizer) performs the real optimization process that
follows the transcription computed by GPOPS; the fundamental principle that
stays behind the solver is to allow convergence using exact merit functions to
enforce progress toward solution [6]. An alternative to this approach is a filter
method that accepts the trial points if they improve the objective function or
reduce the constraint violation separately; IPOPT implements a further method
that adapts the filter approach to barrier methods and performs the validity of
trial steps, considering the norm of the optimality conditions.
With reference to a simplified problem formulated as follows:

minF(x), x ∈ Rn (1.45)

g(x) = 0, (1.46)

x ≥ 0, (1.47)

the interior point method computes approximate solutions for a sequence of barrier
problems defined as

minψµ(x)
.
= F(x)− µ

n∑
i=1

ln(xi), (1.48)

g(x) = 0; (1.49)

these equations are defined for a sequence of µ, called the barrier parameter, which
is driver to zero; equivalently,

∇F(x) +∇g(x)λ− z = 0, (1.50)

g(x) = 0, (1.51)

diag(x) diag(z)e− µe = 0, (1.52)

where diag(x) and diag(z) give two diagonal matrixes in which the elements are
elements of x and z respecitvely, while e is a vector of ones; λ ∈ Rm and z ∈ Rn

are the Lagrangian multipliers for the equality constraints and the inequality con-
straints respectively. This set of equations, for µ → 0, represents the optimality
conditions for the considered problem if the constraints are satisfied.
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The method described implements an approximated solution of the barrier prob-
lem considering µ as a constant and decreasing this parameter for the solution of
the next barrier. The optimality error for the problem can be defined as follows:

Eµ(x,λ, z)
.
= max

{
∥∇F(x) +∇g(x)λ− z∥∞

sd
, ∥g(x)∥∞,

∥ diag(x) diag(z)e− µe∥∞
sc

}
,

(1.53)
where sd and sc are properly defined scaling parameters; evaluating this quantity
at µ = 0 makes possible to obtain the optimality error for the original problem
and definitely a terminal condition for the whole algorithm: in other terms the
iterations terminates if the approximate solution (x∗,λ∗, z∗) satisfies:

E0(x
∗,λ∗, z∗) ≤ ϵtol, (1.54)

with ϵtol > 0 is the user-defined tolerance for the mesh error.
The solution of the barrier problem can be found, for the k iteration, adopting
the Newton’s method with the search directions (dxk,d

λ
k ,d

z
k) generated from a

linearization of the optimality conditions (1.50), (1.51), (1.52):[ Wk Ak −I
ATk 0 0
Zk 0 Xk

]( dxk
dλk
dzk

)
= −

( ∇F(xk) + Ak λk− zk
g(xk)

XkZk e−µj e

)
, (1.55)

with Z = diag(z), X = diag(x), Ak
.
= ∇g(xk), Wk = ∇2

xx L(xk,λk, zk) Hessian
of the Lagrangian function

L(x,λ, z) .= F(x) + g(x)T λ− z . (1.56)

Considering now the step sizes αk, α
z
k ∈ (0, 1], it is possible to evaluate the

following iterations as

xk+1
.
= xk − αkd

x
k, (1.57)

λk+1
.
= λk − αkd

λ
k , (1.58)

zk+1
.
= zk − αzkd

z
k; (1.59)

it is important to notice that the determination of the step sizes is fundamental
for the progression of the iterative method and the choice of these parameters
takes advantage of the line-search filter method. This formulation is based on the
interpretation of the barrier method as an optimization problem with two separate
targets to minimize: the function ψµj(x) and the entity of the constraint violation
θ(x). A trial point should be considered as ”acceptable” if it satisfies for the k
iteration the following conditions, for a backtracking line-search procedure which
allows to explore a decreasing sequence of trial steps sizes αk,l:

θ(xk(αk,l)) ≤ (1− γθ)θ(xk), (1.60)

ψµj(xk(αk,l)) ≤ ψµj(xk)− γψθ(xk), (1.61)
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Figure 1.1: IPOPT console output quantities.

with γθ, γψ ∈ (0, 1). Moreover, for each iteration the algorithm sets a filter that
defines the prohibited regions for the trial points; initially the formulation is:

Ψ0
.
= (θ, ψ) ∈ R2 : θ ≥ θmax, (1.62)

and is updated as

Ψk+1
.
= Ψk ∪

{
(θ, ψ) ∈ R2 : θ ≥ (1− γθ)θ(xk), ψ ≤ ψµj(xk)− γψθ(xk)

}
. (1.63)

IPOPT provides a console tabular output in order to compute an evaluation
for the most important parameters connected to the convergence of the problem;
in figure (1.1) can be seen an example of the printed quantities.

The meaning of the variables of interest can be summed up as follows:

• iter : iteration count;

• objective: unscaled objective value at current iteration;

• inf pr : unscaled constraint violation at current iteration, or rather the
infinity-norm (maximum) of the constraints;

• inf du: scaled dual infeasibility at current point, or rather the infinity-norm
of the internal dual infeasibility expressed at (1.50);

• lg(mu): log10 of the barrier parameter µ;

• ∥d∥: infinity-norm of the primal step;

• lg(rg): depends on log10 of regularization of Hessian and Lagrangian;

• alpha du: stepsize of dual variables αzk in (1.59);

• alpha pr : stepsize of the primal variables αk in (1.57);

• ls : number of backtracking line search steps.
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1.3.3 ADiGator

The evaluation of the objective function gradient, the constraint Jacobian and the
Hessian of the Lagrangian is fundamental in order to obtain a solution for the
NLP problem; the standard strategy adopted to evaluate these derivatives is the
numerical method called finite-differencing: this method employs an approxima-
tion determined dividing the difference of the function, evaluated at two neighbor
points, by the difference of the same points. Considering a generic function f(x)
to evaluate in an interval of length ε:

df

dx

∣∣∣∣
x

=
fx+ε/2 − fx−ε/2

ε
(1.64)

The main advantage of this strategy consists in the fact that only evaluations
of the function are required; nevertheless the finite-differencing strongly depends
on the spacing between the chosen points: with a large spacing the approximation
is coarse, while using small spacing may lead to an improper evaluation of the
behavior of the function.
An alternative to this method is based on the target of formulating an efficient
and accurate way to compute the needed derivatives automatically: this is known
as automatic differentiation (AD) [7]. Taking into consideration a differentiable
computer program, it may be broken into a sequence of elementary operations,
each one connected to a correspondent derivative rule; applying systematically
the chain rule to each of the elementary operation rules, it is possible to achieve
a derivative with accuracy coincident with machine precision. A MATLAB based
tool, implemented in GPOPS, that provides automatic differentiation is ADiGa-
tor : this package generates a MATLAB program which is capable of computing
the possible non-zero derivatives of the original function program. The main ad-
vantages given by the tool for the direct optimal control problems are the following:

1. no time penalties are added with the derivative evaluation because the
derivative code is only evaluated by MATLAB library;

2. the tool is capable to compute vectorized derivatives of the vectorized func-
tions which result from the direct collocation method provided by GPOPS:
it improves the efficiency;

3. second-order derivatives can be provided simply applying recursively the
same procedure.

ADiGator make use of a source transformation via operator overloading in order
to determine the derivatives of functions defined by MATLAB programs; in other
words the tool works as follows: the inputs to the software consist in a function
(that have to be differentiated), the information on the sizes of inputs and the
derivative information on the inputs; the operator is overloaded because differ-
ent operators have different implementations depending on their arguments: the
program in fact will be able to recall the functions using different inputs avail-
able during the calculations. The algorithm first transforms the given MATLAB
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source code into an intermediate code in which are included calls to ADiGator spe-
cific routines for transformation; this code is then evaluated multiple times using
overloaded CADA objects, which include only information on the size of objects,
symbolic identifiers and the possible non zero derivative locations. The evalua-
tions and informations obtained are included in functions and derivative files: as
result the method provides a transformation of the original user function into a
MATLAB function that computes a numerical solution of the non-zero derivatives
of the original function. All these consideration are extensively developed in [7].

1.3.4 MATLAB Implementation

The MATLAB code necessary to implement and solve the optimal control problem
using GPOPS is subordinate to the creation of a series of quantities, which are
fundamental in order to define the main variables and parameters involved:

1. the endpoint function;

2. the continuous function;

3. lower and upper limits of:

• the time at start and terminus of a phase;

• the state at start, during and at the terminus of a phase;

• the controls during a phase;

• the path constraint (in all the phases for definition);

• the event constraints;

• the static parameters.

If on the one hand the functions are defined separately to the main code and
recalled in it to set up the problem, on the other hand the global boundary con-
ditions of the quantities listed must be written in the main code itself. In the
endpoint function is defined the cost to be minimized, the begin and the end of
each phase, the integrals of each phase, and the static parameters related, while
in the continuous function are provided the dynamics equation in each phase, the
integrands and the path constraints in each phase.
For some problems with a high level of complexity it should be provided an initial
guess for the solution, building a proper set of values for the time, the states, the
controls, the integral and the parameters (if adopted).

1.3.5 Simple Example: The Brachistochrone Problem

In order to clarify the basic structure of the optimal analysis, it might be useful to
formalize a simple problem in terms of a practical GPOPS implementation. The
physical problem, known as the brachistocrone problem, consists in the research
of the optimal shape of a wire, that is able to minimize the final time in which
an ideal body can drop without friction in a given horizontal distance. In this
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Figure 1.2: Comparison between the GPOPS solution and the analytical solution
from [2].

paragraph will be implemented the dual problem of the one just described: the
target is to maximize the utter horizontal distance in which the ideal body drops
along the wire in a given time tf ; this analysis is taken from [2, p.47]. The problem
admits an analytical solution calculated in a discrete number N of states, with
α = π/2N :

x(i)

gt2f
=

cos(α/2)

4N2 sin(α/2)

[
i 2 sin(2αi)

2 sin(α)

]
, i = 1, . . . , N (1.65)

y(i)

gt2f
=

cos(α/2)

8N2 sin(α/2) sin(α)
[1− cos(2αi)], i = 1, . . . , N. (1.66)

In figure 1.2 should be seen the results of the analytical method and the solution
found with GPOPS-II considering the optimal shape of the wire in terms of x and
y coordinates, made dimensionless dividing by gt2f : the two methods generate the
same path. Moreover, it should be highlighted that GPOPS increments the mesh
points in proximity of the origin because, in this point, the convergence is made
more difficult by the small values of the variables.
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1.4 Comparison Between Methods

In spite of the fact that both the direct and indirect methods focus their attention
on the research of a minimum for the objective function, these two methods are
substantially different in terms of the strategies applied and referring to the quan-
tities that need to be calculated. In general, on the one hand, the direct methods
proceed in a discrete domain in order to find a minimum of the cost function; on
the other hand the indirect methods are based on the research of a root of the
necessary condition and, namely, of a stationery point of the target function. In
practice, as shown in the previous paragraphs, indirect methods need the user to
derive an explicit formulation of the adjoint equations (1.8), the control equations
(1.9) and the transversality conditions (1.10): these steps of calculation are not
necessary for a direct formulation; moreover, for this reason, the direct methods
allow a complete distinction between the formulation of the physical model and
the mathematical formulation of the optimal control problem, that are fundamen-
tally correlated for the indirect approach.
The most significant difficulties connected to the analysis with an indirect method
can be synthetically expressed in three points [1, p.129]:

1. the relevant derivatives must be calculated by the user such as Hx and Hu;

2. path inequalities and junction condition are difficult to estimate: in partic-
ular these quantities are substituted by penalties in the cost function;

3. it must be computed a guess for the adjoint variables λ.

To be more precise, path inequalities are also used in the direct methods while
the penalties for the constraint violation are implemented only internally in the
solver (e.g. IPOPT): the main difference is that in the indirect methods the user
has to obtain an explicit formulation for these penalties, while with direct methods
are integrated in the solution program.



Chapter 2

Vehicle Model

2.1 Introduction

The possibility to obtain realistic solutions for the optimal control problem, or
rather results that can be assumed as a good approximation of the real behavior
of the vehicle, depends on the level of complexity provided for the vehicle dynamic
model: the more the model is able to capture the most significant dynamic param-
eters, the more the simulation is capable of reaching the ideal perfect performance
for the real vehicle, in terms of minimum time maneuvers.
Therefore, it is clear that the possibility of finding and modelling the quantities
which have a main role in the dynamic behavior, is the real challenge for obtaining
a proper solution for the problem; as underlined by the theory of vehicle dynam-
ics, the most important parameters that make the difference between a good level
of approximation and a coarse representation of reality are related to the tyre
modelling and the slip quantities: this observation represents the main difference
between the models that will be presented in the following sections. Further im-
provements are connected to the introduction of the lateral dynamics and the
effect of the road slope.
Despite of that, the simulations have to face with the difficulty introduced for the
calculations using complex models with a big deal of state variables and controls.
The speed of elaboration is, in most of the cases, an important limit that does
not allow the usage of more accurate characterizations for the vehicle dynamics.
In fact, the proper model of the system has to be the best compromise between
enough fast calculation and a good representation of the vehicle, and it depends on
the user necessities: fast simulations must be provided for an almost “real time”
comparison with the running vehicle, while slower calculations can be used during
the phase of design and test.
The main models that will be treated later are:

• basic model with constant traction ellipses : in this model the tyre forces are
constrained to remain in the traction ellipses limits, in order to simulate the
coupling between longitudinal and lateral forces;

• slip-slip model with longitudinal and lateral slip: forces are limited to the
slip limit value; a more proper coupling is therefore provided;

15
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As noticed before, the real difference between these models is connected to the
tyre modelling, although other dynamic behaviors are taken into consideration,
such as the lateral load transfer or the effect of the road slope.
All the simulations will be developed using the data of a real racing car of the
GT3 Italian championship: the BMW M6 GT3. In terms of modelling, the vehicle
is characterized by a rear wheel drive transmission, with front engine and rear
gearbox positioning; the driving axle includes a self-locking differential and the
car is also equipped by a rear adjustable wing. For confidentiality reasons, the
technical data will not be reported in this dissertation.

2.2 Basic Car Model

The first basic model departs from a single-track model in which the tyre forces
are constrained to stay into constant and user-defined adherence ellipses; in that
way it is provided a simple combination of the forces, which are obtained with
an elementary saturating force model : for high or low slips the force saturates
to its maximum (or minimum) value. A single-track model is basically a vehicle
approximation equipped only by one rear wheel and one steering front wheel;
differently, in this basic model, all the four wheels are considered dividing equally
the front and rear forces for the wheels of the front and rear axle respectively.

2.2.1 Kinematics

Consider now two reference frames: an XY Z absolute reference frame, with Z
axis directed towards the ground (SAE convention), and a moving reference frame
xyz, with origin in the centre of mass (CoM), x axis directed along the longi-
tudinal axis of symmetry of the vehicle, and z axis directed towards the ground
(SAE convention); the moving frame is instantly rotated around the z axis of an
angle ψ(t), called yaw angle, and is subjected to a translational movement with
velocity V(t) = [u(t), v(t), 0], which corresponds to the velocity of the vehicle. A
representation of these kinematic parameters is realized in fig. 2.1.

Applying now the Poisson fundamental equation for kinematics (2.1), the ex-
pression of tyre velocities can be found, where ω(t) is the angular velocity matrix
for the moving frame while r is the vector directed from the CoM to the wheel
centre of mass.

Vwheel = V + ω ∧ r; (2.1)

(
ufr
vfr

)
=

(
u
v

)
+

(
0 −ψ̇
ψ̇ 0

) (
a
T
2

)
=

(
−ψ̇ T

2
+ u

ψ̇ a+ v

)
; (2.2)

then the trim angle βw, or rather the angle between the wheel velocity and the x
axis of the moving reference frame, can be expressed as follows:
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Figure 2.1: View of the vehicle in xy plane.
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βfr ≈ tan βfr =
ψ̇ a+ v

−ψ̇ T
2
+ u

. (2.3)

The same calculations can be made for the other wheels:

(
ufl
vfl

)
=

(
ψ̇ T

2
+ u

ψ̇ a+ v

)
→ βfl ≈

ψ̇ a+ v

ψ̇ T
2
+ u

, (2.4)(
urr
vrr

)
=

(
−ψ̇ T

2
+ u

−ψ̇ b+ v

)
→ βrr ≈

−ψ̇ b+ v

−ψ̇ T
2
+ u

, (2.5)(
url
vrl

)
=

(
ψ̇ T

2
+ u

−ψ̇ b+ v

)
→ βrl ≈

−ψ̇ b+ v

ψ̇ T
2
+ u

. (2.6)

All these formulas derive from a linear approximation assuming small values
for the trim angle; a further approximation can be obtained considering that
realistically u≫ ψ̇ T/2:

βfl ≈ βfr ≈ βf =
ψ̇ a+ v

u
, βrl ≈ βrr ≈ βr =

−ψ̇ b+ v

u
; (2.7)

Then it is evident that the trim angles are equal for the wheels of the same
axle; moreover the steering angles δ for the front wheels can be approximated as
equal (δfl ≈ δfr ≈ δ): this is more realistic for high speeds.
Thanks to the congruence equations, it is possible to express a relation between
the trim angles β and the lateral slip angles λ, from which it can be obtained the
lateral tyre forces. These fundamental slip quantities are defined as the angles
between the wheel velocity (due to translation and rotation around z) and the
axis of symmetry of the wheel (fig. 2.2).

λf = δ − βf = δ − ψ̇ a+ v

u
, λr = −βr = −−ψ̇ b+ v

u
. (2.8)

2.2.2 Dynamics

Each wheel is subjected to a force vector [Fx, Fy, N ]w composed by longitudinal
and lateral tyre forces, and the normal loads N ; the point of application of these
forces is the ideal contact point of the wheels, assuming that this point is coincident
to the projection of the wheel centre to the ground. The longitudinal forces can
be divided into two different contributes: a front longitudinal force Fxf for the
front wheels and a rear longitudinal force Fxr for the rear wheels; Fxf can be
only negative and exists during a braking condition, while Fxr represents the
positive driving force during acceleration and the negative contribution during
braking. Only when the driver presses the brake pedal, the front and rear forces
are related by equation (2.9) in which is expressed the braking ratio β. Fx is the
total longitudinal force applied, namely the sum of each force applied on the wheel
contact points.
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δ

Figure 2.2: Relations between the steering angle, the slip angle and the trim angle
for a front wheel (on the left) and a rear wheel (on the right).

{
Fxf = 0
Fxr > 0

Fx > 0 (traction),

{
Fxf = β Fx
Fxr = (1− β)Fx

Fx < 0 (braking).

(2.9)
The lateral forces are obtained from a simple formulation of a saturated force;

this particular form does not take into consideration the coupling between the
longitudinal and lateral forces:

Fyf =
Kfλf Nf√
1 +

K2
fλ

2
f

D2
yf

, Fyr =
KrλrNr√
1 +

K2
rλ

2
r

D2
yr

; (2.10)

where K represents the slope of the curve at λ = 0 and Dy is the maximum value
for saturation, defined by the ratio Fy/N for λ → ∞. As it can be deduced, Dy

represents the friction coefficient related to the tyre lateral behavior. An explica-
tive representation of the forces depending on the lateral slip angle is highlighted
in figure 2.3.
It should be noticed also that in this model the front and rear forces on the contact
points, are equally split to the wheels of the same axle, both for the longitudinal
and for the lateral ones; in fact the force vectors for each wheel can be expressed
as follows:

Ffl = Ffr =

[
1

2
Fxf ,

1

2
Fyf ,

1

2
Nf

]
, Frl = Frr =

[
1

2
Fxr,

1

2
Fyr,

1

2
Nr

]
. (2.11)

Moreover the model takes into consideration the drag force applied to the
ground projection (G) of the CoM; this choice is related to the fact that the aero-
dynamics forces are typically measured positioning the vehicle on inertial supports
with dynamometric sensors. As suggested by eq. (2.12), this force depends on the
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Figure 2.3: Representation of the forces calculated with the saturation formulas;
the dashed lines represents the parameter Dy while the dot-dash line has equation
K λ and is coincident with the tangent at the origin of Fy/N .

drag area CDA, obtained by the product of the drag coefficient CD and the frontal
area A, and on the air density ρ and the longitudinal speed u.

FD = −1

2
CDAρu

2. (2.12)

Thanks to this considerations, it is possible to formulate the Newton-Euler
equations of the system, considering the xy plane; note that Fy = Fyf + Fyr and
Fx = Fxf + Fxr.

(
−ψ̇ v + u̇

)
m+

1

2
CDA ρ u

2 − Fx + Fyf δ = 0 , (2.13)

m(ψ̇ u+ v̇)− Fy − Fxf δ = 0, (2.14)

Iz ψ̈ − aFyf + b Fyr − a δ Fxf = 0; (2.15)

Equation (2.13) represents the force equilibrium in x direction, eq. (2.14) the
force equilibrium in y direction and eq. (2.15) the momentum equilibrium around
z axis; Iz is the inertia momentum of the vehicle with reference to z axis.
From this set of equations can obtained the state space expression of the dynamical
system: this step is fundamental in order to define the state variables of the
optimal control problem.

u̇ = ψ̇ v − 1

2

CDA ρ u
2

m
+

Fx

m
− Fyf δ

m
, (2.16)

v̇ = −ψ̇ u+ Fy + Fxf δ

m
, (2.17)

ψ̈ =
aFyf − b Fyr + aFxf δ

Iz
. (2.18)
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Figure 2.4: View of the vehicle in zx plane.

In this first model the total front and rear loads Nf and Nr are formulated
considering only the longitudinal load transfer; they can be deduced from the fol-
lowing simple equations, directly obtained considering the Euler equations around
y direction with the pivot at the front and rear contact point respectively;

Nf = −bm g − h (Fxf + Fxr)

w
, Nr = −amg + h (Fxf + Fxr)

w
. (2.19)

As can be seen in figure (2.4), b is the distance between the rear axle and G, a
is the distance between the front axle and G, w = a + b is the wheelbase of the
vehicle and h is the height of the CoM measured from the ground (GCoM); it can
be noticed that the normal loads are directed oppositely to the z axis and that,
for this model, Nfl = Nfr = Nf/2 and Nrl = Nrr = Nr/2.

2.2.3 Further Complications

The basic traction ellipses model would result more realistic considering the lift
downforce and lateral load transfer; as for the lift forces (see fig. 2.4), they can
be calculated in analogy with the drag force; it should be underlined that the
direction is opposite to the z axis:

FLf = −1

2
CLfAρu

2, FLr = −1

2
CLrAρu

2; (2.20)

these forces are applied respectively to the front and rear projection of the axle
centers on the ground and depend on the lift areas, or rather on the product
between the lift coefficient and the resistant area for lift. The parameter CLA
is calculated using the same dynamometric support of the drag coefficient; this
choice determines the points of application.

The analysis of the lateral load transfer depends on the roll properties of the
vehicle and, in particular, on the front and rear roll stiffness Kϕf and Kϕr, calcu-
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Figure 2.5: View of the vehicle in yz plane with lateral load transfer for the rear
wheels.

lated considering a rotation of the vehicle around the roll centers. With reference
to figure (2.5), it is possible to approximate the centers of rotation of the vehicle
at the same height h of the CoM, and then formulate an equation that express the
effect of the roll stiffness on the load transfer. Considering that the roll stiffness
ratio ξ is defined as:

ξ =
Kϕf

Kϕ

, with Kϕ = Kϕf +Kϕr, (2.21)

and expressing the lateral load transfer ∆N in function of ξ with the momentum
equilibrium around the projection points of the approximated stiffness centers
on the ground (coincident with G in the yz plane), can be found the following
expressions for front and rear load transfer (fig. 2.5):

{
∆Nf T = may h ξ
∆Nr T = may h (1− ξ)

, with

{
∆Nf =

1
2
(Nfl −Nfr)

∆Nr =
1
2
(Nrl −Nrr)

. (2.22)

One of these roll equation, in combination with the Newton equation in z direc-
tion and the Euler equations around x and y axes, allows to obtain an expression
for the loads applied on each wheel. From the system:
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−hmay +
1

2
T (Nfl −Nfr +Nrl −Nrr) = 0, (2.23)

−1

2
aCLfA ρ u

2 +
1

2
bCLrA ρ u

2 + hmax + aNfl + aNfr − bNrl − bNrr = 0, (2.24)

1

2
CLfA ρ u

2 +
1

2
CLrA ρ u

2 +mg −Nfl −Nfr −Nrl −Nrr = 0, (2.25)

1

2
(Nfl −Nfr)T − hmay ξ = 0, (2.26)

it follows the wheel normal loads:

Nfl = −1

2

hmax
w

+
1

2

bmg

w
+

1

4
CLfA ρ u

2 +
hmay ξ

T
, (2.27)

Nfr = −1

2

hmax
w

+
1

2

bmg

w
+

1

4
CLfA ρ u

2 − hmay ξ

T
, (2.28)

Nrl =
1

2

hmax
w

+
1

2

agm

w
+

1

4
CLrA ρ u

2 +
hmay (1− ξ)

T
, (2.29)

Nrr =
1

2

hmax
w

+
1

2

agm

w
+

1

4
CLrA ρ u

2 − hmay (1− ξ)

T
. (2.30)

Because of the effect of lateral load transfer, the loads and consequently the
lateral forces on the same axle are different: in order to follow the same represen-
tation of the previous model, expressed in eq. (2.11), by contrast are reported the
following force vectors:

Ffl =

[
1

2
Fxf , Fyfl, Nfl

]
, Ffr =

[
1

2
Fxf , Fyfr, Nfr

]
; (2.31)

Frl =

[
1

2
Fxr, Fyrl, Nrl

]
, Frr =

[
1

2
Fxr, Fyrr, Nrr

]
. (2.32)

The acceleration of the CoM, that appear in the load transfer expressions, can
be calculated from a derivation of the velocity V = [u(t), v(t), 0] using the Poisson
formulas:

ACoM = [ax, ay, 0] = [u̇− v ψ̇, v̇ + u ψ̇, 0]. (2.33)

Relaxation equations can be provided for ax and ay in order to allow a rep-
resentation of the suspension dynamics: in fact this approximation traduces the
accelerations expressions into a low-pass filter, which generate a delay in the ap-
plication of the tyre forces; starting from the Newton equations towards x and y
axes, combined with the (2.33), it can be found the expression for the acceleration
components, that are made equal to the filter expression (left hand side of eq.
(2.34) and (2.36)) using the parameters τax and τay, which are connected to the
filter cutting frequency.



24 CHAPTER 2. VEHICLE MODEL

Y

X

�

�

n

s
R=1/�(s)

G

Figure 2.6: Curvilinear coordinates.

τax ȧx + ax = −1

2

CDA ρ u
2

m
− δFyfl + δFyfr − Fxf − Fxr

m
, (2.34)

ȧx = −1

2

CDA ρ u
2

mτax
− δFyfl + δFyfr +max − Fxf − Fxr

mτax
, (2.35)

τay ȧy + ay =
δFxf + Fyfl + Fyfr + Fyrl + Fyrr

m
, (2.36)

ȧy =
δFxf −may + Fyfl + Fyfr + Fyrl + Fyrr

mτay
. (2.37)

It is important to underline that the relaxation equations, although are imple-
mented to simulate a delay in the lateral and longitudinal load transfer, can boost
the convergence of the optimal control problem, with a proper choice of the typical
time constants τax and τay.
The inclusion of these behaviors, related to the lateral dynamics and the lift forces,
does not change the formulation of the Newton-Euler equation for xy plane and
the state space expression, because no forces are added to the plane of interest.

2.2.4 Curvilinear Coordinates

In order to model the behavior of the vehicle on the track, and then obtain its
position on the road, it is fundamental to consider the curvilinear coordinates.
For a xy planar problem, the equations of curvilinear coordinates can be easily
deduced projecting the velocities of the moving frame xyz on the road frame; the
road frame is defined by three curvilinear coordinates: the versor s(t) is the curvi-
linear abscissa and is instantly tangent to the centre of the road, n(t) is a versor
perpendicular to s(t) and χ(t) represents the rotation of this frame around the
orthogonal to the ground plane and directed downwards (fig. 2.6). Equation (2.40)
is obtained form the definition of the road curvature Θ(s), which is a function of
the curvilinear abscissa.
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cos (χ) u− sin (χ) v = −
(
ψ̇ − χ̇

)
n+ ṡ, (2.38)

sin (χ) u+ cos (χ) v = ṅ, (2.39)

ψ̇ − χ̇

Θ(s)
= ṡ. (2.40)

The explicit formulation of these equations, or rather the state space represen-
tation, is useful in order to set up the optimal control problem.

ṡ = −cos (χ)u− sin (χ) v

nΘ(s)− 1
, (2.41)

ṅ = sin (χ)u+ cos (χ) v, (2.42)

χ̇ =
cos (χ)Θ (s)u− sin (χ)Θ (s) v + nΘ(s) ψ̇ − ψ̇

nΘ(s)− 1
. (2.43)

2.2.5 3D Road

A model that implements the effects of the variation of the road slope σ is then
provided, starting from the basic model of car; this model represents a simplified
version of a complete 3D model because no variation of z coordinate is considered,
as if the vehicle underwent the effects of slope with only a pitch rotation around
the y axis, maintaining the same elevation in the whole domain. Therefore no
changes are expected for the Newton equation along the y axis (2.45) and for the
Euler equation around z (2.46) axis, while the force equilibrium along x axis (2.44)
has to include the effect of gravity mg sinσ; consequently the xy plane dynamics
is captured solving the following equations:

−ψ̇mv +mu̇+
1

2
CDA ρ u

2 +mg sinσ − Fxf − Fxr + (Fyfl + Fyfr) δ = 0, (2.44)

ψ̇mu+mv̇ − Fyfl − Fyfr − Fyrl − Fyrr − δFxf = 0, (2.45)

Iz ψ̈ − aFyfl − aFyfr + bFyrl + bFyrr +

(
1

2
TFyfl − aFxf −

1

2
TFyfr

)
δ = 0; (2.46)

the accelerations, treated as a low-pass filter, become:

ȧx = −1

2

CDA ρ u
2 + 2mg sinσ + 2 δFyfl + 2 δFyfr + 2max − 2Fxf − 2Fxr

mτax
,

(2.47)

ȧy =
δFxf −may + Fyfl + Fyfr + Fyrl + Fyrr

mτay
;

(2.48)

and the state space equations are:
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u̇ = −1

2

CDA ρ u
2 − 2 ψ̇mv + 2mg sinσ + 2 δFyfr + 2 δFyfl − 2Fxr − 2Fxf

m
,

(2.49)

v̇ = − ψ̇mu− δFxf − Fyrr − Fyrl − Fyfr − Fyfl

m
,

(2.50)

ψ̈ =
1

2

δTFyfr − δTFyfl + 2 δaFxf + 2 aFyfr + 2 aFyfl − 2 bFyrr − 2 bFyrl

Iz
.

(2.51)

The Euler equations around x (2.52) and y (2.53) axes and the Newton equa-
tion along z axis (2.54) present new terms due to the road slope; the full set of
equations, from which it is possible to determine the normal loads, becomes:

ψ̇ σ̇(Iz − Iy)− hmay +
1

2
TNfl − 1

2
TNfr + 1/2TNrl −

1

2
TNrr = 0,

(2.52)

Iy σ̈ − 1

2
aCLfA ρ u

2 +
1

2
bCLrA ρ u

2 +mgh sinσ + ax hm+ aNfl + aNfr − bNrl − bNrr = 0,

(2.53)

−σ̇mu+ 1

2
CLfA ρ u

2 +
1

2
CLrA ρ u

2 +mg cosσ −Nfl −Nfr −Nrl −Nrr = 0

(2.54)

1

2
(Nfl −Nfr)T − hmay ξ = 0;

(2.55)

the term ψ̇ σ̇(Iz − Iy) of eq. (2.52) represents the gyroscopic effect of the whole
vehicle in x axis, due to a yaw and a pitch rotation of the chassis; Iy σ̈ (eq. 2.53)
is the inertia momentum caused by the variation of the pitch angular velocity
while, in eq. (2.54), the term σ̇mu represents the z component of the acceleration,
because z = 0 ∀ s(t) ∈ [0, +∞). Solving the system in function of the loads of
each wheel the result becomes:
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Nfl = −1

2

mgh sinσ

w
− 1

2

ax hm

w
+

1

2

mgb cos σ

w
− 1

2

σ̇bum

w
+

1

4
CLfA ρ u

2 − 1

2

Iy σ̈

w
+
hmay ξ

T
,

(2.56)

Nfr = −1

2

mgh sinσ

w
− 1

2

ax hm

w
+

1

2

mgb cosσ

w
− 1

2

σ̇bum

w
+

1

4
CLfA ρ u

2 − 1

2

Iy σ̈

w
− hmay ξ

T
,

(2.57)

Nrl =
1

2

mgh sinσ

w
+

1

2

ax hm

w
+

1

2

mga cos σ

w
− 1

2

σ̇aum

w
+

1

4
CLrA ρ u

2 +

+
1

2

Iy σ̈

w
− hmay (ξ − 1)

T
+
ψ̇Iy σ̇w − σ̇Iz ψ̇w

T
,

(2.58)

Nrr =
1

2

mgh sinσ

w
+

1

2

ax hm

w
+

1

2

mga cos σ

w
− 1

2

σ̇aum

w
+

1

4
CLrA ρ u

2 +

+
1

2

Iy σ̈

w
+
hmay (ξ − 1)

T
+

−ψ̇Iy σ̇w + σ̇Iz ψ̇w

T
;

(2.59)

2.3 Road Reconstruction

Building the road data is fundamental to simulate the vehicle behavior for two
reasons: on the one hand it defines the limits of the track in which the car must
remain; on the other hand an accurate reconstruction allows the problem to have a
faster convergence, while using coarse data implies longer simulations with higher
possibilities of capturing non-realistic behaviors.
The “raw data” of the road is obtained thanks to the creation of two text files,
which contain respectively the coordinates of the right and left borders in terms of
latitude and longitude; this two-dimensional data is taken from GoogleTM satellite
maps1, and the road profiles are captured with a series of points by the user. A
further text file for road elevation is then created from a database2 in which is
mapped the elevation as a function of latitude and longitude; in fact, setting the
previously obtained coordinates as an input, the database generates the corre-
spondent altitude data.
The files obtained are then used as an input for a MATLAB script in which are cal-
culated the cartesian coordinates of the XcYcZc earth-centered Cartesian system
(ECEF) from the ΦΛh coordinate system:

Xc = (N(Φ) + h) cosΦ cosΛ, (2.60)

Yc = (N(Φ) + h) cosΦ sinΛ, (2.61)

Zc = [N(Φ)(1− e2) + h] sinΦ; (2.62)

1The maps are available at the following link http://www.google.com/earth/index.html.
2The database is available at the following link http://www.gpsvisualizer.com/elevation.

http://www.google.com/earth/index.html
http://www.gpsvisualizer.com/elevation
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e represents the earth eccentricity, a the semi-major axis, Φ is the latitude, Λ the
longitude, h the elevation and N(Φ) is the distance from the surface to the Zc axis
along the ellipsoid normal,

N(Φ) =
a√

1− e2 sin2Φ
. (2.63)

It is possible to group the boundary measurements in a set of the M right hand
boundary points Br and a set of the M left hand side points Bl; these groups
contain the measured set of vectors br,i = [Xc, Yc, Zc]r,i and bl,i = [Xc, Yc, Zc]l,i
respectively, for i = 1, . . . ,M ; the group of track centre line points C can be
deduced with the relation ci = (bl,i + br,i)/2. At this point the satellite data
captured is ready for the last step of road reconstruction that consists in a track
smoothing optimal control problem [9]. The state vector, contains the full set of
state variables; one of the possible choices is:

x = [x, y, z, θ, σ, β, θ̇, σ̇, β̇, nl, nr]
T ; (2.64)

note that the coordinates of the road centre vector c = [x, y, z] are now defined
with reference to the start line of the track for simplicity. As for the control vector,
a possible definition is consequently:

u = [θ̈, σ̈, β̈, ṅl, ṅr]
T . (2.65)

The road is defined by a series of strips, each one characterized by three eulerian
angles: s is the curvilinear abscissa, θ represents the road heading, or rather the
direction of traveling, σ represents the slope and β describes the banking or, in
other words, the leaning of the road; nl and nr are the distances between the road
left and right borders and the centre line (typically nl = nr = nw). Each ribbon of
the road can be parametrically defined using a vector r(s, n) = c(s) + n(s) where
c(s) represent the coordinate of the centre of the ribbon and n(s) is the vector
that links the centre to each point of the ribbon. Following these considerations,
the state equations can be obtained from the following expressions:

θ(s) =

∫ s

s0

θ̇(s) ds, (2.66)

σ(s) =

∫ s

s0

σ̇(s) ds, (2.67)

β(s) =

∫ s

s0

β̇(s) ds, (2.68)

r(s, n) =

∫ s

s0

ċ(s) ds+ n(s). (2.69)

(2.70)

The purpose of the problem is to minimize the Euclidean distances between
the ribbon model of the road and the data set deduced from the measured points
Bl, Br, C: these curves are obtained interpolating the measured data point for left
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border, right border and centre line respectively.
The integral cost function for the optimal control problem can be expressed using
three terms:

l(s,x,u) = e(s,x,u) + rc(s,u) + rw(s,u); (2.71)

the term e(s,x,u) represents the tracking error, or rather the error between the
curves defined by the points C and C, Bl and Bl, Br and Br; each component of
error is multiplied by a weighting function w that determines the importance of
each term and consequently the accuracy of tracking:

e(s,x,u) = wc∥c− c∥+ wl∥bl − bl∥+ wr∥br − br∥. (2.72)

The second term rc(s,u) is connected to the curvature rate and reduces the
high frequency content of the road curvature; similarly to the previous expression
each component is weighted by the w functions that determine the smoothness of
the road:

rc(s,u) = wθθ̈
2(s) + wµµ̈

2(s) + wϕϕ̈
2(s). (2.73)

The width rate term rw(s,u) allows a limitation in the high frequency noise of
the track boundaries: higher values of w permit a smoother variation for the road
width;

rw(s,u) = wnl
ṅ2
l (s) + wnr ṅ

2
r(s). (2.74)

2.4 Slip-Slip Model

The main limits of the basic model described in section 2.2, can be highlighted
considering that the longitudinal slip is neglected and only a simplified formulation
with partial force combination is provided for the tires. The adherence ellipses in
reality depend on the wheel loads applied, and their from is not properly elliptic
(fig. 2.8).
By contrast, in the slip-slip model is taken into account a more complete for-
mulation for the tyre dynamics, adopting more elaborated equations for the tyre
forces, both in lateral and longitudinal direction, and providing a combination for
the forces themselves. In this case the tyre forces are related to a simplified formu-
lation of the Pacejka Magic Formula [8] and depend on lateral and longitudinal
slip quantities, which must be obtained for each wheel.

2.4.1 Kinematics

Starting from the expressions of the trim angles βw from eq. (2.3), (2.4), (2.5) and
(2.6), it is possible to deduce the lateral slip angles λ for each wheel:
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λfl = δ − ψ̇a+ v
1
2
ψ̇T + u

, λfr = δ − ψ̇a+ v

−1
2
ψ̇T + u

, (2.75)

λrl = − −ψ̇b+ v
1
2
ψ̇T + u

, λrr = − −ψ̇b+ v

−1
2
ψ̇T + u

. (2.76)

Also the longitudinal slips κ are fundamental for the determination of the
tyre forces; these quantities express the non ideal slip properties of the wheels in
longitudinal direction and are defined as follows:

κfl =
ωflRw − ufl

ufl
, κfr =

ωfr Rw − ufr
ufr

, (2.77)

κrl =
ωrlRw − url

url
, κrr =

ωrr Rw − urr
urr

. (2.78)

During traction the tangential velocity of the wheel ωRw is greater than the lon-
gitudinal velocity uw = {ufl, ufr, url, urr} and then κ is positive; on the contrary,
during braking, uw is greater than the tangential velocity and κ has a negative
value. Substituting now the expressions for uw in the definitions of κ, the explicit
expression are obtained, where Rw is the wheel radius and ω = θ̇.

κfl =
θ̇flRw − 1

2
ψ̇T − u

1
2
ψ̇T + u

, κfr =
θ̇frRw + 1

2
ψ̇T − u

−1
2
ψ̇T + u

, (2.79)

κrl =
θ̇rlRw − 1

2
ψ̇T − u

1
2
ψ̇T + u

, κrr =
θ̇rrRw + 1

2
ψ̇T − u

−1
2
ψ̇T + u

. (2.80)

The formulation used for the slip quantities refers to the so called theoretical
slips ; a different definition of the slip parameters is also useful to describe the
Pacejka Magic Formula [8] for Fx and Fy: the practical slips σx and σy; these
quantities must be defined for each wheel, although only a general formulation is
reported.

σx =
κ√

1 + κ2
, (2.81)

σy =
tan(λ)√
1 + κ2

, (2.82)

σtot =
√
σ2
x + σ2

y. (2.83)

If the model includes the effect of the camber angle of the wheel γ, it is necessary
calculate an equivalent slip angle λ∗ 3.

3In [8] can be found that λ∗ = λ+ Cγγ/Cλ, with Cλ = KyN and Cγ camber stiffness of the
tyre. In the simulations considered in this work the camber is drawn to zero.
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2.4.2 Dynamics

In this model it is fundamental to consider different forces for each wheel; in fact
the tyre forces depend on the normal loads which, because of the lateral and
longitudinal load transfer, are different for each wheel; it can be noticed that this
observation leads to a different formulation respect the previous model: in this
case the longitudinal forces Fx do not represent the input for the dynamic system
any more and, by contrast, are function of the longitudinal slips.
Applying the complete Pacejka Magic Formula [8], the longitudinal and lateral
forces become:

Fx = N
σx
σtot

Dx sin{Cx arctan [Bx σtot − Ex (Bx σtot − arctan(Bx σtot))]}, (2.84)

Fy = N
σy
σtot

Dy sin{Cy arctan[By σtot − Ey (By σtot − arctan(By σtot))]}; (2.85)

each force must be specified for each wheel using the appropriate σx, σy, σtot, N
and the coefficients B,C,D,E: all these quantities can assume different values for
each wheel.
The parameters B,C,D,E are defined considering a reference value for normal
loads N0: a coefficient dfz is then employed to linearly scale the peak friction
coefficient D for different values of normal loads:

dfz =
N −N0

N0

. (2.86)

Considering the expressions of Fx/N and Fy/N , that represent the tyre forces
(longitudinal or lateral) normalized by the load, it can be noticed that D defines
the peak, C is the asymptotic value assumed for infinite slip, B depends on the
slope at the origin and E represents form and position of the peak. Moreover can
be demonstrated that the product K = BCD is the slope of the normalized force
at the origin. For the longitudinal forces:

Kx = BxCxDx = pKx1 exp(pKx3 dfz), (2.87)

while the force coefficients are:

Ex = pEx1, (2.88)

Dx = (pDx1 + pDx2 dfz)λµ,x, (2.89)

Cx = pCx1, (2.90)

Bx =
Kx

CxDxN
. (2.91)

Similarly for the lateral parameters:

Ky = pKy1N0 sin

(
2 arctan

N

pKy2N0

)
, (2.92)

and for the force coefficients:
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Figure 2.7: Normalized longitudinal (left) and lateral (right) tyre forces, for normal
loads from 500 N (red, top) to 5500 N (blue, bottom) in steps of 1000 N.

Ey = pEy1, (2.93)

Dy = (pDy1 + pDy2 dfz)λµ,y, (2.94)

Cy = pCy1, (2.95)

By =
Ky

CyDyN
; (2.96)

where λµ,x and λµ,y are the scaling factors that reduce the friction in different
conditions of tires and road. The parameters pD, pC, pE, pK derive from empirical
tests on the wheels. In fig. (2.7) is represented a typical form of the tyre functions
defined.

It is important to underline that only simplified formulas for the tyre coefficient
are used [15], taking into consideration the main terms, in order to allow an easier
convergence for the optimal control problem; the full expressions of B,C,D,E can
be found in [8].

In fig. 2.8 is reported the g-g diagram obtained with the tyre coefficients im-
plemented in the slip-slip model; it can be observed the typical “curl”: in fact
decreasing the lateral adherence coefficient Fy/N , the longitudinal friction coef-
ficient Fx/N increases until, under certain values of Fy/N , Fx/N is definitely
reduced.
Taking advantage of the considerations on the necessity of defining different forces
for each wheel, the following formulation becomes clear:

Ffl = [Fxfl, Fyfl, Nfl] , Ffr = [Fxfr, Fyfr, Nfr] ; (2.97)

Frl = [Fxrl, Fyrl, Nrl] , Frr = [Fxrr, Fyrr, Nrr] . (2.98)

The Newton-Euler equations for the xy plane do not present significant varia-
tions, except the fact that the longitudinal forces are different in each wheel:
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Figure 2.8: Adherence diagram obtained with the Pacejka parameters of the tyre
model adopted for the simulations, for different values of λ.

(
−ψ̇ v + u̇

)
m+

1

2
CDA ρ u

2 − (Fxfl + Fxfr + Fxrl + Fxrr) + (Fyfl + Fyfr) δ = 0 ,

(2.99)

m(ψ̇ u+ v̇)− (Fyfl + Fyfr + Fyrl + Fyrr)− (Fxfl + Fxfr) δ = 0,
(2.100)

Iz ψ̈ +
1

2
δT (Fyfl − Fyfr)− δ a (Fxfl + Fxfr) +

1

2
T (−Fxfl + Fxfr − Fxrl + Fxrr)−

− a (Fyfl + Fyfr) + b (Fyrl + Fyrr) = 0.
(2.101)

Consequently the state space equations become:

u̇ = ψ̇ v − 1

2

CDA ρ u
2

m
+

(Fxfl + Fxfr + Fxrl + Fxrr)

m
− (Fyfl + Fyfr) δ

m
,

(2.102)

v̇ = −ψ̇ u+ (Fyfl + Fyfr + Fyrl + Fyrr) + (Fxfl + Fxfr) δ

m
,

(2.103)

ψ̈ = −1

2

δ T (Fyfl − Fyfr)− 2 δ a (Fxfl + Fxfr) + T (−Fxfl + Fxfr − Fxrl + Fxrr)

Iz
+

+
a (Fyfl + Fyfr) + b (Fyrl + Fyrr)

Iz
.

(2.104)



34 CHAPTER 2. VEHICLE MODEL



Chapter 3

Minimum Time Simulation

3.1 Optimal Control Problem

An optimal control problem, as underlined in sec. 1.1, is defined by a set of state
space variables x and a set of control variables u: the choice of these variables
determines the model equations that must be used and the efficiency of the simu-
lation in terms of time for convergence and quality of the results.
Moreover the problem is defined by a cost function to minimize, composed by a
term that depends on the initial and final value of the parameters, and an inte-
gral term, as previously reported with eq. (1.1). In this case the target function
depends only on the second term, known as Lagrange integral function:

F(u) =

∫ tf

ti

L(x(t),u(t))dt =
∫ sf

si

1

ṡ
ds; (3.1)

in other words the objective of the optimal control problem is to minimize the lap
time in a properly defined track.
In order to privilege the model behaviors free from high dynamics effects (i.e.
vibrations) of the control quantities, it is possible to add at the integrand of the
objective function a series of terms, or penalties, that represent the squared control
variables, multiplied by a coefficient uε that weights the effect of the penalty terms.

F(u) =

∫ sf

si

1

ṡ

(
1 + uε

∑
i
u2
i

)
ds; (3.2)

ui represents the generic control, for i = 1, . . . , Nu, and Nu number of controls
that have to be penalized.

In the basic model a possible set of state variables and controls is:

x = [n, χ, u, v, Ω, ax, ay]
T , (3.3)

u = [Fx/mg, δ/kδ]
T ; (3.4)

all the state variables x come from the integration of the state equations ẋ, or
rather eq. (2.42), (2.43), (2.102), (2.103), (2.104), (2.35) and (2.37). The control
variables are the total longitudinal tyre force Fx, normalized by the weight force

35
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of the vehicle, and the steering angle of the front wheels δ, divided by a constant
kδ = 15π/180 rad; the normalization of the control parameters is fundamental to
allow an easier convergence of the simulation.
It must be underlined that, in the minimum lap time problems, the integration is
not employed in the domain of time; in fact the state space equations are written
in term of the derivative of the curvilinear abscissa s(t). The reason of this choice
consists in the fact that the road parameters (e.g. curvature, width, slope) are
known in function of s(t); moreover all the resulting quantities of the simulation,
such as the forces and the velocities, are easier to be interpreted considering their
variation with the position of the car in the track (i.e. the curvilinear abscissa).
To traduce the whole set of differential equations ẋ in term of derivative of s(t) it
is possible to observe that in general:

dx

ds
=
dx

dt

dt

ds
=

ẋ

ṡ
; (3.5)

the derivative of the curvilinear abscissa ṡ is calculated in eq. (2.41).
A different strategy can be considered in order to limit the vibrations of the
controls; this purpose is rached employing the derivatives of Fx and δ as controls
and including the total longitudinal force and the steering angle as state variables.
The two further state equations are:

d

ds

(
Fx
mg

)
=

1

ṡ

(
kdF

Ḟx
mg

)
,

d

ds

(
δ

kδ

)
=

1

ṡ

(
kdδ

δ̇

kδ

)
; (3.6)

the constants kdF and kdδ are required for the usage of normalized controls, with
values near unity, in order to permit less numeric difficulties for the solver.

x = [n, χ, u, v, Ω, ax, ay, Fx/mg, δ/kδ]
T , (3.7)

u =
[
Ḟx/mg, δ̇/kδ

]T
. (3.8)

This choice is fundamental to reach a solution for the problem: in fact the first
control method, proposed at (3.4), generates a significantly vibrating signal for
controls, that makes the solution really tough to be achieved; controlling the
systems with the derivatives generates a “filtering” action for the controls, that
result free from high-frequency components. In figure 3.1 is remarked this concept
considering that the control strategy without the derivatives of the variables of
interest (on top) has not been capable of converging to a solution with the tolerance
requested.

The adoption of the normal loads as controls, represents a significant advan-
tage in terms of time, in particular when coupled with ADiGator for automatic
differentiation.

x = [n, χ, u, v, Ω, ax, ay, Fx/mg, δ/kδ]
T , (3.9)

u =
[
Ḟx/kdF , δ̇/kdδ, Nfl, Nfr, Nrl, Nrr

]T
; (3.10)
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Figure 3.1: Comparison between the control method without using the derivatives
of the input functions (top) and derivative control (bottom).

This control strategy requests a new series of path constraints for the defini-
tion of the normal loads; including the longitudinal and lateral behavior, the set
of equations, that must be satisfied in each instant of simulation, can be obtained
from the Euler equation around y axis (2.24), the Newton equation along z direc-
tion (2.25) and the relations between the lateral load transfer and the roll stiffness
ratio (2.22).

1

2
(Nrl −Nrr)T −may h (1− ξ) = 0,

(3.11)(
1

2
CLfA ρ u

2 −Nfl −Nfr

)
a+

(
−1

2
CLrA ρ u

2 +Nrl +Nrr

)
b− hmax = 0,

(3.12)

−mg − 1

2
CLfA ρ u

2 − 1

2
CLrA ρ u

2 +Nfl +Nfr +Nrl +Nrr = 0,

(3.13)

1

2
(Nfl −Nfr)T − hmay ξ = 0.

(3.14)

The comparison between the different control strategies presented for the basic
model is resumed in table 3.1; it is important to notice that the automatic differen-
tiation method allows a 46% of time advantage respect to the finite differentiating
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Solver Type Adria Lap Time [s] CPU Time [s] Mesh iter. Time adv. [%]
sparseCD / N /∈ u 75.627 406 13 -
sparseCD / N ∈ u 75.627 919 11 +126
ADiGator / N /∈ u 75.627 221 12 −46
ADiGator / N ∈ u 75.627 203 10 −50

Table 3.1: Comparison between different solving strategies (with lift forces).

method (sparseCD) without using normal loads as controls. Although the con-
trolling method proposed in (3.10) determines a significant drawback using the
finite differentiation method (sparseCD), the combination of normal loads control
and ADiGator permits the 50% of simulation time advantage: this choice will be
used for all the models taken into consideration. However, it should be noticed
that the greatest part of computational time advantage is due to ADiGator, while
the advantage related to the normal load control, in this case, is only 4% with
respect to the case in which N are not included in the controls.
Different modelling strategies imply different choices for the state variables and
the controls; in fact with the slip-slip model a new set of equations become part
of the dynamics of the system, including the variables of the longitudinal slips κ.
Such as the previous model, also in this case the controls are defined with the
derivatives of the variables.

x = [n, χ, u, v, Ω, ax, ay, κfl, κfr, κrl, κrr, δ/kδ]
T , (3.15)

u =
[
κ̇fl, κ̇fr, κ̇rl, κ̇rr, δ̇/kdδ, Nfl, Nfr, Nrl, Nrr

]T
; (3.16)

Although the choice of calculating the derivatives with ADiGator 1 allows a
consistent advantage in terms of time of simulation, a few drawbacks have to be
highlighted; in fact this automatic differentiation algorithm presents some issues
concerning the code robustness: in other words ADiGator does not represent a
flexible solution when using if clauses, for cycles or user-defined functions in the
continuous function of GPOPS. In particular no abuse of if clauses is allowed, or
rather no concatenated multiple conditional commands are permitted; moreover,
during the definition of a sigle variable or constraint, an error occurs when multiple
user-defined functions are employed.

3.2 Model Validation - Adria

1for these simulations was adopted ADiGator in version 1.1; version 1.2 has not been used
because of some code issues.
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Lap Time [s] CPU Time [s] Penalties [s] Real Time [s]
76.398 191 0.075 76.630

Table 3.2: Simulation on Adria circuit.

The vehicle model has been validated taking into consideration the Adria Inter-
national Raceway, for which has been possible a comparison between the model
and the real car lap time: Adria in fact is the circuit used for testing the new
vehicles. For this purpose has been adopted the basic car model that will be used
as reference for the other models employed; in other words this model is set-up to
generate a series of data that is properly comparable to the real vehicle behavior
and that is useful for the comparison with different modelling strategies. This
analysis is caused by the fact that no tyre or aerodynamics data is available for
the GT3 vehicle; therefore the data has necessarily been fitted in order to obtain
a behavior similar to the reality. In particular the “set-up” of the vehicle is made
choosing a proper value for the Dy coefficient of the tyre formula, that represents
the peak value of the curve; the aerodynamics is considered only with an estimated
value for the drag area CDA = 0.65m2, while the lift forces are not employed.
The main parameters estimated for the simulation are summed up in table 3.3.

Model Validation Description Value
CLA [m2] total lift area coefficient 0
CDA [m2] drag area coefficient 0.65
Dyf [−] peak for the front tyre normalized lateral force 1.55
Dyr [−] peak for the rear tyre normalized lateral force 1.55
Dxf [−] peak for the front tyre normalized longitudinal force 1.75
Dxr [−] peak for the rear tyre normalized longitudinal force 1.75
Kyf [−] slope of the front tyre normalized lateral force 30
Kyr [−] slope of the rear tyre normalized lateral force 30

Table 3.3: Simulation parameters used for model validation.

The results obtained for the Adria International Raceway (table 3.2) are consis-
tently similar to the real ones, with a simulated lap time of 76.398 s in comparison
with a real lap time of 76.630 s. Also the trajectory (fig. 3.2) maintains the same
form for the simulated data and the real GPS data: the most significant differ-
ences can be mostly connected to the GPS error, because the signal is obtained
only from a sensor positioned on the vehicle, without the triangulation possible
with a fixed track GPS station 2.

The velocity profiles, despite the fact that the form of the simulated values
is very close to the real ones, have a significant difference in terms of maximum
speed. If the form depends on the longitudinal acceleration, that is a function of
the longitudinal tyre capabilities, the pure top speed depends on two main factors:

2This method is used mainly in Formula 1, for a more precise GPS tracking.
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Figure 3.2: Comparison between the simulated trajectory (continuous line) and
the real GPS data (dashed line).

the drag data estimated, that probably does not represent perfectly the reality,
and the model itself that does not employ the longitudinal slip and the vertical
load dependence of the adherence ellipses; consequently the simulated car takes an
advantage during acceleration and braking conditions because the friction coeffi-
cients are not reduced increasing the normal loads (see fig. 2.7) and no longitudinal
slip occurs neither at low nor at high speeds. It is important to underline that
these considerations do not imply that the basic model with constant adherence
ellipses offers a lower lap time than the slip-slip model: in fact the optimal control
allows to reach the best performance for each model, exploiting the implemented
variables coherently to the constraints. The control takes advantage of the lack of
longitudinal slip to reach higher top speeds in the basic model, while, employing
the formulation of κ, the system might be capable of improving this performance,
leading the vehicle to its ultimate limit.
The combination of these issues permits a resulting speed profile that has similar
slope and form to the real one, but with higher top speed in the straights (fig. 3.3).
It should be considered that the initial speed is imposed by the boundary condi-
tions at 182 km/h: this value represents approximately the speed reached at the
end of the lap. Furthermore low initial velocities (i.e. u ≤ 40÷50 km/h) determine
significant difficulties for the convergence of the optimal control problem.

From the simulation results can be plotted the adherence ellipses diagrams
(fig. 3.4), in which it is possible to observe that the front wheels (on the right)
can develop negative Fx only, or rather are capable of braking and not to impress
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Figure 3.3: Comparison between the simulated speed (continuous line) and the
real GPS data (dot-dashed line).

traction forces because the model is representative of a real wheel drive (RWD)
car. Furthermore it can be noticed that the vehicle takes advantage of all the
limit curves to achieve the best time performance, in accordance to the vehicle
dynamics principles.

The model is controlled trough the derivatives of the total longitudinal force
applied to the tires Fx and the steering angle δ; each quantity is normalized in
order to obtain controls limited in the interval [−1, +1]. As demonstrated in fig.
3.5, the vibration of the controls does not affect Fx and δ.

In fig. 3.6 are reported the variation of the normal loads during the track (on
top) and the longitudinal forces for the front and rear axle Fxf and Fyf . These two
dynamic quantities are plotted in the same figure in order to highlight the effect
of longitudinal and lateral load transfer during acceleration, braking and turning;
in fact when the vehicle accelerates at the start of the track the front loads (dot-
dash lines) decrease while the rear values (continuous lines) are increasing; both
front and rear loads at the initial time (or at s(t0) = 0) are defined at their static
values. During the deceleration phase the effect is opposite with increasing front
loads and decreasing rear loads; differently in cornering condition the effect of
the lateral load transfer brings the load to the external wheels while the internal
wheels are progressively unloaded. With this vehicle in particular the condition of
completely unloaded wheels never occurs because of the limited rolling behavior
and the high roll stiffness.
Regarding the longitudinal forces it is important to underline that the rear wheels
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Figure 3.4: Adherence ellipses for each wheel (continuous lines) overlaid by the
result data points (Fy/N, Fx/N) with cross mark.
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Figure 3.5: Control variables (top) and corresponding integrals (bottom).
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Figure 3.6: Normal loads (top) and longitudinal forces (bottom).

impress both positive and negative forces, while the front wheels are capable only
of braking action and become zero during traction conditions. Moreover, it can
be calculated that the ratio between front and total forces when negative values
are applied to the four wheels is the constant braking ratio β.

As can be observed in fig. 3.7, the lateral acceleration of the CoM ay remains
in the interval [−1.5g, 1.5g] and assumes positive values when the curvature is
positive (right curves); the longitudinal CoM acceleration ax, instead, is positive
during traction and negative when the vehicle brakes; its value are limited in
[−1.4g, 1g]. The intervals individuated depend mostly on the tyre characteristics,
which are set in order to reach a realistic behavior. The real values (bottom fig-
ure) are obtained from the data unit positioned in the vehicle; as for ay values the
limits are overall respected, with exception to the effect of data noise and sampling
distance. The considerations are much different for the ax values, because during
traction the real vehicle is capable of a lower acceleration: this observation has al-
ready been underlined when the real speed and the simulated data were compared;
with the basic model the vehicle is capable of stronger longitudinal accelerations
because the load transfer does not affect the adherence ellipses limits and no lon-
gitudinal slip occurs. Despite of that the overall profile form is respected and the
vehicle is set up with enough accuracy to reach realistic behaviors of the dynamic
quantities.
Thanks to the similarities between the real car dynamics and the model, this

simulation is taken in consideration as a reference set of values, that allows to
stress the main differences with the other modelling strategies and the different
estimates for parameters. Therefore this basic model consists in a valid start point,
from which can be implemented some complications, in order to simulate a more
realistic vehicle behavior and, as a consequence, to discuss different strategies to
improve the overall performance.
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3.3 Simulation - Basic

After validating the car model with a circuit for which the real data was available,
the simulations have been extended to different tracks, with peculiar characteris-
tics, in order to achieve the best lap time performance. For the circuit of Monza
it has not been considered the lift downforce for the vehicle, while for the track of
Imola a value for the lift coefficient has been estimated, in order to obtain more
realistic results; furthermore with this track both 2D and 3D road modelling are
considered. A further analysis for the lift aerodynamic parameter is provided in
sec. 4.8, where is developed a research of the optimum aerodynamic setup. In spite
of that the model has been initially tuned up using proper tyre parameters that
allowed to reach a realistic set of simulated quantities, without considering the lift
forces: consequently the adherence parameters are able to compensate part of the
aerodynamic lack.

3.3.1 Monza

Lap Time [s] CPU Time [s] Penalties [s] Real Time [s]
107.645 237 0.065 107.584

Table 3.4: Simulation on Monza circuit.

The Autodromo Nazionale di Monza is a circuit with long straights and most
of the curves, with exception of Variante 1 e 2, are passed trough at high speeds:
the average speed is one of the highest of the whole GT3 championship calen-
dar. Because of that the lift forces are not influent and the approximation of zero
downforce is acceptable; these forces are obtained in the most part with the front
spoiler and (for most) with the rear wing. In fast tracks it is important to reduce
the drag force at minimum values and the rear wing is consequently set to reduce
the attack angle, reducing inevitably both drag and lift (the ratio between drag
and lift is typically constant).
The simulation leads to a lap time of 107.645 s that is comparable to a real time
of 107.584 s (table 3.4). In this case the simulated time is slightly higher than the
real one, owing to the estimated zero lift coefficient; nevertheless the real perfor-
mance is close to the best performance affordable.
The whole track is represented in fig. 3.8 and underneath are magnified the most
interesting curves. Considering the curves called Variante 1 (mid left) and the
Variante Ascari (mid right) it is possible to notice that the trajectory mirrors what
should be expected: the vehicle attempts to exploit the whole track width to pass
trough the corners with the maximum speed possible; moreover the distance be-
tween the CoM and the internal wheels is considered in the model constraints
in order to obtain a more realistic behavior. Nevertheless these images are rep-
resentative of an aspect that is difficult to introduce in the road modelling: the
curbs both in the interior and exterior side of the corner. These parts of the track
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are fundamental for the vehicles, that typically pass above the curbs to reduce
the length of trajectory and to achieve a better traction after the curve exit, or
braking before the entrance. With the models adopted the curbs are taken into
consideration during the road point-to-point sampling, in which the borders are
positioned adding part of the curb. In spite of that the dynamics of the model
is not influenced by these borders and the vehicle, due to the constraints, is not
capable of exploiting the whole curb.
The Parabolica curve allows to underline a realistic behavior for the vehicle that
enlarges the trajectory for a better driving of the second part of the curve; fur-
thermore the car, after enlarging the trajectory at the exit of the curve, maintains
a rectilinear direction to better exploit the longer straight of the circuit.

In fig. 3.9 are reported the speed profiles for u, v, V =
√
u2 + v2 and Ω: the

total velocity profile reaches values of more than 300 km/h; the modelled vehicle
probably has some speed advantage in the straights respect to the real car, but it
looses time when is turning in the fast curves, because of the aerodynamic setup
chosen. The total velocity V is almost coincident to the longitudinal values u
because the lateral speed v is not zero only when the car turns and reaches values
of 10 ÷ 20 km/h at maximum; the yaw angular velocity Ω (bottom figure) is
positive for positive curvatures and reaches top values of 0.5÷0.8 rad/s or 30÷45
◦/s.

The adherence ellipses graphics (fig. 3.10) show that a good deal of points are
recorded during straight acceleration or braking maneuvers; moreover the front
wheels never use the full tyre capabilities neither when are directed as the symme-
try axis of the vehicle nor when steering occurs. The rear tires exploit the entire
limit ellipse only with the external wheel, although for these wheels is evident a
better use of the adherence limits.

The normal loads (fig. 3.11) reach almost the same maximum values in the
curves and the load transfer never causes the loss of load at any wheel; the lon-
gitudinal forces respect the constraints on all the domain of integration although
are present some negligible high dynamic behaviors. These effects can be individ-
uated also in the plot of the integrals of controls, that permits to evidence that the
cause of this little vibrations are the controls themselves: to avoid this behavior
it is possible to add penalties to the cost integrand and making consequently less
favorable the use of controls (eq. (3.2)). The acceleration limits are almost the
same of the simulation on the circuit of Adria.
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Figure 3.8: Monza circuit and simulated trajectory (top) with magnifications of
Variante 1 (mid left), Variante Ascari (mid right) and Parabolica (bottom).
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Figure 3.10: Adherence ellipses for the four wheels.
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3.3.2 Imola

The Autodromo Internazionale Enzo e Dino Ferrari of Imola is known for the high
technical complexity and for the altitude variation during the track. Because of
that, the track has been built considering the altitude profile of the road and the
car model employs the simplified tridimensional equations described in sec. 2.2.5.
Moreover with this track the assumption of zero downforce does not allow realistic
results and it is assumed a total lift area CLA = 2.8 m2 with CDA = 0.8 m2; the
lift area is split in 70% for the rear and 30% at the front of the vehicle.
In terms of lap time (table 3.5) the 3D simulation is significantly close to the real
best lap time while the flat track simulation determines a lap time advantage of
0.513 s, owing to the lack of parallel gravity component with a non-zero slope, and
the effect of the pitch inertia Iy.

Imola 2D/3D 2D 3D Real
Lap Time [s] 100.087 100.600 100.565
CPU Time [s] 490 492 −
Penalties [s] 0.104 0.100 −

Table 3.5: Simulation comparison between 2D and 3D simplified road reconstruc-
tion.

The circuit is reported in fig. 3.12 and the elevation is defined by a color
scale from the blue (low elevation) to the yellow (high elevation); three famous
corners are taken in consideration in order to underline the differences between
the two-dimensional and tridimensional approach (fig. 3.13): the Acque Minerali
downhill curve, the Variante Villeneuve with the following Tosa uphill curve and
the Variante Tamburello.
As for the Acque Minerali the main difference is related to the entrance to the
second part of the turn, that is anticipated for the 3D model in order to prepare the
following uphill phase; in the Variante Villeneuve and Tosa, instead, the trajectory
differences are not outstanding from the image, although a small difference is
demonstrated comparing the curvilinear coordinate n(t). Also in the Variante
Tamburello is shown an evident difference for the two trajectories: the 3D one (left)
employs more rounded variations of direction, in order to prepare the following
uphill part of the track. These considerations can be also observed comparing the
lateral curvilinear coordinate n(t) in the two cased of study (fig. 3.14). In fact
the Acque Minerali curve lays approximately at the curvilinear abscissa s(t) ≈
2500÷2950 m, the Variante Villeneuve and Tosa are at s(t) ≈ 1300÷1800 m and
the Variante Tamburello is at s(t) ≈ 600÷ 900 m from the start point; it should
be noticed that, correspondently to the curvilinear abscissa of the first and last
corner described, the difference ∆n = |n2D − n3D| assumes the maximum values.

The normal loads show different profiles (fig. 3.15) because the longitudinal
load transfer is more effective for the 3D model, due to the effect of the pitch
inertia Iy during a variation of the slope. In fact higher peak values are available
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Figure 3.12: Track reconstruction, elevation (from blue for low values to yellow
for high values) and trajectory.
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Figure 3.13: Magnified views of the corners Acque Minerali (top), Variante Vil-
leneuve with the following Tosa (mid) and Variante Tamburello (bottom): the 3D
turns are on the left side while the 2D curves on the right side.
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Figure 3.14: Curvilinear coordinates n for 2D and 3D representation (top) and
difference between these values ∆n = |n2D − n3D|.

for the model that implements the elevation, although the minimum values are
approximately the same. Moreover different trajectories, as underlined previously,
cause different effects on loads.
In fig. 3.16 are represented the longitudinal and lateral load transfer for the two
models; the first ones are calculated for the right wheels and are positive when the
rear loads are incremented, while the lateral transfers are shown for the rear wheels,
with positive values for positive curvatures. It can be observed that the difference
is not negligible where the road is subjected to a variation of elevation, although
the overall behavior is maintained in the two cases. The difference between the
longitudinal load transfer for 2D and 3D model presents negative peaks at s values
of 1600 m, 2200 m and 3250 m from the start point: these points are all relative
to uphill parts of the track where the longitudinal load transfer is positive and is
greater for the 3D model. The positive peaks are related to the curvilinear abscissa
of 2700 m and 4000 m, where the vehicle proceeds downhill; in these parts the
load transfer becomes negative and the value for the 3D model is more negative
than the one for the 2D simulation. As for the lateral load transfer the peaks
are mainly connected to the differences of trajectory and occur where the slope
changes, or rather almost in the same points of the longitudinal transfer peaks.

Also the velocity profiles of fig. 3.17 are macroscopically the same, although
can be seen some slight differences in the main peaks: the 3D car is faster where
the road proceeds downhill, while slower speeds than the two-dimensional model
are registered in the uphill parts of the track. The 2D simulation reaches higher
velocities at s ≈ 2200, 3000 and 4000 m while the 3D simulation registers greater
speed values for s ≈ 2600 and 3900 m; these results are due to the road slope.
Particular attention should be focused on the last peaks at 3900÷ 4000 m, where
the vehicle proceeds downhill until the following corners: in these conditions the
3D model reaches initially higher speeds although it anticipates the braking to
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Figure 3.15: Normal loads for 3D model (top) and 2D model (bottom).

prepare the entrance to the curve, while the 2D simulation is capable of delaying
the braking of a few meters; the two models, however, reach the corner with almost
the same speed.

The same conclusions can be drawn considering the profiles of Fx and δ: al-
though the differences are quite difficult to find comparing the complete curves,
better results are obtained calculating the difference between the two different
simulations (fig. 3.18). Positive peaks have the meaning of more power employed
for the 2D model: this condition occurs at curvilinear abscissa values of 2700 m
and 4000 m, or rather where the road is downhill; on the contrary negative values
are connected to a lower power request for the 2D model, where the vehicle faces
to positive slopes at s = 1600, 2200 and 3350 m. It should be noticed that the
peaks occur when the longitudinal force passes from positive to negative: in other
words it means that the main differences are due to different instants for start-
ing the braking action: this is delayed uphill and anticipated downhill for the 3D
simulation.

As for the adherence ellipses of figure 3.19 no overall differences can be high-
lighted: the two simulations are characterized by a similar exploitation of the tyre
limits and both the front and rear tires present almost a complete usage of their
capabilities. This result allows to underline the fact that the complete exploitation
of the adherence capabilities is the real core of the time optimization: the achieve-
ment of the best performance depends most on reaching the ultimate adherence
limits in any model used.
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Figure 3.16: Normal loads transfer for 3D model (top) and 2D model (mid) and
difference between 2D and 3D, ∆(∆N) = ∆N2D −∆N3D (bottom).
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Figure 3.17: Velocities for 3D model (top) and 2D model (mid) and difference
between 2D and 3D, ∆V = V2D − V3D (bottom).
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Figure 3.18: Integrals of the controls for 3D model (top), 2D model (mid)
and difference of 2D and 3D values: ∆(Fx/mg) = (Fx/mg)2D − (Fx/mg)3D,
∆(δ/kδ) = (δ/kδ)2D − (δ/kδ)3D.
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Figure 3.19: Adherence ellipses for 3D model (top) and 2D model (bottom).
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3.4 Simulation - Slip-Slip

The slip-slip model offers some complications respect to the basic model that can
be summarized in the implementation of the longitudinal slip κ and the Pace-
jka Magic Formula, developed in sec. 2.4. These two main differences determine
different control strategies (eq. 3.16) and a substantially different dynamics that
involves a complete combination of longitudinal and lateral tyre forces: in fact in
the basic model the forces combination was only modelled with a constant elliptic
boundary, independent from the loads; in this case, instead, the combination is
load-dependent and the adherence diagrams are no more elliptic. Consequently
the optimal control solution is drastically tougher to be reached and the compu-
tation time rises significantly. Moreover, because of the fact that no real tyre data
is available, the Magic Formula coefficients are realistically assumed in order to
obtain similar values to the previously ones adopted.
All these considerations may justify the achievement of different optimal solutions,
although it must be underlined that including all the combined slip quantities, rep-
resents in general a drawback for the utter exploitation of the adherence limits of
the vehicle.
However, the simulations proposed will emulate the same circuits and the same
parameters used in the previous section, in order to develop a proper comparison
of these different strategies of modelling.

3.4.1 Adria

The simulation on the Adria International Raceway has permitted to improve the
ideal performance lap time from 76.398 s of the basic model to the 75.211 s of the
slip-slip model of the vehicle, although the time needed to complete the simulation
is incremented of more than three times (table 3.6). These results are due to a
more complex model of tyre in which the longitudinal and lateral forces are not
calculated independently. Moreover the tyre data has been assumed in order to
obtain similar values to the coefficients used in the previous model, considering
static conditions. In spite of that, it must be underlined that the coefficients chosen
for the slip-slip model, which define a more detailed form for the curves, generate
slightly larger adherence ellipses: this becomes clear in fig. 3.20 and determines a
relevant advantage for the dynamics.

Adria Slip-Slip Basic
Lap Time [s] 75.211 76.398
CPU Time [s] 884 191
Penalties [s] 0.138 0.075
Prev. Sol. yes yes

Table 3.6: Simulation comparison between basic and slip-slip model.
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Figure 3.20: Adherence ellipses of the two models at static load value.

In figure 3.21 is reported the trajectory of the vehicle: the most evident dif-
ferences from the basic model simulation are related to the third corner (s ≈
1300÷ 1500 m) and the last corner (s ≈ 2400÷ 2500 m). As for the third corner
it can be observed that the slip model adopts a more rounded curvature both in
the entrance and in the exit part, with a more complete usage of the road width;
on the other hand the basic model uses a more straight trajectory before and
after the corner, in order to better exploit the traction and braking phases. In
fact, because of the complete forces combination and the effect of the lateral load
transfer, the vehicle needs to limit the slip and the difference between the slip
quantities of the interior and exterior wheels respect to the curve: this is achieved
adopting a rounded and more gradual trajectory. On the contrary the basic model
is not affected by the lateral load transfer and a more sharp trajectory is chosen
to delay the braking and anticipate the full throttle phase. A different behavior
can be observed for the last corner: the slip model uses a less gradual trajectory
than the basic simulation while the curve exit are very similar; probably the first
maneuver of approach of the corner, in which the slip model adopts a less evident
steering action towards the exterior part of the curve, allows a lower load transfer
variation that becomes an advantage for the slip quantities, that can be exploited
for a faster maneuver.
The comparison of trajectory is also highlighted in fig. 3.22 considering the dif-
ference between the absolute value of the curvilinear coordinate n(t) of the two
models; it is clear that for s(t) ≈ 1300 ÷ 1500 m and s(t) ≈ 2400 ÷ 2500 m the
maximum difference is calculated.

The optimal control problem has the peculiar property that it handles the
control variables to reach the best performance and, therefore, obtain favorable



3.4. SIMULATION - SLIP-SLIP 63

x [m]
-400 -200 0 200 400

y 
[m

]

-200

-100

0

100

200

300

400

   0

 399

 652

 976

1235

1450

1772

1939

21852417

2618

Figure 3.21: Track reconstruction and trajectory (top), turn 3 and turn 8 for
slip-slip model (left) and basic model (right).
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Figure 3.22: Absolute value of the difference between the curvilinear coordinate n
of the basic and slip model : ∆n = |nb − nss|.
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Figure 3.23: Longitudinal κ and lateral λ slip values for the slip-slip model.

values for the most important quantities. The profiles of the longitudinal and
lateral slips, shown in fig. 3.23, demonstrate this observation: the controls, in
fact, are related to the longitudinal slip κ while the lateral slips λ are calculated
as a consequence. Owing to the lateral load transfer and the lateral slip angle in
turning conditions, a greater κ value for the external tyre is needed, because the
higher load reduces the slip limit; consequently proper values of λ are obtained
with proper maneuvers, in order to reach the maximum slip value at the peak of
the force profile.

Regarding loads and loads transfer for the slip model (fig. 3.24) the profiles
emulate the ones of the basic model, although some differences are underlined
because of the different points in which the vehicle starts braking or full acceler-
ating phases. A significant difference is obtained at the last corner of the track:
during the braking action the slip model achieves a lower longitudinal load trans-
fer and a lower value for the lateral load transfer; in these conditions, in fact,
∆Nlon = Nrr −Nfr is negative and the value of the basic model is more negative
than the value of the slip model; moreover ∆Nlat = Nrl −Nrr is also negative be-
cause the vehicle is moving towards the external part of the track with reference
to the corner. During the curve the signs of ∆Nlon and ∆Nlat become positive
and the slip model reaches lower values of both the load transfers until the middle
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Figure 3.24: Normal loads (top) and loads transfer (middle) for the slip-slip model
and difference between slip and basic model, ∆(∆N) = ∆Nb −∆Nss (bottom).

of the corner (s ≈ 2500 m), where the values become more similar. Therefore the
slip-slip model employs the strategy of reaching lower load transfer values in order
not to penalize the adherence limits, that are decremented by a higher load value
on the wheels.

The total longitudinal force Fx = Fxfl + Fxfr + Fxrl + Fxrr (fig. 3.25) permits
to express similar considerations for each corner: during braking the slip model
exploits a lower force request, while in cornering conditions a lower power employ-
ment is requested. This means that the vehicle is capable of reaching good slip
conditions with more gradual changes in the longitudinal forces; in other words the
car avoids eccessive slip, or eccessive lack of adherence, with less braking action or
acceleration. This behavior is magnified in the last corner, that seems significantly
difficult for the slip-slip vehicle model.

The previous considerations are completed with the speed profiles of fig. 3.26,
in which is clear that the module of vehicle velocity V is higher for the slip model
during braking and lower in the first part of the corner; the vehicle is faster before
the curve, because it brakes less, and is slower during the turning condition because
less speed was dissipated: the vehicle enters faster in the curve, reduces gradually
the speed, loosing time in the first half of the corner and definitely takes advantage
of a better traction during the exit. These considerations are verified for most of
the corners except the third turn, in which the slip model is faster, in average,
than the basic one.
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Figure 3.25: Total longitudinal force profile for the slip model, normalized by the
weight force (top), and comparison between slip and basic model: ∆(Fx/mg) =
(Fx/mg)b − (Fx/mg)ss (bottom).
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Figure 3.26: Velocity profiles for the slip model (top) and comparison between slip
and basic model: ∆V = Vb − Vss (bottom).
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Figure 3.27: Adherence ellipses for the slip model.

In fig. 3.27 are represented the adherence ellipses obtained with the slip-slip
model; in this case the adherence limits are not constant with the load and the
form is not properly elliptic because present the typical curls for which, decreasing
the lateral adherence coefficient Fy/N , the longitudinal friction coefficient Fx/N
increases until, under certain values of Fy/N , Fx/N is definitely reduced (see fig.
2.8). However the vehicle exploits almost the whole adherence domain, which is
tightly connected to the achievement of the best performance.
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3.4.2 Monza

Also simulating the vehicle dynamics on the Autodromo Nazionale di Monza, the
lap time reached with the slip-slip model (106.298 s) is lower than the result
obtained with the basic model (107.645 s); in the same way the time requested for
the simulation is extremely larger, also because of the lack of a previous solution
from which can be set the initial guess of the problem. The tougher numerical
characteristics of the problem are also stressed by the larger penalty time, due to
the high usage of the control variables. For this simulation, as well as for Adria,
no lift forces are provided and the drag area is assumed as CDA = 0.65 m2.

Monza Slip-Slip Basic
Lap Time [s] 106.298 107.645
CPU Time [s] 2025 237
Penalties [s] 0.132 0.065
Prev. Sol. no yes

Table 3.7: Simulation comparison between basic and slip-slip model.

In fig. 3.28 is reported the road profile and two particular corners are magni-
fied: the Curva Biassono, located at s ≈ 1100 ÷ 1700 m and the Parabolica at
s ≈ 4900÷ 5600 m. These values of the curvilinear abscissa represent the parts of
the track in which it is more evident the trajectory difference between the slip and
the basic model. With reference to the entrance of the first corner considered, the
two profiles are slightly different: in particular the slip model adopts a more grad-
ual trajectory, while the basic model anticipates the entrance. At the curve exit
the situation is similar: the slip model drives with a gradual strategy, enlarging
the trajectory from the middle point of the corner; the basic model instead delays
significantly the point in which the inner curb is left. The slip model therefore
attempts to limitate the load transfer and consequently to optimize the adherence
available, in order to have an advantage in the second part of the corner. On the
contrary the basic model abuses of the constant adherence available and adopts
straight trajectories to reduce the distance traveled. The considerations made can
be transferred to the Parabolica curve: the slip-slip model anticipates the maneu-
vers of entrance and exit of the corner, for a more gradual use of the adherence
limits, while the basic model privileges a more rectilinear trajectory, delaying the
entering and anticipating the exit. Moreover a difference can be also noticed in
the middle part of the corner, in which the basic model uses a larger trajectory
while the slip model remains in contact with the curb, in order to anticipate the
exit maneuver.
The representation of the parameter ∆n between the two models (fig. 3.29) re-
marks the differences individuated.

The slip quantities are represented in fig. 3.30, which shows that the two curves
taken into consideration are related to high slip values with a long duration: this
is the cause of the significant difference of trajectory. It should be observed that
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Figure 3.28: Track reconstruction and trajectory (top), Curva Biassono and
Parabolica for slip-slip model (left) and basic model (right).
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Figure 3.29: Absolute value of the difference between the curvilinear coordinate n
of the basic and slip model : ∆n = |nb − nss|.
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Figure 3.30: Longitudinal κ and lateral λ slip values for the slip-slip model.

during traction the longitudinal load transfer determines a lower slope for the tyre
function and definitely higher values for κ are needed in order to achieve proper
longitudinal forces; the lateral slips λ are lower for the front wheels because of the
steering angle δ (see eq. 2.8).

The load transfer profiles are regular and free from vibrations; it should be
observed that the loads never approach the unloaded condition, thanks to the high
roll stiffness Kϕ of the car and the elevate value of the track T . As considered
for Adria, the longitudinal load transfer for the slip model is lower both during
braking and in phase of acceleration owing to the possibility of using higher values
for the adherence; this behavior is easy to observe in the Parabolica curve. In the
Curva Biassono, instead, longitudinal and lateral load transfer are both positive
and the values for the slip-slip model are greater than the ones which characterize
the basic model: in fact, as shown previously, the slip model uses a more gradual
trajectory that allows to travel in the second part of the curve with a higher speed,
without reaching the adherence limits that, on the other hand, are reduced by the
load transfer.

The normalized longitudinal force Fx/mg applied to the tyre contact points
permits to confirm the previous analysis: the slip model approaches the corners
with less braking force and proceeds using a lower force for traction; in that way
the vehicle is able of using the whole adherence capabilities of the tires. Particular
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Figure 3.31: Normal loads (top) and loads transfer (middle) for the slip-slip model
and difference between slip and basic model, ∆(∆N) = ∆Nb −∆Nss (bottom).
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Figure 3.32: Total longitudinal force profile for the slip model, normalized by the
weight force (top), and comparison between slip and basic model: ∆(Fx/mg) =
(Fx/mg)b − (Fx/mg)ss (bottom).

attention should be focused on the Curva Biassono (s ≈ 1100÷ 1700 m) in which
the slip-slip vehicle adopts higher values for Fx and lower values for the steering
angle δ: because of the gradual maneuvers of cornering entrance and exit, the
ideal driver exploits the possibility of accelerating during the curve and, owing to
the oversteering behavior and the lack of necessity of high slip limits, he manages
to maneuver the vehicle with a lower steering angle.

The behavior described is highlighted also by the comparison of the total ve-
locity V (fig. 3.33): in particular the Curva Biassono is travelled with a significant
advantage of speed (15 km/h) by the slip model. In the other corners should be
useful to notice that, once again, the slip-slip vehicle enters faster in the curves,
looses consequently speed in the first part of the corner and exits faster because
of the better traction condition.

As usual the adherence ellipses (fig. 3.34) are almost completely utilized both
for front and rear tires. The points that seem not to follow the utter elliptic form
of the curve in the front right tyre are probably due to the effect of the “curl”.
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Figure 3.33: Velocity profiles for the slip model (top) and comparison between slip
and basic model: ∆V = Vb − Vss (bottom).
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Figure 3.34: Adherence ellipses for the slip model.
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3.4.3 Imola

The Autodromo Internazionale Enzo e Dino Ferrari is a complex track both for
the real pilots and for the ideal pilot simulated by the optimal control problem;
consequently high time for the simulation are needed also setting a previous solu-
tion saved, with slightly different parameters, as the initial guess for the problem.
In this case the first solution has been found without employing the lift forces,
with a duration of almost 6000 s, while the solution adopted for the analysis is
reached starting from the previous results and including the lift area coefficient
CLA = 2.8 m2, split in 70% at the rear axle and 30% at the front. Both the
first and second solutions implement a drag area CDA = 0.8 m2. This simulation
moreover presents an important difference respect to Adria and Monza: the lap
time obtained with the slip-slip model is slightly higher than the best performance
achieved with the basic vehicle; the high speed of variation of the car dynamics
is due to a series of curves that does not allow the establishment of an almost
steady state condition during the corners. This behavior determines a significant
drawback for the slip-slip model, that presents some difficulties to reach the best
adherence condition limiting the load transfer. This strategy, in fact, allowed an
advantage for the previous simulations analyzed while in these conditions is no
more effective in most of the curves.

Imola Slip-Slip Basic 2D
Lap Time [s] 100.200 100.087
CPU Time [s] 2837 490
Penalties [s] 0.191 0.104
Prev. Sol. yes yes

Table 3.8: Simulation comparison between basic and slip-slip model.

In fig. 3.36 is represented the parameter ∆n, or rather the difference of the
curvilinear coordinate n between the slip-slip model and the basic one. This
parameter records significant differences in particular at s = 750 ÷ 900 m, at
s = 1000 ÷ 1250 m and at s = 2900 ÷ 3400 m, that correspond respectively to
the corners Variante Tamburello, the entrance of Variante Villeneuve and the
Variante Alta. These curves are magnified in fig. 3.35, which allows to underline
the main visible differences.
The Variante Tamburello is defined by a sequence of three curves: a chicane and
a fast curve travelled in acceleration; the main difference between the models is
not related to the entrance and exit maneuvers, but is connected to the part of
the track that prepares the third corner. The basic car adopts a greater variation
of trajectory, using the external curbs at the exit of the chicane and then steering
oppositely to prepare the entrance of the third turn, but without using the whole
road width in this second maneuver. The slip vehicle, instead, adopts an opposite
strategy privileging the entrance of the third corner and suffering in terms of
speed at the exit of the chicane; this choice can be justified considering that the
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slip model makes use of a more gradual maneuver that limits the load transfers
and consequently reduces the decrease of the adherence coefficients.
The analysis of the rectilinear before the Variante Villeneuve3 permits to show
another important maneuver that can be captured with the slip-slip model: the
ideal driver in fact chooses a trajectory that is initially more distant to the border
reached in the exit of the previous corner; just before the new corner (on the
left) a steering action drives the car to the external curb, preparing the entrance
maneuver, while the consequent opposite steering action leads the vehicle into
the corner. Therefore the ideal driver starts the entrance of the corner steering
oppositely to the curve and then steering in the same direction of the curve: this
choice allows to limit the lateral load transfer in the curve and allows a proper use
of the slip quantities, accentuating the oversteering behavior of the vehicle. This
behavior is not shown in the basic model, in which the adherence is not affected
by the load transfer; the vehicle, in fact, remains near the border from the exit of
the previous curve to the entrance of the following one.
Considering the Variante Alta similar conclusions can be drawn: the slip vehicle
anticipates the curve entrance for a more gradual maneuver, while in the straight
before the corner it privileges a trajectory that uses the whole road width to induce
an opposite lateral load transfer and reduce the effect of load increment on the
adherence limits.

No particular surprises are reported by the slip quantities in fig. 3.37. It
should be noticed that before most of the curves the lateral slip angle λ assumes
an opposite sign respect to the values calculated during the corner, while in the
curve the lateral slip quantities are almost identical in all the wheels. This is
related to the opposite steering maneuver described at the Variante Villeneuve.
The front longitudinal slips, moreover, are lower than the rear value in traction
because of the load transfer: in fact higher values are requested at the rear tires,
owing to the increase of rear loads, to obtain enough longitudinal force; during
braking it is not possible to highlight the opposite behavior because most of the
braking action is due to the front wheels in which, nevertheless, the incremented
load reduces the slope of the tyre force function; the rear wheels, instead, are
unloaded and, despite of the fact that less braking force is available at the contact
point, the adherence limits are lower.

The loads profile highlights in fig. 3.38 the complexity of this track, with an
evident combination of longitudinal and lateral load transfer. The normal loads
curves, in fact, are really entangled and the maximum values are higher than
the previous simulations on different circuits, although the minimum values are
also higher due to the implementation of the lift forces in the vehicle dynamics
equation. As for the longitudinal load transfer the main differences between the
slip model and the basic car are located s = 1250 ÷ 1500 m, s = 1600 ÷ 1750
m, s = 2600 ÷ 2900 m, s = 3250 ÷ 3400 m and s = 4000 ÷ 4300 m. These
intervals correspond respectively to the Variante Villeneuve, the Tosa, the Acque
Minerali, the Variante Alta and the Rivazza: this means that in most of the
curves the difference is significant. In all these corners the behavior is similar

3note that the image is rotated of 90◦ to the right for space optimization; thus the corner is
travelled from right to left.
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Figure 3.35: Track reconstruction and trajectory (top), Variante Tamburello, Vari-
ante Villeneuve and Variante Alta for slip-slip model (left) and basic model (right).
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Figure 3.38: Normal loads (top) and loads transfer (middle) for the slip-slip model
and difference between slip and basic model, ∆(∆N) = ∆Nb −∆Nss (bottom)..

and the slip vehicle maintains lower values of the longitudinal load transfer both
in braking and in traction. A different behavior can be noticed at the Variante
Alta corner, where the load transfer is initially lower for the slip model until,
during the braking phase, is reached a higher value than the basic model; this
consideration permits to deduce that the vehicle delays the braking action and
starts earlier the acceleration. Correspondently to the straight before the Variante
Villeneuve it is possible to notice a small positive peak for the lateral load transfer,
which underlines the opposite steering maneuver adopted by the slip model; in this
condition a higher value for the lateral load transfer is registered in the slip model,
while, consequently, in the middle of the curve is achieved a lower load transfer,
that determines an advantage for the adherence limits. A major peak is calculated
at the Variante Alta, where the slip model registers initially higher values for the
lateral load transfer, although lower values are determined in the second part of
the corner: the slip-slip vehicle anticipates the cornering maneuver, in order to
travel a more gradual trajectory.

In fig. 3.39 is represented the total longitudinal force normalized by the weight
force of the car. During the Tosa curve (s ≈ 1600 m) the slip vehicle uses more
longitudinal force with a lower steering angle, thanks to the oversteering char-
acteristic: this behavior can be shown in the slip-slip model only, because the
adoption of constant values for the tyre parameters, that are assumed equal for
the front and rear wheels, generates a constant neutral behavior of the vehicle;
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Figure 3.39: Total longitudinal force profile for the slip model, normalized by the
weight force (top), and comparison between slip and basic model: ∆(Fx/mg) =
(Fx/mg)b − (Fx/mg)ss (bottom).

on the contrary the variation of the tyre properties with the normal loads per-
mits to change the behavior, that depends on the static load distribution and on
the load transfer. The major peak at the Acque Minerali demonstrates that the
slip car anticipates the cornering maneuver while at the Variante Alta the driver
anticipates the braking action and exploits more traction at the exit.

The velocity profiles (fig. 3.40) remark the considerations expressed: the slip
vehicle enters slower in the curves in order to exploit a better traction and obtain
higher speeds at the exit of the corner. These maneuvers, nevertheless, do not
permit an overall time advantage for the slip model.

The adherence ellipses of fig. 3.41 show an almost complete usage of the forces
available and the “curls” of these curves are particularly evident in the front wheels
diagrams. In spite of that it must be underlined that the real-right tyre does not
present a complete usage of the adherence because at high values of positive Fx,
the negative Fy are not fully utilized; in other words during negative curvature
corners and in traction conditions, the external tyre is not completely exploited.
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Figure 3.40: Velocity profiles for the slip model (top) and comparison between slip
and basic model: ∆V = Vb − Vss (bottom).
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Figure 3.41: Adherence ellipses for the slip model.



Chapter 4

Parametric Analysis

4.1 Introduction

Different simulations can be employed in order to study the effect of the main pa-
rameters on the vehicle model and to identify the best and most effective charac-
teristics that allow an improvement in the lap time performance. For this analysis
the slip-slip model will be adopted: only with this choice, in fact, it is possible to
capture the peculiar behaviors related to the usage of a complete formulation of
the slip quantities and the tyre forces combination.
The parameters that will be taken in consideration are the roll stiffness ratio
ξ = Kϕf/Kϕ, the longitudinal position of the CoM (b) and the CoM height h,
the wheelbase w, the track of the vehicle or vehicle width T , the yaw inertia Iz,
the viscosity coefficient of the differential kd and the aerodynamic coefficients for
drag (CDA) and lift (CLA). For each of these cases of study all the parameters
that are not the object of the analysis are set at the same values, in order to
obtain comparable results; in particular, with clear exception of the aerodynamics
analysis, the drag area coefficient CDA is assumed of 0.65 m2 and no lift forces
are considered.
GPOPS provides a built-in parametric optimization program, that attempts to
find the absolute minimum of the lap time in function of the parameter analyzed;
to validate the real behavior of this function, a set of values will be simulated with
the usual optimal control solution and changing the parameters in each simula-
tion: this procedure is employed to avoid the achievement of relative minimums
and to draw some considerations on the form of the lap time curve, varying the
parameter of interest. The set of parameter values is chosen with reference to an
average value, that corresponds to a realistic vehicle characteristic, incremented or
reduced of the 20%. Furthermore for each analysis the optimal parameter results
will be compared to the simulations in which are implemented lower and higher
values of the parameter respectively, in order to stress the effect on the lap time.
The track chosen for each simulation is the Adria International Raceway ; this
circuit was used for the basic model validation and, moreover, is the location of
most of the real car tests.

81
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4.2 Roll Stiffness Ratio

The roll stiffness ratio ξ = Kϕf/Kϕ represents the ratio between the front roll
stiffness and the total roll stiffness of the vehicle; this parameter takes an important
role in the determination of the lateral load transfer and in its distribution in each
axle of the car (see eq. (2.22)). If all the roll stiffness concerns the front axle
only, the parameter assumes the value of ξ = 1, while if the front axle makes no
contribute for the roll stiffness, and therefore all the stiffness concerns the rear
axle, is verified the equation ξ = 0.
The load transfer is peculiar for the determination of the adherence limits and
for the capability of transmitting the tyre forces to the ground; high values of
the front roll stiffness causes elevated lateral load transfer at the front axle, while
small Kϕf are related to high load transfer at the rear axle.
Table 4.1 and fig. 4.1 show the variation of lap time obtained simulating the system
with different values of ξ ∈ [0, 1]: it should be noticed that a minimum is found for
ξ = 0.87 and the other simulated points confirm this result. Excessively elevated
values of the roll stiffness at the front or at the rear of the vehicle determine high
lateral load transfer which cause a reduction of the friction limits of the external
tires, while the internal ones are subjected to significantly lower loads and can
express lower forces; the optimum value is identified at high front roll stiffness:
therefore the front axle undergoes the effect of high lateral load transfer while the
rear, thanks to the rolling action, employs low lateral load transfer and a better
force transmission to the ground is granted; this represent an advantage during the
exit of the corners and in the entrance phases, because the traction and braking
actions are more effective using the rear tires.

Parametric Opt. Adria ξ · 0.8 ξ ξ · 1.2 ξopt ξ · 1.8
ξ 0.424 0.53 0.636 0.869 0.954
Lap Time [s] 75.996 75.211 74.569 73.852 74.029
CPU Time [s] 748 996 794 1782 1075
Penalties [s] 0.105 0.138 0.154 0.158 0.175
Previous Solution Guess yes yes yes yes yes

Table 4.1: Simulation parameters used for roll stiffness ratio optimization.

In this case are evaluated the differences comparing the optimal system to
the systems considered with a lower and a higher value of ξlow = 0.464 and
ξhigh = 0.954 respectively. As for the orthogonal coordinate n (fig. 4.2), the main
differences of trajectory respect to the lower value can be found at s ≈ 400÷ 500,
s ≈ 1000 ÷ 1100 , s ≈ 1400 ÷ 1500 and s ≈ 2200 ÷ 2400. In the first corner the
optimal vehicle uses a trajectory close to the internal curb, traveling the lowest
distance, while for the lower value of ξ the car adopts a larger trajectory because
the load transfer is higher at the rear axle and must be reduced in order to start
the acceleration phase at the exit. Also the entrance phase is different because
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Figure 4.1: Variation of the lap time in terms of roll stiffness ratio ξ.
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Figure 4.2: Absolute value of the difference between the curvilinear coordinate n
for lower, optimal and higher value of ξ: ∆n = |nopt−ξlow| and ∆n = |nopt−nhigh|.

the optimal vehicle is capable of anticipating the steering and following the inter-
nal profile of the corner for a shorter distance traveled; on the contrary with ξlow
the car needs to follow a more gradual trajectory and consequently reduce the
lateral load transfer. The same conclusion can be drawn considering the second
and third corner, in which the optimal parameter allows to reduce the distance
to travel, with sharper trajectories. An opposite strategy, instead, is adopted for
the second-last corner: in this part of the track there is a series of nearly located
curves and no long straights separate the corners. In this kind of path a high
value of the lateral load transfer represents an important drawback while a more
balanced distribution of the roll stiffness is an advantage in order to front with
the sequence of corners; the vehicle with ξopt in fact needs to follow larger and
more rounded trajectories before, during and after the second-last curve because,
in that way, it is possible to limit the excessive front load transfer.

The load transfer profile obtained using the optimal parameter (fig. 4.4) is
significantly different to the previous results; in particular the greatest differences
are registered respect to the model with ξlow, both for the longitudinal and for the
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Figure 4.3: Magnified views of the corners for optimal (left) and lower value (right)
of the parameter; at the bottom is reported the trajectory for the higher value of
ξ.
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Figure 4.4: Load transfer for ξopt (top) and difference between the longitudinal
(mid) and lateral (bottom) load transfer for lower, optimum and higher value of
ξ: ∆(∆N) = ∆Nopt −∆Nlow and ∆(∆N) = ∆Nopt −∆Nhigh.

lateral load transfer. The differences are calculated in analogy with the previous
simulations: ∆Nlon = Nrr−Nfr and ∆Nlon = Nrl−Nrr: it should be noticed that
the lateral value is calculated for the rear axle, or rather the axle in which the roll
stiffness is lower for ξopt and ξhigh.
The longitudinal load transfer is higher for ξopt in braking and in traction condition
because these phases are delayed and anticipated respectively and shorter distances
are travelled. On the contrary the rear lateral transfer is lower for all the corners
because the roll stiffness is lower. The model with the highest value of ξ considered,
instead, presents higher values for the longitudinal and lower value for the lateral
load transfer than the vehicle with ξopt, because a higher roll stiffness is provided
at the front. In this case the delay due to the poor performance in the second part
of the track is more significative than the advantage obtained on the fist part of
the track, where a high value for Kϕf determines an improved maneuverability.

The total longitudinal force profile of the optimized vehicle (fig. 4.5) differs
from the simulation with ξlow in a similar way for the first three corners, while in
the second part of the track the dynamics becomes more complex and no repeated
schemes can be identified. For the first corners, the model with ξopt enters delaying
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the braking action and accentuating the braking force, thanks to the lower load
transfer at the rear axle; at the same way also the first part of the acceleration
in the exit phase is performed with more longitudinal force. Employing ξhigh the
vehicle makes more evident the behavior obtained with the optimal parameter in
the first half of the track: braking delayed, stronger braking action and more pow-
erful acceleration; in the second part of the track the dynamics becomes complex
and more difficult to follow.
The speed profile of fig. 4.6 shows the same concept: the optimal car enters faster
in the corner, becomes slower during the corner because of the sharper trajectory
and exits faster; in the second part of the track, although for ξopt the vehicle main-
tains an overall higher speed, the slower phases are more frequent and the profiles
become less repeatable: the vehicle in fact adopts more rounded trajectories, trav-
eling at higher speed but using a longer distance. Respect to ξhigh, instead, the
increment of Kϕf accentuates further the behavior described for ξopt, although in
the second part of the track the vehicle becomes slower.
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Figure 4.6: Absolute value of the difference between the speed profile for lower,
optimum and higher value of ξ: ∆V = Vopt − Vlow and ∆V = Vopt − Vhigh.

4.3 CoM Position

The position of the centre of mass of the vehicle (CoM) determines most of the dy-
namic aspects connected to handling and maneuverability; in fact the static loads
distribution and the stability characteristics depend on the CoM longitudinal po-
sitioning, while the vertical position is related both to the lateral and longitudinal
load transfer. In this section all these aspects will be investigated with reference
to the distance from the CoM to the rear axle (b) and the CoM height from the
ground (h). Moreover a few considerations will be underlined focusing the at-
tention on the vehicle stability and its importance for the determination of the
dynamic behavior.

4.3.1 Longitudinal Position

The analysis of b is focused on the realistic range of b ∈ [1, 2.5] m and two different
cases are studied: the usual vehicle without lift downforce and the effect of the
lift forces to the CoM position.
In table 4.2 and in fig. 4.7 are summarized the results of the simulations with
different values of b, without considering the lift forces and for a constant value
of the wheelbase w; due to numerical difficulties no simulation could have been
performed under bopt, probably because of the instability of the model in these
conditions (see sec. 4.3.2). Therefore it can be assumed that reducing the distance
between the CoM and the rear axle, the vehicle is capable of better lap time
performances. This behavior is mainly due to the more significant oversteering
behavior obtained reducing the parameter b: in these condition the ideal driver
can control the handling capabilities using the throttle properly to induce a more
effective steering action, in order to reduce the distance to travel.

In the first, third and last corner are registered the greatest differences in
terms of n between the model that uses bopt and the one with a higher value
bhigh = 1.842 m (fig. 4.8). As it can be seen in fig. 4.9, the optimal model adopts
a sharper trajectory in the first and third corner of the track and travels a shorter
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Parametric Opt. Adria b · 0.8 b b · 1.2 bopt

b [m] 1.228 1.535 1.842 1.112
Lap Time [s] 73.159 75.211 78.976 72.774
CPU Time [s] 738 996 1038 1934
Penalties [s] 0.143 0.138 0.133 0.151
Previous Solution Guess yes yes yes yes

Table 4.2: Simulation parameters used for CoM longitudinal position optimization
b (without lift).
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Figure 4.7: Variation of the lap time in terms of CoM longitudinal position b.

distance; on the contrary the model with bhigh needs to use the whole road width
in order to minimize the lap time, because it is less maneuverable into the corners.
In the last curve the behavior is similar and the best lap time is obtained simply
reducing the distance traveled and avoiding the change of direction to prepare the
corner; this is possible because the driver is able to control the vehicle instability,
taking advantage of the possibility of changing direction faster.

Regarding the load transfer (fig. 4.10) the longitudinal CoM position affects the
static load distribution between the front and rear wheels; hence the longitudinal
load transfer is incremented in the whole circuit because the weight is now located
towards the rear part of the car. Moreover it should be noticed that a similar
scheme for ∆(∆N) = ∆Nopt − ∆Nhigh is repeated for the first part of the track:
approaching the corner the load transfer increases because the optimal model
delays the braking action; then ∆(∆N) is reduced because of the effective braking
action, which is due to the higher friction coefficients at the front tires. During
the following acceleration the difference newly increases because the optimal car
anticipates this phase. In the second part of the track the sequence of curves make
more difficult the adoption of this strategy and the load transfer profile becomes
less regular. The lateral transfer profile is oscillating but in most of the curves the
vehicle which adopts the optimal parameter achieves higher values, because of the
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Figure 4.8: Absolute value of the difference between the CoM longitudinal position
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Figure 4.9: Magnified views of the first, third, last and second-last curves for
optimal (left) and higher value (right) of the parameter.
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Figure 4.10: Load transfer for bopt (top) and difference between the longitudinal
(mid) and lateral (bottom) load transfer for lower (optimum) and higher value of
b: ∆(∆N) = ∆Nopt −∆Nhigh.

sharper trajectories.
In fig. 4.11 is provided the study of the total longitudinal force applied to the

contact points; it can be observed that the optimal vehicle delays the braking phase
and, as concluded previously, is capable of a more effective braking action and a
better traction at the curve exit: the vehicle exploits its oversteering capabilities
and the load distribution to reach the best performance.
The speed profile of fig. 4.12 confirms that the car enters faster in the corner,
decelerates strongly and increases the speed during traction.

In table 4.3 and fig. 4.13 are provided the simulation results obtained varying
b and simultaneously implementing the lift forces. In this analysis are set the pa-
rameters CLfA = 0.72 m2, CLrA = 1.68 m2 and CDA = 0.8 m2. The overall profile
is the same: lower b determine an advantage in terms of lap time; nevertheless
the optimal value passes from b = 1.112 m, without lift forces, to b = 1.128 m,
considering the lift. This result is not surprising because the rear wing provides a
good deal of the utter normal load and there is a lower need to position the CoM
near the rear axle; moreover it must be considered that only a little increment
of b is obtained because the incremented load on the rear wheels determines an
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Figure 4.11: Longitudinal force for bopt (top) and difference between the longitu-
dinal force for lower (optimum) and higher value of b: ∆(Fx/mg) = (Fx/mg)opt−
(Fx/mg)high.
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Figure 4.12: Difference between the speed profile for lower (optimum) and higher
value of b: ∆V = Vopt − Vhigh.
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Figure 4.13: Variation of the lap time in terms of CoM longitudinal position b
with lift.

increase of the rear cornering stiffness and a consequent reduction of the over-
steering behavior, that have to be compensated by a low value of b, or rather a
backward position of the CoM.

Parametric Opt. Adria b · 0.8 b b · 1.2 bopt

b [m] 1.228 1.535 1.842 1.128
Lap Time [s] 71.450 72.609 75.610 71.159
CPU Time [s] 4964 1565 2139 1135
Penalties [s] 0.143 0.135 0.178 0.125
Previous Solution Guess yes yes yes yes

Table 4.3: Simulation parameters used for CoM longitudinal position optimization
b (with lift).

4.3.2 Stability

Considering now the cornering stiffness of the tires, a value for static conditions
can be obtained from:

Cf = Kyf Nf = Kyf mg
b

w
, Cr = KyrNr = Kyrmg

a

w
; (4.1)

Kyf and Kyr are calculated from eq. (2.92).
Applying the Routh-Hurwitz criterium to the single-track model, the stability of
the vehicle is then determined; it is possible to distinguish three different condi-
tions that correspond to three different behaviors:
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Cr b− Cf a > 0, understeering
Cr b− Cf a = 0, neutral
Cr b− Cf a < 0, oversteering.

(4.2)

The vehicle is characterized by an understeering behavior if the rear has a
greater roadholding than the front and is oversteering if the front has a better
roadholding than the rear; the vehicle is neutral if neither front nor rear prevale
in terms of roadholding behavior. For oversteering vehicles the dynamic system
admits real and distinct eigenvalues, that become negative when the car reaches
the critical speed ucr, for which the instability occurs. The expression for ucr
derives from the Routh-Hurwitz criterium:

ucr =

√
Cf Cr w2

m (Cf a− Cr b)
; (4.3)

at this speed the vehicle becomes unstable and uncontrollable.
Reasonably realistic values for the vehicle in static conditions are Cf ≈ 14.8 104

N/rad and Cr ≈ 14.2 104 N/rad with b = 1.535 m and w = 2.901 m; in this
case the vehicle is characterized by a slightly understeering characteristic: this
does not represent an unexpected result especially considering the normalized
cornering stiffness Kλf = Cf/Nf ≈ 22 rad−1 and Kλr = Cr/Nr ≈ 24 rad−1. In
fact, the case in which Kλf < Kλr implies an understeering dynamic behavior
because, introducing eq. (4.1), the criterium inequality becomes:

Cr b− Cf a = KλrNr b−Kλf Nf a = mg
ab

w
(Kλr −Kλf ) ⋛ 0. (4.4)

Therefore the critical speed does not exist and the dynamics admits real nega-
tive or complex conjugated eigenvalues. The cause of this is related to the position
of the centre of mass towards the front of the car, but actually near to a 50-50 mass
distribution; moreover it must be underlined that in this model the front and rear
tires are defined using the same coefficients and these results are obtained only
considering the stability behavior at static conditions and constant speed. In gen-
eral the dynamic characteristic may vary during the motion, thanks to the load
transfer and the variation of the tyre stiffness slope.
Table 4.4 reports the results of the stability considerations, varying the longitudi-
nal position of the CoM: it should be noticed that, moving towards the optimized
parameter bopt, or rather reducing b, the vehicle increases continually the over-
steering behavior, that allows a better maneuverability in the corners. Moreover,
for b < bopt the critical speed becomes too low and the vehicle becomes unstable
during the curves; in spite of that ucr does not create any issue for stability using
bopt because the instability occurs only when a steering maneuver is imposed.
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Stability b · 0.8 b b · 1.2 bopt

b [m] 1.228 1.535 1.842 1.128
a [m] 1.673 1.366 1.059 1.789
Cf [N/rad] 135823 148070 153670 129050
Cr [N/rad] 151290 142280 125520 153090
Kλf [1/rad] 25 22 19 26
Kλr [1/rad] 21 24 27 19
Cr b−Cf a [Nm/rad] −41450 +16140 +68470 −60630
ucr [km/h] 203.93 ∞ ∞ 165.34

Table 4.4: Stability considerations varying b, at constant wheelbase w = 2.901 m.

4.3.3 Vertical Position

The vertical position affects mainly the lateral and longitudinal load transfer in
dynamic conditions: high values of h cause high lateral and longitudinal load
transfer. The results of the simulations are reported in table 4.5 and in fig. 4.14,
with the boundary condition h ∈ [0.1, 1] m. The optimal value is obtained cor-
respondently to the lowest value of the range: therefore a low CoM allows to
improve the vehicle performance reducing the lateral and longitudinal load trans-
fer and consequently limiting the effect of reduction of the adherence coefficient
or the dual decrease of the tyre dimensional stiffness KN .

Parametric Opt. Adria h · 0.8 h h · 1.2 hopt

h [m] 0.264 0.330 0.396 0.1
Lap Time [s] 72.599 75.211 73.819 72.593
CPU Time [s] 1651 996 858 2096
Penalties [s] 0.146 0.138 0.145 0.148
Previous Solution Guess yes yes yes yes

Table 4.5: Simulation parameters used for CoM height optimization h.

As shown in fig. 4.15, the main differences in terms of trajectory are related to
the third and the last curve of the track, represented in fig. 4.16. With the CoM
at hopt, the vehicle is capable to enter in the corner with a straight maneuver and
to exit rapidly to start the full throttle phase; this kind of maneuver is possible
thanks to the low load transfer induced, that allows to face with higher adherence
limits. Moreover in the last corner is shown that the optimal vehicle enlarges
the trajectory in order to prepare a straight entering in the curve; this maneuver
permits to reduce the effect of the lateral load transfer.

Fig. 4.17 shows that the braking action is delayed in the optimal simulation
and lower values for the longitudinal load transfer are obtained both in braking
and in acceleration; the lateral load transfer is also minor to the one reached for
hhigh in all the domain of simulation.
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Figure 4.15: Absolute value of the difference between the CoM vertical position h
for lower (optimum) and higher value of h: ∆n = |nopt − nhigh|.
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Figure 4.16: Magnified views of the third and last curve for optimal (left) and
higher value (right) of the parameter.
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Figure 4.17: Load transfer for hopt (top) and difference between the longitudinal
(mid) and lateral (bottom) load transfer for lower (optimum) and higher value of
h: ∆(∆N) = ∆Nopt −∆Nhigh.
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Figure 4.18: Longitudinal force for hopt (top) and difference between the longitu-
dinal force for lower (optimum) and higher value of h: ∆(Fx/mg) = (Fx/mg)opt−
(Fx/mg)high.
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Figure 4.19: Difference between the speed profile for lower (optimum) and higher
value of h: ∆V = Vopt − Vhigh.

The total longitudinal force profile (fig. 4.18) allows to deduce that the braking
action is delayed in the optimal simulation and the low load transfer permits a
stronger braking force and a slightly better acceleration in the early exit of the
corners.
The speed profile (fig. 4.19) shows that, assuming the optimal (lowest) vertical
position of the CoM, the vehicle manages to travel the curves faster during the
all track, although this advantage is lost when the speed is increased in the long
straights, because lower forces are available at the driving wheels.
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4.4 Wheelbase

The wheelbase of the vehicle is basically related to the static load distribution
between the front and rear wheels and to the handling capabilities of the car,
connected to the longitudinal load transfer; in order to consider the effect of the
wheelbase only, independently to the variation of a and b, a constant ratio b/a =
kw = 1.124 in maintained, while w assumes different values in the range [2, 3.6]
m. Thanks to this algebraic elaboration, the static load distribution becomes:

Nf = Nfl+Nfr = mg
b

w
=

1

kw + 1
, Nr = Nrl+Nrr = mg

a

w
=

kw
kw + 1

; (4.5)

hence, incrementing w, both a and b are incremented maintaining a constant ra-
tio, while the static loads for front and rear wheels are constant. Therefore the
assumption of b/a = const allows to exclude the effect of the static loads to the
analysis (which are already considered with the optimization of b) and to lead the
focus to the longitudinal load transfer dependency from w.
The results of the simulations provided are summed up in table 4.6 and fig. 4.20;
the improvement of the lap time follows the increase of the wheelbase and, conse-
quently, the decrease of the load transfer, which is proportional to the ratio h/w.
For high values of the wheelbase the lap time decreases less rapidly because the
maneuverability in the second part of the track is reduced.

Parametric Opt. Adria w · 0.8 w w · 1.2 wopt

w [m] 2.321 2.901 3.481 3.600
b [m] 1.228 1.535 1.842 1.905
a [m] 1.093 1.366 1.639 1.695
Lap Time [s] 75.314 75.211 75.091 75.089
CPU Time [s] 927 996 500 485
Penalties [s] 0.122 0.138 0.152 0.159
Previous Solution Guess yes yes yes yes

Table 4.6: Simulation parameters used for wheelbase optimization w with b/a =
1.124.

The part of the track in which is more evident the difference between the
trajectory obtained with wopt and wlow = 2.321 m is the short straight before the
last corner (fig. 4.21); the higher value of the wheelbase imposes a more rounded
trajectory (fig. 4.22) for the optimal vehicle, that needs to use the whole road
width. Even though the optimal model travels a longer distance, the reduced
longitudinal load transfer allows a better braking and traction.

In fig. 4.23 can be noticed that for the optimal parameter the vehicle delays
the braking action and uses a lower longitudinal load transfer both in braking and
in traction condition. The lateral load transfer is not related to evident variations
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Figure 4.20: Variation of the lap time in terms of wheelbase w.
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Figure 4.21: Absolute value of the difference between the wheelbase w for lower
and higher (optimum) value of w: ∆n = |nopt − nlow|.

Figure 4.22: Magnified views of the last two curves for optimal (left) and lower
value (right) of the parameter.
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Figure 4.23: Load transfer for wopt (top) and difference between the longitudinal
(mid) and lateral (bottom) load transfer for lower and higher (optimum) value of
w: ∆(∆N) = ∆Nopt −∆Nlow.

except before the last corner in which the entering maneuver is different and
provides a higher lateral load transfer for the simulation with wopt: this drawback
is a consequence of the increased wheelbase, for which the car is more difficult to
insert in the corner. These difficulties are underlined where the curves are located
in sequence and no semi-steady state phases are allowed.

The advantage of reducing the longitudinal load transfer is connected to the
fact that the braking action can be delayed and a stronger braking force is avail-
able at the contact points (fig. 4.24). Moreover a slightly better traction force is
exploited for the same reason.
Therefore, the vehicle enters faster in the corner and reduces the speed with a
resolute braking phase; the turning and exit phases represent a drawback in terms
of speed because the optimal car, due to the higher w, travels the curve slower
and remains slightly slower also in the following straight. This behavior is less
evident in the last sequence of corners, where the poor cornering capabilities and
the shorter straights impose a different strategy and a lower advantage.
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Figure 4.24: Longitudinal force for wopt (top) and difference between the longitu-
dinal force for lower and higher (optimum) value of w: ∆(Fx/mg) = (Fx/mg)opt−
(Fx/mg)low.
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Figure 4.25: Difference between the speed profile for lower and higher (optimum)
value of w: ∆V = Vopt − Vlow.
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4.5 Vehicle Track

The width parameter T , or rather the distance between the axes of symmetry of
the wheels, which is assumed equal for the front and rear axles, is mainly connected
to the lateral load transfer.
Considering the range of T ∈ [1.5, 2.8] m, some simulation results for different
values of track are reported in tab. 4.7 and fig. 4.39. The higher the width, the
lower the lateral load transfer and the better the lap time performance.

Parametric Opt. Adria T · 0.8 T T · 1.2 Topt

T [m] 1.613 2.016 2.419 2.800
Lap Time [s] 76.029 75.211 74.759 74.384
CPU Time [s] 673 996 757 624
Penalties [s] 0.125 0.138 0.142 0.146
Previous Solution Guess yes yes yes yes

Table 4.7: Simulation parameters used for track optimization T .
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Figure 4.26: Variation of the lap time in terms of track T .

The major difference in terms of orthogonal coordinate n is obtained before the
last corner (fig. 4.27), where the optimal car is capable of a more straight trajectory
(fig. 4.28) because the lateral load transfer is reduced and the adherence limits are
high enough.

In fig. 4.29 it can be noticed that, in most of the curves, the model that
implements Topt delays the braking, brakes stronger and anticipates the traction
phase; the lateral load transfer is significantly lower during the whole track.
The same conclusions can be drawn considering the longitudinal force profile of
fig. 4.30: higher and delayed braking force and more resolute acceleration are used.
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Figure 4.27: Absolute value of the difference between the wheelbase T for lower
and higher (optimum) value of T : ∆n = |nopt − nlow|.

Figure 4.28: Magnified views of the last two curves for optimal (left) and higher
value (right) of the parameter.



4.5. VEHICLE TRACK 105

s [m]
0 500 1000 1500 2000 2500 3000

L
oa

d 
T

ra
ns

. [
N

]

-1500

-1000

-500

0

500

1000

1500
Long.
Later.

s [m]
0 500 1000 1500 2000 2500 3000

D
el

ta
(L

on
g.

 L
.T

.)
 [

N
]

-600

-400

-200

0

200 opt-low
opt-high

s [m]
0 500 1000 1500 2000 2500 3000

D
el

ta
(L

at
er

. L
.T

.)
 [

N
]

-1500

-1000

-500

0

500

1000
opt-low
opt-high

Figure 4.29: Load transfer for Topt (top) and difference between the longitudinal
(mid) and lateral (bottom) load transfer for lower and higher (optimum) value of
T : ∆(∆N) = ∆Nopt −∆Nlow.

In spite of that a greater difference is highlighted in the last corner, where this
behavior is accentuated.
The speed profile (fig. 4.31) shows that a higher total velocity is reached in the
cornering maneuver, although the speed advantage is reduced during the following
acceleration. In the last corner the speed of the optimal model is lower in the first
half of the curve, while in the traction phase the car achieves higher values of V .
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Figure 4.30: Longitudinal force for Topt (top) and difference between the longitu-
dinal force for lower and higher (optimum) value of T : ∆(Fx/mg) = (Fx/mg)opt−
(Fx/mg)low.
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Figure 4.31: Difference between the speed profile for lower and higher (optimum)
value of T : ∆V = Vopt − Vlow.
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4.6 Yaw Inertia

The yaw inertia Iz reflects the cornering capabilities of the vehicle and is included
in the Euler equation around the z axis of the SAE triad (eq. 2.15). Table 4.8
shows that this parameter, that is assumed to vary within the range [1000, 3000]
kgm2, has a weak effect on the lap time: in fact the variation in the interval
considered is almost 0.2 s. The same overall behavior was captured in [10] where,
considering only the range used, the variation of the lap time assumes a similar
form to the one obtained in fig. 4.32, although the model treated maintains a
constant lap time of 75.212 s up to inertia values of 104 kgm2.
Because of the particular form of the lap time curve with a variation of Iz, in this
case will be compared three different simulations characterized by the optimal
(and maximum) value of yaw inertia Iz,opt = Iz,max = 3000 kgm2 and two lower
values: Iz,low = Iz,min = 1000 kgm2 and Iz,high = Iz = 1700 kgm2.

Parametric Opt. Adria Iz,min Iz · 0.8 Iz Iz · 1.2 Iz,opt
Iz [m] 1000 1360 1700 2040 3000
Lap Time [s] 75.154 75.138 75.211 75.204 75.098
CPU Time [s] 910 781 996 889 2157
Penalties [s] 0.126 0.126 0.138 0.138 0.126
Previous Solution Guess yes yes yes yes yes

Table 4.8: Simulation parameters used for yaw inertia optimization Iz.

La
p 

Ti
m

e 
[s

]

74,9

75

75,1

75,2

75,3

Yaw Inertia Iz [kg m^2]
1000 1500 2000 2500 3000

75,154
75,138

75,211 75,204

75,098

Figure 4.32: Variation of the lap time in terms of yaw inertia Iz.

The only significant difference in terms of orthogonal coordinate n (fig. 4.33)
occurs between Iz,opt and Iz,low in the last corner of the track: the optimal vehicle
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Figure 4.33: Absolute value of the difference between the wheelbase Iz for lower,
optimum and higher value of Iz: ∆n = |nopt − nhigh| and ∆n = |nopt − nlow|.

Figure 4.34: Magnified views of the last and second-last curves for optimal (left),
lower value (right) and higher value (bottom) of the parameter.
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uses a more straight trajectory to enter in the curve, while at the exit the approach
to the external curb occurs later (fig. 4.34).

As for lateral and longitudinal load transfer the result is the same (fig. 4.35):
the models which implement Iz,opt and Iz,low register a difference in the last cor-
ner, while no significant differences are obtained between Iz,opt and Iz,high. The
braking action is delayed and more longitudinal force is applied for braking and
traction; the lateral load transfer, moreover, is higher for the optimal model in
the first phase, but lower in the second part of the maneuver and newly higher
in the curve exit. This considerations allow to make an hypothesis to justify the
non-intuitive advantage reached with higher values of Iz: the vehicle starts the
cornering maneuver and the higher inertia imposes to continue the yaw rotation
exploiting the oversteering behavior of the car; at the end of the corner the ve-
hicle stops the yaw maneuver because the steering was previously set parallel to
the vehicle. Therefore the vehicle anticipates the phase in which the steering is
straight and is able to impose higher longitudinal forces.
In most of the curves, in fact, the steering angle is lower for the optimal vehicle;
in the last corner, instead, a greater steering angle is needed before and during
the curve because of the different trajectory, although lower steering angles are
reached in the exit phase.
The longitudinal force profile (fig. 4.37) and the speed profile (fig. 4.38) confirm
the same conclusions exposed for the longitudinal load transfer.
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Figure 4.35: Load transfer for Iz,opt (top) and difference between the longitudinal
(mid) and lateral (bottom) load transfer for lower and higher (optimum) value of
Iz: ∆(∆N) = ∆Nopt −∆Nhigh and ∆(∆N) = ∆Nopt −∆Nlow.
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Figure 4.36: Normalized steering angle for Iz,opt (top) and difference between the
longitudinal force for lower, optimal and higher value of Iz: ∆(δ/kδ) = (δ/kδ)opt−
(δ/kδ)high and ∆(δ/kδ) = (δ/kδ)opt − (δ/kδ)low.
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Figure 4.37: Longitudinal force for Iz,opt (top) and difference between the longitu-
dinal force for lower, optimal and higher value of Iz: ∆(Fx/mg) = (Fx/mg)opt −
(Fx/mg)high.
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Figure 4.38: Difference between the speed profile for lower, optimum and higher
value of Iz: ∆V = Vopt − Vhigh and ∆V = Vopt − Vlow.

4.7 Differential

The differential is an important mechanical device that allows an improvement in
vehicle maneuverability; in fact the differential allows to split the torque delivered
to the driving axle towards each wheel with a particular criterium: the greater is
the wheel spin, the smaller is the torque delivered. This is the basic functioning
principle behind the so-called speed sensing differentials, or rather the systems
based on the driving wheel speed difference.
Two different operating limits can be defined: the first one is the condition of
open differential, that delivers the torque in order to obtain the same longitudinal
tyre forces on each wheel of the driving axle, with condition close to the pure slip;
the other dual limit consists in the condition of locked differential, for which the
driving axle is completely locked as if the differential becomes a rigid joint between
the wheels; this operating condition is useful during the traction and braking of
the vehicle, in which the car needs to deliver the maximum power to the ground.
A simple model for this complex system is expressed by the following relation
between the torques at the rear axle T rl and T rr (for a rear wheel drive car) and
the wheel spin velocities ωrl and ωrr:

T rl − T rr = kd (ωrr − ωrl); (4.6)

kd is the viscosity parameter of the differential and is measured in [Nms]; kd = 0
represents the condition of fully open differential, while for kd → ∞ the system is
completely locked. Therefore for locked differential the equation becomes:

ωrr − ωrl = 0. (4.7)

In table 4.9 are reported the results of the simulations with different values
of kd; the path constraint of equation (4.6) represents a very tough condition for
the simulation and this is demonstrated by the elevated simulation time values.
In this case, if on the one hand the optimum parameter value seems to follow the
form of the curve that joins the points of different simulations, on the other hand
it does not correspond to an absolute minimum in terms of lap time: probably
the curve presents some waves where the lap time gains the minimum values and
the optimizer has some difficulties for a proper convergence to the optimum value.
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Figure 4.39: Variation of the lap time in terms of viscosity coefficient of the
differential kd.

Despite of that, a concrete optimum value for kd can be realistically found in the
interval 50÷ 100.

Par. Opt. Adria Open kd · 0.5 kd kd · 2 kd · 10 kd,opt Locked
kd [Nms] 0 50 100 200 1000 84 ∞
Lap Time [s] 75.211 74.224 74.173 74.936 75.190 74.471 75.629
CPU Time [s] 996 2043 1972 4418 8229 1249 1449
Penalties [s] 0.138 0.188 0.267 0.405 0.497 0.264 0.551
Prev. Sol. Guess yes yes yes yes yes yes yes

Table 4.9: Simulation parameters used for differential viscous constant optimiza-
tion kd.

In fig. 4.40 is represented the difference of trajectory between the simulations
for kd,low = 0 Nms and the optimal value assumed as kd,opt ≈ 100 Nms (dash-dot
line) and between the results obtained with kd,high = 1000 Nms and the optimal
value (continuous line). It can be observed that ∆n, calculated considering the
difference between the higher and optimal parameters, assumes the major values
in the second, third and last curve; for the lower value of kd, instead, the greatest
difference is reached before the third and last curve.
The magnified views of the track are represented in fig. 4.41; considering the second
corner, the optimal vehicle is capable of a lower enlargement of the trajectory than
the model with kd,high because the handling is affected by the partial locking of
the differential, that reduces the cornering capabilities. In the following straight
the main difference is related to kd,low: in fact the optimal model accentuates the
opposite steering maneuver to prepare the curve, while with the open differential
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Figure 4.40: Absolute value of the difference between the wheelbase kd for lower,
optimum and higher value of kd: ∆n = |nopt − nhigh| and ∆n = |nopt − nlow|.

this maneuver is not needed. If one the one hand the entering trajectory is similar
using the optimal and the lower value, the vehicle with kd,high travels a more
rounded trajectory, because of the higher degree of locking; at the same way,
for the exit maneuver, with the lower and optimal value the trajectory is more
straight and reduces the road traveled, while for the higher value the trajectory
is gradual and rounded. In the last corner a different strategy is adopted for each
value of kd: in the approaching maneuver the changing of direction is more evident
passing from kd,low to kd,high, and the entering becomes less and less straight; the
exit phase is similar, although for the lower parameter a more direct trajectory
can be observed.

In general it can be noticed that the differences in terms of load transfers
define irregular profiles with quite low values; as for the longitudinal load transfer
(fig. 4.42) the optimal vehicle usually is capable of delaying the braking phase, of
braking stronger and accelerating before the vehicles in which are implemented
different values of kd. Moreover it can be seen that in some corners the vehicle
that uses kd,high has the possibility to slightly anticipate the traction phase at the
exit of the curves and to further delay the braking action, thanks to the more
locked differential.

In terms of steering angle (fig. 4.43) the main differences are calculated between
the optimal model and the vehicle that uses kd,high: the optimal car adopts a higher
steering angle in most of the curves because the trajectory is more sharp; at the
same way with kd,opt, the steering angle needed is lower than the one used with
the lower value of the parameter.

The longitudinal force profile (fig. 4.44) confirms the consideration deduced
for the longitudinal load transfer, while a further analysis can be focused on the
speed difference in fig. 4.45; the optimal parameter allows a faster entering and
exit maneuver in all the corners respect to the use of kd,low, and the advantage
in maintained during the straights. In spite of that a slower cornering phase is
obtained because of the differential partial degree of locking. An advantage is taken
also with reference to the vehicle equipped with kd,high because the more rounded
trajectory is obtained traveling greater distances; in spite of that a better traction
and a higher speed can be obtained with a locked differential in the straights.

In fig. 4.46 is represented the term T rl − T rr = kd (ωrr − ωrl) for kd,opt and
kd,high; the equation results identically null for kd,low. Considering the first corner
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Figure 4.41: Magnified views of the first and third corners (top) for optimal (left),
lower value (mid) and higher value (right) of the parameter; underneath is rep-
resented the second curve with second half of the track for optimal (left), lower
value (right) and higher value (bottom) of the parameter.
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Figure 4.42: Load transfer for kd,opt (top) and difference between the longitudinal
(mid) and lateral (bottom) load transfer for lower and higher (optimum) value of
kd: ∆(∆N) = ∆Nopt −∆Nhigh and ∆(∆N) = ∆Nopt −∆Nlow.
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Figure 4.43: Normalized steering angle for kd,opt (top) and difference between the
longitudinal force for lower, optimal and higher value of kd: ∆(δ/kδ) = (δ/kδ)opt−
(δ/kδ)high and ∆(δ/kδ) = (δ/kδ)opt − (δ/kδ)low.
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Figure 4.44: Longitudinal force for kd,opt (top) and difference between the longitu-
dinal force for lower, optimal and higher value of kd: ∆(Fx/mg) = (Fx/mg)opt −
(Fx/mg)high and ∆(Fx/mg) = (Fx/mg)opt − (Fx/mg)low.
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Figure 4.45: Difference between the speed profile for lower, optimum and higher
value of kd: ∆V = Vopt − Vhigh and ∆V = Vopt − Vlow.
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Figure 4.46: Difference between the rear left and rear right applied torque for kd,opt
(continuous line) and kd,high (dash-dot line): T rl − T rr = kd (ωrr − ωrl).

as an example of the typical behavior of the vehicle, initially the external wheel is
faster than the interior one and more torque is delivered at the internal wheel; in
the following phase, during the corner, the internal wheel becomes faster and the
torque is transmitted to the external wheel to accentuate the oversteering action.
This regulation of the torque for an improvement of the dynamics is known as
torque vectoring. It should be noticed that the simulation for kd,high provides
higher values of kd (ωrr − ωrl) during the whole track but the profile presents also
some vibrations because of the higher difficulty of convergence: the higher is kd,
the more restrictive is the constraint and the optimal solution is harder to find.
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4.8 Lift Coefficient

The lift forces are important parameters for the vehicle dynamics because, for the
racing cars, determine an increment of the normal loads, that can be traduced in
higher forces available at the wheels, although a decrease of the adherence limit is
inevitable. Typically for the Grand Touring racing cars the rear wing develops the
most part of the lift downforce, while the frontal aerodynamics and the splitters
are related to a minor fraction of the total vertical force; as shown in eq. (2.24),
the two separated contributes enter in the load equations, although the parametric
analysis is generated for a single lift parameter, due to numerical advantages in
terms of simulation time1. Therefore a total value of the lift area is evaluated
as CLA = CLfA + CLrA and different parameters are obtained incrementing or
reducing the initial value CLA by the 20%; at the rear wing is estimated the
70% of the total force, while the front provides with the remaining 30%. It must
be considered also that these different parameters are obtained with a proper
inclination of the rear wing and higher angles correspond to higher drag resistance:
consequently the ratio between the lift and drag forces CLA/CDA is maintained
constant for each simulation.
Table 4.10 and fig. 4.47 report a summing up of the results obtained for different
parameters, considering an interval of CLA ∈ [1, 3.5] m2 as boundary condition
for the parametric optimization, which defines a range of realistic values for CLA.
With a constant ratio of CLA/CDA = 3, assumed as a typical value for a GT3 car,
the optimum value is coincident to the maximum value of the interval considered:
greater values for CLA are not realistic; this behavior permits to conclude that the
higher are the lift forces, the lower is the lap time; the vehicle in fact is subjected
to higher loads and higher forces can be transmitted from the tires to the ground,
although lower values for the friction coefficients are available. Moreover, due to
the higher downforce at the rear axle, the longitudinal load transfer is incremented,
increasing consequently the traction of the vehicle.

Parametric Opt. Adria CLA · 0.8 CLA CLA · 1.2 CLAopt

CLA [m2] 1.92 2.4 2.88 3.5
CDA [m2] 0.64 0.8 0.96 1.16
CLA/CDA 3 3 3 3
Lap Time [s] 72.937 72.609 72.321 72.043
CPU Time [s] 1764 1565 1507 2396
Penalties [s] 0.132 0.135 0.136 0.158
Previous Solution Guess yes no yes yes

Table 4.10: Simulation parameters used for lift optimization.

1Multiple parameter optimization, however, is available in GPOPS, but it is not used to avoid
an increase in the numerical difficulties of the problem.
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Figure 4.47: Variation of the lap time in terms of lift coefficient CLA.

In fig. 4.48 is reported the difference between the normal coordinate n for
optimal value of CLA and a lower value of 1.92 m2; the difference ∆n between
the optimum parameter and the highest values of the range considered is zero,
because CLAopt = CLAmax = 3.5 m2. The curve shows that the main differences
in terms of trajectory can be found in the first curve (Ramata) and last curve (Della
Fonte) of the track that are located respectively at s ≈ 500 m and s ≈ 2400 m
(fig. 4.49); in particular ∆n is maximum in correspondence to the entrance of the
corners, or rather where the driver prepares the trajectory for an optimal traveling
of the corner. Regarding the first corner, the simulation for CLAopt determines
a delay in the maneuver of reaching the external curb before the corner and a
larger trajectory is chosen during the corner itself, anticipating the exit phase. In
fact higher loads causes a reduction of the adherence limits and the ideal driver
travels the curve without using too high lateral slip angles and preparing the exit
to anticipate the full throttle phase. The approaching phase, moreover, stresses
the opposite steering maneuver that reduces the lateral load transfer. On the
contrary, for CLAlow, the vehicle exploits the higher friction coefficients available
and produces a trajectory with less distance travelled. Similar consideration can
be made for the last corner of the track, although the cornering trajectory and
the exit maneuver is substantially identical.

The longitudinal load transfer (fig. 4.50) is higher for CLAopt, because the
most part of the downforce is applied at the rear axle; during braking a peak is
registered because the braking action is delayed in the optimum model: in fact
a lower load transfer from the rear to the front wheels limits the decrease of the
friction coefficient of the front wheels and increases the effectiveness of the braking
action for the rear wheels. The lateral load transfer is higher using the optimal
parameter both in the first and in the last corner: although the vehicle adopts a
more accentuated opposite steering action before the curve to reduce the lateral
transfer, it enters the corner faster and the centrifugal action increases. Moreover
in the first curve the enlarged trajectory permits to reduce ∆Nlat in the second
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Figure 4.48: Absolute value of the difference between the curvilinear coordinate n
for lower and higher (optimum) value of CLA: ∆n = |nopt − nlow|.

Figure 4.49: Magnified views of Ramata and Della Fonte curves for optimal (left)
and lower value (right) of the parameter.
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Figure 4.50: Load transfer for CLAopt (top) and difference between the longitudinal
(mid) and lateral (bottom) load transfer for lower and higher (optimum) value of
CLA: ∆(∆N) = ∆Nopt −∆Nlow.

part of the corner.
In fig. 4.51 can be observed that the vehicle delays the braking action in all

the curves and is capable of a higher braking force, thanks to the rear wing that
reduces the longitudinal load transfer in braking conditions.
The velocity profile (fig. 4.52) confirms the previous conclusions: the vehicle with
the optimum lift coefficient travels the corners faster and is able to use a better
traction at the exit; in spite of that the greater value of the drag coefficient CDA
determines a lower speed during the straights.
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Figure 4.51: Longitudinal force for CLAopt (top) and difference between the lon-
gitudinal force for lower and higher (optimum) value of CLA: ∆(Fx/mg) =
(Fx/mg)opt − (Fx/mg)low.
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Figure 4.52: Difference between the speed profile for lower and higher (optimum)
value of CLA: ∆V = Vopt − Vlow.
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Conclusions

This work represents, for the University of Padua, the first in-depth investigation
on the direct optimal control methods applied to four-wheeled vehicles; in addition
the research has been developed with the aim of investigating different modelling
strategies and providing a complete optimization analysis of the most important
parameters in the vehicle dynamics. The whole amount of simulations employed
has permitted first of all to highlight the differences between the models considered
in terms of the vehicle dynamic behavior; owing to the choice of control variables
and the implementation of all the slip quantities and their coupling expressions,
significant differences have been studied to convey the dynamic principles that
stay behind these results. In general, if on the one hand the basic vehicle needs
to travel straight and sharp trajectories to achieve the best performance, the slip-
slip model, considering the same parameters, takes advantage of a more rounded
trajectory that allows to exploit more effectively the tyre adherence and to reduce
the load transfer. Secondly the usage of three different tracks, has granted an all-
round analysis of the strategies, with which the ideal driver manages to face with
the various characteristics that identify each single track, such as the slope, the
curvature and the corners distribution along the circuit. The basic model presents
some difficulties to reach the top performance in the parts of the track where
long straights are separated by slow and medium speed corners; the sequence
of curves, instead, represents a critical aspect for the slip-slip model, because in
these conditions it is more difficult to reduce the effect of load transfer with gradual
maneuvers.
In table 4.11 are reported the results obtained simulating the two models in the
circuits considered. Thanks to the choice of the tyre data and the aerodynamics
coefficients, the experimental lap time value results similar to the best lap time
performance obtained with the optimal control simulations; in most of the tracks
the slip-slip model reaches better results because the adherence ellipses are slightly
larger than the constant ellipses implemented in the basic model: as underlined
several times, this aspect is one of the core concepts for the achievement of the
minimum lap time. In the circuit of Imola, instead, the basic model obtains a
lower lap time than the slip-slip vehicle, due to the high technical difficulties of
the track; this is a consequence of the fact that the adherence of the basic car is
not affected by the load transfer, which produce relevant values in this circuit.
Both the penalties, or rather the time added to make unfavorable the use of the
controls, and the CPU time, or rather the time needed for the simulations to
converge with the imposed tolerance, are connected to the solving difficulties,
that are dramatically increased with the use of the slip-slip model. The most
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significant issues that affect the numerical efficiency of the problem are related to
the combination of the lateral and longitudinal forces, to the slip limits (the higher
the slip limits, the greater the time to convergence) and to the path constraints
connected to the determination of the forces (i.e. braking ratio). A particular
attention should be drawn to the effect of the slip limits: if the slip values overtake
the value correspondent to the maximum of the tyre force, a lower force becomes
available, even though the slip increases; this represents an outstanding drawback
for the numerical solution of the problem because of the reach of the unstable
domain for the tyre force. In spite of that, no univocal limits for the slip quantities
can be individuated with the purpose of avoiding the overtaking of the stable
domain, because the force maximum position depends on the loads applied in each
wheel; therefore the slips boundary condition must be imposed with sufficiently
high values, in order to make the controls able to exploit the whole dynamic
possibilities.

Model Track Lap [s] CPU [s] Penalty [s] Real [s]
Basic Adria 76.398 191 0.075 76.630

Monza 107.645 237 0.065 107.584
Imola 2D 100.087 490 0.104 100.565
Imola 3D 100.600 492 0.100 100.565

Slip-Slip Adria 75.211 884 0.138 76.630
Monza 106.298 2025 0.132 107.584

Imola 2D 100.200 2837 0.191 100.565

Table 4.11: Simulations with different track and models.

A further analysis has been provided considering the slip-slip model in the
Adria raceway and simulating the vehicle for different values of the main parame-
ters that influence the dynamics. The study has been focused on the roll stiffness
ratio ξ, the longitudinal (b) and vertical (h) position of the CoM, the wheelbase
w, the width T , the yaw inertia Iz, the viscous constant of the differential kd and
the lift area CLA: for each parameter a series of values was chosen, starting from
a realistic value for the vehicle, and the profile of the lap time has been found for
each parameter, in order to identify the effect on the performance. Consequently it
has been possible to validate the result of the parametric optimization of GPOPS,
that allows to find the optimal parameter to minimize the lap time.
A summing up of the optimal values found is reported in table 4.12, in which
is also calculated the time improvement between the model characterized by the
reference value of the parameter and the vehicle that implements an optimized
parameter. The lowest lap time values are obtained adopting the lift downforces,
that determine an increment of the tyre forces available. The absolute best lap
time has been reached optimizing the parameter b with non-zero lift forces because
are accentuated both the handling properties of the front of the car (and there-
fore the oversteering capabilities) and the tyre forces available.; moreover in this
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case is achieved the lowest penalty value because the model results particularly
controllable. In terms of CPU time, the longest simulations are related to the
optimal (and maximum) lift coefficient, to the differential analysis and to the lon-
gitudinal position of the CoM; instead, the shortest simulations are obtained with
the wheelbase and track optimization. As stated previously, kd is implemented
with a path constraint that is hard to satisfy and reaches the highest value for the
penalty term, while b is related to the vehicle stability: increasing the oversteering
behavior, in fact, reduces the critical speed of the car. Moreover CLA reduces the
adherence limits and increases the difficulties of converging to the optimal values
of the controls. Wheelbase and track, on the contrary, are related to the load
transfer and, thanks to the normal load control strategy, do not represent a diffi-
cult constraint to satisfy. The most relevant time improvement is achieved with
the optimal values of the CoM position parameters b and h, that are coincident
to the minimum values available in the intervals considered; reducing b and h, in
fact, corresponds to an improvement in terms of performance. This outstanding
effect on the lap time is due to different causes: b is related to the static load
distribution and to the oversteering capabilities, while low values of h reduce the
lateral and longitudinal load transfer. Therefore these effects assume a fundamen-
tal importance for the improvement of the dynamic performance. By contrast,
approximately zero time improvement is obtained changing the yaw inertia that,
for a range of realistic values, does not affect the dynamic capabilities of the ve-
hicle.
If on the one hand each parameter considered has a different effect on the dynamic
quantities of the model, on the other hand it should be noticed that in each case
can be highlighted a common dynamic behavior that leads to a performance im-
provement. In fact the lowest lap times are achieved with more sharp and straight
trajectories, with delayed braking action and anticipated full throttle phase. This
strategy determines a decrease in terms of distance traveled and is made possible
only by the grip increment due to the better adherence conditions reached adopt-
ing the optimal parameters.
All the analyses developed in this research work have permitted to comprehend
the importance of the modelling activity, that allows to capture peculiar aspects
of the vehicle dynamics, related to the possibility of describing the most important
behaviors that affect the performance; the choice of the model equations and of
the optimal problem variables have also important consequences on the numerical
capabilities of the solver to converge to a proper solution, in terms of time needed
and error tolerance reached for the results. Complex models, that implement a
complete description of all the dynamic aspects, may actually compromise the
feasibility of the problem because it becomes hard for the solver to satisfy the
constraints. Moreover the level of complexity of the model must be accurately
chosen in order to find the optimum compromise between calculation efficiency
and resulting accuracy: this depends on the case of study and on the grade of in-
vestigation needed, although typically the adoption of overall simple models, such
as the slip-slip model, permits to capture a vaste amount of realistic behaviors
and to develop an optimization of the real vehicle.
Future complications for this work can be related to the implementation of a spin
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model of the vehicle, that allows to capture the spinning velocities of the wheels
and to use directly the axle torque as a control variable; moreover a more complete
description of the trim angles of the suspensions can be provided with a kinematic
representation of the suspension movement. All these topics are surely connected
to elevated numerical difficulties: probably the strategies used up to now might
not have the capacity of facing with these problems and a more efficient approach
could be needed.
These considerations lead the attention on the dramatic importance of the solu-
tion of optimal control problems in the vehicle dynamics research topics, thanks
to the interesting possibilities that are made available and the flexibility allowed.
This kind of problems, in fact, can be applied not only for the performance im-
provement, but also to the safety, the efficiency and the comfort of the vehicles,
adjusting the focus of the optimal control analysis to the proper quantities of in-
terest. In particular future developments can be implemented for the study of the
driver’s skills and characteristics, in order to optimize the best vehicle fitted to its
driver, both for racing and for everyday-use application. To focus the attention on
the driver, for instance, fixed-trajectory optimal control problems can be provided
considering a minimization of the difference between the real controls (e.g. steering
and longitudinal force) and the simulated ones as a target for the problem. Other
implementations of these strategies can be used to optimize the automatic gear
shifts or the vehicle trim (e.g. pneumatic suspensions or active aerodynamics) in
order to reduce the consumption or to improve the performance or the comfort
during a travel.

Parameter Value Best Lap [s] CPU [s] Penalty [s] Improvement [%]
ξ [-] 0.869 73.852 1782 0.158 1.8
b [m] 1.112 72.774 1934 0.151 3.2
blift [m] 0.128 71.159 1135 0.125 2.0
h [m] 0.100 72.823 1459 0.158 3.2
w [m] 3.600 75.089 465 0.159 0.2
T [m] 2.800 74.384 624 0.146 1.1
Iz [kgm2] 3000 75.098 1097 0.141 0.03
kd [Nms] 100 74.173 1972 0.267 1.4
CLA [m2] 3.5 72.043 2396 0.159 0.8

Table 4.12: Optimal parameters used for performance optimization.
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