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Abstract 

 

Poultry litter (PL) is the material that must be removed and replaced each time a flock of birds is 

reared and sent to the processor; it consists of a mixture of bedding material, feathers, manure, urine 

and food particles. Current disposal practices in Ireland mainly include land spreading on agricultural 

fields. Developing concern about human and environmental pollution derived by in-farm manure 

management and over application in agricultural fields, has created the opportunity for the 

development of other disposal processes and in particular for those that involve energy generation. 

Especially interesting is the possibility to exploit the raw material energy content directly where it is 

produced for generating heat and electricity that could be used for the farm purposes. The main aim of 

this thesis work consisted of performing a techno-economic analysis of a small-scale co-generative 

plant fuelled by PL, in order to understand the economic feasibility for deploying such technology 

within poultry farm context. The co-generative plant analysed is based on a fluidised bed combustor 

(FBC) system coupled with different co-generative units that comprehend a back pressure Steam 

Turbine (ST) an Externally Fired Gas Turbine (EFGT) and two Organic Rankine Cycles (ORC) with 

two configurations (with or without internal heat exchanger) using two working fluids (toluene and 

ethylbenzene). Combustion and FBC technology were selected after an ample technology review on 

energy conversion processes available for PL, carried in the first part of this thesis, where there was 

also reported a review of the European and Irish policies and regulations related with the topic and an 

overview of the main characteristics of PL intended as fuel for combustion usage (comprehending 

proximate and ultimate analysis results from literature). 

The techno-economic analysis required the construction of an articulate model for the overall system, 

including: the poultry farm model together with the plant layout, the FBC and the cogeneration unit 

and the plant operation setting in each hour of the year. The farm model consisted of 25 poultry 

houses (each of them containing 8,000 birds), located in the city of Kilkenny, Ireland. Heat for the 

poultry houses was considered supplied by a hydronic circuit connected with a water tank and linked 

to the co-generation plant. According to the results from the simulation, the nominal heating power in 

output from the unit was set at 900 kWth and the circuit was integrated with an auxiliary LPG boiler 

for peak period demand. Two scenarios were considered for the FBC operation setting: the Heat 

Driven (HD) case where plant follows exactly the poultry farm heat demand and the “Choice” case 

(CH) where it is possible increasing the electricity generation (once the heat demand is matched) if 

economically favoured. 
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Desired economic output parameters from the analysis were the Net Present Value (NPV), the simple 

Pay Back period (PB) and the Internal Rate of Return (IRR). Simulation results showed that: the NPV 

results positive for all the co-generation technologies at the end of the 20 years period considered for 

the investment and above 1.3 million euro in all the operative methods; the PB period results ranged 

between 3.3 and 3.9 years in both the scenarios analysed; the IRR (considered for a five years period) 

reaches values between 9.52% ÷13.13% in the HD scenario and between 11.36% ÷ 14.87% in the CH 

scenario. This work also considered the environmental impact, taking into account only the CO2 

emissions avoided. CO2 savings achieved by burning a biomass source instead of LPG reached values 

of 621.77 tons/year for the model considered and reduced electricity dependence from the grid ranged 

between 169.37 to 313.61 tons per year. 

A sensitivity analysis of the economic results was carried out, monitoring the dependence of the 

economic parameters in output varying the temperature inside the poultry houses, the litter cost and 

the investment cost. 
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Sommario 

 

I residui dell’attività di allevamento avicolo (PL) (poultry litter) consistono in una mistura di lettiera 

(paglia, cippato di legno fine, ecc.), piume, deiezioni e residui di cibo che è necessario rimuovere dai 

pollai alla fine di ogni periodo di allevamento, dopo che gli animali sono stati inviati al macello. Nel 

contesto irlandese, il metodo tipico per lo smaltimento di questo materiale consiste semplicemente nel 

suo spargimento sui terreni agricoli limitrofi. Tuttavia, recenti limiti sulle quantità di concime animale 

spandibile sui campi agricoli e sempre più stringenti regole nella gestione dei concimi all’interno 

degli allevamenti (imposti da normative e direttive Europee per evitare possibili rischi di 

contaminazione ambientale e pericolo per la salute umana), hanno portato ad un sempre maggiore 

interesse per metodi alternativi di smaltimento e in particolare per metodi che consentano la 

generazione di energia. Particolarmente interessante è la possibilità di sfruttare il contenuto energetico 

dei PL direttamente dove essi sono prodotti con generazione combinata di elettricità e calore che 

possono essere destinati ai consumi interni degli edifici adibiti all’allevamento degli animali.  

L’obbiettivo primario del presente lavoro di tesi è stato lo sviluppo di un’analisi tecnico-economica 

per un impianto cogenerativo di piccola taglia, per valutare la fattibilità economica di un possibile 

sviluppo di questa tecnologia nel contesto degli allevamenti di pollame irlandesi.  

L’analisi tecnico-economica è stata sviluppata per un impianto composto da un combustore a letto 

fluido (FBC) alimentato da PL e accoppiato con diverse unità cogenerative; le unità prese in 

considerazione sono state: un ciclo a vapore con turbina a contropressione (ST), una turbina a gas a 

combustione esterna (EFGT) e due sistemi a ciclo organico (ORC) con e senza scambiatore interno di 

calore, testati con due diversi fluidi organici (toluene ed etilbenzene). La combustione e l’utilizzo 

della tecnologia a letto fluido sono stati selezionati per l’analisi dopo un’ampia revisione della 

letteratura sui correnti metodi disponibili per la generazione di energia da PL, sviluppata nella prima 

parte del lavoro di tesi; la revisione affronta anche il campo delle normative e legislazioni  europee e 

irlandesi relative alle tematiche del trattamento e della conversione energetica della biomassa animale 

e provvede ad una generale caratterizzazione dei PL in relazione al loro utilizzo come combustibili.   

La metodologia usata per l’analisi tecnico-economica ha compreso l’utilizzo e il dialogo di diversi 

modelli, necessari per simulare il comportamento dell’intero sistema: la struttura della fattoria 

(necessaria per determinare i carichi termici ed elettrici) assieme al layout dell’impianto sono stati 

sviluppati attraverso l’utilizzo del software Energy +, il modello del FBC e dell’unità cogenerativa 

sono stati sviluppati invece attraverso il programma Engineering Equation Solver (EES), mentre la 
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modalità operativa dell’impianto cogenerativo in ogni singola ora dell’anno è stata stabilita attraverso 

la scrittura di un codice Matlab.  

La tenuta avicola modellata nell’analisi è costituita dall’insieme di 25 stabili (ciascuno in grado di 

contenere 8000 animali) ed è situata nella cittadina di Kilkenny in Irlanda. L’impianto di 

riscaldamento si avvale di un circuito idronico (utilizzante ventilconvettori) collegato ad un serbatoio 

d’acqua a sua volta connesso all’impianto cogenerativo attraverso un ulteriore circuito idronico; in 

base ai risultati ottenuti dalla simulazione, la taglia dell’unità cogenerativa è stata scelta imponendo 

una potenza termica nominale in output di 900 kWth, con la possibilità di apportare maggiore potenza 

attraverso l’utilizzo di un boiler ausiliario a Gas di Petrolio Liquefatto (GPL) durante i periodi di 

picco della potenza termica richiesta.  

Due scenari sono stati ipotizzati nell’impostare le modalità di operazione dell’impianto: il primo, 

denominato Heat Driven (HD), nel quale l’unità cogenerativa viene regolata per seguire solamente la 

richiesta termica della tenuta e il secondo, denominato “Choice” (CH), dove la priorità è sempre data 

alla richiesta termica, ma è possibile incrementare la produzione di elettricità dissipando calore se 

conveniente economicamente.  

I parametri di interesse valutati dall’analisi economica sono il Valore Attuale Netto (VAN), il Tempo 

di Ritorno (TR) semplice dell’investimento e il Tasso Interno di Rendimento (TIR).  

I risultati della simulazione mostrano che: il VAN dell’investimento, considerando un orizzonte 

temporale di 20 anni per l’impianto, è positivo per tutte le tecnologie investigate, raggiungendo valori 

superiori a 1.3 milioni di euro in entrambi gli scenari; valori del TR oscillano tra 3.3 e 3.9 anni; il 

TIR, considerato su un orizzonte di 5 anni, raggiunge valori compresi tra 9.52% ÷ 13.13% nel caso 

HD e tra 11.36% ÷ 14.87% nel caso CH. 

Ulteriore parametro considerato nell’analisi riguarda le emissioni evitate di CO2 in atmosfera. Dai 

risultati dell’analisi, per il modello in considerazione, sostituendo l’utilizzo di GPL con biomassa 

avicola per il riscaldamento degli stabili, le emissioni evitate di CO2 ammontano a 621.77 tonnellate 

per anno. Inoltre, riducendo la quantità di elettricità prelevata dalla rete elettrica, considerando il 

valore medio di emissioni del parco elettrico irlandese, il valore della quantità di emissioni evitate 

deve essere incrementato a seconda dello scenario e della tecnologia considerati di un fattore 

compreso tra 169.37 e 313.61 tonnellate per anno. 

Per ultimo, a causa del grande numero di assunzioni adottate durante tutto lo sviluppo del modello, si 

è operato uno studio sulla sensitività dei risultati ottenuti, variando tre parametri fondamentali 

all’interno dell’analisi: la temperatura di riferimento all’interno degli stabili adibiti per gli animali, il 

costo dei PL e il costo totale dell’investimento. 
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Chapter 1: Introduction 

 

1.1  Background 

The Irish food and drink sector recorded the fifth consecutive year of growth in exports during 2014 

with an estimated value of circa 10.5 billion euro. Poultry farming and industry represents almost the 

3% of this income with an estimated poultry export value of 310 million euro during 2014 and with an 

increase of 20% over 2013 (BordBia, 2015a).  

According to the Department of Agriculture, Food & Marine (DAFM) data reported by BordBia, 

(2015b), the number of poultry birds processed during 2014 in Ireland was approximately 76 million 

heads. Of this amount, the majority was composed of broiler chickens (that accounted for 85%) which 

represent also the major source of litter consumption (SEI, 2003), followed by turkeys at 8%, ducks at 

5% and hens at 2% (BordBia, 2015b). 

The Central Statistics Office (CSO)’s Census of Agriculture, published in 2012 showed that there 

were slightly more than 8500 poultry farms in Ireland during 2010, revealing the activity being an 

intensive agriculture practice within the Country carried out by a small number of specialised 

producers (CSO, 2012).Concentrated poultry rearing activities such as the Irish case imply large 

manure and litter production in relatively small areas with issues regarding their disposal process. 

 

Poultry litter is the material that must be removed and replaced each time a flock of birds is reared and 

sent to the processor. It consists of a mixture of bedding material (wood shavings, straw or paper), 

feathers, manure, urine and food particles, with a consistency and physical appearance similar to a 

mixture of wood chips and sawdust (Abelha et al., 2002, Lynch et al., 2013, SEI, 2003). 

Available data, SEI (2003), estimates that the total amount of poultry litter generated in the Country 

was approximately 140,000 tonnes per annum, and the National Waste Report of 2004 (EPA, 2004) 

reported a production of 172,435 tonnes of litter per year. Poultry litter consumption could be roughly 

evaluated using simple rules of thumb: for example, Lynch et al. 2013 reports a value of 1.4 tonnes of 

poultry litter production per 1000 birds, while BHSL suggests that the litter produced by a poultry 

house is approximately half the weight of the birds removed from the same house (www.bhsl.com).  

 

Current practices in Ireland for litter disposal include re-use as a compost material for mushroom 

production, land spreading on agricultural fields and stock piling (Leahy et al., 2007). 
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The majority of poultry litter is spread on farmland since it has long been recognised for its beneficial 

fertilising impact on crop production and considered a relatively cheap source of nutrients. Poultry 

litter increases the soil organic carbon content, increases soil porosity and enhances soil microbial 

activity (Nyakatawa et al., 2001). 

Mushroom compost is used to produce mushrooms, and depending on the producer, contains 

approximately 20-30% poultry litter (SEI, 2003). 

In the end, stock piling of manure is done when the weather is not suitable for land spreading or there 

is insufficient available land (Leahy et al., 2007, Dimache et al., 2014). 

 

In recent years, great concern has been developed on animal manure management and applications for 

agricultural fields mainly because of human and environmental pollution.  

For example, the Nitrates Directive (91/676/EEC), part of the larger Water Framework Directive 

(2000/60/EC) was introduced providing guidelines for limiting water pollution produced from 

agricultural sources. This Directive led the implementation of limits in fertiliser’s application in 

agricultural fields, allowing land spreading only in certain periods during the year and laying down 

requirements for manure management.  

Kelleher et al. (2002) reports that over-application of poultry litter in agricultural crops can lead to an 

increase in water nutrients resulting in eutrophication of water bodies, the spread of pathogens, air 

pollution and emission of greenhouse gases; Leahy et al. (2007) adds also the possibility of  heavy 

metal contamination. 

The stock piling practice can lead to environmental issues, causing bacteria to leach into the ground 

water, release of carbon dioxide and ammonia into atmosphere and also the loss of manure nutrients 

(Leahy et al., 2007, Kelleher et al., 2002). 

Regarding human health pollution, a series of manure management practices and regulations has been 

established with Regulation 1069/2009 and its amendments.  

 

These challenges connected with environmental safety and human health have created opportunities 

for possible applications of litter disposal and in particular for energy conversion; specifically the 

biomass energy potential of litter and animal manure in general can lead to benefits in both the Irish 

energy and wider European contexts. 

Under the Renewable Energy Directive (EU Directive 2009/28/EC), Ireland has undertaken to reach a 

16% share of renewable energy in gross final consumption (GFC) by 2020. This obligation is to be 

met by 40% from electricity, 12% from heat and 10% from transport. 

According to the National Renewable Energy Action Plan (NREAP), bioenergy is estimated to 

contribute a significant role reaching those goals, sharing the 7.2% on the renewable electricity target, 

the 82.2% on the renewable heat target and more than 90% on the renewable transport target. 
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In 2013 the primary renewable energy supply accounted for 911 ktoe (279 ktoe from biomass), with a 

primary energy requirement of 13,332 ktoe and a total final consumption of 10,825 ktoe (total final 

energy consumption of biomass equalled 203 ktoe) (SEAI). 

Data for 2013 revealed that renewable energy counted for circa 7.77% of the gross final consumption, 

obtained by a share of 20.9% in the gross electricity consumption, 5.7% of the thermal energy and 

2.8% of transport energy (SEAI). Figure 1.1 gives an overview from the period 2000-2013 of the 

renewable energy share to the gross final consumption in Ireland.  

 

 
Figure 1.1. Renewable energy contribution to final consumption - directive 2009/28/EC. 

 

 

 

Figure 1.2. Agriculture energy demand years 2008-2013 (left) and agriculture energy demand by fuels in 2013 (right). 

 

Looking at the agriculture area, although energy demand for this sector experienced a constant 

decrease during the period 2008-2013, reaching a final consumption of 225 ktoe in 2013 (SEAI), the 

energy requirements of the sector are mainly met by oil consumption, which accounted for circa 177 

ktoe, while the remaining part is represented by electricity consumption (Figure 1.2). 

This scenario shows that many opportunities exist for renewables deployment and growth in the 

agricultural sector.  
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Additionally, Ireland submitted the EU’s Effort Sharing Decision (Decision No 406/2009/EC) which 

set 2020 targets in greenhouse gas (GHG) emissions for the EU Member States.  

These targets cover GHG limits from sectors that are not included in the EU Emissions Trading 

Scheme (which include also agriculture) and Ireland’s target is to achieve a 20% reduction by 2020 on 

2005 levels. 

Figure 1.3 (left) shows an estimation of the total amount of Ireland greenhouse gas emissions for 

2013, taken from an EPA article on Ireland’s provisional greenhouse gas emissions in 2013, released 

on December 2014. 

 

 

Figure 1.3. Ireland’s provisional GHG emissions in 2013(left) and projected sectorial share of non-ETS greenhouse gas 

emissions in 2020 (right). 

 

According to this article, the total amount of national greenhouse gas emissions is estimated to be 

57.81 million tonnes of carbon dioxide equivalent (Mt CO2eq) whereof circa 18.65 million tonnes 

(32.3% share) come from agriculture sector. Moreover, the overall gas emissions were 0.7% lower 

considering 2012 situation, but agriculture increased its levels of 2.6% (0.48 Mt CO2eq) (EPA, 2014).  

The results displayed in figure 1.3 (right) belong to an EPA report released in May 2015 which 

forecasts possible trends on future national gas emissions.  

According to the Agency results1, agriculture and transport sectors will dominate non-ETS gas 

emissions accounting for approximately 75% of the overall production in 2020, with agriculture 

increasing by 2% its contribution over the period 2013-2020 to 19.3 Mt CO2eq (EPA, 2015).  

In this context, bioenergy technologies that convert poultry litter and in general animal manure into 

different forms of energy including power, heat and combined heat & power (CHP) can be a viable 

solution for agriculture to achieve important results. 

In particular the use of poultry manure and litter combined with CHP technology can: 

 

                                                           
1 According to the report terminology, this forecast undergoes the ‘With Additional Measures’ scenario, reported also as the 

‘best scenario’, where Governments targets for 2020, for example renewable and energy efficiency targets, will be fully 

achieved. 
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 Reduce environmental impact (reducing emissions, pollution and pathogenic contamination 

that can derive from manure management and use as a fertiliser); 

 Provide energy security; 

 Increase the use of renewable resources to produce energy; 

 Turn the litter disposal from a cost into an income stream from selling energy and by-

products. 

 

1.2  General overview 

The general aim of this research work is to perform a techno-economic analysis of a small-scale co-

generation plant based on a fluidised bed combustion system, in order to understand the feasibility 

and opportunity for deploying technologies able to provide heat and electricity using poultry litter as a 

feedstock. Together with this main purpose, there was also the intent to provide a brief overview on 

current energy conversion technologies available for animal waste/manure in order to understand the 

possible alternatives for poultry litter combustion and possible trends for the future. In order to 

succeed on this aim the following objectives were specified: 

 

 Identify and compare the range of technologies available for animal manure and in particular 

for poultry litter energy conversion processes; 

 Identify related policies and regulations for Ireland and European Union; 

 Analyse the economic viability of a cogeneration plant based on a fluidised bed combustion 

system installed in a Irish farm; 

 Assess a potential environmental impact from the analysis. 

 

The methodology used in this project for reaching those objectives includes: 

 

 Literature review of the state-of-the art technologies for energy conversion processes for 

animal manure and in particular for poultry litter; 

 Review of  European and Irish policies and regulations related with the topic; 

 Produce an economic model evaluating the Internal Rate of Return, Net Present Value and 

Pay Back period for a co-generation plant based on a fluidised bed combustor; 

 Evaluate the CO2 emission savings achievable with the co-generative fluidised bed 

installation. 
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Chapter 2: Literature review 

 

2.1  Overview of Conversion Technologies  

The aim of this paragraph is to provide a general overview of the current co-generation technologies 

capable to process animal manure and in particular poultry litter; the analysis intention is to 

understand the basic characteristics of the different technologies and try to evaluate the best 

conversion procedure and possible alternatives to combustion. 

Since poultry litter is considered a biomass source, the first step undertaken was the identification of 

the general range of biomass energy conversion processes suitable for heat and electricity production; 

basically, these include a primary conversion technology that converts the raw material into an energy 

vector, such as hot water, steam, gaseous or liquid products and a secondary conversion technology 

that transforms these products into heat and electricity inside a CHP unit (Dong et al., 2009). 

Following this partition, the analysis reported on this paragraph refers only to the first process and not 

towards the entire system. 

 

According to Liu (2011) (and re-elaborating from Appels et al., 2011), there are three main biomass 

energy conversion processes that could be identified (Figure 2.1): biochemical-biological processes, 

thermochemical processes and chemical-mechanical processes (or physicochemical processes). An 

overview of those processes is summarised in the figure below which reports also the main conversion 

technologies and the energy outputs: 

 

 
 

Figure 2.1. Biomass energy conversion processes and energy outputs from the different technologies. 
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Biochemical conversion processes include two main conversion technologies: fermentation and 

anaerobic digestion. While the latter procedure shares the majority of the manure energy conversion 

market (Foged et al., 2011), poor literature was found for the first method and for this reason manure-

to-bioethanol technologies are not further investigated. 

Thermochemical processes include four main procedures: combustion, pyrolysis, gasification and 

liquefaction; a brief review is provided for the last three technologies while a more accurate 

description is assessed for the combustion process. 

The last category (physicochemical processes) includes two main practices: extraction or separation 

and transesterification. Currently publish literature was not found for manure processing with those 

two methods and as such were neglected from the analysis.  

 

2.1.1  Biochemical processes: Anaerobic Digestion  

The anaerobic digestion (AD) is a conversion process operated by diverse microbial population in 

absence of oxygen and is a well-known procedure for a wide range of biomass material and especially 

for animal wastes such as slurry or manure (Al Seadi and Lukehurst, 2012, Zupančič and Grilc, 2012). 

It consists of the biological degradation of complex organic compounds through four mainly 

metabolic reactions (hydrolysis, acidogenesis, acetogenesis and methanogenesis), resulting in biogas 

and other energy-rich organic compounds (digestate) production (Zupančič and Grilc, 2012, Liu, 

2011, Khalid et al., 2011). Usually animal manure is co-digested with other biomass feedstock, which 

means that different biomass wastes are mixed together in the anaerobic digester; this treatment 

imparts many process benefits such as the enhancement of biogas production and dilution of toxic 

compounds (Al Seadi and Lukehurst, 2012, Khalid et al., 2011). Several types of anaerobic reactors 

have been developed and also several classifications could be find in literature generally based on 

critical operating parameters or reactor design (Khalid et al., 2011, Zupančič and Grilc, 2012, Li et al., 

2011, DARD and AFBI, 2012). Of particular interest for the analysis is the reactor classification 

derived from the feedstock solid content (or dry matter DM) which differentiates “wet” from “dry” 

digesters. There is not a consistent opinion in the literature for how to distinguish the two categories. 

For example, according to Luning et al. (2003) "wet" reactors are designed for feedstock containing 

less than 10-15% of DM while "dry" digesters are intended for 24-40% of DM, whereas Li et al. 

(2011) reports that “dry” processes are characterized by solid content greater than 15%.  

 

2.1.1.1  Poultry litter Anaerobic Digestion 

According to Kelleher et al. (2002), the anaerobic digestion is considered a relatively efficient 

conversion process for poultry litter, producing a collectable biogas mixture with an average methane 

content of 60% and a stable residual sludge that can be used as a soil fertiliser. The poultry litter 
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contains a higher fraction of biodegradable organic matter than other livestock wastes including 

carbohydrates, proteins, oils and fats. The sustainable Energy Authority of Ireland (SEAI) reports an 

average value of 126 m3 of biogas production for one ton of chicken litter/dung while Hamilton 

(2012) reports that poultry litter can produce 99 m3 of bio-methane for each ton of wet feedstock. 

However, high content of protein and amino acids in poultry litter includes high levels of organic 

nitrogen which lead the concentration of endogenous ammonia-nitrogen to rise considerably during 

the process (Kelleher et al., 2002). While a certain amount of ammonium ions can be utilised by some 

anaerobic bacteria, an excess of ammonium can inhibit the destruction of organic compounds, the 

production of volatile fatty acids and methanogenesis (Kelleher et al., 2002, DARD and AFBI, 2012, 

Leahy et al., 2007). The minimisation of levels of ammonia is an important priority during the 

anaerobic treatment of poultry litter; a possible solution suggested by Kelleher et al. 2002 is to dilute 

the material to 0.5-3.0% total solids, but this result in a large increase in volume of waste. Also 

DARD and AFBI (2012) highlight that “wet” AD process for poultry litter needs the relatively dry 

and easily transportable material (DM usually in the range of 41-98% according to the report) to be 

diluted with large amounts of water or other liquid waste in way to bring the material to 10-15% DM 

required. This imply that: the digestate volume obtained from wet AD process of poultry litter is only 

slightly reduced compared to the original feedstock (containing all the original nutrients though); a 

means has to be found for recycling to land large amounts of water; increasing the volume of material 

to be handled with dilution increases the process energy requirements (DARD and AFBI, 2012, Leahy 

et al., 2007). Dry fermentation, on the other hand, can be more interesting for poultry litter treatment 

due to the dry nature of litter and its intrinsic benefits such as lower energy requirements for heating, 

minimal material handling and low total parasitic load energy loss (Li et al., 2011). Anyway DARD 

and AFBI (2012) report that these reactors operate generally at longer retention time and gas is 

produced at lower rate. In the report edited by Luostarinen (2013b), the authors state that dry 

fermentation process efficiency is not particularly good with respect to biogas yield given the degree 

of feedstock degradation. 

For those reasons research on anaerobic digestion of poultry waste has primarily focused on poultry 

manure rather than poultry litter, as poultry manure has an average of approximately 25% of total 

solids, which make it more suitable for the process. Anyway, high ammonia levels could still lead to 

degradation issues (Leahy et al., 2007). 

Poultry manure co-digestion has been suggested and researched as a means to prevent ammonia 

inhibition and increasing biogas production (Kelleher et al., 2002, Zamudio, 2010, Luostarinen, 

2013a); poultry manure co-digestion literature is optimally  reviewed by Zamudio (2010) which report 

as poultry manure has been successfully co-digested with hog waste, fruit and vegetable waste, 

agricultural waste, molasses, sheep and goat manure, organic fraction of municipal solid waste, cheese 

whey, olive-mill waste water and dairy manure. 
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In general, retention times for digestion substrates strongly depend on type of process, type of 

feedstock and operational temperatures. Typically hydraulic retention times2 for anaerobic digestion 

processes range between 10-40 days (Zupančič and Grilc, 2012), while Sakar (2009) reviewed the 

anaerobic digestion in poultry and livestock waste treatment and found HRTs from 13.2 hours for 

poultry waste water up to 91 days for co-digestion of broiler manure. 

Finally, Bijman (2014) asserts that AD of poultry litter produce biogas with high values of hydrogen 

sulphide and so cooling and cleaning is highly recommended due to the very corrosive effect of 

hydrogen sulphide (H2S) when it interacts with water (SEAI). 

 

2.1.2  Thermochemical processes: Combustion 

Combustion is the most developed and most frequently applied process used for solid biomass fuels 

because of its low costs and high reliability (IEA, Task 32). Generally, combustion is an exothermic 

redox chemical reaction in which the fuel is completely oxidized by an oxidant mean (usually oxygen 

from air). There are three main stages occurring during biomass combustion: drying, pyrolysis and 

reduction, and combustion of volatile gases and solid char (Zhang et al., 2010). The biomass first 

loses its moisture at temperatures up to 100°C, using heat from other particles that release their heat 

value. As the dried particle heats up, volatile gases containing hydrocarbons, CO, CH4 and other 

gaseous components are released. In a combustion process, these gases contribute about 70-75% of 

the heating value of the biomass (Zhang et al., 2010, Liu, 2011). Finally, char oxidises (char 

combustion is the slowest of the stages and a sufficient combustion time has to be provided for its 

combustion) and inert matter becomes clinker, slag or bottom ash (Liu, 2011, IEA, Task 32). 

 

According to Zhang et al. (2010) and Van Loo and Koppejan (2008) there are three main types of 

combustors used for biomass combustion (with nominal thermal capacity exceeding 100 kW): fixed 

bed, fluidized bed and entrained flow (or pulverized fuel) combustors (Figure 2.2). 

In the following, only a brief description is provided for fixed-bed furnaces, giving more attention on 

fluidised bed combustion technologies, while entrained flow combustors are not taken into account 

due to their high constrain on fuel quality. Anyway detailed information for all those categories could 

be found in Zhang et al. (2010) and especially in Van Loo and Koppejan (2008). 

 

2.1.2.1  Fixed bed combustion systems 

Fixed bed combustion systems consist mainly of grate-based combustors, the design and 

configuration of which dictate the system classification (further details could be found in Van Loo and 

                                                           
2 The hydraulic retention time (HRT) is a measure to describe the average time that a certain substrate resides in 

a digester and usually is expressed in hours or days (Nayono, 2009).  
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Koppejan, 2008). The grates serve to move the fuel from the inlet hopper to the discharge end, whilst 

providing agitation and tumbling of the fuel to ensure adequate mixing conditions and prevent clinker 

formation (Leahy et al., 2007). Primary air passes through the fuel bed, in which drying, gasification 

and charcoal combustion take place. The combustible gases produced are burned after secondary air 

addition has taken place, usually in a combustion zone above the bed (Zhang et al., 2010,  Van Loo 

and Koppejan, 2008). Because of the high content of volatile matter in biomass fuels, in general a 

greater secondary air supply is required than the primary air supply. A fixed-bed biomass combustion 

system is typically operated at around 850-1400°C (Zhang et al., 2010). 

 

 

 

Figure 2.2. Schematic representation of the type of furnaces for biomass combustion. 

 

2.1.2.2  Poultry litter fixed bed: large combustion plants 

The commercial combustion of poultry litter originated in the United Kingdom. Energy Power 

Resources (EPR) Ltd. has three centralised litter-to-energy, fixed-bed, combustion plants operational 

in the UK, varying from 12.5 MWel to circa 40 MWel. These plants were originally commissioned 

under the Fibrowatt Group then acquired by EPR (Leahy et al., 2007). 

 

The first power station to utilise poultry litter as the primary fuel supply was Fibropower at Eye in 

Suffolk, UK. The plant of 14.316 MW capacity (12.5 MW net electric output) is characterised by a 

combustion moving grate boiler, combined with a steam cycle and it is fuelled with approximately 

130,000 tonnes of poultry litter per year. It was commissioned in 1992 with an approximate cost of 
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£22 million. The poultry litter necessary for running the plant is collected from 100 farms, within a 50 

km range (Bridgwater et al., 2011, Leahy et al., 2007). 

The second power plant was commissioned at the end of 1993 at Glanford, UK at a cost of 

approximately £24 million. It consists of a furnace equipped with a spreader stoker coupled with a 

steam cycle for the electricity production; it was designed to annually combust 150,000 tonnes of 

poultry litter, straw and wood shavings in order to generate a net electrical output of 13.5 MWel (16.7 

MW of gross capacity). The unit operated consistently at temperatures over 850°C, with a feed rate of 

24 tonnes per hour. Boiler efficiency was approximately 27.3%, with low excess air levels and 

comparatively low exit flue gas temperatures (Bridgwater et al., 2011, Leahy et al., 2007).  

The third power station was commissioned in 1998 at Thetford at a cost of approximately £70,000. 

The plant consumes approximately 400,000 tonnes of poultry litter along with 60,000 tonnes of 

woodchips and other biomass residues per year, generating a net electric output of 38.5 MWel. It is 

composed by a combustion moving grate (feeders transfer litter at a rate of 55 tonnes per hour) 

combined with a steam cycle (Bridgwater et al., 2011, Leahy et al., 2007). 

 

2.1.2.3  Fluidised Bed combustion systems 

Fluidised Bed Combustion (FBC) is a recognised technology capable of burning a wide range of fuels 

in an environmentally and efficient manner (Leahy et al., 2007). It generally consists of a cylindrical 

vessel with a perforated plate filled with a bed of inert and granular material (usually silica sand and 

dolomite) (IEA, Task 32, Leahy et al., 2007). The fluidisation consists in the suspension of the bed-

particles due to the upward flow of the primary combustion air entering from the bottom of the 

furnace through an air distribution plate: in this way the bed becomes a seething mass of particles and 

bubbles. Depending on the fluidisation velocity, different fluidised bed regimes can be obtained for 

the particle suspension but in practice FBC systems can be divided into bubbling fluidised bed (BFB) 

and circulating fluidised bed (CFB) (Zhang et al., 2010, Van Loo and Koppejan, 2008, Leahy et al., 

2007). In BFB, bed material is located in the bottom part of the furnace (the height of the solids above 

the distributor plate is called the bed height) and is usually composed by silica sand of about 0.5-1.0 

mm in diameter. The fluidisation velocity of the air varies between 1.0 and 2.0 m/s according to Van 

Loo and Koppejan (2008) (value of 0.5 m/s is observed by Lynch et al., 2013b) while the secondary 

air is introduced through several inlets at the beginning of the upper part of the furnace (called 

freeboard). 

Instead, in CFB fluidizing velocity is increased to values between 5-10 m/s and usually smaller sand 

particles (0.2-0.4mm in diameter) are used. With those values of fluidised air velocity, the sand 

particles are elutriated out of the bed, carried with the flue gas into a hot cyclone and fed back into the 

combustion chamber. 
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The sand used in FBC systems represents about 95 to 99% of the bed material, while the fuel makes 

up the remainder (Van Loo and Koppejan, 2008, Leahy et al., 2007). 

The intimate mixing enhanced by the fluidised bed provides intense heat transfer characteristics 

between the fuel and the bed-particles and between them and the gas flow, allowing good conditions 

for complete combustion with low excess air demand (between 110 and 120% for CFB and between 

120 and 130% for BFB) and uniform temperatures (Zhang et al., 2010, Van Loo and Koppejan, 2008, 

Leahy et al., 2007). Due to the higher turbulence in CFB furnaces, better heat transfer and a very 

homogeneous temperature distribution in the bed are achieved with respect BFB. This is of advantage 

for more stable combustion conditions and more control of air staging (Van Loo and Koppejan, 2008). 

Operating temperatures are usually between 650-900°C according to Van Loo and Koppejan (2008) 

or 700-1000°C according to Zhang et al. (2010) and have to be kept low in order to prevent ash 

sintering in the bed (fixed bed combustion temperatures are usually 100-200°C higher than in FBC 

units). According to Van Loo and Koppejan (2008) this can be achieved by internal heat exchanger 

surfaces, by flue gas recirculation, by water injection or by sub-stoichiometric bed operation while 

Leahy et al. (2007) states that bed temperature is stabilised by passing excess air through the bed or by 

using heat exchanger tubes in the bed. 

Due to the good mixing achieved, FBC plants can deal flexibly with various fuels mixtures but are 

limited when it comes to fuel particle size and impurities contained in the fuel. Usually a particle size 

below 40 mm is recommended for CFB units and below 80 mm for BFB units. Another critical point 

is related to the utilisation of high alkali biomass fuels due to possible ash agglomeration. However, 

BFB furnaces with low bed temperatures of 650-850°C can burn fuels with low ash-melting 

temperature without any sintering problems in the bed (Van Loo and Koppejan, 2008). 

The FBC design promotes the dispersion of incoming fuel with rapid heating to ignition temperature, 

promoting sufficient residence times in the reactor for its complete combustion. In addition, the 

surface of the burning fuel material is continuously abraded by the bed material, enhancing the rate of 

new char formation and the rate of char oxidation (Leahy et al., 2007). 

Fluidised bed combustion systems usually need an auxiliary burner for start-up operation in order to 

bring the bed at the set temperature.  

With regard to emissions, low NOx emissions can be achieved owing to good air staging, good 

mixing, temperature control and a low requirement of excess air (Van Loo and Koppejan, 2008, 

Leahy et al., 2007). Moreover the utilization of additives (e.g. limestone addition for S capture) works 

well due to the good mixing behaviour. The low excess air quantities necessary increase combustion 

efficiency and reduce the flue gas volume flow. One disadvantage of FBC plants is posed by the dust 

loads entrained with the flue gas (especially high for CFB) that required gas cleaning systems before 

they could be released from the stack. Bed material is also lost with the ash, making it necessary to 

periodically add new material to the plant (Van Loo and Koppejan, 2008). Other disadvantages of 
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FBC with respect fixed bed furnaces can be identified in the higher pressure drop that has to be 

overcome by the air fans for the bed fluidisation and the erosion problems caused by bed particles 

rubbing the furnace surfaces (Leahy et al., 2007). 

 

The major advantages of fluidized bed combustors can be summarised as follow:  

 

 Uniform temperature distribution due to intense solid mixing (no hot spots); 

 Large solid–gas exchange area by virtue of the small solids size; 

 High heat-transfer coefficients between bed and the heat exchanging surfaces; 

 The intense motion of the fluidized bed makes it possible to combust a wide range of fuels 

having different sizes, shapes, moisture contents and heating values. The fuel supplied can be 

either wet or dry and either a paste or a solid; 

 The high heat capacity of the fluidized bed permits stable combustion at low temperature, so 

that the formation of thermal and prompt nitrogen oxides can be suppressed; 

 No moving parts in the combustion chamber. 

 

Set against these advantages are the following disadvantages: 

 

 Solid separation or gas purification equipment required because of solids entrained by 

fluidizing gas and the high dust load in the flue gas; 

 Erosion of internals resulting from high solids velocities; 

 Chance of de-fluidization due to agglomeration of solids; 

 High fan power demand due to fluidisation reasons. 

 

2.1.2.4  Poultry litter Fluidised Bed: large combustion plants 

Westfield Power Station in Fife, Scotland was the first plant to use a FBC system to burn poultry litter 

to generate power. The project was developed by Energy Power Resources (EPR) Limited, at a cost of 

£22 million and commenced operation in 2000 (Leahy et al., 2007). 

 

The Westfield plant converts 115,000 tonnes of the litter per year into electricity and fertiliser ash. A 

key feature at Westfield is the totally enclosed fuel store which incorporates an automated mixing 

system and can hold 3,500 tonnes of poultry litter; this ensures that the plant can accept deliveries in 

accordance with production cycles of the poultry farming industry. The poultry litter requires no pre-

treatment and is fed directly to the FBC, at a rate of 14 tonnes per hour via a semi-automatic crane to 

a push floor feeder. The FBC is of the bubbling bed type and incorporates flue gas recycling for 
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combustion temperature control, hence, Flue gas emissions are typically less than half the limits set by 

the Scottish Environmental Protection Agency (SEPA) (Bridgwater et al., 2011, Leahy et al., 2007). 

The poultry litter combustion temperature is maintained at 850°C. The Westfield plant, which has a 

net electricity output of 10 MWel generates around 87,000 MWh per year. The ash from the 

combustor is extracted at four stages; the fluidised bed, the super-heater, the economiser and the bag 

filter, and is pneumatically conveyed to a storage silo with a capacity of 200 tonnes. It is then sold as 

a fertiliser (www.sesg.strath.ac.uk). 

The BMC power plant in Moerdijk, Netherlands is the only power plant on the Europe mainland 

fuelled by poultry litter (www.bmcmoerdijk.nl). It consists of a bubbling fluidized bed combustor, 

followed by an energy recovery section (used for powering a steam Rankine cycle) and an intensive 

flue gas cleaning installation, including an electrostatic precipitator (ESP), a semidry scrubber with 

baghouse filter and a selective catalytic reductor (SCR). The installation has a net output of 31 MWel 

with a net efficiency of approximately 28%.The efficiency is lower than that of comparable coal 

plants, because the sticky nature of the ash and corrosiveness of the flue gas limit the steam 

temperature in the boiler. As a consequence, the emissions of poultry manure combustion are higher 

per kWh of electricity produced. The throughput of the installation is 440,000 tonnes per year of 

poultry litter, originating from more than 600 chicken farms all over the Netherlands and 9300 tonnes 

per year of silica sand for supplying bed material losses. The operative bed temperature of the furnace 

ranges between 750-765°C while the freeboard temperature can reach up to 900°C (Billen et al., 

2015). 

 

2.1.2.5  Small scale poultry litter fluidised bed combustion 

The FBC characteristics highlighted in the previous paragraphs and in particular the technology 

ability to handle low grade fuels represents a very interesting solution for poultry litter treatment on 

farm-scale (Lynch et al., 2013a, Kelleher et al., 2002, Leahy et al., 2007). 

 

According to Kelleher et al. (2002) fluidised bed technology can greatly facilitate the use of poultry 

litter close to where it is produced, either on its own or mixed with other domestic or industrial waste, 

to produce heat and power. Also Lynch et al. (2013a) assert that poultry litter could be a useful 

biomass source where produced locally (transport off site is costly and fuel heavy) and FBC has the 

ability to exploit its potential due to its capacity in operating on a small scale.  

Lynch et al. (2013a) suggest that care must be taken to minimise harmful emissions during 

combustion, and adequate dust collection must be employed, but the use of poultry litter in FBC has 

several benefits such as reducing the waste to 10% of its original mass, mitigate the environmental 

pollution caused by land spreading and concentrate nutrients in a sterile and easily transportable ash 

(Lynch et al., 2013a). 
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Also Leahy et al. (2007) report that the combustion can reduce litter into a biologically sterile ash, 

making pathologically contaminated material, such as poultry litter, suitable for final disposal (Leahy 

et al., 2007), and according to Kelleher et al. (2002) use of FBC has the advantage of low cost 

associated with fuel preparation, and operational flexibility with regard to ash collection. 

Combustion studies of poultry litter alone or mixed with peat by 50% on weight basis were 

undertaken by Abelha et al. (2003) in an atmospheric bubbling fluidised bed. The main parameters 

investigated in the study were the influence of litter moisture content, the air staging in the combustor, 

and the variations in excess air levels along the freeboard. Results of the test showed that co-

combustion of poultry litter alone or mixed in equal amounts with peat can be carried out in a 

fluidised bed. The main problem associated with the combustion of poultry litter was the level of 

moisture content which influenced its feeding to the combustor. If the moisture content was above 

25%, the screw feeding technique was not found to operate smoothly to lead to a stable combustion. 

The combustion efficiency was found to be improved with introducing part of the air as secondary to 

the freeboard in stages and with some turbulence. The amounts of CO formed decreased considerably 

when these steps were taken. The amounts NOx and N2O formed were also dependent on the staging 

of the secondary air and were lower that the permitted emission values with the effective staging of 

the secondary air (Abelha et al., 2003).  

The table below (left) summarise some of the operating conditions of the BFB used during the tests 

carried by (Abelha et al., 2003) while the table on the right shows some of the process conditions for a 

200 kWth BFB combustor used by Lynch et al. (2013b) inspecting poultry litter ashes agglomeration 

and deposition in the combustion process: 

 

Table 2.1. Operative conditions for two BFB using poultry litter as a fuel (Abelha et al., 2003 (left), Lynch et al., 2013b 

(right)). 

 

Operating conditions Values 

Bed temperature  1023-1123 K 

Freeboard temperature  1103-1223 K 

Chicken litter feed rate  4.0-8.0 kg/h 

Peat feed rate  4.0 kg/h 

Gas velocity  0.4-0.6 m/s 

Excess air levels in the bed  5.0-12.0 % 

Excess air levels in the riser  45.0-70.0 % 

Average chicken litter  

particle size  
1.0 mm 

Average peat particle size  2.5 mm 

Bed height  200-300 mm 

Average sand particle size  0.5 mm 

 

 

The Sustainable Poultry Production thru’ Environmental Recycling (SUPPER) project, coordinated by 

the Irish company BHSL and supported by the European Eco-Innovation programme, demonstrated 

the feasibility of recycling poultry manure using small-scale fluidised bed combustors.  

Operating conditions Values 

Fuel feed rate (range) 60.2 (55-65) kg/h 

PL particle size (range) 8.0 (6-8) mm 

Sand particle size (range) 0.75 (0.55-0.95) mm 

Bed pressure (range) 22 (17-23) mbar 

Bed height 200 mm 

Bed temperature (range) 655 (619-688) ºC 

Freeboard temperature (range) 934 (898-994) °C 

Inlet bag filters temperature  141 °C 

Exit temperature 117 °C 

Fluidizing air velocity 0.5 m/s 

Secondary air velocity 1.11 m/s 

Excess air 134.13 % 
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The achieved results from the project were the change in EU Animal By-Product (ABP) regulations to 

facilitate the on-farm use of used poultry litter as an animal by-product and the installation of four 

poultry litter combustion systems (http://ec.europa.eu/). 

The BHSL Company installed in 2011 two fluidised bed combustors fuelled by poultry litter in 

Uphouse Farm, Norfolk (UK), capable of providing up to 950 kW of heat for the poultry houses, 

processing up to 10 tonnes of litter per day. The results obtained over 12 months up to April 2015, 

showed that the litter used for fuelling the FBC replaced 95% of the LPG usage on the site whilst 

doubling the amount of heat provided. According to the reference, the increased values of heat 

supplied together with increased values of ventilation rates reduced the average relative humidity 

inside the poultry houses from 64% to 54%, improving welfare conditions for the birds 

(http://www.bhsl.com/). 

 

 
 

 

Figure 2.3. BHSL’s FBC plant layout (SOURCE: BHSL: transforming by-product value sustainably, March 2015). 

 

2.1.3  Thermochemical processes: Pyrolysis  

Pyrolysis is a thermal decomposition process that takes place in the absence of oxygen to convert 

biomass into solid charcoal, liquid (bio-oil), and gases at elevated temperatures (Zhang et al., 2010).  

It is also the initial step in combustion and gasification processes where it is followed by total or 

partial oxidation of the primary products (Liu, 2011).  

There are three stages for a typical pyrolysis process. The first stage, pre-pyrolysis, occurs between 

120°C and 200°C with a slight observed weight loss, when some internal rearrangements, such as 

bond breakage, the appearance of free-radicals, and the formation of carbonyl groups take place, with 

a corresponding release of small amounts of water (H2O), carbon monoxide (CO), and CO2. The 

second-stage is the main pyrolysis process, during which solid decomposition occurs, accompanied by 



20 

 

a significant weight loss from the initially fed biomass. The last stage is the continuous 

char devolatilization, caused by the further cleavage of C-H and C-O bonds (Zhang et al., 2010).   

Depending on the reaction temperature and residence time, pyrolysis can be divided into fast 

pyrolysis, intermediate pyrolysis, and slow pyrolysis. Fast pyrolysis has an extremely short residence 

time (1-2 s) combined with temperatures of approximately 500°C. Short reaction times and elevated 

temperature generally results in a higher yield of liquid product. Intermediate pyrolysis provides 

moderate temperature (around 500°C) and moderate hot vapour residence times (10-20 seconds), 

instead slow pyrolysis is characterized by low temperatures (around 400°C) and very long solids 

residence times (hours or days) (IEA, Task 34, Zhang et al., 2010).  

  
2.1.3.1  Poultry litter pyrolysis tests  

In (DARD and AFBI, 2012) a fast pyrolysis system has been developed experimentally for poultry 

litter, heating the fuel at 400°C for 1 minute, producing bio-char, bio oil and gases. However the 

authors raise doubts about the possible use of bio-oil and bio-char produced by poultry litter at the 

moment because they are virtually untested respectively as fuel and as soil fertiliser and there is not a 

developed market for those products.  

Serio et al. (2002) operated experimental pyrolysis test and studies on five samples of manure (2 of 

chicken litter, 1 of turkey manure, 1 of cow manure and 1 of seabird manure). Experiments with two 

two-stage pyrolysis reactors were performed at different temperatures for one sample of chicken litter, 

proving the feasibility to produce a medium Btu fuel gas (350-550 Btu/ft3, 13.04-20.05 MJ/m3) from 

pyrolysis of poultry manure.  

Carta et al. (2012) presented the experimental results of dry fowl manure pyrolysis in a pilot plant, 

working with slow, wet and catalytic pyrolysis process. Feed material had residence time of about 1.5 

hours at 500°C. The gas production was about 0.6 kg per kg of solid with an LHV of 17.1 MJ/kg (the 

average LHV of dry fowl manure (mean values of five samples) was 10.9 MJ/kg) while about 0.16 kg 

of bio-char and inorganic components and 0.24 kg of aqueous condensate were produced.  

Ro et al. (2010) used a commercial pilot-scale pyrolysis reactor system to produce combustible gas 

and bio-char at 620°C from three sources (chicken litter, swine solids, mixture of swine solids with 

rye grass). Feedstock were heated at a rate of 13°C/min and pyrolyzed for two hours in the reactor. 

Gas, liquid, and solid end products from the system were collected and subsequently analysed for 

their chemical and thermal properties. Bio-char yield ranged from 43 to 49% based on dry weight and 

approximately 50% of the feedstock energy was retained in bio-char and 25% in produced 

gas. According to the reference chicken litter produced gas and bio-char had an HHV of 15.0 ± 

0.6 MJ/Sm3 and 13.5 ± 0.2 MJ/kg respectively.  
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The current literature on pyrolysis technologies for animal manures is almost solely based on results 

from laboratory-scale, batch reactors, or micro-scale thermo-gravimetric analysers (Hollis et al., 

2013). Also Flotats et al. (2011) reports that pyrolysis of manure is on laboratory/research and pilot 

plant stage and no full scale pyrolysis plant exists.  

 

2.1.4  Thermochemical processes: Gasification  

Biomass gasification is a process that converts carbonaceous biomass into combustible gases (e.g. H2, 

CO, CO2, and CH4) in the presence of a partial oxygen supply (typically 35% of the O2 demanded for 

complete combustion) or suitable oxidants such as steam and CO2 (Zhang et al., 2010). The purpose 

of gasification is to create valuable gaseous products (usually called synthetic gas or syngas or 

producer gas) that can be used directly for combustion, or be stored for other applications.  

Gasification is made up of five discrete thermal processes: Drying (the process in which water present 

in biomass is evaporated), Pyrolysis (biomass is pyrolized into medium-energy calorific volatile 

gases, liquid and char), Combustion (oxidizing process with heat generation) , Cracking (the process 

of breaking down large complex molecules such as tar into lighter gases by exposure to 

heat), and Reduction (the oxygen stripping process of hydrocarbon (HC) molecules from combustion 

products; reduction zone is where CO and H2 are produced) (Zhang et al., 2010).  

 

Various types of gasifiers, different in design and operational characteristics, have been developed 

and new gasifying reactors are under research.  

Reactors can be differentiated by several parameters such as: gasifying agent, operating pressure and 

source of heat that they require (Ruiz et al., 2013). However, they are usually divided into three main 

categories: fixed-bed, fluidized bed and entrained flow gasifiers (Zhang et al., 2010, Balat et al., 

2009). According to Ruiz et al. (2013) the Twin-fluidised bed category can be added, which consists 

mainly in coupling two interactive reactors: the first reactor is used for the pyrolysis process of the 

fuel and is sustained by the heat provided by the other reactor which burns the char formed in the 

previous one. 

Due to the focus of this work on fluidised bed combustors, no further details will be reported on 

gasification reactors. However, additional information may be found in Heidenreich and Foscolo 

(2015), Zhang et al. (2010), Ruiz et al. (2013) and Balat et al. (2009). 

2.1.4.1  Poultry litter and manure gasification 

The interest in manure and litter gasification resides basically in the opportunity to convert a waste 

material into a more valuable and high-quality energy fuel. This involves some benefits also 

comparing with direct combustion of manure/litter. Syngas burning can achieve higher efficiencies 
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and better combustion control with respect to the direct combustion process, including limits in NOx, 

sulphur, particulate and dioxins emissions. A brief review of some tests and trials are reported below. 

In order to gasify biomass resources with high content of low melting ash compounds such as manure 

fibres, sewage sludge, straw, organic waste, Pyroneer has developed a new type of gasifier known as 

Low Temperature Circulating Fluidized Bed (LT-CFB), which is a combination of a fast pyrolysis in 

a fast fluidized bed and subsequent char gasification in a slowly fluidized bubbling bed chamber. The 

maximum temperature achieved in the process was kept below 750°C, below the melting point of the 

ash components but requirements were necessary for fuel use, such as particle size (3-4 mm) and 

limited water content (<30 wt%) (Ahrenfeldt et al., 2013,  Møller, 2014).  

An LT-FBC pilot gasifier of 500 kWth has been tested in Technical University of Denmark using 

digested manure coming from a biogas plant subsequently dried and pelletized (Kuligowsky and 

Luostarinen, 2011). Anyway the producer gas resulting from the process had got very high content of 

tar particles rendering it unsuitable for synthesis processes, as well as fuel cell and gas engine 

operation (anyway possible usage can be possible in co-combustion with coal) (Ahrenfeldt et al., 

2013). 

Bench-scale testing was used to determine the feasibility of small-scale poultry litter gasification and 

ash recovery by (Reardon et al., 2001).  The feasibility to produce electric power in a Small Modular 

System (SMS) using poultry litter as a fuel was demonstrated with a modified gasifier and a five-hour 

power production test was successfully completed using poultry litter as a fuel. 

A feasibility study was performed by Coaltec Energy (www.coaltecenergy.com) that demonstrated 

economic viability of a bio-based fuel-to-energy system using poultry litter with a fixed-bed gasifier. 

The project is the culmination of a research and development work for a poultry system, and included 

commissioning, evaluation, and field testing of a gasification system specifically designed for the 

poultry industry. 

A techno-economic analysis of the production of biochar and heat and electricity from poultry litter is 

reported by Huang et al. (2015). The study modelled and simulated the gasification system integrated 

with an Organic Rankine Cycle. Results showed that is technically and economically feasible to use 

poultry litter as the feedstock to generate biochar together with heat and power production; among the 

options examined in the study, the combination of biochar production along with the possibility of 

selling heat and electricity was the most financially attractive because of its highest profit margins 

offering a significant CO2 saving opportunity. The simulation results showed that when a reference 

poultry litter is used with a set feed rate of 1500 kg/h, the yield of biochar from the process is around 

398 kg/h with 38% carbon content and the producer gas has a calorific value of 4.72 MJ/Nm3. The 

total available heat waste recovered for space heating is estimated at 1831 kWhth and the electricity 

generated by the ORC system is 388 kWhel. The results of the economic analysis suggest that when 

paying £20/tonne for handling and storing the feedstock without any options of selling either heat or 
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electricity, the break-even selling price (BESP) of biochar is around £218/tonne. If the sale of 

electricity and heat produced is considered to be around £60/MW he and £5/MW hth, the BESP will 

decrease to £178/tonne. The case studies also indicate that when a gate fee of £10/tonne is introduced 

the BESP can be further reduced to £65/tonne, equivalent to a 63% reduction. 

A study conducted by Pandey et al. (2014) aimed to simulate the gasification process of poultry litter 

in a downdraft gasifier with focus on energy recovery while investigating the effect of process 

parameters on composition and quality of product gas and developing optimum conditions for thermo-

chemical conversion process. The results showed the optimum condition of poultry litter gasifier 

should be in the temperature range of 700-850°C and equivalence ratio between 0.25-0.30. 

Predictions showed that produced gas was nearly free from CH4 and tar and H2 yield increased with 

temperature, moisture content and Steam to Biomass Ratio. 

The authors suggest that in order to counteract fuel-ash induced in-bed agglomeration additives need 

to be utilized with manure based biomass (to increase ash melting temperature). 

In Yoshikawa and Hara (2008) a new gasification process for generating a fuel gas by high-

temperature air reforming of the pyrolysis gas produced by chicken manure was developed to drive a 

dual-fuelled diesel engine for electricity and heat production. A commercial plant has been installed 

with a capacity of 2 tons/day of dried chicken manure reaching 90 days of continuous operation and 

55 days continuous operation for the diesel engine. The reactor was fed at a rate of 90 kg/h achieving 

a syngas flow rate of 156 Nm3/h with an LHV of approximately 4 MJ/Nm3 and a small amount of tar; 

The cold gas efficiency declared exceeded 70%. Issues outlined in the study were the low calorific 

value of the produced gas and the fluctuation of gas heat value and flow rate. 

 

Although great efforts are undertaken for exploiting the manure and litter gasification potential, there 

are still some problems and drawbacks that must be overcome. 

According to Ruiz et al. (2013) gasification plant operation is more complex than with combustion, 

and it is sensitive to numerous parameters, which means that it may incur in unwanted operating 

instabilities. 

The same reference states that gasification is a complex technology that is inflexible, less competitive 

than others, as yet not mature and, therefore, subject to certain risks. 

Main problems for biomass gasification can be find in: fuel pre-treatment which usually requires 

drying processes and sometimes grinding before conversion (Kuligowsky and Luostarinen, 2011, 

Pereira et al., 2012); requirement of expensive equipment in order to free the synthesis gas from 

contaminants, then further prevent pollution during combustion; and tar presence in the synthesis gas 

despite special equipment and treatments (Pereira et al., 2012). 

Pandey et al. (2014) report that poultry litter high amount of moisture and ash make it difficult to 

gasify without continuous removal of ash. The presence of inorganic elements such as phosphorous, 

potassium and calcium may cause agglomeration and blockage of bed problems. 
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According to DARD and AFBI (2012), gasification appears to offer most potential as an alternative to 

fluidised bed combustion of poultry litter. The report identifies some issues and barriers that must be 

taken into account for future deployment of this technology: the first is the little experience achieved 

using poultry litter as a feedstock for thermal gasification; the second is the high energy requirements 

for feedstock pre-treatment and gas cleaning; the last one is the lack of information on the properties 

of the biochar as an end product of the process. 

 

2.1.5  Thermochemical processes: Direct liquefaction  

Direct liquefaction is a low-temperature and high pressure thermo-chemical process during which 

biomass is broken down into fragments of small molecules in water or another suitable solvent (Zhang 

et al., 2010, Smith and Keener, 2012). These light fragments, which are unstable and reactive, can 

then re-polymerize into oily compounds with various ranges of molecular weights. Direct liquefaction 

has some similarity with pyrolysis in terms of the target products (liquid products). However, they are 

different in terms of operational conditions. 

Specifically, direct liquefaction requires lower reaction temperatures but higher pressures than 

pyrolysis (5-20MPa). In addition, drying of the feedstock is not a necessary step for direct 

liquefaction, but it is crucial for pyrolysis. Moreover, catalysts are always essential for liquefaction, 

whereas they are not as critical for pyrolysis. Compared with pyrolysis, liquefaction technology is 

more challenging as it requires more complex and expensive reactors and fuel feeding systems (Zhang 

et al., 2010). 

Furthermore, liquefaction systems remain, for the most part, under research and development, and 

systems for individual farm use are not commercially available (Smith and Keener, 2012). 

 

2.1.6  Conclusions  

A general review of the state of the art and the possible alternatives in biomass and litter conversion 

technologies has been carried even though only few of these seem really attractive and competitive 

when speaking of poultry litter treatment. 

 

Anaerobic digestion at the moment does not appear to be an optimum solution for exploiting the full 

potential of poultry litter. In general, this kind of process results more interesting for high moisture 

biomass for which the energy required for drying is inordinately large compared to the energy content 

of the product formed. With current wet technologies, poultry litter digestion alone needs large 

volumes of water or other liquids to achieve the total solids threshold required, which lead the waste 

volume treated to increase. High levels in ammonia production due to the high levels of nitrogen 

present in poultry litter, could affect the digestion process and the biogas yield. Co-digestion could be 
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an alternative solution, increasing biogas yields and lowering ammonia effect, but could only be a 

partial solution for the disposal of the large amount of litter produced. 

Poultry litter is generally considered a ‘dry’ biomass resource which is usually considered more 

suitable to thermochemical processes. Anyway, at the moment pyrolysis and gasification are not 

mature technologies with respect poultry litter or manure conversion processes, leading to greater 

costs of investment and high risks. Considering pyrolysis, other uncertainties grow with bio-oil and 

bio-char use and/or trade. Gasification could increase its competitiveness in the future, but some 

issues shown in the previous paragraphs need to be solved for this technology deployment.  

In this context, combustion processes and, in particular the Fluidised Bed Combustion technology due 

to its intrinsic characteristics, seems the most attractive procedure for exploiting the energy potential 

of poultry litter. 

 

2.2  Poultry litter fuel characterisation  

The paragraph below intends to characterise poultry litter properties and highlight the main features in 

relation to its use in combustion treatment. According to Liu (2011) there are three commonly 

analysis adopted to characterise a solid biomass fuel: proximate analysis, ultimate analysis and 

calorific value. Substantially the proximate analysis determines the contents of moisture, volatile 

matter, ash and fixed carbon of the fuel of biomass (serves as a simple means for determining the 

behaviour of a solid biomass fuel when is heated), the ultimate analysis evaluates the elemental 

composition of the solid fuel substance while the calorific value measures the chemical energy stored 

(Liu, 2011). 

Due to the heterogeneous nature of poultry litter, parameter values for proximate and ultimate analysis 

could vary considerably, especially considering moisture content and ash composition. Furthermore, 

the composition of the material can vary significantly depending on the litter origin and management 

practices of the farm (Font-Palma, 2012). 

Proximate analyses of poultry litter samples on as received basis (ar) and on dry basis (db) are 

displayed in Table 2.2 and Table 2.3 (see also Font-Palma, 2012, Dávalos et al., 2002 and Lynch et 

al., 2013b). 

Moisture content is one of the most important parameters to consider when characterising litter as a 

fuel. A high moisture content affects the combustion properties of litter including lowering the 

calorific value of the fuel, lowering the temperature inside the combustion unit and increasing the fuel 

throughput and the volume of flue gas produced (Lynch et al., 2013a, Abelha et al., 2003).  

Average values of moisture content in poultry litter samples shown in Table 2.2 are quite high and 

range between 39.88 and 44.8% (ar). Results reported by Lynch et al. (2013a) are obtained from 

samples of poultry litter mixed with wood shavings; values from Billen et al. (2015) were obtained 
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over 415 samples evenly distributed in time over a two year period (2010-2011); and average values 

from Leahy et al. (2007)  are taken for poultry litter samples with straw bedding and wood shavings 

bedding. 

 

Table 2.2. Proximate analysis of poultry litter on as received basis. 

 

Table 2.3. Proximate analysis of poultry litter on dry basis. 

 

Poultry litter is characterised by high values of Volatile Matter (VM) which is the percentage of 

combustible gaseous products, exclusive of moisture content, present in a fuel. High values of VM 

indicate that poultry litter it is an extremely reactive fuel and together with very little content of fixed 

carbon (FC) means that most of the combustion process takes place in the gas phase (Lynch et al., 

2013a, Abelha et al., 2003). 

FC is the solid residue (other than ash) remaining after the volatile matter has been liberated from the 

fuel during combustion and generally is referred as char. FC represents the fraction of fuel which will 

undergo heterogeneous combustion reactions, normally in the lower part (bed) of the combustion unit 

(Abelha et al., 2003). Because of such low value of FC in poultry litter, the combustion reactor unit 

must be capable of maintaining high thermal inertia, even though a relatively shallow bed is necessary 

(Abelha et al., 2003).VM and FC represent the combustible fraction of the fuel, and together provide 

an indication of the value of the fuel (Lynch et al., 2013a). 

 

Considering the calorific value, LHV of poultry litter is strongly affected by its moisture (and also the 

oxygen) content (Abelha et al., 2003). LHV values of poultry litter samples reported by  Lynch et al. 

(2013a) range from 6.93 GJ/t to 12.79 GJ/t with an average value of 8.75 GJ/t (ar); Billen et al. 

Proximate 

analysis: as 

received basis 

(wt%) 

Lynch et al. 

(2013a) 
Average 

(Std. dev.) 

Billen et al. 

(2015) 
Average 

(Std. dev.) 

Abelha et 

al. (2003) 

Leahy et al. 

(2007)  

Poultry litter 

with straw 

Leahy et al. 

(2007)   

Poultry litter 

with wood 

shavings 

Leahy et al. 

(2007) Peat 

 

Moisture 41.82 (8.88) 44.8 (6.0) 43.0 40.01 39.88 24.13 

Volatile Matter 41.9 (5.98)  38.9 35.11 37.05 50.26 

Fixed Carbon 7.81 (1.61) - 1.7 8.56 8.61 19.91 

Ash 9.13 (1.98) 21.5 (3.1) db 16.4 16.42 16.05 5.70 

HHV (GJ/tonne) 10.55 (1.37) - - 10.62 10.79 14.40 

LHV (GJ/tonne) 8.75 (1.48) - - - - - 

Proximate analysis: 

dry basis (wt%) 

Lynch et al. 

(2013a) 
Average (range) 

Leahy et al. (2007) 

Poultry litter with 

straw bedding 

Leahy et al. (2007) 

Poultry litter with 

wood shavings 

bedding 

Leahy et al.(2007) 

Peat 

 

Volatile Matter 71.26 (67.77-73.87) 58.51 61.62 66.24 

Fixed Carbon 13.36 (9.94-15.87) 14.26 14.31 26.24 

Ash 15.49 (10.61-19.58) 27.37 26.79 7.50 

HHV (GJ/tonne) 18.02 (16.49-20.4) - - - 
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(2015), analysing the fuel used in the BMC Moerdijk (NL) power plant, reported that poultry manure 

has a heating value between 6 and 8 MJ/kg. In the end, Abelha et al. (2003) state that air dried 

samples of poultry litter could reach typical values of 13.5 GJ/t whereas Leahy et al. (2007) 

determined a LHV of 9.20 GJ/tonne and 10.00 GJ/tonne for its samples. 

 

Ash content could be very relevant (16.4% (ar) according to Abelha et al. (2003) and 21.5% (db) 

according to Billen et al. (2015)) and could affect particulate emissions in the stack. Composition 

examples could be taken from Billen et al. (2015), Font-Palma (2012), Lynch et al. (2013b) and show 

that poultry litter ashes contain high concentrations of potassium (K), calcium (Ca) and phosphorous 

(P) (also high magnesium according to Lynch et al., 2013b) while N compounds are mostly 

volatilized during the combustion process (Font-Palma, 2012, Billen et al., 2015, Lynch et al., 2013a).  

The presence of K in ashes is very much a function of what type of bedding material is used, and 

usually K being very high if straw is used reaching 4–6%. On the other hand, the use of wood 

shavings reduces the level of K considerably, being below 1.5% (Abelha et al., 2003). Anyway, high 

phosphorus and potassium concentration in the ashes could cause some problems in combustion 

processes, leading to agglomeration in the combustor bed, formation of deposits in the freeboard and 

fouling of the boiler tubes (Billen et al., 2015). 

Poultry litter has a relatively low ash fusion temperature. In Abelha et al. (2003) a fusion temperature 

of 931.9 K was determined an average value based on the results of five separate analysis; Font-Palma 

(2012) instead reports an higher value of 1163°C. Otherwise Leahy et al. (2007) found an ash fusion 

temperature of approximately 660°C. 

According to Lynch et al. (2013a), the ash that remains after litter combustion represents a reduction 

in the original material of over 90% by weight, and is a sterile, powder like material, with high levels 

of macro and micro nutrients, with potential for re-use as a soil additive.  

 

Looking at the ultimate analysis (Tables 2.3 and 2.4), poultry litter presents relatively high values of 

carbon and, above all, oxygen content which influences adversely the LHV of the fuel (Abelha et al., 

2003). Sulphur and chlorine values in the litter are not very high, but due to their presence, 

combustion process could lead respectively to corrosion and SOx emissions and could generate 

deposition, corrosion, fouling and possibility of ‘dioxins’ emissions (Lynch et al., 2013a). 

Examples for bulk density of poultry litter can be taken from Leahy et al. (2007) and SEI (2003). 

According to Leahy et al. (2007) poultry litter with wood shavings as bedding material was found to 

be 0.673 tonne per m3 at 50% moisture, whereas the SEI reported poultry litter to have a bulk density 

of 0.4 tonne per m3 at 35% moisture. The low bulk density results in low energy density and can 

impact negatively on the economics of the transportation of the material. 
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Another important parameter that must be taken into account considering poultry litter utilisation as a 

fuel is its particle size. Suggestions for particle size constraints in FBC have been based on the 

analysis of FBC properties and particle dimensions can impact strongly on burners operation, 

influencing fluidisation properties and possible agglomeration formation in the bed, but also 

emissions values in the stack (Leahy et al., 2007). For example over feeding the furnace into poorly 

mixed areas can lead to operational problems, blocking flow and causing imbalance in combustion, 

and excess emissions such as carbon monoxide. Size uniformity of fuel particle is essential too in 

order to achieve good distribution inside the bed.  Results of size distribution of poultry litter samples 

are provided by Leahy et al. (2007), which found that the average particle size of poultry litter with 

wood shavings was 4.48 mm (with greater proportion of fines) whereas for poultry litter with straw 

was 6.64 mm (with greater proportion of larger particles). 

 

Table 2.4. Ultimate analysis of poultry litter on as received basis. 

 

Table 2.5. Ultimate analysis of poultry litter on as received basis. 

 

Some of the characteristics of poultry litter are summarized below: 

 

• Poultry litter is characterised by high moisture, ash and volatile content and relatively low 

fixed carbon content; 

• The high moisture and ash content impact negatively on the heating value of the fuel. Too low 

heating values can result in ignition and combustion problems; 

• The LHV of poultry litter can range between 6 and 13 GJ/t; 

Ultimate 

analysis: 

dry basis 

(wt%) 

Lynch et al. (2013a) 
Average (range) Std.dev. 

Billen et 

al. (2015) 
Average 

(Std. dev.) 

Abelha et 

al. (2003) 

Leahy et al. 

(2007) 

Poultry litter 

with straw  

Leahy et al. 

(2007) 

Poultry litter 

with wood 

shavings 

 Peat 

 

Carbon 45.17 (42.02-48.61) 1.55 39.1 (1.8) 28.17 40.36 41.20 52.46 

Hydrogen 5.85 (4.97-6.55) 0.49 5.7 (1.7) 3.64 4.98 4.88 5.29 

Nitrogen 5.16 (3.83-6.4) 0.57 4.2 (0.7) 3.78 5.41 4.54 2.17 

Sulphur 0.45 (0.29-0.6) 0.09 0.7 (0.1) 0.55 0.79 0.42 0.00 

Chlorine 0.35 (0.23-0.52) 0.23 0.5 (0.1) 0.63 0.89 0.52 0.00 

Oxygen 27.25 (25.08-31.09) 1.41 28.3 34.43 20.20 22.65 32.58 

Ultimate analysis: 

dry, ash free basis 

(wt%) 

 Lynch et al. (2013a) 
Average (range) Std. dev. 

Leahy et al. (2007) 

Poultry litter with 

straw 

 Leahy et al. (2007) 

Poultry litter with 

wood shavings 

Leahy et al. 

(2007) 

Peat 

 

Carbon 53.45 (49.7-57.52) 1.35 55.50 56.24 56.67 

Hydrogen 6.92 (5.88-7.75) 0.55 6.85 6.66 5.71 

Nitrogen 6.11 (4.53-7.57) 0.66 7.44 6.25 2.34 

Sulphur 0.53 (0.34-0.71) 0.09 1.08 0.57 0.00 

Chlorine 0.41 (0.27-0.61) 0.09 1.23 0.71 0.00 

Oxygen 32.25 (29.68-36.79) 0.27 27.70 30.90 35.18 
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• The elemental characterisation of poultry litter identified the potential for the generation of 

pollutants such as NOx, HCl, SOx and dioxin/furan; 

• Poultry litter ashes contain high values of phosphorus, potassium and calcium; 

• The high ash content of the fuel can increase the potential for particulate emissions. 

• The ash fusion temperature is relatively low, which suggests that ash related problems such as 

agglomeration must be considered; 

• Attention must be paid in poultry litter size and distribution for a correct operation of a FBC. 

 

Table 2.5 tries to summarise some of the challenges that may appear during the poultry litter 

combustion, giving also some possible solutions to overcome the problem. 

 

Table 2.6. Main challenges poultry litter combustion and possible solutions. 

Problem description Possible solution 

Uncertainty in the security of 

feedstock 

Poultry litter must be changed and replaced with fresh litter each time a flock of birds is 

reared and sent for processing (SEI, 2003). Provision of litter storage can guarantee the 

feedstock supply 

Changing in feedstock 

characteristics/composition 

Poultry litter can vary its composition due to its heterogeneous nature but also because of 

variation in poultry house indoor ambient conditions. Anyway the good mixing properties 

and the high thermal inertia of FBC can cope in a better way against feedstock changing in 

composition and moisture levels rather than other combustion technologies (Van Loo and 

Koppejan, 2008) 

High values of nitrogen in 

poultry litter which can lead to 

high NOx emissions 

FBC can achieve low NOx emissions due to its specific characteristics such as air staging, 

good mixing, low requirement of excess air and low combustion temperatures. If emissions 

requirements are not satisfied secondary measures such as exhaust gas cleaning (i.e. 

catalytic reduction) can be employed (Van Loo and Koppejan, 2008, Billen et al., 2015) 

High ash fusibility (ashes 

melting at lower temperatures) 

Low combustion temperatures must be adopted. FBC can reach this requirement 

decreasing bed temperature under ash fusion point (Van Loo and Koppejan, 2008, Leahy et 

al., 2007) 

CO emissions 

Using lower temperatures for lowering NOx emissions could lead to higher CO emissions. 

Anyway staged combustion in FBC, introducing part of the air as secondary air in the 

freeboard with some turbulence decreased considerably CO amounts (Abelha et al., 2003) 

High particle content in flue gas Use of cyclones or other filters (baghouse filters) for particle separation in flue gas 

High moisture content and 

oxygen content which lead to 

lower LHV values 

FBC technologies offer the advantage of a high tolerance of moisture content (Van Loo and 

Koppejan, 2008, Leahy et al., 2007); BHSL’s FBC technical data report that moisture 

content accepted by the furnace can be up to 50%, while recommended values range 

between 30-40% (www.bhsl.com). 

Chlorine and sulphur content 

which could lead to emissions of 

dioxins/furans, HCl, corrosion, 

SOx emissions. 

Usually, acid gas (HCl, SO2) emissions from the combustion of poultry manure are limited, 

due to the low sulphur and chlorine content of the fuel (Kelleher et al., 2002, Billen et al., 

2015, Abelha et al., 2003). Anyway, addition of additives directly into the bed to adsorb 

pollutants is possible (Leahy et al., 2007) 

Pre-treatments could be 

necessary 

Homogeneous characteristics in moisture content and particles size are highly 

recommended (Leahy et al., 2007). Anyway, litter dimensions and FBC ability to handle 

big moisture content lead to poor or none pre-treatment necessary 

Presence of pathogens 
High turbulence and uniform mixing in FBC result in efficient combustion with destruction 

of the pathogens from the litter (Billen et al., 2015, Leahy et al., 2007) 

High P and K concentration in 

ashes could lead to bed 

agglomeration and deposit 

formation (and fouling) 

Regular maintenance, soot blowing and bed refreshing can lower the problem formation 

(Lynch et al., 2013c) 
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2.3  Policies and Regulations 

In the European context, there are two sets of regulations related to animal manure management and 

energy conversion: the Nitrates Directive (Council Directive 91/676/EEC) provides rules for the 

usage of animal manure as a fertiliser for farm land in order to avoid environmental pollution, and the 

animal by-products regulations (Regulation (EC) No 1069/2009 and its amendments) provides 

requirements for the animal by-products management and disposal. In particular the commission 

regulation (EU) No 592/2014, amendment of the previous regulation, gives rules for poultry litter 

combustion in farm plants. In the Irish context, the regulations mainly follow the guidelines provided 

by the European directives. The following subsections describe the major Irish subsidy schemes that 

underpin biomass plants within the national territory. This section finishes with relevant framework 

directives on energy policy and strategy to better understand the Irish and European context and future 

targets.  

 

2.3.1  Council Directive 91/676/EEC (Nitrates Directive) & Good Agricultural Practice 

for Protection of Waters Regulations 2014 (S.I. No. 31 of 2014)   

This Directive has the objective of reducing and preventing water pollution caused or induced by 

nitrates from agricultural sources and by encouraging the use of good agricultural practices. 

Water pollution by nitrates has increased with the introduction of intensive farming methods, and 

extensive use of chemical fertilisers and higher concentrations of animals in smaller areas. The 

Nitrates Directive is an integral part of the Water Framework Directive (Directive 2000/60/EC) which 

has the general purpose to establish framework regulations for the protection of inland surface waters, 

transitional waters, coastal waters and groundwater. 

The Nitrates Directive generally requires Member States to: 

 

 Identify surface water and groundwater affected by pollution or at risk of being so, based on 

procedures and criteria detailed in the Directive (specifically when the concentration of nitrates in 

groundwater or surface water reaches 50 mg/l or when the surface water is eutrophic or is at risk of 

being so); 

 Designate vulnerable zones, which are all known areas of land in their territories which drain into 

surface waters and groundwater which are affected by pollution or at risk of being so; 

 Establish a code of good agricultural practice to be implemented by farmers on a voluntary basis, 

which shall include the measures detailed in Annex II to the Directive; 

 Set up compulsory action programmes to be implemented by all farmers who work in vulnerable 

zones. These programmes must contain the measures listed in the good agricultural practice codes, 
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as well as the additional measures listed in Annex III to the Directive, which aim to limit the land 

application of mineral and organic fertilisers containing nitrogen, as well as land application of 

livestock manure. 

 

In fact the Nitrates Directive imposes a limit on the amount of livestock manure per hectare that can 

be applied to land on a farm each year except in certain specified circumstances. The limit is the 

amount of livestock manure containing 170 kg of nitrogen. 

Furthermore the Directive requires for each member state to draw up an Action Programme which 

includes measures such as input regulations and management practices, obliging to review and, if 

necessary, revise the Programme at least every four years. 

 

Ireland’s first Nitrates Action Programme (NAP) came into operation in 2006 and was reviewed for 

the first time in 2010. This resulted in a revised Nitrates Action Programme (NAP2) and in the 

delivery of the Good Agricultural Practice Regulations (also known as the ‘GAP Regulations’ and as 

the ‘Nitrates Regulations’). The NAP2 expired on 31 December 2013 and has been replaced by the 

third NAP which has been agreed and given legal effect by the Good Agricultural Practice for 

Protection of Waters Regulations 2014 (S.I. No. 31 of 2014). The principal elements of the NAP 

regime, following the Nitrates Directive guidelines, include:  

 

 Limiting the application of fertilisers (limit of 170 kg of nitrogen per hectare of farmland per 

year contained in manure and slurry spread); 

 Maximum fertilisation rates for nitrogen and phosphorus (i.e., organic and chemical fertiliser 

combined); 

 The introduction of ‘prohibited spreading periods’ preventing the application of organic and 

chemical fertilisers during environmentally vulnerable parts of the season (nutrient loss to 

water); 

 Minimum storage requirements for livestock manures;  

 Requirements regarding maintenance of green cover in tillage lands;   

 Set back distance from waters; 

 Keep records of the fertilisers that are brought onto the holdings or sent out of them. 

 

2.3.2  Regulation (EC) No 1069/2009 and Commission regulation (EU) No 142/2011 

The regulation (EC) No 1069/2009 and its amendment that is the Commission regulation (EU) No 

142/2011 lay down on public health and animal health rules for animal by-products and derived 

products use and disposal, in order to prevent and minimise risks to public and animal health arising 

from those products, and in particular to protect the safety of the food and feed chain. 
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In particular, the regulations provide a classification of the animal by-products based on the potential 

risk to animals, public or environment and set requirements and rules regarding: 

 

 Animal by-products disposal and use and in particular specifying hygiene and general 

requirements for processing methods listed in the Directive, for incineration and co-

incineration, for landfilling, for transformation in biogas and compost; 

  Animal by-products collection, transport and identification; 

 Registration and approval of the establishments and plants; 

 Animal by-products market placement and import and export; 

 Control operations 

 

2.3.3  Commission regulation (EU) No 592/2014 

This commission regulation is an amendment of the Regulation No 142/2011 and is related to the use 

of animal by-products and derived products as fuel in combustion plants. The regulation is of 

particular relevance as it defines rules and safety requirements for burning poultry manure and litter in 

farm plants. 

General requirements reported by the Directive include: that the combustion plants must be located on 

a well-drained and hard standing surface, and physically separated from the animals including their 

feed and bedding; animal by-products intended for combustion and combustion residues must be 

stored in a closed and covered dedicated area, or in covered and leak-proof containers and used as 

soon as possible in order to prevent contamination. Furthermore cleaning and disinfection procedures 

must be established and documented for all parts of the combustion plant. 

Combustion plants must be designed, built and operated in such a way that even under the most 

unfavourable conditions the animal by-products are treated for at least 2 seconds at a temperature of 

850 °C or for at least 0.2 seconds at a temperature of 1100°C and the total organic carbon content of 

the slags and bottom ashes is less than 3% or their loss on ignition is less than 5% of the dry weight of 

the material. 

The on-farm combustion plant must not exceed a total rated thermal input of 5 MW and must be 

equipped with: an automatic fuel management system to place the fuel directly in the combustion 

chamber without further handling; an auxiliary burner used during start-up and shut-down operations. 

The emissions of sulphur dioxide, nitrogen oxides (namely the sum of nitrogen monoxide and 

nitrogen dioxide, expressed as nitrogen dioxide) and particulate matter shall not exceed the emission 

limit values presented in Table 2.6, expressed in mg/Nm3 at a temperature of 273.15 K, a pressure of 

101.3 kPa and an oxygen content of 11%. 
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Table 2.7. Sulphur dioxide, nitrogen oxides and particulate matter emission limits for poultry litter combustion set by the 

Commission regulation (EU) No 592/2014. 

Pollutant  Emission limit value (mg/Nm3) 

Sulphur dioxide 50 

Nitrogen oxides (as NO2) 200 

Particulate matter 10 

 

The operator of the on-farm combustion plant shall carry out at least annual measurements of sulphur 

dioxide, nitrogen oxides and particulate matter and all results shall be recorded, processed and 

presented in such a way as to enable the competent authority to verify compliance with the emission 

limit values. 

 

2.3.4  European Union (Animal By-Products) regulations 2014 (S.I. No 187 of 2014)  

The Animal By-Products Regulations were set to give effect to the Regulation (EC) No 1069/2009 

and its amendments presented previously. Regulations lay down restrictions and authorisation in the 

matter of disposal, use and transformation of animal by-products and animal manure. 

  

2.3.5  COM (2013) 919 final 2013/0442 (COD)  

This is a proposal for a European Parliament and Council Directive with the purpose to impose a 

limitation on the emissions of certain pollutants into the air from medium combustion plants. Medium 

combustion plants in the EU legal environmental nomenclature mean combustion plants with thermal 

input equal to or greater than 1 MW and less than 50 MW, irrespective of the type of fuel used. In 

particular, the proposed directive aims to set limits on the emissions of sulphur dioxide, nitrogen 

oxides and particulate matter into the air from this type of plants, introducing compulsory monitoring, 

in order to reduce emissions to air and the potential risks to human health and the environment. 

 

2.3.6  Renewable Energy Feed in Tariff (REFIT) 3  

REFIT is an Irish feed-in-tariff support scheme that operates by guaranteeing a minimum price to new 

renewable generation and to biomass co-firing in existing peat plants for electricity exported to the 

grid over a 15 year period. 

The REFIT is the primary means through which electricity from renewable energy is supported in 

Ireland and is designed to provide price certainty to renewable electricity generators. The original 

REFIT 3 scheme opened in February 2012 and was meant for projects built and operating between the 

beginning of 2010 and the end of 2015. The technologies supported included Anaerobic Digestion 

(CHP or not), biomass CHP and biomass combustion, including provision for 30% co-firing of 
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biomass in the three peat-powered stations. The REFIT operates on a sliding scale, acting to ensure a 

guaranteed price for each unit of electricity exported to the grid by paying the difference between the 

wholesale price for electricity and the REFIT price. 

 

Table 2.8. Reference prices for 2010 and 2015 set by the REFIT 3 scheme for each selected technology (SOURCE: 

Department of Communications, Energy and Natural Resources). 

 

REFIT 3 has been designed to incentivise the addition of 310MW of renewable electricity capacity to 

the Irish grid, of which185MW were intended for High Efficiency CHP, using both Anaerobic 

Digestion (15 MW) and the thermo-chemical conversion of solid biomass (170 MW), while the other 

125MW for biomass combustion and biomass co-firing (power capacity were reallocated by the 

Department of Communications, Energy and Natural Resources on August 2014). The maximum size 

of an individual plant that may be accepted into REFIT 3 is 50 MWel. An exception to this rule applies 

to peat co-firing stations which may co-fire peat and biomass up to 30% of the capacity of the plant 

(up to a maximum of 50MW) in any single year. 

The reference prices for 2010 and for 2015 in euro per megawatt hour are provided in Table 2.7 

(tariffs are indexed to Consumer Price Index). 

The Department of Communications, Energy and Natural Resources is developing a new support 

scheme for renewable electricity to be available from 2016. 

 

2.3.7  EU Directive 2009/28/EC 

This Directive established a legislative common framework for the use of energy from renewable 

sources in order to limit greenhouse gas emissions and to promote cleaner transport in Europe. The 

fields of action defined in the Directive are: energy efficiency, energy consumption from renewable 

sources, the improvement of energy supply and the economic stimulation in energy sector. 

Two of the most relevant aspects from the legislative framework include the definition of national 

targets and the obligation to provide national action plans for 2020. 

Technology 
2010 reference 

price (€/MWh) 

2015 reference 

price (€/MWh) 

AD CHP (units less than or equal to 500 kWel)  150.00 157.613 

AD CHP (units of greater than 500  kWel )  130.00 136.598 

AD (non CHP) (less than or equal to 500  kWel)  110.00 115.583 

AD (non CHP) (units of greater than 500  kWel)  100.00 105.583 

Biomass CHP (units less than or equal to 1500  kWel)  140.00 147.106 

Biomass CHP (units of greater than 1500  kWel)  120.00 126.091 

Biomass Combustion (non-CHP):  

- For using energy crops  

- For all other biomass  

 

95.00 

85.00 

 

99.822 

89.314 
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Each Member State have targets calculated according to the share of energy from renewable sources 

in its gross final consumption for 2020 and in line with the overall 20-20-20 goal for the European 

Union (EU); this including also a share of renewables in the transport sector of at least 10% of final 

energy consumption by 2020. 

Ireland’s overall target was set at 16% of gross final energy consumption from renewable sources by 

2020 (starting from a share of 3.1%in 2005).  

Furthermore, each Member State had to establish a national action plan for 2020in order to set the 

share of energy from renewable sources consumed in transport as well as in the production of 

electricity and heating. These action plans had also the aim to establish procedures for the reform of 

planning and pricing schemes and access to electricity networks, in order to promote energy from 

renewable sources implementing energy efficiency measures. 

Further aspects embraced by the Directive concern regulations on possible cooperation between 

Member States, access and operation of the grids, guarantee of renewable energy origin and 

procedures on energy from biofuels and bioliquids. 

 

2.3.8  National Renewable Energy Action Plan (NREAP) 

The National Renewable Energy Action Plan (NREAP) was published in 2010 and set out the 

Government’s strategic measures to deliver on Ireland’s 16% target under Directive 2009/28/EC. 

The NREAP targets can be summarized in: 

 

 40% of electricity consumption from renewable sources by 2020 

 12% renewable heat by 2020 

 10% share of renewable energy in transport by 2020 

 

In this plan bioenergy is estimated to contribute approximately: 

 

 7.2% to the renewable electricity goal (1006 GWh over 13909 GWh expected); 

 82.2% to the renewable heat goal (486 ktoe over 591 ktoe); 

 More than 90% to the renewable transport goal. 

 

2.3.9  Decision No 406/2009/EC 

Ireland signed the EU’s Effort Sharing Decision (Decision No 406/2009/EC) which set 2020 targets 

for EU Member States on greenhouse gas emissions from sectors that are not included in the EU 

Emissions Trading Scheme. These sectors cover agriculture, transport, built environment (residential, 

commercial/institutional), waste and non-energy intensive industry and Ireland’s target is to achieve a 
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20% reduction by 2020 on 2005 levels. In addition, there are binding annual emission limits for the 

period 2013-2020 to ensure a gradual move towards the 2020 target. Any overachievement of the 

binding emission limit in a particular year can be banked and used towards compliance in a future 

year. 
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Chapter 3: Techno-economic analysis 

 

The previous chapters have provided a review of the state of the art concerning poultry litter (PL) 

energy-conversion technologies available at the moment, an overview on the PL characteristics as a 

fuel and an overview of the European and Irish policy context that govern litter and manure disposal 

and management.  

The following chapter focuses on the development of an economic analysis, which aims to evaluate 

the opportunity of deploying small-scale CHP fluidised bed combustion technologies using PL as a 

fuel. 

The aim of the chapter is to present the procedure adopted and the main assumptions used for 

developing the techno-economic analysis and its structure follows the methodology used for solving 

the general problem. The analysis has been divided into three main parts, summarised in Figure 3.1: 

 

 

 

 

Figure 3.1. Methodology structure adopted in the techno economic analysis. 

 

The first part involved the physical modelling of the overall system; and consists mainly of the 

modelling of the poultry farm, the modelling of the CHP plant and finally the layout with which those 

two entities were combined together. 

For the analysis, three main CHP units coupled with the fluidised bed combustor were investigated 

and modelled: an Externally Fired Gas Turbine (EFGT), an Organic Rankine Cycle (ORC) and a 

traditional Rankine cycle with a back pressure Steam Turbine (ST). All systems were developed with 

the software Engineering Equations Solver (EES).  
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The poultry farm, together with the overall system layout, was modelled with the aid of the software 

Energy+ and allowed to obtain the heat and the electrical demand of the farm on an hourly basis for 

one year. Those output values were then re-elaborated in the second part by a Matlab program and 

used for setting the CHP operation in every single hour of the year.  

The third part is the economic analysis obtained with the recast of the outputs from the annual 

simulation. In the following, each of those parts will be described in detail, displaying the 

assumptions and the hypothesis adopted. 

 

3.1  Poultry farm & plant layout 

As reported in the introduction, the first step undertaken in the model building was characterising the 

structure of the poultry house and the size of the poultry farm in order to evaluate the heat and the 

electric demand for this type of building. For this purpose the software Energy+ was used.  

The following chapter will report the main assumptions adopted for the building structure, the heat 

gains, the ventilation requirements and the plant layout. 

 

3.1.1  Building characteristics 

The location chosen for the poultry farm installation is Kilkenny, Ireland (Figure 3.2). This was 

mainly due to the availability of weather and climate data for the selected site which were provided by 

the software Energy+, taken from the International Weather for Energy Calculations (IWEC) data set.  

 

Figure3.2. Poultry farm location – Kilkenny, Ireland (denoted by the red marker). 
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A graphical re-elaboration of the outdoor temperature and solar radiation values for the select location 

are summarised in Figure 3.3. 

 

Figure 3.3. Values of temperature and solar radiation for Kilkenny, Ireland (SOURCE: IWEC). 

 

A schematic representation of the poultry house modelled is reported in Figure 3.4. The house is a 

metal building structure with a total surface area of 850 m2 and a total volume of 4250 m3 capable of 

containing 8,000 chickens. This corresponds to an average space area of 0.10625m2 per bird which is 

slightly above the guideline values provided by ASHRAE (2015), reporting a common range of 0.06-

0.1 m2 per bird. 

 

Figure 3.4. Poultry house structure adopted in the model. 

 

The house is 50 m long and 17 m wide with a maximum height at the roof ridge of 6.5 meters and a 

height of 3.5 m along the side walls (roof slope of 19.44º). It is not equipped with windows and 
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necessary ventilation and light are generated artificially. Insulation was considered for the side walls 

and the roof with overall heat transfer coefficients of 0.917 W/(m2K) and 0.596 W/(m2K) 

respectively, while the ground floor was estimated not insulated with an U-value of 6.452 W/(m2K). 

The size of the farm selected for the study consists of 25 poultry houses, with a total number of 

200,000 chickens reared simultaneously. Some of the main characteristics for the poultry house and 

the poultry farm are summarised in Table 3.1. 

 

Table 3.1. Summary of the poultry house and farm characteristics adopted in the model. 

 House Farm 

Total floor area (m2) 850 21,250 

Volume (m3) 4250 106,250 

N. of chickens 8000 200,000 

Wall area (m2) 520 13,000 

Wall area facing North (m2) 175 4,375 

Wall area facing South (m2) 175 4,375 

Wall area facing East (m2) 85 2,125 

Wall area facing West (m2) 85 2,125 

Roof area (m2) 901.39 22,534.7 

U value, walls W/(m2 K) 0.917 0.917 

U value, ground W/(m2 K) 6.452 6.452 

U value, roof W/(m2 K) 0.596 0.596 

 

3.1.2  Internal heat gains and lights 

The internal heat gains of the structure are mainly due to the presence of the chickens inside the 

poultry house and the artificial lighting system (walls capacity are also responsible for heat gains but 

in a lower measure). For this study, the heat power produced by each single chicken is assumed of 14 

W whereof 50% is considered sensible and 50% latent (International Commission of Agricultural 

Engineering, 2002). According to ASHRAE (2015), common light requirements for a poultry house 

range between 1 to 20 lx; assuming a lamp with an efficacy of 100 lm/W, this leads to a lighting 

requirement in the range of 0.01 to 0.2 W/m2. The value adopted in the simulation is slightly above 

the recommendations displayed, and was assumed to be  0.25 W/m2; this corresponds to an electricity 

consumption of 212.5 W for each poultry house and a total consumption of 5,312.5 W for the entire 

farm. In the simulation, the lights are considered constantly turned on, each hour of the day and seven 

days per week. 

 

3.1.3  Ventilation and infiltration  

Ventilation rates for the poultry house were calculated on the basis of the reference values suggested 

by ASHRAE (2015). According to this source, for winter conditions the ventilation rate should be set 

at 0.1 l/s of fresh air per each kilogram of live animal inside the house; on the other hand, summer 
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conditions required 1-2 l/s of fresh air per kilogram of live animal. In order to respect those 

parameters a ventilation schedule was implemented in the software imposing the ventilation rate as a 

function of the outdoor dry bulb temperature. The schedule is summarised by the following 

conditions: 

𝑖𝑓 𝐷𝐵𝑇 < (𝑆𝑃 − 4) 𝑡ℎ𝑒𝑛 𝑄 = 0.2 ∙ 𝑄𝑛𝑜𝑚𝑖𝑛𝑎𝑙        (1) 

𝑖𝑓 𝐷𝐵𝑇 ≥ (𝑆𝑃 − 4) 𝑡ℎ𝑒𝑛 𝑄 = 0.2 ∙ 𝑄𝑛𝑜𝑚𝑖𝑛𝑎𝑙 + (𝐷𝐵𝑇 − 𝑆𝑃) ∙ 0.2       (2) 

 

Where DBT stands for the outdoor dry bulb temperature, SP stands for the set temperature inside the 

poultry house, Qnominal is the design value for the air flow rate and Q is the actual air flow rate. The 

nominal set temperature inside each poultry house was kept at 15 degrees which represents the 

minimum comfort temperature suggested by ASHRAE (2015), while the design air flow rate for each 

poultry house was set at 30m3/s. Considering an average mass of chickens at 1.5 kg, the ventilation 

requirements suggested were perfectly met in summer conditions, while in winter conditions higher 

values were achieved guaranteeing better conditions for the chickens. The ventilation requisites were 

satisfied by the usage of intake fans. 

Regarding the infiltration rates, they were set at 0.000302 m3
air/(s m2

area) for each poultry house. 

 

3.1.4  Heating system & plant layout 

The heating system typology selected for the simulation consists of a fan coil (heating coil equipped 

with a constant volume fan) with the following temperature design specifications: 

 

Table 3.2. Fan coil temperatures design specifications adopted. 

Fan Coil ºC 

Water side: temperature difference  10 

Inlet water temperature  65 

Outlet water temperature  55 

Air side: temperature difference  15 

Inlet air temperature 15 

Outlet air temperature  30 

 

The system is regulated by a thermostatic control of the indoor temperature of the poultry house, and 

the reference value considered is 15ºC (ASHRAE, 2015). According to the simulation results for the 

entire poultry farm with those boundary conditions, the global heating coil system must be sized for a 

design heat power of 4,450,684 W and a water flow-rate of 0.067328 m3/s. The fan coil must be 

designed with a global maximum air flow rate of 151.37 m3/s and an overall power consumption of 

14.11 kW.  
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Figure 3.5 shows the annual heat balance of the poultry farm and in particular the single contributions 

to the heat sources (and heat gains) and heat losses. The heat gains due to the power emission from 

the chickens in the house represents, in terms of annual energy, the biggest contributor to the heat 

sources inside the poultry house (more than 12 million kWh). This is mainly due to the concentration 

of chickens in the poultry houses, even if the emission values for each single animal are quite low. 

The annual heat that must be supplied by the heating system amounts to 3,185,244 kWh, which 

represents a share of 20.55% of the total heat sources. 

Regarding the heat losses, the main cause of power dispersion is due to the ventilation systems 

accounting for 12,874,344 kWh; this is a reasonable outcome considering the quite high ventilation 

requirements of the poultry houses, especially during the summer period. 

 

 

Figure 3.5. Poultry farm energy heat balance: single contribution to the heat sources (left) and to the heat losses (right). 

 

 

 

Figure 3.6. Heat load duration curve for the poultry farm. 
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In addition to the overall energy requirements, it is interesting analyse the distribution of the energy 

demand from the heating system during the year.  

From the hourly results obtained from the simulation, it was possible to build the load duration curve 

profile for the heat required by the conditioning system. As shown in Figure 3.6 the load profile 

presents a tight peak for a narrow range of hours and a null request of heat for more than half of the 

time. This heat profile strongly influenced the size and the layout plan of the CHP unit. 

Figure 3.7 shows the monthly average indoor temperatures, which reached a peak of 18.45ºC in the 

month of July. The temperature increase is expected in the summer period because the poultry houses 

are not equipped with cooling systems and temperature control is achieved only with artificial 

ventilation. 

Average values of the indoor relative humidity (RH) vary between 67.4% and 77.44% respecting the 

suggested values proposed by ASHRAE (2015), which reports typical RH values for poultry houses in 

the range of 50%-80%. 

 

 

Figure 3.7. Average monthly values for indoor temperature and relative humidity in the poultry house. 

 

Considering the profile of the load duration curve, it has been decided to set the design conditions for 

the heat power output from the CHP plant at 900 kWth while introducing an auxiliary LPG boiler and 

a water tank. This choice was taken in order to reduce the CHP plant installed capacity and its partial 

load operation and to reduce the amount of the heat dumped by the system. A schematic layout of the 

overall system is summarised in Figure 3.8 (for reasons of space the picture has been divided into two 

parts; the bottom circuit has to be considered linked on the left part of the top circuit). 

The fluidised bed combustor and the CHP unit are placed in the right part of the top picture and are 

connected with a water tank by a hydronic circuit; this primary circuit extracts the heat from the CHP 
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unit and rejects it into the tank (charging tank loop). The model of this primary loop has taken into 

account also the possibility to by-pass the heat exchanger inside the water tank and the heat exchanger 

connected with the CHP unit. 

From the water tank originates a second loop which connects this one to the poultry houses, feeding 

the heating coils inside the buildings (discharging tank loop, part of the loop is present in the bottom 

part of the figure). Grafted to this water loop, it is connected to the auxiliary boiler circuit, which, 

during high peak power demands, extracts a part of the water flow rate coming from the poultry house 

(cold water) injecting it at higher temperatures into the delivery pipe departing from the tank. Also in 

this case it presents a by-pass circuit both for the houses and the tank heat exchangers.  

The primary and the secondary circuits are provided with pumps for water circulation. 

In the bottom part of the picture is the schematic for the air loop inside the poultry houses: indoor air 

is forced through the coils by the fan exchanging heat with the water circuit. 

 

Figure 3.8. Schematic layout of the plant modelled. 

water 
air 
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The auxiliary boiler considered for the simulation is an LPG boiler with a nominal power of 900 kWth; 

efficiency is established at 90% with a minimum load operation of 150 kWth. With those assumptions, 

simulation results showed a global heat requirement of 639,436 kWh from the auxiliary boiler during 

the year, which represents almost 20% of the entire heat demanded by the poultry farm. 

The water tank has a volume of 150 m3, equipped with a thermostatic control on the temperature 

inside the tank regulating the power demand from the CHP unit: cut-off temperature was set at 95ºC 

whereas cut-in temperature was set at 70ºC. Because of the huge water volume, the tank was thought 

buried in the ground and so heat losses coefficient was imposed at 100 W/K considering the ground 

temperature constant during the year at fixed value of 10ºC. Nominal conditions established for the 

CHP unit in this section were the production of hot water at 90ºC and a possible operation down to 

50% of the nominal load. Heat dumping circuit as well as electric power requirements for the CHP 

unit were not considered here, but were implemented in other parts of the simulation. 

 

Figure 3.9. Poultry farm annual electrical consumption in kWh with single components contribution.   

 

Figure 3.10. Electricity load duration curve for the poultry farm and plant auxiliaries’ consumption. 
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Once the overall system design was in place, it was possible to quantify the electrical requirements of 

the farm and the heating system auxiliaries. Figure 3.9 reports the annual electricity consumption with 

the single components contributions, while Figure 3.10 represents the load duration curve for the 

electricity demand. For 15ºC indoor set temperature in the poultry houses, the overall energy 

consumption in a year of simulation consists of 749,878 kWh. 

 

3.2  Fluidised Bed Combustor & Co-generation unit 

The fluidised bed and the co-generation unit were modelled with the auxiliary of the EES software. 

The software is a tool for energy systems modelling, offering great flexibility and simplicity, 

including also libraries with thermodynamic properties for a great number of substances and fluids. 

As reported in the introduction, three CHP technologies were modelled in combination with the FBC: 

a back pressure steam turbine (ST), an externally fired gas turbine (EFGT) and an Organic Rankine 

Cycle (ORC). For the last typology, two configurations were investigated whether with the addition of 

a regenerator before the condenser or not. 

The general system layout considered can be schematically represented by the following: 

 

 

 

Figure 3.11. Schematic representation of the FBC and the CHP configuration. 

 

The exhaust gas produced by the combustion of PL in the FBC is sent to a heat exchanger where heat 

is recovered and used by the “bottom” circuit of the CHP unit; additional heat present in the gas is 

then recovered by the air pre-heater before the gas stream flues into the cleaning section and therefore 

is released in the atmosphere by the stack. Before looking at the single technologies, common 

assumptions and hypothesis for all the systems are reported in the following. 

 

The FBC was considered as a bubbling fluidised bed typology and modelled with a two-stage 

combustion process taking place in the bed and in the freeboard (Figure 3.12). Based on information 

from Zhang et al. (2010) and Liu (2011), 70% of the energy derived from the combustion process was 
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considered released in the freeboard where volatile matter freed from the fuel is mixture with the 

secondary air. An efficiency of 98% is considered for each combustion stage. According to Lynch et 

al. (2013a), ash production rate was set at 10% of the PL mass feeding rate, while the sand losses and 

graft are considered 2.5% of the PL mass feeding rate. Based on the operative conditions reported by 

Abelha et al. (2003) and Lynch et al. (2013b), the design temperature values for the bed and the 

freeboard were set at 650ºC and 930ºC respectively while the nominal temperature of the exhaust gas 

exiting the FBC was fixed at 850ºC. From the results of the PL characterisation, the LHV was 

considered constant and equal to 9770 kJ/kg. With those conditions, the FBC furnace efficiency is 

slightly less than 89%. 

 

Figure 3.12. Schematic representation of the FBC system modelled. 

 

Considering the overall system, based on values reported by Lynch et al. (2013b), the design 

temperature of the exhaust gas before the cleaning section was set at 140ºC; 3% fluid pressure drop 

were considered for the air pre-heater, FBC and cleaning unit and exhaust gas pressure at the stack 

was assumed 1% higher than the ambient pressure. Ambient conditions are imagined constant 

(ambient pressure 1.01325 bar and ambient temperature equal to 15ºC). 

The plant is modelled for a nominal heating power output of 900 kWth, capable of producing hot 

water at a nominal temperature of 90ºC. Minimum load operation is set at 450 kWth output (50% 

nominal load); electrical efficiency of the alternator is kept constant for each configuration at 94%. 

Specific heat values for sand, ash and the exhaust gases are maintained constant in all operative 

conditions, while other thermodynamic properties are evaluated by the EES libraries. 

 

All the CHP models that will be described in the following operate with a “backward” method, 

meaning that the main input data used by the program is the output heating power that must be 

supplied by the CHP unit. The software therefore re-calculates the PL mass flow rate and the air flow 

rate in the furnace on the basis of the output demand, while respecting the constrains imposed and the 
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other components equations implemented. The EES software allows operating in such conditions with 

great simplicity without the obligation to proceed with sequential operation. 

The following paragraphs are intended for presenting the main assumptions characterising the single 

CHP configurations; main simulation results for each technology are not displayed in the singles 

paragraphs but are reported together in a final section. 

 

3.2.1  Back Pressure Steam Turbine 

The first configuration analysed was a Rankine cycle with a back pressure Steam Turbine (ST): the 

heat generated burning the PL in the FBC furnace is used by the “bottoming” cycle producing super-

heated steam which is expanded in a steam turbine, connected with an alternator for the electricity 

production, and then condensed, producing hot water for the water tank (Figure 3.12).  

 

 

 

Figure 3.13. Schematic representation of the back pressure steam turbine unit modelled. 

 

The operative parameters for the steam cycle were evaluated taking into account the relatively small 

size of the plant. For this reason, the steam maximum temperature in the super-heater was set at 400ºC 

with a maximum cycle pressure of 12 bar. Because of these poor steam conditions at the turbine inlet, 

a 50% isentropic efficiency was fixed for this component. Using a requirement to maintain the 

condensing pressure above the atmospheric value and with the constraint to produce hot water at 

90ºC, the nominal pressure imposed at the condenser was 10% higher with respect the ambient 
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conditions. No pressure drop was considered in the condenser and a vapour quality equal to 0 was 

established for the condensate outlet condition.  

Other assumptions implemented were the isentropic efficiency of the cycle pump, fixed at 85%, the 

overall pressure drop in the three heat exchangers estimated in 4.5% (respect the upstream pressure) 

and the flue gas temperature before the air pre-heater considered at 220ºC. 

 

3.2.2  Externally Fired Gas Turbine 

The schematic configuration of the externally fired gas turbine modelled in the analysis is reported in 

Figure 3.13. The ambient air is compressed by the compressor (C) and forced within a High 

Temperature Heat Exchanger (HTHE) where exchanges heat with the exhaust gas coming from the 

FBC; the hot air is then expanded in the turbine (T) and sent to the final heat exchanger where the 

residual heat is recovered producing hot water for the water tank. The gas turbine drags the 

compressor and the alternator for the production of electricity. 

 

Figure 3.14. Schematic representation of the externally fired gas turbine unit modelled. 

 

Because of the small-scale project, the compression ratio was fixed at 3.2; turbine and compressor 

isentropic efficiencies, based on assumptions of Pantaleo et al. (2013), were set at 0.8 and 0.75 and 

compression and expansion were modelled as adiabatic processes. The approach point temperature 

difference in the HTHE was considered at 30ºC with a pressure drop in both sides (flue gas and air) of 

1.5%.Since the exhaust gas maximum temperature imposed at nominal condition is 850ºC, the 

Turbine Inlet Temperature (TIT) in this EFGT model returns very poor values, strongly affecting the 

performance of the overall cycle. 
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Other assumptions include the turbine back pressure that was imagined 3% higher with respect to the 

ambient pressure (counting the pressure drop due to the heat exchanger) and the minimum 

temperature of the air exiting the heat exchanger that was imposed at 100ºC. 

 

3.2.3  Organic Rankine Cycle 

The last CHP type modelled for this analysis is the Organic Rankine Cycle (ORC) and both 

configurations with or without internal heat exchanger (from now on called regenerator) were 

implemented.  

 

 

Figure 3.15. Schematic representation of the ORC without internal heat exchanger (up) and with regenerator (down). 
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Because of the high temperature of the flue gas exiting the FBC and the relatively low maximum 

temperature of organic fluids (Drescher and Brüggemann, 2007), the ORC was not directly matched 

with the exhaust gas stream, but an oil loop was inserted between them. The two configurations 

layouts are schematically reported in Figure 3.14; in the first one the working fluid, exiting the 

turbine, is directly sent to the condenser for the hot water production, while in the latter, the fluid 

passes previously in the regenerator, exchanging heat with the fluid stream coming from the 

condenser. 

The choice of the working fluid and the maximum operative parameters for the ORC was mainly due 

to the results obtained by a Drescher and Brüggemann (2007): the outcomes for their analysis showed 

that for biomass fuelled organic cycles the family of alkylbenzenes achieved highest efficiencies with 

best range of maximum pressures between 0.9 and 1.5 MPa. The working fluid choice therefore has 

fallen into the group of alkylbenzenes, and two substances were selected for the study: toluene and 

ethylbenzene. The thermodynamic properties for the selected fluids were incorporated in the EES 

software. The maximum pressure imposed for the cycle has been determined to be 1 MPa or 10 bar. 

The ORC considered does not include fluid super-heating (so maximum cycle temperature is 

determined from the evaporative pressure or the maximum pressure) and fluid sub-cooling in the 

condenser (condensate vapour quality exiting the condenser equal to 0). As for the case of the back 

pressure steam turbine, the condensing pressure is maintained 10% higher with respect the ambient 

conditions fixed and pump isentropic efficiency is set at 0.85, whereas, with respect the steam case, 

the turbine isentropic efficiency is set to a higher value of 0.76. Considering the oil loop, the 

maximum temperature reachable after the heat exchange with the gas stream was fixed at 420ºC, 

while the minimum temperature (achieved after the ORC economiser) depended on the fluid 

considered: 268.5ºC for ethylbenzene (which represents a 20ºC temperature difference from the 

maximum temperature of the working fluid outside the evaporator) and 250ºC for toluene (in this case 

20ºC temperature difference lead a too low oil minimum temperature). In the end, 30ºC pinch point 

temperature difference were considered for the oil-gas heat exchanger (and 3% of pressure drop on 

the gas side) and 20ºC for the regenerator. 

 

3.2.4  Plants results & off-design conditions 

Considering all the assumptions previously presented, the following aims to summarise the main 

characteristics and outputs from the EES programs of the FBC and the CHP units. In the following: 

 

 

𝜂𝑒𝑙,𝑔𝑟𝑜𝑠𝑠 =
𝑃𝑒𝑙

𝑄𝑓𝑢𝑒𝑙
 ;  𝜂𝑒𝑙,𝑛𝑒𝑡 =

𝑃𝑒𝑙,𝑛𝑒𝑡

𝑄𝑓𝑢𝑒𝑙
 ;  𝜂𝑡ℎ =

𝑄𝑜𝑢𝑡𝑝𝑢𝑡

𝑄𝑓𝑢𝑒𝑙
 ;  𝜂1𝑠𝑡𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑙𝑒 =

𝑄𝑜𝑢𝑡𝑝𝑢𝑡+𝑃𝑒𝑙

𝑄𝑓𝑢𝑒𝑙
            (3) 
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Where: 

 

 Pel : gross electric power in output (considering the alternator efficiency, but not considering 

the plant parasitic load); 

 Pel,net : net electric power in output (calculated subtracting the parasitic load used for the plant 

auxiliaries); 

 Qoutput : useful heat power output from the CHP unit; 

 Qfuel : total thermal power input (calculated multiplying the mass flow rate of the PL by the 

PL’s LHV). 

 

Table 3.3. Main characteristics overview for the CHP plants modelled (nominal design conditions). 

CHP unit 
𝑃𝑒𝑙 𝑃𝑒𝑙,𝑛𝑒𝑡 𝜂𝑒𝑙,𝑛𝑒𝑡 𝜂𝑒𝑙,𝑔𝑟𝑜𝑠𝑠 𝜂𝑡ℎ 𝜂1𝑠𝑡𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑙𝑒 

PL 

consumption 

kW kW % % % % kg/s 

ST 98.2 77.512 5.70 7.23 66.23 73.46 0.1391 

EFGT 158.3 134.9 8.30 9.74 55.38 65.13 0.1663 

ORC no regenerator 

toluene 
126.7 104.02 7.27 8.85 62.89 71.75 0.1465 

ORC with regenerator 

toluene 
148.5 124.95 8.55 10.17 61.61 71.77 0.1495 

ORC no regenerator 

ethylbenzene 
116.4 93.25 6.52 8.14 62.96 71.10 0.1463 

ORC with regenerator 

ethylbenzene 
149.0 124.37 8.44 10.11 61.05 71.15 0.1509 

 

The main output characteristics from the CHP models are summarised in Table 3.3. The gross electric 

power in output ranges between 98.22 and 158.3 kW, with the minimum value achieved by the ST 

and the maximum by the EFGT. The higher EFGT electric output though is associated with a higher 

PL consumption, reaching a value of 0.1663 kg/s in nominal conditions. Parasitic load for all the 

technologies range between 20.71 to 24.63kW, which is a reasonable value for the considered plant. 

Due to the plant small scale and to the poor thermodynamic characteristics achieved by all the cycles, 

the electric efficiencies resulting from the simulation are relatively low, above 10% only for the ORC 

with regenerator technology. Also the thermal and the first principle efficiencies result in maximum 

values of 66.23% and 73.46% achieved by the ST. The outcomes obtained, however, are still quite 

plausible for such plants due to the strong limitations imposed by the small size and the 

thermodynamic performance. 

 

The results showed previously exhibit the plant behaviour in nominal design conditions that are 

achieved for a heating power output of 900 kWth. However, those represent only one operative 
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situation and the CHP plant can be set for a wide range of partial load conditions down to a minimum 

output load of 450 kWth.  

The overall system operation in partial load depends on the behaviour of many parameters (such as 

FBC furnace, combustion efficiency, heat-exchangers, and single components efficiencies), their 

mutual interaction in the system and the control used. Since the primary aim of the study is to obtain 

general results in the partial load operation with the willing to maintain a simple model for the plant, 

off design conditions were implemented evaluating worsening conditions in the heat exchanger/s 

between the exhaust gas stream and the CHP cycle. In particular this was made implementing a linear 

temperature increase of the exhaust gas in three points: before the CHP-gas heat exchanger/s (BHE), 

after the CHP-gas heat exchanger/s (AHE), and before the gas cleaning section (BCS).  

Until 90% of the nominal load, power output and PL mass flow rate vary linearly with the heat 

demand in output, with constant efficiency. From 90% to 60% of the load BHE and AHE 

temperatures show increased deterioration in the heat recovery efficiency and also in the global plant 

thermal and electric efficiency. Below 60% the BCS temperature is increased further worsening the 

heat recovery conditions and lowering the plant efficiencies.  

 

Figure 3.16. Steam turbine partial load first principle efficiency profile (left) and litter consumption (right) in partial load.  

 

An example of off-design condition for the steam turbine technology is reported in Figure 3.15, 

showing the first principle efficiency profile and the PL consumption in the furnace. With those 

hypothesis, the litter consumption and the electric power generation decrease in an approximately 

linear way with the heat load. The considered off-design behaviour is only a simple approximation of 

the real operative conditions. Although results could differ for the real plant performance, it is 
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appropriate to remember at this point that the main aim of the entire model is to evaluate the 

economic opportunity for the whole system which is affected by all the assumptions made in the 

entire methodology process. 

For this reason possible discrepancies are evaluated in a sensibility analysis at the end of the study, in 

order to take into account possible incongruities present in all the model-building process. 

 

3.3  CHP operation setting 

Once the heat and electricity demand were determined and the relevant CHP configurations were 

modelled, the following discussion shows how to operate the plant in order to satisfy the energy 

requests from the poultry house. In general the configuration setting of a CHP plant depends on an 

economic balance which aims to minimize the generation cost function and maximize the income 

from the CHP operation. This means that in each instant the heat and electricity demand are matched 

at the lowest marginal cost, including the possibility to buy electricity from the grid when it is 

particularly convenient or the opportunity to “dump” heat for higher electricity production (when the 

electricity tariff  is particularly high).  

The plant in consideration slightly differs from the general behaviour. In this particular case the CHP 

unit is mainly implemented for satisfying the self-consumption requirements derived from the poultry 

farm (above all the heating requirements) and furthermore the cost of the biomass used as a fuel for 

the plant can be considered a null value (at least the litter necessary for the farm duties). 

Since heat production for the poultry farm has been considered the most important target for the CHP 

unit, the CHP operation setting has been developed following two cases. In the first one (from here on 

called heat driven scenario), the CHP operation follows exactly the heat demand requested by the 

poultry house (practically by the water tank); since the electric output in the configurations modelled 

with the EES software is linked to the heat output, the electricity production in those conditions is 

imposed by the heating constraint and does not take into account the electricity requirements. In this 

modality, heat dumping occurs only when the heat demand is below the minimum load set for the 

CHP and its maximum value cannot overcome 450 kW, condition when there is no heat requirement. 

The second case implemented (from now on called choice scenario), is a more complicated modality 

and is based on a simplified economic comparison. Whenever the heat demand is met by the CHP 

plant, but the electricity output is lower with respect the electricity request, the model implements an 

economic evaluation and determines on a cost basis if it is better fill the electricity gap through buying 

electricity from the grid or matching the electric demand, thus increasing the electric output but 

consuming more fuel and dumping more heat. In this scenario, the heat dumped can reach values up 

to 900 kW, occurring when there are high electricity requirements and null heat demand (summer 

period). 
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The two different scenarios were implemented with the aid of the Matlab software. The program  

reads the input hourly heat and power demand resulting from the Energy + simulation, and for the two 

different scenarios, sets the CHP configuration determining the net electric power in output and the 

poultry litter consumption for each single hour in the year. 

The program not only sets the CHP operation determining the litter consumption and the electric 

power generated, but tracks every single hour that heat is provided, when is the heat dumped, the 

electricity produced, the electricity sold to and bought from the grid and the running costs of the plant.  

At the end of the simulation, single hourly data are aggregated and displayed graphically, obtaining 

the global results necessary for the economic analysis. An example of graphical output is showed in 

Figure 3.16 which reports the hourly electricity demand and production for the choice scenario using 

the ORC with regenerator technology and toluene as working fluid.   

 

 

Figure 3.17. Hourly electricity demand and production for the choice scenario using the ORC with regenerator technology 

and toluene as working fluid. 

 

The main assumptions at the basis of the program described previously are here reported. 

First of all, the CHP plant is not supposed in operation for every single hour in the year. A 16 days 

shut down a period was considered for the plant maintenance and inspection during the summer time 

and in particular from the 16 of July until the 31 of July. This period was selected due to the null heat 

requirement expected (electricity demand instead must be supplied by the electricity from the grid). 

The possibility of heat dumping means that there is the necessity of an additional circuit connected to 

the CHP plant for this purpose; this imply the presence of heat exchangers that must be able to 

dissipate the excess heat generated and pumps and fans for their correct function. The circuit indeed 
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required a certain amount of power that must be considered in the parasitic load during the simulation. 

For this reason, the model has been implemented considering a quota for the dissipation circuit power 

consumption proportional to the heat dumped and equal to 1.5% of the total heat dissipated.  

However, the power consumption necessary for the litter transport (for example by conveyor or 

screws) was not taken into account in the simulation. 

 

Table 3.4. Annual results for selected parameters derived from the heat driven scenario simulation 

 

Table 3.5. Annual results for selected parameters derived from the “choice” scenario simulation 

 

 

The poultry litter resulting from the rearing activity in the farm is considered available for the CHP 

unit for free, while exceeding quantities demanded by the plant are considered bought at 13 €/ton 

(compare with DARD-AFBI, 2012). Threshold for the amount of poultry litter necessary for the farm 

duties are evaluated considering a number of 6 flocks of birds per year and a specific litter usage of 

1.3 tons/1000 birds. Poultry litter ash discharge costs are accounted for considering a unitary cost of 

70 €/ton and based on the assumptions carried by Pantaleo (2015).  

CHP 
Litter 

consumption 

Heat 

FBC 

Heat 

dumped 

Heat 

auxiliary 

Electricity 

Bought 

Electricity 

Sold 

  tons kWh kWh kWh kWh kWh 

ST 2,838.14 4,844,453 2,400,831 639,436 388,750 2,472 

EFGT 3,362.78 4,844,453 2,400,831 639,436 208,379 147,393 

ORC no regenerator 

toluene 
3,014.81 4,844,453 2,400,831 639,436 285,764 41,123 

ORC with regenerator 

toluene 
3,077.67 4,844,453 2,400,831 639,436 236,009 103,660 

ORC no regenerator 

ethylbenzene 
3,020.85 4,844,453 2,400,831 639,436 320,585 16,888 

ORC with regenerator 

ethylbenzene 
3,115.51 4,844,453 2,400,831 639,436 237,862 101,071 

CHP 
Litter 

consumption 

Heat 

FBC 

Heat 

dumped 

Heat 

auxiliary 

Electricity 

Bought 

Electricity 

Sold 

  tons kWh kWh kWh kWh kWh 

ST 3,880.36 6,954,250 4,510,629 639,436 223,611 2,472 

EFGT 3,929.98 5,793,693 3,350,072 639,436 81,201 147,393 

ORC no regenerator 

toluene 
3,715.28 6,215,209 3,771,588 639,436 137,354 41,123 

ORC with regenerator 

toluene 
3,628.60 5,915,191 3,471,569 639,436 94,836 103,660 

ORC no regenerator 

ethylbenzene 
3,882.08 6,583,224 4,139,603 639,436 152,051 16,888 

ORC with regenerator 

ethylbenzene 
3,671.52 5,923,502 3,479,881 639,436 95,724 101,071 
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The costs of the electricity supplied and acquired from the grid are considered constant throughout the 

year and respectively of 147 €/MWh (based on the reference prices present in the REFIT 3 scheme) 

and 180.6 €/MWh (SEAI, 2015). 

 

3.4  Economic Analysis 

With the results obtained from the Matlab program it was possible to assess the economic 

performance of the selected systems. The following paragraph summarises the investment costs using 

the main assumptions specified. 

 

The investment costs for the plants were evaluated assuming a specific cost for the FBC boiler of 400 

€/kWth thermal output (based on values from Pantaleo, 2015), a specific cost of 2000 €/kWel for the 

steam turbine cycle (based on values from Pantaleo, 2015), a specific cost of 2500 €/kWel for the 

EFGT (based on range of values suggested by Pantaleo, 2013) and a specific cost for the ORC of 

2400 €/kWel (based on values adopted by Pantaleo, 2015). At this costs were added 180,000€ to all the 

CHP technologies comprehensive of the costs associated with the civil works, the purchase of 

auxiliaries, pipes and the tank, the engineering and development of the project and the grid 

connection. The global results obtained for each single technology analysed are reported in Table 3.6. 

 

Table 3.6. Summary of investment costs figures for the selected CHP technologies. 

 

In absolute terms, the cheapest CHP technology results the back pressure steam turbine with a total 

investment cost of 736,440 € while the most expensive is the EFGT with a total of 935,750 €. Of 

greater interest are the values for the technologies’ specific costs, obtained by dividing the overall 

investment cost by the nominal electric power in output. In these terms the EFGT appears to be the 

more cost efficient (less than 6,000 €/kWel), whereas the steam turbine is the less attractive 

CHP plant 
Total investment cost 

(€) 

Gross electric power 

output (kW) 

Specific investment 

cost (€/kWel) 

ST 736,440 98.2 7,497.86 

EFGT 935,750 158.3 5,911.24 

ORC no regenerator 

toluene 
844,080 126.7 6,662.04 

ORC with regenerator 

toluene 
896,400 148.5 6,036.36 

ORC no regenerator 

ethylbenzene 
819,360 116.4 7,039.18 

ORC with regenerator 

ethylbenzene 
897,600 149.0 6,024.16 
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technology reaching a price of circa 7,500 €/kWel. The values obtained for this last parameter fall in 

typical ranges for small scale CHP biomass plants (Frigo et al., 2014). 

Operations and Maintenance (O&M) costs were evaluated in 110 €/kWel (based on range values 

suggested by World Energy Council, 2013), and an insurance cost of 1.5% of the total investment 

were considered. Lower Heating Value for the LPG was assumed equal to 6.654 kWh/l (SEAI, 

www.seai.ie), while LPG specific cost was determined in 0.497 €/l according to SEAI (2015). 

The financial appraisal is carried out assuming furthermore: 20 years of operating life, maintenance 

costs, fuel supply costs and production, electricity selling and buying prices held constant during the 

20 years period and a discount rate equal to 8%. In the analysis, the costs associated to the start-up 

conditions for the FBC were not taken into account.  

The “baseline” scenario or the business as usual for the poultry farm considers the electricity demand 

totally supplied by the grid (at a constant price of 180.6 €/MWh) and the heat required is generated by 

an LPG boiler with an efficiency of 90% (LHV of LPG and LPG cost are the same as presented 

previously).  
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Chapter 4: Results and Discussion 

 

The aim of this chapter is present the economic results obtained for the overall model. The economic 

parameters selected as the target of the economic analysis were the Internal Rate of Return (IRR), the 

Net Present Value (NPV) and the simple Pay Back (PB) period for the investment. The assumptions at 

the basis of the study were examined in detail in Chapter 3. Because of the high number of 

assumptions made in all the analysis process, an investigation over the results sensitivity has been 

carried out and the results are shown in the latter part of this chapter. In particular the influence of 

three particular parameters was investigated: the set temperature inside the poultry house, the cost of 

the poultry litter and the investment cost. Additionally, the chapter also presents the results on CO2 

savings achievable with the plant installation.  

In the following the acronym HD refers to the Heat Driven scenario, while the acronym CH is used 

for the “choice” scenario described previously. 

 

4.1  Net Present Value 

The NPV is defined as the sum of the present values of incoming and outgoing cash flows over a 

certain period of time. It can be evaluated with the following: 

 

𝑁𝑃𝑉 = ∑
𝐶𝐹𝑗

(1 + 𝑖)𝑗

𝑛

𝑗=0

                                                                (4) 

 

Where 𝐶𝐹𝑗 is the j-th total annual cash flow, 𝑖 is the discount rate (evaluated at 8%) and 𝑛 is the 

operating life period estimated for the plant (20 years).It is important clarify that the cash flow rate at 

the 0-th year is the total investment cost for the plant (negative cash flow). Figure 4.1 shows that the 

NPV is positive for all the technologies, reaching values above 1.3 million euro for each scenario 

analysed. The interesting outcome is that NPV is not strongly affected by the typology of CHP unit 

adopted. This could be in part explained by: 

 

 The majority of the annual revenue stream depends on the “consumption avoided” that is 

common for all the technologies; this refers to the revenue generated by the heat and 
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electricity savings with respect to the “business as usual” or baseline case, where heat is 

provided by a traditional boiler and electricity is bought from the grid (electricity supply 

influences the overall income, however, in a more modest way); 

 Differences in the annual costs(operating costs) among the technologies examined are 

levelled due to the counterpoise action derived from the poultry litter purchasing, ash disposal 

and O&M costs on one side and the electricity purchased on the other (the higher the power 

generated by the CHP plant the higher the costs of ash disposal, PL purchasing and O&M but 

the lower the electricity costs from the grid); 

 Differences in the investment costs among the technologies are compensated by the different 

cash flow rates generated by the different plants; this means that higher investment costs are 

associated with higher annual cash flows tending to level off the final results. 

 

 

Figure 4.1. Net Present Value results for the selected CHP technologies. 

 

Differences in the NPV results between the two scenarios adopted (HD vs. CH) show that it is more 

convenient to increase the litter consumption and the heat dumping in order to increase the electricity 

production, rather than simply buy electricity from the grid (considering the previously stated 

assumptions).The highest NPV is reached by the ORC equipped with the regenerator and using 

toluene as a working fluid: the “choice” scenario for this option leads to a value of 1.6 million euro. 

 

4.2  Pay Back period 

In general the simple PB period can be calculated with the following: 

 

𝑃𝐵 =
𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 𝑐𝑜𝑠𝑡

𝐴𝑛𝑛𝑢𝑎𝑙 𝑐𝑎𝑠ℎ 𝑖𝑛𝑓𝑙𝑜𝑤
                    (5) 
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Where the annual cash inflow represents the difference between the annual revenue stream and the 

annual costs stream. This parameter is usually used for giving an initial evaluation of the time 

required to recover the investment.  

The PB values obtained for the two scenarios are reported in Figure 4.2.   

 

 

Figure 4.2. Simple Pay Back period results for the selected CHP technologies. 

 

Also for this parameter, the differences among the technologies are relatively small. In general the PB 

period is included between 3.3 and 3.9 years and also in this case the “choice” scenario shows the best 

economic behaviour versus the heat driven scenario. Relatively small differences in the PB parameter 

can be identified between the ORC configuration with the regenerator and without the regenerator: 

this because the higher investment costs associated with the ORC, including the internal heat 

exchanger, are compensated in the first years by the higher annual cash flow rates deriving from the 

plant operation. The lowest simple PB period is achieved by the back pressure steam turbine 

technology which, operating in the “choice” scenario, requires only 3.36 years. This is most likely due 

to the lowest investment cost of the considered technology relative to the others.  

The PB results obtained from the simulations can be compared with the outcomes from the BHSL’s 

Uphouse farm case study analysed in the technology review; for this case the company declares a PB 

period of 3.25 years for the installation of two 500 kWth FBC using poultry litter for heating 

production (www.bhsl.com). Despite the model analysed in this work and the BHSL’s case study 

using different technology for different targets, the results comparison is still relevant: indeed higher 

investments for the CHP unit over the simple heating production, are recovered by the higher cash 

income generated from the electricity product.  

To be thorough, Figure 4.3 also reports the discounted payback (DPB) period obtained for the selected 

CHP technologies. After considering the discounted annual cash flow, the time necessary for 
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recovering the investment for the selected technologies is determined to range between 4 and 4.8 

years.  

 

Figure 4.3. Discounted Pay Back period results for the selected CHP technologies. 

 

4.3  Internal Rate of Return 

The Internal Rate of Return (IRR) is the discount rate that makes the NPV of all cash flows from a 

particular project equal to zero. It is calculated from the following expression: 

 

0 = ∑
𝐶𝐹𝑗

(1 + 𝐼𝑅𝑅)𝑗
                                                               (6)

𝑛

𝑗=0

 

 

 

Where 𝐶𝐹𝑗 is the j-th total annual cash flow and 𝑛 is the operating life period of the project.  

However, the IRR evaluated in this analysis does not refer to the total estimated life of the project, but 

is calculated for a 5 years period; the calculation is from this perspective since, for this project, the 

main interest is on evaluating at which discount rate the investment can be re-paid after 5 years. 

Results are displayed in Figure 4.4. According to the outcomes, the less attractive technology is the 

EFGT, which shows an IRR under 10% in the heat driven scenario (9.52%) and of 11.36% with the 

“choice” scenario.  Highest values are achieved by the steam plant, which present a peak of 14.87% 

and 13.13% with respectively the CH and HD scenarios. This is expected due to the lowest PB period 

achieved within the technologies selected. ORC units show intermediate results, between 10.2% and 

10.6% in the heat driven scenario and between 12.6% and 12.9%. 
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4.4  CO2 emissions avoided 

One objective of the simulation was to evaluate in a simple way the total CO2 emissions avoided by 

running the CHP plant rather than fulfilling the poultry farm energy demands in the conventional way. 

 

 

Figure 4.4. 5-years Internal Rate of Return results for the selected CHP technologies. 

 

As reported in previous sections, the baseline scenario consists of using LPG for the poultry farm heat 

demand supply and electricity from the grid for the electrical requirements. 

CO2savings deriving from the heat side depend on the quantity of LPG not burnt and replaced by the 

poultry litter combustion (this process still produces CO2 emissions but they are derived from the 

combustion of a biomass source and can be related to the natural carbon cycle). It is important though 

to note that consumption of LPG is also required within the hypothesis to install the CHP unit (by the 

auxiliary boiler) which reduces the amount of total CO2 emissions avoided. It is furthermore 

necessary to state that for this analysis the CO2 emissions derived from the fuel combustion by an 

auxiliary boiler necessary during FBC start-up operations and CO2 emissions derived from transport 

of poultry litter in the farm are not taken into account. 

The carbon emission factor for the LPG burning operation is assumed to be0.229 kgCO2/kWh (SEAI). 

With the above-mentioned considerations, the CO2 savings derived from the poultry litter burning 

amounts to 621.77 tons/year. 

Furthermore, the major part of the poultry farm electricity demand is provided by the litter 

combustion and is not purchased from the grid; obviously the electricity drawn involves fuel 

consumption from the grid power suppliers and therefore CO2 emissions into atmosphere. According 

to SEAI (2014), in 2013, the carbon intensity of the Irish electricity supplied to the grid consisted of 

0.469 kgCO2/kWh. Considering the total electrical energy demanded by the poultry house and 
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subtracting the amount that is still required from the grid and the carbon intensity estimated by SEAI 

(2014), the results for the CO2 emissions avoided are reported in Table 4.1. 

Further details on environmental impacts and benefits derived by poultry litter use in fluidised bed 

combustion systems can be found in Leinonen and Williams (2013), which adopts a Life Cycle 

Assessment (LCA) methodology to determine the environmental footprint in different scenarios for 

the litter management and including its use in combustion furnaces for heat and electricity generation.  

 

Table 4.1. Tonnes of CO2 emissions avoided not consuming electricity from the grid for all the considered CHP 

technologies. 

CHP unit CO2 avoided emissions HD (t) CO2 avoided emissions CH (t) 

ST 169.37 246.82 

EFGT 253.96 313.61 

ORC no regenerator toluene 217.67 287.27 

ORC with regenerator toluene 241.00 307.21 

ORC no regenerator ethylbenzene 201.34 280.38 

ORC with regenerator ethylbenzene 240.14 306.80 

 

Considering the general situation, the economic analysis has revealed relatively small differences for 

all the economic parameters among the technologies; the reasons for this can be explained by taking 

into account the considerations reported discussing the NPV results. The relatively low cost of poultry 

litter (taking in account the fact that poultry litter used for farm duties is considered a no-cost fuel) 

could be another aspect influencing the differences among the scenarios. 

All the technologies present very interesting values for the economic parameters considered. The 

steam cycle in particular shows the lowest PB period for the investment, the highest IRR results 

(considering also that it presents the lowest global investment costs with respect to the other units). 

EFGT, despite showing the highest NPV among the others technologies, shows the worse behaviour 

in the PB and IRR values. ORCs present intermediate behaviour with slightly better values for the 

configuration adopting the toluene as the working fluid and the internal regenerator. CO2 emissions 

avoidance furthermore could be another attractive point beyond the economic aspects. 

 

4.5  Sensitivity analysis results 

Due to the number of assumptions made during the process followed for building the techno-

economic analysis, a sensitivity study was carried out in order to understand the results behaviour by 

varying some fundamental parameters within the model.  

The parameters chosen for the analysis are three: the indoor set temperature in the poultry houses, the 

poultry litter cost and the total investment cost. A brief description of the main assumptions and the 

results obtained are presented in the following. 
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4.5.1  Indoor set temperature 

The indoor set temperature was the first parameter investigated in the analysis. It greatly influences 

the heat energy requirements for the poultry houses, the electricity consumption, the FBC and the 

overall system operation and consequently, the general economic results.   

The range of temperatures selected for the analysis varied between 14ºC and 18 ºC (with 1°C step) 

and was implemented by changing the input data on the Energy+ model of the poultry farm. The 

results from the software were then re-elaborated by the Matlab program in order to set the operation 

of the CHP unit. All the assumptions presented in the Chapter 3 remain valid in all the simulations (it 

is important to note that ventilation rates are always implemented with equations (1) and (2) in order 

to achieve similar rates for each case simulated). 

General results for the heat driven scenario are presented in Table 4.2 and Table 4.3 (which reports 

the poultry litter consumption for each technology in the different cases analysed) while results from 

the “choice” scenario are displayed in Table 4.4 and Table 4.5 (auxiliary heat requirements and 

electricity demand are not displayed for this scenario because the values are the same as the heat 

driven scenario reported in Table 4.2). 

 

Table 4.2. Main annual energy results obtained from the heat driven scenario for the selected indoor set temperatures. 

Set temperature 

(ºC) 

Total heat FBC 

(kWh) 

Heat dumped 

(kWh) 

Heat auxiliary 

boiler (kWh) 

Electricity demand 

(kWh) 

14 4,591,164 2,640,140 331,286 763,014  

15 4,844,453 2,400,831  639,436  749,878  

16 5,079,154 2,083,970  1,059,539  758,395  

17 5,369,275 1,731,240  1,543,429  783,337  

18 5,725,880 1,385,439  2,029,024  817,968  

 

Table 4.3. Annual poultry litter consumption for the selected indoor set temperatures (heat driven scenario). 

 

Poultry litter consumption (tons) 

CHP unit 14°C 15°C 16°C 17°C 18°C 

ST 2,710.52 2,838.14 2,955.54 3,099.70 3,278.60 

EFGT 3,207.26 3,362.78 3,506.07 3,682.29 3,900.51 

ORC no regenerator toluene 2,882.83 3,014.81 3,136.09 3,284.89 3,469.80 

ORC with regenerator toluene 2,942.94 3,077.67 3,201.48 3,353.38 3,542.14 

ORC no regenerator ethylbenzene 2,889.89 3,020.85 3,141.15 3,288.70 3,472.14 

ORC with regenerator ethylbenzene 2,980.44 3,115.51 3,239.58 3,391.75 3,580.94 

 

In general terms, increasing the indoor set temperatures for the poultry houses implies an increase in 

the heat load to be supplied with the FBC unit (and consequently an increase of the poultry litter 

consumption) and a decrease in the total heat dumped by the system for both the scenarios. Therefore 
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increasing the temperature involves on one side a greater consumption and production of heat, and on 

the other a better use of it. Apart from the transition from 14ºC to 15ºC, the indoor temperature 

increase entails a higher electricity consumption, which can affect the overall economics of the 

project. It is important to consider that aspects regarding the poultry welfare or rearing conditions are 

not taken into account and do not involve economic revenue in the analysis (as could happen in a real 

world situation). It is likely that an increase in the indoor ambient temperature could affect the birds’ 

health conditions, the growing rate and other aspects that could affect economic benefits such as 

lowering the time for processing a flock or increasing the meat quality and so increasing the meat 

selling price, etc. Finally, the 14ºC options do not fall in the range of indoor temperatures suggested 

by ASHRAE (2015), which recommend a minimum temperature of 15ºC inside the poultry houses. 

The 14ºC option was taken into account for understanding the economic results/benefits derived from 

stressing temperatures beyond the minimum limit. 

 

Table 4.4. Main annual energy results obtained from the “choice” scenario for the selected indoor set temperatures and CHP 

units. 

 
kWh 14ºC 15 ºC 16 ºC 17 ºC 18 ºC 

ST 
Heat FBC 6,913,780 6,954,250 7,042,846 7,141,596 7,216,298 

Heat dumped 4,962,756 4,510,629 4,047,662 3,503,561 2,875,856 

EFGT 
Heat FBC 5,694,971 5,793,693 5,938,207 6,150,289 6,402,987 

Heat dumped 3,743,946 3,350,072 2,943,023 2,512,254 2,062,546 

ORC no regenerator 

toluene 

Heat FBC 6,088,913 6,215,209 6,419,738 6,661,686 6,844,639 

Heat dumped 4,137,888 3,771,588 3,424,555 3,023,651 2,504,198 

ORC with regenerator 

toluene 

Heat FBC 5,811,191 5,915,191 6,073,492 6,299,877 6,549,230 

Heat dumped 3,860,167 3,471,569 3,078,308 2,661,842 2,208,788 

ORC no regenerator 

ethylbenzene 

Heat FBC 6,480,015 6,583,224 6,731,536 6,889,464 7,011,415 

Heat dumped 4,528,991 4,139,603 3,736,352 3,251,429 2,670,974 

ORC with regenerator 

ethylbenzene 

Heat FBC 5,819,452 5,923,502 6,082,538 6,310,009 6,559,158 

Heat dumped 3,868,427 3,479,881 3,087,354 2,671,974 2,218,717 

 

Table 4.5. Annual poultry litter consumption for the selected indoor set temperatures (“choice” scenario). 

 

The economic simulation for the different indoor temperatures considered requires a comparison with 

a baseline scenario or with a business as usual condition which must be common for all the different 

 Poultry litter consumption (tons) 

CHP unit 14°C 15°C 16°C 17°C 18°C 

ST 3,859.09 3,880.36 3,927.55 3,980.65 4,020.70 

EFGT 3,869.29 3,929.98 4,017.33 4,146.97 4,303.92 

ORC no regenerator toluene 3,647.14 3,715.28 3,823.96 3,952.79 4,050.25 

ORC with regenerator toluene 3,572.61 3,628.60 3,711.37 3,831.12 3,966.57 

ORC no regenerator ethylbenzene 3,824.12 3,882.08 3,964.18 4,052.02 4,119.77 

ORC with regenerator ethylbenzene 3,615.30 3,671.52 3,754.80 3,875.31 4,011.26 



75 

 

cases identified (changing the poultry houses set temperature). In this study the energy requirements 

obtained for the 15ºC indoor temperature were considered the baseline case through which the 

revenue streams from the project were compared. 

The NPV results from the simulation are reported in Figure 4.5 which summarises the economic 

parameter dependence on the indoor temperature. 

The values tend to decrease strongly with the indoor temperature increase due to the higher annual 

costs associated with a higher consumption of poultry litter (connected with the higher heat demand) 

and higher electricity demand and LPG usage in the auxiliary boiler with respect to the baseline.  

Figure 4.5. NPV results for the HD scenario (left) and CH scenario (right) for the selected indoor temperatures. 

 

Although the NPV values in Figure 4.5 present a positive result for each set temperature tested, there 

are high variances over the nominal condition of 15ºC. In the worst case the values drop between -

74.69% of the ORC with regenerator using toluene as working fluid and -88.07% of the steam cycle 

in the HD scenario and between -70.06% and -84.54% in the CH scenario (boundaries belong to the 

same technologies). 

In both scenarios the descending trend is common among all the technologies. Also in this case the 

CH case shows a better behaviour in all conditions, but while increasing the indoor set temperature, 

the differences in the NPV values between the two scenarios gets narrower for all the technologies 

considered. On the other hand, decreasing the set point temperature at 14ºC entails an improvement in 

the economic performance in the range of 12.81% and 15.46% for the HD scenario and between 

12.87% and 15.10% for the CH scenario. 

Regarding the simple PB period, the values obtained from the simulation are reported in Figure 4.6. 

In this case, increasing the set point temperature inside the poultry houses involves an important 

growth in the investment payback back period with a dependence that results non-linearly among the 
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variables. Indeed the PB period in nominal conditions ranges between 3.51 and 3.84 years in the HD 

scenario reaches values in the range of 6.95 and 8.08 years; also for the CH scenario, nominal values 

between 3.36 and 3.66 years grow to 6.54 and 7.57 years. It is interesting to consider that the steam 

cycle technology which in nominal conditions presents the lowest PB period in both scenarios, when 

considering the 17ºC and the 18ºC case shows the worst results among the other technologies. 

Decreasing the temperature down to 14°C, involves on the other hand a reduction between 7.29 and 

9.12% in the HD case and between 7.61 and 8.93% in the CH case. 

Figure 4.6. PB period results for the HD scenario (left) and CH scenario (right) for the selected indoor temperatures. 

 

Figure 4.7 shows instead the IRR behaviour with the different set point temperatures.  

Figure 4.7. IRR (5-years) results for the HD scenario (left) and CH scenario (right) for the selected indoor temperatures. 
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Also in this case, the temperature affects greatly the values of the parameter, and the more the indoor 

temperature increases the more the IRR factor decreases, again without linear dependence between 

the variables. Negative (HD scenario) or almost null (CH scenario) IRR values are reached for the 

17°C case, while the 18°C shows negative results for each technology in both scenarios (those results 

are explainable considering the results obtained for the PB period in those cases).  

In this latter condition, the IRR values drop in the range between -195.55% and -236.84% in the HD 

scenario and between -159.69% and -183.46% in the CH scenario with respect the nominal situation. 

On the other side, reducing the temperature to14°C results in the IRR value ranges of 29.19% and 

34.60% (HD) and 25.81% and 29.16% (CH), respectively. 

 

Some general considerations about the economic parameters dependence on the indoor set 

temperature variation: 

 

 The temperature variation inside the poultry houses entails significant differences in the 

electricity and heat demand that affect strongly the economics of the entire system; 

 With the assumptions made, all the technologies achieve worsening economic performances 

as the inside temperature in the poultry houses increase and show common trends in all the 

parameters observed; 

 The steam cycle technology which showed the best behaviour regarding the IRR and PB 

period in nominal conditions, presents among the CHP technologies the highest values-

degradation with the temperature variation (excluding the 14ºC case); 

 The baseline scenario, to which the economic results refer, can affect greatly the economic 

results; 

 The economic simulation has been carried out keeping the system/plant size constant for each 

value of temperature considered. This hypothesis however tends to penalise the plant 

operation with higher temperatures. Indeed for such conditions the plant capacity might be 

undersized for dealing with higher heat power demands causing increasing usage of the 

auxiliary boiler. 

 

4.5.2  Poultry litter cost 

The other parameter investigated in the sensitivity analysis is the poultry litter cost. This can strongly 

affect the CHP operational setting in the different situations and eventually the overall economic 

performance of the plant. 

Three main cases were taken into account for the analysis: 
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1. All the poultry litter is available for free and transport costs or purchasing costs are not 

considered (hereinafter named C1 scenario); 

2. The poultry litter that is available from the poultry farm and derived from the birds rearing 

activity is accessible for free, while additional  litter needs must be purchased at a cost of 13 

€/ton. The threshold is set considering a total of 6 flocks reared per year and a specific litter 

usage of 1.3tons/1000 birds (C2 or baseline scenario implemented also in the traditional 

economic analysis); 

3. All the poultry litter must be purchased at the cost of 13 €/ton (C3 scenario). 

 

The NPV results obtained from the three scenarios presented above are displayed in Figure 4.8. 

Figure 4.8. NPV results for the HD scenario (left) and CH scenario (right) for the different litter cost scenarios. 

 

The parameter presents an almost linear dependence with the different cost scenarios implemented 

(especially the HD case). The C1 case displays an increment of the NPV with respect to the baseline 

between 12.30% (ST value) and 15.78% (EFGT value) for the HD scenario and between16.50% 

(ORC with regenerator using toluene value) and 20.94% (ST value) for the CH scenario. The CH 

operation mode greatly benefits from the null cost of the fuel; indeed the greater consumption of 

poultry litter compared to the heat driven modality and used to increase the electricity generation from 

the plant does not entail additional expenses that could affect negatively the revenues of the plant. 

In the C3 case, the HD scenario presents a variation with respect to the baseline between -13.65% of 

the EFGT and -15.12% of the ORC without regenerator and using ethylbenzene as a fluid, while the 

CH scenario shows a variation between -12.44% of the ORC with regenerator and using toluene and -

14.08% of the steam cycle.  
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Regarding the PB period, the trend is presented in Figure 4.9. 

The values for the parameter present an almost linear tendency within the three cases analysed. Under 

the HD operation, the C1 case shows a reduction in the payback period in the range of 7.5% to 8.5% 

(between 3.25 and 3.5 years for all technologies) while the C3 scenario increases the parameter to 

between 9.0 and 10.0% with all the technologies above the 4 years threshold except for the steam 

turbine unit which presents a payback period of 3.88 years. 

Figure 4.9. PB period results for the HD scenario (left) and CH scenario (right) for the different litter cost scenarios. 

 

Also in this case, the C1 hypothesis fosters the CH operation setting decreasing the payback period of 

the investment at values close to the 3 year threshold, with the steam turbine technology reaching the 

minimum of 2.96 years. On the other hand, the litter purchasing cost simulated with the C3 case 

increment all the PB values, and maintaining them under the 4 years limit.  

Finally the IRR results are reported in Figure 4.10. 

The parameter shows a tendency similar to the NPV, even though the variances with respect to the 

nominal conditions are larger. The C1 scenario increases the HD IRR values in a range between 

24.37% (steam cycle) and 38.55% (EFGT) reaching a maximum value of 16.33% for the steam cycle; 

the CH scenario otherwise shows increments between 32.95% (ORC with regenerator and toluene) 

and 41.46% (EFGT), with a maximum value of 20.54% always reached by the steam technology. 

For the IRR value results, Figure 4.10 shows a decrease respectively by -30.77%(steam cycle) and-

36.35% (ORC without regenerator using ethylbenzene) and by -25.66% (ORC with regenerator using 

toluene) and -28.92% (ORC without regenerator using ethylbenzene). 

 

Ultimately, poultry litter cost influences significantly the economic parameters considered. A detailed 

evaluation for poultry litter transport and purchasing costs is appropriate for a correct economic 
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assessment. Finally, the sensitivity analysis proposed did not take into account the possibility of a 

negative cost for the litter: it might be possible that with tighter and more severe regulations on limits 

regarding manure and poultry litter direct spreading into farmland, burning this material could be a 

cheaper method for its disposal. In this perspective, farmers could pay a fee for getting rid of the 

surplus litter and this could be another interesting aspect for the development of those plants. 

Figure 4.10. IRR (5-years) results for the HD scenario (left) and CH scenario (right) for the different litter cost scenarios. 

 

4.5.3  Investment cost 

The last aspect investigated was the influence of the investment cost. 

In this case two options beyond the nominal conditions were considered: the first one assumes a 

reduction in the nominal value of 5%, while the other one assumes an increase of 5% (the baseline 

scenario is presented by the 0% tag). On the basis of the assumptions made, it is important to consider 

that varying the investment cost changes the insurance costs of the different plants.  

The effect of the investment cost variation over the NPV values is reported in Figure 4.11. 

As shown in the graph, the parameter trend is linear with the initial cost variation, but the main aspect 

has a less noticeable impact on the results with respect to the other parameters considered in the 

sensitivity analysis. The variance over the nominal conditions ranges between 3.19% and 3.68% for 

the HD scenario and between 2.99% and 3.41% for the CH scenario. The highest percentage change 

belongs to the EFGT and this is due to the highest investment cost for the technology; on the other 

side the smallest variation belongs to the steam turbine for the same reason. 
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Figure 4.11. NPV results for the HD scenario (left) and CH scenario (right) for the different investment costs scenario. 

 

Considering the PB period, in this case the changes with respect to the nominal values are rather 

limited (Figure 4.12). A decrement of 5% in the investment cost entails a decrement between 5.09% 

and 5.41% for the HD scenario and a decrement between 5.06% and 5.38% in the CH scenario. The 

steam turbine technology shows again the best results in both the operation modalities with values 

down to 3.19 years (CH) and 3.32 years (HD); worst behaviour belong to the EFGT with 3.47 years 

(CH) and 3.64 years (HD) payback periods. ORCs present intermediate behaviour with values 

between 3.34 years and 3.36 years (CH) and between 3.54 years and 3.57 years (HD). As shown in 

Figure 4.12 the differences within the technologies are very small. 

Figure 4.12. PB period results for the HD scenario (left) and CH scenario (right) for the different investment costs scenario. 
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The IRR results shown in Figure 4.13 indicate that increasing the investment cost results in higher 

payback period between 5.10% and 5.36% in both the scenarios. Also in this case, lowest results are 

obtained for the steam turbine (3.69 years in the HD setting and 3.54 years in the CH settings) while 

EFGT shows the worst values (4.04 in the HD case and 3.86 in the CH case); again ORCs display 

intermediate results between 3.93 and 3.97 years (HD) and 3.71 and 3.74 years (CH). 

Figure 4.13. IRR (5-years) results for the HD scenario (left) and CH scenario (right) for the different investment costs 

scenario. 

 

This parameter shows a greater variance respect the others. Investment cost decrement of 5% brings 

the IRR to values between 11.66% and 15.38% for the HD scenario and between 13.55% and 17.18% 

in the CH scenario; considering the other assumption, increment in the initial costs bring down the 

economic parameter to percentages in the range of 7.54% and 11.05% for the HD case and in the 

range of 9.33% and 12.74% for the CH case. 

 

Also in this case, variations in the investment costs generated not insignificant changes in the 

economic results, even though they are less substantial compared to the outcomes from the sensitivity 

analysis operated with the other parameters.  
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Chapter 5: Conclusions 

 

The main objectives of this thesis work were: providing a literature review on poultry litter energy 

conversion processes and technologies; and performing a techno-economic analysis for a small scale 

co-generative FBC fuelled by poultry litter, in order to understand the economic feasibility for 

deploying such technology within poultry farm context. 

 

Regarding the first objective, an ample overview has been carried out among the common energy 

conversion processes for biomass substances, revealing that, within a set of relevant constraints, 

combustion seems the most interesting and attractive technology for poultry litter treatment. 

Anaerobic digestion, while showing to be a feasible process using poultry litter and is a commercial  

technology, has some major drawbacks using the litter as feedstock. Issues include high dilution 

requirements, high ammonia production and high retention times. Furthermore, other processes 

investigated in the study were only at a test pilot status like gasification or pyrolysis and for others, no 

literature or minimal literature was found. Combustion of poultry litter is well documented in the 

current literature for both test and trials and by the fact that currently, commercial plants in both 

small-scale and large-scale for power generation or heat generation exist and are operating. In 

particular FBC technology due to its intrinsic characteristics appears an interesting solution for 

poultry litter combustion, being able to cope with issues and challenges connected with the poultry 

litter combustion. 

 

The techno-economic analysis required to build an articulated model to simulate the poultry farm 

energy requirements, the FBC and the CHP characteristics, the overall system layout and the single 

hour operation settings during the year. In particular for the latter, two scenarios were considered: the 

Heat Driven (HD) case where the CHP plant is regulated in order to follow exactly the poultry farm 

heat demand and the “Choice” case (CH) where priority is still given to the heat demand but it is 

possible to increase the electricity generation if economically favoured. 

The results obtained from the simulation have highlighted some interesting economic outputs: the 

NPV has resulted in a positive value for all the reviewed CHP technologies at the end of the 20 years 

period considered for the investment and above 1.3 million euro in all the operative methods; the PB 

period and the DPB period results obtained were economically appealing, ranging between 3.3 and 

3.9 years and 4 and 4.8 years in both the scenarios analysed, respectively; the IRR (considered for a 
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five years period) reached values between 9.52% and13.13% in the HD scenario and between 11.36% 

and 14.87% in the CH scenario. 

 

Benefits from the plant operation are also derived from the evaluation of the environmental impacts.  

The analysis has taken into account only the CO2 emissions avoided (studies regarding additional 

impacting categories can be found in literature). CO2 savings achieved by burning a biomass source 

instead of LPG reached values of 621.77 tons/year for the model considered; furthermore, reduced 

electricity dependence from the grid entailed additional savings, which depending on the CHP unit 

and the scenario adopted, ranged between 169.37 to 313.61 tons per year. 

 

Dependences of economic parameters with the variation of the set temperature inside the poultry 

houses, the litter cost and the investment costs were also assessed in order to understand their 

influence on the economics of the system: all of the cases showed non-negligible impact on the 

economic results. For this reason and for the number of hypothesis adopted in all the analysis 

procedure, in order to improve the model adherence to real conditions, it is suggested to: 

 

 Implement real data for the poultry farm model: this include among other things upgrade 

structure characteristics, ventilation requirements, control systems, lighting requirements, 

birds density and poultry litter production; in this way it is possible evaluating with more 

accuracy the heat and electricity demand for the poultry houses; 

 Establish a properly baseline scenario or business as usual conditions for the farm energy 

requirements; 

 Incorporate parameters taking into account health and comfort conditions for the birds (which 

can affect the economic results of the analysis); 

 Implement real data for the FBC system from the existing and operative small-scale plants 

and improve CHP units configuration in off-design operation; 

 Analyse in more detail the parasitic energy consumption (derived from the dissipative circuit, 

from the fuel feeding system, etc.) and the system configuration between the co-generative 

unit and the poultry farm;  

 Implement more accurate data for the investment costs and the operative costs (integrate LPG 

consumption in start-up operation for example) and integrate the assumptions with real trend 

in electricity tariffs and LPG costs; 

 Evaluate poultry litter costs with accuracy in case of import necessities; 

 Consider the opportunity of selling ashes as fertilizer (in this case ashes could represent 

another source of revenue). 
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In the end, the results from the techno-economic analysis and the technology review show that small-

scale FBC systems for producing heat and electricity based on poultry litter are feasible projects, 

attractive considering both the economic and the environmental aspects. Further research must be 

carried out in order to further understand the technical and economic aspects of the overall benefits 

achievable with this technology deployment. 

It is furthermore fundamental to monitor the development of relevant policies and regulations 

including: tighter restrictions on manure spreading limits, CO2 and pollutant emissions. More severe 

regulations on manure management for environmental and health safety reasons can play a primary 

role in this technology development. 
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