
Università degli Studi di Padova

Dipartimento di Matematica “Tullio Levi-Civita”

Corso di Laurea Magistrale in Informatica

Enforcing fairness in graph representation
learning

Tesi di Laurea Magistrale

Relatore

Prof.Nicolò Navarin

Laureando

Federico Caldart

Anno Accademico 2021-2022

Federico Caldart: Enforcing fairness in graph representation learning, Tesi di Laurea
Magistrale, © Luglio 2022.

Acknowledgements

Working on this Master’s thesis have been a great experience. Writing this last docu-
ment made me realize that every objective is achievable, provided enough commitment.
However, I know that I would not be here without all the support I received in those
last years.

I am deeply grateful to my supervisor Prof. Nicolò Navarin, that guided me in
every phase of this work, motivating me and teaching me many things that not every
professor would have been able to transmit; in this regard, I would like to underline
how involving me in the writing of the paper "Biased Edge Dropout in NIFTY for Fair
Graph Representation Learning" have been an incredible and profoundly instructive
opportunity.

I would like to extend my sincere thanks to all my friends that believed in me and
have been by my side in the last three years; a special mention must go to my group,
"Trattore" that always made me feel proud of myself. Thanks to Alberto, Davide and
Giovanni for the help and the wonderful moments shared in the last years, for me
you’ve been more than classmates and found a place in my heart.

Finally, a special thanks to all my family, that let me continue my university career
and believed in my potentialities. A special thanks to my brother Eugenio: maybe you
do not know it, but your presence has always motivated me.

Padova, Luglio 2022 Federico Caldart

v

Abstract

As the representations output by Graph Neural Networks are increasingly employed in
real-world applications, it becomes important to ensure that these representations are
fair; graph embeddings can in fact encode potentially harmful social biases, such as
the information that women are more likely to be nurses, and men more likely to be
bankers. This work explores and enforces state of the art methods to mitigate this
bias and produce fairer representations of real world graph data while maintaining a
good classification accuracy.

vii

Contents

Acknowledgements v

1 Introduction 1

2 Background 5
2.1 Machine Learning . 5

2.1.1 Supervised learning for classification 6
2.1.2 Artificial Neural Networks . 7

2.2 Graphs . 9
2.2.1 Formal definition and notation 10

2.3 Learning on graphs . 11
2.3.1 Graph representation learning 11
2.3.2 Node classification . 13
2.3.3 Graph Neural Networks . 15

2.4 Algorithmic fairness . 18
2.4.1 Group fairness . 21
2.4.2 Individual fairness . 23

2.5 Applying fairness . 25

3 Related works 27
3.1 Nifty . 28
3.2 Fairdrop . 29
3.3 FairRF . 30
3.4 Other works . 31

4 Proposed methods 33
4.1 Biased edge dropout . 34
4.2 Biased attribute perturbation . 36

5 Experimental evaluation and discussion 39
5.1 Datasets . 39
5.2 Experimental setup . 40

5.2.1 Baselines and configurations . 41
5.3 Metrics . 41

5.3.1 Area under the curve . 41
5.3.2 Fairness metrics . 42

5.4 Results . 42
5.4.1 GCN and linear regression models 42
5.4.2 Biased attribute perturbation 45

ix

x CONTENTS

5.4.3 Biased edge dropout . 52
5.4.4 Combining the methods . 56

6 Conclusions and future works 59

Bibliography 61

List of Figures

2.1 Perceptron with linear activation function sign(·) 8
2.2 Two different representations for the same feedforward neural network. 9
2.3 Zachary Karate Club Network - represents the friendship relationships

between members of a karate club . 10
2.4 Two examples of tasks on graphs: (a) node regression; (b) graph classifi-

cation. 11
2.5 Illustration of the encoding-decoding process and downstream tasks. . 12
2.6 Message passing process. Given an input graph (a), GNN predicts

the label of the target node (e.g., the blue node) by aggregating the
information from neighboring nodes (b). 16

5.1 ROC and AUC example . 42
5.2 Correlation matrix for Bail dataset. 46
5.3 Correlation matrix for credit dataset. 47
5.4 Correlation matrix for German dataset. 48
5.5 Plotted single results for biased attribute perturbation for SP (a) and

EO (b) on german dataset . 51
5.6 Plotted single results for biased attribute perturbation for EO on credit

dataset . 51
5.7 Plotted single results for biased edge perturbation EO on bail dataset 55
5.8 Plotted single results for biased edge perturbation SP on German dataset 55

List of Tables

2.1 Credit loan toy example . 22
2.2 Credit loan toy example 2 . 23
2.3 Different fairness notions . 25

xi

xii LIST OF TABLES

5.1 Datasets details . 40
5.2 Backbone GCN w and w/out sensitive attribute with German dataset 43
5.3 Backbone GCN w and w/out sensitive attribute with Bail datasets. . 43
5.4 Backbone GCN w and w/out sensitive attribute with Credit datasets. 43
5.5 Linear regression w and w/out sensitive attribute with German dataset 44
5.6 Linear regression w and w/out sensitive attribute with Credit datasets 44
5.7 Linear regression w and w/out sensitive attribute with Credit datasets 44
5.8 Comparison between NIFTY (gray rows) and biased attribute perturba-

tion on German dataset. 50
5.9 Comparison between NIFTY (gray rows) and and biased attribute

perturbation on Bail dataset. 50
5.10 Comparison between NIFTY (gray rows) and and biased attribute

perturbation on Credit dataset. 50
5.11 Comparison between NIFTY (rows with δ = 0) and biased edge dropout

on German dataset. 53
5.12 Comparison between NIFTY (rows with δ = 0) and biased edge dropout

on Pokec dataset. 53
5.13 Comparison between NIFTY (rows with δ = 0) and biased edge dropout

Bail dataset. 54
5.14 Comparison between NIFTY (rows with δ = 0) and biased edge dropout

on Credit dataset. 54
5.15 Comparison between NIFTY (rows with δ = 0) and the combination of

our methods on German dataset. 57
5.16 Comparison between NIFTY (rows with δ = 0) and the combination of

our methods on Credit dataset. 57
5.17 Comparison between NIFTY (rows with δ = 0) and the combination of

our methods on Bail dataset. 57

Chapter 1

Introduction

Since their invention, programmable computers have been helping humans reduce
effort and time in solving problems that are easily and formally translatable into an
algorithm: a sequence of instructions to execute in order to transform a given input
into an expected output. An example is sorting, where the input is a set of numbers
and the output is their ordered list: there are various and different approaches to solve
this task, but all of them can be precisely expressed as a succession of well-defined
actions that will, in the end, produce the desired result.
However, many tasks are too complex to be formally and mathematically defined to
be understandable by a machine, even if very intuitive to solve by humans. Let’s take
two opposite examples to make it more clear: a modern pocket calculator can easily
solve any arithmetic operation because it can be defined as a fixed sequence of steps;
on the other hand, how can a machine identify a crime by for example looking at a
photo? If we are offered a picture of a person pointing a gun at a cashier, we would
probably think that the person is trying to rob the content of the cash register, because
in our head we associate the scene with a stealing attempt. However, if we think
about it, it’s not intuitive how to describe the process that our mind automatically
performs when looking at the image; in fact, our ability comes from a continuous
and subjective process of learning that made us able to recognize objects and situations.

Therefore, the key concept here is to come up with methods to teach a computer
how to learn: a pocket calculator does not learn at all, in fact, every time we press the
square root button the computation will be the same and it will always take the same
time to be executed; a camera, to be able to correctly recognize a different crime, must
learn to distinguish people, postures, weapons, places, etc. The approach must then
be different: we have to allow computers to learn from experience, by providing many
data that will make the machine understand the world in terms of concepts and their
relations.

Luckily, with the advances in technology, we now have the ability to store and
process large amounts of data that permitted the development of complex Machine
Learning (ML) systems that can effectively achieve or even surpass human performance
in many real-life tasks; as a consequence, the last decade has seen an escalation of
diverse applications to which machine learning is applied: those models are nowa-
days used to filter loan applications, bail decisions, school admissions, and many
more decisions. Then an important question arises: is it safe to let machines take

1

2 CHAPTER 1. INTRODUCTION

a particular outcome only basing their knowledge on past and already seen data?
The answer is, unfortunately, that the high-performance level allows these models to
also inherit human biases hidden in the data: generally speaking, in ML, bias is any
disproportionate inclination towards or against an idea, that influences the behavior
and results of an algorithm. Since data are created, refined, or generated from humans
or from historical records that codify previous human decisions, beliefs, ideas, ways of
thinking and prejudices can all be injected into the datasets, even unconsciously. As
an example, think about a chatbot created to be free to learn from whoever interacts
with it; even if it’s programmed to be extremely polite, if a group of people starts to
chat with racist or misogynistic language, it will learn a lot of dangerous and unethical
concepts that will use to interact with other people. Another very popular example of
racism in Artificial Intelligence is the issue with black people with face recognition:
it has been demonstrated that those systems work better with white men, even if
designed to recognize any face; that can happen, for example, because of unbalanced
data where the majority of faces are of white males or because the team that developed
the model is composed of all white men that unconsciously didn’t take in considerations
physiognomic characteristic of females and black people. Or think about a machine
designed to support judges in court; imagine that all historical sentences starting from
the early 1900s are fed to the algorithm to learn from: the machine could learn that
Jews or black people should be almost always judged guilty, because of a lot of old
examples with that result.
It is then clear that when the decisions of these models may affect people’s lives
we cannot allow these biased behaviors, because they would produce unwanted and
unethical discrimination. In particular, we would like our models to be fair, namely
to treat equally different subgroups of the population based on characteristics such
as gender or ethnicity (like in the previous examples), referred to as sensitive attributes.

The problem is even more challenging when the input data is complex (e.g., graphs)
and back-box models such as Graph Neural Networks (GNNs) need to be employed to
achieve satisfactory performance. GNNs, as the name suggests, are algorithms designed
to work with graphs; a graph is a complex structure, useful to represent all those
data that can be viewed as network entities connected by some sort of relationships,
depending on the context. the two fundamental elements of a graph are nodes, i.e.
individuals, items, and entities for which we have a set of characteristics, referred to as
attributes, and edges, i.e. connections between nodes. A straightforward example is
social networks, that can be modeled as graphs where nodes represent people, attributes
are all the characteristics of a person, like her age, gender, country, etc and edges are
the friendship relationships between those people.
GNNs in particular learn by aggregating information from neighbor nodes: in the
example of social networks, nodes tend to connect to other nodes with similar attributes,
leading to denser connectivity between nodes with the same sensitive attributes (e.g.,
gender) Thus, a model that learns from those data may highly correlate with people
because of shared sensitive attributes; this can cause discrimination even when the
sensitive attributes are not directly used or increase it with respect to other models
that do not use neighbors’ information.

After a review of state-of-the-art models, we noted that different methods have been
proposed in the literature to learn fair graph node representations, mainly including
additional terms in the loss function to account for some definition of fairness, or
perturbing the graph topology in a biased way. As a representative of the first family

3

of methods, NIFTY [1] proposes that some of the additional terms can be based on
perturbing the input data such as node attributes (including the sensitive attribute)
or graph topology. The latter methods are based on the intuition that GNNs tend to
smooth the learned representations of connected nodes, and if the graph shows high
homophily with respect to the sensitive attribute (i.e., nodes with the same value for
the sensitive attribute tend to be connected), the GNN may introduce inequalities in
the learned representations, because aggregating information of neighbor nodes may
induce the model into learning that people that share the same sensitive attributes are
always similar, even if they share very few other characteristics.
This thesis proposes to unify the two families of approaches, using NIFTY as a baseline.
We first concentrate on modifying the approach used to perturbate the graph topology
by following and adapting the intuition given by FAIRDROP [70]. Then we focused
our attention on node attributes perturbation: after running experiments with and
without sensitive attributes, we noted, as expected, that removing them wasn’t enough
to sensibly reduce the unfairness in the solutions found by the models, even when
not considering arcs, so not taking in account the information provided by the graph
structure. Then, following the idea of FairRF [79], we modified NIFTY’s attribute
perturbation by considering the correlations with the sensitive one. Experimental
results on four real-world datasets show that our proposal can improve different fair-
ness metrics compared to the original NIFTY formulation while maintaining the same
computational complexity and the same level of predictive performance.

This thesis is structured as follows. Chapter 2 describes the background needed
to better understand the concepts covered in the following ones; in particular, it
gives an introduction to machine learning, deep learning and Neural Networks (NNs),
graphs, and fairness issue with motivations, followed by a more detailed description of
related works. Chapter 3 describes initial and state-of-the-art methods used to learn
on graphs. Chapter 4 reports our contribution in terms of modified models and chapter
5 reports experimental results with relative discussion. Finally, chapter 6 sums up
the contribution of this work and proposes future works to possibly extend the results
obtained by us.

Chapter 2

Background

This chapter will introduce and describe all the knowledge needed to fully understand
what this thesis is about. It starts from a general definition of Machine Learning to
the more specific setting of learning on graphs, which is one of the main topics of this
thesis, and it ends with a section entirely dedicated to fairness in machine learning,
explaining what motivated us to focus on that subject and its importance in the field
of Artificial Intelligence.

2.1 Machine Learning
Artificial intelligence (AI) is a thriving field with many practical applications and
active research topics whose main goal is to create intelligent software to automate
time and mind-consuming tasks; its straight-forward application is to solve problems
intellectually difficult for humans, but easily definable in a formal mathematical way
that is understandable by computers. Instead, if we think about tasks that our mind
is able to compute with ease, like for example recognizing a face, classifying the topic
of a document, or identifying entities (places, names, etc) in a phrase or an image, it’s
challenging to understand how to formalize the problem in a way that is understandable
from a computer, since we learned how to do it by growing and making experience.
The real challenge then comes when it’s not possible to exactly formalize the problem,
when there is a certain level of uncertainness on input or output and when the solution
is too complex or too inefficient. One of the first definitions of machine learning was
given by Arthur Samuel in 1959 :

"Machine learning is the field of study that gives computers the ability to
learn without being explicitly programmed"

In fact, machine learning allows us to tackle those issues by learning from experience
and understanding notions by their relation to simpler concepts with a hierarchical
view; a machine learning algorithm is able to adapt to the environment in which is
implemented while improving its performance w.r.t. a particular task. Data have a
fundamental importance in the learning process: the task is usually defined in terms
of how the system should process an example; an example is a set of features and is
typically represented as a vector x ∈ Rn where each entry xi of the vector is a feature.

5

6 CHAPTER 2. BACKGROUND

For example, the features of a node representing a user in a graph are all the attributes
associated with that user (e.g. gender, age, education, location, etc) and the relations
it has with other nodes in the graph (i.e., edges).

There are many different tasks that can be solved with machine learning: classifi-
cation, regression, transcription, machine translation, anomaly detection, sampling,
denoising, image or example generation, etc. This work will focus on classification and
in particular on binary node classification; more details will be given in section 2.3.
Any task for which machine learning is applied follows a fundamental assumption on
data:

"There is a stochastic process which explains observed data. We do not
know the details about it but we know it is there!"

Hence, the common goal of any machine learning system is to build good approxi-
mations of this process.

Data and task also influence what kind of experience an ML algorithm is allowed
to have during the learning process; there are two main branches of machine learning:

∗ Supervised learning: data are presented as a set of (x, y) pairs as training
set, where x is a sample with its features and y is the corrected output, also
called target. A supervised learning algorithm exploits the knowledge about the
target to infer a function able to predict y given a new x, typically estimating
the probability distribution P (x|y). Depending on the target possible values, a
supervised learning system can have different kinds of outputs: binary, multiclass,
multilabel, and regression.

∗ Unsupervised learning: data in the training set are presented without labels,
so there is no target y. In this case, the goal is to identify useful patterns and
properties of the structure of the dataset, so as to infer the prior probability
P (X). There is no instructor or teacher, so the model must learn to make sense
out of the data only; an example is clustering, where the objective is to group
examples into different sets, based on the values of their features.

However, the two settings are not completely separated; there is in fact a variant
called Semi-supervised learning, where some examples include a known target
while other don’t. In this case the dataset X can be divided into two parts: the
points Xl := (x1, ..., xl) for which labels Yl := (y1, ..., yl) are provided, and the points
Xu := (xl+1, ..., xu) for which labels are unknown.

It is not straightforward to define which setting this work fits in because of the
atypical nature of graphs and node classification, which blurs the boundaries between
standard approaches; more details and motivations will be given in 2.3.2, but as for
now we can consider the supervised learning setting.

2.1.1 Supervised learning for classification
This section defines more specifically the supervised setting for the classification task.
The goal is to learn a mapping from inputs x to outputs y, where y ∈ 1, ..., c, where c

2.1. MACHINE LEARNING 7

is the number of classes: when c = 2 then the task is called binary classification and
we assume y ∈ 0, 1; when c > 2 then the task is called multiclass classification. There
are also cases in which a single example could be classified with more than one class
and we call it multi-label classification, or multiple output model if viewed as predicting
multiple paired binary class labels: for example, one can be tall or short and female or
male.
The problem can be formalized as approximating a function f̂(x) = ŷ to make predic-
tions on inputs not seen before (test set), the idea comes from the assumption that
f(x) = y for an ideal and unknown f .
From a probabilistic point of view, this is the same as assuming that the set of pairs
(x, y) are generated according to a probabilist function P (x, y) = P (x)P (y|x), so the
goal is to estimate the probability P (y|x): in the case of binary classification, it is then
sufficient to consider P (y = 1|x), since P (y = 1|x) + P (y = 0|x) = 1.
To consider the model able to generalize for unseen data and to describe the data
generating process with a probability distribution over a single example, i.i.d assump-
tions are made: examples in the dataset are statistically independent from each other
and are identically distributed. In section 2.3 we will see why this assumption is not
entirely true in the context of learning on graphs for the reasons already introduced at
the end of the previous section.

2.1.2 Artificial Neural Networks

Artificial Neural Networks (ANNs) or Neural Networks (NNs) are among the most
effective machine learning methods currently known. Historically, two were the mo-
tivations that inspired the research in NNs: the first, biological, was the purpose of
reproducing human brain behavior, by creating very complex webs of interconnected
neurons; the second was the attempt to extract the fundamental principle of calculus
and the goal of obtaining highly effective machine learning algorithms, independently
from the biological correlation.
An ANN is not in itself an algorithm, but rather a system consisting of interconnected
simple units that compute nonlinear (numerical) functions, where each unit takes a
number of real-valued inputs (possibly the output of other units) and produces a single
real-valued output. Those single units are called artificial neurons since they vaguely
model neurons in a biological brain: connections between units work like real synapses,
sending signals between neurons; adjustable weights are associated with connections
among units and are modified in the training process: the weight increases or decreases
the signal strength of the connection.
The first and most common artificial neuron is the perceptron, invented in 1943 by
McCulloch and Pitts [50] and implemented for the first time in 1958 at the Cornell
Aeronautical Laboratory by Frank Rosenblatt [63]. The perceptron is a learning
algorithm for binary classification, that is, a function that maps its input x ∈ Rn in an
output value o(x), with o(x) = 1 if the result is greater than some threshold and -1
otherwise. More precisely, o is defined as:

o = f(wTx+ b) (2.1)

Where w ∈ Rn is the vector of learnable weights, b is called bias, is independent
from the input and can be used to translate the decision boundary; it can however be
incorporated into the vector w, consequently adding an element with value 1 in the
input vector x. The threshold is determined by a function f(·), that can be defined as:

8 CHAPTER 2. BACKGROUND

f(x) =

{︄
1, if x > 0

0, otherwise
(2.2)

This function corresponds to the function sign(·), which simply returns the sign of
its input and the model is represented in figure 2.1. In this setting, a single perceptron
can then be used to represent many boolean functions, but only if the examples are
linearly separable. In fact, non-linear element-wise transformation are mostly used
as activation functions (sigmoid, ReLu, etc).

Figure 2.1: Perceptron with linear activation function sign(·)

Furthermore, a single perceptron has not enough capacity to represent complex
functions, since it can only express linear decision surfaces. The solution to this
limitation is the use of feedforward neural networks that aggregate multiple
neurons in groups called layers, with each element linked to every element of the
previous layers with an adjustable weight to form a network. The idea is that by
stacking multiple layers we can compose and compute different functions, for example,
a network with 4 layers can be seen as:

f(x) = f (3)(f (2)(f (1)(x))) (2.3)

In the equation 2.3, f (1) and f (2) are the hidden layers, that represent internal
variables and f (3) is the output layer. We can derive from this formulation that
each layer is a function of the preceding one, that is fed into it, as shown in figure
2.2; to define the network the same way as we did for the single perceptron, we use
the notation h(i) to identify the i-th layer output and g(i) to identify the activation
function for the i-th layer:

h(1) = g(1)(W (1)Tx+ b(1)),

h(i) = g(i)(W (i)Th(i−1) + b(i))
(2.4)

This architecture explains why they are called forward neural networks: information
flows through the function being evaluated from x, through the intermediate computa-
tions used to define h, and finally to the output; There are no feedback connections

2.2. GRAPHS 9

in which outputs of the model are fed back into itself. The number of layers (i.e.,
the depth of the network) and hidden units (i.e., the width of the layers) are two
hyperparameter that do not depend directly on the problem but must be tuned to
get the best results for the selected performance measure. Deeper networks tend to
have fewer parameters and to generalize better but are also harder to train, but work
better than shallow ones only if the function to learn can be expressed as a composition
of simpler functions. Moreover, the universal approximation theorem [28] says
that a feedforward network with (at least) one hidden layer and a linear output can
approximate any continuous function with a tolerance up to a small value ϵ at will; in
the worst case, an exponential number of hidden units is needed, but deeper models
may reduce that number.

Figure 2.2: Two different representations for the same feedforward neural network.

2.2 Graphs

Graphs are a ubiquitous data structure for describing complex systems. In the most
general view, a graph is simply a collection of objects (i.e., nodes), along with a set of
relations (i.e., edges) between pairs of these objects.
An example is encoding a social network, where nodes can represent individual users
and edges represents the friendship relationship between them (2.3); or in e-commence,
a graph can define users and products as nodes and the interactions between them as
edges; another popular example is in the biological domain where nodes can represent
proteins, and edges represent various biological interactions between them.

Graphs are a powerful formalism because they do not only focus on the properties of

10 CHAPTER 2. BACKGROUND

Figure 2.3: Zachary Karate Club Network - represents the friendship relationships between
members of a karate club

individual examples (i.e., node attributes) like standard machine learning approaches,
but also on the relationships between those examples. Another important characteristic
is that their usage is not restricted to a close set of domains, since as said before in
several settings it is natural to represent data as graphs, e.g. with social networks,
interactions between drugs and proteins, interactions between atoms in a molecule, or
the connections between terminals in a telecommunications network.

Graphs also offer a mathematical foundation that we can use to analyze, understand,
and learn from all those real-world complex systems. With the advent of large-
scale social networking platforms, databases of molecule graph structures, billions
of interconnected devices, etc, there is no shortage of meaningful graph data for
researchers to analyze.

2.2.1 Formal definition and notation

Before discussing how machine and deep learning can be applied to graphs, it is
necessary to provide some formal definitions.

Definition 2.1. (Graph) A graph G = {V,E,X, s} is defined by a set of nodes
V = {v0, ..., vn−1} and a set of edges E ⊆ V × V between these nodes, X ∈ Rn×d is
the matrix of non-sensitive attributes, and s ∈ {0, 1}n is the vector associating a value
for the binary (for sake of simplicity) sensitive feature of each node. We denote an
edge going from node u ∈ in V to node v ∈ V as (u, v) ∈ E. We define A ∈ Rn×n

as the adjacency matrix of the graph: we order the nodes in the graph so that every
node indexes a particular row and column in the adjacency matrix, so its elements
ai,j = 1 ⇐⇒ (vi, vj) ∈ E. With N (v) we denote the set of nodes adjacent to node
v. Let also D̃ ∈ Rn×n be the diagonal degree matrix where dii =

∑︁
j aij , and L the

normalized graph Laplacian defined by L = I− D̃
− 1

2AD̃
− 1

2 , where I is the identity
matrix.

In our case edges are all undirected, i.e., (vi, vj) ∈ E ⇐⇒ (vj , vi) ∈ E, so A will
be a symmetric matrix, but a graph can also be directed (i.e., edge direction matters);
in this case A will not necessarily be symmetric. Some graphs can also have weighted
edges, where the entries in the adjacency matrix are arbitrary real-values rather than
{0, 1}. For instance, a weighted edge in a protein-protein interaction graph might

2.3. LEARNING ON GRAPHS 11

indicate the strength of the association between two proteins. This work only focuses
on unweighted edges setting.

2.3 Learning on graphs
Taking again the example of social network data, the single data “points” (i.e., users) are
closely interrelated, and not explicitly representing such dependencies would inevitably
lead to an information loss. Thus, it clearly is important to come up with methods to
efficiently exploit the structural information.
Machine learning is a problem-driven discipline, where models are usually categorized
according to the type of task they seek to solve, as seen in section 2.1. Working
with graphs makes no difference, but the standard categories, i.e.,supervised and
unsupervised learning are not exactly the most suited when it comes to graph data.
There are two main tasks that we may want to pursue (see figure 2.4):

∗ Predict some property over entire graphs (e.g. graph classification); in this case,
supervised learning is ok;

∗ Predict property over the nodes and/or edges of a single, large graph (e.g. node
classification, link prediction);

(a) Node-level predictions. (b) Graph-level predictions.

Figure 2.4: Two examples of tasks on graphs: (a) node regression; (b) graph classification.

In any case, learning on graphs can be difficult in general for two main reasons:

1. Graph Isomorphism: a graph G1 = (V1, E1) is isomorphic to G2 = (V2, E2)
if there exists a bijiective mapping f : V1 × V2 such that ∀(v1, v

′

1) ∈ E1 ⇐⇒
(f(v1), f(v

′

1)) ∈ E2.

2. Subgraph Isomorphism: a subgraph G2 = (V2, E2) of G1 = (V1, E1) is a
graph for which V2 ⊆ V1, E2 ⊆ E1 ∩ (V2 × V2).

The model learning result must in fact be invariant to the way the graph is
represented (i.e., in which order and how nodes and edges are presented); in fact,
graphs that are isomorphic should induce the same function over their nodes.

2.3.1 Graph representation learning
When learning on graphs the general and main goal is to obtain a sufficiently rich
embedding of the graph and of each node that is able to capture attribute information

12 CHAPTER 2. BACKGROUND

as well as structural properties of the input data. In other words, we want to project
(or encode) nodes into a latent space where relationships in this latent space correspond
to relationships (e.g., edges) in the original graph [27].
While many methods have been studied and implemented in literature, we can unify
them all in an encoder-decoder framework [23]; in this framework, the encoder maps
each node to a low-dimensional embedding, and a decoder decodes structural infor-
mation about the graph from the encoded embedding: if a model is able to decode
high-dimensional graph information from the low-dimensional representation, then
these representations should contain all the necessary information needed for the
more specific downstream task. As an example, a decoder might predict the existence
of edges between nodes or nodes labels, taking as input their embeddings (see figure 2.5).

Figure 2.5: Illustration of the encoding-decoding process and downstream tasks.

This work will focus on deep NN-based models that provide an end-to-end solution
to both representation learning and different downstream tasks, but for the sake of
completeness we cite two traditional families of approaches used in literature:

∗ Factorization-based approaches follow the idea that decoding local graph structure
from a node’s embedding can be the same as reconstructing the entries in
the adjacency matrix; matrix factorization is used to learn a low-dimensional
approximation of node-node similarity that captures some user-defined similarity
notion. This can be done with the Laplacian eigenmaps technique [4] or with
inner-product methods [8], [2];

∗ Random walk approaches adapt inner-product technique to use stochastic mea-
sures of similarity [31]

A popular example of random walk approach is node2vec [20]. The algorithm
transposes the procedure used in word2vec in the context of graphs; word2vec is an
algorithm used to perform word embedding, i.e., to transform words in a numerical
representation (vector). The main feature of word2vec is its ability to group together
vectors of similar words by adopting the skip-gram architecture, It is implemented as a

2.3. LEARNING ON GRAPHS 13

NN trained on pairs of consecutive words selected over a rolling window in a text; once
trained, the network will yield a probability that indicates the similarity between a
target word and other words in the corpus, i.e., the probability of being near in the text.

Graphs are however not linear structures, so the sliding window technique cannot
be applied. Node2vec proposes a procedure to sample neighborhoods of a given source
node v that are not restricted to just immediate neighbors, by employing a biased
random walk procedure to explore neighborhoods. Formally, a random walk starting
from a node v is a list of nodes of length l, where each node vi is generated by the
following distribution:

P (vi = a|vi−1 = b) =

{︄
πb,a if (b, a) ∈ E

0 otherwise
(2.5)

Where πb,a is the unnormalized transition probability between nodes b and a and Z is
the normalizing costant.

Node2vec modifies πb,a by introducing two parameters p and q that control how
fast the walk explores and leaves the neighborhood; more specifically, p controls the
likelihood of immediately revisiting a node in the walk, while q controls how the
procedure is inclined on visiting further nodes. Formally, the unnormalized transition
probability is set to πb,a = αpq(t, a) ∗ wba, where:

αpq(t, a) =

⎧⎪⎨⎪⎩
1
p if dta = 0

1 if dta = 1
1
q if dta = 2

(2.6)

The algorithm uses this procedure to extract a set of random walks from the input
graph, that are then fed into the skip-gram model to generate the embeddings.

However, traditional methods do not leverage node features in the encoding process,
while many graphs do have informative features associated with the nodes; moreover,
those methods are inherently transductive, i.e., they can only generate embeddings for
nodes observed during the training process and cannot generalize for unseen nodes.

2.3.2 Node classification
This work is defined in the context of the node classification task, so it is important to
reserve a section for it.

Let’s start with an example. Suppose we are given the task from an IT company
to identify suitable candidates for a machine learning job; we are given a large so-
cial network dataset with millions of users, but we know that most of these users
are actually web developers; identify those users would greatly reduce the candidate
search process. Manually examining every user to determine if they are ML specialists
would be prohibitively expensive, so ideally we would like to have a model that could
classify users as web developers (or not) given only a small number of manually labeled
examples.
This is a classic example of node classification, where the goal is to predict the label y
associated with all the nodes v ∈ V , when we are only given the true labels on a training
set of nodes Vtrain ⊂ V . Node classification seems to be the most popular machine
learning task on graph data: examples of node classification beyond social networks

14 CHAPTER 2. BACKGROUND

include classifying the function of proteins in the interactome and classifying the topic of
research papers based on hyperlink or citation graphs. Often, like in this work, we can
assume that we have label information only for a very small subset of the nodes in a sin-
gle graph (like in the example). However, there are also instances of node classification
that involve many labeled nodes and/or that require generalization across disconnected
graphs (e.g., classifying the function of proteins in the interactomes of different species).

Node classification appears then to be a straightforward variation of standard
supervised classification, where the only thing that changes is the type of data but,
as mentioned above, some considerations have to be made before categorizing some
graph learning methods in a standard setting.

The most important difference is that the nodes in a graph are not independent
and identically distributed (i.i.d.). In fact, when building standard supervised machine
learning models, we assume that each example in the data is statistically independent
of all the others; otherwise, we might need to model the dependencies between all our
input points. We also assume that the examples are identically distributed; otherwise,
we have no way of guaranteeing that our model will generalize to new inputs. Node
classification completely breaks this i.i.d. assumption, because we are instead modeling
an interconnected set of nodes. In fact, if we do not consider the relationships (i.e.,
edges) between nodes, we are missing some information that can be crucial to learn
the correct embeddings and predict the correct labels; moreover, sometimes relations
information can be more informative than nodes’ features: for example by exploiting
homophily, which is the tendency for nodes to share attributes with their neighbors in
the graph, we can more easily identify subgroups of users; as a concrete example, in
social networks, people tend to form friendships with others who share the same inter-
ests or demographics: based on the notion of homophily we can build machine learning
models that try to assign similar labels to neighboring nodes in a graph. Same thing for
heterophily, which presumes that nodes will be connected to nodes with different labels.

For this reason, node classification problems are often referred to as semi-supervised,
because when we are training node classification models, we usually have access to the
full graph, including all the unlabeled nodes. So we can still use information about the
test nodes to improve our model during training, also because test and train nodes
can potentially be connected, directly (they are neighbors) or indirectly (they share
some neighbors). We will now describe the process of applying GNNs in the node
classification task and will return to the question at the end of the section.

The standard way to apply GNNs to a node classification task is to train GNNs
in a fully-supervised setting, where we define the loss using a softmax classification
function and negative log-likelihood loss:

L =
∑︂

v∈Vtrain

−log(softmax(zv, yv)) (2.7)

Where we assume yv ∈ ZC is a one-hot vector indicating the class of the training
node v; with softmax(zv, yv) (remember that zv is the output of the last layer) we
denote the predicted probability that the node belongs to the class yv, computed using
the softmax function.

While training a GNN, we know that we have for sure the set of training nodes
Vtrain, that is included in the message passing as well as in the computation of the

2.3. LEARNING ON GRAPHS 15

loss, as seen in 2.7. However, we can also have another set of nodes that we can
identify as Vtrans (from transductives): for these nodes, the model does not know
the ground-truth labels, so they are not used in the loss computation, but they will
be involved in the message passing process along with their edges. So the GNN will
produce their hidden representations, but their final layer embedding will not be
used for the loss computation. Node classification with GNN can therefore be called
semi-supervised when Vtrans nodes are used to test the solution because they have also
been observed during training.

2.3.3 Graph Neural Networks

Graph Neural Networks (GNNs) are state-of-the-art methods for learning on graphs.
The main feature of a GNN is the use of a form of neural message passing in which
messages are exchanged between nodes and updated using neural networks. In this
framework, during each message-passing iteration, a hidden representation hi

v corre-
sponding to each node v ∈ V is updated including information from its neighborhood
N (v).

This process can be generally specified by trainable operators MSG, AGG, UPD [1]
and a typical layer is given by:

hk
v = UPD(AGG(MSG(hk−1

v , hk−1
vj)|vj ∈ Nv), h

k−1
v) (2.8)

In eq. 2.8, we can consider MSG as the message-passing operator between nodes
v and vj , AGG (typically a fully-connected layer) as the aggregation operator where
messages from Nv are aggregated, and finally, UPD (typically a non-linear activation
function) operator combines the aggregated message of neighbor nodes with the hidden
representation of the node produced at the previous layer to construct a new updated
representation. After running K iterations of the GNN message passing, we can use
the output of the final layer to define the embeddings for each node:

zv = h(K)
v ,∀v ∈ V (2.9)

See figure 2.6 for a high-level illustration of the process.
The basic intuition behind the GNN message-passing framework is that after the
first iteration (k = 1), every node embedding contains information from its 1-hop
neighborhood, i.e., every node embedding contains information about the features of
its immediate graph neighbors, which can be reached by a path of length 1 in the
graph; after the second iteration (k = 2) every node embedding contains information
from its 2-hop neighborhood; in general, after k iterations, every node embedding
contains information about its k-hop neighborhood.
The information encoded in this way can have two forms: structural and feature-
based. Examples: for the former, after k iterations of GNN (k) message passing, the
embedding hv of node v might encode information about the degrees of all the nodes
in v’s k-hop neighborhood; for the latter, after k iterations of GNN message passing,
the embeddings for each node also encode information about all the features in their
k-hop neighborhood.
Feature-based information propagation connects to the general idea behind convolution
on graphs, which is parallel with images convolution; in fact, in Convolutional NN
for images, for each entry in the hidden representation, the computed representation
depends on the corresponding input pixel and on the neighbors one [64]. However,

16 CHAPTER 2. BACKGROUND

whereas CNNs aggregate feature information from spatially-defined patches in an
image (i.e., defined by a filter), GNNs aggregate information based on local graph
neighborhoods; moreover, CNNs can only operate on regular Euclidean data like images
(2D grids) and texts (1D sequences) while graphs are non-euclidean data and it is hard
to define localized convolutional filters, which hinders the transformation of CNN from
Euclidean domain to non-Euclidean domain.

Figure 2.6: Message passing process. Given an input graph (a), GNN predicts the label
of the target node (e.g., the blue node) by aggregating the information from
neighboring nodes (b).

Early models and basic GNN definition

This section briefly reviews the history and early models of Graph Neural Network,
along with the first notion of GNN outlined in the literature.
In 1997, Sperduti et al. [69] first applied neural networks to structured data, including
directed acyclic graphs, proposing to generalize structures of a recurrent neuron able to
build a map from a domain of structures to the set of reals; thanks to weights sharing,
the same set of neurons is applied to each node in the graph, obtaining a representation
that is based not only on the features on the node but also on the representations
generated for its neighbors. Then, the first notion of GNNs was introduced by Gori
et al [19] and further elaborated by Scarselli et al [66]. In the same year, Micheli [53]
proposed the Neural Network for Graphs model. The formal definition is the following:

hk
v = σ(W

(k)
selfh

(k−1)
v +W

(k)
neigh

∑︂
vi∈N (u)

h(k−1)
v + b(k)) (2.10)

Where W
(k)
self , W

(k)
weight ∈ Rd(k)×d(k−1)

are trainable weight matrices and σ is an
element-wise non linear transformation; we first sum the contribution given by the
neighbors nodes, then we combine this information with the node’s previous embedding

2.3. LEARNING ON GRAPHS 17

using a linear combination and finally we apply the non-linear function.
The same definition can be rewritten in terms of the previously defined operators
(superscript omitted for notational brevity):

UPD(hv) = σ(Wselfhv +WneighAGG(MN (u))) (2.11)

with MN (u) denoting the message passing operation:

MN (u) = {MSG(hv, hvi)|vi ∈ N (v)} (2.12)

Those early and pioneer works have been grouped under the name Recurrent Graph
Neural Networks (RecGNNs) [75] since they exploit recurrent neural architectures.
Several years after, the approach followed by Micheli was independently proposed
in [13] under the name graph convolution. Before going into detail and describe some
of the most widely studied and adopted graph convolutions in literature, we briefly
introduce the derivation of spectral-based approaches, since many methods are applied
in the graph spectral domain instead of defining convolutions directly on the graph
topology.
Spectral approaches are theoretically based on graph signal processing [67],[9]. Let
us fix a graph G. Let x : V → R be a signal on the nodes V of the graph G, i.e. a
function that associates a real value to each node of V. In spectral methods, a graph
signal x is first transformed to the spectral domain by the graph Fourier transform F ,
then the convolution operation is conducted. After the convolution, the resulted signal
is transformed back using the inverse graph Fourier transform F−1. These transforms
are defined as:

F(x) = UTx (2.13)

F−1(x) = Ux (2.14)

Where U is the matrix of eigenvectors of the normalized graph Laplacian L (see
definition 2.1); the normalized graph Laplacian is real symmetric positive semidefinite,
so it can be factorized as L = UΛUT , with Λ a diagonal matrix of the eigenvalues.
The graph convolution of the input signal x with a filter f ∈ Rn is defined as:

f ∗G x = U(f̂ ⊙ x̂) = U((UT f)⊙ (UTx)) (2.15)

Where ⊙ denotes the component-wise product. With some reformulations, not
reported on this work but visible in , we obtain:

f ∗G x = UF̂UTx (2.16)

Where F̂ = diag(f̂). We can now design the diagonal matrix F̂ and thus the
spectral filter f. One way is by using polynomial parametrization on powers of the
spectral matrix ∆ [55]. What we obtain then is a filter with k+1 {Θ0, ...,Θk} learnable
parameters that can be formulated directly on the graph domain:

f ∗G x =

k∑︂
i=0

ΘiL
ix (2.17)

Spectral-based approaches follow this definition. The key difference between them
lies in the choice of the parametrization of the polynomial filter.

18 CHAPTER 2. BACKGROUND

Graph Convolutional Networks

Graph Convolutional Networks (GCNs) [41] modifies the approximation by Chebyshev
polynomials of the diagonal matrix of eigenvalues presented in [13], with a first-
order approximation and restraining the number of learnable parameters assuming
Θ = Θ0 = Θ1 to avoid overfitting. The convolution operator is then defined as:

f ∗G x = Θ(In +D− 1
2AD− 1

2)x = Θ(2In − L)x (2.18)

Using Θ(In +D− 1
2AD− 1

2) is numerically instable; to address this problem, GCN

adopts a normalization trick to replace it with D̃
− 1

2 ÃD̃
− 1

2 , with Ã = A + In and
D̃ii =

∑︁
j Ãij . Applying this convolution operator to a multivariate signal X ∈ Rn×r

and using m filters, a single graph convolutional layer is defined as:

H = D̃
− 1

2 ÃD̃
− 1

2XΘ. (2.19)

To obtain a GCN, several graph convolutional layer are stacked and interleaved by
a non linear activation function.
GCN is a spectral-based method, but can also be interpreted as a spatial-based method;
from that perspective, it can be considered as aggregating feature information from a
node’s neighborhood:

hv = ΘT (
∑︂

vi∈{N (v)∪v}

(D̃
− 1

2 ÃD̃
− 1

2)v,uxu)∀v ∈ V (2.20)

Other popular convolutional networks for graphs are:

∗ Graph Attention Networks (GANs) [72], that adopt a masked self-attention
mechanism to learn the relative weights between two connected nodes, weighting
differently the neighbors of a node.

∗ GraphSage [22], that adopts sampling to obtain a fixed number of neighbors for
each node, thus particularly suited to be used with large graphs;

∗ Graph Isomorphism Networks (GINs) [76], that were proposed to implement
Weisfeiler-Lehman (WL) graph isomorphism test.

2.4 Algorithmic fairness
Algorithmic fairness is one of the main topics in AI ethics; the definition of AI ethics
may vary because there are many and different ethical principles involved, but there
are five common themes across them [18]:

∗ Beneficence underlines the central importance of promoting the well-being of
people and the planet with AI;

∗ Non-maleficence refers to the prevention of infringements on personal privacy
and to security issues, in the sense that an AI should not harm any living being;

∗ Autonomy, the development of AI must not impact the freedom of human beings
to set their own standards and norms;

2.4. ALGORITHMIC FAIRNESS 19

∗ Justice says that AI and ML models should promote justice, trying to eliminate
any kind of discrimination, granting global and equal access to its benefits;

∗ Explicability indicates the availability of answers to the questions "how does (the
ML/AI model) work?" and "who is responsible for the way it works?", that refer
respectively to the principles of intelligibility and accountability.

With this categorization, fairness falls under the theme of justice as a principle
related to evaluating whether a decision is morally right; generally speaking, Algorithmic
Fairness deals with the problem of developing AI-based systems able to treat subgroups
(i.e. minorities) in the population equally.

These subgroups are typically determined by means of sensitive attributes, which
should not be taken into account for decision purposes; in other words, fairness is the
absence of any prejudice or favoritism toward an individual or group based on their
inherent or acquired characteristics. Examples of these attributes are gender, age,
ethnicity, and sexual or political orientation.

As an example, let’s take the problem of gender-based discrimination in ads studied
in [45]; the study involved an advertising campaign about STEM (science, technology,
engineering, and math) jobs, implementing an algorithm that has been designed to be
gender-neutral. Empirical results showed, however, that the ad was shown to more
than 20% more men than women, despite not targeting a specific gender; since a
recommendation algorithm improves itself by taking into account interactions with
recommended items, AI-based systems may exacerbate this disparity by recursively
learning that men tend to be more interested in STEM, consequently pushing towards
an increased disparity.
It is then very important to understand how to enhance ML models, with fairness
requirements. In fact, when these models take a decision in a human-oriented envi-
ronment (e.g. decide whether to hire, to grant a loan, or to release on bail - as said
earlier), it is ethically as well as legally discriminating to ground the choice on one or
more sensitive attributes.
Recently, much attention has been paid to the societal impact of AI, especially concerns
regarding its fairness. A growing body of research has identified unfair AI systems and
proposed methods to debias them, yet many challenges remain.
Even the European Commission has recently published a proposal for what is going
to be the first attempt ever to insert AI systems and their use in a coherent legal
framework [58]: the proposal explicitly refers to the risk of bias discrimination of AI
systems.

One can think that to determine if a model is fair or not, it is sufficient to define a
measure based on a popular definition of fairness, apply it to the results of the model
and check if it is satisfied. However, the process is not straightforward, especially if
it’s done without a clear explanation of why or how a particular approach was taken.
Selecting a fairness definition/approach means making trade-offs and these trade-offs
need to be documented in order to understand what an AI system is designed to do
and why. Moreover, from a technical perspective, adding more fairness constraints
places restrictions on an algorithm, resulting in lower accuracy. Also, the opaqueness of
(especially deep) machine learning models can make it challenging to actually measure
fairness.

In the last few years, an incredible number of definitions have been proposed,
formalizing different perspectives from which to assess and monitor fairness in decision-
making processes. The proliferation of fairness definitions is not per se an issue: it

20 CHAPTER 2. BACKGROUND

reflects the evidence that fairness is a multi-faceted concept, that can involve different
meanings and nuances, depending on the specific situation considered.
As is often the case with moral and ethical issues, conflicts are present between different
and typically equally reasonable positions, because underlying assumptions may be
subjective and derive from different philosophical points of view.

Before going into details and specifying the differences in fairness definitions and
how to measure them, we can identify which are the main sources of bias in a model:
most of the time, in data-driven models, bias is directly contained in data and their
collection, and can lead an algorithm to even amplify and perpetuate it (as seen in the
advertising example); there are also cases in which algorithms themselves are biased
due to particular design choices, such as the use of certain optimization functions,
regularizations, choices in applying particular statistical models on the data as a whole
or considering subgroups, and unfair exploiting of user interactions.

Bias in data can be divided into two groups:

∗ Statistical bias occurs when training data are not representative of the true
population; in other words, different groups may have different distributions of
values of their features, that can in turn be related in different ways to the true
label to which they are associated to. This can be caused by a selection bias, i.e.,
examples selected from the population comes from a non-random selection; or by
systematic measurement errors, i.e., the past measurement will differ from the
true measurement in the same direction or data can systematically miss for some
part of the population.
As an example, consider the task of predicting college performance based on high
school data. Suppose there is a majority population and a minority population.
The majority population takes the exam multiple times, reporting only the
highest score. The minority population does not. If we train a classifier without
considering the difference, to minimize overall error, if it can not simultaneously
fit both populations optimally, it will fit the majority population, because it is
more important to overall error [11].

However, even in samples perfectly representative of the population it may be
that some protected group happens to be a minority group: this is not the result
of errors or incorrect collection, but it comes from a true feature of the population
and it is actually one of the most popular sources of unfairness against minorities;

∗ Historical bias refers to past discrimination and inequalities. It occurs when
data truly represent the population (i.e., take into account minorities and there
are no collection errors), but reflects past biased decisions. In most cases, this is
due to a systematic favor/disfavor towards groups of people at the moment of
creating the target variable from which the model is going to learn, and we do
not refer to synthetic datasets, but to real data that, because they have been
classified by a human in a manual process, codify the subjective preference/way
of thinking of the judge and we cannot in general trust their objectiveness and
fairness.
An example is gender bias, which has a rather long history, and cannot simply be
exacerbated by involving new and updated data: think for example of income or
profession disparities that perpetuate even in modern days; trying online searches

2.4. ALGORITHMIC FAIRNESS 21

for "CEO" yield mostly images of white men, since senior positions are now
mostly occupied by men, because of historical discrimination against women [46].

Fairness definitions are often categorized into two different groups: statistical and
individual notions; the next sections will review both approaches and list some of the
most used metrics in each context.

2.4.1 Group fairness
Group fairness criteria are the most popular and suitable for the idea of algorithmic
fairness given in the previous section since they follow criteria that focus on equality
of treatment among groups of people.
Almost all group fairness definitions fall into three categories [3]:

∗ Independence requires the model prediction to be statistically independent from
the sensitive attribute;

∗ Separation allows correlation between prediction and sensitive attribute, to the
extent that is justified by the target, in the sense that if it is known that a group
is more likely to receive a negative outcome, then the fairness criteria is relaxed
to allow a disparity between groups, that is, however, proportional to the real
disparity of the ground truth. This is equivalent to requiring that the model has
the same false positive rate and false negative rate across groups identified via
the sensitive attribute. It has to be noted that this approach has the requisition
to completely trust the target label.

∗ Sufficiency is satisfied when the sensitive attribute and target variables are clear
from the context: the prediction contains all the information about the true label
and the sensitive attribute is not needed.

The following examples of fairness metrics (defined for a classification problem with
two classes) will help to better understand the three concepts.

Statistical parity

Statistical (or demographic) parity (SP/DP) is the most common metric used when
measuring group fairness in machine learning [77],[12],[6],[7],[79] and it is the main
representative of independence. Set ŷ ∈ 0, 1 the possible values for the prediction given
by the model and s ∈ 0, 1 the possible values for the sensitive attribute, SP can be
expressed as:

P (ŷ = 1|s = 0) = P (ŷ = 1|, s = 1) (2.21)

It can be interpreted as the requirement that the same positive prediction ratio is
given by the model, across the two groups [26].
A common variant is called conditional demographic parity, that given the existence of
a rating R for the classification task, also considers it, requiring that people in different
groups with the same rating R will have the same probability of getting a positive out-
come. As an example, if a company is hiring and wants to use an algorithm for doing it,
it may require that males and females will have the same probability of being hired, with
the condition of being equally skilled; one must however be really careful because the
variable that we are conditioning on (R) might itself be a source of unfair discrimination.

22 CHAPTER 2. BACKGROUND

Equality of opportunity

Equality of opportunity [25] was defined to solve two issues of DP. The first is that it
doesn’t always ensure fairness, since the notion permits to accept qualified (i.e., with
high ratings) people in one group while also accepting unqualified individuals in the
other, as long as the imposed threshold is reached; the second issue is that DP cannot
be applied in the learning process in cases in which the sensitive attribute is actually
correlated with the ground truth since it will result in a big performance drop in term
of the accuracy of the prediction.

Equality of opportunity is a representative of separation: it allows the prediction to
be dependent on the sensitive attribute, but only through the target variable; in other
words, it prohibits to use the sensitive attribute as a proxy for the ground truth, while
encouraging the use of features to allow to predict it. Formally, it is defined as:

P (ŷ = 1|s = 0, y = 1) = P (ŷ = 0|, s = 1, y = 1) (2.22)

That is, instead of considering positive rates, it requires the ratio of true positive
rate to be equal across the two groups, punishing the model to perform well only on
the majority.

Predictive Parity

Predictive parity [73] (also known as outcome test) is a representative of the last
category, sufficiency. It is satisfied if for both groups the probability that a subject
with a positive predictive value truly belongs to the positive class is the same. In other
words, the probability of a user with a good predicted score to actually have a good
score should be the same, so the precision should be the same across the two groups.
It is formally defined as:

P (y = 1|s = 0, ŷ = 1) = P (y = 0|s = 1, ŷ = 1) (2.23)

It should be noted that there are cases in which it is not possible to simultaneously
satisfy different fairness metrics, despite pursuing the objective of removing disparities
among the same two groups; let’s formulate a toy example to make it more clear.

Consider the problem of credit lending decisions, where we want to build a predictor
able to correctly classify individuals that will pay back their loan, under the constraint
of not using gender information in the decision process; in other words, we want a
model with high accuracy that does not discriminate on the basis of gender.

Group Male (s = 1) Female (s = 0)

Ground Truth (y) 1 0 1 0 1 1 0 0 1 1

Prediction (ŷ) 1 1 0 0 0 1 0 0 1 1

Table 2.1: Credit loan toy example

In Table 2.1 are reported ground truth and prediction of a hypothetic model for 10
individuals, divided into two groups by the sensitive feature gender ; a target label of 1
indicates that an individual will repay the loan, while 0 indicates the opposite. The
predictor has an accuracy of 7

10 = 70%.

2.4. ALGORITHMIC FAIRNESS 23

The probability of a man to be classified positively (PR) is P (ŷ = 1|s = male) = 3
6 =

50%; the same probability calculated for a female is P (ŷ = 1|s = female) = 2
4 = 50%.

As both groups have the same positive prediction ratio, DP is satisfied.

If we consider the true positive rate (TPR), we obtain P (ŷ = 1|s = male, y = 1) =
2/4 = 25% and P (ŷ = 1|s = female, y = 1) = 2/2 = 100%. As the TPR for for females
is greater than TPR for males, EO is not satisfied.

Finally, the precision of the two groups is P (y = 1|s = male, ŷ = 1) = 2/3 =∼ 33%
and P (y = 1|s = female, ŷ = 1) = 2/2 = 100% respectively for males and females, so
also PP is not satisfied.

Table 2.2 reports an example where EO is satisfied while PP and SP are not.

Group Male (s = 1) Female (s = 0)

Ground Truth (y) 1 0 1 0 1 1 1 1 1 1

Prediction (ŷ) 1 1 1 1 1 0 1 0 1 1

PR ∼ 83% 75%

TPR 75% 75%

Precision 60% 100%

Table 2.2: Credit loan toy example 2

2.4.2 Individual fairness

Individual fairness (IF) is embodied in the following principle: similar individuals
should be given similar decisions. This principle deals with the comparison of single
individuals rather than focusing on groups of people sharing some characteristics. On
the other hand, group fairness starts from the idea that there are groups of people
potentially suffering biases and unfair decisions, and thus tries to reach equality of
treatment for groups instead of individuals. The first attempt at defining an individual
fairness metric was given by Dwork et al. [16], roughly formalized as the constraint
that "similar individuals should be treated similarly" where similarity is defined with
respect to a task-specific metric that must be determined on a case-by-case basis. More
formally, he introduces the concept as a Lipschitz condition on the input and model
space:

distY (yî, yĵ) < L× distX(xi, xj) (2.24)

Where distY and distX denote a predefined and suitable distance metric in the
target and features spaces respectively. The objective is then to learn a function that
maps two examples in the input space that are close into two targets that are close;
in other words, similar examples have similar outcomes. An example of individual
fairness is fairness through unawareness.
A classifier satisfies fairness through unawarenes (FTU) if no sensitive attribute is
explicitly employed in the decision process: if two people have similar non-sensitive
features, they should be classified the same way. Despite being simple, it is not
straight-forward to assess. A possible metric is consistency:

24 CHAPTER 2. BACKGROUND

consistency = 1− 1

n
(

n∑︂
i=1

1|yî −
1

k

∑︂
xj∈kNN(xi)

yî) (2.25)

Where kNN(xi) indicates the k nearest neighbors of an example xi, calculated via
the selected distance metric. For each observation (xi, yî), it measures how much the
predicted decision yî is close to the outcome for the neighborhood of the example xi.
Sometimes this definition can however increase unfairness in the model: if for example,
a man has only other men in his neighborhood, then requiring the prediction to be the
same for all of them is equivalent to saying that all men should be classified with the
same value; in this case, even with consistency equal to 1, the model is not stopped
from using the sensitive attribute.

Another problem with FTU is that it does not consider possible correlations between
non-sensitive features and sensitive ones. For example in a particular dataset, it can be
that men and women have different values for some non-sensitive features because of
natural and legitimate differences between the two genders; in this case, the difference
in those features can be used as a proxy to derive the sensitive attribute even if it was
removed.

A common method used in literature to deal with correlations is to "clean" the
dataset to hide sensitive and related attributes in other features and takes the name
of suppression; this approach has however the main problem of the potential loss of
legitimate (i.e., useful for the accuracy on the downstream task) information that may
be intrinsic in features related to the sensitive one. An example of an approach that
tries to solve this last issue is projecting the features into an orthogonal feature space;
it may be however difficult to consider all possible feature interactions.

Although the semantics of these kinds of definitions can be more intuitively "right"
than statistical approaches to fairness, since "similar treatment" can be a reasonable
definition of fairness, there are various difficulties encountered when trying to implement
such appealing definitions. The main issue is that they require making a significant
assumption on the context in which the model has to be applied and on what distance
metric should be used to be really fair w.r.t the task, a process that often requires
help from a domain expert; moreover, there are cases in which two examples that are
similar are also similarly discriminated: an approach based only on IF can potentially
amplify the discrimination against those examples. This argument is studied in detail
in [17].

Therefore, using only IF measures to assess the fairness of a model can not be
sufficient; there are however studies that try to satisfy both individual and group
fairness simultaneously, by taking the best of both worlds. Kearns [37], for example,
proposes an approach that informally states that “on average, individuals in two groups
should be treated similarly if on average the individuals in the two groups are similar”.
Another example can be the integration of consistency in the implementing process of a
group-based fair model: if we have a trusted distance metric, appropriately calculated
without considering sensitive attributes, then we can use consistency to understand
if and how the model tends to move away examples that instead should be treated
similarly because sharing many values for the non-sensitive feature; this is especially
useful in black-box models that are hardly understandable.

2.5. APPLYING FAIRNESS 25

In any case, when trying to integrate IF measures, GF metrics should have a
stronger impact on the model because of the already cited problems that individual
fairness can introduce: current definitions of individual fairness metrics seems to be
more suitable to understand the behavior of a classification model from a different
point of view, rather than to directly assess the discrimination of its results. Table 2.3
summarizes the fairness definitions defined previously.

It must also be noted that often individual and group fairness definitions appear
to be in conflict; however, as demonstrated in [5], they do not always reflect different
principles, since they can instead answer the same question and follow the same
underlying assumption on what fairness should grant.
Moreover, in [16] has been demonstrated that both statistical parity and individual
fairness can be satisfied with the correct choice of distance measure.

Notion Satisfied if

Group fairness
Statistical parity Same positive prediction ratio

Equality of opportunity Same true positive prediction ratio

Predictive parity Equal precision

Individual fairness Fairness through unawareness No sensitive attribute used in the decisiond

Table 2.3: Different fairness notions

2.5 Applying fairness
Once a fairness definition is chosen, there are three main strategies to impose it in a
machine learning model [56],[51]: pre-, post- and in- processing.
Pre-processing refers to techniques to transform the input data before feeding them to
the machine learning model, in a way that can remove bias directly on data; this can
obviously be done only when the algorithm is allowed to modify the training data.
In-processing refers to techniques that operate on state-of-the-art models that are
known to have high accuracy, modifying their training procedure in order to remove
possible discrimination, typically by modifying the optimization function or by impos-
ing some constraints.
Lastly, post-processing refers to techniques applied after training a model that tries to
increase fairness on the given solution by reassigning labels based on a defined function;
in other words, it modifies posteriors to satisfy fairness constraints.

In the next chapter, we will review some state-of-the-art models and see some
examples of the different approaches.

Chapter 3

Related works

Recently, fairness transformed from a niche topic with a low number of papers produced
every year, to a major subfield of machine learning.
Moreover, modern Deep Learning techniques permit nowadays to create models that
are much more effective when operating with complex data such as graphs, by learning
directly from data; the problem is that this high performance on data also increases the
risk of inheriting human historical biases hidden in past data. Since the performances
of those models on graph data have increased pretty recently compared to models on
standard data, the literature is not as rich as it is for other settings, but there are some
works that should be cited.

Although not specifically talking about fairness, an early work on the topic comes
from a 2016 paper [74], in which the authors analyze whether moving to network-based
data from individual’s data could influence the result in credit scoring; the work deals
with the problem of introducing social contacts information in evaluating individual
creditworthiness (that is a topic many research groups are working on [49],[42],[34],[35]),
and it comes natural to make a parallel with information aggregation given by GNNs.
The result of their analysis showed that introducing social network information can
potentially increase discrimination against already financially disadvantaged groups.

A more recent work proposing a method to implement group fairness on learning
with graphs is fairwalk [61]; the authors modify the node2vec [20] algorithm for gen-
erating walk traces in a graph: as explained in 2.3.1, this procedure starts from a
node, then jumps to another neighbor node multiple times and returns a list of traces
that can be used to generate a new representation. Instead of randomly jumping to
neighbors, fairwalk divides the nodes into groups based on their sensitive attribute
and assign the same probability to be chosen for the jump to every group; by doing so,
each subgroup has the same probability of being explored from the algorithm, giving
more visibility to minorities.

Another often cited early work is fairgnn [12]. This model does not include sensitive
attributes in the learning process, adopting adversarial learning where the adver-
sary aims to estimate the sensitive attribute while another module aims to learn fair
node representations. Similarly, Bose et al.[6] propose a model that learns a set of
adversarial [48] filters that try to remove information about the sensitive attribute.
The authors state that their approach is also compositional, in the sense that it can

27

28 CHAPTER 3. RELATED WORKS

generate different embeddings for different selected sensitive attributes or combinations
of sensitive attributes.

This thesis modifies and extends a state-of-the-art method called Nifty [1], inspired by
two other works that demonstrated good results in term of fairness, namely FairDrop[70]
and FairRF [79]; next section will describe those three models.

3.1 Nifty
The main objective of Nifty is to learn a fair and stable representation.
We already talked about fairness in section 2.4, so we should briefly define the concept
of stability, even though it is a problem not studied in this thesis. An ML algorithm is
said to be stable if it produces consistent predictions with respect to small perturbations
of training samples; it is an important characteristics because unstable predictions can
harm the reproducibility of the results, other than reducing the user’s trust in the
model.
The main idea starts from a connection between counterfactual fairness(CF) [43] and
stability. To satisfy CF, a model must assign the same classification probability to
two examples that share all features except the sensitive one; in other words, the
model should be stable w.r.t. modifications to the sensitive attribute. Leveraging this
connection, the authors propose to minimize the similarity between the original nodes’
representations and their augmented (i.e. perturbed) counterpart, with the objective
of making the model stable to the noise introduced by modifying the input, thus able
to distinguish relevant information.
Three different augmentations (and counterparts) are produced:

1. Perturbing node’s attribute (except the sensitive one for which we want to
guarantee fairness); the vector of augmented attributes is defined as xv̄ = xv+r ·d,
where d ∈ RM is sampled from a normal distribution and r ∈ {0, 1}M is a masking
vector draw from a Bernoulli distribution;

2. Perturbing node’s sensitive attribute, creating a counterfactual by flipping the
value of su from 0 to 1 and vice-versa;

3. Perturbing graph structure, by constructing a new adjacency matrix Â = A ·Re,
where Re ∈ 0, 1N×N is a random binary mask drawn from a Bernoulli distribution
B(1− pe), where pe is the probability of dropping an edge.

Nifty infuses fairness and stability in the objective function, as well as in the
architecture of underlying GNN:

∗ Objective function: it introduces a triplet-based objective that maximizes the
agreement between the original graph and its counterfactual and noisy views,
building a siamese network using node, sensitive attribute, and edge level per-
turbations. Then it trains a GNN encoder using the Siamese framework; the
encoder generates representations zv of the augmented graph at every iteration.
By generating augmented graphs, NIFTY can induce appropriate bias into the
underlying GNN to learn embeddings that are invariant to the combination of
counterfactual nodes as well as to random perturbations in the graph structure.

∗ Architecture: NIFTY modifies the GNN’s routing of neural messages, through
Lipschitz normalization of the weight matrix at each layer, by dividing it by its

3.2. FAIRDROP 29

spectral norm; this permits to limit the difference between original and augmented
embeddings;

The siamese GNN encoder generates the representations of each graph node z̃v
and its augmented version z̄v. Then a predictor t : Rd → Rd is used to transform and
match corresponding representations.
The training minimizes the following loss function:

L = min
Θ

Ev[(1− λ)Lc] + λLs, (3.1)

where Lc is the Binary Cross Entropy (BCE) loss, Θ are the trainable parameters,
and Ls is a triplet-based objective function that optimizes the similarity between
augmentations of the same node, by reducing their cosine distance. It is defined as

Ls = Ev[
1

2
(D(t(zv), sg(z̄v)) +D(t(z̄v), sg(zv))], (3.2)

where D is the cosine distance.

3.2 Fairdrop
Fairdrop [70] is a biased edge dropout algorithm to counter-act homophily (the principle
that similar users interact at higher rate than dissimilar ones) of the sensitive attribute
to improve fairness in graph embeddings.
The intuition comes from the fact that the homophily of sensitive attributes affects
the prediction in the information aggregation process: learning a representation for
nodes that are close in the graph structure will involve a neighborhood composed of
many shared nodes. This means that if nodes in the same sensitive group are close
together, their embedding will be similar and will influence the model into classifying
them in a similar way: an algorithm that does not take this behavior into consideration
will probably emphasize differences between groups, learning a representation that
increases their distance in the output space. For example, in [21] authors show that
users in a social network belonging to major political groups are exposed to more
information more quickly w.r.t. minorities.
Technically, for every epoch of training, authors propose to:

1. Compute an n × n mask M encoding the edge homophily w.r.t. a sensitive
attribute, i.e. mi,j = 1 if si ̸= sj , 0 otherwise,

2. define M̃ , a random perturbation of M , as

m̃i,j =

⎧⎪⎨⎪⎩mi,j with probability: 1
2 + δ

1−mi,j with probability: 1
2 − δ

(3.3)

3. drop edges from the original adjacency matrix according to the computed pertur-
bation: Afair = A ◦ M̃ .

With this pipeline, authors train the model over different and fairer random copies
of the adjacency matrix, increasing the randomness and diversity of the input. The
delta parameter regulates the level of fairness enforced: when δ = 0, it drops random

30 CHAPTER 3. RELATED WORKS

edges with a probability p = 1
2 , while when δ = 1

2 , it drops all the homophilous edges,
keeping only the heterophilous ones. Authors show that removing homophilous edges
has a positive effect on different fairness metrics, because disconnecting or moving
away nodes that share the same sensitive attribute reduces the importance of that
attribute in the computation of the resulting node embeddings.

3.3 FairRF

The third and last work that inspired this thesis is FairRF [79]. This work isn’t
actually related to graphs but proposes a general method that can also be applied with
the complex data that we work with, also because it is designed to be flexible to use
different classifiers as the backbone.

The authors consider a problem where the sensitive attribute is not available,
working instead on features that are known to be correlated with the sensitive one.
Formally, they define Fs the set of non-sensitive features that are correlated with a
sensitive s and ∀fj ∈ Fs a correlation regularizer is applied, with the purpose of making
the model fair towards s. The regularization term is the following:

min
Θ

Rrelated =

K∑︂
j=1

λj × R(xj , ŷ) (3.4)

Where λj is the weight for regularizing correlation coefficient between xj and ŷ.
R(xj , ŷ) is defined as:

R(xj , ŷ) = |
n∑︂

i=1

(Xij − µXj)(ŷi − µŷ)| (3.5)

where µXj is the mean of xj .
The reason to use such weights is to reduce the correlation between sensitive attribute
and predicted value by increasing the importance of the regularization term for at-
tributes with high correlation with the sensitive one.

A limitation of this approach is the requirement of some pre-defined values for λ;
since in real-world applications having accurate values for those weights can be difficult,
the training procedure also includes their update.

Formally, the entire optimization function is defined as:

min
Θ,λ

Lcls + η

K∑︂
j=1

λjR(xj , ŷ) + β||η||22

s.t. λj ≥ 0,∀fj ∈ Fs;

K∑︂
j=1

λj = 1

(3.6)

Where η sets the weights of the regularization term and Lcls is the classification loss,
β is used to control the contribution of ||η||22.
Updating θ (parameters of the classifier) and λ is done iteratively: at each step, one of
the two is updated while the other remains fixed.

3.4. OTHER WORKS 31

In their results, the authors show how their method is able to reduce unfairness while
sacrificing very little classification accuracy.

3.4 Other works
This section briefly describes other recent works to offer a wider view of state-of-the-art
methods.

EDITS [14] proposes a framework composed of three modules:

1. Attribute Debiasing. This module learns a debiasing function gΘwith learnable
parameter Θ ∈ RM . The debiased version of X is obtained as output where
X̄ = gΘ(X).

2. Structural Debiasing. This module outputs Â as the debiased adjacency matrix
A. Specifically, Â is initialized with A at the beginning of the optimization
process. Its entries are then optimized via gradient descent with clipping and
binarization.

3. Wasserstein Distance Approximator. This module learns a function f for each
attribute dimension. Here f is utilized to estimate the Wasserstein distance
between the distributions of different groups for any attribute dimension.

REDRESS [15] is one of the few works that use an individual fairness notion. Given
the oracle pairwise similarity matrix SG of the examples in the input graph G, and the
similarity matrix SY among instances in the outcome space (defined upon a proper
similarity metric), to relieve the individual bias toward fair decision-making, they say
that the predictions are individually fair if for each example x, the two ranking lists
that encode the relative order of other examples are consistent.

Debayes [7] is an adaptation of Conditional Network Embedding (CNE) [36], a
Bayesian approach based on integrating prior knowledge through prior distribution for
the network.

[47] creates a fairer adjacency matrix following the concept of dyadic fairness for
the task of link prediction.

MCCNifty [78] is another extension of nifty; this work uses the same perturbation
process of Nifty, but instead of doing it in the entire graph, a multi-view extractor
based on Pagerank [57] extracts informative regional structures (subgraphs) to which
the perturbations are done.
Authors justify their work by the fact that considering the entire graph structure is
computationally expensive, can be affected by global bias, and does not consider the
problem of overconfidence, i.e., can assign wrong predictions to very noisy examples or
out of the distribution.

Influence maximization is also a quite popular approach used, see [71], [39].

Chapter 4

Proposed methods

As introduced in chapter 3, this thesis proposes to extend the state-of-the-art method
[1], inspired by related literature ([70], [79]) shown to be empirically effective. We’ve
been motivated by the fact that, although providing good results in the fairness metrics,
NIFTY followed an approach purely based on randomization; instead, we show that we
can formulate some heuristics that can further increase the effectiveness of the method
in reducing bias and unfairness of its results.

More specifically, we focused on the graph perturbations applied in the encoding
process, producing two different extensions of NIFTY:

∗ Biased edge dropout in graph structure perturbation;

∗ Biased non-sensitive attribute perturbation;

In their work, NIFTY’s authors used different GNN versions as the backbone for
their model; we instead focused only on the simple yet effective GCN formulation,
mainly for reasons of time, with the hope to extend our work to other formulations in
the future. More specifically, the GCN used in this work is composed of a convolutional
layer with 16 hidden units, followed by a linear fully connected layer; we choose this
architecture to have comparable results because it is the same used by NIFTY as
GCN backbone. This architecture can be seen as a starting point, able to give good
results while not being too complex; a more accurate tuning can be made, however, it
is reasonable to think that using many more hidden units and/or other adding more
hidden layers could impact too much the complexity of the model since the overall
method is composed of different modules, each of which contributes in the overall
complexity. Moreover, this work mainly focuses on fairness enforcing method, so we
do not focus on directly increasing the accuracy.

Since both extensions performed well for the analyzed datasets in reducing unfairness,
a third natural extension is the combination of the two; the next sections will describe
the proposed approaches and the solutions implemented for both models and their
combination.

33

34 CHAPTER 4. PROPOSED METHODS

4.1 Biased edge dropout
Since NIFTY (see section 3.1) randomly drops edges that connect same sensitive
attribute’s node proportionally to their distribution in the graph, the resulting per-
turbed adjacency matrix will have approximately the same homophily level as the
original one; it has been shown that [70] using a perturbation that is biased toward
removing homophilous edges can be beneficial for the fairness of the learned model
(see section 3.2).

With the objective of involving different and fairer augmented versions of the adja-
cency matrix in the information aggregation process, we implemented a softer version
of FAIRDROP injected in the structure perturbation process; in fact, FAIRDROP
operates on the whole graph without the need to specify a drop rate, only using the
hyperparameter δ to indicate how much percentage of homophilous links to remove
from the graph (as defined in equation 3.3): this means that the actual number of
dropped edges will depend on how many of them are connecting same attributes’ nodes.

In this work, we instead follow NIFTY’s pipeline, where the drop rate must be
specified; more specifically, we apply the default dropping made by the method and
then adjust the ratio between fair and unfair eliminated edges using the hyperparameter
δ; starting from the result given by the default drop, we can obtain a solution as close
as possible to the original one, without introducing too much extra randomness in the
augmentation process.

More formally, given the augmented adjacency matrix Ã constructed by NIFTY for
a certain drop rate, we define:

EÃ = {(i, j)|(i, j) ∈ E, ãi,j = 1} (4.1)

as the set of edges not dropped and:

E¬Ã = {(i, j)|(i, j) ∈ E, ãi,j = 0} (4.2)

as the set of edges dropped.

We consider E¬Ã and the hyper-parameter δ and check whether in the set there is
at least a ratio of 0.5 + δ edges connecting nodes with the same value of the sensitive
attribute (homophilous). If not, we randomly replace some heterophilous edges (i.e.,
edges connecting nodes with different value for s) from E¬Ã and insert them in EÃ,
replacing them with homophilous edges from EÃ; in other words we reconnect some
heterophilous links, dropping the same number of (random) homophilous ones, taken
from EÃ \ E¬Ã. The number of replaced nodes is given by the difference between the
actual ratio of homophilous edges dropped and the given 0.5 + δ. Algorithm 1 reports
the pseudo-code used for this process.

Clearly, when in the graph structure the percentage of homophilous edges is already
bigger than 0.5 + δ % our extension doesn’t activate and reduces itself exactly to
NIFTY. On the contrary, the higher the value of δ, the more homophilous links are
removed from the adjacency matrix. In this way, the augmented adjacency matrix
will contain fewer homophilous links, while maintaining the majority of the edges in
the original perturbation from NIFTY: the main difference is given by the selection of

4.1. BIASED EDGE DROPOUT 35

edges added and removed since it does not re-select which edges to remove.

Algorithm 1 Biased edge perturbation
Input Adjacency matrix A, sensitive attributes vector s, δ, drop rate p

Output Perturbed adjacency matrix Ã

1: M← boolean mask as defined in 3.1
2: R← A[¬M] // apply negation of the mask to obtain edges removed by standard

NIFTY
3: HO,HE ← homofilous, heterophilous edges ∈ R

4: if |HO|
|HO+HE| < 0.5 + δ then

5: sizeA = 0.5 ∗ |ai,j ∈ A|ai,j = 1|
6: diff ← (δ − p) ∗ sizeA // number of edges to replace
7: keptEdges← {ai,j ∈ A|mi,j ∈M,mi,j = True}
8: droppedEdges← {ai,j ∈ A|mi,j ∈M,mi,j = False}
9: removableEdges← keptEdges ∩HO

10: addableEdges← droppedEdges ∩HE

11: sizeAdd = |addableEdges|
12: sizeRem = |removableEdges|
13: if sizeRem < diff or sizeAdd < diff then
14: diff = min(sizeRem, sizeAdd)

15: indrem ← first diff elements of random permutation of removableEdges

16: indadd ← first diff elements of random permutation of addableEdges

17: M [indrem[:]]← True

18: M [indadd[:]]← False

19: return A[M]

36 CHAPTER 4. PROPOSED METHODS

4.2 Biased attribute perturbation

Another procedure in which NIFTY introduces some randomness to enforce stability
and fairness in the model is the attribute perturbation (see section 3.1), used to generate
one of the augmented representations. Even in this case, we start from the idea that,
while random modifications in the values of the attributes could enforce stability and
consequently fairness because of the connection between the two introduced in sec-
tion 3.1, a premeditated biased perturbation could drive the model to a fairer learning.
In particular, we would like our model to perturb with greater probability attributes
that could impact the use of sensitive attributes in the learning process, i.e. features
that are correlated with the sensitive one. The third perturbation used in NIFTY (see
section 3.1) does something similar, by flipping the sensitive attribute to generate a
sort of counterfactual augmentation; however, as discussed in subsection 2.4.2, one
of the reasons why removing the sensitive attribute may not be sufficient is exactly
the fact of not considering the possible relationships between that attribute and the
non-sensitive ones: flipping the sensitive attribute is not different from removing it,
because it tries to force the model into learning that the feature is not relevant in the
classification task, i.e. it should not be used in the prediction.

For this reason, we analyzed the literature looking for a method or idea that could
help in our problem; we found a possible solution in FairRF [79], a method that
tries to mitigate unfairness by exploring the correlations of the sensitive feature with
the non-sensitive ones. This method however pre-defines some related features by
exploiting previous knowledge about the topics of the datasets, supported by relative
literature and empirical results. We do not have this privilege, so we decided to exploit
the correlation between features found by a previous relationship analysis. More
specifically, we first calculate a correlation coefficient between the nodes’ sensitive
attribute and the other attributes, then fix a threshold on its absolute value, in or-
der to select only the most relevant ones, i.e. the ones that exhibit a greater correlation.

We follow the correlation weights update procedure implemented in the original
paper, but we do not include a correlation loss in our optimization function, because
differently from FairRF, we already have a process that implicitly influences the loss
computation, i.e. the attribute perturbation; in fact, we use weights in the attribute
modification process to force the model to perturb related features with a probability
higher than the probability of perturbing other attributes; this probability will be
proportional to the value of the weights, i.e., a related attribute with high weight will
have more chance of being perturbed.

Formally, we define Fs as the set of related attributes with a correlation coefficient
greater than the threshold τ , Λ = λj∀fj ∈ Fs as the set of weights for the related
features and Ω = ωj ,∀fj ∈ Fs as the set of absolute values of correlation coefficients
for the related features.

We start by initializing Λ with the values in Ω, so that for each feature fj ∈ Fs,
λj = ωj ; we than inject those weights in the attributes perturbation function to modify
the perturbing probability assigned to related features.
In the default augmentation procedure defined in 3.1, the masking vector r ∈ {0, 1}M
was drawn from a Bernoulli distribution, i.e., r ∼ B(pn), with pn the probability of
independently perturbing an attribute; in our extension, this procedure remains the

4.2. BIASED ATTRIBUTE PERTURBATION 37

same for non-related features, while the perturbing probability for related attributes
becomes pn + λj ,∀fj ∈ Fs. The new value of a perturbed attribute is calculated the
same way defined in 3.1, i.e., xv̄ = xv + r · d, where d ∈ RM is sampled from a normal
distribution and r ∈ {0, 1}M is the masking vector.

Chapter 5

Experimental evaluation and
discussion

This chapter reports the experiments relative to the methods described in the previous
chapter, along with a description of used datasets and metrics. Results show that
our proposals can improve different fairness metrics compared to the original NIFTY
formulation while maintaining the same computational complexity and the same level
of predictive performance.

5.1 Datasets
We use the three datasets used by NIFTY, along with the well-known Pokec [12]
dataset; for the first three, in addition to what the authors of NIFTY reported, we also
include the level of homophily of each graph, that is the rapport between the number
of edges connecting nodes with the same sensitive attribute and the total number of
edges, since it’s a fundamental characteristic to understand the behavior of our biased
edge perturbation 4.1 extension.

∗ German credit graph (German) has 1000 nodes representing clients in a
German bank, connected based on the similarity of their credit accounts; clients
are to be classified as good or bad credit risks and the sensitive attribute is their
gender. It has 22242 out of which 17998 are homophilous of them connect nodes
with the same value for the sensitive attribute, so it has an homophily level of
80.92%.

∗ Recidivism graph (Bail) has 18876 nodes representing defendants who got
released on bail, collected from several state courts in the US between 1990-
2009; nodes are connected based on the similarity of their criminal records and
demographics; defendants are to be classified as releasable or not releasable and
the sensitive attribute is their ethnicity (black or white). It has 321308 edges
and an homophily level of 53.61%.

∗ Credit defaulter graph has 30000 nodes representing individuals, connected
based on the similarity of their spending and payment patterns; the task is to
predict whether an individual will default on the credit card payment or not and

39

40 CHAPTER 5. EXPERIMENTAL EVALUATION AND DISCUSSION

the sensitive attribute is their age. It has 1436858 edges and a homophily level
of 95.99%.

∗ Finally, we consider a dataset where, differently from the others, edges are
not generated based on some heuristics, but are taken from real world data:
Pokec [12] is a dataset representing 66569 users in a social network, connected by
friendship relationships; the task is to predict the working field, and the sensitive
attribute is their region. It has 550331 edges, with an homophily level of 95.58%.

In German, Bail and Credit, the similarity measure used to calculate the similarity
between pairs of nodes is the Minkowski distance, that for two variables a and b is
defined as:

minkowski (a, b) =

(︄
n∑︂

i=1

|ai − bi|p
)︄ 1

p

(5.1)

Where p can take any value greater than 1; in their implementations, the authors
use p = 2, which corresponds to use the Euclidean distance. The complete equation
used is:

1

(1 +minkowski(a, b))
(5.2)

For each dataset, the authors set a different threshold to decide which nodes to
connect, calculated as a percentage of the maximum similarity between all respective
nodes; in particular, for bail is 60%, for german is 80% and for credit is 70%.

Table 5.1 reports main characteristics of each dataset.

Dataset German Bail Credit Pokec

Nodes 1000 18,876 30,000 66,569

Edges 22,242 321,308 1,436,858 729,129

Node attributes 27 18 13 59

Sensitive Gender Race Age(≤ 25/ > 25) Region

Labels good credit bail payment default Working field

Homophily level 80.92% 53.61% 95.99% 95.58%

Table 5.1: Datasets details

5.2 Experimental setup
Experiments have been preliminarily run on Google Colabolatory 1; then, since the
models required quite a lot of time to be trained and the service doesn’t allow more
than 12 consecutive hours on the standard plan, we started using a personal machine
running Ubuntu 22.04, with an Intel-10700k CPU, a NVIDIA RTX 3070 GPU and
16GB of RAM.
Models have all been developed in Python 3.7, using PyTorch 2 1.7.1+cu11 and

1Google Colabolatory [29]
2PyTorch [59]

5.3. METRICS 41

PyTorch-Geometric 3 1.7.0 libraries. Code developed during the thesis period will be
made available in author’s github page 4.

5.2.1 Baselines and configurations
To evaluate the effectiveness of our implementations, we used 4 baselines 3:

∗ NIFTY: since this is our main baseline, we kept most of the hyperparameters
reported by the authors in the paper, i.e.: Adam optimizer with a learning rate
of 1e−3, weight decay 1e−5 and number of epochs 1000 for all datasets except
German, for which we increased the number of epochs to 2500 to obtain results
closer to the ones reported in literature; some other hyperparameters varied for
different datasets, more details will be given in the next section.

∗ FAIRDROP: we tested the performance of the base model using different values
for δ (see section 3.2), but we substituted the backbone GCN with the same one
used in NIFTY to make the comparison reasonable; it should also be noted that
FAIRDROP has been implemented to perform the task of fair link prediction,
not node classification, so an adaptation to work with our setting and datasets
was necessary; optimizer setting and epochs are the same used for NIFTY.

∗ Linear regression: we implemented a simple linear regression model to check
how considering only nodes’ attributes would have affected the performances,
mainly in terms of fairness;

∗ GCN: we also performed some experiments using the backbone GCN alone
(configured as described in chapter 3), to check the effective fairness reduction
performances of the other methods.

5.3 Metrics

5.3.1 Area under the curve
To evaluate the predictive performance for the downstream task of node classification
we use Area under the curve (AUC).

Results obtained by a classificator during testing are counts of the correct and
incorrect classifications of each class; this information can be displayed in a confusion
matrix, that shows the differences between true and predicted classes for the set of
labeled examples in the test set. Those values allow for the calculation of the True
positive rate (TPR) and False positive rate (FPR), defined as follows:

TPR =
true positives

true positives+ false negatives

FPR =
false positives

false positives + true negatives

Those parameters are plotted in a graph called ROC (receiver operating char-
acteristic) curve at different classification thresholds, showing the trade-off between

3PyTorch Geometric [60]
4Author github [30]

42 CHAPTER 5. EXPERIMENTAL EVALUATION AND DISCUSSION

TPR (y-axis) and FPR (x-axis): lower thresholds classifies more examples as positive,
increasing both false and true positives.
AUC aggregates the performance across all possible thresholds, measuring the 2-
dimensional area underneath the ROC curve: it ranges from 0 to 1, telling how much
the model is able to distinguish between classes. Figure 5.1 shows a graphical example
of the metric.

Figure 5.1: ROC and AUC example

5.3.2 Fairness metrics

To measure fairness, we use the same group metrics used in NIFTY, i.e. Statisti-
cal Parity and Equality of Opportunity (EO) (both described in section 2.4.1),
where probabilities are estimated on the test set we use ∆SP , ∆EO and CF to indicate.

We also use the Counterfactual fairness (CF) metric, where the score is calcu-
lated as the percentage of test nodes for which the predicted label changes when flipping
the node’s sensitive attribute. In line with related literature, we report the fairness
metrics as percentages from 0% (never discriminating) to 100% (always discriminating),
so the lower the better. We use ∆SP , ∆EO and CF to indicate Statistical Parity,
Equality of Opportunity, and Counterfactual Fairness respectively, in terms of the
difference between probability for the two groups.

Results are presented in form of tables, where we report mean and standard deviation
of 3 to 5 independent runs for each random seed used (0,1 and 2).

5.4 Results

5.4.1 GCN and linear regression models

This section reports the results obtained by using the GCN backbone alone and a
simple linear regression model. In both we use the same optimizer used in NIFTY;
since we needed to find a way to debias the model by also working on node’s attributes,

5.4. RESULTS 43

we test both by including or not the sensitive attribute, to see if and how much it
could affect performances in terms of fairness.

Since Counterfactual Fairness explicitly requires the sensitive attribute to generate
flipped versions of the examples, the results of the models trained without it do not
report any value for that metric.
Table 5.2 reports the results with the GCN for German, while Tables 5.4 and 5.3 for
Bail and Credit.

Results on German (Table 5.2) clearly show that an approach that only relies on
hiding the sensitive attribute isn’t sufficient to reduce unfairness: it even increases
the unfairness of the results that we obtained, however, being the values so high, it
should not be a direct consequence of removing the feature, but more probably an
effect of randomness in the learning process. Another important observation is that
those results demonstrate the effectiveness of NIFTY and in particular of our extension.

Results on Bail and Credit (Tables 5.3 and 5.4) show instead a more expected
behavior: removing the sensitive attribute slightly reduces accuracy, but also decreases
the unfairness of the learned representation; both SP and EO are lowered, remaining
however higher than NIFTY for Bail. For Credit without sensitive, instead, results
are very similar to the ones obtained by our extensions: it can be a bit discouraging
considering the complexity of NIFTY and our extension compared to a "simple" GCN,
however, it demonstrates that even without excluding the sensitive attributes, our
model is able to learn a solution that somehow tries to not use that feature.

German

Attribute AUC ∆SP ∆EO CF

SENSITIVE 69.32 ±0.52 40.01 ±1.89 40.86 ±3.94 14.13 ±1.5

NO SENSITIVE 69.42 ±0.27 43.99 ±0.29 46.49 ±2.45

Table 5.2: Backbone GCN w and w/out sensitive attribute with German dataset

Bail

Attributes AUC ∆SP ∆EO CF

SENSITIVE 93.92 ±0.0 7.27 ±0.02 4.7 ±0.01 3.9 ±0.0

NO SENSITIVE 93.91 ±0.0 5.73 ±0.02 4.01 ±0.0

Table 5.3: Backbone GCN w and w/out sensitive attribute with Bail datasets.

Credit

Attributes AUC ∆SP ∆EO CF

SENSITIVE 73.93 ±0.0 12.92 ±0.01 10.64 ±0.01 1.38 ±0.0

NO SENSITIVE 73.89 ±0.0 11.72 ±0.0 9.42 ±0.0

Table 5.4: Backbone GCN w and w/out sensitive attribute with Credit datasets.

44 CHAPTER 5. EXPERIMENTAL EVALUATION AND DISCUSSION

Table 5.5 reports the results with the linear regression model for German, while
Tables 5.6 and 5.7 for Bail and Credit.

The linear regression model performs very well in terms of accuracy. It also looks
like edges do not bring any relevant information for the accuracy of the predictions,
however, the backbone GCN used is really simple and not comparable to the best
performances models that can be found in literature.
For what concerns the fairness metrics, we see the same exact behavior seen with
the GCN alone, with the difference that in Credit, SP and EO are way lower than
all other models tested. This may be caused both by the setting of the GCN, which
remained fixed and has not been accurately tuned (to remain coherent with NIFTY),
and by the fact that, as said before, edges are built and do not refer to a real-world
graph; moreover, Credit has 47 times more edges than nodes: this may cause the model
to give a lot of relevance to the links that, despite providing additional information,
may introduce some noise that more complex (or deeper) architectures could possibly
recognize and remove.

In any case, it is clear that removing the sensitive attribute isn’t always effective in
mitigating unfairness, especially in German where we get the opposite behavior. For
this reason, we implemented an extension to work on non-sensitive attributes whose
results are presented in the next section.

German

Attributes AUC ∆SP ∆EO CF

SENSITIVE 66.95 ±4.34 5.87 ±4.72 5.65 ±3.86 2.7 ±2.49

NO SENSITIVE 69.1 ±2.56 7.63 ±4.84 5.36 ±4.0

Table 5.5: Linear regression w and w/out sensitive attribute with German dataset

Credit

Attributes AUC ∆SP ∆EO CF

SENSITIVE 72.77 ±0.44 4.3 ±0.51 2.32 ±0.48 1.1 ±0.21

NO SENSITIVE 72.75 ±0.41 3.03 ±0.49 1.5 ±0.46

Table 5.6: Linear regression w and w/out sensitive attribute with Credit datasets

Bail

Attributes AUC ∆SP ∆EO CF

SENSITIVE 97.32 ±0.24 8.07 ±0.36 4.89 ±0.48 0.91 ±1.5

NO SENSITIVE 97.37 ±0.16 7.26 ±0.13 2.7 ±0.5

Table 5.7: Linear regression w and w/out sensitive attribute with Credit datasets

5.4. RESULTS 45

5.4.2 Biased attribute perturbation
This section reports results obtained with the extension described in section 4.2.
This extension proposes to modify the attribute perturbation process of NIFTY by
assigning higher perturbation probability to attributes related to the sensitive one.
First of all, to understand if working only on nodes’ attributes could help mitigate
unfairness in the solutions of a model trained on our dataset, we performed some
preliminary experiments with two simpler models: the backbone GCN used in NIFTY
and a linear regression model, both with and without including the sensitive attribute;
the former helped us understand the actual effectiveness of NIFTY, while the latter,
since a linear regression cannot use information coming from edges, highlighted how
much the graph structure could help the learning model, both in terms of accuracy
and fairness metrics. Results in subsection 5.4.1 show that in both cases, removing the
sensitive attribute is not enough to make the model fair because, as discussed in 2.4,
fairness through awareness usually fails in reducing bias in a machine learning model.

The first reason that came to our mind was that probably there were other features
somehow correlated with the sensitive one, that could potentially be exploited by
a model to derive the unknown sensitive attribute as proxies; to verify this thesis,
we performed a brief study on the relationship between different attributes in our
datasets. In practice, for each dataset, we built a correlation matrix using the Spearman
correlation coefficient, since it can evaluate monotonic relationships between variables,
instead of only on linear relationships like the Pearson coefficient, so can potentially
capture more information. Figures 5.2, 5.3 and 5.4 show the obtained matrix in form
of heat-maps (the image for Pokec is omitted since its nodes have too many attributes
to be correctly displayed); in the figures, the row and column corresponding to the
sensitive attribute are highlighted by a red rectangle, so we can visually see which
other attribute is correlated with it, and the more a cell color tends to red or blue, the
stronger is the correlation.
It can be seen that there actually are cases in which some features increase or decrease
by following a certain relationship with the sensitive attribute; the clearer example is
in German, where the feature on the third row has a correlation coefficient of −0.74
with the sensitive feature.

46 CHAPTER 5. EXPERIMENTAL EVALUATION AND DISCUSSION

Figure 5.2: Correlation matrix for Bail dataset.

5.4. RESULTS 47

Figure 5.3: Correlation matrix for credit dataset.

48 CHAPTER 5. EXPERIMENTAL EVALUATION AND DISCUSSION

Figure 5.4: Correlation matrix for German dataset.

5.4. RESULTS 49

Before discussing the results, we should talk about the new hyperparameter intro-
duced by adapting the idea of FairRF into NIFTY: β, that it is used to adjust the
distribution of learned related features weigh λ (see eq. 3.6). Even if we do not employ
the loss regularizer as in the original work, β is still implied in the weight update
process (since we do not modify it) and implicitly affects the optimization process.
Another hyperparameter introduced is τ ; we need it to define a minimum threshold on
the correlation coefficient to select attributes most related to the sensitive one. We
fix this threshold at 0.09, so that at least two features are select for each dataset (see
figures 5.2, 5.3, 5.4).
We did not have much time to test many different values for β, so we report results
with the ones that performed the best. We started from the values used in the original
paper, i.e. 0.5, 0.8, 1; however, those values seemed to be too high for our setting and
did not bring any improvements to the baseline. Instead, lower values like 0.3 always
resulted in a reduction of at least one of the fairness metrics considered.

Another hyperparameter that can influence the performances of the method is the
base attribute perturbation rate r (see 3.1), which tells the probability for which every
attribute will be modified; we called it drattr in the tables.

Table 5.8 shows the results with the biased attribute perturbation for German;
we can see that both ∆SP and ∆EO are reduced by the method, especially with
Dattrr = 0.1, where SP is almost 1

3 and EO is less than 1
6 w.r.t the results obtained by

standard nifty. We can also note how, except for the SP with Dattrr = 0.2, the biased
attribute perturbation seems to find solutions closer together, since they generally
show less variance for the two group metrics.

Table 5.9 reports results for Bail; also in this case, we can see that both ∆SP

and ∆EO are reduced, except for the case with Dattrr = 0.2, where ∆SP is slightly
increased. Another observation is that only with this dataset, AUC values are a bit
higher with our extension; this is counterintuitive since in general, to reduce unfairness
a model has to sacrifice some prediction accuracy (otherwise, the standard model would
have found that solution). Note however that in the cases where our extension reduces
both ∆SP and ∆EO (i.e., with Dattrr = [0.01, 0.1]), AUC values for standard NIFTY
show a way higher variance that make the accuracy fall in a range of values similar to
the one of our extension.

Finally, Table 5.10 shows the results for Credit; in this case, we can see that our
method reduces all the fairness metrics to the same extent with every different value
of Dattrr, while sacrificing a negligible amount of accuracy.

50 CHAPTER 5. EXPERIMENTAL EVALUATION AND DISCUSSION

German

Dattrr β AUC ∆SP ∆EO CF

0.01 68.82 ±2.74 2.44 ±1.55 1.87 ±0.61 0.60 ±0.60

0.3 69.53 ±2.46 1.56 ±1.19 1.19 ±0.68 0.72 ±0.81

0.1 69.78 ±2.32 3.38 ±2.48 2.85 ±2.31 0.53 ±0.55

0.3 68.85 ±1.94 1.38 ±0.67 0.44 ±0.25 0.67 ±0.37

0.2 69.47 ±2.20 2.14 ±1.22 1.68 ±2.20 0.60 ±0.50

0.3 69.02 ±2.75 2.08 ±1.49 1.54 ±0.77 0.47 ±0.58

Table 5.8: Comparison between NIFTY (gray rows) and biased attribute perturbation on
German dataset.

Bail

Dattrr β AUC ∆SP ∆EO CF

0.01 82.95 ±2.01 1.89 ±0.41 1.41 ±0.25 0.82 ±0.49

0.3 84.28 ±0.69 1.73 ±0.27 1.09 ±0.33 1.11 ±0.18

0.1 82.51 ±2.01 1.94 ±0.76 1.22 ±0.29 1.15 ±0.32

0.3 83.53 ±0.23 1.86 ±0.31 1.09 ±0.67 1.35 ±0.21

0.2 81.95 ±0.19 1.70 ±0.16 1.15 ±0.35 1.31 ±0.67

0.3 84.16 ±0.27 1.88 ±0.38 0.72 ±0.29 1.20 ±0.29

Table 5.9: Comparison between NIFTY (gray rows) and and biased attribute perturbation
on Bail dataset.

Credit

Dattrr β AUC ∆SP ∆EO CF

0.01 72.16 ±0.17 12.79 ±1.57 10.55 ±1.53 0.88 ±1.18

0.3 72.20 ±0.18 11.69 ±0.10 9.40 ±0.11 0.06 ±0.04

0.1 72.16 ±0.17 12.85 ±1.55 10.57 ±1.51 0.90 ±1.22

0.3 71.98 ±0.22 11.73 ±0.11 9.45 ±0.11 0.09 ±0.05

0.2 72.17 ±0.18 12.80 ±1.58 10.55 ±1.54 0.88 ±1.19

0.3 71.83 ±0.18 11.68 ±0.04 9.40 ±0.06 0.11 ±0.09

Table 5.10: Comparison between NIFTY (gray rows) and and biased attribute perturbation
on Credit dataset.

5.4. RESULTS 51

To have a more general view of the performances of our approach, we also report
some images (figures 5.5, 5.6) where we plotted all the results obtained by NIFTY
versus our extension (that we called in this case "NIFTY + FAIRRF"). Both figures
show the little decrease in accuracy, while also decreasing the fairness metric; we see
that our method’s results (red points) follow the ones of the original NIFTY (blue
points), while generally staying close to the bottom and a little to the left, indicating
a reduction in the fairness metrics trading-off a negligible decrease in accuracy, and
reflecting the values reported in the tables. It should also be noted that in both cases
lowest values for the fairness metric are achieved by our implementation.

(a) (b)

Figure 5.5: Plotted single results for biased attribute perturbation for SP (a) and EO (b)
on german dataset

Figure 5.6: Plotted single results for biased attribute perturbation for EO on credit dataset

52 CHAPTER 5. EXPERIMENTAL EVALUATION AND DISCUSSION

5.4.3 Biased edge dropout
The other extension developed, described in section 4.1, has been tested on all four
datasets; since the solution proposes to modify the random perturbation process,
which is concretely implemented as a random edge drop, for our experiments we select
different values for the hyperparameter edge drop rate (dr) other than δ; the former
is in fact used in NIFTY to define the probability to drop an edge when building the
graph structure augmentation, while the latter specifies the ratio of homophilous edges
in the set of dropped edges.
We explored different values for dr and δ: the range of values varies for every dataset
involved, because of the different number of edges and level of homophily. We fixed
the attribute perturbation rate (see 3.1) to 0.1 as it is the default value used in NIFTY
and does not directly influences perturbation on the graph structure.

Tables 5.11, 5.12, 5.13 ad 5.14 presents our experimental results with this method.
Note that with δ = 0, the extension reduces to NIFTY because the original edge
perturbation is random, i.e., the dropout is unbiased; in the same way, using δ = 0
corresponds to dropping edges with a probability p = 1/2, so every edge has the
same probability of being removed, independently by the fact of being homophilous or
heterophilous: in other words, the perturbation is random and unbiased.

We can see that the values follow the same exact pattern seen with the biased
attribute perturbation extension: even with Bail (Table 5.13) which has the more
complex behavior, results are comparable, with a reduction in SP and increase in EO
with dr = 0.1, reduction in EO and increase in SP with dr = 0.25. .
Finally, also in this case the smaller values for each metric are obtained by our method.

In German (Table 5.11) we see that our method improves on all the considered
fairness metrics (SP, EO, and CF) compared to the baseline NIFTY (rows with δ = 0),
where δ = 0.4 seems to provide the best results, except for the CF metric with drop
rate 0.1 where we see an increase.

On Pokec (Table 5.12), we see a similar pattern for SP and CF, while EO improves
compared to the baseline for drop rate 0.1 and 0.2, except with drop rate 0.2 and δ
0.49 where it slightly increase; however, it still remains near the value obtained with
baseline NIFTY, but with less standard deviation. Note however that our method
achieves the overall lowest value on all fairness metrics.

In Credit (Table 5.14) our method consistently improves all the fairness metrics.

In all cases, the decrease in AUC of our method compared to the baseline is always
negligible, while always decreasing at least one of the fairness metrics.
From the results, it is clear that our method is a powerful extension to NIFTY, being
able to significantly improve the fairness of the resulting model for all the metrics and
in all the considered datasets. The choice of δ and Dr are however crucial to obtain
satisfying results.
Moreover, while here we report different fairness metrics, it is a good practice in
real-world applications to focus on one fairness metric and then optimize the hyperpa-
rameters for that one.

5.4. RESULTS 53

German

Dr δ AUC ∆SP ∆EO CF

0.01 0 71.05 ±1.52 2.19 ±1.57 3.12 ±0.15 0.30

.35 71.05 ±0.57 2.15 ±1.03 3.04 ±1.11 0.20 ±0.28

.4 70.63 ±0.38 1.34 ±0.70 2.35 ±1.06 0.43 ±0.31

0.1 0 69.78 ±2.32 3.38 ±2.48 2.85 ±2.31 0.53 ±0.55

.35 69.45 ±1.01 2.15 ±1.49 2.36 ±1.67 0.40 ±0.28

.4 67.17 ±1.47 0.85 ±0.57 0.81 ±0.56 0.50 ±0.41

0.2 0 68.69 ±0.91 2.26 ±1.52 2.15 ±1.52 0.87 ±0.38

.35 68.11 ±1.1 1.58 ±1.1 1.16 ±0.69 0.47 ±0.45

.4 68.46 ±1.35 1.19 ±0.92 1.3 ±0.96 0.47 ±0.25

Table 5.11: Comparison between NIFTY (rows with δ = 0) and biased edge dropout on
German dataset.

Pokec

Dr δ AUC ∆SP ∆EO CF

0.1 0 67.24 ±0.43 0.63 ±0.06 0.70 ±0.28 0.13 ±0.03

.47 66.42 ±0.12 0.53 ±0.02 0.34 ±0.02 0.10 ±0.01

.49 66.99 ±0.05 0.53 ±0.02 0.25 ±0.07 0.09 ±0.01

0.2 0 66.52 ±0.60 0.62 ±0.17 0.56 ±0.36 0.13 ±0.03

.47 66.38 ±0.01 0.48 ±0.02 0.47 ±0.12 0.11 ±0.01

.49 66.36 ±0.06 0.54 ±0.09 0.60 ±0.11 0.10 ±0.03

0.2 0 66.52 ±0.06 0.62 ±0.17 0.56 ±0.36 0.13 ±0.03

.47 66.38 ±0.01 0.48 ±0.02 0.47±0.12 0.11 ±0.01

.49 66.36 ±0.04 0.54 ±0.06 0.6 ±0.16 0.1 ±0.01

Table 5.12: Comparison between NIFTY (rows with δ = 0) and biased edge dropout on
Pokec dataset.

Figures 5.7 and 5.8 report the same kind on plots reported for the other extension
and the same considerations can be done: they show a negligible reduction in accuracy
while decreasing the fairness metrics.

54 CHAPTER 5. EXPERIMENTAL EVALUATION AND DISCUSSION

Bail

Dr δ AUC ∆SP ∆EO CF

0.1 0 81.66 ±0.08 2.26 ±0.19 0.79 ±0.36 1.04 ±0.06

.25 82.85 ±0.37 1.40 ±0.18 1.05 ±0.10 1.37 ±0.10

.4 83.24 ±0.14 1.67 ±0.18 1.09 ±0.25 1.21 ±0.08

0.25 0 84.28 ±0.12 2.09 ±0.18 1.11 ±0.59 1.61 ±0.20

.25 83.51 ±0.14 2.28 ±0.18 0.61 ±0.31 1.36 ±0.09

.4 83.97 ±0.08 2.30 ±0.15 0.44 ±0.12 1.24 ±0.07

0.3 0 83.52 ±0.06 1.97 ±0.24 1.26 ±0.21 1.17 ±0.08

.25 83.05 ±0.76 2.22 ±0.33 0.47 ±0.15 1.4 ±0.17

.4 83.26 ±0.11 2.28 ±0.1 0.72 ±0.23 1.18 ±0.06

Table 5.13: Comparison between NIFTY (rows with δ = 0) and biased edge dropout Bail
dataset.

Credit

Dr δ AUC ∆SP ∆EO CF

0.01 0 72.13 ±0.01 12.66 ±0.94 10.30 ±0.88 0.78 ±0.75

.47 72.09 ±0.01 11.72 ±0.02 9.45 ±0.02 0.08 ±0.01

.499 72.09 ±0.02 11.73 ±0.06 9.45 ±0.05 0.10 ±0.02

0.2 0 72.15 ±0.00 12.84 ±0.02 10.54 ±0.03 0.84 ±0.01

.47 72.06 ±0.03 11.73 ±0.05 9.45 ±0.04 0.12 ±0.03

.499 72.04 ±0.04 11.75 ±0.03 9.46 ±0.01 0.11 ±0.03

0.25 0 72.16 ±0.00 12.69 ±0.01 10.35 ±0.13 0.68 ±0.09

.47 72.13 ±0.02 11.73 ±0.02 9.46 ±0.02 0.04 ±0.02

.49 72.09 ±0.03 11.73 ±0.02 9.46 ±0.02 0.07 ±0.01

Table 5.14: Comparison between NIFTY (rows with δ = 0) and biased edge dropout on
Credit dataset.

5.4. RESULTS 55

Figure 5.7: Plotted single results for biased edge perturbation EO on bail dataset

Figure 5.8: Plotted single results for biased edge perturbation SP on German dataset

In general, results show a lower difference with the baseline NIFTY w.r.t. the
biased attribute perturbation extension: this may indicate that node’s attributes have
a major role in introducing unfairness in the learned representation.

56 CHAPTER 5. EXPERIMENTAL EVALUATION AND DISCUSSION

5.4.4 Combining the methods
Since both extensions provide good results, our last experiment consists in combining
them, to see if working on both attributes and graph structure can actually work better
than the single methods.

Tables 5.15, 5.16 and 5.17 show the results obtained combining the two methods
for German, Credit and Bail. Note that the hyperparameter β is not reported in the
table, but we only used the value 0.3; we instead report both Dr and Dattrr (edge and
attribute perturbation rate, respectively, see 3.1 along with δ (see 4.1).

From the results, we can see that combining both methods reduces the fairness met-
rics while sacrificing the same level of accuracy of the extensions taken independently.
Not always the combination provides the best results; sometimes it produces solutions
with values that are more or less the mean between the values of the independent
extensions and sometimes with worse values.

We can compare the results obtained with the same values for the hyperparameters
Dr and Dattrr in the two extensions: for example, with German, we take the results
obtained with Dattrr = 0.1 and Dr = 0.1; the biased attribute perturbation extension
has ∆SP = 1.38 and ∆EO = 0.44, while the biased edge perturbation has ∆SP = 2.15
and ∆EO = 2.36 with delta = 0.35. The combination has ∆SP = 1.00 and ∆EO = 1.61,
so it decrease SP w.r.t. to both independent methods, while decreasing EO only w.r.t.
to the biased edge perturbation with a value that is a bit lower than the mean of the
two. This is however not true if we take δ = 0.4, where the values for both metrics are
higher than the values obtained with the two extensions, while staying lower w.r.t. the
original NIFTY model.

Following the same reasoning, we see that with Bail the combination seems to have
results with almost always lower values for the fairness metrics w.r.t. the independent
extensions; with Credit, the combination provides results that are very similar to the
biased attribute perturbation and slightly better (i.e., lower fairness metrics) w.r.t. the
results of biased edge dropout.
In any case, the combination of the two methods improves in terms of fairness w.r.t.
the baseline NIFTY and in particular it looks like using both methods together tends
to obtain low for the counterfactual fairness metric.

A more accurate selection for the hyperparameter β should be done, to make biased
attribute perturbation affect more or less the model; there are also a lot of combinations
for the perturbation rates values to be tested, so it may be possible to find solutions
that take the best from both extensions, but we did not have enough time to explore
many of them.

5.4. RESULTS 57

German

Dattrr Dr δ AUC ∆SP ∆EO CF

0.01 0.1 0 68.82 ±2.74 2.44 ±1.55 1.87 ±0.61 0.60 ±0.60

0.35 68.15 ±3.43 1.00 ±1.50 1.61 ±1.51 0.66 ±0.59

0.4 68.62 ±2.83 2.06 ±1.77 2.25 ±2.20 0.13 ±0.30

0.1 0 69.78 ±2.32 3.38 ±2.48 2.85 ±2.31 0.53 ±0.55

0.35 66.76 ±1.54 0.99 ±0.70 0.78 ±0.79 0.31 ±0.41

0.4 68.32 ±2.33 1.17 ±1.08 0.63 ±0.38 0.33 ±0.43

Table 5.15: Comparison between NIFTY (rows with δ = 0) and the combination of our
methods on German dataset.

Credit

Dattrr Dr δ AUC ∆SP ∆EO CF

0.01 0.25 0 72.13 ±0.01 12.66 ±0.94 10.30 ±0.88 0.78 ±0.75

0.47 72.19 ±0.15 11.67 ±0.11 9.39 ±0.11 0.06 ±0.04

0.499 71.89 ±0.37 11.70 ±0.10 9.42 ±0.10 0.11 ±0.02

0.1 0 72.16±0.17 12.85±1.55 10.58±1.51 0.90±1.22

0.47 71.97 ±0.23 11.74 ±0.09 9.46 ±0.09 0.07 ±0.05

0.499 71.98 ±0.22 11.71 ±0.09 9.43 ±0.10 0.06 ±0.04

0.2 0 72.17 ±0.18 12.79 ±1.58 10.54 ±1.54 0.88 ±1.19

0.47 71.90 ±0.21 11.69 ±0.05 9.44 ±0.06 0.10 ±0.07

0.499 71.89 ±0.22 11.67 ±0.06 9.42 ±0.05 0.13 ±0.1

Table 5.16: Comparison between NIFTY (rows with δ = 0) and the combination of our
methods on Credit dataset.

Bail

Dattrr Dr δ AUC ∆SP ∆EO CF

0.1 0.1 0 82.51 ±2.01 1.94 ±0.76 0.72 ±0.29 1.15 ±0.32

0.25 83.70 ±0.80 1.51 ±0.15 1.07 ±0.45 1.23 ±0.18

0.4 83.59 ±0.72 1.54 ±0.28 1.39 ±0.23 0.14 ±0.15

0.2 0 81.95 ±0.19 1.70 ±0.16 1.15 ±0.35 1.31 ±0.67

0.25 83.09 ±0.87 1.69 ±0.42 1.01 ±0.60 1.31 ±0.41

0.4 82.97 ±0.76 1.71 ±0.42 0.98 ±0.75 1.37 ±0.36

Table 5.17: Comparison between NIFTY (rows with δ = 0) and the combination of our
methods on Bail dataset.

Chapter 6

Conclusions and future works

In this thesis, we studied and proposed two extensions to improve fairness in the
state-of-the-art model NIFTY, a method to compute fair node representations.
We replaced the randomness in its perturbation processes to create augmented views
that force the learned representation to give less importance to sensitive and sensitive-
related features instead of introducing random noise.

Our first proposal is inspired by recently proposed biased graph structure modifica-
tion methods; our second proposal exploits an idea taken from a recent work on fair
classification and adapts it as a node attributes perturbation strategy.
We have shown the effectiveness of our approaches in four real-world graph datasets.

This work provides many possibilities for future extensions and refinements, also
because of the lack of time that did not permit to evaluate many values for the
hyperparameters used. Some possible ideas:

1. An obvious and straightforward extension would be to better tune the parameters
of the backbone GCN, maybe also by trying other convolutions described in the
literature;

2. Concerning the graph structure, since German, Bail, and Credit datasets have
all "artificial" edges, a first idea can be to modify the link creation process by
employing different similarity metrics, which could probably also be learned by a
DL model from other real-world datasets of the same topic; another idea could
be to inject some fairness constraints while generating edges, to obtain a fairer
adjacency matrix.

3. A challenging while interesting idea is to extend this work to operate also in a
context where the sensitive attributes are more than one; for example, in German
dataset, there are other features that could be considered sensible, like Age or
the fact of coming from another country. It can however be difficult because it
also introduces the problem of Gerrymandering [38], which can arise when a
classifier is fair for each individual group but discriminates on subgroups, such
as certain combinations of different sensitive attributes.

4. Following the work of MccNifty [78] and [33], one could try to include subgraph
information by adding a "subgraph perturbation" process, where subgraphs are
generated or simply taken from nodes far from each other, with different sensitive

59

60 CHAPTER 6. CONCLUSIONS AND FUTURE WORKS

attribute but same ground truth, to make the model learn that the representation
of the two subgraphs should be similar.

5. An idea to include individual fairness metrics could be to extend FairDrop, where
instead of only dropping edges we replace some of them (maybe with the same
heuristics used for edge generation in NIFTY) while preserving the high-order
structure,i.e., remove some direct connection between homophilous edges and
replace them with a path of length > 1 or create a shorter path to nodes that are
connected with a long path and have different sensitive attribute while sharing
most of the other features. The idea is to build an adjacency matrix where each
node has more or less the same number of homophilous and heterophilous edges:
in this case, optimizing for the individual metric consistency can also guarantee
group fairness because it forces the model to do similar prediction to neighbors
nodes.

6. An extension for the biased attribute perturbation process could involve the
actual perturbation value other than the probability of doing it: weights (see
4.2) could be used to increase or decrease the value of the augmentation d (see
3.1). In this case, larger weights would produce a larger variation w.r.t. related
attributes’ values in the original node.

Bibliography

[1] C. Agarwal, H. Lakkaraju, and M. Zitnik. “Towards a Unified Framework for
Fair and Stable Graph Representation Learning”. In: UAI. 2021 (cit. on pp. 3,
15, 28, 33).

[2] Amr Ahmed et al. “Distributed Large-scale Natural Graph Factorization”. In:
IW3C2 - International World Wide Web Conference. Rio de Janeiro, Brazil, May
2013, p. 37. doi: 10.1145/2488388.2488393. url: https://hal.archives-
ouvertes.fr/hal-00918478 (cit. on p. 12).

[3] Solon Barocas, Moritz Hardt, and Arvind Narayanan. Fairness and Machine
Learning. http://www.fairmlbook.org. fairmlbook.org, 2019 (cit. on p. 21).

[4] Mikhail Belkin and Partha Niyogi. “Laplacian Eigenmaps and Spectral Techniques
for Embedding and Clustering”. In: Advances in Neural Information Processing
Systems. Ed. by T. Dietterich, S. Becker, and Z. Ghahramani. Vol. 14. MIT
Press, 2001. url: https://proceedings.neurips.cc/paper/2001/file/
f106b7f99d2cb30c3db1c3cc0fde9ccb-Paper.pdf (cit. on p. 12).

[5] Reuben Binns. “On the Apparent Conflict Between Individual and Group Fair-
ness”. In: CoRR abs/1912.06883 (2019). arXiv: 1912.06883. url: http://arxiv.
org/abs/1912.06883 (cit. on p. 25).

[6] A. J. Bose and W. L. Hamilton. “Compositional Fairness Constraints for Graph
Embeddings”. In: arXiv (2019) (cit. on pp. 21, 27).

[7] A. Buyl and T. De Bie. “DeBayes: a Bayesian method for debiasing network
embeddings”. In: arXiv (2020) (cit. on pp. 21, 31).

[8] Shaosheng Cao, Wei Lu, and Qiongkai Xu. “GraRep: Learning Graph Rep-
resentations with Global Structural Information”. In: Proceedings of the 24th
ACM International on Conference on Information and Knowledge Manage-
ment. CIKM ’15. Melbourne, Australia: Association for Computing Machinery,
2015, pp. 891–900. isbn: 9781450337946. doi: 10.1145/2806416.2806512. url:
https://doi.org/10.1145/2806416.2806512 (cit. on p. 12).

[9] Siheng Chen et al. “Discrete Signal Processing on Graphs: Sampling Theory”.
In: CoRR abs/1503.05432 (2015). arXiv: 1503.05432. url: http://arxiv.org/
abs/1503.05432 (cit. on p. 17).

[10] Alexandra Chouldechova. Fair prediction with disparate impact: A study of bias
in recidivism prediction instruments. 2016. doi: 10.48550/ARXIV.1610.07524.
url: https://arxiv.org/abs/1610.07524.

61

https://doi.org/10.1145/2488388.2488393
https://hal.archives-ouvertes.fr/hal-00918478
https://hal.archives-ouvertes.fr/hal-00918478
http://www.fairmlbook.org
https://proceedings.neurips.cc/paper/2001/file/f106b7f99d2cb30c3db1c3cc0fde9ccb-Paper.pdf
https://proceedings.neurips.cc/paper/2001/file/f106b7f99d2cb30c3db1c3cc0fde9ccb-Paper.pdf
https://arxiv.org/abs/1912.06883
http://arxiv.org/abs/1912.06883
http://arxiv.org/abs/1912.06883
https://doi.org/10.1145/2806416.2806512
https://doi.org/10.1145/2806416.2806512
https://arxiv.org/abs/1503.05432
http://arxiv.org/abs/1503.05432
http://arxiv.org/abs/1503.05432
https://doi.org/10.48550/ARXIV.1610.07524
https://arxiv.org/abs/1610.07524

62 Bibliography

[11] Alexandra Chouldechova and Aaron Roth. “A Snapshot of the Frontiers of
Fairness in Machine Learning”. In: Commun. ACM 63.5 (Apr. 2020), pp. 82–89.
issn: 0001-0782. doi: 10.1145/3376898. url: https://doi.org/10.1145/
3376898 (cit. on p. 20).

[12] S. Dai and S. Wang. “FairGNN: Eliminating the Discrimination in Graph Neural
Networks with Limited Sensitive Attribute Information”. In: arXiv (2020) (cit. on
pp. 21, 27, 39, 40).

[13] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. “Convolutional
Neural Networks on Graphs with Fast Localized Spectral Filtering”. In: CoRR
abs/1606.09375 (2016). arXiv: 1606.09375. url: http://arxiv.org/abs/1606.
09375 (cit. on pp. 17, 18).

[14] Y. Dong et al. “EDITS: Modeling and Mitigating Data Bias for Graph Neural
Networks”. In: (2021) (cit. on p. 31).

[15] Y. Dong et al. “Individual Fairness for Graph Neural Networks: A Ranking Based
Approach”. In: ACM SIGKDD. New York, NY, USA, 2021 (cit. on p. 31).

[16] Cynthia Dwork et al. “Fairness Through Awareness”. In: CoRR abs/1104.3913
(2011). arXiv: 1104.3913. url: http://arxiv.org/abs/1104.3913 (cit. on
pp. 23, 25).

[17] Will Fleisher. “What’s Fair about Individual Fairness?” In: Proceedings of the
2021 AAAI/ACM Conference on AI, Ethics, and Society. New York, NY, USA:
Association for Computing Machinery, 2021, pp. 480–490. isbn: 9781450384735.
url: https://doi.org/10.1145/3461702.3462621 (cit. on p. 24).

[18] Luciano Floridi and Josh Cowls. “A Unified Framework of Five Principles for AI
in Society”. In: Harvard Data Science Review 1.1 (July 2019) (cit. on p. 18).

[19] M. Gori, G. Monfardini, and F. Scarselli. “A new model for learning in graph
domains”. In: Proceedings. 2005 IEEE International Joint Conference on Neural
Networks, 2005. Vol. 2. 2005, 729–734 vol. 2. doi: 10.1109/IJCNN.2005.1555942
(cit. on p. 16).

[20] Aditya Grover and Jure Leskovec. “node2vec: Scalable Feature Learning for
Networks”. In: CoRR abs/1607.00653 (2016). arXiv: 1607.00653. url: http:
//arxiv.org/abs/1607.00653 (cit. on pp. 12, 27).

[21] Yosh Halberstam and Brian Knight. “Homophily, group size, and the diffusion
of political information in social networks: Evidence from Twitter”. In: Journal
of Public Economics 143 (2016), pp. 73–88. issn: 0047-2727. doi: https://doi.
org/10.1016/j.jpubeco.2016.08.011. url: https://www.sciencedirect.
com/science/article/pii/S0047272716301001 (cit. on p. 29).

[22] Will Hamilton, Zhitao Ying, and Jure Leskovec. “Inductive Representation
Learning on Large Graphs”. In: Advances in Neural Information Processing
Systems. Ed. by I. Guyon et al. Vol. 30. Curran Associates, Inc., 2017 (cit. on
p. 18).

[23] William L. Hamilton, Rex Ying, and Jure Leskovec. “Representation Learning
on Graphs: Methods and Applications”. In: CoRR abs/1709.05584 (2017). arXiv:
1709.05584. url: http://arxiv.org/abs/1709.05584 (cit. on p. 12).

https://doi.org/10.1145/3376898
https://doi.org/10.1145/3376898
https://doi.org/10.1145/3376898
https://arxiv.org/abs/1606.09375
http://arxiv.org/abs/1606.09375
http://arxiv.org/abs/1606.09375
https://arxiv.org/abs/1104.3913
http://arxiv.org/abs/1104.3913
https://doi.org/10.1145/3461702.3462621
https://doi.org/10.1109/IJCNN.2005.1555942
https://arxiv.org/abs/1607.00653
http://arxiv.org/abs/1607.00653
http://arxiv.org/abs/1607.00653
https://doi.org/https://doi.org/10.1016/j.jpubeco.2016.08.011
https://doi.org/https://doi.org/10.1016/j.jpubeco.2016.08.011
https://www.sciencedirect.com/science/article/pii/S0047272716301001
https://www.sciencedirect.com/science/article/pii/S0047272716301001
https://arxiv.org/abs/1709.05584
http://arxiv.org/abs/1709.05584

Bibliography 63

[24] M. Hardt, E. Price, and N. Srebro. “Equality of Opportunity in Supervised
Learning”. In: NeurIPS. 2016.

[25] Moritz Hardt, Eric Price, and Nathan Srebro. “Equality of Opportunity in
Supervised Learning”. In: CoRR abs/1610.02413 (2016). arXiv: 1610.02413.
url: http://arxiv.org/abs/1610.02413 (cit. on p. 22).

[26] Corinna Hertweck, Christoph Heitz, and Michele Loi. “On the Moral Justification
of Statistical Parity”. In: CoRR abs/2011.02079 (2020). arXiv: 2011.02079. url:
https://arxiv.org/abs/2011.02079 (cit. on p. 21).

[27] Peter D Hoff, Adrian E Raftery, and Mark S Handcock. “Latent Space Ap-
proaches to Social Network Analysis”. In: Journal of the American Statistical
Association 97.460 (2002), pp. 1090–1098. doi: 10.1198/016214502388618906.
eprint: https://doi.org/10.1198/016214502388618906. url: https://doi.
org/10.1198/016214502388618906 (cit. on p. 12).

[28] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer feedfor-
ward networks are universal approximators”. In: Neural Networks 2.5 (1989),
pp. 359–366. issn: 0893-6080. doi: https://doi.org/10.1016/0893-6080(89)
90020-8. url: https://www.sciencedirect.com/science/article/pii/
0893608089900208 (cit. on p. 9).

[29] https://colab.research.google.com/. url: https://colab.research.google.
com/ (cit. on p. 40).

[30] https://github.com/Fecsio. url: https://github.com/Fecsio (cit. on p. 41).

[31] Zexi Huang, Arlei Silva, and Ambuj K. Singh. “A Broader Picture of Random-walk
Based Graph Embedding”. In: CoRR abs/2110.12344 (2021). arXiv: 2110.12344.
url: https://arxiv.org/abs/2110.12344 (cit. on p. 12).

[32] Daniel T. Jones James P. Womack. Lean Thinking, Second Editon. Simon &
Schuster, Inc., 2010.

[33] Yizhu Jiao et al. “Sub-graph Contrast for Scalable Self-Supervised Graph Repre-
sentation Learning”. In: CoRR abs/2009.10273 (2020). arXiv: 2009.10273. url:
https://arxiv.org/abs/2009.10273 (cit. on p. 59).

[34] Toshihiro Kamishima, Shotaro Akaho, and Jun Sakuma. “Fairness-aware Learning
through Regularization Approach”. In: 2011 IEEE 11th International Conference
on Data Mining Workshops. 2011, pp. 643–650. doi: 10.1109/ICDMW.2011.83
(cit. on p. 27).

[35] Toshihiro Kamishima, Shotaro Akaho, and Jun Sakuma. “Fairness-aware learning
through regularization approach”. In: 2011 IEEE 11th International Conference
on Data Mining Workshops. IEEE. 2011, pp. 643–650 (cit. on p. 27).

[36] B. Kang, J. Lijffijt, and T. De Bie. “Conditional Network Embeddings”. In: ICLR.
2019 (cit. on p. 31).

[37] Michael Kearns, Aaron Roth, and Zhiwei Steven Wu. “Meritocratic Fairness for
Cross-Population Selection”. In: Proceedings of the 34th International Confer-
ence on Machine Learning. Ed. by Doina Precup and Yee Whye Teh. Vol. 70.
Proceedings of Machine Learning Research. PMLR, June 2017, pp. 1828–1836.
url: https://proceedings.mlr.press/v70/kearns17a.html (cit. on p. 24).

https://arxiv.org/abs/1610.02413
http://arxiv.org/abs/1610.02413
https://arxiv.org/abs/2011.02079
https://arxiv.org/abs/2011.02079
https://doi.org/10.1198/016214502388618906
https://doi.org/10.1198/016214502388618906
https://doi.org/10.1198/016214502388618906
https://doi.org/10.1198/016214502388618906
https://doi.org/https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/https://doi.org/10.1016/0893-6080(89)90020-8
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://colab.research.google.com/
https://colab.research.google.com/
https://github.com/Fecsio
https://arxiv.org/abs/2110.12344
https://arxiv.org/abs/2110.12344
https://arxiv.org/abs/2009.10273
https://arxiv.org/abs/2009.10273
https://doi.org/10.1109/ICDMW.2011.83
https://proceedings.mlr.press/v70/kearns17a.html

64 Bibliography

[38] Michael Kearns et al. “Preventing Fairness Gerrymandering: Auditing and Learn-
ing for Subgroup Fairness”. In: Proceedings of the 35th International Conference
on Machine Learning. Ed. by Jennifer Dy and Andreas Krause. Vol. 80. Pro-
ceedings of Machine Learning Research. PMLR, Oct. 2018, pp. 2564–2572. url:
https://proceedings.mlr.press/v80/kearns18a.html (cit. on p. 59).

[39] Moein Khajehnejad et al. “Adversarial Graph Embeddings for Fair Influence
Maximization over Social Networks”. In: ArXiv abs/2005.04074 (2020) (cit. on
p. 31).

[40] T. N. Kipf and M. Welling. “Semi-Supervised Classification with Graph Convo-
lutional Networks”. In: ICLR. 2017.

[41] Thomas N. Kipf and Max Welling. “Semi-Supervised Classification with Graph
Convolutional Networks”. In: CoRR abs/1609.02907 (2016). arXiv: 1609.02907.
url: http://arxiv.org/abs/1609.02907 (cit. on p. 18).

[42] Nikita Kozodoi, Johannes Jacob, and Stefan Lessmann. “Fairness in credit scoring:
Assessment, implementation and profit implications”. In: European Journal of
Operational Research 297.3 (2022), pp. 1083–1094. issn: 0377-2217. doi: https://
doi.org/10.1016/j.ejor.2021.06.023. url: https://www.sciencedirect.
com/science/article/pii/S0377221721005385 (cit. on p. 27).

[43] Matt J. Kusner et al. Counterfactual Fairness. 2017. doi: 10.48550/ARXIV.
1703.06856. url: https://arxiv.org/abs/1703.06856 (cit. on p. 28).

[44] C. Laclau et al. “All of the Fairness for Edge Prediction with Optimal Transport”.
In: arXiv (2020).

[45] Anja Lambrecht and Catherine Tucker. “Algorithmic Bias? An Empirical Study of
Apparent Gender-Based Discrimination in the Display of STEM Career Ads”. In:
Management Science 65.7 (2019), pp. 2966–2981. doi: 10.1287/mnsc.2018.3093.
url: https://doi.org/10.1287/mnsc.2018.3093 (cit. on p. 19).

[46] Michelle Lee, Luciano Floridi, and Jat Singh. “Formalising trade-offs beyond
algorithmic fairness: lessons from ethical philosophy and welfare economics”. In:
AI and Ethics 1 (Nov. 2021). doi: 10.1007/s43681-021-00067-y (cit. on p. 21).

[47] O. Li et al. “On Dyadic Fairness: Exploring and Mitigating Bias in Graph
Connections”. In: ICLR. 2021 (cit. on p. 31).

[48] Daniel Lowd and Christopher Meek. “Adversarial Learning”. In: Proceedings of
the Eleventh ACM SIGKDD International Conference on Knowledge Discovery
in Data Mining. KDD ’05. Chicago, Illinois, USA: Association for Computing
Machinery, 2005, pp. 641–647. isbn: 159593135X. doi: 10 . 1145 / 1081870 .
1081950. url: https://doi.org/10.1145/1081870.1081950 (cit. on p. 27).

[49] Jing Ma et al. “Learning Fair Node Representations with Graph Counterfactual
Fairness”. In: CoRR abs/2201.03662 (2022). arXiv: 2201.03662. url: https:
//arxiv.org/abs/2201.03662 (cit. on p. 27).

[50] Warren S. McCulloch and Walter Pitts. “A Logical Calculus of the Ideas Immanent
in Nervous Activity”. In: The Bulletin of Mathematical Biophysics 5.4 (1943),
pp. 115–133. doi: 10.1007/bf02478259 (cit. on p. 7).

https://proceedings.mlr.press/v80/kearns18a.html
https://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1609.02907
https://doi.org/https://doi.org/10.1016/j.ejor.2021.06.023
https://doi.org/https://doi.org/10.1016/j.ejor.2021.06.023
https://www.sciencedirect.com/science/article/pii/S0377221721005385
https://www.sciencedirect.com/science/article/pii/S0377221721005385
https://doi.org/10.48550/ARXIV.1703.06856
https://doi.org/10.48550/ARXIV.1703.06856
https://arxiv.org/abs/1703.06856
https://doi.org/10.1287/mnsc.2018.3093
https://doi.org/10.1287/mnsc.2018.3093
https://doi.org/10.1007/s43681-021-00067-y
https://doi.org/10.1145/1081870.1081950
https://doi.org/10.1145/1081870.1081950
https://doi.org/10.1145/1081870.1081950
https://arxiv.org/abs/2201.03662
https://arxiv.org/abs/2201.03662
https://arxiv.org/abs/2201.03662
https://doi.org/10.1007/bf02478259

Bibliography 65

[51] Ninareh Mehrabi et al. “A Survey on Bias and Fairness in Machine Learning”. In:
ACM Comput. Surv. 54.6 (July 2021). issn: 0360-0300. doi: 10.1145/3457607.
url: https://doi.org/10.1145/3457607 (cit. on p. 25).

[52] A. Micheli. “Neural network for graphs: A contextual constructive approach”. In:
IEEE Transactions on Neural Networks 20.3 (2009), pp. 498–511.

[53] Alessio Micheli. “Neural Network for Graphs: A Contextual Constructive Ap-
proach”. In: IEEE Transactions on Neural Networks 20.3 (2009), pp. 498–511.
doi: 10.1109/TNN.2008.2010350 (cit. on p. 16).

[54] N. Navarin, L. Oneto, and M. Donini. “Learning Deep Fair Graph Neural Net-
works”. In: ESANN. 2020.

[55] Nicolo Navarin et al. “Linear graph convolutional networks”. In: ESANN. 2020
(cit. on p. 17).

[56] Luca Oneto and Silvia Chiappa. “Fairness in Machine Learning”. In: CoRR
abs/2012.15816 (2020). arXiv: 2012.15816. url: https://arxiv.org/abs/
2012.15816 (cit. on p. 25).

[57] Lawrence Page et al. The PageRank Citation Ranking: Bringing Order to the Web.
Technical Report 1999-66. Previous number = SIDL-WP-1999-0120. Stanford
InfoLab, Nov. 1999. url: http://ilpubs.stanford.edu:8090/422/ (cit. on
p. 31).

[58] Proposal for a Regulation laying down harmonised rules on artificial intelligence.
url: https://digital-strategy.ec.europa.eu/en/library/proposal-
regulation-laying-down-harmonised-rules-artificial-intelligence
(cit. on p. 19).

[59] PyTorch. url: https://pytorch.org/ (cit. on p. 40).

[60] PyTorch-Geometric. url: https://www.pyg.org/ (cit. on p. 41).

[61] Tahleen Rahman et al. “Fairwalk: Towards Fair Graph Embedding”. In: Pro-
ceedings of the Twenty-Eighth International Joint Conference on Artificial In-
telligence, IJCAI-19. International Joint Conferences on Artificial Intelligence
Organization, July 2019, pp. 3289–3295. doi: 10.24963/ijcai.2019/456. url:
https://doi.org/10.24963/ijcai.2019/456 (cit. on p. 27).

[62] Y. Rong et al. “DropEdge: Towards Deep Graph Convolutional Networks on
Node Classification”. In: ICLR. 2020.

[63] F. Rosenblatt. Principles of Neurodynamics: Perceptrons and the Theory of Brain
Mechanisms. Cornell Aeronautical Laboratory. Report no. VG-1196-G-8. Spartan
Books, 1962. url: https://books.google.it/books?id=7FhRAAAAMAAJ (cit.
on p. 7).

[64] Ahmed Ali Mohammed Al-Saffar, Hai Tao, and Mohammed Ahmed Talab. “Re-
view of deep convolution neural network in image classification”. In: 2017 Interna-
tional Conference on Radar, Antenna, Microwave, Electronics, and Telecommu-
nications (ICRAMET). 2017, pp. 26–31. doi: 10.1109/ICRAMET.2017.8253139
(cit. on p. 15).

[65] F. Scarselli et al. “The Graph Neural Network Model”. In: IEEE Transactions
on Neural Networks 20.1 (2009), pp. 61–80.

https://doi.org/10.1145/3457607
https://doi.org/10.1145/3457607
https://doi.org/10.1109/TNN.2008.2010350
https://arxiv.org/abs/2012.15816
https://arxiv.org/abs/2012.15816
https://arxiv.org/abs/2012.15816
http://ilpubs.stanford.edu:8090/422/
https://digital-strategy.ec.europa.eu/en/library/proposal-regulation-laying-down-harmonised-rules-artificial-intelligence
https://digital-strategy.ec.europa.eu/en/library/proposal-regulation-laying-down-harmonised-rules-artificial-intelligence
https://pytorch.org/
https://www.pyg.org/
https://doi.org/10.24963/ijcai.2019/456
https://doi.org/10.24963/ijcai.2019/456
https://books.google.it/books?id=7FhRAAAAMAAJ
https://doi.org/10.1109/ICRAMET.2017.8253139

66 Bibliography

[66] Franco Scarselli et al. “The Graph Neural Network Model”. In: IEEE Transactions
on Neural Networks 20.1 (2009), pp. 61–80. doi: 10.1109/TNN.2008.2005605
(cit. on p. 16).

[67] David I Shuman et al. “The emerging field of signal processing on graphs: Ex-
tending high-dimensional data analysis to networks and other irregular domains”.
In: IEEE Signal Processing Magazine 30.3 (2013), pp. 83–98. doi: 10.1109/MSP.
2012.2235192 (cit. on p. 17).

[68] A. Sperduti and A. Starita. “Supervised neural networks for the classification of
structures”. In: IEEE Transactions on Neural Networks 8.3 (1997), pp. 714–735.

[69] Alessandro Sperduti, Darya Majidi, and Antonina Starita. “Extended Cascade-
Correlation for syntactic and structural pattern recognition”. In: Advances in
Structural and Syntactical Pattern Recognition. Ed. by Petra Perner, Patrick
Wang, and Azriel Rosenfeld. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996,
pp. 90–99. isbn: 978-3-540-70631-1 (cit. on p. 16).

[70] I. Spinelli et al. “FairDrop: Biased Edge Dropout for Enhancing Fairness in
Graph Representation Learning”. In: IEEE Transactions on Artificial Intelligence
(2021) (cit. on pp. 3, 28, 29, 33, 34).

[71] Alan Tsang et al. “Group-Fairness in Influence Maximization”. In: CoRR abs/1903.00967
(2019). arXiv: 1903.00967. url: http://arxiv.org/abs/1903.00967 (cit. on
p. 31).

[72] Petar Velickovic et al. “Graph attention networks”. In: stat 1050 (2017), p. 20
(cit. on p. 18).

[73] Sahil Verma and Julia Rubin. “Fairness Definitions Explained”. In: Proceedings of
the International Workshop on Software Fairness. FairWare ’18. Gothenburg, Swe-
den: Association for Computing Machinery, 2018, pp. 1–7. isbn: 9781450357463.
doi: 10.1145/3194770.3194776. url: https://doi.org/10.1145/3194770.
3194776 (cit. on p. 22).

[74] Yanhao Wei et al. “Credit scoring with social network data”. In: Marketing
Science 35.2 (2016), pp. 234–258 (cit. on p. 27).

[75] Zonghan Wu et al. “A Comprehensive Survey on Graph Neural Networks”. In:
CoRR abs/1901.00596 (2019). arXiv: 1901.00596. url: http://arxiv.org/
abs/1901.00596 (cit. on p. 17).

[76] Keyulu Xu et al. “How Powerful are Graph Neural Networks?” In: CoRR
abs/1810.00826 (2018). arXiv: 1810.00826. url: http://arxiv.org/abs/
1810.00826 (cit. on p. 18).

[77] Ziqian Zeng et al. “Fair Representation Learning for Heterogeneous Information
Networks”. In: CoRR abs/2104.08769 (2021). arXiv: 2104.08769. url: https:
//arxiv.org/abs/2104.08769 (cit. on p. 21).

[78] Xu Zhang et al. “A Multi-view Confidence-calibrated Framework for Fair and
Stable Graph Representation Learning”. In: 2021 IEEE International Conference
on Data Mining (ICDM). 2021, pp. 1493–1498. doi: 10.1109/ICDM51629.2021.
00194 (cit. on pp. 31, 59).

https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1109/MSP.2012.2235192
https://doi.org/10.1109/MSP.2012.2235192
https://arxiv.org/abs/1903.00967
http://arxiv.org/abs/1903.00967
https://doi.org/10.1145/3194770.3194776
https://doi.org/10.1145/3194770.3194776
https://doi.org/10.1145/3194770.3194776
https://arxiv.org/abs/1901.00596
http://arxiv.org/abs/1901.00596
http://arxiv.org/abs/1901.00596
https://arxiv.org/abs/1810.00826
http://arxiv.org/abs/1810.00826
http://arxiv.org/abs/1810.00826
https://arxiv.org/abs/2104.08769
https://arxiv.org/abs/2104.08769
https://arxiv.org/abs/2104.08769
https://doi.org/10.1109/ICDM51629.2021.00194
https://doi.org/10.1109/ICDM51629.2021.00194

Bibliography 67

[79] Tianxiang Zhao et al. “You Can Still Achieve Fairness Without Sensitive At-
tributes: Exploring Biases in Non-Sensitive Features”. In: CoRR abs/2104.14537
(2021). arXiv: 2104.14537. url: https://arxiv.org/abs/2104.14537 (cit. on
pp. 3, 21, 28, 30, 33, 36).

https://arxiv.org/abs/2104.14537
https://arxiv.org/abs/2104.14537

	Acknowledgements
	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Background
	2.1 Machine Learning
	2.1.1 Supervised learning for classification
	2.1.2 Artificial Neural Networks

	2.2 Graphs
	2.2.1 Formal definition and notation

	2.3 Learning on graphs
	2.3.1 Graph representation learning
	2.3.2 Node classification
	2.3.3 Graph Neural Networks

	2.4 Algorithmic fairness
	2.4.1 Group fairness
	2.4.2 Individual fairness

	2.5 Applying fairness

	3 Related works
	3.1 Nifty
	3.2 Fairdrop
	3.3 FairRF
	3.4 Other works

	4 Proposed methods
	4.1 Biased edge dropout
	4.2 Biased attribute perturbation

	5 Experimental evaluation and discussion
	5.1 Datasets
	5.2 Experimental setup
	5.2.1 Baselines and configurations

	5.3 Metrics
	5.3.1 Area under the curve
	5.3.2 Fairness metrics

	5.4 Results
	5.4.1 GCN and linear regression models
	5.4.2 Biased attribute perturbation
	5.4.3 Biased edge dropout
	5.4.4 Combining the methods

	6 Conclusions and future works
	Bibliography

