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Abstract e Sommario

Sommario

Il metodo Partial Element Equivalent Circuit (P.E.E.C.) utilizza il Metodo dei Momenti (Method of Mo-
ments, M.o.M.) interpretandolo come circuito elettrico equivalente.
Questa interpretazione permette lo studio e la modellizzazione di una vasta gamma di dispositivi elet-
tromagnetici (come gli induttori per macchine a fusione) e permette di considerare nello stesso sistema
elementi a parametri concentarti e elementi a "coe�cienti parziali" (che discretizzano le strutture sotto
analisi).
Scopo del progetto è sviluppare due codici numerici (uno "per �lamenti" e uno "volumico") in grado
di analizzare il comportamento di dispositivi elettromagnetici nel dominio del tempo e della frequenza.
Inizialmente è stato elaborato un procedimento generale ed e�ciente per il calcolo dei coe�cienti deter-
minanti i legami elettromagnetici tra gli elementi che discretizzano l'oggetto studiato.
I codici implementati sono stati utilizzati per l'analisi di antenne e i risultati ottenuti sono stati confrontati
con un metodo agli elementi �niti (F.E.M.), per dimostrare e testare la loro capacità di analizzare dis-
positivi che lavorano ad alta frequenza.
I codici sono stati poi applicati allo studio in frequenza del comportamento elettromagnetico delle Bobine
di Campo Magnetico Toroidale per il reattore JT-60SA.
Tali strumenti così elaborati possono essere facilmente "accoppiati" ad un software CAD per la gener-
azione della mesh. Scopo ultimo del lavoro è stato quello di aumentare l'e�cienza e le performance da un
punto di vista di costo computazionale.

Abstract

My thesis deals with the modelling and analysis of large scale electromagnetic devices, such as fusion
reactor magnets, using a numerical code based on the Partial Element Equivalent Circuit (P.E.E.C.)
method, which derives from Method of Moment (M.o.M.) and is an interpretation of M.o.M. as an
electrical equivalent circuit.
The purpose of the project was to develop two numerical codes (a "�lamentary" code and a "volume"
code) able to analyse many types of electromagnetic devices, in the time and frequency domain.
During the �rst phase of the work my aim was to investigate about a general and e�cient method for
the evaluation of the coe�cients, concerning the electromagnetic couplings between the elements of the
mesh, in order to use non-orthogonal cells that allow to discretize complex electromagnetic objects in a
more accurate way.
After the implementation, my goal was to use the codes for the analysis of antennas and to make a
comparison with F.E.M. method, in order to test the capability of the codes to analyse devices which
work at high frequency.
Secondly, the codes have been used for the analysis of the Toroidal �eld coils of the fusion reactor JT-60SA
that, because of their complexity, lend themselves to be a subject for study and analysis in the time and
frequency domain. The codes have been developed with the aim to be easily joined to a CAD software
for the generation of the mesh, in order to facilitate their use.
In a second phase, my goal was to make the codes more e�cient and performing from computational cost
point of view.
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Sommario Esteso

Obiettivi del Progetto di Tesi

Scopo della tesi è di implementare un codice numerico basato sul metodo Partial Element Equivalent
Circuit (PEEC) per analizzare e studiare una grande varietà di dispositivi elettromagnetici, in partico-
lare gli induttori utilizzati per la produzione dei campi magnetici necessari al con�namento del plasma
nelle macchine da fusione.
Il Metodo PEEC si basa su una interpretazione circuitale del Metodo dei Momenti (MoM) e fornisce una
soluzione numerica delle equazioni di Maxwell scritte in formulazione integrale.
Durante il lavoro sono stati sviluppati due codici basati su tale metodo: uno �per �lamenti� e uno �vo-
lumico�. Il primo considera come elementi primari �sottili� conduttori cilindrici, attraversati da corrente
distribuita uniformemente sulla sezione normale; il secondo invece utilizza, come elementi base, celle
esaedriche a facce piane quadrilatere .
Nella prima fase di lavoro si sono studiati metodi generali ed e�cienti per la valutazione dei coe�cienti
parziali che determinano i legami elettromagnetici tra i vari elementi che discretizzano gli oggetti analiz-
zati.
Tale studio è stato fatto con l'intento di elaborare un metodo che permetta di studiare dispositivi elet-
tromagnetici di struttura complessa, utilizzando celle non-ortogonali che o�rono una maggiore libertà
durante la fase di discretizzazione.
Dopo l'implementazione, il codice �per �lamenti� è stato utilizzato per l'analisi di antenne e i risultati
sono stati confrontati con quelli ottenuti da un metodo agli elementi �niti (FEM) e un approccio analitico.
Ciò è stato fatto al �ne di testare la capacità del codice di studiare e simulare il funzionamento di dis-
positivi che lavorano ad alta frequenza, prerogativa del metodo PEEC.
Successivamente, entrambi i codici sono stati utilizzati per l'analisi nel dominio del tempo e della fre-
quenza degli induttori di Campo Magnetico Toroidale del reattore JT-60SA.
Tale dispositivo, pur lavorando in DC, si presta ad analisi in frequenza e time-domain. In e�etti risulta
interessante studiare come il potenziale elettrico si distribuisce lungo i conduttori della bobina durante la
scarica rapida della stessa nei circuiti di protezione (scarica necessaria per proteggere la macchina durante
fenomeni di instabilità del plasma o altre problematiche).
Si teme infatti che l'onda di tensione, provocata dalla scarica rapida della bobina, possa indurre dis-
tribuzioni di tensione potenzialmente pericolose per l'isolante interposto tra le spire della bobina.
I codici sono stati sviluppati con l'intento di essere facilmente �accoppiati� ad un software �CAD� per la
generazione della mesh, al �ne di facilitarne l'utilizzo.
Scopo ultimo del lavoro è stato quello di aumentare l'e�cienza di tali strumenti, diminuendo il tempo
richiesto dalle simulazioni e il costo computazionale.

Attività Svolta

L'attività di lavoro svolta durante la tesi può essere riassunta in queste fasi:

� Ricerca Bibliogra�ca: Mediante la consultazione di libri e articoli in letteratura è stata studiata ed
approfondita la teoria relativa al metodo PEEC. Ciò è stato fatto per conoscere i diversi possibili
approcci al metodo e per ottenere una visione globale dell'argomento.

� Implementazione e Validazione del codice �per �lamenti�: PEECF . Durante questa seconda fase è
stato implementato in Matlab il codice per �lamenti che, data la più semplice natura degli ele-
menti primari considerati, si è ritenuto essere di più facile elaborazione rispetto a quello �volumico�.
Tutte le varie parti del codice riguardanti la valutazione dei coe�cienti parziali sono state validate
passo per passo, confrontando i valori dei coe�cienti ottenuti dal codice con quelli forniti da for-
mule analitiche riportate in letteratura.
Tali formule permettono di calcolare i coe�cienti parziali tra elementi che stanno in qualche par-
ticolare posizione mutua (elementi allineati, paralleli, complanari ecc.) e che quindi non possono
essere utilizzate per un metodo generale.
Il metodo numerico implementato nel codice invece permette di calcolare tali coe�cienti mutui tra
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qualsiasi coppia di elementi posti in qualsiasi posizione nello spazio.
Le validazioni hanno dimostrato la correttezza del metodo utilizzato e successivamente, come ulte-
riore test, il codice è stato utilizzato per il calcolo dell'auto induttanza di semplici geometrie, per
le quali esistono formule analitiche utili per il confronto.
Per quanto riguarda la validazione del metodo implementato per il calcolo dei coe�cienti di poten-
ziale (che descrivono gli accoppianti elettrici tra gli elementi) si sono confrontati i risultati in termini
di �Matrici di Capacità di Maxwell�, ottenuti come post-processing dal codice PEEC, con quelli
ottenuti dal codice Open-Source FarsterCap.
Successivamente il codice è stato utilizzato per l'analisi nel dominio del tempo e della frequenza di
semplici dispositivi elettromagnetici, quali linea bi�lare, piastre e spire a sezione circolare.

� Applicazione del Codice a Strutture Complesse. Dopo l'implementazione e validazione, il codice �per
�lamenti� è stato utilizzato per l'analisi di due tipi di disposizioni di antenne. Grazie a questi studi
sono stati messi in evidenza i punti di forza e di debolezza del codice ed è stata testata la capacità
dello stesso di analizzare dispositivi funzionanti ad alta frequenza. I risultati sono stati confrontati
con un metodo analitico e con un FEM; tale studio è stato raccolto in due contributi, [52] , [53].

� Implementazione e Validazione del Codice �Volumico�: PEECV . In questa fase ci si è occupati
dell'implementazione del codice PEEC avente come elementi primari celle esaedriche. Come per il
codice �per �lamenti�, durante la fase di implementazione tutti i metodi numerici utilizzati per la
valutazione dei coe�cienti parziali sono stati validati attraverso confronti con formule analitiche
presenti in letteratura (che permettono il calcolo dei coe�cienti tra elementi che stanno in qualche
particolare posizione mutua). Come ulteriore validazione sono stati confrontati i valori di auto
induttanza e i coe�cienti di capacità di qualche struttura a geometria semplice, che presentano
formule analitiche utili per il confronto.
Anche per questo codice è stato fatto qualche confronto con il software Open-Source FasterCap
(estrattore di coe�cienti di induttanza e capacità).
In�ne, anche in questo caso, il codice è stato impiegato per l'analisi di semplici dispositivi elettro-
magnetici, quali linee bi�lari, piastre, spire circolari ecc. ; per le quali è possibile conoscere a priori
il comportamento elettromagnetico e quindi veri�care i risultati ottenuti dal codice.

� Applicazione dei Codici agli Induttori di Campo Magnetico Toroidale del Reattore JT-60SA. I cod-
ici sono stati utilizzati per l'analisi nel dominio del tempo e della frequenza delle bobine di campo
magnetico toroidale del reattore JT-60SA.
Sono stati prodotti due modelli della macchina: uno �per �lamenti� e uno �volumico�, in modo da
poter utilizzare entrambi i codici sviluppati e permettere così dei confronti.
Sono stati estratti i valori di auto e mutua induttanza delle spire e in particolare è stata valutata
l'impedenza equivalente vista dall'alimentazione al variare della frequenza.
Tali risultati sono in parte stati confrontati con quelli ottenuti da un team di ricerca che lavora in
Germania per �Fusion for Energy�.
Ciò è stato solo in parte attuabile in quanto, nel modello PEEC, non è stato possibile consider-
are la presenza del materiale dielettrico interposto tra le spire della bobina di Campo Magnetico
Toroidale di JT-60SA.
Nell'ultima parte del lavoro si è ragionato su come estendere il metodo PEEC e il modello utilizzato
al �ne di considerare anche la presenza del materiale dielettrico.
Al momento si è riusciti ad inserire nel codice le "celle dielettriche" (che permettono la discretiz-
zazione del materiale dielettrico) e si sta considerando come modi�care il modello delle bobine di JT-
60SA valutandone l'e�ettiva complessità, senza però incrementare troppo il costo computazionale
richiesto dal codice nel calcolo dei coe�cienti e nell'inversione del sistema.
Alcune delle analisi fatte su tale dispositivo sono raccolte in due contributi, [50], [51].

� Ottimizzazione: Dopo le varie fasi di implementazione si è cercato di rendere più e�cienti e per-
formanti i due codici. In particolare il codice �volumico� è stato in parte riscritto in FORTRAN e
parallelizzato. Ciò ha permesso di ottenere uno speed-up di un fattore 10000.
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Chapter 1

P.E.E.C. THEORY AND

FORMULATION

1.1 Introduction

The rapid growth of electrical modelling and analysis of electromagnetic and electronic systems is due
to the increasing importance to have instruments which allow to foresee the behaviour of these devices
in normal or particular working conditions. The electromagnetic nature with the geometric complexity
of these objects call for e�cient electromagnetic methodologies and computer-aided design tools, which
allow a full-wave analysis of 3D structures characterized by inhomogeneous materials and complex ge-
ometries.
The three most popular computational methods which are usually adopted in computational electromag-
netic are the �nite element method (F.E.M.), the �nite di�erence time domain (F.D.T.D.) technique, and
the method of moments (M.o.M.). It is known that the �rst two approaches are essentially based on the
partial di�erential equation from of Maxwell's equations and result into powerful techniques that have
been widely used for a variety of Electromagnetic problems.
The Method of Moments is based on an integral formulation of Maxwell's equations. Among all the dif-
ferent integral equation based techniques this thesis focuses on the Partial Element Equivalent Circuit
method. Stemming from the pioneering works by Ruehli, [1], [2], [3].
The main di�erence of P.E.E.C. method with other integral equation based techniques resides in the fact
that it provides a circuit interpretation of the electric �eld integral equation, (1.24), in terms of partial
elements, namely resistances, partial inductances and coe�cients of potential. Thus, the resulting equiv-
alent circuit can be studied by the Tableau analysis method or by means of Spice-like circuit solvers in
both time and frequency domain. Furthermore, once the P.E.E.C. model for an electromagnetic system
has been developed, a systematic procedure can be used to reduce its complexity, taking into account the
electrical size of the structure under analysis. For example, if the characteristic time of the excitation is
such that useful wavelengths are much larger than the spatial extent of the system, all retardation e�ects
can be neglected.
Integral equation methods are very e�ective for electromagnetic modelling, interference and compatibility
purpose. The �rst step of any integral equation-based method is the development of an integral formu-
lation of Maxwell's equation. The most popular integral equation is the electric �eld integral equation
(E.F.I.E.) which is obtained by enforcing the electric �eld at a point in the structure as the superposition
of �elds due to all electric currents and charges in the system.
Compared with di�erential equation based methods, the matrices resulting from Integral equation based
techniques solutions are smaller in size and dense. The reason for the reduced size is that the unknowns
are represented by electric currents �owing through the volumes of conductors dielectrics and charges on
their surfaces; the reason for the density of matrices arising from Integral Equation solutions is that each
element describes the electromagnetic interaction (electric and magnetic) between the discrete currents
or charges in the structures.
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1.2 Introduction to PEEC

The behaviour of an electric system can be often simulated using only the basic circuit theory (lumped
element model). This way of proceeding is suitable only when the electric system under analysis is small
compared to the wavelength of the frequency involved in the analysis. We can say that when the bigger
geometric dimension is smaller than a tenth of the wavelength (L� λ

10 ).
When this condition doesn't subsist the study of the circuit with lumped element model it is no longer

enough and we have to start to consider the system's analysis also from an electromagnetic point of view.
Objects behave like antennas radiating or receiving electromagnetic energy, so we have to include in our
analysis also the Maxwell's Equation in order to consider the e�ects of radiation and the electric and
magnetic coupling.

Maxwell's equations

Di�erential form Integral form

∇× ~H = ~J + ∂ ~D
∂t

∮
L
~H · d~l =

∫
S

( ~J + ∂ ~D
∂y ) · d~S

∇× ~E = −∂ ~B∂t
∮
L
~E · d~l = −

∫
S
∂ ~B
∂t · d~S

∇ · ~D = ρv
∮
S
~D · d~S =

∫
v
ρvdv

∇ · ~B = 0
∮
S
~B · d~S = 0

The terms in the Maxwell's equations are:

� ~E - Electric �eld intensity, [ Vm ];

� ~D - Electric �ux density, [ Cm2 ];

� ρv - Volume charge density, [ Cm3 ];

� ε - Capacitivity of the medium, [ Fm ];

� ~H - Magnetic �eld intensity, [Am ];

� ~B - Magnetic �ux density, [ Wm2 ];

� ~J - Electric current density, [ Am2 ];

� µ - Inductivity of the medium, [Hm ].

In addiction to the Maxwell's equations there are the three constitutive laws express in (1.1).

~D = ε ~E

~B = µ ~H

~J = σ ~E

(1.1)

An analytical approach can not often be used for e�ective interest problems; fortunately, electromag-
netic problems can be solved using numerical techniques, the most popular methods are:

� Finite di�erence methods (FDM);

� Finite elements methods (FEM);

� The method of moments (MoM);

� The partial element equivalent circuit (PEEC).
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These four methods are di�erent in the basic mathematical approach so it is convenient to choose
one of them according to the class of problem that we want to solve.

PEEC method is suitable to solve problems such as:

� Electrical interconnect packaging analysis;

� Printed circuit board simulations (mixed circuit and electromagnetic problem);

� Coupling mechanism characterization.

These problems require di�erent kinds of analysis in terms of:

� Requested solution domain (time and/or frequency);

� Requested solution variables:

� Circuit variables (currents and/ or voltages);

� Field variables (electric and/or magnetic �elds).

The numerical techniques used for the electromagnetic simulation can be also classi�ed depending on
which formulations of Maxwell's equations are considered. Using one of the two formulation produces a
di�erent approach in terms of discretization of the structure and solution variables.

By choosing the di�erential formulation we have to discretize the complete structure including the
air, by doing this the method delivers the solution in �eld variables.
Indeed, this kind of formulation is suitable to analyse scattering problems that involve antennas or elec-
tromagnetic �elds excited structures.
Instead, by choosing integral formulation only the materials need to be discretized and the method de-
livers the solution in terms of circuit variables.
For both two formulations, to obtain the solution in terms of electromagnetic �elds (for the integral for-
mulation) and in terms of circuit variables (for the di�erential formulation) post-processing is needed.

PEEC method is characterized by using the integral formulation of Maxwell's laws. The solutions
delivered by the method are circuit variables and the solution domain can be in time or frequency. The
main feature with PEEC method is the combined circuit and electromagnetic solution, that is performed
with the same equivalent circuit in both time and frequency domain.

1.3 Moment Method

In this section we want shortly discuss about the main mathematical concepts concerning the Moment
Method (or Method of Moments, M.o.M.), [43].
Given a deterministic problem of L(f) = g, we must identify the operator L, its domain (the functions
f on which it operates), and its range (the functions g resulting from the operation). Furthermore, we
usually need an inner product 〈f, g〉, which is a scalar de�ned to satisfy:

〈f, g〉 = 〈g, f〉
〈αf + βg, h〉 = α〈f, h〉+ β〈g, h〉

〈f∗, f〉 > 0 if f 6= 0

〈f∗, f〉 = 0 if f = 0

(1.2)

where α and β are scalars and "∗" denotes the complex conjugate. We sometimes need the adjoint
operator La and its domain, de�ned by: 〈Lf, g〉 = 〈f,Lag〉 for all f in the domain of L. An operator
is self-adjoint if La = L and the domain of La is that of L. Properties of the solution depended upon
properties of the operator. An operator is real if Lf is real whenever f is real.
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An operator is positive de�ne if 〈f∗,Lf〉 > 0 for all f 6= 0 in its domain. It is positive semide�nite if >
is replaced by ≥, it is negative de�nite if > is replaced by <.
If the solution to L(f) = g exists and is unique for all g, then the inverse operator L−1 exists such that:

f = L−1(g) (1.3)

If g is known, then (1.3) represents the solution to the original problem. However, (1.3) is an inho-
mogeneous equation for g if f is known, and its solution is L(f) = g. Hence L and L−1 form a pair of
operators, each of which is the inverse of the other.

We now discuss a general procedure for solving linear equations, called Method of Moments.
Consider the inhomogeneous equation:

L(f) = (g) (1.4)

where L is a linear operator, g is known, and f is to be determined. Let f be expanded in a series of
functions f1, f2, f3, ... in the domain of L as:

f =
∑
n

αnfn (1.5)

where the αn are constants. We shall call the fn expansion functions or basis functions. For exact
solutions, (1.5) is usually an in�nite summation and the fn form a complete set of basis functions. For
approximate solutions, (1.5) is usually a �nite summation. Substituting (1.5) in (1.4), and using the
linearity of L, we have: ∑

n

αnL(fn) = g (1.6)

It is assumed that a suitable inner product 〈f, g〉 has been determined for the problem. Now we
de�ne a set of weighting functions, or testing functions, w1, w2, w3, ... in the range of L, and take the
inner product of (1.6) with each wm. The result is:∑

n

αn〈wm,Lfn〉 = 〈wm, g〉 (1.7)

for m = 1, 2, 3, ... . This set of equations can be written in matrix form as:

[lmn][αn] = [gm] (1.8)

where

[lmn] =

〈w1,Lf1〉 〈w1,Lf2〉 ...
〈w2,Lf1〉 〈w2,Lf2〉 ...

... ... ...

 (1.9)

and

[αn] =

α1

α2

...

 [gn] =

〈w1, g〉
〈w2, g〉
...


(1.10)

If matrix [l] is non-singular its inverse [l−1] exists. The αn are then given by:

[αn] = [l−1
mn][gm] (1.11)

and the solution for f is given by (1.5).
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This solution may be exact or approximate, depending upon the choice of the fn and wn. The
particular choice wn = fn is known as Galerkin's method. If the matrix [l] is of in�nite order, it can be
inverted only in special cases, for example if it is diagonal. The classical eigenfunction method leads to a
diagonal matrix, and can be though of as a special case of the method of moments. If the sets fn and wn
are �nite, the matrix is of �nite order, and can be inverted by known methods.
One of the main tasks in any particular problem is the choice of the fn and wn. The fn should be
linearly independent and chosen so that some superposition (1.5) can approximate f reasonably well.
The wn should also be linearly independent and chosen so that the products 〈wn, g〉 depend on relatively
independent properties of g. Some additional factors which e�ect the choice of fn and wn are :

� the accuracy of solution desired,

� the ease of evaluation of the matrix elements,

� the size of the matrix that can be inverted,

� the realization of a well-conditioned matrix [l].

P.E.E.C. method uses M.o.M method to solve approximately the EFIE equation, (1.24) and the basis
functions fn are "rectangular" functions. The derivation of P.E.E.C. formulation is discussed in the next
section.

1.4 PEEC Formulations

In this section we want to report shortly the theoretical derivation of the PEEC method.
First we have to �nd a suitable integral equation which can be solved by means the Method of Moments.
To do that we have to express the total electric �eld in terms of vector magnetic potential, ~A, and the
scalar electric potential, V , at generic point of observation ~r (1.12).

~E(~r, ω) = −jω ~A(~r, ω)−∇V (~r, ω) (1.12)

where ~A, [14], is given by (1.13).

~A(~r, ω) = µ

∫
v′
G(~r, ~r′) ~J(~r′, ω)dv′ (1.13)

where ~J is the volume current density at a source point ~r′ and G is the free-space Green's function
(1.14).

G(~r, ~r′) =
e−jβ|~r−

~r′|

4π|~r − ~r′|
(1.14)

The scalar potential V , [14], is given by (1.15).

V (~r, ω) =
1

ε

∫
v′
G(~r, ~r′)q(~r′, ω)dv′ (1.15)

where v′ is the volume of the conductor and q is the charge density at the conductor.

Now, if we substitute (1.13) and (1.15) in (1.12) we obtain an expression for the electric �eld in the

unknown variables ~J and q (1.16).

~E(~r, ω) = −jωµ
∫
v′
G(~r, ~r′) ~J(~r′, ω)dv′ − ∇

ε

∫
v′
G(~r, ~r′)q(~r′ω)dv′ (1.16)

Finally equation (1.16) is solved by expanding each unknown, ~J and q, into a series of pulse basis
functions with unknown amplitude. These pulse basis functions are also selected for the weighting func-
tions resulting in a Galerkin method. This leads to apply a special discretization for the structures: an
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inductive and a capacitive partition; so each part of (1.16) can be considered as circuit element in this
sense:

�

[
~E(~r, ω)

]
is concerning to the voltage drop over a conducting volume cell.

�

[
− jωµ

∫
v′G(~r, ~r′) ~J(~r′, ω)dv′

]
is concerning to the inductive voltage drop over the volume cell. It

can be interpreted as the summation of the voltage drops over the partial inductance between the
nodes (self partial inductance) and the mutual partial inductance of the volume cells (representing
the magnetic �led coupling, the mutual partial inductance).

�

[
− ∇ε

∫
v′
G(~r, ~r′)q(~r′ω)dv′

]
is concerning to the di�erence between the potentials of two nodes of

the current volume cell. This term can be also written using the partial capacitance of each node
(self partial capacitance) and the mutual partial capacitance of the surface cells (representing the
electric �eld coupling).

In �gure (1.1) is represented a cell with all the partial elements previously discussed and also the
partial resistance of the element.

Figure 1.1: PEEC model for a volum cell

Now we can start the theoretical derivation with the expression of the total electric �eld in free space
(1.17).

~ET (~r, t) = ~Ei(~r, t)−
∂ ~A(~r, t)

∂t
−∇V (~r, t) (1.17)

where ~Ei is an applied external electric �eld (which can also be not present).

When the point ~r is on the surface of a conductor we can write the equation (1.18).

~ET (~r, t) =
~J(~r, t)

σ
(1.18)

where ~J is the current density in a conductor and σ is the conductivity of conductor.

Combining the last two equations we can write (1.19).

~Ei =
~J(~r, t)

σ
+
∂ ~A(~r, t)

∂t
+∇V (~r, t) (1.19)

Now we have to use the expression of the vector magnetic potential, ~A, and electric scalar potential,
V , shown in (1.20) and (1.23) respectively.
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~A(~r, t) =

N∑
k=1

µ

∫
vk

G(~r, ~r′) ~J(~r′, td)dvk (1.20)

where the summation is over N conductors and µ is the permeability of the medium, G is the Green's
function de�ne in (1.21), ~J is the current density at source point ~r′, and td is the retardation time between
the observation point ~r and the source point de�ned in (1.22).

G(~r, ~r′) =
1

4π

1

|~r − ~r′|
(1.21)

td = t− |~r −
~r′|

c
(1.22)

where c is equal to 3 · 108m/s.

The electrical scalar potential at observation point ~r is shown in (1.23).

V (~r, t) =

N∑
k=1

1

ε0

∫
vk

G(~r, ~r′)q(~r′, td)dvk (1.23)

where ε0 is the permittivity of free space, q is the charge density at the source point and the summa-
tion is over N conductors.

Now we can combine (1.19), (1.20) and (1.23) to obtain the electric �eld integral equation (EFIE),
(1.24) .

n̂× ~Ei(~r, t) = n̂×
[ ~J(~r, t)

σ

]
+ n̂×

[ N∑
k=1

µ

∫
vk

G(~r, ~r′)∂
~J(~r′, td)

∂t
dvk

]
+ n̂×

[ N∑
k=1

∇
ε0

∫
vk

G(~r, ~r′)q(~r′, td)dvk
]

(1.24)

where n̂ is the surface normal to the body surfaces.

Finally, we have to transform the EFIE into a PEEC formulation and we start by expanding the
current and the charge densities.

In the PEEC method the EFIE is discretized using a method of moments process, [43], interpreted as
an equivalent circuit and solved using circuit theory. The solution obtained are the current in the material
(I = Ja, where a is the cross sectional area normal to the current �ow) and the node potential v in the
materials.

With post-processing is possible to obtain the electromagnetic �elds, so all the quantities in Maxwell's
laws can be calculated. We can start to transform the EFIE equation into PEEC formulation by expanding
the total current density ~J in ~Jc and ~Jp, that are respectively the conduction current density and the
polarization current density due to the dielectric material properties (1.25).

~J = ~Jc + ~Jp Where...

~Jc = σ ~E

~Jp = ε0(εr − 1)
∂ ~E

∂t

(1.25)
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For perfect conductors ~J is equal to the conducting component, while for perfect dielectrics the total
current density coincides with the polarization term.

By using this expression for the total current density we can write the Ampere-Maxwell law in
di�erential form, like in (1.26).

∇× ~H = ~Jc + ε0(εr − 1)
∂ ~E

∂t
+ ε0

∂ ~E

∂t
(1.26)

In this way we can study separately the displacement current (due to the bound charges for the
dielectric materials that have εr > 1 ) from the conduction currents due to the free charges, [44].

By ending, we can rewrite the EIFE equation in a PEEC formulation (where qT is the total charge
due to qF , the free charge, and qB the bound charge) (1.27).

n̂× ~Ei(~r, t) = n̂×
[ ~Jc(~r, t)

σ

]
+ n̂×

[ N∑
k=1

µ

∫
vk

G(~r, ~r′)∂
~Jc(~r′, td)

∂t
dvk

]
+ n̂×

[ N∑
k=1

ε0(εr − 1)µ

∫
vk

G(~r, ~r′)∂
2 ~E(~r′, td)

∂t2
dvk

]
+ n̂×

[ N∑
k=1

∇
ε0

∫
vk

G(~r, ~r′)qT (~r′, td)dvk
]

(1.27)

Now we can analyse this general expression for conductors and dielectric materials �rst excluding the
external applied �eld ~Ei and �nally the more general case including it.

1.4.1 Conductors

For a perfect conductor, by don't taking into account the external �eld and the "dielectric term", the
general expression (1.27) becomes (1.28).

0 = n̂×
[ ~Jc(~r, t)

σ

]
+ n̂×

[ N∑
k=1

µ

∫
vk

G(~r, ~r′)∂
~Jc(~r′, td)

∂t
dvk

]
+ n̂×

[ N∑
k=1

∇
ε0

∫
vk

G(~r, ~r′)qT (~r′, td)dvk
]

(1.28)

In this system of equations we have two unknowns that are the ~Jc and qF , so to solve it we can use
the following procedure:

� The current densities are discretized into volume cells by de�ning rectangular pulse functions
Pλnk that are equal to one inside the volume cell nk and zero elsewhere (where λ are the current
components of the cell n in the k conductor).

� The charge densities are descretized into surface cells over the corresponding volume cell by de�ning
rectangular pulse function pmk that are equal to one inside the surface cell and zero elsewhere (where
m is the charge density in the surface cell of the k conductor).

So, by using the pulse functions, it is possible to write the current and the charge densities as (1.29)
and (1.30).
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~JλkC (~r′, td) =

Nλk∑
n=1

PλnkJλnk(~rλnk′, tλnk) (1.29)

qkT (~r′, td) =

Mk∑
m=1

pmkqmk(~r′mk′, tmk) (1.30)

where

tλnk = t− |~r − ~rλbk′|
v

tmk = t− |~r − ~rmk′|
v

In the equations ~rλnk′ and ~r′mk′ represent the source position vectors for volume and surface cells; the
two summations are over all the volume cells and over all the surface cells in the conductor k respectively.

By using (1.29) and (1.30) in (1.28) we can obtain (1.31).

0 = n̂×
[ ~Jc(~r, t)

σ

]
+ n̂×

[
K∑
k=1

Nλk∑
n=1

µ

∫
v′

∫
vλnk

G(~r, ~rλnk′)
∂PλnkJλnk(~rλnk′, tλnk)

∂t
dvλnkdv′

]

+ n̂×

[
K∑
k=1

Mk∑
n=1

∇
ε0

∫
vmk

G(~r, ~rmk′)pmkqmk(~rmk′, tmk)dvmk

] (1.31)

that is the basic discretized form of the EIFE equations for the PEEC method from which it is
possible obtain the expression for the partial element calculation, that are:

� Partial inductances; the basic expression can be derived from the second term of (1.31). By using
the free space Green's function and the expression Iλm = Jλmam for the total current through a
cross sectional area am we can obtain:

K∑
k=1

Nλk∑
n=1

µ0

4π

1

av′avλnk

∫
v′

∫
vλnk

∂
∂tIλnk(~rλnk′, tλnk)

|~r − ~r′|
dvλnkdv′ (1.32)

that can be seen as the inductive voltage drop over the volume cell. Using the expression of partial
inductance of [4] de�ned by (1.33):

Lpαβ =
µ

4π

1

aαaβ

∫
vα

∫
vβ

~uα · ~uβ
| ~rα − ~rβ |

dvαdvβ (1.33)

we can write (1.32) as:

vL =

K∑
k=1

Nλk∑
n=1

Lpv′λnk
∂

∂t
Iλnk(t− τv′vλnk) (1.34)

where τv′vλnk is the center to center delay between the volume cell v′ and vλnk.
The interpretation of (1.32) as an inductive voltage drop leads to assume the concept of self partial
inductance for each volume cell (when in (1.33) α = β ) and a mutual inductive coupling of each
volume cell with all the others, with the concept of mutual partial inductance (when in (1.33)
α 6= β). All the inductive couplings of a cell with all the others can be combined as in (1.35).
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V Lm(t) =
∑
∀n,n6=m

Lpmn
∂in(t− τmn)

∂t
(1.35)

In this way each cell can be modelled (from a magnetic point of view) such as a partial inductance
in series with a voltage source, as shown in �gure (1.1).

� Coe�cient of Potential ; the basic expression can be derived from the third term of (1.31) and, by
considering that the charges only reside on the surface of the volumes, we can convert the volume
integral in a surface integral, (1.36), [4].

K∑
k=1

Mk∑
m=1

[
qmk(tmk)

1

4πε0

∫
Smk

1

|~r+
i − ~r′j |

ds′ − qmk(tmk)
1

4πε0

∫
Smk

1

|~r−i − ~r′j |
ds′

]
(1.36)

where ~r+ and ~r− are respectively associated with the positive and negative end of the cell.

In analogy with the analysis of Partial inductance, we can consider (1.36) such as a capacitive
voltage drop, vC , and we can introduce the partial coe�cient of potential as (1.37).

pij =
1

4πε0

1

SiSj

∫
Si

∫
Sj

1

|~ri − ~rj |
dSidSj (1.37)

so the capacitive voltage drop can be written as (1.38).

vC =

K∑
k=1

Mk∑
m=1

Qmk(t− tmk)[p+
i(mk) − p

−
i(mk)] (1.38)

The interpretation of (1.36) as a capacitive voltage drop leads to assume the concept of pseudo-
capacitances, that connect each cell to in�nity. The mutual capacitive couplings of each surface cell
with all the others can be combine as in (1.39).

V Ci (t) =
∑
∀j,j 6=i

Pij
Pjj

VCj (t− τij) (1.39)

where VCj (t−τij) is the voltage over the pseudo-capacitance 1
Pjj

of the node j at an earlier instance.

In this way each surface cell (node) can be modelled (from an electric point of view) such as a self
partial pseudo-capacitance in series with a voltage source V Ci , as shown in �gure (1.1).

� Partial Resistance; This term is referred to the �rst term of (1.31), that can be interpreted as
a resistive voltage drop over the volume cell. So, by assuming a constant current density in the
volume cell, we can easily obtain the expression of the partial resistance (1.40), that appears in
�gure (1.1).

Rλ =
lλ

aλσλ
(1.40)

where lλ is the length of the volume cell.
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1.4.2 Dielectric Materials

A dielectric cell can be modelled in the same way of the conductor cell, [44]. The only di�erence is
the addition of the excess capacitance in parallel with the partial resistance (as shown in �gure (1.2))
calculated from the geometrical data and the relative permittivity of the cell m as in (1.41).

C+
m =

ε0(εm − 1)am
lm

(1.41)

where εm is the relative permittivity, am is the cross sectional area of the dielectric cell and lm is the
length in the current direction.
In this thesis the capacitive cells have not been deepened.

Figure 1.2: Dielectric cell.

1.4.3 Inclusion of External Applied Fields

Figure 1.3: Cell excited by an external Electric �eld.

In a PEEC model can be used voltage and current sources, but it is also possible to simulate the
excitation of an object by an external electric �eld (an incident �eld). This is done by adding to the
circuit cell of the object an equivalent voltage source (as shown in �gure (1.3)) calculated as in (1.42).

VPm(tm) =
1

am

∫
am

∫
lm

~E′(~r, tm)dadl (1.42)

In this thesis the inclusion of external applied �eld has not been considered.
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Chapter 2

PARTIAL ELEMENT, FILAMENT

In this chapter we discuss about the PEEC method with �lamentary partial elements. We report:

� The method and formulas adopted for the evaluation of the partial coe�cients, with some valida-
tion;

� The used method to assembly the system (that must be solved to reach the solution in terms of
currents and/or node potentials) by explaining how to obtain the matrices that compose it;

� Some results and comparisons with analytical approach for some given geometry.

It is convenient using Filamentary PEEC-Code when the geometry gives a privileged direction for
the current �ow, such as transmission lines and antennas.

2.1 Partial Inductance Coe�cient Evaluation

From the second term of (1.31) we can derive a general expression, (2.1), for the partial inductance of an
element.

Lpαβ =
µ

4π

1

aαaβ

∫
vα

∫
vβ

~uα · ~uβ
| ~rα − ~rβ |

dvαdvβ (2.1)

where aα and aβ are the cross sections area normal to the current �ow, vα and vβ are the volumes
of the elements and ~rα and ~rβ are the distances of the points in the two volumes from the origin of the
reference system. ~uα and ~uβ are the unit vectors which give the direction of the density current vectors.

For a one dimensional problem the partial elements are thin wire carrying the current, so, for this
particular case, the general expression (2.1) can be elaborated to �nd an easy and general method
for the calculation of the coe�cient. In literature it is possible to �nd analytical formulas that allow
the calculation of the self and mutual partial inductance coe�cient of two wires in particular position
(parallel, aligned, coplanar etc.) or in arbitrary position, [11], [16].

These analytical expressions allow to achieve a good accuracy but they are usable only for particular
and easy case (for example when the elements are parallel to each other). Indeed, they become more
complicated to use for a general case, because they are related to a particular reference system and often
present some singularity if we try to use them when the �laments are in some particular position.

For our purpose we are interest in the general case of straight �laments in arbitrary position in the
space. So, to avoid this problem, we have decided to use a numerical method based on Gauss-Legendre
quadrature, in order to solve the second volume integral in (2.1).

In order to obtain the mutual inductance coe�cient, we can calculate the line integral of vector
magnetic potential, ~A, produced by one of the two �laments (carrying a unitary current) along the other
wire.
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Lpαβ =
ΦB
I

=

∫
S
~B · ~ndS
I

=

∫
lβ
~Adl

I
(2.2)

where lβ is the second wire and for the evaluation of ~A (that is the vector magnetic potential generated
by the �rst wire in a general point in the space), it is possible to �nd an analytical expression by solving
the note integral equation (2.3). Equation (2.3) allows to compute the vector magnetic potential generated
by an arbitrary distribution of current in the space.

~A(P ) =

∫
V

µ~J(~rq)

4π|~rp − ~rq|
dv for a volume current density J

~A(P ) =

∫
S

µ~G(~rq)

4π|~rp − ~rq|
dS for a surface current density G

~A(P ) =

∫
l

µ~I(~rq)

4π|~rp − ~rq|
dl for a line current I

(2.3)

By applying (2.3) to our problem, we obtain the expression (2.4), referring to �gure (2.1).

~A(P ) =
µI

4π
ln
Ri +Rf + Lα
Ri +Rf − Lα

(2.4)

where Lα is the length of the wire and Ri & Rf are the distances of the point from the two endpoints
of the wire.

Figure 2.1: ~A and V produced by stick conductor crossed by current, geometrical entities.

Now we have to integrate (2.4) along the second wire lβ , in order to �nd the value of the mutual
partial coe�cient Lαβ . As saying above, we have decided to solve this problem in a numerical way using
Gauss-Legendre quadrature method:
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Lpαβ =

∫
lβ
~Adl

I

=
µ0

4π

∫
lα

∫
lβ

1

|~rp − ~rq|
d~lβd~lα

= cos(θ)
µ0

4π

∫
lα

ln
Ri +Rf + Lα
Ri +Rf − Lα

dlα

≈ cos(θ)
µ

4π

lα
2

n∑
i=1

wif(Pi)

(2.5)

where θ is the angle formed by the direction of the two wires, f(•) is the logarithmic term in (2.4),
wi and Pi are respectively the weights and Gauss points (with n the number of the Gauss points used)
and lα

2 is the Jacobian.

The same result of (2.5) can be reached also starting from (1.33), considering the case of the cylinder
with the cross section radius which tends to zero.

This approach allows to write a general code that evaluates the mutual partial coe�cient between two
arbitrary position wires. We have to specify that this method doesn't work for "two coincident wires".
This happends when we are evaluating the self partial coe�cient Lαα, so to calculate it we use an analytic
expression for the self inductance of a thin wire found in literature: (2.6), [12], [13].

Lpαα =
µ0

4π
2l

[
ln

(
l

rw
+

√(
l

rw

)2

+ 1

)
−

√
1 +

(
rw
l

)2

+
rw
l

+
1

4

]
(2.6)

where l is the length of the cylindrical wire and rw is the radius of the cross section of the conductor.

Another possibility for the evaluation of the self coe�cient can be derived from the discussion in
section (3.1.1).

2.2 Method Validation for Partial Inductance Coe�cients

In this section we are going to validate the method used to compute the partial inductance coe�cients
by making comparisons with analytical approach and by evaluating the self inductance of circular and
square loops (which have analytical expressions).

2.2.1 Comparison between G-L and formulas in the literature

In order to validate the numerical method used for the evaluation of the partial inductance coe�cients
we have �rst compared the results obtained by our "semi-numerical" approach with "Matematica".
Then we have also compared the values obtained with the numerical approach with those obtained from
the analytic formulas found in literature for some particular case, like parallel, aligned or complanar
wires, [11].

In the tables we report some result obtained from the di�erent methods, in case of aligned wires
(Table, Aligned Wires) and parallel wires (Table, Parallel Wires).

Table, Aligned Wires, N Coe�cient
Distance [m] Clayton Aligned Clayton Coplanar Gauss-Legender Mathematica

0.0000 2.7716 NaN 2.7696 2.77259 (numeric)
0.0030 2.7521 2.7522 2.7516 2.7521
0.0190 2.6781 2.6782 2.6781 2.6781
0.0200 2.6742 2.6742 2.6742 2.6742

17



where N =
Lαβ
µ0
4π

.

Table, Parallel Wires, N Coe�cient
Distance [m] Clayton Parallel Gauss-Legendre Mathematica

0.0000 47.5968 NaN NaN
0.0200 17.2311 17.2331 17.2332
0.1400 9.6844 9.6847 9.6847
0.4000 5.9704 5.9705 5.9705

In �gure (2.2) the values of N coe�cient evaluated by Gauss-Legendre (G-L) method are compared
with Clayton's formula for aligned wires: (2.7), while in �gure (2.3) are compared with Clayton's formula
for coplanar wires: (2.8) (used for the particular case of aligned wire), [11].

Figure 2.2: N coe�cient, comparison between Gauss-Legender and Clayton's formula (2.7)

Lpαβ =
µ0

4π

[
(l + s+m) sinh−1 l + s+m

rw
− (m+ s) sinh−1 m+ s

rw

− (l + s) sinh−1 l + s

rw
+ s sinh−1 s

rw
−
√

(l + s+m)2 + r2
w

+
√

(m+ s)2 + r2
w +

√
(l + s)2 + r2

w −
√
s2 + r2

w

]
.

(2.7)

where l is the length of the upper wire, m is the length of the lower wire, s is the distance between
the endpoints and rw is the radius of the wires.

Lpαβ =
µ0

4π
cos(θ)

[
(α+ l) ln

R1 +R2 +m

R1 +R2 −m
+ (β +m) ln

R1 +R4 + l

R1 +R4 − l

− α ln
R3 +R4 +m

R3 + r4 −m
− β ln

R2 +R3 + l

R2 +R3 − l

]
.

(2.8)

where l and m are the length of the two wires and the other terms R1, R2, R3, R4, α and β are rep-
resented in the �gure (2.3).
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Figure 2.3: Left: N coe�cient, comparison between Gauss-Legender and Clayton's formula (2.8). Right: Reference
system Clayton's formula (2.8).

Instead, in �gure (2.4) are compared the values of N coe�cient obtained by G-L and Clayton's
formula for parallel wires: (2.9). In the two cases both wires are 2m long. For the aligned wires it does
vary the distance between the two ends of the segments from zero (consecutive segments) to 1m; instead
for parallel wires it does vary the distance between the two parallel segments from zero (coincident
segments) and 1m.

Figure 2.4: N coe�cient, comparison between Gauss-Legender and Clayton's formula (2.9)

Lpαβ =
µ0

4π
2l

[
ln

(
l

d+ rw
+

√(
l

d+ rw

)2

+ 1

)

−

√
1 +

(
d+ rw
l

)2

+
d+ rw
l

]
.

(2.9)

where l is the length of the two wires, rw is the radius of the conductors and d is the distance.

As we can see in the �gures and in the tables, the results obtained by G-L method are thoroughly
validated by the values reached from analytical methods.
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2.2.2 Circular and Square Loops

As second veri�cation of the numerical method used, we have evaluated the self inductance of a circular
coil and a square coil. So we want to compare the results obtained by G-L method with the analytical
formulas found in literature for the self inductance of these particular loops, [12], [14].

For the evaluation of the self inductance by using G-L method, we have discretized the coil in many
stick conductors and for each of them we have computed all the mutual partial inductance coe�cients
between the other sticks (using G-L) and the self partial inductance coe�cients (by using equation (2.1)).

In this way we have found the Matrix of Partial Inductance Coe�cient L, that is a Ne ×Ne matrix
(with Ne the numbers of elements) where the diagonal terms are the self partial inductance coe�cients
and the o�-diagonal terms are the mutual coe�cients. So, by summing all the entrances of the matrix,
we have obtained the self inductance of the coil under analysis.

About the geometrical entities of the circular coil, we have considered a radius of 10m for the loop
and a radius of 0.001m for the conductor. For the square coil we have considered the same radius for the
conductor and a side of 10m. We have done the calculation by using di�erent numbers of elements and
the results are reported in the Table Circular Coil and in the Table Square Coil.

Table, Circular Coil
Number of elements Gauss-Legendre [H] Analytical Formula [H] Relative Error

10 3.7179e-05

3.8159e-05

0.0257
20 3.7899e-05 0.0068
40 3.8089e-05 0.0018
60 3.8127e-05 0.0008

Table, Square Coil
Elements, each side Gauss-Legendre [H] Analytical Formula [H] Relative Error

1 2.2120e-05

2.2120e-05

0
4 2.2118e-05 9.5243e-05
10 2.2119e-05 5.2149e-05
20 2.2121e-05 5.4235e-05

About analytical formulas, we have used equation (2.10) for the circular coil and equation (2.11) for
the square coil (in all the calculations we have obviously considered a current uniformly distributed in the
cross section).

Lself = µ0R

(
ln

8R

a
− 7

4

)
(2.10)

where R is the radius of the loop and a is the radius of the circular cross section of the conductor.

Lself =
µ0

4π

(
4L1 − 4M) where... (2.11)

L1 = 2l

[
ln
a+
√
l2 + a2

a
−
√

1 +
a2

l2
+

1

4
+
a

l

]
(2.12)

M = 2l

[
ln
l +
√

2 l2

l
−
√

2 + 1

]
(2.13)

where l is the side of the square coil and a is the radius of the circular cross section of the conductor.

As example, we report here the N matrix obtained for the square coil in �gure (2.5) with four ele-
ments for each side (to reach the L matrix we have just to multiply the entrances by the coe�cient µ0

4π ).
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Figure 2.5: Square coil with four elements for each side.



84.6054 0 0 −2.4514 −2.2202 0 0 6.9240
0 84.6054 6.9240 0 0 −2.2202 −2.4514 0
0 6.9240 84.6054 0 0 −2.4514 −2.2202 0

−2.4514 0 0 84.6054 6.9240 0 0 −2.2202
−2.2202 0 0 6.9240 84.6054 0 0 −2.4514

0 −2.2202 −2.4514 0 0 84.6054 6.9240 0
0 −2.4514 −2.2202 0 0 6.9240 84.6054 0

6.9240 0 0 −2.2202 −2.4514 0 0 84.6054


By analysing the results reported in the two tables, we see that the numerical method adopted gives very
good results in terms of relative error respect the values provided by the analytical formulas.

In particular, we observe that, for the circular coil, with the increasing of the numbers of elements
the accuracy of the estimation of the self inductance improves, while, for the square loop, we have an
error equal to zero when we take only one element for each side (just because in this case the calculation
of the partial inductance coincides with the equations of L1 and M reported in (2.11)), then, with the
increasing of the number of elements, the relative error has the trend shown in �gure (2.6).

Figure 2.6: Relative Error of Self Inductance of a Square Coil Varying the Number of Elements.

The trend of �gure (2.6) is caused by the fact that with the increasing of the number of elements their
length decreases, so the numerical errors growths (the formulas used for the calculation of the partial
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inductance give a good accuracy when l� r, where l and r are respectively the length and the radius of
the cross section of the stick conductors).

Figure 2.7: Relative Error of Self Inductance of two Square Coil (15m and 20m Side) Varying the Number of
Elements.

Indeed, with the increasing of the length of the side, the trend of the relative error changes as we can
see in �gure (2.7).

The same graphics reported in �gure (2.6) has been produced for the circular loop in �gure (2.8).

Figure 2.8: Relative Error of Self Inductance of a Circular Coil Varying the Number of Elements.

In agreement with what previously said, we observe that (at least until the largest value used for the
number of elements) the relative error always decreases with the increasing of the number of elements.

But, if we have considered a coil with a smaller ration between the radius of the loop and the radius
of the cross section of the conductor, we will have the same phenomenon discussed above for the square
loop.

2.3 Partial Coe�cient of Potential Evaluation

In this section, in analogy with what we have done in section (2.1), we are going to discuss about the
calculation of the Partial Coe�cient of Potential.

From the third term of (1.31) we can derive a general expression (2.14) for the partial coe�cient of
potential of an element.

pij =
1

4πε0

1

SiSj

∫
Si

∫
Sj

1

|~ri − ~rj |
dSidSj (2.14)
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where Si and Sj are charged surface and ~ri and ~rj are the vector distances of the points in the surfaces
from the center of the reference system.

Figure 2.9: Coe�cient of Potential.

The expression (2.14) is referred to a three dimensional element, where the charge is uniformly
distributed in the surface, so in the expression is present a surface integral.

In this chapter we consider a one dimensional elements so, in analogy with what we have done for
partial inductance coe�cients, we can say that, in order to obtain the mutual potential coe�cients, we
have to solve the line integral of electric �eld ~E as in (2.15), [23].

pij =
Vi
qj

∣∣∣∣∣
q1=···=qj−1=qj+1=···=qn=0

=
−
∫
ci
~Et · d~l

ε
∮
cj
~Et · ~andl

(2.15)

where the geometrical entities are shown in �gure (2.9).

The pij coe�cient is equal to the potential in the element i when the charge in null in all the elements,
except for the element j and in�nity.

V (P ) =

∫
S

ρ(~rq)

4πε0|~rp − ~rq|
dl (2.16)

Starting from (2.14), it is possible to obtain an expression for the 1D problem by considering the case
of two cylinders with cross section radius which tends to zero:

pij =
1

4πε0

1

lilj

∫
li

∫
lj

1

|~ri − ~rj |
dljdli

=
1

4πε0

1

lilj

∫
li

ln
Ri +Rf + Li
Ri +Rf − Li

dli

(2.17)

where Li is the length of the wire and Ri & Rf are the distances of the points from the two endpoints
of the wire.

Now we have to integrate (2.17) along the second element li, in order to �nd the value of the mutual
partial coe�cient pij . As we have done for the mutual partial inductance coe�cient, we have decided to
solve this problem numerically, by using Gauss-Legendre quadrature method.
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pij ≈
1

lilj

1

4πε0

li
2

n∑
i=1

wif(Pi) (2.18)

where f(•) is the logarithmic term in (2.17), wi and Pi are respectively the weights and Gauss points
(with n the number of the Gauss points used) and li

2 is the Jacobian.

This approach allows to write a general code that evaluates the mutual partial coe�cient of potential
of two arbitrary position wires. We have to specify that this method doesn't work for "two coincident
wires", that is when we are evaluating the self partial coe�cient pii, so, to perform the calculation, we
have used an analytic expression for the self partial coe�cient of potential of a thin cylindrical wire found
in the literature, (2.19), [13].

pii =
1

4πε0

2

l

[
ln

(
l

rw
+

√(
l

rw

)2

+ 1

)
−

√
1 +

(
rw
l

)2

+
rw
l

]
(2.19)

where l is the length of the cylindrical wire and rw is the radius of the cross section of the conductor.

Another possibility to reach the self coe�cient can be derived from the discussion in (3.1.1).

Now we have to specify how we have considered the "capacitive elements" for the calculation of the
partial coe�cients of potential in the case of a 1D problem. Considering for example a circular loop:
�rst we have divided it in a certain number of "inductive elements" (for example 10) for which we
have found the middle points. By doing this, we have identi�ed the "capacitive elements" which have
their middle points coincident with the endpoints of the inductive elements, so we have determined a
number of capacitive elements equal to the number of nodes of the descretized object (�gure (2.10)).
Indeed, the analytical and numerical integral in equations (2.17) and (2.18) have been divided in two
parts respectively. In this way we can work with a more general case, with thin elements formed by two
non-aligned segments.

Figure 2.10: Inductive and Capacitive Elements in a Circular Loop.

By using this approach the branch elements are straight conductors while the nodal elements are
divided in two straight conductors. Obviously also the dual approach can be used.

2.4 Method Validation for Partial Coe�cients of Potential

In this section we are going to validate the method used for the evaluation of the partial coe�cients of
potential. To do this we have �rst calculated the capacitance respect to the in�nite of a circular and thin
conductor and we have compared the results with FastCap (FastCap and FastHenry, from Massachusetts
Institute of Technology, are two free parasitics extractor tolls for capacitance, inductance and resistance).
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Secondly, we have computed the Maxwell Capacitance Matrix, [42], of two thin cylindrical conductors
comparing the results with FastCap and the analytical formula found in literature for this kind of geom-
etry, [14].

For the �rst validation we have considered a single thin cylindrical conductor 10m long and with a
circular cross section of radius 0.01m. We have �rst considered it as the only partial element forming the
conductor, so in this way we have validated the expression used for the self partial coe�cient of potential,
(2.19). The value of capacitance can be easily obtained by the inverse of pii, cii = 1

pii
.

Figure 2.11: Cylindrical conductor discretized by 7 rectangular panels.

To model the geometry with FastCap we have considered the lateral surface of the cylindrical conduc-
tor formed by a certain number of rectangular panels (the geometry �les have been created with Matlab);
for example in �gure (2.11) is represented the geometry obtained by using seven panels for the lateral
surface.

The results obtained by the comparison are shown in Table, Thin Cylindrical Conductor.

Table, Thin Cylindrical Conductor
Number of panels FasterCap [pF] FastCap [pF] Our Code [pF]

5 83.9804 78.81

84.4323 1 element
5 reduced tollerance 83.6575 83.52

6 84.3822 79.32
7 84.2370 79.63
8 84.4243 79.84

84.4591 10 elements
9 84.5674
15 84.8141
16 84.8819
17 84.7734

Then, we have done the same calculation dividing the conductor in many partial elements, so, by
doing this, we have validated also the numerical method used to compute the partial mutual coe�cients
of potential (2.18). Afterwards, we have calculated the P matrix of the object (a n × n matrix where n
is the number of the nodes, or the number of capacitive elements, of the object).

C matrix has been obtained by the inversion of P matrix, C = P−1; �nally we have reached the
value of capacitance by summing all the entrances of C matrix. As we can see from the table, the results
obtained are very similar, so we can consider correct the numerical method used.
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For the second analysis we have considered two parallel cylindrical thin wires 10m long, with a circular
cross section of radius 0.01m. Each conductor was �rst divided in 29 partial inductive elements and then
we have computed the P matrix for the 30 capacitive elements. By the inversion of P, we have reached C
(a 60× 60 matrix, indeed for each conductor we have 30 nodes and then 30 partial capacitive elements).

Then, considering the four blocks, C=
( Cii30×30

Cij30×30

Cji30×30
Cjj30×30

)
, by summing all the terms for each of the four

blocks we can obtain the Maxwell Capacitance Matrix of the two objects that can be compared with the
matrix obtained by FasterCap using 9 panels for the discretization of the two cylindrical conductors. The
results are shown here in [F ].

CFasterCap =

[
+1.20243 · 10−10 −6.53036 · 10−11

−6.52966 · 10−11 +1.20234 · 10−10

]
COurCode =

[
+1.20069 · 10−10 −6.52214 · 10−11

−6.52214 · 10−11 +1.20069 · 10−10

]

2.5 Matrices and Global System

2.5.1 Matrices

In this section we discuss about the matrices that compose the system which we have to solve in order
to obtain the solution in terms of node potentials and branch currents.

Matrix of Inductances, L

The Matrix of Inductances, L, is a l × l matrix where l is the number of the inductive elements (sides)
that discretize the objects. The diagonal entrances are the self partial inductances and the o�-diagonal
entrances are the mutual partial inductances between the partial elements. An example for a square coil
has been reported in section (2.2). In this example a lot of o�-diagonal entrances are null because the
relative partial elements are perpendicular but in general L is a full and symmetric matrix. The entrances
can be evaluated as explained in section (2.1) by using the numerical method; analytical formulas can be
used only for some particular geometry. In this thesis we use the numerical method (2.5) for the mutual
inductances and the analytical formula (2.6) for the self partial inductances. The matrix represents the
magnetic coupling of the partial elements and can be used to obtain the self inductance of an object by
summing all the entrances o� the matrix.

Matrix of Coe�cients of Potential, P

The Matrix of Coe�cients of Potential, P, is a n×n matrix, where n is the number of nodes (capacitive
elements) that are the endpoints of the inductive elements, (from the standpoint of the electrical equivalent
circuit). The diagonal entrances are the self partial coe�cients of potential (between the element i and
the in�nity) and the o� diagonal entrances are the mutual partial coe�cients of potential between the
partial elements.

As example, we report here the P matrix for a circular wire (10m radius and with the radius of cross
section equal to 1mm) divided by 8 capacitive elements as in �gure (2.12), (the matrix entrances are
express in [1010 F−1]).

2.0283 0.1677 0.0697 0.0521 0.0479 0.0521 0.0697 0.1677
0.1677 2.0283 0.1677 0.0697 0.0521 0.0479 0.0521 0.0697
0.0697 0.1677 2.0283 0.1677 0.0697 0.0521 0.0479 0.0521
0.0521 0.0697 0.1677 2.0283 0.1677 0.0697 0.0521 0.0479
0.0479 0.0521 0.0697 0.1677 2.0283 0.1677 0.0697 0.0521
0.0521 0.0479 0.0521 0.0697 0.1677 2.0283 0.1677 0.0697
0.0697 0.0521 0.0479 0.0521 0.0697 0.1677 2.0283 0.1677
0.1677 0.0697 0.0521 0.0479 0.0521 0.0697 0.1677 2.0283
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The entrances can be evaluated as explain in section (2.3). In this thesis we have used the numerical
method (2.18) for the mutual coe�cients and the analytical formula (2.19) for the self partial coe�cients.
The matrix represents the electric coupling of the partial capacitive elements.

Figure 2.12: Cyrcular wire, capacitive elements.

Maxwell Capacitance Matrix, C

The Maxwell Capacitance Matrix, C, is a n × n matrix where n is the number of nodes (capacitive
elements) that are the endpoints of the inductive elements. This matrix can be reached by the inversion
of the P matrix and can be used to obtain the capacitance of the object or the Maxwell Capacitance
Matrix for more objects (a o× o matrix, where o is the number of objects considered).

Matrix of Resistances, R

The Matrix of Resistances, R, is a l× l diagonal matrix (where l is the number of the sides of the objects,
inductive elements). Every branch resistance can be obtained by the formula (1.40), where it is necessary
to consider the partial element like a thin cylinder with a non-zero radius for the cross section, so lλ is
the length of the thin cylinder, aλ is the area of the cross section and σλ is the conductivity of the partial
element.

Incidence Matrix, A

The Incidence matrix, A, is a n× l sparse matrix that describes the topology of the electrical equivalent
circuit formed by partial elements. The Incidence matrix is obtained from the complete incidence Matrix
Ac, which entrances are created using the following rules:

� Each row corresponds to one node (capacitive element);

� Each column corresponds to one inductive element;

� The entry −1 at the row i and column j indicates that the current direction in the inductive
element j is from the node i;

� The entry 1 at the row i and column j indicates that the current direction in the inductive element
j is into the node i.
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It is useful to specify that in this problem the in�nity must be considered as a node and also all the
voltage sources and loads must be considered like sides which add up to the objects sides (the inductive
elements that descerize the objects).

Figure 2.13: Two wire line, in this representation, for semplicity, we don't have inserted the partial resistances
and the voltage soruces of each side and of each node concerning the magnetic and electric coupling.

In this way the Ac matrix has a number of rows equal to the number of capacitive elements plus the
number of nodes formed by the voltage sources and loads considering also the in�nity node. The number
of column is equal to the number of inductive elements (objects sides) plus the number of voltage sources
and loads considered in the problem. So, l is the total number of sides and n is the total number of nodes,
considering also the in�nity node. The A matrix can be easily obtained by the elimination of one row
from the Ac matrix (for example the one relative to the in�nity node), in this way the Kircho�'s laws
(that we will write subsequently) will be linearly independent. This is true if we consider a model where
there are no �uctuating objects. If some �uctuated objects is present the incidence matrix will not be
linearly independent but the linearly independence of the system will be insured by the electric coupling
between the objects, expressed by the P matrix.

As example, referring to �gure (2.13), the Ac matrix has nine rows and nine columns (six object
sides, two voltage sources and one load) so A matrix is a 8× 9 matrix:

−1 0 0 0 0 0 0 0 +1
+1 −1 0 0 0 0 0 0 0
0 +1 −1 0 0 0 0 0 0
0 0 +1 0 0 0 −1 0 0
0 0 0 −1 0 0 +1 0 0
0 0 0 +1 −1 0 0 0 0
0 0 0 0 +1 −1 0 0 0
0 0 0 0 0 +1 0 −1 0


Matrix of Admittance, Y

The Matrix of Admittance, Y, is a n× n matrix, where n is the number of nodes. Its entrances represent
a possible connection between two arbitrary nodes of the problem through an element with a certain
admittance Yij . The diagonal entrances o� the matrix are null.

Matrix of Pseudo-Capacitance, F

The Matrix of Pseudo-Capacitance, F, is a n × n diagonal matrix, where the entrances represent the
admittances of the pseudo-capacitance. The matrix can be easily obtained by the diagonal terms of P
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matrix:

Fii =
1

Pii
(2.20)

Matrix of Normalized Partial Coe�cients of Potential, S

The Matrix of Normalized Partial Coe�cients of Potential, S, is a n × n matrix that can be obtained
easily by the P matrix:

Sij =
Pij
Pjj

(2.21)

It contains the retarded electric �eld couplings between elements (if considered) and the normalized
coe�cients.

Vector of Sources, Source

The Vector of Source is the vector containing the values of the voltage and current sources. It is a (n+l)×1
vector formed by the vector of voltage source, Vs, (a l × 1 vector) and the vector of current sources, Is,
(a n× 1 vector).

Source =

[
Vsl×1

Isn×1

]
Indeed, the voltage sources are added to the problem as appended elements. So the addition of a

voltage source increases the number of sides then the matrices L and R become larger: we have to add a
row and a column for each voltage source and load appended to the problem and in the diagonal entrances
we have to write the value of the resistance and inductance of the load and of the voltage source (null if is
a ideal voltage source). In the o�-diagonal entrances it is possible to write the value of mutual inductance
between the appended element and the partial elements, if it is useful and easily to evaluate it, otherwise
the o� diagonal entrances in the rows and columns of appended elements are nulls. The current source
can be added to the problem without the insertion of appended sides but they have to be seen as currents
injected in the related nodes.

Vector of Unknowns, X

The Vector of Unknowns is the vector containing the potentials of the nodes respect to the in�nity node
and the branch currents. It is a n + l × 1 vector formed by the vector of node potentials, V, (a n× 1
vector) and the vector of branch currents, I, (a l × 1 vector).

X =

[
Vn×1

Il×1

]
As already said, the results are obtained in terms of potentials and currents; in order to reach electric

and magnetic �eld post-processing is required.

2.5.2 Dimension of the Matrices

For clarity we report here a table with the dimension of the matrices. l is the total number of sides
including the objects sides (inductive elements) and the appended elements (loads and voltage sources).
n is the total number of nodes including the nodes referred to the endpoints of inductive elements
(capacitive elements) and the possible nodes formed by two loads and/or voltage sources (added nodes)
but excluding the in�nity node. For the added nodes it is necessary to insert 1 in the diagonal entrance
of the S matrix and 0 for all the other "nodal matrices".
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Matrix dimension
Matrix Number of rows Number of columns
L l l
R l l
P n n
C n n
F n n
S n n
Ac n+1 l
A n l
Vs l 1
Is n 1
V n 1
I l 1

2.5.3 Solution Strategy

The problem that we want to solve has n + l unknowns (n node potentials and l side currents) so we
want to write n+ l linearly independent equations in the searching unknowns. The circuit equations are
obtained from Kircho�'s laws:

Figure 2.14: One PEEC cell for the derivation of Kircho�'s laws.

� Kircho�'s voltage law applied to the inductive branch gives:

Vi + jωLpmmILm −
M∑

b=1,b 6=m

−RmILm − Vj = 0 (2.22)

that written in matrix form becomes:

-ATV− (R+ jωL)I = Vs (2.23)

� Kircho�'s current law applied to each node gives:

ILm = ILn + IYij + ICj (2.24)

that becomes:

ILm = ILn + (Vj − Vi)Yij + jωCjjVCj (2.25)

that written in matrix form becomes:
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YLV+ jωFVc −AI = Is (2.26)

� The node potentials are expressed using its constituents parts, for example for node j:

Vj = VCj +

N∑
a=1,a 6=j

Pja
Paa

VCa (2.27)

that written in matrix form become:

-V+ SVc = 0 (2.28)

The matrix equations (2.23), (2.26) and (2.28) gives the system of n+ l equations reported in (2.29).[
−AT −(R+ jωL)

jωP−1 +YL −A

] [
V

I

]
=

[
Vs

Is

]
(2.29)

To solve this system it is necessary to invert the P matrix; this operation could be heavy from a
computational point of view because P matrix is in general a very full matrix.

It is possible to obtain a di�erent system that doesn't require the inversion of P matrix by using the
following properties, [4].

P−1 = FS−1

= S−1TF
(2.30)

So, by multiplying to the left the transpose of S matrix we obtain:

STP−1 = F (2.31)

So, from (2.29), we can write a di�erent system that doesn't contain the the inverse of P matrix
(2.32): [

−AT −(R+ jωL)

jωF+ STYL −STA

] [
V

I

]
=

[
Vs

ST Is

]
(2.32)

Another possibility to avoid the inversion of P matrix is given by [28]. The second line of (2.29) is
multiplied to the left by P, in this way we obtain:[

−AT −(R+ jωL)
jω1+PYL −PA

] [
V

I

]
=

[
Vs

PIs

]
(2.33)

This method becomes useful when the system becomes very large, so it requires an hight computa-
tional cost to be solved (the dimension of the systems (2.29), (2.32) and (2.33) is Nl + Nn × Nl + Nn,
where Nl is the number of sides and Nn is the number of nodes of the electrical equivalent circuit).

Indeed, considering for simplicity YL as null matrix, we can obtain (2.34) from the second matrix
equation of the system.

V =
1

jω
PIs+

1

jω
PAI (2.34)

Equation (2.34) can be substituted in the �rst matrix equation of (2.33), so we can obtain a matrix
equation containing only the vector of unknowns I:

(R+ jωL+
1

jω
ATPA)I = −Vs− 1

jω
ATPIS (2.35)

In this way, the vector of unknowns V can be reached by post-processing from (2.34) and the dimen-
sion of system to solve is Nl ×Nl, where Nl is the number of sides.
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2.6 Two-wire line

In this section we report the results obtained by the simulation of two-wire line by using the PEECmethod.
The results have been compared with the ones obtained by using the analytical approach discussed in
literature for this problem, [23], [15] [31].

We have considered a two-wire line 10m long with the cross section radius of 0.01m (that is required
for the calculation of the pii coe�cient) and separated by 0.2m. Each one of the two conductors has been
divided in 29 inductive elements and 30 nodes (or capacitive elements). Referring to �gure (2.13), we
have appended two voltage sources (each one 50[V ]) in the left side of the line, each one is connected to
one of the extreme of the line and the in�nity node; in the right side we have appended the load that is
connected to the two extremes of the line. We have studied it in the time and frequency domain. For the
time domain we have implemented the theta method.

2.6.1 Two-wire line values

The �rst results that we can obtain by the PEEC code is the numerical evaluation of the inductance
and capacitance of the line. For each one of the two conductors it is possible to evaluate the self and
the mutual coe�cients of inductance and potential. Indeed, we can �nd the four matrix Lij and the four
matrix Pij , where i, j = 1, 2 refer to the two conductors. By summing all the terms of the Lij we can
�nd the self and the mutual inductance of the conductors and by summing all together this four term we
reach the value of the self inductance of the line. This value obtained numerically can be compared with
the expression (2.36) found in [15].

lself =
µ0

π
cosh−1

(
s

2rw

)
(2.36)

where s is the center to center distance of two conductors and rw is the radius of the two conductors.

The obtained results are:

Lij =

[
L11 L12

L21 L22

]
=

[
13.256 [µH] −7.2501 [µH]
−7.2501 [µH] 13.256 [µH]

]
So we obtain:

lself numerically = 12.013 [µH]

lself analitycally = 11.973 [µH]
(2.37)

In order to obtain the Maxwell Capacitance Matrix of the elements of the line it is necessary to invert
the global P matrix (that is a 60× 60 matrix) to obtain the global C matrix. Then, this matrix can be
divided in four matrices, Cij (each one is a 30×30 matrix), that allow to built a 2×2 matrix by summing
all the terms all together. This matrix is called the Maxwell Capacitance Matrix of the objects and it
can be compared with the matrix of capacitance obtained by FasterCap, as done in the previous section
(2.4).

This matrix is reported here:

C =

[
C11 C12

C21 C22

]
=

[
+1.2001 [10−10 F ] −6.5224 [10−11 F ]
−6.5224 [10−11 F ] +1.2001 [10−10 F ]

]
Instead, by means of the analytical formulas in [15] and reported in (2.38), it is possible to evaluate

the capacitance of the Two-wire line.

c =
πε0

cosh−1( s
2rw

)
(2.38)

The result obtained by this analytical formula is:

cself analitycally = 92.93 [pF ] (2.39)
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2.6.2 Frequency domain

Figure 2.15: Node potentials and branch Currents along a two-wire line at the frequency of 6 [MHz] compute
by PEEC-Code.

Then it is possible to study the case of open line, that has been well analysed in literature, [31].
First we have done a study in the frequency domain varying the value of frequency, in order to observe
the di�erent behaviour of the line. From the theory of the transmission ideal line (without resistive term)
we expect that the line seems like a capacitor when is length is lower than a quarter of the wavelength
and it seems like an inductance when is length is between a quarter and an half of wavelength. If the line
length is lower than λ/4 we will expect that the voltage increases along the line, from the voltage source
to the open circuit.

Figure 2.16: Node potentials and branch Currents along a two-wire line at the frequency of 6 [MHz] compute
analycally.

In �gure (2.15) we report the results in terms of voltage potentials and branch currents obtained for
the analysed line when the frequency is 6 [MHz], so λ is equal to λ = c

f = 80m and dline = 10m < λ
4 =

11.67m, where dline is the length of the line.
The analysis has been done by using both (2.29) and (2.32) and the results have been obviously the same.
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Figure 2.17: Node potentials and branch Currents along a two-wire line at the frequency of 9 [MHz] compute
by PEEC-Code.

To validate the results obtained by the PEEC-Code we have also studied the same problem by an
analytical point of view by using the transmission matrix for the two-line wire, [31], [15]. With this
"analytical method" we have studied the same line 10m long with a value of lself and cself equal to
the one computed numerically by the PEEC-Code. The results in terms of node potentials and branch
currents are reported in �gure (2.16).

The same �gure have been obtained by using a di�erent frequency for which the line, seen from the
beginning, becomes an inductance. With a frequency of 9 [MHz] we have that the wavelength becomes
λ = 31.1m, so λ

4 = 7.78m < dline < 15.56m = λ
2 .

The numerically results are reported in �gure (2.17) and the analytical results are reported in �gure
(2.18).

Figure 2.18: Node potentials and branch Currents along a two-wire line at the frequency of 9 [MHz] compute
analycally.

To conclude the analysis of the two-wire line open, we report here the value of the imaginary part of
the impedance seen from the elements along the line when the frequency is 30[MHz]. With this value of
frequency the wavelength is about 10m, so we can see a complete voltage wave along the line.

In �gure (2.19) are reported the values obtained for the imaginary part of the impedance and in �gure
(2.20) is reported, as done for the previously studies, the trend of voltage potentials and branch currents
of the nodes and inductive elements respectively.
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Figure 2.19: Impedance of the two-wire line seen from the 30 nodes along the line at the frequency of 30 [MHz],
compute by PEEC-Code.

Figure 2.20: Node potentials and branch Currents along a two-wire line at the frequency of 30 [MHz] compute
by PEEC-Code.

The analysis can be done also imposing a certain value of resistivity to the conductors. That involves
a resistive voltage fall along the conductor. In this way R matrix becomes a diagonal matrix (for the ideal
line it was a null matrix). In �gure (2.21) we report the results obtained for the line powered at 6[MHz]
with a resistivity of the conductor equal to 7 · 10−3[Ωm] (the value has been chosen for emphasize the
resistive voltage fall).
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Figure 2.21: Node potentials and branch Currents along a two-wire line at the frequency of 6 [MHz] and with
a resistivity of 7 · 10−3[Ωm] compute by PEEC-Code.

2.6.3 Time domain

The matrices obtained by the PEEC-Code can be also used to study time domain problems.

Figure 2.22: Triangular wave applied to the two wire line for a time domain analysis and triangular wave
propagation.

The problem that we want to solve can be expressed in terms of matrix equation as in (2.40)[
−AT −R
STYL −STA

] [
V

I

]
+

[
0 −L
F 0

] [
d
dtV
d
dtI

]
=

[
Vs

ST Is

]
(2.40)

and in a compressed way in (2.41).

M1x+M2ẋ = s (2.41)

We can apply the theta method to expression (2.41) obtaining (2.42).

(θM1 +
1

∆t
M2)xn+1 = (−(1− θ)M1 +

1

∆t
M2)xn + θsn+1 + (1− θ)sn (2.42)
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Where the term to the left side that multiplies the vector of unknowns x at the time step n+ 1, xn+1

is the preassembled system that we have to invert and the term to the right is the known term that has
to be update for each step.

With this code we have studied the two-wire line excited by a singular voltage triangular wave. For
this analysis, the line has been closed with a load of 300Ω.

The obtained result is an animated plot that shows the propagation and the re�ection of the wave
along the line. The chosen value for ∆t is 10−11 [s] and the period of the triangular wave applied is
10−8 [s].

2.7 Antenna array

Figure 2.23: Geometry of the antenna

In this section we report the results obtained by the simulation of an array of �laments forming an
antenna. The geometry of the objects is shown in �gure (2.23).

Each wire is formed by two equal stick conductors those are excited by a current source of 2[A] in
the middle, as shown in �gure (2.24).

In �gure (2.24), for simplicity, we have not represented the voltage sources due to magnetic and
electrical coupling of each element with all the others.

In this problem we have considered 7 wires (each one divided in two conductors) 0.6m long and the
distance from two consecutive wires is 0.1m. The gap between the two parts of the conductors is 0.1mm
and the radius of each conductor is 0.5mm. The frequency of the system is 1[G Hz] and each of the two
parts of the wire has been divided in 10 inductive elements. In this way each inductive element is about
λ
10 long, where λ is λ = c

f = 0.3m.

Due to the high value of frequency, in this simulation the e�ect of the propagation time has be
necessarily considered, while in the analysis of the Two-wire line has been neglected.

In order to consider it we have introduced the evaluation of the center to center element distances in
the routines which compute the mutual partial inductance and the mutual partial coe�cient of potential.

The two formulas for the partial coe�cients have been modi�ed by introducing the complex term
relative to the retard:

Lαβ ≈e−jβ∆r cos(θ)
µ

4π

lα
2

n∑
i=1

wif(Pi)

pij ≈ e−jβ∆r 1

lilj

1

4πε0

li
2

n∑
i=1

wif(Pi)

(2.43)
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Figure 2.24: Electrical representation of one wire of the array that forms the antenna, in this �gure each of the
two part of the wire has been divided in three partial inductive elements.

where e−jβ∆r is the term related to the retard, ∆r is the center to center distance, β is the constant
of propagation equal to β = ω

c and c is the speed of light.

Figure 2.25: Imaginary and Real part of the current in each element of conductors 1,2,3 and 4.

To test the PEEC-Code we have �rst analysed the results in terms of branch currents of the inductive
elements.

Without considering the e�ect of retardation due to propagation time we will achieve the wrong
solution where the current remains completely real along the inductive elements of the conductors.

In the left �gure (2.25) is shown the value of the imaginary part of the branch currents of conductors
1, 2, 3 and 4 while in the right �gure (2.25) is shown the real part.

The conductors have been numbered as shown in �gure (2.23).
To show that the solution satis�es the obvious symmetries we report in the left �gure of (2.26) the

values of the current obtained for the inductive elements of conductors 2 and 5, and in the right �gure
(2.26) the values of the current obtained for the inductive elements of conductors 1 and 8.

The values of currents along the wire have been used to compare the analytical results reached by a
simpli�ed analytical solution for this kind of "antenna problem" that, as opposed to PEEC-Code, doesn't
taking into account the electromagnetic coupling between the wires.

With post-processing we have obtained the plots of the directivity of the antenna that are reported
here. For clarity we show the results relative to a single wire (divided in two conductors) while the array
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Figure 2.26: Left: Real and imaginary part of the current for conductors 2 and 5. Right: Real and imaginary
part of the current for conductors 1 and 8.

Figure 2.27: 3D directivity obtained from PEEC-Code (left) and Analytical solution (right).

is formed by three wires.

In this simulation the frequency is 1[GHz], the two conductors that form the wire are λ
2 long where

λ = c
f = 0.3m, the gap between the two conductors is 10−4m, the diameter is 10−3m and the distance

between two consecutive wire is equal to λ.

In �gure (2.27) is reported the three dimensional directivity relative to one wire, obtained by PEEC-
Code and analytical solution.

In �gure (2.28) are compared the results obtained form PEEC-Code and Analytical solution in terms
of directivity in plane x− y, while in �gure (2.29) and in �gure (2.30) are shown the results of directivity
in plane x− z and y − z respectively.

The results have been also compared with the ones obtained by a Finite Elements Method (FEM)
and the comparisons have been collected in two contributions, [52], [53].
PEEC-Code has shown a good capability to analyse this kind of objects and, respect to FEM, the
computational time has been dramatically reduced just because PEEC method is based on the integrals
formulation and it does not require the discretization of the non-active parts, while FEM method, that is
based on the di�erential formulation, needs to discretize also the air. Minor errors of 1% have been shown
in the majority of the analyses. On the other hand, PEEC-Code (�lamentary) has shown its limitation
when the parallel conductors have been considered very close to each other, just because the current
is considered uniformly distributed in the cross section, so the skin e�ect and the proximity e�ect can
not be considered. Furthermore, where the two aligned wires are considered very close to each other,
the capacitive e�ect due to the electric coupling of the two circular surfaces of the two closer cylindrical
elements becomes non negligible while, in the �lament model used for the PEEC method, these surfaces
have not been considered.
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In order to consider also these e�ects a "planar" PEEC-Code (where the primary elements are con-
ducting surfaces) should be implemented.

Figure 2.28: Directivity in x-y plane obtained from PEEC-Code and Analytical solution.

Figure 2.29: Directivity in x-z plane obtained from PEEC-Code and Analytical solution.

Figure 2.30: Directivity in y-z plane obtained from PEEC-Code and Analytical solution.
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Chapter 3

PARTIAL ELEMENT, VOLUME

In this chapter we discuss about the PEEC method with hexahedral cells as primary elements. We report:

� The method and the formulas adopted for the evaluation of the partial coe�cients, with some
validation;

� Mesh construction method for the PEEC model;

� Discussions concerning "Special Attention";

� Some results and comparisons with analytical approach for some given geometry.

3.1 Partial Inductance Coe�cient Evaluation

The general expression for the partial inductance (self or mutual) of an element is given by (1.33), that
is shown here for clarity.

Lpαβ =
µ0

4π

1

aαaβ

∫
vα

∫
vβ

~uα · ~uβ
|~rα − ~rβ |

dvβdvα (3.1)

In this chapter we consider hexahedral elements that, as opposed to �lamentary case, in general allow
the �ow of current in any direction.
From now on, with the term "hexahedron" we mean a polyhedron with six quadrilateral faces.
In literature it is possible to �nd formulas that compute the self and mutual partial inductance of paral-
lelepipeds crossed by current which �ows in a given direction, normal to two opposed faces, [4], [5], [11].
Unfortunately, as for the �lamentary case, these formulas are given only for elements placed in some mu-
tual particular position, so they became of little use for the study of problems with complex geometries.
Furthermore, these formulas are given for parallelepipeds and not for hexahedra, so, for these reasons, in
this thesis they are not be used for the evaluation of the partial coe�cients, except for the self partial
inductance. The problem related to the evaluation of the coe�cients is given by the fact that doesn't exist
an analytical solution of the double volume integral of 1

|~rα−~rβ | , where |~rα − ~rβ | is the distance between

two generic points in the two considered volumes.
So, in order to overcome this problem, we have to adopt a numerical method for the evaluation of the
coe�cients, as done for the �lamentary case.

3.1.1 Evaluation of 1/R Integral

The evaluation of the double volume integral shown in (3.1) is the main problem that must be addressed.
As already said, it doesn't exist an analytical solution for the double integral, instead it is possible to solve
analytically one volume integral of 1

R , where R is the function that gives the distance between a given point
and a general point inside the considered volume. In [19] it is explained how to compute analytically the

the Magnetic vector Potential, ~A, produced by a uniform current density inside an arbitrary polyhedron.
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~A(~r) =
µ0
~J

4π

∫
V

d3r′
|~r − ~r′|

(3.2)

In (3.2) it is clearly shown the dependence of ~A from the volume integral of 1
R , so we can use the

approach explained in [19] in order to solve exactly one of the two volume integrals in (3.1). Here we
report brie�y the steps.

We can introduce the identity (3.3) following [40], where the "prime" on ∇ refers to its evaluation in
points ~r′.

1

|~r − ~r′|
= ∇′ ·

(
~r − ~r′

2|~r − ~r′|

)
(3.3)

Applying Gauss's theorem and (3.3) in (3.2) we can obtain (3.4).

~A(~r) =
µ0
~J

8π

∑
Sf∈∂V

∫
Sf

(~r′ − ~r) · ~nf
|~r − ~r′|

d2r′ (3.4)

where ∂V is the boundary of the polyhedron and ~nf is the outgoing normal unit vector which is
constant over each polygonal face Sf ∈ ∂V . In a plane face the quantity (~r′ − ~r) · ~nf is constant, so we
can bring it outside the integral and compute its value in an arbitrary points rf of the face. In this way
we can reach:

~A =
µ0
~J

8π

∑
Sf∈∂V

(~rf − ~r) · ~nfWf (~r) (3.5)

where:

Wf (~r) =

∫
Sf

d2r′
|~r − ~r′|

(3.6)

Now the problem is the evaluation of Wf and we need to introduce the identity (3.7).

1

|~r − ~r′|
= ~nf · ∇′ ×

(
~nf ×

~r′~r
|~r − ~r′|

)
− [(~r′ − ~r) · ~nf ]2

|~r′ − ~r|3
(3.7)

Considering that the quantity (~r′−~r)·~nf is constant over the face and substituting it with (~rf−~r)·~nf ,
where ~rf is an arbitrary point of the face, we can obtain (3.8).

Wf (r) =

∮
∂Sf

~nf × (~r′ − ~r) · d~r′
|~r′ − ~r|

− [(~rf − ~r) · ~nf ]

∫
Sf

(~r′ − ~r · ~nf
|~r′ − ~r|3

d2r′ (3.8)

Where ∂Sf is the boundary of the face Sf formed by le ∈ Sf . The second integral of (3.8) is the solid
angle subtended by the polygon Sf , Ω(~r).

Now we can obtain (3.9):

Wf (~r) =
∑

le∈∂Sf

∫
le

~nf ×
~r′ − ~r
|~r′ − ~r|

· ~uedr′ − [(~rf − ~r) · ~nf ]Ω(~r) (3.9)

Where ue is the unit vector along one edge of the face which orientation is given in according to ~nf .
In analogy with what we have done previously we can bring out from the integral the quantity ~nf × (~r′−
~r) · ~ue, that is constant at the relative edge, so it can be replaced by ~nf × (~re − ~r) · ~ue, where ~re is an
arbitrary �xed point of the edge.

Now we can de�ne (3.10), that is the same integral that we have found in the evaluation of the partial
coe�cients in PEEC �lamentary method.

we(~r) =

∫
le

dr′
|~r′ − ~r|

(3.10)
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This integral has the analytical solution given by (3.11)

we(~r) = ln

(
|~r2 − ~r|+ |~r1 − ~r|+ |~r2 − ~r1|
|~r2 − ~r|+ |~r1 − ~r| − |~r2 − ~r1|

)
(3.11)

Where ~r1 and ~r2 are the endpoints of the edge. (3.11) shows a singularity when ~r belongs to the edge
le, but it is completely removed in (3.13) by ~nf × (~re − ~r) · ~ue. So, to avoid the numerical singularities, it
is possible to modify (3.11) by substituting the norm with (3.12).

|~r′ − ~r| =
√
|~r′ − ~r|2 + ε2 (3.12)

So the �nal expression of Wf is (3.13).

Wf (~r) =
∑

le∈∂Sf

~nf × (~re − ~r) · ~uewe(~r)− [(~rf − ~r) · ~nf ]Ω(~r) (3.13)

About the evaluation of the solid angle Ω(~r), it is convenient to split the faces in triangles. Indeed,
for triangular faces exist the analytical expression for the solid angle subtended by the point ~r, (3.14).

ΩT (~r) = 2Arctan[
(~r1 − ~r) · (~r2 − ~r)× (~r3 − ~r)

D
D = |~r1 − ~r||~r2 − ~r||~r3 − ~r|

+ |~r3 − ~r|(~r1 − ~r) · (~r2 − ~r)
+ |~r2 − ~r|(~r1 − ~r) · (~r3 − ~r)
+ |~r1 − ~r|(~r2 − ~r) · (~r3 − ~r)

(3.14)

Then, following the steps explained above, it is possible to obtain the exact value of Magnetic vector
Potential, ~A, produced by a uniform current density inside an arbitrary polyhedron in any point of the
space. Moreover it is easy to reach also an expression for the integral of 1

R , (3.15).

Iv(~r) =
1

2

∑
Sf∈∂V

(~rf − ~r) · ~nfWf (~r) (3.15)

By using (3.15) in (3.1) it is possible to reach (3.16).

Lpαβ =
µ0

4π

~Jα · ~Jβ
aαaβ

∫
vα

Iv(~r) dvα =
µ0

4π

~Jα · ~Jβ
aαaβ

I2v (3.16)

Where the current densities ~Jα and ~Jβ have been bring out from the integral, because they are
uniform inside the volumes.

Now we can evaluate the second volume integral in (3.16) using Gauss-Legendre, in analogy with the
�lamentary case.

Figure 3.1: Comparison Analytical method [19] and Gauss-Legendre method
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In this way by de�ning I2v as the integral of Iv(~r) in the volume vα, we can obtain (3.17).

I2v =

N∑
i=1

I(Pi)w1(Pi)w2(Pi)w3(Pi)J3D (3.17)

Where Pi, with i = 1 · · ·N , are the Gauss points inside the volume, w1, w2 and w3 are the weights
related to the Gauss points in the three directions and J3d is the Jacobian of the transformation.
By doing this, we can obtain a general expression for the partial inductance coe�cient, which can be
implemented in the code. Obviously, the evaluation of the double volume integral can be done also
using the Gauss-Legendre method for both the volume integral (with two di�erent orders of Gauss for
the evaluation of the self coe�cient, in order to avoid numerical singularities). This pure numerical
approach gives good results when the two hexahedra are quite distant from each other, while it shows
more signi�cant errors when the two volumes are close to each other.

In �gures (3.1) and (3.2) it is reported the value of Magnetic vector Potential produced by a uniform
current that cross the shown hexahedron. The values have been evaluated by the analytical method
presented in [19] (and reported above) and by the numerical method; the amplitude of ~A has been
evaluated in in the black points.

We can see that the two methods give similar results when the points are quite distant from the
hexahedron, while the numerical errors are more relevant for the evaluation of the Magnetic vector
Potential in points very close to the solid. The degree of Gauss-Legendre used for the numeric integration
is �ve (for all the three direction).

For this reason we have decided to use the analytical approach for the evaluation of the �rst 1
R

integral; the only drawback is that this approach seems quite expensive from a computational cost point
of view.

Figure 3.2: Comparison Analytical method [19] and Gauss-Legendre method

3.1.2 Current Density

The other relevant term in (3.1) is the dot product between the two unitary and uniform current densities
which �ow in the two hexahedra.
For our purpose, we will consider hexahedra crossed by current density that enters the volume from a
given face and goes out from the opposite face; the direction of the current density must give no �ow on
the four lateral faces.

For the simply case of parallelepipeds, the direction of vector ~J that satis�es this goal is given by the
line normal to the opposed faces crossed by the current, but this is not valid for the more general case of
hexahedral elements.

In order to satisfy this goal, we follow [35], where it is reported a method which allows to �nd the
correct direction of the current density vector. For our purpose this expression is given by (3.18).

~J =
CFout − CFin
|CFout − CFin |

(3.18)

Where CFout and CFin are the centroids of the outgoing face and incoming face, respectively.
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3.1.3 Evaluation of self Partial Inductance Coe�cient

The evaluation of the self partial inductance coe�cient can be performed in the same way and with the
same code used for the evaluation of the partial mutual inductance coe�cient, just because the analytical
method for the evaluation of the 1

R doesn't give any singularities for the Gauss points inside the volume
itself.
As alternative, in literature we can �nd some analytical formulas for the evaluation of this coe�cient.
These formulas refer to parallelepipeds crossed by a uniform current, [5], [11], [16]. The formula in [5] is
shown in (3.19).

Lself
l

=
2µ0

π

{
ω2

24u

[
ln

1 +A2

ω
−A5
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Where:
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Where l is the length, t and w the height and base of the incoming face respectively (equal to the
outgoing face).

This formula gives the correct result only for parallelepipeds but it could be also used as alternative
to the numerical method, when the considered hexahedron is slightly distorted and it allows to �nd the
parameters related to an "equivalent" parallelepiped.

However, the formula can be used in order to test the numerical approach proposed for the evaluation
of the partial self coe�cient of inductance of a parallelepiped. We report the results obtained for a
parallelepiped with square cross section of 1m2 and 4m long: numerical approach gives 1.607856 10−6[H]
while equation (3.19) gives 1.60775 10−6[H].

3.1.4 Cross section

The last two terms in equation (3.1) are the two cross section of the two elements crossed by the uniform
current densities.

These two terms are outside the integral just because the formula refers to parallelepipeds, which
obviously have constant cross section. The right expression of the partial inductance coe�cient for a
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non-orthogonal cell (like a irregular hexahedron) crossed by a uniform current would be more complex
and it requires a pure numerically strategy for the evaluation. The expression is reported in [8] and in
the same paper it is proposed a numerical method for the calculation.

For our purpose we will consider the "equivalent" cross section of the parallelepiped which has the
same volume of the considered hexahedron and a length equal the the distance between the centroids of
the two faces crossed by the current.

With this approach the formulation is not exact from a analytically point of view but it allows to
consider the simpli�ed expression of the partial inductance coe�cient for orthogonal cells (which has
got a more accurate method of evaluation) and gives good results also if applied to non-orthogonal cells
"fairly" regular.

3.2 Method Validation for Partial Inductance Coe�cients

In this section we are going to validate the method used for the evaluation of the partial inductance
coe�cients for hexahedral elements.
In analogy with what we have done for the �lamentary case, we are going to evaluate the inductance
of a circular loop with rectangular (or square cross section) and we are going to compare the results
with a semi-analytical formula found in [16]. The loop has been divided in a certain number of elements
(that correspond to the sides of equivalent electrical circuit) and each of them has been divided in two
hexahedra, as shown in �gure (3.2), where each element is represented with its unique color.

Figure 3.3: Circular Loop with square cross section discretised by hexahedral mesh

In this way, each self partial inductance coe�cient of an element (that is formed by two hexahedra)
must be calculated how shown in (3.21).

Lself = L11 + L12 + L21 + L22 (3.21)

where the terms Lij , with i, j = 1, 2, are the entrances of the local matrix of inductance, Llocal, related
to the two hexahedra which form the elements: Lii is the self partial local coe�cient of inductance and
Lij is the mutual partial local coe�cient of inductance (so, in general, we have Lij = Lji).

The mutual partial inductance coe�cient is calculated in a similar way, how expressed in (3.22).

Lmutualij = Lac + Lad + Lbc + Lbd (3.22)

where the subscript a, b, c and d are related to the two hexahedra which form the two elements: a and
b are the two hexahedra of element i, c and d are the two hexahedra of element j.

The considered loop has a medium radius of 5 m and a square cross section of 1 m2.
The self and mutual coe�cients of the elements are the entrances of L matrix and, by the summation
of all the entrances of the matrix, it is possible to achieve the value of the self inductance of the loop.
The results obtained by the PEEC-method have been compared with the semi-analytical formula for this
kind of loop given by [16] and also with a circular loop which has a circular cross section with the same
area of square cross section.
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Table, Inductance Circular Loop with Square Cross Section, [µH]
Number of elements Analytic square Analytic circular PEEC

10 14.943
15 15.718 15.778 15.506
19 15.723

3.3 Partial Coe�cient of Potential Evaluation

In this section we are going to discuss about the calculation of Partial Coe�cient of Potential for the
volume PEEC-Code.
The evaluation of these coe�cients is quite simpler than the evaluation of the inductance coe�cients, just
because the charge hasn't the directional dependence, as opposed to the current. For clarity we report
here the general expression of the coe�cient.

pij =
1

4πε0SiSj

∫
Si

∫
Sj

1

|~ri − ~rj |
dSidSj (3.23)

In this chapter we are considering the volume PEEC method, so the partial elements of capacitance
that we must consider are the free surfaces of the hexahedra. The problem of the evaluation of the partial
coe�cient of potential is one more time related to the evaluation of the 1

R surface integral (R is the
distance from two points that belong to the two surfaces).
Also for this coe�cient some analytical or semi-analytical formulas are present in literature but only for
quadrilateral surfaces that are in some particular mutual position, [4], [5], [10]. Moreover, the particular
case of self partial coe�cient of potential is little discussed in literature, so, also for its evaluation, we
have to use a numerical approach.
Such as for the evaluation of inductance coe�cient, the adopted approach can be numeric only or based
on the analytical method shown in subsection (3.1.1).

For the evaluation of the surface double integral of 1
R it is su�cient to solve (3.6), for the �rst integral,

and to use the Gauss-Legendre numerical method for the second integral.

The �nal expression that it is possible to implement in the code is shown in (3.24).

pij =
1

4πε0SiSj

N∑
k=1

IS(Pk)w1(Pk)w2(Pk)w3(Pk)J3D (3.24)

where IS(•) is the one surface integral evaluated in the Guass points of the second surface, wi are
the Gauss weights, with i = 1, 2, 3, and J3D is the Jacobian of the transformation.

About the self partial coe�cient of potential, it has been evaluated with the same numerical method
by introducing the modi�ed normal (3.12), needed to remove the singularities.

The method described above allows to �nd the self and mutual coe�cients between quadrilateral
surfaces but, for our purpose, the capacitive elements associated to a node of the equivalent electric
circuit in general are formed by many quadrilateral surfaces, which give the boundary of the hexahedron.
As example, if we want to evaluate the mutual partial coe�cient of potential between two hexahedra free
in the space, we have to evaluate a local matrix, Plocal, which (in this particular case) is a 12×12 matrix,
where the four blocks matrices 6× 6 shown below are:

� P11 is related to the self and mutual partial coe�cients of potential of the faces of hexahedron 1;

� P22 is related to the self and mutual partial coe�cients of potential of the faces of hexahedron 2;

� P12 = P21 is related to the mutual partial coe�cients of potential between the faces of the two
hexahedra.
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Plocal12×12 =

[
P116×6

P126×6

P216×6 P226×6

]
To reach the value of the mutual coe�cient of potential it is necessary to invert the Plocal matrix, in

this way we obtain the local matrix of capacitance Clocal = P−1
local and by summing all the terms together

we can �nd the value of capacitance between the two hexahedra, cij . The mutual partial coe�cient of
capacitance is �nally obtained by the inversion of the coe�cient of capacitance: pij = c−1

ij .

3.4 Method Validation for Partial Coe�cients of Potential

In this section we want to validate the method used for the evaluation of the partial coe�cients of potential
for the quadrilateral faces of hexahedra elements.
In analogy with what we have done for the �lamentary case, we compare the results in terms of Maxwell
Capacitance Matrix, obtained by our PEEC-Code, with the results obtained by the open source software
Fastercap.

The geometry taken under analysis is the one shown in �gure (3.4). We want to evaluate the matrix
of capacitance related to the two elements (parallelepipeds). The smaller one is inside the other one and
we are considering only the four lateral faces for both of them.

The bigger one is a parallelepiped 0.01× 0.001× 0.1m . The smaller one is a parallelepiped 0.002×
0.002× 0.1m for the �rst case and 0.005× 0.005× 0.1m for the second case.

In the matrices below we report the results obtained from the two analyses, by comparing PEEC and
Fastercap results. For the �rst case we have used a number of Gauss points in any direction equal to 3
and the objects have been divided in 5 elements, for the second case we have chosen a number of Gauss
equal to 4 and we have divided the objects in 7 elements.

1) Case :

� Fastercap 10−11[F ]

C =

[
+0.57214 −0.3763
−3.77346 +3.8027

]

� PEEC-Code 10−11[F ]

C =

[
+0.5746 −0.3608
−0.3608 +0.3602

]

2) Case:

� Fastercap 10−11[F ]

C =

[
+1.146 −0.927
−0.930 +0.935

]

� PEEC-Code 10−11[F ]

C =

[
+1.143 −0.926
−0.914 +0.912

]

The matrix of capacitance C has been reached by post-processing after the evaluation of P matrix.
P matrix has been inverted and the entrances of the four blocks of the inverted matrix has been summed
all together, in order to obtain the 2× 2 elements of the Maxwell Capacitance Matrix.
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Figure 3.4: Analized geometry (Left) and Discretization (Right) for the Validation of the Evaluation of Partial
Coe�cient of Potential Method.

3.5 Partial Resistance Coe�cient Evaluation

In this section we want shortly discuss about the evaluation of Partial Resistance Coe�cient.
The general expression for the evaluation of this coe�cient for a hexahedron is given by (3.25).

Rαα =

∫
lα

ρα
Sα

dlα (3.25)

where lα is the the line which connects the two centroids of input and output faces, ρα is the resistivity
of the element and Sα is the surface normal to the direction of lα. In general, Sα varies along lα while is
a constant value only for parallelepipeds.

In this thesis the partial inductance coe�cients have been evaluated exactly only for parallelepipeds
and the "equivalent" parallelepiped has been considered for hexahedral cells.
Also for the evaluation of partial coe�cient of resistance this approach has been used: the coe�cient
is evaluated exactly for parallelepipeds while for hexahedra the "equivalent" parallelepiped has been
considered.
In this way the equation for the partial resistance coe�cient becomes:

Rα = ρα
lα
S∗α

(3.26)

where S∗α is evaluated as: S∗α = vα
lα
, and vα is the volume of the hexahedron.

As done for the partial inductance coe�cient, the partial resistance coe�cient, which is evaluated for
branch elements, is computed by considering the two hexahedra that compose the branch element. These
two hexahedra in general can be made by di�erent materials.

3.6 Meshing for PEEC volume model

In this section we are going to explain how to discretize the objects in three dimensions for the PEEC
volume model.

3.6.1 Nodal mesh, Nodal hexahedron

First we have to de�ne the nodal discretization, that consists to determine the hexahedra related to the
nodes of the electrical equivalent circuit (which represents the analysed objects). Each of these nodal
hexahedron represents a capacitive element and for each of them we have to compute the self and mutual
coe�cient of potential between all the others capacitive elements and the in�nity (self coe�cient).
These partial coe�cients of potential are evaluated only considering the "free faces" of the elements,
which are the unshared faces with the other nodal hexahedra.
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Figure 3.5: "Free faces" (blue) and "Shared faces" (red) for two nodal hexahedra

In this way, considering the example in �gure (3.5), in order to evaluate the self coe�cient of potential
of the two hexahedra we have to compute the local matrix Plocal 5×5 related to faces with blue ID while,
for the mutual coe�cient of potential between the two hexahedra, we have to compute Plocal 10×10.

From the equivalent electrical circuit point of view, the two hexahedra can be seen like two nodes which
are connected to the in�nity node through the pseudo capacitance 1

pii
(where pii is the self coe�cient

of potential) and through a voltage generator that represents the electrical coupling between the nodal
hexahedron and all the others.

In our volume PEEC-Code every "appended" load and source generator is connected to a certain
nodal hexahedron through a certain face, so also the face (or faces) of the hexahedron that are connected
to some appended circuit element must be considered such as shared faces, so they are not taking into
account for the evaluation of the coe�cients (it is also possible to consider these faces like "free" and
"shared" faces at the same time, if necessary).

3.6.2 Side mesh, Face hexahedron

Figure 3.6: Two nodal hexahedra (black) connected by a face hexahedron (red).

After the construction of the nodal mesh it is automatically de�ned also the side mesh, that is the
de�nition of the elements which connect two consecutive nodes. In literature the topic of meshing three
dimensional structures for PEEC model has not been su�ciently treated yet. In this work we refer to [33]
and [34].
In order to allow the curvature of the geometry, the side elements (or face hexahedra) are composed by
two hexahedra, that have the middle face in common. The �rst hexahedron (that correspond to one of the
two parts of the side) has the �rst face internal to the "start" nodal hexahedron: the four vertices which
compose the face are obtained by the the average between the coordinates of the points of the considered
shared face (the face that connects the "start" nodal hexahedron and the "end" nodal hexahedron) and
the opposite face to the shared face in the "start" nodal hexahedron; the second face is the shared face.

The second hexahedron has the �rst face in common with the �rst hexahedron (the shared face) and
the second face is obtained by the average of the vertices that form the shared face and the opposite face
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Figure 3.7: 3× 3× 1 plate and its electrical equivalent circuit.

to the shared face in the "end" nodal hexahedron.
By doing this, each partial inductance coe�cient must be evaluated considering these elements formed

by two hexahedra, with the face which they refer in common. The current �ows through the two hexahedra
how explained in subsection (3.1.2): it goes from face one to face two and the partial inductance coe�cient
must be evaluated how explained in section (3.2).

Figure 3.8: Nodal and side dicretization for a Two-wire line .

In general the code must consider objects discretized in three dimensions (like the plate in �gure (3.7)
that is disctetized by only one element in a direction and by three elements in the other two directions). It
is easy to understand that in this general condition the face hexahedra related to the same nodal hexaheron
could intersect. The "semi-numerical" method used for the evaluation of the partial inductance coe�cient
allows to evaluate the coe�cient between two elements that intersect (if using the modi�ed normal that
avoids the numerical singularities).
Also, note that when the hexahedra are parallelepipeds these mutual coe�cients are zeros just because
the two hexahedra have the current density vectors perpendicular to each other.

In �gure (3.7) it is represented a simple plate discretized by 3 × 3 × 1 nodal hexahedra and its
equivalent electrical circuit. For simplicity and clarity for each node and each side we have represented
only a capacitance and an inductance, omitting the voltage sources that represent the mutual coupling
between the elements.

The only exception in the side meshing must be done for the shared faces which have their relative
opposite face, in the "start" or "end" nodal hexahedron, that is a free face. For these shared faces one
of the hexahedron that composes the side element must extend until the free face, otherwise we don't
consider correctly the boundary part of the disretized object. In �gure (3.8) is shown the nodal and side
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discretization performed for a two wire line, it is possible to see that the start and end sides are longer
than the others for the reason explained above.

3.7 PEEC volume model: Special Attention

In this section we want to focus on some particular topic related to PEEC volume model.

3.7.1 Inductance Evaluation

Figure 3.9: Two loops geometry.

In the previous chapters we have considered the possibility to reach the value of the inductance of an
object simply by summing all the entrances of the L matrix.

This approach is not always applicable, for example if the loop analysed in section (3.2) was been
discretized by more than one element in the cross section we should have compute the value of the
inductance in a di�erent way, because the presence of sides which connects two non-consecutive nodal
hexahedra along the toroidal direction in the entrances of the L matrix.
These branches are not interested by current �ow in normal condition.

Figure 3.10: Inductance values extracted from the imaginary part of the impedance (blue) vs Inductance value
evaluated from L matrix (black).

In general, in order to reach the equivalent inductance value of an object (at some given frequency),
we have to evaluate the imaginary part of the impedance seen from the two nodes where the voltage
source is connected.

Here we report results in terms of impedance and inductance of two circular loops with rectangular
cross section fed by a voltage source connected to the ends of the two loops; the two loops are connected
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to each other by an appended side with zero inductance and zero resistance. The medium radius of the
loops is 10.5m, the cross section is 0.5m× 1m instead the distance between the loops is 1m.

In �gure (3.10) is shown the trend of the imaginary part of the impedance divided by 2πf considering
ideal loops (zero resistivity) compared to the value obtained from the L matrix. Instead, in �gure (3.11),
it is shown the real and imaginary part of the impedance, considering an ideal (zero resistivity) and a
real loop (2 10−4[Ωm]). The values have been evaluated in the frequency domain and it is possible to see
the anti-resonance peak when it happens the transition form inductive to capacitive behaviour.

Figure 3.11: Ideal and Real Conductor, Anti-Resonance Condition.

3.7.2 Completely Embedded Nodal Hexahedron

In general, for a massive object, it is sometimes interesting to have a �ne discretization in order to see
the �elds distribution inside the structure. So, it is necessary to know how to behave when an element
is completely embedded by others elements (for example a cube divided in 3 × 3 × 3 elements has the
internal element (2,2,2) completely embedded by the other elements).

These elements don't have any free faces so they don't have any electrical coupling with the others.
The related row and column in the P matrix must have "zero" in all the o� diagonal entrances and "one"
in the diagonal entrance.

Indeed the system that we have to solve must be slightly changed respect the one reported in sub-
section (2.5.3). [

AT (R+ jωL)
jω1 −PA

] [
V

I

]
=

[
Vs

PIs

]
(3.27)

The system shown in (3.27) must be changed in (3.28), where 1? is the diagonal matrix with ones
in the diagonal entrances related to nodal hexahedra that have at least one free face, and zeros in the
diagonal entrances related to completely embedded elements.[

AT (R+ jωL)
jω1? −PA

] [
V

I

]
=

[
Vs

PIs

]
(3.28)

By doing this, the rows of the system related to a completely embedded elements will have only the
coe�cients of the incidence matrix that give the Kircho�'s current law for the nodes.

3.7.3 Bad Conditioned System

The system shown in (3.28) can be always implemented but it can su�er of bad conditioned problem
because of the big di�erence between the entrances related to the partial inductance and potential coe�-
cients. This kind of problem is more signi�cant for "electrically" large and complex objects, that require
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a lot of elements for the discretization.
To improve the condition number of the system it is possible to apply a "pre multiplier" diagonal matrix,
B, to the second matrix row of the system.
B matrix is a diagonal matrix which entrances are simply the inverse of the maximum entrances of the
rows (or columns) of P matrix.
In this way the system becomes the one shown in (3.29).[

AT (R+ jωL)
jωB1? −BPA

] [
V

I

]
=

[
Vs

BPIs

]
(3.29)

3.7.4 Retarded Potential

When the electrical dimension of the analysed objects is comparable to the wavelength (for example in the
Antenna problem) it is necessary to consider the e�ect of retardation of electric and magnetic potential,
as already done in section (2.7). To do this it is necessary to evaluate the mutual distance between the
nodal and side elements and the expression for the partial coe�cient of potential becomes:

Lpαβ ≈ e−jβ∆r µ0

4π

1

aαaβ

∫
vα

∫
vβ

~Jα · ~Jβ
|~rα − ~rβ |

dvβdvα

ppij ≈ e−jβ∆r 1

4πε0SiSj

∫
Si

∫
Sj

1

|~ri − ~rj |
dSidSj

(3.30)

where the symbol "≈" is due to the fact that the exponential term should be evaluated inside the integral
of volume or surface, β is the constant of propagation, β = ω

c , and ∆r is the center to center distance
between the two considered elements.

In order to consider correctly the retardation we should impose that for all the side elements that
have a node in common there must be no delay. This it is necessary to improve the time domain stability,
[8].
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3.8 PEEC-Code volume example application

In this section we want to report the results obtained by the PEEC volume Code for the simulations of
some particular and easy structure.

3.8.1 Two-wire line

In analogy with PEEC �lamentary code, we have considered a two-wire line with square cross section of
0.02× 0.02m, 10m long and with a distance of 0.2m from the two conductors (in �gure (3.8) is shown a
coarse discretization of the object).

Figure 3.12: Left: Potential of Nodal hexahedra. Right: Total current �owing in longitudinal direction.

The simulation has been done how explained in section (2.6) for the �lamentary case, considering a
line symmetrically fed respect the in�nity node by two voltage sources. The simulation has been done for
di�erent frequencies, considering an ideal and a real line (without or with some resistivity) and with a
1× 1× n, 3× 3× 15, 5× 5× 15 and 6× 6× 10 nodal disretization for each of two conductors.

The results obtained for the di�erent frequencies are comparable with the ones reached with the
�lamentary code, thanks to the similarity of the two considered objects.

We report here, in �gure (3.12), the results in terms of node potentials for the 5× 5× 15 line. As we
can see, the 25 nodal hexahedra, which give the transversal dimension of the object, are virtually at the
same potential so, as expected, we will have a current �ow mainly in the longitudinal direction.

In �gure (3.12) is reported the total current �owing in longitudinal direction while in (3.13) is reported
the current distribution in the 25 conductors that form the transversal discretization of the objects, along
the longitudinal dimension.

Figure 3.13: Current distribution in the 25 elements that form the transversal section of the conductors along
the longitudinal direction.
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The results in (3.13) show that the nodal hexahedra in the corners bring more current than the internal
ones, furthermore, we see that in some conductor the current has an opposite value for the e�ect of the
�eld distribution into the solid conductor.

3.8.2 Plate

Figure 3.14: Node potential.

In this subsection we show the obtained results, in terms of potentials and current distribution, for a
plate discretized by 5× 5× 1 nodal hexahedra.
The dimensions of the plate are 1× 1× 0.25 m and it is powered by two voltage sources connected to the
opposite vertices and, both of them, to the in�nity node.
For the �rst simulation we have considered an ideal plate (zero resistivity).

Figure 3.15: 5× 5× 1 plate nodal discretization.

The results in terms of node potential are reported in (3.14), where the points refer to �gure (3.15).
The simulation was made at a frequency equal to 5 · 106[Hz].

For the second analysis we have considered a not homogeneous plate made by ideal material and
"real" material, in order to see the change in the distribution of current �ow.

The "super conductor" elements are the ones that connect the nodal hexahedra 1 and 25 along the
diagonal (which are the supplied hexahedra) while the others are made by a material with high value of
resistivity.

The results are reported in �gure (3.16) where we can see that for the ideal and homogeneous plate
the current �ows mainly in the boundary of the object, while for the heterogeneous plate the current is
forced to �ow in the central hexahedra, that are "superconductors" elements.
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Figure 3.16: Di�ernt current distributions in homogeneous and heterogeneous plate.

3.8.3 Loops, Induction

In this subsection we want to analyse the case of two concentric loops where the bigger one is powered
by two voltage sources (connected to the end points and in�nity node) while the smaller is �oating and
closed on itself, as represented in �gure (3.17).

Figure 3.17: Current induction between two concentric loops; Left: Nodal discretization; Right: Current distri-
bution.

The voltage sources impose the potential of the starting and ending nodal hexahedra of the bigger
loop at 1 [V ] and −1 [V ] respectively and the frequency is 500 [Hz].

In �gure (3.17) is shown the current �ux in the two objects and the values of the currents are about
17.48 [A] for the bigger one and −9.18 [A] for the smaller one (completely imaginary).

The dimensions of the bigger loops are: 10m for the middle radius and a square cross section of
0.5× 0.5m, the smaller one has the same cross section and a 8.4m middle radius.
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Chapter 4

APPLICATION OF P.E.E.C. Method

TO JT-60SA TF COILS

In this chapter we discuss about the application of PEEC �lamentary and volume codes to the Toroidal
Field Coils of the fusion reactor JT-60SA. We speak about:

� The tokamak devices;

� The role covered by JT-60SA related to the fusion research scenario;

� The description of the machine, focusing on the Toroidal Field Coils;

� The analyses performed by using PEEC �lamentary and volume codes;

� General comments and considerations about the PEEC-model of the devices and some possible
future developments.

4.1 Tokamak

The tokamak is an axisymmetric con�guration with a large toroidal magnetic �eld and a DC toroidal
current, [45]. Tokamaks have achieved stable operation at near reactor relevant pressures, con�nement
times, and temperatures. In other words, in terms of physics performance, the tokamak has met nearly all
the requirements for a reactor and it is expected that a next generation experiment (e.g. ITER, DEMO,
JT-60SA) will close the remaining gaps.
The tokamak is an axisymmetric torus with a large toroidal magnetic �eld, a moderate plasma pressure
and a relatively small toroidal current. It is presently the leading candidate to become the world's �rst
fusion reactor, a status earned by virtue of its excellent physics performance. Speci�cally, the achieved
values of pτE (Lawson parameter, where p is the pressure and τE is the con�nement time) at high
temperature in a tokamak exceed those of any of other concepts. Because of its performance, there is a
large number of major tokamak experimental facilities operating, or being constructed, in the international
fusion program.

A schematic diagram of a tokamak is shown in �gure (4.1). Observe that there are four basic magnet
systems in the tokamak:

� the toroidal �eld coils, which produce the large toroidal �eld;

� the ohmic transformer, which induces the toroidal plasma current required for equilibrium and
ohmic heating;

� the vertical �eld system, which is required for toroidal force balance;

� the shaping coils, which produce a non-circular cross section to improve MHD stability limits and
alleviate plasma-wall impurity problems.

59



Figure 4.1: The magnetic �eld con�guartion of a Tokamak, [45].

Typical operation of a tokamak discharge starts with the establishment of a large steady toroidal
magnetic �eld. Next, neutral gas is injected into the vacuum chamber and often pre-ionized. The trans-
former induced toroidal current is then ramped up to its maximum value and maintained for the "�at
top" portion of the pulse. During �at top operation external heating power in the form of RF or neutral
beams is applied to the plasma.

Figure 4.2: The magnetic �eld con�guartion of a Tokamak.

The magnitude of the external power is usually substantially greater than that of the ohmic power.
Most of the interesting experimental plasma physic occurs during the �at top period.

In terms of reactor desirability, the tokamak has a number of advantages and a few problems. The main
advantages are associated with good physics performance. The large toroidal �eld and correspondingly
large edge safety factor (a quantity connected to MHD stability) lead to �nite values of MHD stable β (a
quantity connected to the radial pressure balance provided by the �elds in magnetic fusion con�gurations)
without a conducting wall and to reasonably high experimental values of the energy con�nement time
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Figure 4.3: Typical pro�les in a Tokamak in the large-aspect-ratio limit R0
a
→∞, [45].

τE ; good con�nement allows the plasma to heat up to high temperatures using only a moderate amount
of external heating.

There are several problems facing the tokamak. First, the need for a large toroidal magnetic �eld
increases the technological complexity and cost of the reactor. Most of the alternative concepts have been
designed to alleviate this problem by utilizing a small external toroidal magnetic �eld, which in turn leads
to a small edge safety factor. Philosophically, these concepts are trading o� more di�cult plasma physics
for simpler reactor technology. Tokamak reactor designs have shown that high toroidal magnetic �elds are
certainly achievable from a practical engineering point of view - it is just that it would be technologically
simpler end economically less expensive if such a large �eld were not required.

The second main issue arises because a reactor will almost certainly need to operate as steady state
device. This requirement is incompatible with an ohmic transformer, which cannot inductively drive a
DC current for an inde�nite period time. Some form of external current drive is required. In general, the
methods of external current drive involve costly and high-technology power sources, such as microwaves
or neural beams. Furthermore, current-drive e�ciency is not very high - the number of input watts per
output ampere is large. The net result is that if too much current needs to be driven, power balance
becomes unfavourable and the economics become unattractive.

Fortunately, in a tokamak there is a transport-driven toroidal current, known as the "boot-strap
current". This current arises naturally, and does not require any external sources. Depending upon the
pressure and magnetic �eld pro�les, the bootstrap current can provide between virtually none and 95%
of the total current.
The present consensus in the fusion community is that 75% or more of the current needs to be provided
by external current drive. A further complication is that achieving a high bootstrap fraction requires a
high β, whose value invariably lies above the no-wall β limit. Thus, high bootstrap tokamaks will likely
need to stabilize the resistive wall mode.
The second problem facing the tokamak can be summarised as follows. A successful tokamak must achieve
a high-β, high-bootstrap-fraction plasma that can be sustained in steady state with only a small amount
of external current drive and no ohmic transformer. This is one of the main plasma physics missions of
future research.
Finally, the importance of satisfying the MHD β limit against external balloning-kink modes must be re-
emphasized. When this criterion is violated experimentally there is almost always a catastrophic collapse
of the plasma pressure and current. Such events are appropriately called "major disruptions". They must
be avoided in large experiments and reactors since the large transient forces developed can cause actual
physical damage to the structure.
The conclusion is that it is important to accurately know the MHD β stability limit against ballooning-
kink modes and to learn how to operate as close to the limit as possible to maximize performance.

Consider now variations on the basic tokamak. The �rst variation discussed involves elongation and
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triangularity of the plasma cross section increases the β limit against low-n ballooning-kink modes. There
is, however, a practical limit to the maximum achievable elongations greater than a factor of height/width
∼ 2.
The next variation discussed concerns operation in the "advantage tokamak" (AT) regime. It is AT
operation that is intended to address the main plasma physics issue discussed above. In AT operation
the pro�les are externally adjusted to produce a hollow toroidal current density and high βp (a quantity
connected to the radial pressure balance provided by the poloidal magnetic �eld), the right combination
to generate the large bootstrap current essential for minimizing the current-drive requirements. Pro�le
control is accomplished experimentally by means of programming the time dependence of the plasma
current and the radial and time dependence of the external heating sources. The MHD that arises here
is that for a large bootstrap current, the ballooning-kink β limit without a perfectly conducting wall is
invariably violated and the resulting resistive wall mode must be feedback stabilized. It is possible to
determine exactly how close the wall must be to make the transition from an ideal mode to a resistive
wall mode in order for feedback stabilization to be a practical possibility.

4.2 JT-60SA

JT-60SA is a joint international project involving Japan and Europe for the construction and operation of
a new tokamak intended to prepare and support ITER operation. The mission of the JT-60SA Tokamak,
which will be built in Japan, is to contribute to the early realization of fusion energy in support and
supplement of the ITER program. The JT-60SA project is part of the broader approach for fusion
energy. "SA", standing for �super advanced�, refers to the use of Superconducting Coils Magnets and to
the study of advanced modes in plasma operation. The SCM system includes Toroidal and Poloidal Field
Coils. In addition the machine features a number of normal conducting coils: Fast Plasma Control Coils,
Resistive Wall Mode Control Coils and Error Field Correction Coils, [38]. First plasmas are foresee in
2016.

Figure 4.4: JT-60SA device, [47].

This device is intended to play a key role to prepare and accompany the ITER programme in the
prospect of DEMO. The design of an early DEMO will very likely start before ITER D-T campaigns and
for that reason important information will have to come from existing devices.
About the geometrical features, JT-60SA is a tokamak with major radius R = 2.96m and minor radius
a = 1.18m, aspect ratio A = R

a = 2.5m which is intended to complement similar existing and near term
international e�orts.
With plasma current capabilities up to 5.5[MA] (at Bt = 2.25[T ]) and an envisaged heating power of up
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to 41[MW ] it will operate in DD, aiming at reaching break-even equivalent regimes. Final goal of the JT-
60SA research program is to prove the integration of all the requirements needed in a high-performance
DEMO scenario, having as main reference a low-aspect ratio, high performance, steady state DEMO
prototype.
The JT-60SA device is capable of con�ning break-even-equivalent class high-temperature deuterium plas-
mas lasting for a duration (typically 100s) longer than the time scales characterizing key plasma process,
such as current di�usion and particle recycling, using superconducting toroidal and poloidal �eld coils.
The device should also pursue fully non-inductive steady-state operations with high values of the plasma
pressure exceeding the no-wall ideal MHD stability limits. The target regimes of JT-60SA are shown in
�gure (4.5).

Figure 4.5: Target regimes of JT-60SA, [47].

The JT-60SA experiments should explore ITER and DEMO-relevant plasma regimes in terms of
non-dimensional plasma parameters at high densities in the range of 1 × 1020 m−3. In order to satisfy
these requirements, the JT-60SA device has been designed to realize a wide range of diverted plasma
equilibrium con�gurations covering a high plasma shaping factor (S ≈ 7) and low aspect ratio (A ≈
2.5) with a su�cient inductive plasma current �attop duration. Compared with the JT-60U device, the
plasma elongation is high (kx ≈ 1.9) simultaneously with high plasma triangularities (δx = 0.4− 0.5) at
high plasma currents.
The shape parameter of JT-60SA is equivalent to that of the Slim-CS DEMO which has the highest shape
parameter among the DEMO designs. The major radius of JT-60SA is about half of ITER and the Slim
CS DEMO.
The plasma size of JT-60SA locates between ITER and other non-circular cross-section superconducting
tokamaks. An integrated knowledge of these super conducting tokamaks, JT-60SA and ITER will establish
a reliable nuclear fusion science and technology basis for DEMO. Typical parameters of JT-60SA are
shown in the table of �gure (4.6).

The maximum plasma currents are 5.5[MA] in a low aspect ratio con�guration and 4.6[MA] in the
ITER-shaped con�guration. Inductive operations at Ip = 5.5[MA] with a �at top duration of up to 100s
is possible with the available �ux of ≈ 9[Wb]. The heating and current drive system will provide 34[MW ]
of neutral beam injection (10[MW ] of 500[keV ]N −NB + 24[MW ] of 85[keV ]P −NB) and 7[MW ] of
110[GHz] + 138[GHz] dual frequency ECRF.
The divertor target is designed to be water-cooled in order to handle the expected heat �ux up to 15[MW

m2 ]
for up to 100s.
With these capabilities, JT-60SA allows explorations in ITER- and DEMO- relevant plasma regimes in
terms of the non-dimensional parameters.
In DEMO reactors, we need to sustain high values of the energy con�nement improvement factor, the
normalized beta βN , the bootstrap current fraction, the non-inductively driven current fraction, the
plasma density normalized to the Greenwald density, the fuel purity, and radiation power simultaneously
in steady-state. However, such a high "integrated performance" has never been achieved. The most im-
portant goal of JT-60SA for DEMO is to demonstrate and sustain such integrated performance.
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Figure 4.6: Typical Parametrs of JT-60SA, [47].

JT-60SA allows exploitations of fully non-inductive steady-state operations with 10[MW ]/500[keV ] tan-
gential N-NBCD and 7[MW ] of ECCD. The expected plasma current for high βN (=4.3) fully non-
inductively current driven operation is 2.3[MA] with Pin = 37[MW ] with the assumed HH = 1.3.

JT-60SA research project complements ITER in all areas of fusion plasma development necessary to
decide DEMO construction. For this purpose, the JT-60SA Research Plan has been organized to complete
the main mission of JT-60SA before the end of DEMO construction design.
The most important goal of JT-60SA is, by collaborating with ITER, to decide the practically acceptable
DEMO plasma design including practical and reliable plasma control schemes suitable for a power plant.
The DEMO design reference for JT-60SA is an "economically attractive steady state" reactor and the
target values for the key plasma parameters has been set as shown in �gure (4.7).

Figure 4.7: Typical Parametrs of JT-60SA, [47].
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However, the JT-60SA research plan has to treat the "DEMO regime" as a spectrum spreading
around the reference. It should be also noted that DEMO needs to have realistic control margin. If
JT-60SA cannot reach the reference values, we have to reduce the DEMO design parameters. In turn,
if JT-60SA can demonstrate higher values, we can design a more copact DEMO reactor. However, if
JT-60SA �nds that the control margin is unrealistically small, we have to keep the present reference
values. It should be emphasized that, for such decision making of DEMO plasma parameters, we have
to consider "practically, reliability and economy". Evaluation of DEMO plasma regime in terms of safety
and availability as a power plant is also needed. The important role of JT-60SA is to provided data sets
su�cient for these evaluations. The key research elements are:

� Extension of operation boundaries above ITER;

� Demonstration of high integrated performance;

� Development of plasma control schemes;

� Decision of DEMO design parameters.

In exploring these subjects, collaborative studies with modelling simulation, fusion engineering, and
ITER are indispensable.

4.2.1 JT-60SA, Toroidal Field Coil

Figure 4.8: Model and representation of the 18 Torodal Field Coils, the coils are grouped in 3 blocks of 6 coils
and each coil is made by 72 turns modelled by �lament wires (Right �gure).

The Toroidal Field Coils system is composed by 18 coils grouped in three sections interconnected
through three quench protection circuits. The converter AC/DC has to provide a current of 25.7 [kA] at
80 [VDC ] and it is composed by six-pulse, unidirectional thyristor bridge. The coils system is protected
against overvoltages, fault to ground and from quench by di�erent systems of control and protection, [36].

Each one of the 18 coils is composed by 72 loops which geometry is reported in [39] and it is shown
in �gure (4.8). Furthermore, the connection scheme of the turns is proposed in �gure (4.9).

Each loop is composed by an internal conductor coil divided in 324 superconducting strands (made
by Niobium-Titanium) plus 162 cooper strands of 0.81 mm diameter each, [37].
This arrangement provides a void fraction of approximately 32%, with a Cu/not-Cu ratio comprised
between 1.6 and 1.9. This corresponds to a total mass of 33.4 t of superconducting strand for the whole
TF magnet.

Being crossed by a nominal current of 25.7[kA], the conductor is cooled by a forced �ow of supercritical
helium having a nominal mass �ow rate of 4 [g/s]. The dimensions of the section of the internal conductor
are 18× 22mm.
Each superconductor is surrounded by the jacket, a stainless steel conductor with thickness of 2mm that
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Figure 4.9: Connection sheme of 72 turns.

follows the internal conductor along the development of the coil.
Each winding pack of the Toroidal Filed magnet of JT-60SA consists of 72 conducting turns arranged
in 6 double pancakes, as shown in �gure (4.9). The insulation between each coil is guaranteed by a half-
overlapped glass �ber tape, that has a relative permittivity of about 5.
The six pancakes that subdivided the 72 turns are surrounded by a conducting layer (3mm thickness)
that has a high resistivity (shown in �gure (4.9)).

The geometrical shape of the turns is shown in �gure (4.10) and it is described in [39]. Figure (4.10)
represents the higher part of the "guide loop": a non-physical loop virtually collocated in the center of
the 6 pancakes. Its geometrical data allows to construct all the geometry of the 72 turns by doing some
geometric operation.

Figure 4.10: Geometry of "guide loop", [mm], [39].

The winding pack is inserted in a stainless steel casing which dimensions are reported in [37] and in
�gure (4.9). The casing is grounded by a resistance of 0.1 Ω, connected in a point and it is also connected
to the layer.
The casing has the function of mechanical support for the winding packs and for two other coil systems,
namely the Equilibrium Field coils and the Central Solenoid (CS) segments, which are also resting on
the Toroidal Field casing, connected at speci�c positions.
The thickness of the casing varies from 20mm to 90mm and for our purpose we have considered a
simpli�ed geometry for the model of the object.

In this chapter we want to present how we have modelled the Toroidal �eld coils, in order to study
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the electromagnetic behaviour of the machine at di�erent frequencies.

4.3 PEEC �lament model

About the �rst modelling approach, we have decided to use the �lamentary PEEC-Code, considering
only the superconductors coils and neglecting the presence of jacket, layer and casing. In �gure (4.8) are
represented all the 18× 72 turns, but we have considered only one or six coils in most of our simulations.

4.3.1 Toroidal Field Coils

Figure 4.11: Discretization of one Toroidal Field turn for �lamentary code, dimensions in [mm].

In this subsection we want to show the results obtained from the analysis of one Toroidal Field Coil
in terms of self and mutual inductance of the 72 loops, the impedance seen from the voltage sources and
the distribution of nodal potentials and branch currents along the conductors.

The turns have been modelled like closed on its self from a geometric point of view but, from the
standpoint of the electrical equivalent circuit, short lumped sides have been inserted to have the correct
connection between the turns (see the connection scheme in �gure (4.9)).

In �gure (4.11) is reported the discretization of one turn with 31 PEEC capacitive nodes and 30
PEEC inductive sides.

The radius of the �lament is 9mm and the coils have been powered considering two voltage sources
connected to the start node of the �rst loop and the in�nity node, for the �rst generator, and, to the end
node of the last loop and the in�nity node for the second generator. In this way we have constrained the
potential of the �rst and of the end node of the object.
The start and end nodes of each turn are electrically di�erent but they geometrically overlap in the origin
of �gure (4.11).

The �rst result obtained from PEEC �lamentary code that we want to show is the value of the self
and mutual inductance of the coils reported in �gure (4.12). As we can see, the values of self inductance
of the turns vary from 1.978 10−5[H], for the smaller ones (like the turn 6 in the connection scheme), to
2.076 10−5[H], for the bigger ones (like turn 1 in the connection scheme).
The values of mutual inductance between the �rst loop and the other 71 show that the magnetic coupling
is higher for the turns 2 and 12, which are the closest to turn 1.

These results can be compared to the values reported in [38]. In this paper is given a value of the
self-inductance varying from 18.6 [µH] to 19.3 [µH], from the smaller to the bigger turn.
These values have been evaluated with a �nite element model and the di�erences may be due to the using
of a too simpli�ed model for the representation of the turns, that are considered with a circular cross
section, in contrast with the reality.
The inductances have been evaluated by considering the relative matrix blocks of the global L matrix
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Figure 4.12: Self Inductance of the 72 turns and Mutual Inductance between turn-1 and the others 71 turns of
a Toroidal Field Coil.

of the coils. It is also possible to extract the value of the self inductance of the entire coil (made by 72
turns) by summing all the entrances of L matrix. The reached value of 0.0633[H] can be also obtained
by dividing the imaginary part of the impedance by ω, when the frequency is lower enough for neglecting
the capacitive e�ects.

In the table below are reported the values of self inductance for a turn, a single turn, one coil and 6
coils.

Table, Self Inductance for TF Coils of JT60-SA
Considered Turns Self Inductance [H]

1 Turn 2.1957 · 10−5

72 Turns, One Coils 0.0633
6 Coils 0.7178

In a similar way it is possible to evaluate the Maxwell Capacitance Matrix, [42], between two turns
by inverting the corresponding block matrices of the Pglobal matrix of the coil.
In order to obtain the matrix of capacitance between two turns (turn i and j) we have to extract from
the Pglobal matrix the 4 matrix blocks related to the partial coe�cients of potential of elements of turn
i with itself, of turn j with itself, turn i with j and vice versa.
By doing this, we can construct the local matrix of partial coe�cients of potential, which can be inverted
in order to reach the local capacitance matrix between the two turns. By summing all together the
entrances of the four block matrices we can obtain the Maxwell capacitance matrix of two turns. We
report here the Maxwell Capacitance Matrix, relative to two radially adjacent turns:

CM =

[
5.7702 · 10−10 −5.0413 · 10−10

−5.0413 · 10−10 5.7299 · 10−10

]
(4.1)

In �gure (4.13) is shown the trend of o�-diagonal terms (negated) of Maxwell Capacitance Matrix,
related to the �rst turn and all the others.

As second result, we want to show the values of anti-resonance peak obtained from the simulation in
the frequency domain of only one turn, one coils and six coils connected in series. The values are reported
in the tabular.
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Figure 4.13: Negated o�-diagonal entrances of Maxwell Capacitance Matrix for turn 1 with all the others.

Table, Anti-Resonance peak for TF Coils of JT60-SA
Considered Turns Anti-Resonance Frequency [Hz]

1 Turn 7.735 · 106

72 Turns, One Coils 3.865 · 104

6 Coils 1.233 · 104

The impedance of the coil has been evaluated by the ratio between the di�erence of potential of the
nodes where the voltage sources are connected and the current that �ow in these appended sides.

4.4 PEEC volume model

Coil Model

Figure 4.14: Superconductor and Jacket, model not in scale. Left: PEEC model. Right: Representation.

In this section we explain how we have modelled the Toroidal Field Coils of JT-60SA for the PEEC-
Volume method. As opposed to �lamentary model, using hexahedral elements instead �laments, it has
been possible to consider a more accurate model for the machine, considering also the jacket and the
casing.
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In this model the jacket and the internal superconductor have been modelled like a single heteroge-
neous object that we have considered such as a single turn.
All the objects considered in the model -the turns (made by the internal superconductor an the external
jacket) and the casing- have been divided in the same number of elements along the development of the
turns in poloidal direction, while it is possible to decide independently the number of radial subdivisions
for each object.

About the superconductor we have decided to consider it with a single element for the cross section
just because, how previously said, the internal conductor is made by 324 superconducting strands and
162 copper strands wrapped each other, so we can consider a uniform distribution of current in the cross
section.

The jacket always follows the superconductor and it is modelled by four hexahedra that envelop the
internal superconductor, as shown in �gure (4.14). The four parts of the jacket can also be divided in
more hexahedra along the radial direction, in this way we can take into consideration also the current
distribution along the thickness.

In our model the geometry of the casing has been simpli�ed compared to the real shape of the object
shown in (4.9). The adopted geometry is shown in �gure (4.15), where the dimension are: 0.235× 0.470m
for the external pro�le, 0.165× 0.36m for the internal pro�le, 0.20m for the smaller thickness, 0.55m for
the lower and upper thickness (related to the �gure) and 0.50m for the thickness on the right.

Figure 4.15: Sempli�ed geometry used for the model of the casing; PEEC Model.

The casing can be divided in a certain number of elements along the radial direction. In �gure (4.15)
the object has been divided in two elements along the radial direction while in the poloidal direction (non-
visible in the �gure) it has been discretized by the same number of elements used for the superconductor
and jacket.

Inductance Evaluation for the Superconductor

In analogy with what we have done for the �lamentary model, we want to report the obtained results in
terms of self and mutual inductance of the turns.

First, we have considered only the superconductor by neglecting the presence of the jacket, in this
way it is possible to make comparisons with the results obtained by the �lamentary model. With this
considered model the values of inductance have been easily extrapolated directly by the inductance matrix
L.

The values of self and mutual inductance (between the �rst turn and all the others) are shown in
�gure (4.16). The values have been reached for a coarse and for an accurate discretization of the turns
(see �gure (4.17)).
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Figure 4.16: Self and Mutual Inductance of the turns of Toroidal Field Coils, JT-60SA.

Furthermore, in order to make some consideration about the e�ect of the quality of the discretization
we report in the table below the obtained values for the self inductance of the �rst turn modelled with
di�erent number of hexahedra.

Table, Self Inductance Evaluation, E�ect of disretization
Number of nodal hexahedra Self Inductance [H]

42 2.2138 · 10−5

26 2.2061 · 10−5

16 2.1800 · 10−5

10 2.1456 · 10−5

All the values have been obtained by using a �rst order of Gauss-Legendre integration in all the the
three directions, which implies to use 8 points for the numerical evaluation of the integrals.

Figure 4.17: Di�erent distretizations for the turns of the Toroidal Field Coil of JT-60SA; PEEC Model.

Self Inductance Evaluation of a Turn, Superconductor and Jacket

Now we want to consider the turn composed by the superconductor enveloped by the jacket, and evaluate
the self inductance for this kind of object.
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In this subsection we consider two types of discretization for the turns: the �rst with 48 nodal hexa-
hedra for the superconductor and only one element in the radial direction for the jacket; the second with
134 nodal hexahedorns for the superconductor and two elements in the radial direction of the jacket.

The jacket is made by stainless-steel that has a resistivity of about 75 ·10−8[Ωm] at room temperature
but, in this particular application, the object is directly connected to the superconductor which is cooled
to a temperature of about 2K, so its resistivity is lower and approximately equal to 50 · 10−8[Ωm].

For this kind of object the self inductance can be estimated by the evaluation of the impedance seen
from the voltage sources.

Figure 4.18: Impedance of one turn (superconductor and jacket) with the frequency.

In our model the turns are powered by 5 voltage sources, that impose the value of the potential for
the start nodal hexahedron of the super conductor and for the four nodal hexahedra of the jacket, which
envelope the nodal hexahedron of the superconductor. These voltage sources are connected to the object
and to the in�nity node. They impose a value of the potential of the "start" nodes of the turns equal to
1 [V ].
There are other 5 voltage sources that impose a negative value of −1 [V ] to the "end" nodes of the turns.
If the jacket is divided by more than one element in the radial direction, it becomes necessary to insert
a higher number of voltage sources in order to impose the value of the potential to all the start nodes
of the turns (for example, if the jacket is divided by two elements in the radial direction, we will use 9
voltage sources for the start nodes and 9 voltage sources for the end nodes).

In �gure (4.19) is shown the trend of the real and imaginary part of the impedance of one turn
(considering the superconductor and the jacket) and the estimated value of the "inductance" evaluated
as Zi

ω , where Z = Zr + jZi, this and the following results are related to the �rst type of discretization
considered.

As we can see, the estimated value of the inductance appears to be equal to 2.312 · 10−5[H] for the
low frequency of 1[Hz] and it stabilizes at a value of 2.075 · 10−5[H] for the higher frequency.

Furthermore, the value of the real part of the impedance (related to the resistivity of the jacket)
appears to be nulls for the low frequency and it rises and stabilizes with the increasing of frequency.
This trend can be explained considering that with the growth of the frequency the impedance related
to the superconductor side elements rises, so the current starts to �ow in all the section formed by the
superconductor and the jacket.

For the second discretization the values of real and imaginary part of the impedance are very similar
to the results obtained by the �rst discretization. The estimated values of self inductance varies from
2.317 · 10−5[H], for the low frequency, to 2.079 · 10−5[H], for the higher frequency, while the real part of
the impedance rises until a value slightly higher than 0.1[Ω].
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Self Inductance Evaluation of the Toroidal Field Coil, Superconductor and Jacket

Figure 4.19: PEEC model of a Toroidal Field Coil of JT-60SA, representation of contour lines .

In this subsection we show the obtained results concerning the estimation of the self inductance of
the Toroidal Field Coil of JT-60SA, obviously considering all the 72 turns made by superconductor and
jacket.
For reason related to computational cost it was not possible to use a very �ne discretization of the turns
and we have considered the jacket with a single element in radial direction. If we had considered more
elements the number of side and nodal hexahedra would have enormously increased, so also the size and
the time to compute L and P matrix would have been very high.
Furthermore, also the time for the inversion of the system (necessary to reach the value of current �owing
in the side elements) would have been considerable.
For these reasons we have �rst considered each turn discretized by 16 nodal hexahedra along the toroidal
direction of the turns. The estimated inductance has been evaluated for these frequencies: 100, 550 and
1000 [Hz]. The reached value of the inductance is 0.0627 [H] for all the three frequencies.
Other analyses have been done by considering di�erent number of hexahedra for the discretization of the
turns, the obtained results have been quite similar.

Current Distribution in a turn, e�ect of frequency and discretization

In this subsection we want to discuss the e�ect of the frequency and discretization in the current distribu-
tion of a turn. For reasons which will clari�ed latter we consider only a turn (considering superconductor
and jacket).

Considering �gure (4.10), we can say that each turn (divided in two symmetric parts) is formed by
a vertical part 2.37 m long, a circular part of an angle of 90°, a second circular part of an an angle
of 36.48°and a last circular part of an an angle of 53.52°. The �rst straight, from a geometrical point
of view, could be represented by a singular hexadron along the main direction while the other circular
parts required more elements in order to guarantee a good approximation of the real shape of the turn.
Besides the geometrical point of view, it is also necessary to consider the physical aspects concerning the
discretization. The turn is made by an internal superconductor (represented by a singular hexahedron)
and by the jacket that has a more thin thickness than the superconductor.
The jacket is modelled by four hexahedra that surround the superconductor (in the radial direction).
From the point of view of the electrical equivalent circuit, the object can be represented as shown in
�gure (4.20).

The inductor (1) represents the side hexahedra of the internal superconductor, which connects two
nodal hexahedra (SC1 and SC2) along the toroidal direction. There is no resistance in this branch because
of the superconducting material.
The impedance (4) and (7) represent the side hexahedra that connect the nodal hexahedra of the jacket
in the same toroidal position of SC1 and SC2. For simplicity and clarity only two of the four arrays of
nodal hexahedra that surround the superconductor have been considered.
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Figure 4.20: Equivalent circuit related to a part of a turn of Toroidal Field Coil of JT-60SA.

The impedances (2), (3), (5) and (6) represent the side hexahedra which connect the nodal hexahedra of
the superconductor and the jacket.
Once again, for simplicity and clarity the voltage sources related to electric and magnetic couplings have
not been represented.
In general, at least a very �ne disretization is used, the vertical sides (1), (4) and (7) represent side
hexahedra longer than the ones represented by sides (2), (3), (5) and (6), because of the geometrical
dimensions of the turn.
This involves that the impedance of these branches can be bigger than the others, especially with the
frequency increase.
This produces a non-realistic behaviour of the electrical equivalent circuit: the current tends to �ow
through "horizontal" sides rather than side (1) (which is made by superconducting material). This e�ect
is shown in �gures (4.21) and (4.22).

Figure 4.21: Current distribution in a turn, e�ect of the discretization, �ne.

Figures (4.21) and (4.22) show qualitatively the e�ect discussed above. The two currents distribution
shown in (4.22) have been obtained for a coarse discretization of the turn (16 nodal hexahedra in the
toroidal direction). This involves that the impedances of sides which connect superconductor and jacket
are smaller that the ones which connect two nodal hexahedra of the superconductor, so the current tends
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to �ow through these sides rather than the superconductor.
The results reported in the �gures are related to a frequency of 1000 [Hz]. Obviously, this e�ect is heavily
dependent to the frequency because, with the fall of the frequency, the purely imaginary impedance of
the branches related to the superconductor decreases.

This e�ect, due to a combination of discretization and frequency value, obliges to study accurately
the number of elements chosen to model the geometry. In particular, mostly with the increase of the
frequency, it is necessary to use a �ner discretization in order to avoid the phenomenon discussed above.
This implies to use a huge number of elements if we are considering all the 72 turns of the Toroidal Field
Coil (and also the casing and the layer) and this could be a problem for a computational cost point of
view.

Figure 4.22: Current distribution in a turn, e�ect of the discretization, coarse.

The time required for the composition of P and L matrices grows quadratically with the increasing
of the number of nodal and side elements.
Some technique can be used in order to reduce the computation cost and the time required for the sim-
ulation.
First, P and L matrix are always symmetric matrices so it is not necessary to compute all the entrances
but it is enough to evaluate only the half.
Secondly, it is possible to parallelize the part of the code designed to the evaluation of the coe�cients.
Obviously the performance depends also on the programming language used. In this thesis work the code
has been written in Matlab, which o�ers a "comfortable" ambient of programming but it doesn't give
good performances when big nested cycles of iterations are used (as the ones carried out to �ll P and L
matrices, which require a double iteration on the nodal and side elements).
For this reason this part of the code has been rewritten in Fortran language, which gives better per-
formance respect Matlab for these kind of problems.
By adopting all the strategies here discussed, a speed-up factor of 10000 has been reached compared to
the �rst version of the code.
Another considerable aspect is the time required for the system inversion, that also grows quadratically
with the increase of the system dimension.
To reduce the time required for the inversion it is possible to adopt a reduced system, such as the one
reported in (2.35). By using a "reduced system" it is possible to dramatically reduce the dimension of
the system, so also the time required for its inversion, but some post-processing is required to obtain the
node potentials.
Another possibility is to use some "sparsi�cation" technique, as the one based on Hierarchical Matrix
theory (H-matrix), [48], [49].
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The theory of H-matrices leads to consider a matrix with a more performing data structure compared
to the usual way to consider it. By adopting this theory, it is possible to store and perform algebraic
calculations (like matrix inversion) with full matrices, saving memory and computational time.
Since P.E.E.C. method requires to treat very full matrices, the theory of H-matrices appears to be very
attractive in order to reduce the computational cost required by the system inversion, mostly if analyses
in the frequency and time domain are demands.

Anti-Resonance Peak

In this subsection we are going to report the obtained results in term of Anti-Resonance Peak.
The values of frequencies for which the anti-resonance peak appears are reported in Table "Anti-Resonance
Frequencies" and the analyses have been done by considering di�erent parts of the machine.

Table, Anti-Resonance frequencies
Considered Turns Anti-Resonance Frequency [Hz]

1 Turn 7.325 · 106

12 Turns 5.350 · 104

72 Turns 1.922 · 104

72 Turns and Casing ≈ 2 · 104

The obtained results are in�uenced by the e�ect of the disctretization discussed in the previously
subsection. With the increase of the number of the considered turns the dimension of the matrices
increase and also the time and computational cost. For this reason, with the increase of the number of
loops considered in the model, a more coarse discretization has been used.
This obviously a�ects the results; in order to have a more accurate model of the coils or to consider more
than one TF coil, it is necessary to have a more performing code and/or computer.
For the aim of this thesis this has not been required but for further analyses this problem has to be taken
into account.

Figure 4.23: Anti-resonance 12 turns of Toroidal Field Coil of JT-60SA, in empty space.

In �gure (4.23) is shown the anti-resonance peak obtained by the analysis of 12 turns of Toroidal
Field Coil of JT-60SA. The turns have been considered in empty space.
Each turn, considering the upper part shown in �gure (4.10), has been discretized by 7 elements for the
vertical stretch, 6 elements for the �rst circular stretch, 3 elements for the second circular stretch and 7
elements for the last circular stretch. So, each turn has been discretized by 46 nodal hexahedra along the
poloidal direction so, considering jacket and superconductor, each turn has been divided in 230 elements,
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for a total number of 2760 nodal hexahedra, that is also the dimension of P matrix.
Indeed, the number of side hexahedra is 7116 while the L matrix is 7129 × 7129, considering also the
appended side (loads and voltage sources).
With these dimensions of the matrices the time needed for the creation of the matrices and the time
required for the inversion of the system are still reasonable.

Indeed, in �gure (4.24) is shown the impedance in anti-resonance condition for 72 turns (one Toroidal
Field Coil) of JT-60SA.
For this study the turns have been divided in 3+3+2+3 elements, respectively related to the 4 stretches
which form the half upper part of the turn (see �gure (4.10)).
By doing this each turn has been discretized by 22 nodal hexahedra in poloidal direction for an overall
number of nodal elements of 7920 (considering the presence of the superconductor and jacket).
The overall number of side hexahedra has been 20242 plus 365 appended sides (loads and voltage sources).

Figure 4.24: Anti-resonance 72 turns of Toroidal Field Coil of JT-60SA, in empty space.

The anti-resonance value of 1.922 · 104 [Hz] is close to the value obtained by a research team working
in Germany for "Fusion for Energy", their results cannot be shown in this thesis because under NDA
(Non-Disclosure Agreement).
In general, it was not possible to compare the results obtained by PEEC code with the ones obtained
by this research team because our model has not been able to consider the presence of the dielectric as
opposed to the commercial software used by the "Fusion for Energy" team.
Future investigations are foreseen in order to consider also the presence of the dielectric (see the next
subsection).

4.4.1 Inclusion of Dielectric Material

The main problem concerning the modelling of the Toroidal Field Coil of JT-60SA is related to the
presence of the dielectric (εr ≈ 5) between the turns, layer and casing.
The presence of this dielectric material obviously in�uences the electric couplings between the elements
so, in order to have a correct model of the machine, its presence must to be considered. The right way to
do this it is to include dielectric cells into the PEEC model, shortly introduced in the (1.4.2).
This kind of cells have not been considered in this thesis work and also in literature they have not been
treated enough yet.
In order to consider the presence of the electric material, for some analyses (like the one which has given
the last result of Table "Anti-Resonance frequencies") some rough operation has been done for the en-
trances of P matrix, but this approach has not give satisfactory results.
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Figure 4.25: Dielectric cell.

By adding these cells to the code, the system to solve must be changed. Considering �gure (4.25) and
neglecting for the moment the presence of the excess capacitance, we have that the impedance between
the nodes can be written in matrix form as: Z = R + jωL, where R and L are the resistance and
inductance matrix respectively. By adding the excess capacitance the matrix impedance Z becomes as
shown in (4.2).

Z =
RX2

C

R2 +X2
C

− j R2XC

R2 +X2
C

+ jXL

XC =
1

ωCex

XL = ωL

(4.2)

where Cex is the diagonal matrix containing the excess capacitance coe�cients of the dielectric cells.

The formulation has been obtained by considering the equivalent impedance of the dipole related to
the parallel of the resistance and the "excess capacitance" in �gure (4.25).

For conductor cells the excess capacitance is null, so the related XC has in�nite value and Z becomes:
Z = R+ jωL.
For ideal dielectric cells, that have in�nite resistivity, the expression of Z becomes: Z = −jXC + jωL.
So, if in the model are present these two kinds of cells, the Z matrix can be evaluated as Z = R&C+jωL,
where R&C is a diagonal matrix that has real entrances equal to the partial resistance for conductors
cells and imaginary and negative entrances for dielectric cells.
So the system to be solved becomes in general:[

AT Z

jω1? −PA

] [
V

I

]
=

[
Vs

PIs

]
(4.3)

A "real" dielectric cell can be modelled in a PEEC method as the one shown in �gure (4.25).
It is often di�cult to know the resistivity value of a dielectric material but usually this value is so high
that the presence of the resistance in the PEEC model of the dielectric cell can be neglected.
This reasoning it is not applicable for the self and mutual inductance, just because also the displacement
currents, that �ow in the dielectric cells, produce the magnetic vector potential ~A, so the magnetic
coupling with these cells, in theory, must to be considered.
Then, the rows of the L matrix related to these dielectric cells are full rows, so the inclusion of the
dielectric cells in the PEEC-Code could burden the computational cost for the analysis in the frequency
domain of the TF coils of JT-60SA.
On the other hand, it is possible to consider a simpli�ed model for the dielectric cells: even if the magnetic
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coupling with the currents �owing in the dielectric material cannot be in general ignored, we have to say
that the displacement currents that �ow in the dielectric cells will be considerable only for high frequency
values. By doing this observation and considering that the frequency values required by the analysis
in the frequency domain of JT-60SA are not so high, we can neglect the presence of self and mutual
partial inductances for these cells. Then, the partial dielectric cells can be modelled simply with a partial
capacitance.
With this simpli�cation the global system becomes however larger than the one related to the method
which doesn't take into account the presence of the dielectric material, but the rows of L matrix related
to the dielectric cells will have null entrances. Therefore, by adopting this simpli�cation, it will be possible
to save time and computational cost during the assembly of the L matrix (that is the one that requires
more time) and also during the inversion of the system, that appears more sparse.

4.4.2 Future Studies on JT-60SA with PEEC method

Figure 4.26: Voltage appearing across quench protection circuits during operation with nominal current.

With the implemented codes it has been possible to study the machine without considering the pres-
ence of the dielectric material.
This limitation of the code can be overcome in future by adding the dielectric cells, which require some
more studies.
With the addition of these cells it will be necessary to discretize also the space interposed between the
turns, the layer and the casing. This will make more complicated the geometry and also the model;
furthermore, it will be needed more elements in order to discretize also the dielectric material, so the
matrices will become larger.
On the other hand, with the inclusion of dielectric cells in the method, it will be possible to have a precise
model of the machine and this will allow to study more accurately the behaviour of the machine.

Another interesting study that could be performed is the simulation of the discharge of the 6 Toroidal
Field Coils in the quench protection circuit.
In order to test the model, a valid benchmark is to compare the voltage wave appearing across quench
protection circuit during the discharge in the P.E.E.C. model of the machine with the one shown in �gure
(4.26).
In �gure (4.26) the experimental data are compared with the ones obtained with a Spice-model of the
machine reported in [38]. In order to perform this simulation it is necessary to study the discharge in the
time domain.
A simpli�ed model of quench protection circuit is shown in �gure (4.27). As we can see, in the electric
circuit a diode is present. Its presence requires to implement a theta method (or another kind of time
domain study method) which allows to consider this kind of circuit elements.
The implementation of these features in the P.E.E.C. Volume-Code will allow to study general problems,
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Figure 4.27: Simpli�ed model of Quench Protection Circuit.

such as the discharge of the TF coils of JT-60SA in a electric circuit which contains non-linear elements.
Furthermore, by applying a good discretization to the machine it will be possible to analyse the potential
distribution along the turns of the machine and possibly foresee potentially dangerous phenomena for the
insulation during fast discharges of the coils.

Another interesting study concerning the model is the e�ective electromagnetic relation between the
internal superconductor and the jacket. In the developed model these two objects have been considered
as a single structure made by two di�erent materials.
In reality a "contact resistance" is probably present between the two elements and its inclusion in the
model could be bene�cial in terms of computational cost.
Indeed, by adding these appended sides between the nodal hexahedra of the jacket and superconductor,
the problem concerning the disctretization and the current distribution discussed in subsection (4.4)
might diminish, so a minor number of elements could be require for the analyses.
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Conclusions and Future Research

P.E.E.C. method appears very attractive for frequency and time domain analyses of electromagnetic
devices because of its capability to consider modelled objects and lumped circuit elements in the same
electrical equivalent circuit.
In other hand, because of its relative youth, there are still some topics which require future researches,
in order to make P.E.E.C. method more general, e�cient and performing.
The topics identi�ed during this thesis are:

� Dielectrics; The insertion of dielectrics cells in the method. This argument has already been treated
in literature but some investigation must to been done in order to deepen this topic;

� Planar P.E.E.C.; In this thesis a "�lament" and a volume P.E.E.C. code have been developed. It will
be interesting to implement also a "planar" P.E.E.C. code which allows to study problems where
the skin e�ect produces a current distribution mostly in the boundary of the objects. Furthermore,
a general code which can consider �lament, planar and volume cells could be very attractive;

� External Electric Field ; In this thesis the inclusion of external electric �eld has not been considered
but, in a more sophisticated code, this feature could be considered in order to have a more general
instrument;

� Coe�cients; It is necessary to investigate in more general approaches for the evaluation of the
partial coe�cients (mostly for the partial inductances). A general method should allow to compute
"exactly" the partial coe�cient for non-orthogonal cells while in this thesis an error is introduced
when the volume elements are general hexahedra instead of parallelepipeds;

� Sparsi�cation; The possibility to juxtapose a sparsi�cation method (as the one based on the theory
of H-matrix) appears to be very useful in order to reduce the time and the computational cost
required by the inversion of big and full systems deriving from the study of complex and electrically
large electromagnetic devices with the P.E.E.C. method.

Regarding the study of fusion reactors magnets, such as the Toroidal Field Coils of JT-60SA, P.E.E.C.
method has been initially chosen because, from the �rst informations about the harmonic frequencies of
the voltage wave which appears across quench protection circuits operation (�gure 4.26)), it seemed that
the e�ect of propagation time had to be considered.
Then, during the thesis work, with the development of the information and the comprehension of the
problem, this has been refuted and probably, also because of the presence of the dielectric material which
requires to complicate the PEEC model, a code based on FEM-BEM (Finite Element Method & Boundary
Element Method) could have been more suitable for this kind of devices.
On the other hand, the possibility to study modelled objects and lumped elements in the same system
makes the PEEC method attractive for the study of the discharge of these particular inductors in quench
protection circuits. So, future research concerning simpli�ed PEEC method (as the one proposed in the
discussion of subsection (4.4.1)) could make the method even more attractive and competitive also for
di�erent analyses for the fusion electromagnetic devices.
About that, some investigation will be presented in two contributions, [50], [51].
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Appendix A

Code Scheme, Volume

Figure A.1: Matrices Creator and Solver for P.E.E.C. Volume Code.

The geometrical data are given in terms of G, C, D matrices and the coordinates of points are
collected in a NP × 3 matrix, where NP is the number of points.
Matrix G is a Nl ×NP sparse matrix: for each row (each side) there is a −1 in the start node and 1 in
the end node; Nl is the number of sides.
Matrix C is a NS ×Nl sparse matrix: for each surface (each row) there is a 1 or a −1 depending on the
chosen direction of the related face-normal; NS is the number of faces.
Matrix D is a Nv × Ns sparse matrix: for each row (each volume) there is a 1 for the faces having
outgoing normal respect the volume and −1 for the faces having incoming normal into the volume; Nv is
the number of volumes.
Circuital data refer to the appended sides: loads and voltage sources. Each appended side is determined
by:
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� the resistance value;

� the self inductance value;

� the ID of the "start" nodal hexahedron (0 if "in�nity node");

� the ID of the "end" nodal hexahedron (0 if "in�nity node");

� the ID of the face of the "start" nodal hexahedron which the appended element is connected (0 if
we want to consider also this face like "free face")

� the ID of the face of the "end" nodal hexahedron which the appended element is connected (0 if
we want to consider also this face like "free face")

� the value of the potential (only for the voltage sources)

Other data are the resistivity of the materials considered in the model and possible current sources
that for the P.E.E.C. method are not considered as appended sides but only as current injected in the
circuit nodes.
Geometrical data are rearranged in order to determine the geometrical points for each nodal hexahedron
and side hexahedron.
Furthermore, for every nodal hexahedron the six IDs of the faces which compose the element are deter-
mined; each face is considered as "free" or "shared": the shared faces are neglecting from the evaluation
of the partial coe�cients of potential.
P matrix and L matrix are created by doing a double iteration on elements (nodal hexahedra for P matrix
and side hexahedra for L matrix), R matrix is created by a single iteration on side hexahedra. Afterwards,
the matrices are saved.
"Solver Code" �rst loads the matrices and the data, then it completes the L and R matrices by adding
the appended sides (Loads and Voltage Sources), then Incidence Matrix A and the "Source Vector" are
created.
During the "Solving phase" the system is created considering the frequency value; this phase is iterated
for each value of frequency chosen.
Results in terms of Node Potentials and Branch Currents are obtained. Post-processing can be used in
order to obtain the electromagnetic �elds, equivalent impedance etc.
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Appendix B

Inclusion of Dielectric Cells

In this appendix we want to show the results concerning the extension of the code to the dielectrics cells.
This work has been done during the last part of the thesis, so this topic has been inserted only in this
appendix, while in the rest of the thesis the dielectric cells have not been considered.

The analyses and validations have been done considering parallel-plate capacitor with square surfaces
and this geometry has been also considered as example for this appendix.
The geometry considered is the following: the two parallel-square plates are 5 × 5 × 10−9 [m] and the
distance between the two plates is 10−5[m]. The thickness of the plates is negligible compared with the
other geometry entities, in this way the 4 lateral surfaces of the two plates give a negligible capacitive
e�ect respect the other two parallel surfaces 5× 5 [m].
The distance between the two surfaces is also very small in order to minimize the edge e�ects. With this
geometry the well known equation for the capacitance (B.1) gives as result: 2.2135 · 10−5[F ].

C = ε0
S

d
(B.1)

where S is the area of the the parallel surface (25 [m2] for this case) and d is the distance between
the two surfaces (10−5 [m] for this case).

Figure B.1: Parallel-plate Capacitor, PEEC-Volume-Code Model.

Instead, PEEC Volume-Code gives as result 2.2137·10−5[F ]. The capacitance value has been obtained
by applying two current sources to the two nodal hexahedra which form the two conducting plates, then
the capacitance value has been extracted from the impedance evaluated as Z = I

∆V = 1
jωC , where ∆V is

the di�erence of potential between the two nodal hexahedra related to the two conducting plates.
The two external faces of the two plates have been removed from the "free faces" of the two plates, in order
to consider the electric coupling of the only two "internal" parallel surfaces and allow the comparison
with equation (B.1).
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The evaluation has been done also by dividing the plate in 2× 2 nodal hexahedra (as shown in �gure
(B.1)), each one supplied by a current source and the result has been the same.

Afterwards, the capacitance of the same parallel-plate capacitor has been evaluated considering the
space between the two conducting plates �lled by a dielectric material of relative permittivity equal to 5.
For this analysis the geometry has been modelled as an array of nodal hexahedra where the �rst and the
last one are related to the conducting plates and the others discretize the dielectric material.

Figure B.2: Parallel-plate Capacitor with dielectric, Electrical Equivalent Circuit.

From the point of view of the electric equivalent circuit, we can refer to �gure (B.2) which represents a
model with a single nodal hexahedron for the dielectric material. For simplicity the generators concerning
the electric and magnetic coupling between the partial elements have not been represented in the �gure.
As we can see from the electric circuit, the dielectric cells have not the pseudo capacitance just because the
two faces which they share with the two plates have been considered belonging to the conducting plates.
Then, in general, the entrances of the rows and the columns of the P matrix related to the dielectric cells
are nulls.
The main di�erence respect the PEEC-Code without the dielectric cell is due to the fact that the faces
shared by a dielectric and a conducting cell must be considered as "shared faces" and also "free faces"
belonging to the conducting nodal cell.
For our purpose we have decided to model the "dielectric sides" with the partial inductances (self and
mutual) and with the (self) partial excess-capacitance, but in general also a partial resistance in parallel
with the excess-capacitance can be considered, in order to model "real" dielectric materials.
In general the partial inductance coe�cients must be considered because also the displacement currents
which �ow in the dielectric cells produce the Magnetic Vector Potential ~A, so also the magnetic coupling
with these currents must be considered.

Figure B.3: Parallel-plate Capacitor with Dielectric modelled by 3× 3× 10 nodal hexahedra.

For problems where the frequency is relatively low, the current �owing in the dielectric cells is very
limited (so also the magnetic coupling with these cells is negligible), then for large electromagnetic
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devices, which work at "low" frequency, the dielectric cells should be modelled neglecting the inductance
coe�cients. By doing this simpli�cation it is possible to save time during the creation of L matrix and
during the system inversion, because the system appears "more sparse".
The capacitance value extracted by the PEEC-Code extended to the dielectric cells gives as results:
1.1068 · 10−4[F ], which is �ve times bigger than the capacitance of the capacitor in empty space.

The same analysis has be done also increasing the number of cells which discretize the dielectric
materials and the results have been the same.
Furthermore, the geometry has been modelled as shown in �gure (B.3) where the structures is discretized
by 3× 3× 10 nodal hexahedra. Once again the capacitance value has been the same.

The �nal validation has been done considering the series of two parallel-plate capacitors. Each capac-
itor has the same geometric entities of the one already described and the dielectric permittivity of the
�rst dielectric material is 5 while the second one is 7.
Form the circuit theory we have that the equivalent capacitance of two capacitors connected in series is
given by Ceq = C1C2

C1+C2
.

For our problem C1 and C2 are given by: C1 = εr1C and C2 = εr2C, while C is given by (B.1) and its
value is 2.2135 · 10−5.
So Ceq is equal to Ceq = 5·7

5+7C = 6.4562 · 10−5 [F ]. The value of the equivalent capacitance extracted

with the PEEC-Code has been: Ceq PEEC = 6.4561 · 10−5 [F ].
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