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Abstract 

Hydraulic fracturing indicates the rupture of a solid medium due to pressure 

applied by a traversing fluid flow. It is a multi-physics, fluid-structure interaction 

problem, as both fluid and solid mechanics contribute to the phenomenon. We 

present a study of the fracturing caused by the transition of a generic fluid agent 

inside a solid porous shell. Crack propagation and fracture mechanics are 

considered, describing the damaging process of the solid frame subjected to the 

viscous laminar flow filtering inside. Porous materials represent a typical category 

involved in this class of problems, being associated with diverse engineering fields 

and research areas. Strains and fractures caused by the flow are evaluated 

through the use of Direct Numerical Simulations; Navier-Stokes equations are 

coupled with the equations of the peridynamics theory to acknowledge solid 

mechanics and the formation of discontinuities in the structure. A multi-direct 

Immersed Boundary Method approach is applied to take heed of the time-

evolving body surfaces subjected to the fluid stresses. In this manner, the 

implementation of the no-slip boundary condition is unrelated to the complexity 

of the solid structure; this allow us to fully describe the deformation of the frame 

caused by the injected stream. The simulation is performed at a pore-scale, in 

order to properly capture the crack phenomenon and its development along the 

structure. The response of the porous structure is then evaluated representing the 

geometry of the medium through an equivalent capillary model. The efficacy of 

this configuration is validated through the results obtained from the simulations; 

ultimately, a basic failure criterion based on the assumptions made is proposed. 
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Chapter 1 

Introduction 

Hydraulic fracturing defines a field of study associated with diverse engineering 

categories as it features interaction phenomena between a fluid and a solid phase. 

It is considered for this reason as a non-linear, multi-physics problem given the 

involvement of both fluid and solid mechanics. This category of processes are 

identified as fluid-structure interaction problems and are acknowledged by a 

plethora of engineering scopes of research as they describe a wide variety of 

scenarios which ranges from the modeling of aircraft wings and turbine blades to 

simulating blood flow inside vessels.  

In the case here considered, it will be examined and studied the effect of a viscous 

laminar fluid flow filtering inside a solid porous medium; the analysis that will be 

carried on will focus on evaluating the phenomenon at a pore-scale level, assessing 

fracture mechanics and the propagation of the crack around the solid frame due to 

the pressure of the injected flow. 

The strains and fractures caused by the transition of the fluid agent will be 

evaluated through the use of Direct Numerical Simulations; Navier-Stokes 

equations are coupled with the equations of the peridynamics theory to acknowledge 

solid mechanics and the formation of discontinuities in the structure. A multi-direct 

Immersed Boundary Method approach is used to take heed of the time-evolving 

body surfaces subjected to the fluid stresses. In this manner, the implementation of 

the no-slip boundary condition will be unrelated to the complexity of the solid 

structure; this allow us to fully describe the deformation of the frame caused by the 

injected stream. The simulation will be performed at a pore-scale level, in order to 

properly capture the crack phenomenon and its development around the structure.  

The present thesis is organized in the following way: firstly, a review of the 

literature covering our area of interest is addressed. Fluid-structure interaction 

problems are defined, providing a general outline of their application. Afterwards, 
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porous materials are characterized, evaluating their distinctive geometrical 

quantities and corresponding representative models; hydraulic fracturing and the 

relative crack propagation process is then briefly introduced, together with the 

typical numerical simulations adopted. Methodology is then presented: the Direct 

Numerical Simulation technique, the Immersed Boundary Method approach and 

the Peridynamic theory are examined, evaluating firstly their formulation and 

subsequently their numerical implementation. Having properly introduced the 

subject, the configuration that will be studied is presented; all the simulations 

described in this thesis have been performed by employing a massive MPI parallel 

solver (CaNS-ExPS [2],[63]), capable of running the computational process that has 

been set out. A random porous medium generation algorithm has been developed 

to produce an optimized solid configuration to employ in the final analysis. Five 

different material configurations will be considered, each of them associated to a 

different level of material strength. 

The results obtained from the numerical simulations are reviewed in-depth; the 

data collected from the analysis are then employed to evaluate the effectiveness of 

representing the geometry of the porous frame through an equivalent capillary 

model, comparing the results of the selected configurations. The failure of the 

porous structure is ultimately addressed, proposing a basic failure criterion on the 

made assumptions. 

As for the author knowledge, no previous attempts have ever been made to 

describe the phenomenon of hydraulic fracturing for porous media at a pore-scale 

level, given the modelling complexity and the high specificity of the analysis. The 

scientific background surrounding porous materials is undoubtedly very wide, 

however, the progresses that have been made distribute on a variety of different 

directions which contribute adversely in giving a clear understanding of the subject. 

With this present work the author hopes to help clarify the context of study, 

providing a better insight of what could be of interest for several engineering 

applications. 
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Chapter 2 

Overview of the subject 

Let us begin our review with a summary of the concerning subjects touched by 

this research. Firstly, fluid-structure interaction problems will be briefly introduced, 

as they represent the focal point of our scope of interests. The most prevalent 

computational procedures and meshing techniques adopted will be specifically 

addressed in the next chapter. Afterwards, the chapter will present the main aspects 

characterizing a generical porous material involved in this typology of study. 

Constitutive laws and models also will be presented. The last section will then 

involve hydraulic fracturing, including a technical description of its general process 

and the typical numerical strategies adopted to simulate it. 

2.1 Fluid-structure interaction 

The interaction of a non-rigid body submerged in a flowing liquid can lead to 

several different physical phenomena involving distinct engineering fields. These 

may include the response to gusts of aircraft wings, the flutter effect, the behaviour 

of structures and building to wind force, and even the vibration of the blades inside 

a compressor or a turbine. All these different cases are acknowledged as fluid-

structure interaction problems (FSI) and play a major role in the scientific 

development of their respective areas of interest. [1],[2] 

Examining and understanding these subjects effectively remains a challenge 

nowadays, due to the strong non-linearity characterizing them; they also involve 

separate disciplines, presenting the problem more complex to address without a 

specialized viewpoint. This becomes useful since it's necessary to model both the 

fluid and the structure to reproduce these phenomena properly. Typically, solids 

are assumed obeying Hooke's law with deformations described either using a 

simplified elastic model or, for larger deformations, a more complex nonlinear 

material. Fluid modelling usually implies laminar flow under the hypothesis of low 

Reynolds number and constant fluid density (incompressible flow). [4] 
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As long as analytical solutions are almost unattainable for every type of 

condition and laboratory experiments are confined to the case studied, only 

numerical simulations remain employable. These techniques will be reviewed in the 

next chapter (3.1.1), while for now only a general discussion of the subject will be 

presented, starting with the object involved by our study. 

2.2 Mechanics of porous media 

A porous medium is a solid material which features pores in its volume. This 

void space is identified as empty in the overall dimensions of the body and is 

determined either continuous if every pore structure is interconnected, or isolated 

if volumes of the material appear to be confined from the outer environment. The 

skeletal portion of the material is often called "matrix" or "frame" as they are usually 

subjected to the flow of a gas or fluid through it. [10] 

Being filled with fluid, porous media are typical FSI problems and critical 

components for a broad range of disciplines and studies such as electrodes for fuel 

cell and batteries development, reservoirs accessibility and geology; their study is 

required for a better general understanding of also seawater filtration and 

underground hydrology, including water contamination. [11,12] 

We will first introduce the main aspects characterizing a porous medium and 

then proceed to assess the models developed to describe their behaviour when 

traversed by a fluid. 

2.2.1 Physical properties 

In porous media void space is usually extremely chaotic, as pore size and shape 

tend to modify across a broad range, being random and dependent on ever-changing 

processes. In this way, the paths that the solid skeleton provides to the fluid are 

not straight but full of turns and crosses with other passages; a fluid molecule before 

exiting from the medium has to travel way longer than its actual effective 

displacement. For these reasons, only part of their properties can be defined easily: 

even now these kinds of materials are handled without completely taking into 

account their complex internal morphology. To evaluate fluid flow inside, 

conservation laws are averaged over a scale long enough to consider the segment 
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A B C 

D E F

homogeneous and experimental coefficient are attributed for each medium, given 

their uniqueness. [13] 

 We can see in figure 2.1 some examples of different typologies of natural porous 

materials belonging to various field of interest. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Examples of natural porous materials: (A) beach sand, (B) sandstone, (C) 

limestone; (D) bread slice, (E) wood and (F) human lung. [14] 

The first parameter we introduce to describe a porous medium is porosity ��� 
or void fraction. It's an intrinsic property of every porous material and is defined 

as the ratio between the volume of the pores and the total volume of the medium. 

[15] 

                               φ=
Void volume

Total volume
                                    (2.1) 

In this case, void space is generated by interconnected pores; however, when the 

pore network is not completely unified and some pore space is inaccessible from the 

fluid phase, is necessary to define an effective porosity. This parameter differs from 
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the first (bulk porosity) as it considers only the void space which contributes to the 

fluid flow inside the solid.  

Being dimensionless, � will always be lower than one; the closer is to zero, the 

higher is the volume filled by the solid matrix and the flow struggles to pass 

through.  

As we have already seen in figure (2.1), porosity can be displayed in two different 

way: convex porosity and non-convex porosity (fig. 2.2). Non-convex porosity is 

typical of materials formed by stacking of granular particulate. It's usually 

displayed in natural materials assembled by progressive stacking of grains and 

particles of various form and size, such as sand or concrete. On the other hand, 

convex porosity is obtained by the formation of cavities inside the solid frame, 

forming sponge-like structures. These cavities can have a regular shape (usually it's 

spherical) or form passages of various shape inside the medium. 

 

 

 

 

 

  

 

 

Figure 2.2: Computer generated portions of porous media with (a) non-convex porosity and 

(b) convex porosity. Porosity is equal to 30% for both structures. [17] 

Fluid phase inside the solid skeleton is obviously very dependent on the shape 

of the pores as not only porosity but also the morphology of the empty passages 

influences the flow path and the velocity field. It is easy to imagine that the fluid 

will slow down and dissipate more of its energy for materials associated with a low 

  

(a) (b) 
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value of �, as a larger contact surface is offered, increasing the overall drag and 

pressure drop. (fig. 2.3) 

 

  

 

  

 

 

Figure 2.3: Velocity contours in 2D non-convex porous media. Porosity is 0.9 (left) and 0.67 

(right). Red indicates high velocity, blue low velocity. [15] 

For this reason, when dealing with non-convex porosity, is helpful to include an 

additional parameter which defines the irregularity of the granular particulate: 

sphericity. The sphericity of a particle Ψ is the ratio of the surface area of a sphere 

with the same volume as a given particle to the surface area of the particle and is 

expressed as: [11] 

                               Ψ = 
As

Ap
= 
π

1
3�6Vp�23

Ap
                               (2.2) 

    where �� is the volume of the particle and �� its the surface area; �	 is the 

surface area of a sphere with the same volume as the given particle. 

In the studies performed by Kerimov et al. (2018) [11], using digital generated 

porous media created via an algorithm of stacking of granular particles, it was 

proved how usually the lower is the average sphericity of the grains in a non-convex 

material, the lower is porosity.  

Worthy of mention is also the effect on the permeability of the material; 

permeability (k) measures the resistance offered by a porous medium to be traversed 

by a fluid and it was introduced by Darcy (1856) in his self-named law, which will 

be reviewed in the next pages. Similarly to porosity, it was proved how irregularity 

in the grains' shape contributes to lower k, increasing the overall pressure drop. We 

present the results of the studies in figure 2.10: 
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Figure 2.4: Porosity as a function of average sphericity (left), normalized permeability as a 

function of average sphericity (right); D is the diameter of the grain. [11] 

To further predict the permeability of porous media, especially the one 

presenting convex cavities (Fig. 2.4b), Kozeny (1927) introduced the concept of 

tortuosity (τ). Initially, it was employed as a tuning parameter to better take into 

account the effects of the porous structure: the solid phase, deflecting the fluid, 

extends the route and τ corrects the effective flow path. Yet, later on, it started 

being used not only to quantify the complexity of internal percolation path but also 

to evaluate transport properties. 

Now tortuosity has become a key factor for several engineering and scientific 

fields, such as geoscience, energy conversion and storage and chemical applications. 

As a result, this quantity is not uniquely defined and various evaluation approaches 

have been introduced from different contexts. In general, however, we can interpret 

its concept in two ways: (A) a geometrical measure to describe the sinuosity of the 

flow passages inside the solid skeleton; (B) a physical quantity indicating the 

resistance offered by the on a particular transport process inside the medium. As 

long as our field of interest will involve fluid-structure interaction and crack 

propagation due to the flow pressure, we will proceed to introduce only the 

geometrical and hydraulic definition of tortuosity, starting with the first. 

Geometrical tortuosity (τ
) is considered an intrinsic microstructural 

characteristic, as is independent of the particular transport problem considered.       
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Still, it's commonly used to replace physical formulations of tortuosity when their 

computation is overly complicated. We can define τ
 as the ratio of the effective 

length travelled by the fluid flow to the overall dimension of the medium in the 

macroscopic flow direction: [17] 

                 τg = 
Lmin

L
                                           (2.3) 

    Usually, L�� is associated with the shortest polygonal chain traversing the 

porous material, which is slightly shorter than the effective flow path L� (or 

chemical length) as this one follows the track taken by the fluid. Alternatively, 

L�� can be replaced by the average of all the geometric path flow inside the 

medium. This average can be computed disregarding the difference in velocity for 

every track or conducting a flux-average instead. 

    As regards hydraulic tortuosity (τ�), it was introduced by Carman (1937) to 

expand the studies on permeability carried previously by Kozeny. Similarly to the 

geometric tortuosity, τ� is defined as the ratio of the effective hydraulic flow path 

L� to the straight-line distance in the direction of movement. [17] 

         τh = 
Lh

L
                                           (2.4) 

For this reason, hydraulic tortuosity can be read as a parameter describing the 

average stretching of the flow path in a porous material respect to a non-disrupted 

flow. The length L�  is usually measured from the streamlines in a condition of 

steady-state where the flow behaviour is unchanging with time. Still, identifying a 

streamline inside a porous frame remains not an easy task, as the random shape of 

its ever-changing cross-section, combined with the “continuous branching and 

rejoining” of its internal cavities, makes the process tangled. [17] 

To solve this problem, some computation methods were proposed; for instance, 

Zhang and Knackstedt (1995) suggested to evaluate a weighted average of all the 

streamlines traversing the medium, using as weight the corresponding time 

requested for a single flow particle to move along its entire flow path. 

We can reformulate (2.4) as the following: 

                                  τh = 
1

L
�∑ wilii∑ wii

�= 
1

L
�∑ li ti

 -1
i∑ ti

 -1
i

�                         (2.4) 
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where l� ,wi and �i are respectively the single streamline length, the related weight 

and the travel time for a particle. It was later proved by Matyka and Koza (2012) 

that equation (2.4) can be written using the instantaneous particle velocity vi or 

its distribution v(x,y,z) obtaining: 

                                  τh = � vdΩ
 
Ω �  vxdΩ
 
Ω

 = 
〈v 〉〈vx〉                              (2.5) 

     with Ω being the porous domain saturated by the fluid. It is essential to note 

that equation (2.5) is based on two hypotheses: (1) fluid flows only in one direction 

without reentering in the material, and (2) the fluid is incompressible. These two 

assumptions are acceptable as long as the flow is laminar and associated with a low 

Reynolds number.  

     However, as we have already seen in the previous pages, a domain discretization 

is required if we want to approach numerically the computing of hydraulic 

tortuosity. The velocity field of the fluid is then defined assigning a value of  vx,  vy  and vz  to each of the nodes composing the domain. In this way, we may 

reformulate equation (2.6) as the following [15]: 

                                      τh = 
∑  �vijk�i,j,k∑  �vx,ijk�i,j,k

                              (2.6) 

     where x is the flow direction and |vijk| indicates the velocity magnitude for the 

node (i,j,k) and |vx,ijk| only of the x-component. 

     Despite existing many other microstructural descriptors for porous media, such 

as pore size distribution and constrictivity, only the parameters already discussed 

will be employed for the later analysis. These alone, however, cannot help us to 

completely understand the phenomenon: mathematical models have to be 

introduced to further quantify how quantities evolve within the medium as time 

progresses. 

2.2.2 Models adopted 

Now that the main physical properties of porous media have been introduced, 

we will move on presenting the most relevant mathematical models developed to 

evaluate fluid flow inside porous media. These will be Darcy's law, Kozeny-Carman 



11 

 

equation and the poroelasticity theory proposed by Biot. Being these theories 

associated to a subject of interest relevant in many fields of study, multiple 

iterations and revisions have been made over the year, making it necessary to 

include in this review also the corrections that several studies have proposed to 

better assess the related phenomena. 

Let us start with Darcy's law; it was proposed by Henry Darcy (1856) to estimate 

the pressure drop of a fluid flowing inside a porous medium in the absence of 

gravitational forces. It is derived from the Navier-Stokes equations, assuming the 

condition of incompressible and isothermal flow, volume-averaging its quantities. 

[18] From a mechanical point of view, the pressure of the fluid filtering through a 

porous medium is lost due to the fluid viscosity. We can express it in its differential 

form as: 

                                
dP
dx
= - μ

k
·U                                              (2.7a) 

    where P is the average fluid pressure, µ is the dynamic viscosity of the fluid, k 

the permeability of the porous material, U the average fluid velocity and x the 

direction of the flow. Alternatively (2.7a) can be reformulated using the volumetric 

flow rate Q and the cross-section of the material A, obtaining: 

           Q = - kA

μ
�dP

dx
�                                               (2.7b) 

    which can be integrated over x obtaining: 

           Q = - kA

μL ∆P                                               (2.7c) 

    where L is the length of the sample; ∆P  !   becomes in this way the hydraulic 

pressure gradient across the solid frame.  

    It should be noted, however, that Darcy's model is suitable only for low values 

of Reynolds number; as Re increases, fluid velocity also rises, introducing non-linear 

effects to the problem. It has been proved now that this is caused by the inertia of 

the fluid, which greatly rises alongside its velocity. In this issue, Re still represents 

the ratio of inertial forces and viscous effects; for the cases explored here, however, 

it can be reformulated as the following: 
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            Re = 
ρUd
μ

                                         (2.8a) 

   where ρ is the fluid density and d is the internal scale length of the medium 

(average channel width or average grain diameter [20]); yet, being this length a 

difficult parameter to estimate for highly disordered media, equation (2.8a) can be 

rewritten as: [19] 

                                        Re = 
ρU√k

μ
                                        (2.8b) 

   where √k  is also called Brinkman length [20]. The correlation d~k2 can be 

obtained from Poiseuille-Hagen equation [21], considering a fluid flow inside a 

cylindrical tube. 

   For Reynolds numbers typically higher than 0.5, equation (2.7a) is no longer 

valid, and a non-linear term must be introduced for the relationship to be corrected. 

Forchheimer proposed a correction to the formula capable of modelling "non-darcy" 

flows [22]: 

                                      
dP

dx
= - μ$% ·U- βρU2                                        (2.9) 

   where β [m-1 ] is the inertial coefficient (or beta-factor) and kf the Forchheimer 

permeability, which is very close to k (for this reason, many authors tend to 

disregard the difference to simplify the model). Note that equation (2.9) still 

assumes a stationary flow; turbulent regimes in porous media exist, however they 

are rare in subsurface problems [19]. In the Forchheimer quadratic regime, fluid 

flow is dominated by inertia forces, as evidenced by high values of Reynolds number 

and flow’s velocity. Between the Darcy and the Forchheimer regime, it was also 

observed a cubic transitional state where the inertial effects start to display, and 

Darcy's law becomes progressively inaccurate. 

    The coefficient β, similarly to permeability, is related to the morphology of the 

solid phase, including porosity, pore size and shape. Several correlations [29] have 

been proposed for β, each one associated with a particular type of medium. Ergun 

(1952) formula is probably the most famous as it has been used in many fields: 

                                                β = 4.24×104

φ1.5k0.5                                           (2.10) 
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   where [β]=m-1 and [k]=mD. This correlation is well suited for porous media 

formed by granular stackings and packed beds. 

   Veyskarami et al. (2016) proposed a different equation derived from numerical 

simulation of a pore network which involves even the tortuosity of the medium: 

                                             β = 6.9031×10-8&0.6

φ0.1k1.2404                                           (2.11)  

   where [β]=cm-1 and [k]=cm'. From equation (2.11) it can be seen how porous 

media with low values of porosity and permeability and high values of tortuosity 

tend to develop high beta-factors, increasing the effect of fluid inertia during 

Forchheimer regimes.  

 

 

 

 

 

Figure 2.5: Streamlines for different Re inside a porous media composed of cylinders. Darcy regime, 

Re=0.02 (a) and Forchheimer regime, Re=30 (b, note the presence of vortexes behind the cylinders 

and the more homogenous flow).  [22] 

From the equations previously presented, it is quite clear how the physical 

quantities associated with the solid phase influence the fluid flow inside its cavities. 

Still, it is impossible to derive a general constitutive equation capable of relating 

some of these quantities. This is probably caused by the huge morphological 

complexity characterizing porous media. 

   Some semi-empirical solutions have been presented, one of them being the 

Kozeny-Carman equation. This model developed initially by Kozeny (1927) and 

then expanded by Carman (1937) provides a relation between media properties and 

flow resistance in porous materials, linking together porosity and hydraulic 

tortuosity with permeability. [33] 

(a) (b) 
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   Classical derivations for the Kozeny-Carman approach (e.g. [24]) start from the 

general Hagen-Poiseuille law combined with Darcy's average fluid velocity; 

permeability in the generic case is proven equal to: 

                                               k = KkcRh
2 φ

τh
2                                    (2.12a) 

   Kkc is an empirical geometrical parameter assigned to pore shape and density, 

while R� is the hydraulic radius assigned to the medium. It is defined as the ratio 

between the volume open to the flow and the overall wetted surface area; using the 

definition of porosity, this becomes: 

                                                Rh=
φ

Sv(1-φ)
                                     (2.12b) 

   where Sv is the specific internal surface area of the material, which is intrinsic to 

the porous material. Substituting (2.12b) in (2.12a) we obtain: 

                                               k =
 Kkc

Sv
 2
τh

 2 ( φ3

(1-φ)
2)                                    (2.13a) 

   that correlates the static properties of the medium (Sv
  and φ) with tortuosity 

and permeability which are fluid dependent. When the porous medium consists of 

packed spheres of diameter Dp, Sv = 6/Dp ,  Kkc = 2 and τh
 2 ≅ 25/12 [25] resulting 

in: 

                                            k ≅ Dp

150
( φ3

(1-φ)
2)                                    (2.13b) 

   It should be noted that equation (2.13a) has been derived assuming the fluid flow 

in the Darcy regime; moreover, specific surface area, tortuosity or grain size are 

parameters nonexistent in real porous samples, making the applicability of this 

equation only restricted to a quality-control tool for physical and digital 

experiments. Still, it can be applied to any typology of porous medium considering 

a homogenous and isotropic region of study. [34] Equation (2.13a) was further 

corrected during the years by different authors testing out its applicability; we will 

list some of these here below, joined by the relative comparison with the original 

one, confronting them with experimental data (fig, 2.6). 

(a) k ≅ C* + φn+1

(1-φ)
n,  (b)    k ≅ Cc + φm

(1-φ)
 ,                       (2.14a-b)  
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Eq. (2.14a) [Rodriguez et al., 2004] and eq. (2.14b) [Mandelbrot, 1983; Sreenivasan, 

1991]. 

   

 

 

 

 

 

 

 

Figure 2.6: Permeability vs. porosity of a vesicular basalt, Saar and Manga [1999] (a) and 

natural eruptive material, Melnik and Sparks [2002]. Solid points represent measured values, dotted 

line eq. (2.13a), solid line eq. (2.14a), dashed line eq. (2.14b). [23] 

   Let us now at last take briefly into account the mechanical response of the porous 

media when fluid forces are applied inside of it. The presence of a fluid moving 

freely inside the cavities of the material modifies ultimately its characteristics.  

   There are two basics processes which carry out an essential function in the fluid-

structure interaction: (1) internal pore pressure and (2) volume variations: an 

increase in pore pressure causes a dilation of the rock and compression of the solid 

induces a rise in pore pressure if the fluid is limited from leaving the domain. Indeed, 

when the compression of the porous skeleton persists, induced pore pressure rises 

and forces the medium to dissipate through fluid mass transport. This creates 

further deformation as the pores close and the solid progressively takes place. [26] 

The first theory developed which took into account the effect of pore fluid on 

the deformation of the solid frame was Terzaghi (1923), who suggested a one-

dimensional model for the problem of "consolidation". The method was then 

generalized further until Biot (1935) developed the linear theory of poroelasticity. 

(a) (b) 
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   The Biot model is based on the assumption of a continuum solid skeleton 

traversed in its cavities by a moving fluid. When the solid is saturated with fluid 

(undrained condition) we can evaluate the stresses applied to the matrix by the 

fluid: 

                                              σi
eff

=σi - δp                                          (2.15) 

    where σi is the total stress in the i direction, σi
eff

  the effective stress and p 

average fluid pore pressure combined with δ (Kronecker coefficient). Averaging the 

stress in a cubic unit, we obtain the average effective stress: 

                                              σavg
eff

=σavg
  - p                                          (2.16) 

    note that equation (2.16) assumes an isotropic and homogenous response of the 

medium. According to equation (2.16), when the pore pressure gradually decreases, 

the fluid is withdrawn by the frame, leading to an increase in the average effective 

stress on the solid. Therefore, the frame is compressed, and void volume reduces.  

These effects of stress and fluid pressure on porous media are often neglected as 

the matrix is regarded approximately as only slightly compressible; therefore, 

porosity is often assumed as a linear function of fluid pressure in porous media and 

permeability is generally looked as steady. Still, when large deformations occur and 

pore pressure collapses, non-linear effects can take hold and φ and k vary 

consequently. [27] We present two empirical relations proposed by Gorbunov (1973) 

that describes the non-linear evolution of these quantities: 

                                    φ�p�=φ0Aφe
αφ(p-p0)                                    (2.17a) 

                                     k�p�=k0Ake
αk(p-p0)                                          (2.17b) 

where Aφ,Ak,αφ,αk  are empirical coefficients, φ0, k0 and p0 are the initial values 

for porosity, permeability and pore pressure. [28]  

Having properly overviewed now the object of our case of study, let us conclude 

this chapter introducing the processes and techniques that engage it. 
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2.3 Hydraulic fracturing 

Hydraulic fracturing involves the breakup of a solid medium through the action 

of an injected fluid. It is usually employed to increase the permeability of 

sedimentary rocks overlying a reservoir of gas or oil using hydrodynamic forces; in 

this instance, the method is called ‘fracking’. This procedure, applied to extraction 

areas, can greatly improve the recovery rate of raw material, effectively decreasing 

the cost connected to the operation. In this way, low or ultra-low permeability 

reservoirs can be accessed easily via the propagation of resources along with the 

micro or macro-fractures. The fluid itself is, in this case, composed of water and a 

viscoelastic additive, which thickens the liquid and facilitates penetration through 

the soil. To prevent the closing of the newly formed gap, a proppant (typically 

sand) is added to the mixture. [30],[34],[35],[36],[37]  

 

2.3.1 Description of the process 

The process is carried on by injecting an excessive amount of fluid inside a solid 

or porous substrate; this initiates a fracture inside the support or extends the pre-

existing ones.  

The investigation of the process was originally developed by applying the theory 

of poroelasticity to the solid media to describe the effects of volumetric opening for 

microcracks, fissures, and pores due to the flow. These results through the solid 

media are represented via pore pressure: in this manner, fluid movement and solid 

deformation occur simultaneously and affect each other. 

Consider the representative volume element (RVE) of a porous support subjected 

by stresses along its transverse direction; its initial state is isotropic, homogeneous 

and elastic. It's punctuated by void spaces of different sizes like pores and fissures, 

which will be saturated by fluid injection. With the increase of the flowrate, pores 

will be elastically opened and the solid matrix fractured by pore pressure. [31] 
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Figure 2.7: The process of hydraulic fracture. In this figure, -� represents the minimum 

compressive principle stress normal to the fracture, and .� and ./01 represent the flowrate in and 

out of the RVE, respectively. [31] 

 

This process of hydraulic fracturing can be divided into three stages by four 

special states, which are: 

(A) Initial compression state, where the solid is in compression state under the 

in-situ stresses. Pore stress is absent as the effective pore pressure is zero; the RVE 

is slightly deformed due to the compression applied along its transverse direction. 

(B) Stress balanced state, where the fluid pressure inside the pores balances the 

in-situ stresses and cancels out completely every strains. 

(C) Critical state, where the breakdown of the porous skeleton is about to occur; 

the strains almost exceed the value of critic strain separating micro to macrocracks 

propagation  

(D) Fracture opening state, where the fluid pressure equals the compression state 

and cohesive stresses inside the solid cancels out, resulting in a incomplete or 

complete fracture. 

Correspondingly, the three stages are: 

Stage I, from (A) to (B), is the compression relieving stage: the compressive 

stress is balanced to zero with fluid injection. Stage II, from (B) to (C), is the 

elastically stretching stage: the solid is stretched to the critical state by the pore 

pressure. And stage III, from (C) to (D), is the cohesive breakdown stage: the 

cohesive stress gradually disappears due to the developing fracture and the pore 

pressure reaches to its minimum. 
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2.3.2 Types of numerical simulations adopted 

Besides mathematical models, some practical experiments have been carried on 

to describe in-depth its general behaviour. However, for more modern techniques 

introduced in the fracking process that involve multistage or simultaneous 

fracturing, these types of solutions reveal themselves as inconclusive and unable to 

accommodate this new cracking system. This leaves out only numerical simulation 

as an efficient approach for the subject, allowing us to solve even the most complex 

situations if set correctly. [30],[31] 

Being a coupled problem involving solid deformation and fracture with a liquid 

phase flowing inside, the numerical solution chosen is required to interface the two 

parts. This can be done in three different ways, using a continuous, discrete, or 

hybrid approach. [36] 

The typical continuous approach is based on the finite element method; the 

presence of a developing crack geometry requires however a continuous re-meshing 

of the studied domain, causing a substantial increase in the computational time 

required. Moreover, mesh adaptation requires an intermediate 'balancing step' for 

the evolving field to ensure mass and momentum conservation between the 

changing elements. The FEM method must also be coupled with a cohesive zone 

model (XFEM); this enables to represent discontinuities inside the material, 

simulating successfully the propagation of the crack. 

An alternative to XFEM based methods is phase field methods (PFM), which 

involve a scalar crack field representing intact and broken regions of the RVE. The 

crack path is then accounted by removing the elements caught up in the field.  

As regards the discrete approaches, they are based on the discrete element 

method (DEM): particles of different sizes and shapes are assembled to represent 

the porous medium. The deformation of the solid is then rendered applying the 

displacement of the particle; internal forces are instead expressed by the contact 

between the points. 
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Finally, hybrid approaches aim to combine the advantages of the two types of 

models to quicken the simulation, attempting to maintain physical consistency over 

the time-steps. 

In our case, the deformation and the breakage of the medium will be described 

implementing an approach comparable to the discrete element method.  

2.3.3 Environmental impact 

Despite the 'fracking' process will not be further investigated in detail by this 

research, a brief analysis of its environmental impact will be presented, given the 

relationship with the subject discussed.  

The process of hydraulic fracturing applied to boreholes is considered highly 

controversial: the act of forcibly inject fluid underneath can lead to a plethora of 

dire outcomes if not designed properly. [32],[38] 

Since its introduction in 1930, almost 2.5 million "frac jobs" had been performed 

worldwide and at first there were no regulations or procedures generally established 

to comply. The development of the first simplified models started only in the 1950s 

when Perkins and Kern proposed the so-called PK model. From then on, newer and 

more accurate solutions were discovered but still none of them took into account 

how impactful these methods were if not preceded by a detailed on-site 

examination. [39] 

The situation was presented to the public only at the end of the previous decade 

when pollution concerns involving water contamination surfaced among reports of 

methane and diesel emissions, a tremendous waste of water, and induced seismicity. 

At the moment, public debate is polarized between the industry lobby on the 

one hand and the environmental activists on the other, since the aforementioned 

studies that had been addressed have shown that risks depend mainly on the quality 

of the jobs surrounding the fracking process, rather than the process itself. 

For what concerns the water contamination issue, EPA released in 2016 their 

final report surveying the subject: there is scientific evidence that hydraulic 

fracturing can threaten water reserves under certain conditions. These, however, 

largely depend on the grade of care applied to the task of handling the wastewater 
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or from the injection of fluid into wells with inadequate mechanical integrity; 

quoting directly from the report: "spills during the handling of hydraulic fracturing 

fluids", "injection of hydraulic fracturing fluids directly into groundwater resources" 

and "disposal or storage of hydraulic fracturing wastewater in unlined pits". It was 

however impossible to identify the severity of these impacts due to "data gaps and 

uncertainties" [32]. 

 

 

 

   

   

  

 

 

 

Figure 2.8: Water use and potential concern in hydraulic fracturing operations. [32] 

A more seemingly conclusive outcome regards investigations led in Pennsylvania 

on the concentration of natural gases in shallow groundwater. It was possible to 

witness how for nearby active gas wells the concentration of CH4 is significantly 

higher if compared to the data retrieved for inactive facilities (fig. 2.9). In 

particular, "methane concentrations were 17-times higher on average (19.2 mg 

CH4 L-1) in shallow wells from active drilling and extraction areas than in wells 

from nonactive areas (1.1 mg CH4 L-1 on average)". Still, we note that there are no 
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data points for non-active wells within similar distances as the active ones; it is 

indeed shown by the authors how a greater amount of data would have helped to 

achieve a more definitive view on the case. [33] 

 

 

 

 

 

 

Figure 2.9: Methane concentrations (milligrams of CH4 L-1) as a function of distance to the 

nearest gas well from active (closed circles) and nonactive (open triangles) drilling areas. [33] 

Nevertheless, all these studies settle on how more regulations are needed to 

ensure the sustainable future of hydraulic fracturing and gas extraction and to raise 

public trust in their employment.  

Chapter conclusion 

We have evaluated how the study of hydraulic fracturing affects several areas of 

research and how these subjects tend to couple with one another, causing a variety 

of complex phenomena difficult to approach singularly. In the past various possible 

solutions were tested to correctly model and simulate the process we discussed, still, 

none of them stood out for being the most effective: further research is required to 

properly understand the problem, specifically in the microscopic scale.      

Therefore, having overviewed now the subject of our case of study, let us proceed 

and introduce the methodology we will follow to approach the matter. 
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Chapter 3 

Methodology 

The following pages will focus on the methods employed to describe a hydraulic 

fracturing problem applied to a porous medium. Firstly, a review of the basic 

numerical procedures adopted to solve a fluid-structure interaction problem will be 

presented. Navier-Stokes equations and their numerical solution will then follow. 

Given the laminarity of the fluid flowing inside the material, a direct numerical 

simulation will be employed. Computational approaches used to handle fluid-

structure interface, solid deformations and breakage (immersed boundary methods 

and the peridynamic theory) will be then introduced. 

3.1 FSI implementation 

As it was already discussed before, in fluid-structure interaction problems, 

analytical solutions are almost unattainable as they usually depend on the case 

studied; thus, only numerical simulations remain employable. We will now proceed 

to review the basic characteristics surrounding them.  

   3.1.1 Numerical procedures 

We can classify the numerical methods that solve fluid-structure interaction 

problems in two categories: the monolithic approach and the partitioned approach. 

[3] These approaches differ in the definition of the algorithm applied to solve the 

solid and fluid field, specifically in the way the two phases interface together (fig. 

3.1). 

In the monolithic approach (also called fully coupled), the solid and the fluid 

phase are managed together, and their dynamic is described using a single equation 

applied to the same mathematical framework. Fluid and solid are evolved 

simultaneously via a unified algorithm that includes the interface law between the 

phases. For this reason, the interfacial conditions are implicit in the procedure and 



24 

 

are solved concurrently at every time step. This strategy assures us a more 

optimized code, capable of improving the accuracy of the final solution; 

unfortunately, it also requires higher proficiency and more resources to develop it, 

given its more specialized nature. It’s also limited to simple 2D problems given the 

higher stiffness of the solid matrix compared to the fluid one. Solid equations are 

indeed written in Lagrangian formulation, compared to the fluid ones that are 

written in Eulerian; this increases the order of magnitude of the structure matrix 

causing the strict conditions for its application [5]. 

On the other hand, the partitioned approach aims to separate the fluid and the 

solid equation, treating them as two different computational fields solved 

independently with their mesh and algorithm. Interfacial conditions are then added 

to allow communication exchange between the two phases. This allows resorting to 

the already existing codes or programs that have been already approved and tested 

in other FSI problems, reducing the overall development time. This procedure offers 

greater flexibility as it's possible to choose two separate solvers for the fluid and 

solid structure. 

 

 

 

 

 

 

 

 

Figure 3.1: Schematic of the monolithic approach (a) and the partitioned approach (b) for 

fluid-structure interactions; 2	∗ and 24∗ denote the fluid and structure solutions at different timesteps 

respectively. 5∗ indicates the mathematical framework at different timesteps and for the fluid, the 

solid or both together. 
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It is now clear how with this approach the focus moves to the designation of 

interfacial conditions, as fluid and solid are conceived as separated and need to 

interact with each other. As for most cases, the solid is expected to move 

throughout the fluid phase, we do not know a priori the interface location; hence it 

is required to implement in the code an interface tracking system capable of 

pinpoint the position of the solid and its quantities. For this reason, coupling errors 

and instabilities at the interface are some of the issues which affect the most in the 

accuracy of the simulation. Computational cost is also greatly increased as the use 

of coupled algorithms requires multiple sub-iterations in the single timestep. 

Partitioned solvers carry out the coupling between the solid and fluid phase to 

completely map the pressure field over the studied domain. It usually demands the 

conservation of mass, energy and momentum; however, if no shockwaves are 

produced (the flow is incompressible) continuity and momentum equations are 

enough. The coupling is valid when the solution converges both in the structural 

and fluid domain; this will grant consistency for the quantities distribution, 

conservation of the physics and preservation of solid shapes. 

In this case, the degree of coupling can be either loosely coupled or closely 

coupled, depending on how many times information is exchanged between the two 

solvers during sub-iterations (fig. 3.2). In loosely coupled models, interfacial 

operations are carried only at the end of the timestep; for this reason, convergence 

could only be partial, but this allows us to implement already tested and established 

solver packages, given their mutual independence. [4] 
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 Figure 3.2: Schematic of partitioned solver employing for FSI simulation; for loosely coupled 

models, stagger loop and time loop coincide, as the convergence check is done once, at the end of 

the loop. For closely coupled models, the stagger loop is repeated till convergence is reached. 

As regards closely coupled models, an interface module is introduced, ensuring 

that convergence is reciprocally reached between the two solvers at every timestep. 

At the interface, surface loads and displacement field are mapped from one grid to 

another, exchanging data at every inner iteration.  

The process to solve the two coupled field could be resumed in the following 

way: [5] 

1) Displacement field for the solid phase 8	67 is predicted at time �	67 using 

the previous timestep � and mapped over the fluid grid. 

2) Fluid grid is updated according to the predicted structure position; fluid 

equations are then solved in order to obtain pressure values 9	67 at time �	67. 
3) Pressure field obtained by fluid solver is mapped over structural grid to get 

applied loads at �	67. 
4) Structural solver uses these applied forces to get the corrected structural 

detection 8 ∗	67 at �	67, which is compared to the predicted one at (1). 

5) If mutual convergence is achieved, the staggering loop ends and the time 

advances to its next step �67=�	67; otherwise steps 2-4 are repeated. 

When a sufficient number of sub-iterations have been completed, the simulation 

progresses to the next timestep. This minimizes the presence of coupling errors, 

rising greatly the computational cost in return. 

Since this aspect is highly dependent on how the meshes are defined for the two 

distinct phases, it could be useful to examine the differences. 

3.1.2 Treatment of meshes 

Meshes are geometrical subdivisions generated to discretize the studied domain; 

this allows us to apply an algorithm capable of solving the corresponding field 

quantities. The main criteria employed to differentiate meshes is the space 



27 

 

regularity of their elements; we can distinguish two basic forms: the structured and 

the unstructured mesh.  

Structured meshes are the most efficient in term of computational speed and 

convergence time. They are characterized by regular connectivity of their elements, 

expressing the area or volume domain as a 2D or 3D array, respectively. On the 

other hand, unstructured meshes are identified by non-constant connectivity and 

the use of irregular elements; this greatly simplifies the meshing process sacrificing, 

however, the overall efficiency of the grid. When the mesh is composed of a mixture 

of these two methods, it's called hybrid. (fig. 3.3) [6] 

 

  

 

 

 

Figure 3.3: Two-dimensional structured (a), unstructured (b) and hybrid mesh (c). Note how 

in the unstructured quadrilateral mesh interior nodes are shared by varying numbers of elements. 

[6] 

Another general classification influencing fluid-structure problems regards the 

employment of conforming or non-conforming meshes. A mesh is conforming if all 

the nodes and edges in the mesh are shared by each of their adjacent elements.  [3] 

A solution method which implements conforming meshes divides the 

computational domain into two parts: one occupied by the fluid, defined by the 

equations of Navier-Stokes, and one occupied by the solid matrix described by 

stress-strain equations. The interface between the solid and liquid phase is in this 

way, located along the shape of the mesh; this allows us to directly apply the 

boundary conditions to the nodes part of the interface. The most consequential 

downside of this approach resides in the necessity of updating the mesh at every 

timestep since the solid is subjected by the hydraulic stresses and the interface 

moves. 

(a) (b) (c) 
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Therefore, if a moving interface is present, using a non-conforming method 

should be considered. This method treats the boundaries of the solid as constraints 

directly imposed on the model equation, employing an additional term which 

changes locally. Thus, the solid can freely move over the fluid domain with no re-

meshing required whatsoever; as a result, fluid and solid equations are solved 

independently with their own grid.  

The drawback of this approach is related to the perception by the fluid phase of 

the interface: as long as it isn't marked via mesh shape but only through an extra 

term in the fluid equation, the boundary loses definition, decreasing the accuracy 

in the flow representation near the border. Moreover, an interface detection 

algorithm must be implemented to track the interface throughout the timesteps, 

locating the nodes in proximity with the solid phase. Hence, to capture correctly 

the behaviour of the fluid, it's essential to set a higher level of resolution, reducing 

grid spacing. [3] We will further explore these considerations in the following 

chapters (in particular, see chapter 3.3 – Immersed boundary methods) 

Besides, for grid-based methods, the mesh quality is defined by two fundamental 

parameters: the mesh aspect ratio and the skewness (fig. 3.4). Both rely on the 

shape of the grid and thus are related to the deformations that the solid phase is 

undergoing. Aspect ratio indicates the quality of the elements, as it's equal to the 

ratio of the shortest length of the element to the longest one. Skewness, on the 

contrary, defines element quality using its internal angles. When these parameters 

are ideal, convergence time is minimized, granting an overall increased accuracy. 

[7] 

 

 

 

 

Figure 3.4: Two-dimensional quadrilateral elements undergoing aspect ratio (a) and skewness 

(b) deformations. 

It now seems clear how meshing should not be considered an easy task, especially 

when the conditions of the problem we need to study appear to be complex. Not 

(a) (b) 
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meshing at all could potentially ease the subject, avoiding incurring in numerical 

problems later on. 

The introduction of meshfree approaches tried to address the limitation 

mentioned above, both for the conforming and non-conforming meshes. They are 

based on the approximation of the solid or fluid domain using a particle 

distribution, which can be random or on a cartesian grid. These particles, also called 

nodes, interact with their neighbours exchanging forces and moving throughout the 

domain. As a result, the simulation itself becomes Lagrangian since it follows the 

velocity field of the particles. By eliminating the structure of the mesh, we can 

achieve better results in problems involving large deformations, crack propagation 

and intricate geometries; in these situations, it becomes very difficult to maintain 

connectivity between the elements and this can potentially lead to numerical errors. 

[4],[8] 

 

 

 

 

 

 

 

Figure 3.5: Two-dimensional conforming (a), non-conforming (b) and mesh-free configuration 

(for the solid phase) (c). [3] 

Furthermore, it's possible to enhance the accuracy of the simulation by 

increasing the density of nodes; typically, these are in those areas which are 

subjected to the largest amount of stress. This kind of flexibility is not available in 

mesh-based methods and implementing an algorithm of mesh refinement is not 

always an easy task. On the other hand, employing a particle-based model greatly 

increases the computational effort required to run the algorithm, given that every 

single node must be tracked and interacts with its neighbours; a higher quantity of 

(a) (b) (c) 
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nodes also must be used to achieve the same level of accuracy of mesh using 

simulations. [5] 

Also, there aren't many software solutions capable of generating mesh-free 

configurations; their availability is very low and the necessity to develop a stable 

and efficient code is still present at the moment. [4]  

The focus of every FSI analysis still lies however in the way interface is managed. 

Every exchange of information between the two phases such as applied loads, 

displacements and body interactions, takes place at the interface. It's handled 

differently depending on the method in use: in body-conforming meshes, we have 

already seen how interface motion has to be tracked to enforce the boundary 

conditions and transfer field quantities. It's also possible to implement a "composite 

grid"[9] (fig. 3.6a); in this approach, sub-meshes are overlapped to the main mesh 

in the areas close to the object's border. The sub-mesh, being defined in a separate 

local frame, can ease the enforcing of boundary conditions, however, the 

computational cost may increase since interpolations are needed to link the different 

meshes. 

For non-conforming methods, the approach instead can be further characterized as 

cartesian and immersed boundary methods. The boundary is immersed in the 

background flow, and for this reason, it may cut the cell underneath. This can 

negatively alter the conservation through the border, affecting and lowering the 

fidelity of the simulation. The boundary topology is then represented through a 

process of cell interpolation: this spreads the solid edge over a few cell-width 

reducing the effect caused by the discretized domain. Errors on the fluid 

distribution can be large if the scale of the flow field evolutions is coupled with the 

scale of the smeared border. 

Lastly, meshless-FSI implementation can be either meshed-meshfree or completely 

meshfree-meshfree. These formulations can be further classified by boundary 

conforming or non-conforming whether the node distribution follows the shape of 

the interface or not. The nodal cloud can also be regular or irregular if the points 

are arranged on a cartesian grid or randomly distributed, respectively (fig.3.6b).  

[5] 
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Figure 3.6: Two-dimensional conforming structured multigrid (a) and mesh-free regular and 

non-regular configuration (b). [9],[4] 

Non-conforming meshes and its method attached will be further discussed in full 

in the following chapters, as, together with the mesh-free technique, they will be 

employed to face the problem presented. Let us now proceed exposing the core of 

the numerical analysis applied to the fluid phase that are Navier-Stokes equations. 

 

 

(a) 

(b) 
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3.2 Navier-Stokes equations 

Computational fluid dynamic (CFD) is a branch of fluid dynamics which seeks 

to solve fluid motion through the use of algorithms and computational tools. Fluid 

motion is described by a set of differential equations that are called Navier-Stokes 

equations. These relations mathematically express the conservation of mass and 

momentum for a viscous fluid that evolves in time and space; usually, they can be 

complemented by an equation of state (energy balance equation) which link 

pressure, temperature and density together. We can write them as [40],[43]: 

                                         
∂ρ

∂t
= - ∂ρuj

∂xj
               (3.1a) 

                            
∂ρui

∂t
= - 

∂

∂xj
�ρuiuj+pδij� + ∂σij

∂xj
                                (3.1b) 

                   
∂ρE

∂t
= -

∂

∂xj
��ρE+p�uj� + ∂

∂xj
�λ ∂T

∂xj
� + ∂(μdijui)

∂xj
                        (3.1c) 

where ρ indicates fluid density, p pressure, T temperature, {@�}�B7C  the three 

velocity components, E total energy, D mass diffusivity and μ fluid viscosity. We 

can also define dij as viscous stress tensor: 

                           dij = �∂ui

∂xj
+ ∂uj

∂xi
-

2

3

∂us

∂xs
�                         (3.2) 

The set of equations (3.1a-c) consist of 5 equations in total and 7 variables; for 

this reason, they must be coupled with a constitutive model for both the fluid and 

the internal energy. However, if the fluid is compressible, then ρ, μ and D can be 

considered constant and equations (3.1a-c) reduce in the following way:                   

                                       
∂uj

∂xj
 = 0                (3.3a) 

                                 
∂ui

∂t
= - uj

∂ui

∂xj
+ ∂pδij

∂xj
+ μ

ρ

∂2ui

∂xixj
                                 (3.3b) 

                                      
∂T

∂t
+ui

∂T

∂xj
= λ

∂2T

∂xixj
                                        (3.3c)   

 

It is clear from equations (3.3a-b) that the model is already self-consistent and 

does not require the energy balance equation to be solved. We can rewrite (3.3a-b) 

in their non-dimensional form implementing the Reynolds number: 
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∂u'j
∂x'j = 0                (3.4a) 

                               
∂u'i

∂t
= - uj

∂u'i

∂x'j
+ ∂p'δij

∂x'j
+ 1

Re

∂2u'i

∂x'ix'j
                                 (3.4b) 

where the superscript (‘) indicates non-dimensional quantities. From equation 

(3.4b) it can be easily seen that the diffusive term is non-linear; for this reason, any 

convective flow is characterized by the non-linearity effect contained in the 

momentum equation. Hence, no analytical solution was found yet, and only 

numerical solutions are able to tackle the problem. As it was presented in the 

previous pages, a discretization of the fluid domain is requested and a resolutive 

method for equations (3.4) has to be specified. As long as the scope of interest of 

this study will focus only on incompressible fluid flows, given the low 

compressibility of a liquid fluid (e.g. water-based mixtures), the numerical methods 

explored will be described only taking into account this condition. Let us now 

present the basic numerical approach that will be applied to solve fluid motion. 

3.2.1 Direct numerical simulation 

The most intuitive approach for solving Navier-Stokes equations consists of 

discretizing the fluid domain and directly apply equations (3.4) without introducing 

any turbulence approximation to simplify the computing process. This method is 

called direct numerical simulation, as fluid equations are solved directly (Orzag, 

Steven A. 1970 [44]), unlike the turbulence-models based techniques. It is, for this 

reason, the most fundamental and precise simulation strategy; it requires, however, 

the highest computational workload for the causes that will be presented now.  

Considering a generic fluid flow, turbulence manifests kinetic dissipation 

phenomena which can be described by a specific dimensional scale. This scale, 

usually identified as the Kolmogorov's scale, represents the fundamental dimension 

of eddy formation; because of that, the cell spacing of the mesh employed must be 

comparable to this dimension to correctly solve the fluid motion and represent 

turbulence structures. [40],[42],[43] 

From Kolmogorov’s theory (1941), we can evaluate the kinetic energy dissipation 

rate F as: 
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                                              ε ∝ U3

L
                                             (3.5) 

where U is the velocity scale of the flow and L is scale length for larger turbulent 

structures. From F we can denote Kolmogorov’s scale H as: 

                                              η ∝ 
I3

ε1/4                                           (3.6) 

with J the kinematic viscosity of the fluid. 

Since the number of grid nodes along the generic direction x can be defined as 

Nx=L/∆x and, as motivated above, ∆L ∝ η, we can determine the total number of 

nodes to properly solve the fluid domain: 

                              Np ∝ Nx
 3 ∝ �L

η
�3 ∝ �L4U3

Lυ3
�3/4 ∝ Re 9/4                      (3.7) 

If we introduce also the Kolmogorov’s velocity scale as @η ∝ �JF�7/N  and the 

corresponding time scale Oη  ∝  η / @η ∝ �J/F�7/'  we obtain: 

                               Ttot ∝ Np ∙ QR ∝  Re  11/4 ≈ TUC                                   (3.8) 

Ttot indicates the total computational time for a generic fluid domain. It has been 

shown, however, how channel flow tend to deviate from this relation due to wall 

effects; the effective computational time changes to TUC.N [42], as it has been proved 

by the simulations performed in the past. 

It is clear for this reason, that fluid regime and Reynolds number hugely influence 

the computational cost of a direct simulation. When Re rises, the flow tends to 

develop turbulent structures which dissipate kinetic energy at a scale level defined 

by K41 theory. The higher is Re and the higher are the number of nodes requested 

to correctly capture these eddies and solve the fluid. 

However, as long as the case of interest will involve a laminar flow at low 

Reynolds numbers (Re ≈ 1-10), the applicability of a direct numerical simulation 

results more reasonable: inertia effects and vortexes formations, even if present, will 

be marginal and the dissipative phenomena minor. 

As regards the computational process, let us evaluate briefly the typical 

approaches followed for solving incompressible flows. Observing equations (3.4), it 



35 

 

can be noted how pressure is not directly related to the fluid velocity, being defined 

by its constitutive law. It is, however, associated with velocity as a boundary 

condition, ensuring that the velocity field maintains its solenoidal property at every 

timestep. [41],[43]  

This relation is also known as the Poisson's equation and can be written as: 

                                ∇ 2p' = -∇·h ,  hi= 
∂u'iu'j

∂x'j
                                          (3.9) 

and it can be implemented into the solutions steps typically in two ways: 

pressure-correction or pressure-projection method.  

As long as the pressure field influences instantaneously the velocity field due to 

the enforcement of mass conservation throughout the fluid domain, it is necessary 

for them to be solved together. This is impossible from a numerical point of view, 

as this coupling effect causes the algorithm to be implicit.  

Pressure correction method provides a solution to this issue, dividing the 

integrational step into two sub-steps following a predictor-corrector approach logic. 

The first sub-step assumes a velocity field u* on the basis of the current velocity 

and pressure field; a predicted pressure field is then computed via the Poisson’s 

equation (3.9). The second sub-step then proceeds to correct the velocity field via 

the predicted pressure field p*; p* is also updated consequently. [45] 

Integrating equation (3.4b) we can summarize the method with the following 

steps (superscript (‘) is suppressed from now on to simplify the notation): [43] 

1. Starting from the velocity and pressure field @ and X, we can compute the 

predicted velocity field: 

                               u*=un + ∆t(C n+D n-∇pn)                           (3.10) 

where C n and D n are the convective and diffusive term in the integrated 

equation. 

2. Pressure field is then predicted in the following way: 

                                         ∇ 2p*= ∇·u*
∆t

                                         (3.11) 
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3. Lastly, we can correct the velocity and pressure field @67 and X67 with: 

                                      u67=un + ∆t∇p*                                      (3.12a) 

                                      pn+1=pn + p*                                       (3.12b) 

Step 1 to 3 are repeated for every iteration performed. 

Pressure projection algorithm is somewhat similar, as is too based on a 

prediction-correction logic. The velocity field u* is however computed from un  
without  imposing the pressure condition. A correction scalar field is determined 

instead, solving Poisson’s law with u*; velocity field is then corrected through it 

and pressure is subsequently updated. Effectively the entire process consists of 

searching a velocity field that does not necessarily respect the solenoidal condition, 

only to adjust it later; the correction performed by the scalar field represents a 

projection of the field into the null divergence domain. 

Let us now proceed evaluating the implementation of the fluid computing 

algorithm to the mesh grid. 

3.3 Immersed boundary methods 

The term “immersed boundary method” referred originally a numerical approach 

proposed by Peskin (1972) to describe anatomical phenomena regarding cardiac 

mechanics related to blood flow. In order to solve efficiently the complex geometry 

represented by the heart cavities, a structured non-conforming Cartesian grid was 

employed, and the flow equations were properly corrected to impose the effect of 

the boundary. [46]  

This method potentially solves the rising complexity of most industrial 

applications, related to the presence of moving boundaries, intricated geometries 

and solid deformations. Regeneration and mesh warping are in this way prevented, 

as stated before. [50],[51] 

   3.3.1 Description of the method 

Originally, simulation of fluid-structure interaction simulation was developed 

following the so-called Arbitrary Lagrangian-Eulerian (ALE), in which the mesh is 
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updated at every time step in order to ensure boundary application throughout the 

process and a precise interface resolution. As stated above, any ALE method has 

to be considered impractical, especially if the intention is to perform a DNS analysis 

which is already very resource-consuming. 

Let us consider a solid body immersed in a fluid flow (fig. 3.7a). Conventionally 

a structured or non-structured conformal mesh is generated in two steps: first, a 

surface covering the boundaries of the grid is generated, then the interface nodes 

are employed to generate a mesh which covers the entire fluid domain, leaving out 

the solid body. In this way, the conformation of the mesh allows us to identify 

easily the appearance of the body, ensuring an effective application of the wall 

conditions. 

Now let us evaluate the employment of a non-conformal Cartesian mesh (fig. 

3.7b). In this case, it still exists a surface grid, as some nodes are positioned on the 

interface of the body. The Cartesian grid which covers the fluid domain, however, 

is generated without consideration on the surface of the body.  In this manner, the 

solid body cuts through the grid elements, preventing traditional incorporation of 

the boundary conditions. 

 

 

 

 

 

 

 

 

Figure 3.7: Generic solid body immersed in a fluid flow (a). The body is defined by its occupied 

volume 5	 and surface YZ. Its characteristic length is L and [ is the thickness of the boundary layer. 

Schematic of body immersed in a cartesian grid (b). [46]  
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 Due to this non-conformal nature of the mesh, the implementation of the wall 

conditions requires a local modification of the fluid flow equations.  This allows us 

to recreate the effects of the solid surface on the fluid, using additional loadings in 

the vicinity of the boundary.  

Yet, it should be noted that the imposition of the boundary conditions is not 

straightforward in an immersed boundary approach. Moreover, the consequences of 

this surface treatment should be considered, as accuracy and quantities 

conservation are not automatically assured. Also, the use of non-conformal 

structural meshes features an important downside that is the impossibility to 

control the grid resolution in the proximity of the body. 

Indeed, it can be shown that the size of a Cartesian grid tends to rise faster than 

its corresponding traditional one, conformal to the body. Nevertheless, the 

computational cost could still be lower, as part of the nodes are inside the solid 

body, so fluid equations are not solved there. It was also mentioned before that 

structured grid requires less computational resources and converge faster to the 

solution, being grid transformation operations not necessary. 

Still, the primary advantage of any immersed boundary method consists of the 

simplification of the grid generation algorithm. Usually, all body-conformal meshes 

require a formulation process which advances gradually and requires, for most of 

the time, further inputs and correction by the user. Re-meshing and mesh 

refinement are common operations performed when these type of space 

discretizations are employed. Moreover, the higher is the geometry complexity 

(curved profiles, intricate cavities and thin surfaces) the more tedious and iterative 

becomes the overall operation.  

For example, structured grids are handled by decomposing the geometry volume 

into elementary subdomains: this approach reduces the complexity of the entire 

geometry, introducing however further computational steps; grid quality can also 

deteriorate due to interface incompatibilities. The use of unstructured grid can help, 

yet here, too, mesh quality can rapidly decrease with increasing morphological 

complexity. 

On the other hand, when carrying out a simulation on a non-conformal mesh, 

the shape of the studied geometry does not seem to influence the quality of the 
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method, as grid quality and complexity are completely unaffected by its form. As 

also stated before, an advantage of the immersed boundary approaches reveals when 

dealing with moving boundaries: the grid, in this case, is stationary, ensuring 

simplicity and robustness to the solution strategy. [46] 

Having properly discussed the features which characterize the current approach, 

let us proceed and review its implementation. 

3.3.2 Numerical implementation 

The original method introduced by Peskin was later improved by Uhlmann 

(2005), who proposed an efficient algorithm capable of effectively tackle FSI 

problems. The approach makes use of two superimposed different grids: a fixed 

uniform Eulerian grid which covers the entire fluid domain and a uniform 

Lagrangian grid attached to the moving body. Navier-Stokes equations are solved 

in the Eulerian grid, while Newton's laws are usually associated with the Lagrangian 

one.  

The computing is carried on initially employing the Lagrangian force 

distribution. These are then applied to obtain the induced forces on the immersed 

particles; the computing requirement is based on the assumption that, on the 

surface of the body, the predicted velocity of the iterative scheme is equal to the 

local fluid velocity. It should be noted, however, that the two grid do not perfectly 

match and elements of the Eulerian grid overlap Lagrangian nodes; interpolation 

and force spreading are then required in order to properly manage force distribution 

between the meshes. [47] 

Let us start with the implementation of the local boundary conditions since it's 

what distinguishes one method from another. Consider the application of non-

dimensional Navier-Stokes equations (equations 3.4); the momentum equations is 

changed as the following: 

                            
∂u'i

∂t
= - uj

∂u'i

∂x'j
+ ∂p'δij

∂x'j
+ 1

Re

∂2u'i

∂x'ix'j
+ f

i
                                 (3.13) 

\� is the i-component of the forcing function (also called source term), which can 

be divided between momentum and pressure force. Equation (3.13) is solved for the 

entire fluid domain 54, together with equation (3.4a). This approached is usually 
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defined as the “continuous force approach”, as equation (3.13) is discretized and 

solved with the forcing function already incorporated. In the “discrete force 

approach” however, ] is added after a preliminary discretization in which the 

velocity field is predicted and then corrected near the boundary surfaces. [46] 

Let us evaluate briefly the solution steps followed by Uhlmann’s approach, which 

belongs to the second class of methods described above. [47] The discrete (or direct-

forcing) approach, is, in this case, embedded a pressure-correction scheme and 

solved with Crack-Nicholson algorithm. In the discrete form the scheme starts with: 

                        u* = u n + ∆t
ρf

(-∇p n-1/2 + RHS  n+1/2)                        (3.14a) 

where u*  is the first predicted velocity field, computed from the previous iteration 

u n; RHS stands for the right-hand side of integrated Navier-Stokes momentum 

equation. The source term ] is then introduced in order to compute the first 

correction of the velocity field: 

                                u** = u* + ∆t]`67/'                                (3.14b) 

u**  is then employed to compute the pressure field for the correction sub-step: 

                                        ∇  2p*=
ρf

∆t
∇·u**                                  (3.14c) 

The velocity and pressure field are ultimately corrected and updated in this 

fashion: 

                                 u n+1 = u ** - ∆t
ρf

∇p *                                (3.14d) 

                                 p n+1 = p n-1/2 - p*                                  (3.14e) 

The source factor ] in equation (3.14b) is computed via a three-steps process 

that involves information commuting between the two grids. The steps are the 

following: [47] 

(1) Interpolation of the predicted velocity field u* from the Eulerian to the 

Lagrangian field: 

                     Ul
*=∑ uijk

* δd(xijk-Xl
 n)∆x∆y∆zijk                   (3.15a) 
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where Ul
* is the predicted velocity of the Lagrangian node l, xijk are the 

node Eulerian coordinates, Xl
 n the Lagrangian ones at the current 

timestep and δd the Dirac’s delta function (fig. 3.8). 

The regularized Dirac delta function proposed by Roma et al. [52] is 

defined in the following way: 

        δd �x-xo� = δd
* �x-xo� δd

* �y-y
o
� δd

* �z-zo�          
        δd

* �s-so� = 1
h
Φ �s-so

h
�  ,  where h is the Eulerian grid spacing. 

 

 

 

 

 

 

 

 

 

Figure 3.8: (a) Transfer of forcing ab from Lagrangian boundary point cb to surrounding 

Eulerian fluid nodes (shaded region signifies the extent of the force distribution). (b) Distribution 

functions employed in various studies. [46]  

          

(2) Computation of the forcing term on the Lagrangian grid: 

                               Fl
n+1/2

= 
UP�Xl

 n�-Ul
*

∆t
                                       (3.15b) 

where UP�X ln� is the particle velocity associated to the Lagrangian 

coordinates Xl n at the current timestep. 

(3) Spreading of the Lagrangian force to the Eulerian grid: 
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                                f l
n+1/2

=∑ Fl
 n+1/2

δd(xijk-Xl
 n)∆Vll                         (3.15c) 

      where ∆Vl is the volume of Lagrangian grid cells. 

Steps (3.15a-c) are executed immediately after equation (3.14a) in order to 

compute the value of the source term for equation (3.14b). 

It should be noted also that, to increase computational efficiency, the forcing 

process is not applied to the interior nodes of the solid particles, but only to the 

ones located at the solid-fluid interface. The generation process employed for 

creating the Lagrangian nodes could vary. [47] 

The Dirac delta function, introduced in equation (3.15a), ensures that the total 

fluid force and the action of the particles applied onto each other are preserved 

during interpolation and spreading. This is effective however only when the 

Eulerian grid spacing is uniform in every coordinate direction (Peskin, 2002).  

As already stated before, Eulerian grids are based on a Cartesian grid so every 

cell has to be considered cubical (∆x=∆y=∆z ). Moreover, since the Lagrangian and 

the Eulerian grid are related in order to guarantee an efficient information exchange 

between the two, it is optimal for their resolution to match each other. In a similar 

fashion, even the Lagrangian cells have to be considered equally spaced and nodes 

distribution must be as uniform as possible. 

So, summarizing, the volume ∆Vb of the Lagrangian grid must respect the 

following requirements: (1) ∆Vb should be as close as possible to ∆x 3, (2) the number 

of Lagrangian point distributed over the body surface should be integer, (3) the 

radial thickness of the Lagrangian grid should be equal to ∆x.   
If these conditions are ensured, the particles interface is smoothed from the fluid 

point of view; this also provides an additional advantage for suppressing high-

frequency fluctuations of the force values acting on the solid body. During the 

interpolation process, oscillations can generate from variations in the predicted 

velocity, especially when the Lagrangian grid moves and changes its orientation 

relative to the Eulerian grid. Breugem [47] dubbed this phenomenon as grid locking, 

given the dependency on the wavelength of the oscillations; if the dimensions of the 

Eulerian grid cells is comparable to the fluctuation's wavelength, then the overall 

effect is amplified. The use of the Dirac delta function can help decrease these 
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spurious variations: Uhlmann [53] showed that setting Dirac delta width of 3∆x is 

effective in suppressing the phenomenon while keeping the smoothing area compact 

and localized. 

Peskin noted, however, how usually the velocity field near the solid boundary 

presents a jump along the normal direction of the wall due to the presence of the 

solid phase. This irregularity in the field proves to be troublesome when 

interpolating the velocity as the accuracy of the solution decreases. This is a 

significant downside of the smoothing process which cannot be corrected unless we 

resort to a sharp representation of the interface [50], which is equally undesired as 

it will probably amplify grid locking. [47] 

 

 

 

 

  

 

Figure 3.9: L2-norm error of the axial velocity component vs number of grid points; circles, 

linear interpolation process; squares, stepwise (sharp) geometry. Dashed line: 2nd order trend; dotted 

line 1st order trend. [50]  

In figure (3.9) we can indeed observe how the norm error computed employing 

the linear interpolation method decrease faster than the 1st order slope, almost 

reaching a 2nd order trend. For this reason, a stepwise geometry representation is 

not recommended. The results are not so surprising, as any linear interpolation is 

usually accurate to second order. [50] Breugem proposed some procedural 

corrections which can increase the overall accuracy; they will be explored in the 

following pages as a conclusion of the presented subject (chap. 3.3.3). 

Finally, let us complete the numerical overview of the method reporting the 

generical relations followed by the solid phase; the motion of a rigid body immersed 

in a fluid is described by Newton-Euler equations [48] as they express its 

translational and rotational equilibrium over time. 

10' i 

10jC 

‖ U‖ '
 

10j' 
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                                   [M ] dU

dt
=F ext ,  U = 

dX

dt
                                  (3.16a) 

                                   [I ] dω

dt
= M ext ,  ω = 

dθ

dt
                                  (3.16b) 

where U and X are the velocity and position of the barycenter of the body, ω 

and θ its angular velocity and position; M and I are the mass and the moment of 

inertia tensor of the entire immersed body. Equations (3.16a-b) and the modified 

Navier-Stokes equations form a system of differential equations which are coupled 

around the interface of the solid particles, ensuring the condition of no-slip and no-

penetration on the fluid flow:  

                           u  = Up�X� ,         ∀m ∈ YZ                                     (3.17) 

Newton-Euler implementation will not be furtherly explored as solid mechanics will 

be then taken into account by the peridynamics theory (chap. 3.3). 

3.3.3 Improvements of the method 

As stated before, field irregularity at the solid border tends to decrease the 

overall accuracy of the solution, as multiple effects, such as grid locking, overlapping 

of the Eulerian and Lagrangian grid and interface representation, influence 

negatively the interpolation and spreading processes. To mitigate this effect, 

different improvements to the original method have been proposed; we will proceed 

to report two of these improvements: the multidirect forcing scheme and the inward 

retraction of the Lagrangian grid. 

- Multidirect forcing scheme: 

The first consequence encountered when using a regularized delta function for 

interpolation and spreading operation lies in the generation of a diffuse distribution 

of the IBM force around the solid interface. As long as delta functions have a finite 

range of application, forcing loads are spread within a radius defined by the 

amplitude that has been set. This could form overlap areas between the nearby 

Lagrangian nodes which are distributed around the body surface. Figure (3.4a) 

illustrates the force distribution on the Eulerian nodes that are involved in the 

forcing operation; the two circles show the range associated with the delta functions 

applied to the two interfacial Lagrangian nodes. This would ultimately mean that 
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the velocity forcing at one Lagrangian grid point is perturbed by the forcing needed 

to determine the velocity of its next one. As a consequence, the distribution of the 

force could be inaccurate, leading to potentially bad velocity enforcement. 

The solution proposed by Luo (2007) and Kriebitzsch (2009) consists of 

determining iteratively the forcing loads that enforce the considered Lagrangian 

node; their collective action is then combined to ensure that U**
≈ Up. In this way, 

the source factor ] is computed iteratively, integrating a loop between the steps 

(3.14b) and (3.14c), immediately after the steps (3.15a-c): 

                       Ul
**, s-1 = ∑ uijk

**,s-1
δd(xijk-Xl

n)∆x∆y∆zijk                           (3.18a) 

                        Fl
  n+1/2, s

= Fl
  n+1/2, s-1 + UP�Xl

 n�-Ul
**,s-1

∆t
                               (3.18b) 

                        f l
n+1/2, s

= ∑ Fl
 n+1/2, s

δd(xijk-Xl
 n)∆Vll                          (3.18c) 

                        u**, s = u*+ ∆tf l
n+1/2, s

                                         (3.18d) 

where the index s ∈ [1:Ns] and Ns is the total number of forcing iterations and 

can be set at will. [47] Obviously, the higher is the number of iterations the higher 

is the accuracy granted by the process, but at the same time, the computational 

efficiency decreases. It can be seen that steps (3.18a-c) are analogous to the steps 

(3.15a-c) presented before; this is because the cycle still follows the interpolation-

computation-spreading scheme that has been previously reviewed. 

- Inward retraction of the Lagrangian grid: 

The second consequence related to the use of the regularized delta function is 

associated with misperception by the fluid of the solid outer surface. The solid 

interface is perceived as a porous thin shell: this surrounding envelope has an 

apparent width dependent on the radius chosen for the Dirac function. (fig. 3.4b). 

    This clearly affects the fluid flow since the volume of the immersed body is 

perceived slightly bigger, introducing in this way, an additional drag. It has been 

proved, however, that a laminar flow close to a porous wall tends to decrease the 

overall drag. Still, the predominant effect is the former, so, when the Lagrangian 

grid is generated and the effective solid border is subtly scaled up, we need to 

compensate by retracting towards the interior the entire grid. 
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(a) (b) 

As long as the perceived width of the body scales with the width of the delta 

function, so should scale the optimal retraction distance. Usually, this width is 

associated with the grid spacing ∆x; this means that in the limit of ∆x → 0 the 

retraction becomes zero as Dirac radius is also null. The optimal retraction distance 

is determined from simulations, by comparing the expected drag force to the one 

obtained. 

 

 

 

 

 

 

 

 

Figure 3.10: (a) Illustration of the diffuse distribution of the IBM force around the interface of 

a particle. Lagrangian grid points are indicated with dots; the arrows indicate the force distribution 

over the Eulerian nodes. The circles identify the Dirac delta's range applied to the Lagrangian points 

designated by triangles. (b) Illustration of the shell surrounding a solid particle. Retracted 

Lagrangian grid points are indicated with dots; the solid line defines the effective interface position. 

The circle describes the area of influence of the regularized Dirac delta function. [47]  

Effects of both multidirect scheme and inward grid retraction are presented in 

figure (3.10), when applied to a single immersed sphere of diameter D. [47] 

To conclude the numerical review of the method, let us report the minimum 

timestep derived by Wessling (2001) to ensure computational stability. For a third 

order Runge-Kutta integration scheme coupled with the central-differencing 

scheme, Von Neumann stability criterion gives: 

                                ∆tmin≤ min �1.65

12

∆x 2 
υ 

,
√3∆x 

∑ |ui
q
|3

i=1

�                               (3.19) 

It should also be noted that NS equations are advanced in time from one timestep 

to the next one knowing the particles velocities and positions at the current 
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(a) (b) 

timestep. This process is indicated as fully explicit coupling of the Navier-Stokes 

and Newton-Euler equations [47]; Hu (2001) pointed out that this coupling could 

potentially cause numerical instabilities when the solid-fluid density ratio reaches 

values lower than 1. This event, however, will not be a problem for us, as the scope 

of our research will involve density ratios ρs /ρf > 1. 

 

 

 

  

  

 

Figure 3.11: (a) Plot of the maximum error in the norm of the Lagrangian velocity Ul as a 

function of the number of force iterations N	;the retraction distance is maintained constant. (b) 

Plot of the maximum error in the norm of the Lagrangian velocity Ul as a function of non-

dimensional retraction distance rs/∆x; the number of force iterations is maintained constant. The 

error is given in percentage of the velocity of the body mass centre Ub. Grid resolution is gradually 

increased: solid line, D/∆x=16; dashed line, D/∆x=24; dotted line, D/∆x=36. [47]  

 

3.4 Peridynamics 

Classical continuum mechanics, despite being effective for dealing with the 

physics of most of the solid materials, will always be incapable of modelling damage 

and fracture phenomena. The main obstacle is related to the mathematical 

definition of the theory, as it assumes that when a solid undergoes deformations, it 

remains continuous. In this way, when a discontinuity arises, the spatial derivatives 

which formulate the model become meaningless and are unable to describe the 

singularity that has been generated. [55],[56] 
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In chapter 2.3.2 we reviewed some employed numerical methods which have been 

implemented in order to describe the crack propagation. However, being these 

usually based on the continuum mechanics, they still inherit the difficulty of 

modelling fractures and large deformations. They also require the presence of a pre-

determined crack geometry that initiates the phenomenon, together with additional 

relations that describe its propagation in velocity and direction. [55] 

These restrictions were recently overcome by Silling (2000) introducing the non-

local theory of peridynamics; the equations of motion are rearranged introducing 

an integral operator into the relation. This guarantees that the equations remain 

valid even when a discontinuity emerges in the solid. Moreover, since the level of 

damage of the material is controlled by the response described by peridynamics 

relations, fracture and crack events are spontaneous and do not require additional 

numerical techniques any longer. 

Let us begin our review of the peridynamics theory starting with its fundamental 

formulation. 

3.4.1 Fundamentals of peridynamics 

Several peridynamics model have been developed during the recent years; we will 

review only the bond-based formulation (Dipasquale [2014]; Silling [2010]; Ha 

[2010]) as it will be the one employed afterwards. In peridynamics, the solid body ℬ is assumed to be composed of material points located at their reference position 

X0 (from now on referred as point X0) and treated in a Lagrangian manner. The 

interaction of X0 with its neighbours is related to the parameter [, called 

peridynamic horizon, which also defines the family ℋvwof the considered particle: 

[54]  

                               ℋvw = xX0
' ∈  ℬ, yX0

' -X0y < δz                                    (3.20) 

where X0
 ' is the generic point belonging to the family of X0 at his reference 

position. The Lagrangian equation of motion of a generic peridynamic particle is 

obtained via linear momentum balance: [2] 

ρs

d 2X(X0,t)

dt 2
=� f {X�X0,t�,X'�X0

' ,t�|dV
X0

' +F(X0,t)  ,   ∀ ℋvw m } ~ ∈ ℋvw      (3.21) 
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where F(X0,t) is the external force density per unit volume and dV
X0

 ' is the 

infinitesimal volume associated to the generic point m } ~. f expresses the pairwise 

force density function, whose physical unit is [f ] = [N/m 6]. In order to define f , 

we have to introduce the following quantities: 

                                             ξ = X0' €  X0
                                    (3.22a) 

                                  η = �X 
' €X0

'  � €  �X 
 €X0

  �                             (3.22b) 

Note that X 
  and X 

' indicate the position at the time t of the reference points 

X0
 ,X0

 ′. In this way ξ is the relative distance between the points  X0
  and  X0

 '  and 

η is their relative displacement at the time t; �ξ+η � becomes in this way the 

deformed bond length. A basic representation of the peridynamic-Lagrangian 

structure and of ξ and η is illustrated in figure (3.12). 

 

 

 

 

 

Figure 3.12: (a) 2D schematic of a solid medium discretized with uniform a Lagrangian-

peridynamic grid. The circle indicates the space of influence of the particle X0,h ; the radius of the 

circle corresponds to the peridynamic horizon [; X0,l  represents the family of nodes influenced by 

X0,h . (b) Relative position ξ and relative displacement η of points X0
  and  X0

 ' . [54],[55] 

We can define the following expression for the pairwise force function: 

                                       f�ξ,η�  = c0 λ�s� s ξ+η‖ξ+η‖                               (3.23)  

where s is the bond stretch: 

                                       s�ξ,η�  = ‖ξ+η‖  j ‖ξ‖‖ξ‖                                      (3.24) 

(a) (b) 

X0
  

X0
'  

X 
  

X 
 ′ 
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The parameter c0  is identified as the bond micromodulus or bond stiffness; it 

can be assumed either constant or time-dependent. This naturally modifies the 

material response, generating both linear and non-linear behaviours. When the bond 

stiffness is constant the material represented becomes a linear elastic material until 

the failure condition is met. [56] Crack formation is treated through the parameter 

λ�s� which is defined as the following: 

                                      λ�s� = ƒ1,     s ≤ s0  ∀t ≥ 0,       
 

0,      otherwise.                                 (3.25) 

when the bond stretch exceeds the maximum value, the pairwise interaction is 

cancelled and from that time forward the particle involved is neglected. In this way, 

the rupture of bonds is able to represent effectively the crack propagation 

mechanism, without the need of introducing any additional models. Bond 

micromodulus and maximum bond stretch are the fundamental quantities that 

characterize a bond-based peridynamic model; they can be expressed through 

constitutive relations using the macroscopic mechanical properties of the material. 

Starting with the bond stiffness, c0  can be expressed as the following: 

                      c0 = 
⎩⎪
⎨
⎪⎧

9E

πtδ3     for 2D plane stress problems, 
48E

5πtδ3    for 2D plane strain problems,   12E

πδ4     for 3D problems,                        
                        (3.26) 

where E is the Young’s modulus of the material and t is the thickness of the 2D 

body (plate). Similarly, we can evaluate the limit bond stretch with: 

                         s0 = 
⎩⎪⎪
⎨
⎪⎪⎧ˆ

N‰Šw‹Œ•     for 2D plane stress problems, 
ˆŽ‰Šw7'Œ•    for 2D plane strain problems, 
  ˆŽŠw•Œ•     for 3D problems,                        

                   (3.27)  

    where G0  is the energy release rate of the material (Irwin, 1957), that is the 

rate at which potential energy is converted (developing heat, for example) during 

crack opening. It can be expressed as the decrease of total potential energy versus 
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the increase of fracture area. In Irwin’s theory, the crack propagates when the 

energy release rate reaches its critical value, called fracture toughness. [2],[57] The 

crack case here considered corresponds to the mode I. 

   It should be noted also that the coefficients here presented are valid only for 

an elastic isotropic material usually identified as prototype microelastic brittle model 

(PMB); Poisson’s ratio of the material is assumed to be equal to 1/4 for 3D and 

plane strain cases and 1/3 for 2D plane stress. This represents the main limitation 

associated with the bond-based model. Note, however, that although the reference 

state of the peridynamic material is isotropic, crack propagation will eventually 

develop anisotropy. [57],[58] The limitation associated to the Poisson’s ratio is 

overcome adopting a state-based peridynamic model; here, the mutual interactions 

between material points are dependent on the collective action of all the particles 

inside the horizon. [56] This however greatly amplifies the computational cost, as 

the number of bonds considered per iteration is amplified. State-based models will 

not be described by this review as they will not be applied in the final algorithm, 

falling outside the scope of this research. 

3.4.2 Numerical discretization 

    The solid domain is discretized with a uniform Lagrangian grid and the 

peridynamic particles are represented with nodes of finite volume ∆Vl, which 

interacts mutually between each other. In this case, the peridynamic horizon 

becomes [ = m/∆s, where ∆s is the mean grid spacing of the solid and m is a user-

defined parameter (it’s usually set to 2 or 3). We can then rewrite equation (3.21) 

for a generic Lagrangian node Xh
   as the following: 

                 ρs

d 2Xh

dt 2
 = ∑ (c0λh,lsh,l

ξh,l+ηh,l•ξh,l+ηh,l•
Nh
l=1 αh,l∆Vl) + Dh + Fh                (3.28) 

where Nh is the number of nodes included in the family of Xh, Fh the external 

force applied on Xh and Dh an additional term introducing an internal damping 

effect. In particular, Fh is the sum of the hydrodynamic loads ‘h and solid-solid 

contact forces ’h; the damping term Dh is defined in this manner: 

                        Dh = -kd ∑ (Ul -Uh)·
ξh,l+ηh,l•ξh,l+ηh,l•

Nh
l=1 αh,l∆Vl                      (3.29) 
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with kd the internal damping coefficient [N∙ s/m7]. This additional term produces 

internal damping forces that do not affect lower-frequencies oscillations but only 

modes associated to the higher frequencies, suppressing the sub-horizon motions 

thus improving the overall stability. [2] Further explaining on the computation of 

this forces will be done in the following chapter (chap. 4.1.2).  

The numerical integration computed in equations (3.28-3.29) is also improved 

introducing the parameter αh,l, which accounts for the effective volume partition 

associated to the peridynamic particle Xl  paired with Xh. Considering the 

schematic in figure (3.6a) we can define: 

                                          αh,l = ∆Vl,h “”
∆Vl,h •–—6∆Vl,h “”                                      (3.30) 

    where ∆Vl,h � is the volume of the particle Xl included in the horizon of Xh , 
while ∆Vl,h /01 is the excluded portion. [54] 

    Implementing a third-order Runge-Kutta scheme, we can solve equation (3.28) 

in the following way:  

          Xh
 r=Xh

 r-1+∆tp(αrUh
 r-1+βrUh

 r-2-γrUh
 r-3)                     (3.31a)                                  

               Uh
 r=Uh

 r-1+ ∆tp

ρs

(αrPRHSh
 r-1+βrPRHSh

 r-2-γrPRHSh
 r-3)                       (3.31b) 

    where r is the Runge-Kutta integration step, r ∈ [1:3], ∆tp is the peridynamic 

timestep and PRHS is the right-hand side of equation (3.28); αr, βr, and γr are the 

Rung-Kutta coefficients for the third-order scheme. In this case the solver is 

explicit, as the state of the system computed is obtained from the previous timestep. 

     It is also possible to formulate a scalar field representing the damage condition 

of the material through the distribution of the λ�s� value across the Lagrangian-

peridynamic grid. For a generic peridynamic node Xh, we can define the damage 

level as: [54],[56],[58] 

                              Фh=
broken bonds

initial bonds
=

∑ λh,l αh,l ∆Vl 
N
l=1∑  αh,l ∆Vl 

N
l=1

                                 (3.32) 

     where N is the number of interacting nodes included in the horizon of Xh. 
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 It can be noted from figure (3.13b-c), how cracks tend to propagate easier in 

the horizontal direction, as the number of bonds that have to be broken are less 

than the ones ruptured when crack path is diagonal. This arise an issue that must 

be taken into account when dealing with crack propagation and its direction: crack 

path is grid dependent. [56] 

 

 

  

 

 

 

 

     Figure 3.13: Schematic of the damage level definition. (a) undamaged condition for the 

bonds of a generic node; (b) damaged condition and crack propagation, case 1; (c) damaged 

condition and crack propagation, case 2. Note how the number of bonds broken in the second case 

is higher. [56] 

 This effect is common in many finite-element methods which implement 

discontinuities treatment, as mesh presence tends to constrain the path the fracture 

moves along. In peridynamics the effect is similar, as the discrete distribution of 

bonds between the nodes establishes a set of predetermined direction which must 

be followed by the crack. A solution to reduce this effect is to increase grid 

resolution, extending in this way the number of bonds included in the particle 

horizon; this also corresponds to an increase of the m factor. In figure 3.14 we can 

appreciate the described effect:  

 

  

 

 

 

 

 

Crack path 1 

Crack path 2 

 
  

(a) (b) (c) 

(a) (b) (c) (d) 
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   Figure 3.14: Schematic of the bond direction for different values of the m factor. (a) m=3; 

(b) m=5; (c) m=8; (d) m=20. [57] 

   It is evident that increasing m or the grid resolution cannot be done 

indefinitely, as the computational cost hugely rises when the number of bonds and 

peridynamics particles increases. An effective solution could be implementing an 

algorithm of grid refinement (i.e. [56],[60],[61]), adding nodes in proximity of the 

crack tip in order to mitigate the effect of grid dependency; this strategy will not 

be applied to the present research due to the high geometrical complexity of the 

model studied. 

Another limitation related to the peridynamic theory we should briefly evaluate 

is the boundary conditions treatment and the surface effect. Essentially, when the 

fundamentals peridynamic parameters associated to the PMB material are derived, 

it is assumed that the family of the generic node Xh is fully included in the solid 

domain. This, however, is not true for the nodes close to the solid border, as part 

of the particles expected to be present inside the horizon does not exist, being 

outside the body domain (fig. 3.15). The horizon of the border particle takes a 

truncated shape, causing in this way an inaccurate determination of the PMB 

quantities, such as the bond micromodulus c0. 

 

 

 

 

 

 

     Figure 3.15: Material point m›, mœ and m• in a 2D domain; mœ and m• present a truncated 

family domain being located near the external surface.  

     The missing family does not contribute to the overall deformation energy of the 

body; when for example the domain in figure (3.15) is loaded and stretches, the 

deformation energy density near the solid boundaries is lower than the bulk. This 

is caused by the lesser number of bonds which characterizes boundary nodes. The 
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main consequence related to this phenomenon is that the boundaries of the body 

modeled with the peridynamic approach appear to be artificially softer than the 

rest of the material as the local elastic modulus decreases; this effect is known as 

soft boundary effect or skin effect. [55],[59] 

     Some studies (Kilic & Madenci, 2010) were carried in order to address this effect 

and mitigate it, however the correction factor that was applied to c0 failed to 

represent non-homogenous materials. A complete solution is yet to be found. [59] 

    Lastly, let us evaluate a plausible timestep capable of effectively describing the 

phenomenon; a popular approach found in literature [62] to estimate the maximum 

critical timestep is to employ the Courant-Friedrichs-Lewy (CFL) method:  

                                               ∆tp,min = ∆s

cw
                                         (3.33) 

                                               cw  = ˆžŸ                                             (3.34) 

    where cw is the wave speed that propagates inside the solid medium and K is its 

bulk modulus, which for a homogenous isotropic material (PMB) is equal to:  

                                               K = E

3(1-2ν)
                                            (3.35) 

     Thus, the critical timestep is: 

                                               ∆tp,min =  ∆sˆŸ ž                                          (3.36) 

     It is essential to ensure that ∆tp ≤ ∆tp,min, as higher values of the timestep could 

create an aliasing effect, preventing a proper observation and solution of the crack 

propagation phenomenon. 

Chapter conclusion 

Now that we have reviewed the main methods that will be involved for the 

present research, showing respectively their upsides and downsides, we will present 

the test-case studied together with its solving process. The coupling of the 

peridynamic solver with the IBM approach will be discussed in the following 

chapter, with reference to the consideration performed in the previous sections. 
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Chapter 4 

Definition of the problem 

This chapter will provide a description of the solver employed to lead the FSI 

analysis and its relative process.  The reference methods will be the ones introduced 

in the previous chapter; the coupling of the fluid and solid solver will be presented 

together with the computation process of internal and external forces. The 

generation of the geometry and its configuration will be also reported.   

4.1 CaNS-ExPS 

CaNS-ExPS [64] is a double precision parallelized Fortran code developed 

specifically for solving fluid-structure interaction problems. It is capable of running 

DNS simulations coupled with a peridynamic solid solver, employing an IBM 

module to handle interface conditions. The code follows the partitioned approach 

logic, using a non-conformal uniform Eulerian mesh to discretize the fluid domain 

and a Lagrangian grid to characterize the solid medium. The solid and fluid solvers 

are two-way coupled, meaning that the two phases interact at every iteration and 

are solved concurrently. The validation and testing of its modules has already been 

done successfully [2]. 

4.1.1 DNS and PD module coupling 

Fluid and solid solver are coupled together through an IBM module, which 

interfaces the Eulerian and Lagrangian grid, allowing the two phases to interact 

with each other. The DNS module was developed starting from the open source 

solver CaNS [63], expanding it through the implementation of an IBM module 

capable of detecting and tracking an immersed body in the fluid domain.  

Time integration, in this case, is performed by a low-storage third order Runge-

Kutta algorithm while spatial integration by finite differences method, using an 

efficient FFT-based solver. [63] The fluid domain is discretized by a fixed, uniform, 
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non-conformal, staggered mesh grid; every element is of cubical shape and of volume 

∆x 3. Boundary conditions for the fluid field are enforced through the use of ghost 

nodes located outside the computational domain; velocity and pressure 

inflow/outflow conditions can be imposed through Dirichlet and Neumann 

conditions, as well as periodicity. No-penetration and no-slip conditions are enforced 

through the discrete-forcing approach presented in chapter 3.2.2.  

The solution of the solid medium is instead carried on through an explicit 

peridynamic solver (ExPS) [64] that performs time integration of equation (3.28). 

The body is discretized by a set of Lagrangian points arranged in a uniform equally-

spaced grid; the grid moves with the solid-fluid interface, assuring at every timestep 

that each node of the grid coincide with the position of the peridynamic particle. 

In first approximation, the volume of the generic peridynamic particle is as well 

∆x 3.  

The numerical algorithm is implemented in FORTRAN90/95, with a Message-

Passage Interface (MPI) extension to allow parallel processing; the geometry is 

decomposed in pencil-like computational subdomains in order to parallelize the 

process efficiently. [63] 

The scheme followed by the two solvers can be summarized in this way:  

(1) A first prediction of the velocity field is performed (3.14a), integrating 

Navier-Stokes equations over a time interval ∆�, with no consideration 

about the fluid-solid interface. 

(2) No-slip and no-penetration conditions enforcement are carried on by the 

IBM module, following a multidirect forcing scheme (chap. 3.2.3). 

(3) Pressure and velocity fields are updated to the next timestep through a 

pressure-correction scheme similar to (3.14b-3.14e). The position of the 

solid-fluid interface is still fixed at the initial timestep. 

(4) The Lagrangian equations presented in the scheme (3.31a-b) are then 

advanced over the same time interval ∆� through sub-steps of ∆�� = r∆�; 
r < 1 to ensure numerical stability. Finally, solid-fluid interface location 

is updated in time. 
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    The fluid and solid solver are treated independently, working in parallel through 

a closely coupled partitioned approach (chap. 3.1.1). However, they still need to 

communicate in order to correctly update the interface location and apply the 

surface loads. The approach followed is two-way coupled because the loads 

computed through the IBM module are then employed by the peridynamic solver 

to compute the motion of the solid particles, which in turn, will influence fluid’s 

motion in the next iteration. 

    As long as the solid and fluid solver cannot run at the same time, the 

peridynamic solver is called with a higher frequency, using shorter timesteps 

(stagger loops). In this way, solid bodies are assumed to evolve through quasistatic 

states; this is true, however, only when time intervals and body deformations are 

small. To solve this problem, an additional damping factor for the velocities of the 

particles is introduced as already presented in equations (3.28-29). 

The choice of the parameter kd naturally affects the final solution; it should be 

noted, however, that only higher frequencies modes will be damped. This will not 

represent a problem in our case, as long as acoustic phenomena are neglected by 

the intended simulation given the incompressibility configuration. 

4.1.2 Dimensional analysis 

Another important consideration that has to be accounted in order to ensure the 

correct coupling of the solvers regards the dimensions assigned to the respective 

quantities. Navier-Stokes equations are handled via the imposition of the Reynolds 

number, so the fluid phase is solved in a non-dimensional form. On the other hand, 

the peridynamics has to be solved in a dimensional form; in this way when the IBM 

module computes the loads, these are adjusted by a proper scaling factor.  

The IBM loading scaling factor f* can be determined by leading a dimensional 

analysis on the complete IBM-NS equation [65]: 

                                        f*
 
=ρf·(U

 2/L)                                        (4.3) 

Where U and L are the characteristic length and velocity scale of the flow, as 

already explained in (chap. 3.1.2). In this way, the force transmission between the 

IBM and PD modules is managed employing the following relation:  
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                     FPD = fIBM ·f*                                        (4.4) 

    Similarly, the displacement applied to the Lagrangian grid is handled in this 

way:  

                 ∆xh = Xh / L               (4.5) 

    where ∆xh is the effective displacement of the generic Lagrangian node h over 

the time interval ∆t. In this way, the dimensional displacements of the PD nodes 

are transferred as non-dimensional displacements in the Eulerian framework, 

ensuring a proper detection of the solid-fluid interface for the fluid next iteration.  

    We can further look into the problem by performing a dimensional analysis of 

the discretized peridynamic equation; if we rewrite equation (4.1) and highlight the 

characteristic dimensions for every quantity, we obtain:  

        ρs

d 2Xh

dt 2
 +Q£

R ,  = ∑ (\Nh
l=1 αh,l∆Vl) +ŒR,  + Dh ρs +Q£

R ,   + \∗]¤¥¦,�                  (4.6)     

    where the damping term for the absolute velocities is indicated with Da,h and 

the PD force has been replaced with the notation (4.4). We can proceed by 

regrouping the characteristic dimensions in the following way: 

              
d 2Xh

dt 2
  = ∑ (\Nh

l=1 αh,l∆Vl) ( Œ ρsQ£)  + Dh + ( ρf  ρs

) ]¤¥¦,�                          (4.7) 

    We can identify two different dimensional group in equation (4.7) that, likewise 

the Reynolds number for equation (3.4), control the response of the peridynamic 

module. Therefore, similarity for the peridynamic module is assured when these 

quantities remain constant. In this way, when dealing with FSI problems, the case 

studied remains unchanged as long as the following dimensional groups are kept 

constant: 

                           Re =  ρf UL

μ
  ,   ζ = E

 ρsU
 2    ,    ψ =  ρf 

 ρs

                             (4.8) 

     In figure 4.1 we report the flowchart of the complete coupled algorithm. 
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      Figure 4.1: Flowchart scheme of the algorithm. [65],[66] 

4.1.3 Interface handling and forces computation 

In order to describe correctly the interaction between the solid structure and the 

fluid, the interface must be opportunely tracked through time; this include not only 

the borders of the solid immersed in the fluid but also the fragments that have been 

removed from the surface and are free to roam in the domain. In CaNS-ExPS 

interface detection is performed through an additional algorithm [2] that locates in 

the Lagrangian framework a set of Lagrangian markers; these markers consist in a 

subset of peridynamic nodes that compose the solid body and are named interfacial 

particles. As long as markers are also peridynamic particles, their tracking in time 

is effectively performed by the solid solver that integrates in time their velocity. 
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Their numerical detection is achieved through a geometrical criterion that compares 

the number of neighbours nodes for every peridynamic particle.  

Once the interface has been located, external and internal forces are then applied. 

Let us evaluate the process to compute solid-solid contact forces Ch  and 

hydrodynamic loads Bh. 

The solid-solid contact forces are computed as a pairwise force interaction 

between peridynamics particles that are located inside a cut-off distance r©; given 

a couple of interfacial peridynamic particles Xh and Xl, the short-range force on 

Xh due to contact with Xl is:  

                    Ch,l = max ªkc (� rc

rh,l
�nc € 1) , 0«· m¬ j m›‖m¬ j m›‖                      (4.2a) 

where rh,l is the distance between Xh and Xl, nc is the force exponent and kc is 

the short-range force constant. [2] These parameters represent the fundamental 

quantities that characterizes the contact model; according to Silling & Macek (2007) 

these parameters can be set in the following way:    

                   Ch,l = max ª15c} (�∆ 
rh,l
� € 1) , 0 «· m¬ j m›‖m¬ j m›‖                      (4.2b) 

Using a nearest-neighbour-search (NNS) algorithm, the contact force is applied 

to the interfacial particles located inside the cut-off distance. 

On the other hand, for what concerns the computing of the hydrodynamic 

stresses, normal-probe method has been adopted. [2] The reaction of the fluid on 

the solid surfaces is determined by evaluating the pressure gradient and viscous 

stresses in proximity of the interface. This requires, however, the computation of 

the normal vector to the surface, which, for an interfacial particle can be 

approximated using the distances of interaction between the particles and its 

neighbours. The tangent and bi-normal vectors are computed accordingly. A local 

orthogonal coordinate system is then defined, according to the normal and tangent 

vectors; in correspondence of each Lagrangian interfacial position Xh, a probe of 

length l = 2∆x is defined along the local normal vector (fig. 4.2). [54]  
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Figure 4.2: 2D schematic of the normal probe method adopted to compute the hydraulic stresses 

on the fluid-solid interface. The figure illustrates the stencil used to compute the velocity and 

pressure gradients at the normal probe tip; it is shown also the curvilinear local frame of reference 

defined by the tangent and normal vector to the solid surface. [54] 

The fluid pressure is obtained at the probe root R by interpolation of the pressure 

field at the probe tip T, using a computational stencil (fig. 4.1); similarly, the 

viscous shear stress at R is determined by interpolation of the Eulerian velocity in 

T. Once the overall stress is computed, we can express it in the global framework 

of reference, and we can finally compute Bh as: 

                                          Bh = -τh
Ah

∆  ®                                           (4.3) 

where τh is the overall viscous stress and Ah is the specific surface area involved 

by the stress. 

Having properly introduced the algorithm that will be employed and the relative 

followed steps, let us finally proceed to outline the problem involved in the present 

research.    

4.2 Problem configuration 

The subject of the proposed analysis will be a pore-scale DNS simulation of a 

non-convex random porous medium immersed in a laminar fluid flow. The study 

will focus on the process of hydraulic fracturing of the material with the purpose of 

R 
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determining a simple mathematical model which could provide information on the 

quantities involved. 

4.2.1 Computational domain configuration 

The computational domain will include the fluid domain as a channel of 

dimensions 2d ¯ 1d ¯ 1d in streamwise, spanwise and wall-normal directions, 

together with the solid domain, represented by an RVE of dimensions 

1d ¯ 1d ¯ 0.75d; d indicates the generic dimension associated to the domain length 

size. The resolution for both the Eulerian and Lagrangian grid is set to ∆	 = ∆4 = 

1d/64, obtaining a distribution of 64 ¯ 64 ¯ 128 fluid nodes; the number of 

peridynamics nodes Np can be computed instead by using the definition of porosity 

(eq. 2.1):  

                                         Np = �1 - φ� Ntot                                            (4.4) 

where Ntot = 64 ¯ 64 ¯ 48. 

The boundary conditions enforced for the channel flow are an inflow condition 

at x = 0 which imposes a 3D Poiseuille profile for initial velocity profile, a pressure 

outflow at x = 2 and wall conditions for the y-wise and z-wise border domain. The 

solid body is generated in the domain [0.25 ; 1.0] ¯ [0 ; 1] ¯ [0 ; 1]; the frame is 

bounded to the channel by constraining the outer Lagrangian points to the lateral, 

lower and upper walls, imposing: 

                                         Ux = Uy = Uz = 0                                          (4.5) 

    The peridynamic horizon is set to 2∆	.    
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Figure 4.3: 3D schematic of the computational domain; the shaded area indicates the solid 

domain, the blank area the fluid domain. 

4.2.2 Geometry generation 

The generation of the porous medium geometry is handled through a separate 

algorithm that proceeds to create non-convex cavities inside a user-defined domain. 

The process is carried on by generating a random distribution of spheres of fixed 

minimum radius; a validating cycle makes sure that: 

(1) The centres of the spheres created belong to the defined solid domain. 

(2) The spheres do not overlap over a fixed limit.  

The solid domain is progressively packed with spheres until a predefined target 

of porosity is reached. Afterwards, the distributed spheres are employed to create 

the effective final geometry by Boolean subtraction of the bulk total domain with 

the random distribution of bodies. At the end of the cycle, a smoothing filter is 

implemented in order to eliminate isolated particles or disconnected portions of the 

body. Figure 4.5 presents an example of the final result. 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: Flowchart scheme of the porous medium generation algorithm. 
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Figure 4.5: 3D render of an example of the geometrical configuration. The porosity value is 

equal to 0.7; in this case the solid domain is cubical unit-cell. 

We report the final configuration adopted for the computational domain; the 

porosity target value has been set to 0.7: 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6: 3D render of the adopted computational domain with the final geometrical 

configuration. The fluid computational domain is indicated by the outer black outline. 
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4.2.3 Definition of the capillary model 

Despite the precision and the amount of information collected from a direct 

numerical simulation, the definition and application of an equivalent model for the 

porous medium behaviour could still provide valuable data on the subject. In this 

way, it would be possible to predict the system response without resorting to 

expensive numerical analysis, saving a huge amount of computational time and 

resources.  

Several models were introduced over the course of time; the first was the Kozeny-

Carman (1937, 1956) bundle-of-tubes model, while one of the latest is the Yu & 

Cheng model (2001), which resorted to the fractal characteristics presented by 

porous media. Still, none of them was applied for describing a time-evolving process 

as they were employed only to evaluate the geometrical characteristics of the solid 

frame. 

For this reason, a simple mathematical model is proposed, with the intention of 

capturing the fluid and solid interaction throughout the hydraulic fracturing 

process. The model proposed will be a modification of the one introduced originally 

by Kozeny (1927): to describe the percolation process of the fluid flow through the 

medium, we can simplify the internal geometry as a bundle of channels of constant 

area and length longer than the bulk. We report in figure (4.7) the schematic of the 

model: 

 

 

 

 

 

 

Figure 4.7: Schematic of the capillary model adopted to represent the porous medium 

behaviour. A is the bulk cross-section, L the bulk length, l the capillary length and b is the channel 

radius. 
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For the case presented, porosity can be expressed in the following way: 

                                         φ = Vt

Vt+Vs
                                                    (4.6) 

where �1 is the is the void volume occupied by the capillary tubes and �1 the one 

occupied by the solid frame. In particular �1 and its internal surface can be 

expressed as: 

                                Vt = n·πb2l ,  Sv = n·2πbl                                      (4.7) 

where n is the generic number of capillary tubes inside the solid frame and b is 

the channel radius together with its length l. Substituting Vt in equation (4.6) and 

dividing both members by Sv we obtain: 

                                         b = 2Vs

Sv
� φ
1-φ

�                                                    (4.8) 

Equation (4.8) is purely a geometrical consideration and can be applied for every 

morphological configuration of the porous medium; b in this way represents the 

mean pore radius of the structure and can be employed to determine the mean flow 

rate inside the capillary tube. For the case studied, the solid frame volume Vs and 

the specific surface area Sv can be approximated in the following way: 

                                       Vs ≅ Np·∆s
3                                                   (4.9a)  

                                       Sv ≅ Ninterface·√2∆s
2                                  (4.9b) 

where Ninterface is the number of interfacial nodes. 

Applying the well-known Hagen-Poiseuille equation, we obtain: 

                                         q = 
πb4

8μ
·
∆p

l
                                                    (4.10a) 

where ∆p is the pressure drop computed between the entrance and the exit of 

the tube. We can rewrite equation (4.8a) using the definition of tortuosity 

(τ= l / Lb ) obtaining:  

                                       q = 
πb4

8μτ
·
∆p Lb

                                                   (4.10b) 
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From equation (4.9b) we can compute the total flow rate that travels through 

the entire medium with Q = n ∙ q. The factor n can be easily suppressed by 

expressing porosity as: 

                                     φ = 
n·πb2l

A Lb
=

n·πb2
τ

A
                                                (4.11) 

In this way, we finally obtain: 

                                    Q = φ· 
b2A

8μτ2 ·
∆p Lb

                                         (4.12) 

which can be seen as a modified version of the Darcy’s equation, where the term 

φ· 
b2

8τ2  represents the permeability of the porous medium. Equation (4.12) can be 

non-dimensionalized through the use of the proper quantity scales: 

                          Q*[U]{L2| = φ· 
b* 2{L2|A*{L2|

8μτ2 Lb
*[L]

·∆p*· ρf {U 2|                    (4.13a) 

                            Q* = φRe· 
b* 2A*

8τ2 ·
∆p*

Lb
*                                                 (4.13b) 

where the (*) superscript indicates the dimensionless quantity. Note how in 

equation (4.13b) the fluid viscosity ° is associated to the Reynolds number, as long 

as the pressure drop is non-dimensional. Again φ· 
b* 2
8τ2  is the non-dimensional 

permeability. 

Chapter conclusion 

Now that the effective modalities of the analysis have been properly introduced, 

let us proceed to expose the results obtained from the performed simulations, 

together with the evaluations carried out implementing the capillary model.  
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Chapter 5 

Results 

This chapter will present the results obtained from the performed simulations 

together with the evaluations obtained employing the capillary model; in particular, 

it will be discussed the effectiveness of the model in describing the evolution of a 

porous material subjected to hydraulic fracturing. A total of five DNSs have been 

conducted, with the intent of studying the effect of solid fracturing and crack 

propagation by varying the energy release rate of the material. The non-dimensional 

parameters set for the different analysis are the following: 

 

 

 

 

 

Table 5.1: Physical parameters of the simulations expressed in non-dimensional units; starting 

from the top, bulk Reynolds number Re = ρfUL/μ, ζ = E/ρsU
 2, density ratio ψ = ρs /ρf and 

Poisson’s ratio. At the bottom: corresponding non-dimensional energy release rate for each 

simulation.  

The time-step employed for every simulation has been set to ∆t/t±   ≅ 1.35∙10 -4, 
where t±  = U/L is the reference time scale of the fluid. The initialization of the 

simulation is performed over the time range t/t± ∈ [0, 1.35]; in this phase, only the 

fluid solver is enabled until the flow reaches a stationary state. The solid frame is 

then let deform, enabling the peridynamic module but keeping the bond break-up 

deactivated; the correspondent time range is t/t± ∈ [1.35, 2.55]. Finally, 

for t/t± ∈ [2.55, 3.35] the bond break-up is enabled, allowing crack propagation.  

Let us now proceed to review in-depth the simulation R5 (table 5.1).  

Re 10.0 

ζ 0.333 ∙105 ³ 3.0 ´ 0.25 

DNS R1 R2 R5 R10 R15 

G0/EL 1∙10-6 2∙10-6 5∙10-6 1∙10-5 1.5∙10-5 
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5.1 DNS review 

We present the results obtained from the R5 simulation (G0/EL = 5∙10-6); both 

the fluid and solid phase will be discussed, reviewing properly every simulation 

phase; note that the first two phases are the same for every DNS performed, as G0 

influences only the last 6000 iterations.  

5.1.1 Flow initialization 

The fluid phase is evolved through the porous material for 10000 iterations until 

it reaches a stationary state. At the end of the initialization phase, the simulated 

fluid flow inside the porous material is laminar, as expected from the low Reynolds 

number that has been imposed.  

 

 

 

 

 

 

 

 

 

Figure 5.1: Plot of flow streamlines at the end of the initialization phase; t/tµ  = 1.35. The 

streamlines are coloured according to the magnitude of the non-dimensional flow velocity. The solid 

phase is plotted with a lower opacity in order to ease the visualization. 

We can distinguish, however, some isolated eddies in particular regions of the 

solid. Despite the low Reynolds number, inertial effects are present in the cavities 

of the body due to the geometrical complexity encountered by the flow.  
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As long as these recirculation areas are associated to low-velocity flows, their 

effect can be generally neglected; the flow can be easily assumed in the Darcy’s 

regime, given the high viscosity of the fluid phase and the low flow rate enforced 

as inflow condition. Still, there are some areas where the flow accelerates: these 

regions are associated to a sudden increase of the internal pore radius as well as to 

the outlets of the fluid at the end of the porous material.  

We can also evaluate the pressure field distribution at t/t± =1.35 (It = 10000): 
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Figure 5.2: Top panel: distribution of the non-dimensional pressure along the x direction t/t±  = 

1.35; the scalar field is evaluated for several y-z fixed position, varying the x. The mean pressure 

profile is also reported. Bottom panel: contour of the non-dimensional pressure field at t/t± = 1.35 

on the Y-normal mid-surface.  

Examining the results represented in (fig. 5.2), we can see how the pressure 

distribution along the x direction is quite dependent on the location considered for 

the computing. This is expected, given the overall geometrical complexity of the 

solid body; the fluid encounters different solid conformations while moving through 

the medium along the streamwise direction and this obviously affects the pressure 

distribution. The continuous widening and narrowing of the internal porous cavities 

generates sudden increases and decreases of the local pressure, together with the 

effect of solid walls that produce stagnation regions; this effect can be further 

appreciated examining the pressure contour at a fixed surface.  

However, if we manage to compute the mean pressure distribution along x, we 

can immediately evaluate that the overall pressure decrease is almost linear and 

the pressure gradient along the streamwise direction appears fairly constant. For 

the case presented we can esteem the mean pressure gradient as: ∆p*/∆L ≅ - 200 

In figure (5.3) pressure gradient distributions are reported:  

 

 

 

 

 

 

 

 

 

Figure 5.3: Distribution of the non-dimensional pressure gradient along the x direction t/t±  = 

1.35; the scalar field is evaluated for several y-z fixed position, varying the x. The mean pressure 

gradient profile is also reported.  
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Again, we can see how pressure gradient distributions along the x direction are 

dependent on the selected point of evaluation; sudden rises in the pressure gradient 

indicate the presence of stagnation and low-velocity regions inside the domain. If 

we evaluate the mean profile, however, the overall tendency settles around 

dp*/dx* ≅ - 200, as predicted by the mean pressure drop. Still, the fluctuations 

around the mean value are not negligible and could affect the general response of 

the system; in particular, the gradient distribution dives in proximity of the inlet 

and spikes at the outlet of the porous material, indicating a concentration of local 

perturbances. These are caused, at first, by the sudden presence of the solid body 

and, at last, by the abrupt flow discharge in a wider streamtube.  

5.1.2 Solid initialization 

Similarly to what has been done with the fluid, before turning on the bond break-

up, is essential to gradually accustom the solid frame to the flow and to the applied 

pressure. For this reason, the simulation is carried on by performing 9000 iterations 

with the same timestep previously employed, releasing the particles and activating 

together with the fluid solver also the peridynamic solver; crack propagation is 

absent since the solid particles are kept connected for now. 

This phase greatly stabilizes the computational process and prevents that the 

immediate release of the solid particles could cause numerical errors capable of 

leading into a computational divergence. This effect is further avoided 

implementing an additional damping term which is related to the particle absolute 

velocities. 

We report two different iteration performed in this phase, t/t± = 2.0 and t/t± = 

2.55. Let us evaluate firstly the displacement field associated to the peridynamics 

particles. In figure (5.4) we report the surface contours for the front and back region 

of the porous material, at different timesteps. Starting with the front, it can be 

easily seen how the displacement field of the inlet and of the wall cavities tends to 

follow the 3D Poiseuille inflow condition enforced at the beginning. The core regions 

of the material are those subjected to the biggest deformations, being the most 

distant from the lateral bounded walls, while, on the contrary, the material near 

the borders appears stiffer. Nevertheless, the largest displacements manifest at the 

outlet of the material, unlike what one might think from the pressure distribution. 
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t/t± = 2.0 t/t± = 2.55 

t/t± = 1.45 t/t± = 2.0 

This will be even more evident later when the fracturing process will be reviewed. 

In this case, the effect is further amplified by the geometry of the material, as strips 

of the solid connected mildly to the frame tends to be teared easily.   

 

 

 

 

 

 

  

 

 

 

 

 

 

Figure 5.4: Surface contours of the non-dimensional displacement field on different regions of 

the solid body. Top panel: particle displacements at the inlet and inside the medium; bottom panel: 

particle displacements at the outlet of the medium. 

The phenomenon can be further explored by studying the force density 

distribution: (fig. 5.4) 
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Figure 5.4: Surface contours of the non-dimensional x-wise IBM-force density field on the solid 

frame at t/t± =2.0; left: inlet view; right: outlet view. 

As expected, force density distribution is maximum on the front surface of the 

body and minimum on its back surface. When moving inside the cavities, however, 

the computed force becomes negative along the internal solid walls that are opposite 

to the fluid flow; in particular, this can be seen observing the porous frame from 

the rear. This effect is caused by the internal pore-pressure that accumulates when 

the porous medium reaches a state of saturation. This pressure counterbalances 

moderately the fluid force acting along the positive x-axis, stabilizing the overall 

impact caused by the flow. However, this is not true for the walls on the backside: 

at the outlet of the porous frame pore-pressure immediately drops to zero, as we 

have already seen in figure (5.2); this justifies the scale difference in the 

displacement field that was noted in figure (5.3) and furtherly gives reasons to the 

fracturing process that will be reviews later. It is still unclear whether this effect is 

influenced by the proximity of the pressure outlet condition or not.  

In figure (5.5) we can observe from another point of view the same phenomenon. 

The PDF distribution associated to the force density along x appears slightly 

asymmetrical on the positive side: even though negative forces along x are present, 

the overall fluid response is reasonably streamwise. The overall effect could be 

further examined by evaluating the total probability assigned to negative force 

density. This can be obtained with the relative CDF distribution; again, the plot is 

asymmetrical and the related probability for negative force density is around 0.4.  
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Figure 5.5: Probability density function and cumulative density function of the non-dimensional 

force density distribution at t/t± =2.0. 

As regards to force density distributions along the y and z axes, assuming that 

the solid frame is associated to a isotropic-homogenous body (given that the random 

process that generates it is isotropic), we should obtain two symmetrical PDF 

distributions corresponding to a null resultant in both y and z directions. In figure 

(5.6) we see that this is fairly true for both cases:  

 

 

   

 

 

 

Figure 5.6: Probability density function and cumulative density function of the non-dimensional 

force density distribution at t/t± =2.0. Note that boundary points have been suppressed in order to 

cancel the effects caused by reaction forces. 
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5.1.3 Hydraulic fracturing 

Now that the initialization process applied to the simulation has been reviewed, 

let us move on to evaluate the results obtained activating the bond break-up. The 

interval that will be considered is t/t± ∈ [2.55, 3.35] with a total of 6000 iterations. 

The value set for the energy release rate is associated to the non-dimensional ratio  
G0/EL = 5∙10-6 that has been considered optimal for reviewing the crack 

propagation and the related fracturing process. 

Let us start by reporting in figure (5.7) and (5.8) the initial phases of the process, 

in particular the crack formation and subsequent development; this can be done by 

observing the contour surfaces associated to the damage factor (eq. 3.32):  
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Figure 5.7: Damage factor distributions on the surface of the body to indicate crack 

propagation; the process is observed from two opposite views to ease the visualization. 

It = 19200 

It = 19300 

It = 19400 



81 

 

It = 19200 It = 19300 

It = 19400 It = 19600 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8: Damage factor distributions on the surface of the body to indicate crack 

propagation; the opacity of the undamaged material has been decreased to ease visualization. 

It = 19050 It = 19100 
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Starting with iteration 19050, we can see how material damage is localized in 

particular at the backside of the frame, where a strip of the solid that has been 

deformed in the past iterations is almost already ripped off. A front view reveals 

instead that some crack are rapidly propagating along the internal connecting walls 

of the cavities. After 50 iterations (t* = 7.35∙10-3 ) the maximum material damage 

rises from 0.7 to 0.8 and cracks furtherly propagate; we can observe how damage 

tends to advance along perpendicular directions to the void volume, connecting 

pores together. This is in agreement with the considerations of fracture mechanics, 

where cracks are assumed to develop along the directions where the material is 

weaker (i.e. from one hole of a plate to another). In our case, we can see how cracks 

indeed spread from two opposite directions, starting from one pore and connecting 

to the other, mutually closing the gap of the material wall that separates pores’ 

space (chap. 2.3.1, fig. 2.13). 

 At iteration 19200 damage level reaches 1.0 and the material finally breaks on 

the tightest corner that attached the solid strip to the porous frame; at the same 

time, the back walls are further warped and pushed outwards, causing even more 

stretching on the bonds that maintained the backside joined. The back frame 

ultimately collapses at iteration 19400: cracks are completely open and the central 

core of the material detaches from the front wall. As we have already evaluated in 

the previous pages, we note how internal pore pressure delays the rupture of frontal 

and core structures, despite those being subjected to the highest values of hydraulic 

pressure.  
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 It = 19600 

 It = 20000 

Figure 5.9: Number of broken particles over the time t/t± ∈ [2.55, 3.35]. Iteration 19600 and 

21600 are highlighted to compare the velocity of the process. 

The hydraulic fracturing process starts, in this way, from the backside of the 

porous medium, pulling away fragments of the outlet which in turn drag along the 

material at the core. After iteration 19600, the number of broken bonds does not 

significantly rises, as the main solid fragments have already been formed and cracks 

does not propagate any more (fig. 5.9). The material continues to be damaged but 

the rate decreases, as the inlet pressure now only pushes the fragments downstream, 

reducing in this way the stretching of internal walls. The damage process after 

iteration 19600 becomes more similar to an erosion process, where fluid flow 

gradually wears out internal walls, dragging single solid particles through the 

outflow. At t/t± = 2.85 (iteration 21600) the number of broken particles reaches its 

maximum and the process stabilizes; the flow in the porous medium is again 

stationary. 
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 It = 21500 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 It = 22500 

 
It = 25000 

 

Figure 5.10: Hydraulic fracturing process; plot of flow streamlines, coloured according to the 

magnitude of the non-dimensional flow velocity together with a 3D render of the porous medium.   
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In figure (5.10) are reported 3D renders of the porous material when 

macroscopical effects related to the fracturing process are visible. As stated before, 

we can see how fluid flow gradually hollows out the solid frame, dragging 

downstream fragments that have been formed in the previous iterations. After 

iteration 21500, all the fragments have completely left the original solid domain 

(x* ∈ [0.25, 1.0]); the fluid field and the damaged solid reaches a new stationary 

condition which is maintained until the end of the simulation. In figure (5.11) is 

reported the final configuration of the damaged porous medium. 

 

     

 

 

 

 

 

 

Figure 5.11: 3D render of the porous medium employed for the DNS analysis at end of the 

simulation. 

5.2 Comparison of the cases 

We present the results obtained by varying the setting of the energy release rate 

(see table 5.1) in order to evaluate different fracturing conditions. The non-

dimensional ratio G0/EL  has been set to a minimum of 1∙10-6 (R1), where the 

entire porous structure shatters due to the hydraulic pressure, and to a maximum 

of 1.5∙10-5 (R15), where the solid frame remains globally intact; higher values of 

G0  could not be evaluated as the simulation diverge due to large quasi-

instantaneous deformations. In figure (5.12) are reported the final configuration of 

the damage porous structure for each individual case: 
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Figure 5.12: 3D renders of porous media structural configuration at the end of each 

corresponding simulation (R1,R2,R10 and R15). 

5.2.1 Comparison of the structural evolution 

We can confront the evolution of the porous material during the hydraulic 

fracturing process by comparing the trend of their relative structural quantities 

(porosity, tortuosity, specific surface area and number of broken particles) over 

time. These quantities have been computed separately at the end of each 

RUN1 RUN2 

RUN10 RUN15 
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simulation, evaluating the fluid and solid data with a specific post-processing 

algorithm. We report the results obtained for each of the cases: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.13: Comparison of the structural quantities of every tested configuration 

(R1,R2,R5,R10 and R15) over time. Arrows points in direction of increasing energy release rate.  

In figure (5.13) we can evaluate the effect that hydraulic fracturing has on the 

structural quantities associated to the different configurations. We note 

immediately how RUN1 (and in some cases also RUN2) presents the most irregular 

plot and does not follow the overall trend displayed by the other configurations. 
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This is probably associated to how the fracturing process develops for RUN1: the 

solid shatters immediately in small fragments and single peridynamic particles are 

caught up downstream by the fluid. Some of these particles, however, recirculate 

and renter the solid frame, consequently disturbing the fluid flow. This effect does 

not happen when considering fracturing cases where fragments remain compact, 

meaning that the stronger gets the material and the less these quantities fluctuate. 

We expect that increasing the resolution of the computational domain could tone 

down these oscillations. 

Let us move on and examine the trend of the different quantities. As expected, 

porosity rises as the porous medium breaks and fragments leave the solid domain, 

increasing the internal void space; the weakest configurations of the material 

(R1,R2,R5) respond almost immediately to the fluid pressure, displaying a steep 

rise of the porosity value in the first 1000 iterations. As already noted in the 

previous pages, when the solid fragments are completely dragged out of the porous 

frame, this rate progressively decreases until it reaches an almost stationary phase. 

On the contrary, the strongest configurations (R10 and R15) delay the fracturing 

process, moving the raise of porosity towards It ∈ [20000, 21000]. A similar trend 

can be observed by evaluating the number of broken particles; the first particle 

that breaks in RUN1 is around the first dozen of iterations, while in RUN15 the 

process starts around It ∈ [19400, 19500].  

The computed tortuosity of the media manifests a trend of decrease much more 

gradual (except for R1 and R2); τ progressively draws near to 1 as the solid frame 

is hollowed out by the flow; being dependent on the velocity field, it is subjected 

to fluctuations for R1 and R2, as the small fragments produced in these two cases 

generate noise in the average velocity field. Indeed, these oscillations manifest 

around It ∈ [19500, 20000], where crack development has already happened and the 

fluid domain is filled with particles and chunks drifting downstream. 

Interestingly, the specific surface area displays a trend which is almost 

symmetrical to porosity’s. This is understandable given that both are purely 

geometrical dependent and related to the internal void volume of the porous frame. 
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5.2.2 Application of the capillary model 

Let us further analyze the results by applying the capillary model that has been 

previously introduced (chapt. 4.2.3). The accuracy of the model will be evaluated 

for every simulation that has been performed and the results will be compared.  

The first step consists on evaluating the mean pore radius associated to the 

dynamic structure of the porous material. Employing the capillary representation, 

we can compute the radius of the single capillary channel that traverses the solid 

frame. From equation (4.8) we obtain the following distribution of b over the 

fracturing process (fig. 5.14): 

 

 

 

 

 

 

 

Figure 5.14: Comparison of the distribution of the non-dimensional mean pore radius (for 

configuration R1,R2,R5,R10 and R15) over time. Arrows points in direction of increasing energy 

release rate.  

We can immediately evaluate the accuracy of the computed parameter by 

considering the value of b* at It = 19000; we found that b* ≅ 0.113 is fairly similar 

to the radius of the spheres employed in the generation process of the porous 

medium (Boolean subtraction, see chapt. 4.2.2). This validates the proposed model, 

confirming that the generated porous material is compatible with this geometrical 

representation. The same can be done by computing the total non-dimensional flow 

rate using the pressure obtained from the DNS. From equation (4.13b) obtain a 

value of around Q*=1.6, which again is similar to the reference value of Q
ref
* =1.0. 
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We can further evaluate the accuracy of the model throughout the fracturing 

process by computing the pressure drop using equation (4.13b) and comparing it 

to the one obtained from the simulation. Equation (4.13b) can be rewritten in the 

following way: 

                                ∆p(t)*=Q*
· 

Lb
*

φ(t)Re
· 

8[τ�t�] 2
[b(t) 

*
]
 2
A*                                   (5.1) 

In figure 5.15 are reported the results obtained for the different configurations. 
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Figure 5.15: Distribution of the pressure drop computed with the capillary model together with 

the reference pressure drop obtained from the DNS (left); corresponding percentage error (right). 
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From figure (5.15) we can see how the results progressively gain accuracy as we 

move towards strongest configurations of the porous material. RUN1 and RUN2 

are the cases most subjected to fluctuations of both the solution and the reference; 

these oscillations are related to the nature of the fracturing process, as it has been 

reviewed in the previous pages. Higher is the number of roaming broken particles 

and small chunks of detached material, and higher is the generated noise that affects 

the results of the simulation. We notice also that the initial pressure drop (It = 

19000 ) predicted by the capillary model is far lower than the one obtained through 

the DNS; this is probably related to pressure gradient distribution we observed in 

the previous chapter (see chapt. 5.1.1, fig. 5.3). The gap tends to cancel out after 

100-200 iterations for the weaker configurations (R1,R2,R5), after more than 500 

for the strongest ones (R10 and R15). This phenomenon could be explained by 

imagining that the progressive deformation of the structure at its backside 

progressively damps the drop in the pressure gradient, improving the overall 

compliance of the model to the retrieved data. 

The best results are obtained for the R10 configuration, where the percentage 

error remains lower than 5% for most of the simulation time, settling for a minimum 

>1% for the remaining part. Here the fracturing process is the most stable, 

involving only the detachment of fragments of considerable size, without producing 

free roaming single particles. R15 configuration is similar; here, however, if we 

observe the trend associated to the number of broken particles (fig. 5.13), we note 

that the higher value of energy release rate delays the fracturing of the medium. In 

this way, the deformation of the frame is displayed only later, while in the meantime 

particles are pulled off from the internal surface, anticipating the erosion effect we 

usually grasp at the end of the process. It is possible that an increase of the 

computational domain resolution could enhance the results obtained both with the 

simulation and the model. 

5.2.3 Failure prediction 

It is clear that a failure criterion to predict the breaking of the material before-

hand has not been proposed yet. Usually, failure criteria, being generical and 

applicable for a wide range of cases, are related usually to complex theories and 

requires detailed material analysis in order to evaluate the structural response to 
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the presented load configuration. In our case however, the employing of the 

peridynamics theory can ease the determination process of the critical parameter 

associated to the PMB solid. For example, we can estimate the ultimate tensile 

strength of a brittle peridynamic material considering, that in a pure traction 

condition (fracture mode I), the maximum bond stretch corresponds to the 

maximum linear deformation of the material. In this way, fracture occurs when the 

linear deformation along the stress direction reaches the limit bond stretch s0; we 

can write [54]: 

                              σf = Eeffs0 = ˆ5EeffG0

6δ = ˆ3EeffG0

32
                                   (5.2) 

Eeff is the effective Young’s modulus of the porous material, which considers the 

morphological configuration of the solid frame. Usually computing Eeff requires 

empirical formulations, however, for a capillary model the relation can be expressed 

in the following way [67]: 

                                              Eeff = E (1- φ)                                       (5.3) 

We can compute the estimated ultimate tensile strength for the different 

structural configurations: 

 

 

Table 5.2: Ratio of the ultimate tensile strength to the wall shear stress for the different 

structural configurations.  

where τw = b ∆p / 2Lbτ is the wall shear stress computed in the single capillary 

tube. The axial stress applied to a porous medium can be evaluated starting from 

the pressure drop applied to the solid frame at the beginning of the fracturing 

process; we can see from their distribution over time that the trends are similar 

(fig. 5.16). An empirical model has been introduced to evaluate the resultant axial 

force applied to the porous material: 

                                              Fx
  ≅ 

∆pA
cφ2                                            (5.4) 

where c = 3.61 is a geometrical constant related to the capillary model. 

DNS R1 R2 R5 R10 R15 

σf / τw 29.182 41.270 65.253 92.282 113.021 
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Figure 5.16: Distribution of the non-dimensional resultant axial force computed with equation 

(5.4) together with the reference resultant axial force obtained from the DNS (left) for R5 and R15 

configurations; corresponding percentage error (right). 

We can then compute the resultant axial stress in the following way: 

                                             σx
  ≅ 

Fx
  

(1 - φ)A                                          (5.5) 

Finally, we obtain σx
  /τw  = 3080.4, which is considerably higher than the 

ultimate tensile strength computed for every tested configuration. If we relate 

equation (5.5) with equation (5.2), we can estimate approximately the pressure 

drop required for the porous medium to break: 
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                                         ∆p
crit

d≅ cφ2ˆ 3E �1-φ�3G032                                     (5.6) 

Equation (5.6) can evaluate the critical pressure drop that has to be applied to 

a brittle porous material of initial porosity φ and Young’s modulus E to initiate 

hydraulic fracturing. It should be noted that this relation has been derived on the 

hypothesis that the geometry is represented through the capillary model and the 

solid properties are those of an equivalent PMB material.  

Chapter conclusion 

The capillary model that was proposed provides acceptable solutions and 

successfully describes the hydraulic fracturing process over the course of time. Using 

the geometrical representation provided by the capillary model, an estimate of the 

critical pressure drop required to initiate hydraulic fracturing, has been derived. It 

is not excluded that an increase in the computational resolution could provide a 

better understanding of the phenomenon, reducing the noise caused by the 

dimension of the solid particles. 
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Chapter 6 

Conclusions 

The main achievement related to the present research work consisted in 

depicting the hydraulic fracturing process applied to porous materials caused by a 

laminar fluid filtering inside. This aspect represents a typical fluid-structure 

interaction problem and is of interest for several research areas that involve porous 

materials and complex geometries, as it has already been expressed before. 

Navier-Stokes equations have been implemented and solved by performing a 

Direct Numerical Simulation of the fluid flow; the computation was carried on 

employing the already validated and tested CaNS-ExPS ([2],[63]), which implement 

a partitioned-loosely coupled approach, interfacing the fluid DNS solver together 

with a solid peridynamic solver. Interface detection and boundary conditions are 

managed through the employment of an Immersed Boundary Method based 

module, which allows to track the movement of solid borders through the fluid flow 

without the necessity of a remeshing procedure. 

Five different DNSs have been performed to compare the effects of the fracturing 

process and crack development for several levels of solid strength, which in our case 

is represented by the variation of the corresponding energy release rate of the 

material. The fracturing process has been successfully displayed both via the DNS 

analysis and also via the implementation of an equivalent capillary model, 

representative of the complex internal geometry of the porous frame. The temporal 

geometry evolution related to the fractured solid frame was accurately displayed 

by the capillary model, correctly predicting the trend of increasing porosity which 

characterizes the frame throughout the process. A first approximation of the critical 

pressure gradient required for the porous frame to fracture has been proposed, 

assuming the geometry to be represented by the capillary model and introducing a 

basic model to predict the resultant streamwise axial force.  
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Regarding future perspectives, further analysis is required to evaluate the 

effectiveness of the methods presented, as the results obtained from a pore-scale 

simulation employing an equivalent brittle material could not transpose properly 

for real-case scenarios. Both the capillary model and equation (5.6) have been tested 

only for the cases presented in the previous sections, so a broader implementation 

could provide more general results, allowing an additional fine-tuning of the final 

model to help us perform more accurate predictions. 

For now, the most significant limitation that was encountered resided in the 

large computational cost required to perform the Direct Numerical Simulation; this 

consequently restricted the resolution associated to the fluid and solid domain, 

reducing the overall accuracy of the simulation and generating noise on the final 

results. Moreover, the characteristics of the solid and fluid phase were set 

accordingly to these computational constraints, in order to anticipate the fracturing 

event and reduce the number of iterations required to complete the process. Either 

way, the solid configuration and the choice of the selected parameters should still 

be considered realistic, given the scale level chosen for the simulation.   

We understand how the formulation of a more refined mathematical model is 

needed; this would allow to immediately predict the response of the solid and fluid 

phase, without resorting to heavy computational procedures that require time to 

be set up and properly optimized. In conclusion, future development should envision 

new strategies to model the interaction problem starting from the data collected 

from the performed analysis. 
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