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Abstract

This thesis explores the implementation and simulation of a scalable version of Shor’s
algorithm for prime factorization. An acknowledged bottleneck in this algorithm lies in
the modular exponentiation process. To address this challenge, we propose a design for
the quantum circuit based on the model developed by Vedral, Barenco, and Ekert. The
computational engine employed for simulations is a classical tensor network quantum em-
ulator (Quantum Matcha Tea) which uses the matrix product states (MPS) ansatz for
the the wavefunction. The main achievement of this study is the successful execution
of Shor’s quantum circuits with over 100 qubits, showcasing both the emulator’s profi-
ciency in handling substantial computational complexities and the correct crafting of the
quantum circuit.

Sommario

Questa tesi esplora l’implementazione e la simulazione di una versione scalabile dell’al-
goritmo di Shor per la fattorizzazione in primi. Un noto punto critico di questo algoritmo
risiede nel processo di esponenziazione modulare. Per superare questo problema, viene
proposto un circuito quantistico basato sul modello sviluppato da Vedral, Barenco ed
Ekert. Il motore computazionale impiegato per le simulazioni è un emulatore quantistico
tensor network (Quantum Matcha Tea), che utilizza l’ansatz matrix product states (MPS)
per la funzione d’onda. Il più importante risultato di questo studio è l’esecuzione riuscita
di circuiti quantistici di Shor con oltre 100 qubits, dimostrando sia la capacità dell’emula-
tore nel gestire complessità computazionali significative, sia la corretta progettazione del
circuito quantistico.
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Introduction

In the realm of computational theory, the advent of quantum computing has ignited a pro-
found revolution, offering unprecedented opportunities to address certain types of problems,
making use of computations physically unachievable for classical computers. In fact, quantum
computers operate based on the principles of quantum mechanics, exploiting quantum bits or
qubits to process information in ways fundamentally different from classical bits.
The sustained investment in quantum computation research of the last decades has yielded
remarkable fruits in terms of quantum algorithms. By ingeniously taking advantage of the
principles of quantum mechanics, these algorithms have the potential to exponentially surpass
their classical counterparts in specific problem domains. Foremost among these quantum al-
gorithms stands Shor’s algorithm [1], invented by Peter Shor in 1994. This algorithm provides
a quantum-based solution to a classical challenge, namely the integer factorization into prime
numbers, which holds significant implications for real world applications like cryptography,
particularly in systems like the RSA protocol. The RSA encryption method relies on the com-
plexity of factoring large numbers into two prime factors. Therefore, even if someone has access
to the encrypted information and the public key (number to factorize), it is very difficult for
them to discover the private key (factors) needed to decode the message. However, Shor’s algo-
rithm’s unparalleled efficiency in determining factors and, consequently, the private key, poses
a significant threat to information security, prompting the urgent need for the development of
new quantum-resistant cryptographic methods. In contrast, classical factoring algorithms like
number field sieve (NFS) methods are relatively harmless to information security due to their
inefficiency when compared to their quantum counterparts. In fact, these classical methods, at
best, exhibit sub-exponential complexity [2].
This thesis develops a quantum circuit to compute Shor’s algorithm for any given integer N,
based on the modular exponentiation model proposed by Vedral, Barenco, and Ekert in 1996.
While relying on a tensor network emulator, we scale the algorithm to include up to 100 qubits.
Further, the use of intensive simulations allows the quantification of the required resources for
the intermediate steps of the algorithm both in terms of gates and memory.
In the first chapter, we begin with an introductory overview of quantum computing and its ba-
sic elements, followed by a brief examination of quantum circuits and their capabilities, placing
particular emphasis on the quantum Fourier transform. Subsequently, in the second chapter,
we delve into the operational principles that drive Shor’s algorithm, elucidating its theoretical
framework and outlining the implementation strategy. Moreover, a comprehensive examina-
tion of the VBE (Vedral, Barenco, Ekert) modular exponentiation [3] method sheds light on
the design of the quantum circuit proposed. In the third chapter, utilizing a tensor network
emulator for quantum circuits, we conduct thorough analyses of our successful implementation,
delving into both practical algorithm’s aspects and the emulator’s capabilities. We begin with
a concise overview of program initialization and result interpretation, then proceed to explore
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network complexity in terms of qubits and quantum logic gates. Finally, we evaluate memory
requirements and perform correlation analysis.



Chapter 1

An introduction to quantum
computing

1.1 Quantum bits

In classical computation and classical information theory, the bit serves as the fundamental
unit, operating exclusively within a binary framework with states limited to either 0 or 1.
Quantum computation and quantum information theory are founded on a similar principle,
employing the quantum bit, or qubit [4]. Specifically, qubits are two-level physical systems
that can be found in two possible states denoted as |0⟩ and |1⟩. However, the key distinction
between classical bits and qubits lies in the properties of quantum mechanics, for which a qubit
can exist in a state beyond the binary spectrum, for instance in a superposition of both |0⟩ and
|1⟩. Consequently, a generic single qubit state can be expressed as:

|ψ⟩ = α |0⟩ + β |1⟩ , (1.1)

where α and β are two complex numbers such that |α|2 + |β|2 = 1.
The special states |0⟩ and |1⟩ are usually known as computational basis states, which are
conventionally expressed in matrix notation as:

|0⟩ ≡
(

1
0

)

, |1⟩ ≡
(

0
1

)

. (1.2)

In reference to Eq. 1.1, it is natural to rewrite1 |ψ⟩ as:

|ψ⟩ = cos
θ

2
|0⟩ + eiφsin

θ

2
|1⟩ , (1.3)

associating the state of the qubit to a vector |ψ⟩ on the Bloch sphere as shown in Fig. 1.1.

Note: Although the qubit is essentially a physical system, in the following we will only treat it
as a mathematical object, allowing the construction of a general theory of quantum information
regardless of the specific physical implementation.

1The physical properties of a state don’t change when this is multiplied by a global phase. In Eq. 1.3 we
have indeed factored out the relative phase contained in α and treated it as a global phase, which is not written.



4 CHAPTER 1. AN INTRODUCTION TO QUANTUM COMPUTING

Figure 1.1: Graphical representation of the Bloch sphere.

Observing the structure of the Bloch sphere, the following question arises spontaneously: how
much information is contained in a qubit? In fact, the sphere’s surface is made of infinite points,
can we use θ ∈ [0, π] and ϕ ∈ [0, 2π[ to encode an arbirtarily large amount of information? As
one might suspect the answer in general is negative [4]. In reality, when we measure a qubit we
will always get either |0⟩ or |1⟩ since, once the measurement happens, the superposition state
collapses in the measured state. To obtain with arbitrarily precision the values of α and β, we
should thus measure multiple copies of the same system and study the probability distribution
of the outcomes. A process usually referred as quantum tomography.
At this point it is natural to ask ourselves what is the advantage of relying on a quantum
computer in the first place. The fundamental concept to grasp is that quantum processes possess
inherent properties beyond what can be directly observed through measurement, namely the
exact values of α and β for a single qubit or the amplitudes for more general states. This intrinsic
information influence the system’s time evolution and consequently, when a measurement is
not carried out, a qubit possesses more usable information compared to its classical counterpart
[4].

1.2 Quantum circuits

Among the different models of quantum computation, the quantum circuit is the easiest one
to generalize from the classical computation.
It mainly consists in three different stages:

• Register initialization: Initially, the qubits are prepared in specific quantum states,
i.e. the starting conditions for our computation.

• Processing: A series of quantum gates operates on the state executing the computational
tasks.

• Measurement: Finally, the quantum state of the qubits is measured, yielding classical
outcomes that provide the result of the computation.
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Figure 1.2: Scheme of a quantum circuit, time flow left to right. In this case the qubits are
all initialized as |0⟩ and arranged in different rows. U is a generic unitary operator acting on
these qubits and consists in a collection of different quantum gates. On the right, attached to
each qubit, there is the symbol of measurement applied.

Throughout the process, from initialization to measurement, the state of n qubits is consistently
represented as a linear combination of tensor products of single qubit states |γi⟩ = {|0⟩ , |1⟩}.

|ψ⟩ =
∑

γ⃗

Ψγ1,γ2,....,γN

(
N⊗

i=1

|γi⟩
)

=
∑

γ⃗

Ψγ1,γ2,....,γN
|γ1, γ2, ......, γN⟩ , (1.4)

where Ψγ⃗ are complex coefficients such that
∑

γ⃗ |Ψγ⃗|2 = 1 and N = 2n.
For example, if we wanted to describe the initial state of Fig. 1.2, we would represent it as

|ψi⟩ = |0⟩ ⊗ |0⟩ ⊗ |0⟩ ⊗ |0⟩ ≡ |0000⟩ , (1.5)

where the only non-null coefficient is Ψ0,0,0,0 = 1.
Or less trivially, we could describe an entangled state, such as the generalization to n qubits
of the Bell state (GHZ state) defined as:

|ψGHZ⟩ =
|00 · · · 00⟩ + |11 · · · 11⟩√

2
, (1.6)

for which Ψ00···00 = Ψ11···11 = 1/
√

2.

1.3 Quantum logic gates

As mentioned before, a generic unitary quantum operator U can always be decomposed in a
combination of specific quantum gates. We will now introduce the most important ones, and in
particular those that have been implemented in the construction of the Shor’s quantum circuit.

1.3.1 Single qubit gates

The single qubit gates are precisely those operations that acts only on a single qubit at a
time and are represented by 2 × 2 unitary matrices, usually expressed in the computational
basis {|0⟩ , |1⟩}. The first important logic gate is the Hadamard gate, represented in matrix
notation as:

H =
1√
2

(

1 1
1 −1

)

, (1.7)
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and schematically pictured as an H box on the qubit in which it is attached.

H . (1.8)

If we simply apply the gate to our basis states through a matrix-vector product, we can easily
obtain its truth table.

H |0⟩ =
1√
2

(|0⟩ + |1⟩) ≡ |+⟩ , H |1⟩ =
1√
2

(|0⟩ − |1⟩) ≡ |−⟩ . (1.9)

Note that H is unitary at sight since H† = H and H is clearly involutory2, therefore by applying
H to |+⟩ or |−⟩ we are able restore the corresponding initial states.
Another fundamental gate to consider is the Phase-shift gate which is defined as:

Rz(ϕ) =

(

1 0
0 eiφ

)

. (1.10)

With the mathematical representation at hand, understanding its operation is quite straight-
forward. A phase factor eiφ is added only when the gate is applied to |1⟩ states, modifying the
relative phase in case of a superposition. Suppose we have a general state |ψ⟩ = α |0⟩ + β |1⟩
on which we want to apply the phase shift. Performing the necessary matrix-vector product
calculations we obtain:

Rz(ϕ) |ψ⟩ = α |0⟩ + eiφβ |1⟩ . (1.11)

The standard schematic representation of this gate is the following:

Rφ . (1.12)

Ultimately, the last important gate to illustrate is the NOT Gate, which simply switch zeros
with ones and viceversa, exacltly like its classical counterpart. It is represented by the σx Pauli
matrix:

σx =

(

0 1
1 0

)

, (1.13)

and usually schematized in this way:

X . (1.14)

In practice, we could assign a logic gate to each of the Pauli matrices (σi). However, as not all
of them will be necessary for our subsequent discussions, they will not be presented here.
Instead, it’s interesting to observe how the combination of Hadamard gates and phase shifts
alone is sufficient to reconstruct the generic state of Eq. 1.3:

|ψ⟩ = Rz

(
π

2
+ ϕ

)

HRz(θ)H |0⟩ = cos
θ

2
|0⟩ + eiφsin

θ

2
|1⟩ . (1.15)

2A matrix M is involutory if M2 = 1, therefore M is a square root of 1.
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1.3.2 Two qubits gates

From Eq. 1.4 we know that a generic state of a two qubits system can be written as follows:

|ψ⟩ = γ1 |00⟩ + γ2 |01⟩ + γ3 |10⟩ + γ4 |11⟩ . (1.16)

The computational basis in this case is thus {|00⟩ , |01⟩ , |10⟩ , |11⟩}. It is common practice,
when the dimension increases, to introduce a compact decimal notation that assigns to each
vector in ascending order a number from 0 to N − 1, with N = 2n. In this way we are able to
write |ψ⟩ as:

|ψ⟩ =
N−1∑

i=0

γi |i⟩ . (1.17)

The matrix expression of the basis states is simply an extension of the one qubit case:

|00⟩ =








1
0
0
0







, |01⟩ =








0
1
0
0







, |10⟩ =








0
0
1
0







, |11⟩ =








0
0
0
1







. (1.18)

The first two qubits logic gate to introduce is the CNOT Gate (Controlled Not). The CNOT
gate flips (NOT ) the target qubit if and only if the controlled qubit is |1⟩, and acts as an identity
otherwise. The matrix representation is strightforward from the definition:

CNOT =








1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0







. (1.19)

To reinforce our understanding, we can build a simple truth table on the basis state that covers
all the different cases:

C T In Out
|0⟩ |0⟩ |0⟩ |0⟩ |0⟩ |0⟩
|0⟩ |1⟩ |0⟩ |1⟩ |0⟩ |1⟩
|1⟩ |0⟩ |1⟩ |0⟩ |1⟩ |1⟩
|1⟩ |1⟩ |1⟩ |1⟩ |1⟩ |0⟩

Table 1.1: We see that when the controlled (C) qubit is |0⟩ the operator works as an identity,
whereas when the controlled qubit is |1⟩, the target (T) is flipped in the output.

The circuital representation of the CNOT gate is:

C

T
, (1.20)

where the dot indicates the qubit in which the control is performed, and the cross is the target
where the NOT operation is applied if C = |1⟩.
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An analogous gate is the C-PHASE (Controlled Phase), which works exactly like a CNOT ,
but with a phase shift applied to the target bit instead of a NOT operation.

CPHASE =








1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiφ







. (1.21)

From the matrix representation it is convenient to write again our truth table:

C T In Out
|0⟩ |0⟩ |0⟩ |0⟩ |0⟩ |0⟩
|0⟩ |1⟩ |0⟩ |1⟩ |0⟩ |1⟩
|1⟩ |0⟩ |1⟩ |0⟩ (1 ⊗Rz(ϕ)) |1⟩ |0⟩
|1⟩ |1⟩ |1⟩ |1⟩ (1 ⊗Rz(ϕ)) |1⟩ |1⟩

Table 1.2: The notation : (1⊗Rz(ϕ)) implies that the phase shift is only applied to the second
(target) qubit, leaving the first one unchanged. Before we could have written the CNOT
operation in the same fashion as (1 ⊗ σx).

The list of quantum logic gates goes on, including more advanced options like CCX gates,
which function similarly to a standard CNOT gate but with two controlled qubits and one
target; or SWAP gates, used for interchanging two qubits. For the sake of brevity, we won’t
dive further.

CCX = , SWAP = . (1.22)

1.4 Quantum algorithms

A quantum algorithm is a set of step-by-step instructions designed for execution on a quantum
computer. Although, in general, quantum computers can always perform classical algorithms,
the term quantum algorithm is usually used to describe those algorithms which are inherently
quantum, that use features such as quantum superposition and entanglement.
Shor’s algorithm [1], Deutsch-Josza [5], Grover [6], and the Quantum Fourier Transform are,
among others, prime examples of powerful quantum algorithms that outperform their classical
counterparts.
Before proceeding to show an example of such algorithms, to further concretize the potentiality
of the inherently quantum processes, it’s worthy to introduce a couple more concepts.

1.4.1 Qubits functions

Suppose to have a generic binary function f : {0, 1}n −→ {0, 1}. To break it down into proper
unitary gates, we need f(x) to be bijective, which is not always the case, think about the
classical AND. The solution for ensuring reversibility in the function is to store the input in a
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dedicated register, effectively doubling the degrees of freedom n [4].
For instance, let’s take a function f(x) : {0, 1} −→ {0, 1}, as said to guarantee reversibility we
need to initialize two registers: the data register holding the input x, and the target register y,
where the function output will be stored. By applying an appropriate sequence of logic gates,

denoted as Uf , we can achieve the transformation |x, y⟩ Uf−→ |x, y ⊕ f(x)⟩, where ⊕ represents
the XOR operation (or addition modulo 2). If y = 0, we can directly read the value of f(x)
from the target register [4].

|x⟩

|y⟩
Uf

x x

y y ⊕ f(x)

|ψ⟩ = |x, y ⊕ f(x)⟩

Figure 1.3: Scheme of a circuit designed to compute f(x).

1.4.2 Quantum parallelism

If we run the circuit of Fig. 1.3 with |x⟩ = (|0⟩ + |1⟩)/
√

2 (obtainable applying an Hadamard
gate on a |0⟩ state) and with |y⟩ = |0⟩, we can witness a fascinating phenomenon called
quantum parallelism [4]. In fact, if we write the resulting state after the Uf operator, we
get:

|ψ⟩ =
|0, f(0)⟩ + |1, f(1)⟩√

2
. (1.23)

We can notice how the different terms of the superposition carry informations about both f(0)
and f(1), the circuit thus evaluated f(x) for two values of x simultaneously. This behaviour
is completely different from the classical parallelism, here a single circuit can evaluate f(x)
for different values of x, taking advantage of the quantum superposition. This property finds
direct application in many well-known algorithms, including the Deutsch-Jozsa [5] and Grover
[6] algorithms.

1.4.3 The quantum Fourier transform

One of the most notable accomplishments in quantum computation and a fundamental compo-
nent of this thesis is the quantum version of the discrete Fourier transform (DFT). To provide
some context, the DFT takes in input a vector of complex numbers {x0, ...., xN−1}, and output
another vector of complex numbers {y0, ...., yN−1}, defined by the mapping:

yk ≡ 1√
N

N−1∑

j=0

xje
2πijk/N . (1.24)

As the discrete Fourier transform is a unitary operator, we can readily adapt it [4] to the case
of an n-qubit register (where N = 2n) and construct the quantum Fourier transform (QFT) as:

|j⟩ QF T−→ 1√
N

N−1∑

k=0

e2πijk/N |k⟩ . (1.25)



10 CHAPTER 1. AN INTRODUCTION TO QUANTUM COMPUTING

Equivalently, the action of the QFT on a generic state can be written,

N−1∑

j=0

xj |j⟩ QF T−→
N−1∑

j=0

xj

(

1√
N

N−1∑

k=0

e2πijk/N |k⟩
)

︸ ︷︷ ︸

QF T |j⟩

=
N−1∑

k=0




1√
N

N−1∑

j=0

xje
2πijk/N





︸ ︷︷ ︸

yk

|k⟩ =
N−1∑

k=0

yk |k⟩ .
(1.26)

With a bit of basic algebra3 (albeit dense in notation), we can write the effect of QFT as
follows:

|j1, ...., jn⟩ QF T−→ (|0⟩ + e2πi0.jn |1⟩) (|0⟩ + e2πi0.jn−1jn |1⟩) · · · (|0⟩ + e2πi0.j1j2···jn |1⟩)√
N

, (1.27)

where j1j2...jn is the binary representation of j such that j = j12
n−1+j22

n−2+···+jn20, and the
notation 0.jljl+1...jm is a way to represent the binary fraction jl/2+jl+1/4+ · · ·+jm/2

m−l+1 [4].
This construction provides us with all the instructions necessary to build the quantum circuit.
If we call Rk the gate that denotes the unitary transformation (essentially a phase-shift)

Rk ≡
(

1 0

0 e2πi/2k

)

, (1.28)

the final circuit will be composed as:

Figure 1.4: Circuit for the quantum Fourier transform [4], derived recreating the state of Eq.
1.27. The output qubits are swapped compared to the input ones, this can be corrected applying
n/2 swap gates or renominating the qubits. We can see that Rk is used as a controlled phase
shift.

From the circuit it is easy to count the total number of gate used (ignoring the eventual
swaps). In fact, we have n gates applied to the first qubit, n − 1 for the second etc., until
the last one which has only one Hadamard gate applied. The QFT require thus n(n + 1)/2
gates, and therefore this circuit provides a O(n2) algorithm to perform the quantum Fourier
transform, even if we count the swaps.
On the contrary, the fastest classical algorithm known, the Fast Fourier Transform (FFT), can

3We won’t cover the entire derivation here, but a very similar technique has been employed in the following
chapter in Eq. 2.12 and can be utilized to derive Eq. 1.27.
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compute the DFT using O(n2n) gates. This means that the QFT can achieve exponential
speedup over its classical counterpart [4]. Unfortunately, the amplitudes in a quantum com-
puter are not directly accessible through measurement, so a full "quantum replacement" for
solving DFT-related classical problems would lose all the exponential speedup. Furthermore,
just trying to generate arbitrary states such as the one in Eq. 1.26 is generally speaking an
extremely difficult task. However, we can still take advantage of the exponential speedup using
the QFT as a tool inside bigger quantum circuits, as we will see in the next chapter.





Chapter 2

From order finding to prime
factorization

2.1 Fundamentals of modular arithmetic

To provide a complete theoretical description of the order finding problem, it is first necessary
to introduce some basic concepts of modular arithmetic and number theory.
To begin, for any given integer number N , it is possible to define a set [7]:

ZN = {1, ...., N − 1}, (2.1)

in which operations, such as addition and multiplication, are taken moduloN
(e.g. 3 · 2 (mod 5) = 1 (mod 5)). This implies that sums or products between elements of ZN

are also elements of ZN .
In our context, we are not interested in the entirety of ZN , but rather a subset of it, defined as
follows:

Z
∗
N = {a ∈ ZN | gcd(a,N) = 1}, (2.2)

where gcd(a,N) stands for the greatest common divisor of a and N .
The elements of Z

∗
N are thus all the numbers 1 ≤ a < N for which a and N are co-prime.

Of particular importance to us is the cardinality of Z
∗
N , which is commonly known as Euler’s

totient function φ(N) [8]. This function counts the positive integers less than or equal to N
that are co-prime to N , finding remarkable applications, as illustrated in the following theorem:

Theorem 2.1.1 (Euler’s theorem [9]). If a and N are two positive integers and a ∈ Z
∗
N , then

aϕ(N) = 1 (modN), (2.3)

with φ(N) being the Euler’s totient function.

(e.g. for N = 10, Z
∗
10 = {1, 3, 7, 9} and therefore φ(10) = 4. One can check and find out that

all the elements of Z
∗
10 to the fourth power give 1modulo 10).

This theorem implies that the order of a, defined as the smallest integer r for which
ar = 1 (mod N), exists and is finite for each a ∈ Z

∗
N , being by definition r ≤ φ(N).

Furthermore, it can be shown that if a is an element of Z
∗
N , there exists a unique number x

satisfying a x = 1 (modN), called the modular multiplicative inverse of a [10].
This last concept will be crucial in the construction of the quantum circuit.
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2.2 Theoretical analysis of the quantum circuit

Shor’s factoring algorithm can be viewed as a special configuration of a quantum phase estima-

tion algorithm. The concept underlying involves the existance of an algorithm that takes an
unitary operator Ua and one of its eigenstates |ψs⟩ such that:

Ua |ψs⟩ = e2πiϕs |ψs⟩ , (2.4)

and output an estimation of the angle1 φs. A simplified scheme of the circuit is reported below:

Figure 2.1: Simplified scheme of the circuit. The first register consists in m qubits initialized
in |0⟩, each undergoing a Hadamard gate operation. The second register encodes the binary
number 1 for reasons that will be clear later. In correspondence of the red dashed lines, we will
examine and record the states |Φi⟩ to track the time evolution of the system throughout the
process.

Note that we’re using the qiskit convention on qubits ordering, where the least significant
qubit stays on the left side of the bit-string, thus on top of the register.
To understand how a phase estimation procedure can provide a solution to the order finding
problem, we first have to construct the proper operator Ua and its eigenstates.
The former can be defined as [11]:

Ua |x⟩ =







|ax (modN)⟩ if 1 ≤ x < N,

|x⟩ if N ≤ x < 2n
, (2.5)

with a ∈ Z
∗
N and |x⟩ (encoded in n binary bits) the state that undergoes the application of Ua.

We notice that the constraint in the choice of a being in Z
∗
N guarantees that the operation is

reversible. In fact, there is always a unique element b ∈ Z
∗
N such that a · b = 1 (modN), thus

the relation below holds [7]:
Ua−1Ua = Ua−1a = U1 = 1. (2.6)

Furthermore, it can be shown that if a and N are co-prime, Ua is merely a permutation matrix,
which is always unitary [11].

1From now on φs will be referred improperly as "phase", even if the actual phase is the entire complex
exponential.
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Proof. Suppose to have two different numbers x1 and x2: if Ua |x1⟩ = Ua |x2⟩, then
ax1 = ax2 + kN for some integer k ̸= 0. Therefore x1 − x2 = kN/a, i.e., kN/a is an integer.
However, as N and a are co-prime, the least (positive) integer k which satisfies this is k = a,
i.e., x1 − x2 = N . So it cannot be the case that 0 ≤ x1, x2 < N . This implies that for each
integer x such that 0 ≤ x < N , Ua |x⟩ gives a different integer in 0, ..., N − 1, therefore Ua is a
permutation matrix.

The case in which N ≤ x < 2n is trivial since Ua acts as an identity.
We can now proceed to define our states |ψs⟩ [4]:

|ψs⟩ =
1√
r

r−1∑

k=0

e− 2πisk
r

∣
∣
∣ak modN

〉

, (2.7)

for 0 ≤ s ≤ r − 1. Turns out that these states are indeed eigenstates of Ua:

Proof.

Ua |ψs⟩ =
1√
r

r−1∑

k=0

e− 2πisk
r Ua

∣
∣
∣ak modN

〉

=
1√
r

r−1∑

k=0

e− 2πisk
r

∣
∣
∣ak+1 modN

〉

=
1√
r

r∑

k=1

e−
2πis(k−1)

r

∣
∣
∣ak modN

〉

= e
2πis

r
1√
r

r∑

k=1

e− 2πisk
r

∣
∣
∣ak modN

〉

(a)
= e

2πis
r

1√
r

r−1∑

k=0

e− 2πisk
r

∣
∣
∣ak modN

〉

= e
2πis

r |ψs⟩ ,

where in (a) we used the fact that results for k = r and k = 0 are the same:

e− 2πisr
r = 1 = e− 2πis·0

r , and |ar modN⟩ = |1modN⟩ = |a0 modN⟩ by definition of r.

Here an issue arises, because in order to prepare these states we require the knowledge of
r, which is precisely what we are attempting to determine.
Luckily, a simple solution allows us to get around the problem and proceed. In fact, we can
show that an equal superposition of eigenstates |ψs⟩ results in an easy-to-prepare state |1⟩ [4]:

1√
r

r−1∑

s=0

|ψs⟩ = |1⟩ . (2.8)

Proof.

1√
r

r−1∑

s=0

(

1√
r

r−1∑

k=0

e− 2πisk
r

∣
∣
∣ak modN

〉
)

=
1

r



r |1⟩ +
r−1∑

k=1

(
r−1∑

s=0

e− 2πisk
r

)

︸ ︷︷ ︸

(∗)

∣
∣
∣ak modN

〉





If we can prove that (∗) is zero for k > 0, then we have our thesis.

Calling ωs the phase e− 2πisk
r , we define:

Σs = ω0 + ω1 + · · · · +ωr−1, ωΣs = ω1 + ω2 + · · · · +ωr

Σs − ωΣs = ω0 − ωr =⇒ Σs =
1 − ωr

1 − ω
,

but ωr = e− 2πirk
r = 1 and ω ̸= 1, therefore Σs = 0.
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Now that all the requirements have been taken care of, we can start analyzing the main steps
of the circuit.
Initially we have a trivial configuration,

|Φ0⟩ = |0⟩ · · · · |0⟩
︸ ︷︷ ︸

m

|1⟩ , (2.9)

with m qubits initialized in the state |0⟩, and n qubits being used to display the state |1⟩ in its
binary form. Applying the Hadamard gates on the first register we have,

|Φ1⟩ = (H⊗m ⊗ 1) |Φ0⟩ =
1√
2m

2m−1∑

γ=0

|γ⟩ |1⟩ , (2.10)

where γ is a decimal index as in Eq. 1.17.
Every qubit of the first register serves as a control bit for the controlled Ua operator as shown
in Fig. 2.1, this acts on the superposition of the eigenstates |ψs⟩ that is |1⟩, resulting in:

|Φ2⟩ =
1√
2m

(

|0⟩ + e
2πis

r
20 |1⟩

)

⊗
(

|0⟩ + e
2πis

r
21 |1⟩

)

⊗ · · · · ⊗
(

|0⟩ + e
2πis

r
2m−1 |1⟩

)

|1⟩ .
(2.11)

With a bit of manipulation we can obtain a much more compact form of the same state:

|Φ2⟩ =
1√
2m

m∏

k=1





1∑

γk=0

e
2πis

r
γk2k−1 |γk⟩



 |1⟩

=
1√
2m

1∑

γm=0

· · · ·
1∑

γ1=0

(
m∏

k=1

e
2πis

r
γk2k−1 |γk⟩

)

|1⟩

=
1√
2m

1∑

γm=0

· · · ·
1∑

γ1=0

e
2πis

r
(γ120+γ221+····+γm2m−1) |γ1.....γm⟩ |1⟩

(a)
=

1√
2m

2m−1∑

γ=0

e
2πis

r
γ |γ⟩ |1⟩ ,

(2.12)

where in (a) we shift to the decimal notation γ = γ12
0 + γ22

1 + · · · · γm2m−1. Before computing
the QFT †, we rewrite our phase φs = s/r as α/2m, with α ∈ 0, ....2m − 1. The reasons for
this will become clear later. Once this is done, we can proceed to execute the QFT †, that we
remind has form:

QFT † =
1√
2m

2m−1∑

χ=0

e− 2πiχγ

2m , (2.13)

therefore,

|Φ3⟩ = QFT † |Φ2⟩ =
1

2m

2m−1∑

χ=0

2m−1∑

γ=0

e
2πiαγ

2m e− 2πiχγ

2m |χ⟩ |1⟩

=
1

2m

2m−1∑

χ=0

2m−1∑

γ=0

e
2πiγ

2m (α−χ) |χ⟩ |1⟩ .
(2.14)
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Suppose now we make a measurement on the first register and obtain a m-bit binary number
β = β12

0 + β22
1 + · · · · βm2m−1. Computing the probability of getting β as a result, we have:

P(β) = |⟨β|Φ3⟩|2 =

∣
∣
∣
∣
∣
∣

⟨β| 1

2m

2m−1∑

χ=0

2m−1∑

γ=0

e
2πiγ

2m (α−χ) |χ⟩
∣
∣
∣
∣
∣
∣

2

, with ⟨β|χ⟩ = δβχ

=

∣
∣
∣
∣
∣
∣

1

2m

2m−1∑

γ=0

e
2πiγ

2m (α−β)

∣
∣
∣
∣
∣
∣

2

=⇒ if β = α, P(β) = 1.

(2.15)

That means measuring β exhausts all the probability, and therefore we will measure exactly α.
To be precise, we should take into account that the real phase may not be completely described
by α/2m, as α/2m is only an approximation accurate to m qubits [4].

Approximations accurate to m qubits

When reading a number α from a m-qubit register, where α ∈ {0, ..., 2m−1}, we are
essentially interpreting it in its binary form: α = α02

0 + α12
1 + · · ·αm−12

m−1. Dividing
α by 2m yelds a number φ̃ in the interval [0, 1).
In our context, where we aim to approximate φs, it’s important to acknowledge the
constraints imposed by only having m bits available. In fact, generally a δ factor is
introduced:

α

2m
=
α0

2m
+

α1

2m−1
+ · · · +

αm−1

21
+ · · · · · · ·
︸ ︷︷ ︸

δ

= φs. (2.16)

Note that if α/2m is the best2 m bit representation of φs, then 0 ≤ |δ| ≤ 1/2m+1

[12]. Furthermore, if we recall the geometric series
∑∞

n=1 1/2n = 1, we should be easily
convinced that with appropriate αi coefficients and a sufficiently large m, we are able to
write an arbitrarily accurate approximation of any real number in the interval [0, 1).

It is important to make clear that the best representation of a phase close to 1 might be 0, as we
are working in the unitary circle.

Set the necessary foundations, we now know that a more accurate representation of the phase
would be φs = (α/2m + δ) [12]. Therefore, an important factor to explore further is: which is
the required precision? That is, what is the minimum number of qubits that are sufficient to
have a good estimation?
First of all, to ensure we don’t mistake nearest possibilities, the closest number to s/r we have
to assess is s/(r + 1) and the distance between these two numbers is:

s

r
− s

r + 1
=

s

r(r + 1)
. (2.17)

Therefore, if we want our measurement to distinguish the two cases, we can write:
∣
∣
∣
∣

α

2m
− s

r

∣
∣
∣
∣ <

s

2r(r + 1)
, (2.18)

so that the error is less than a half of the distance between s/r and s/(r+1), and α/2m is closer
to s/r than any other possibility [7]. However, we still don’t know the value of r. We then
have to consider the only information we hold, which is r < N , and make a greater restriction:

∣
∣
∣
∣

α

2m
− s

r

∣
∣
∣
∣ <

s

2N2
<

s

2r2
. (2.19)
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Taking m = 2⌈log2(N)⌉ + 1 = 2n + 1 guarantees that this inequality is satisfied by the
estimation with an high chance [7]. In fact, since α/22n+1 is an approximation of s/r accurate
to 2n+ 1 qubits we have,

∣
∣
∣
∣

α

22n+1
− s

r

∣
∣
∣
∣ ≤ 1

22n+1
≤ 1

2N2
≤ 1

2r2
, (2.20)

where we used the fact that N < 2n. It’s worth noting that choosing m = 2n satisfies the
inequality too, and actually, this is the specific value utilized in the construction of the real
quantum circuit.
Now that we know how many qubits are needed for the first register in order to work properly,
we have to understand how to find our values of s/r from the estimation of the phase φs.
Luckily, due to the following theorem, we have a way to do it:

Theorem 2.2.1 (Continued fractions theorem [4]). Suppose s/r is a rational number such that:
∣
∣
∣
∣

s

r
− φ

∣
∣
∣
∣ ≤ 1

2r2
, (2.21)

then s/r is a convergent of the continued fractions for φ, and thus can be computed in O(n3)
operations using the continued fractions algorithm.

In other words this theorem allows us to successfully apply the continued fractions algorithm
that turns our approximation α/2m into nearby fractions s′/r′, including s/r.

2.2.1 Performance

Before proceeding with the determination of the factors ofN , it is natural to ask ourselves: when
does the order-finding algorithm fails? In fact, the chances of failure lay both on the phase
estimation and on the continued fractions. We have seen before that the phase estimation
outcomes for φs not directly writable as α/2m won’t be certain, however for such a φs, it turns
out that applying the QFT † produces the best m-bit approximation of φs with probability at
least 4

π2 ≈ 0.405... [12]. To see this we can repeat the calculation of Eq. 2.15 in the case in
which 0 < |δ| ≤ 1/2m+1. For instance,

P(α) =

∣
∣
∣
∣
∣
∣

1

2m

2m−1∑

γ=0

e2πiγ(ϕs−α/2m)

∣
∣
∣
∣
∣
∣

2

. (2.22)

Using the properties of the finite geometric series as in proof. 2.2, we can rewrite the probability
as:

P(α) =
1

22m

∣
∣
∣
∣
∣

e2πi(2mϕs−α) − 1

e2πi(ϕs−y/2m) − 1

∣
∣
∣
∣
∣

2

. (2.23)

Now, taking into account the two inequalities [7] deriving from the relation between arcs and
chords of the unit circle for δ ∈ [−1

2
, 1

2
]:

∣
∣
∣e2πiδ − 1

∣
∣
∣ ≤ 2π|δ|, 4|δ| ≤

∣
∣
∣e2πiδ − 1

∣
∣
∣ , (2.24)

we can show that if |φs − α/2m| ≤ 1/2m+1:

P(α) =
1

22m

∣
∣
∣
∣
∣

e2πi(2mϕs−α)−1

e2πi(ϕs−y/2m)−1

∣
∣
∣
∣
∣

2

≥ 1

22m

(

4|2mφs − α|
2π|φs − α/2m|

)2

=
1

22m

16 · 22m

4π2
=

4

π2
. (2.25)
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This means that the best outcome always occurs with a probability greater than 40%.
In general the causes of failure can be summarized in three main categories [4]. The first one is
precisely the possibility of a bad estimation, but we exhaustively demonstrated how to manage
and contain this type of issue. Another cause can be s = 0 or s′ = 0 which tells us nothing
about r. Finally, there is the possibility that s and r share common factors. In such cases, the
continued fractions algorithm returns r′, which will not be equal to r, but rather to a factor of
it.

2.3 Post-quantum classical analysis

The last thing we need to cover is how solving the order-finding problem helps us with factoring.
This part is purely classical and doesn’t involve quantum computing. In particular, our aim
is to break down the number N into its prime factors. Initially, we try to find two integers
b, c ≥ 2 such that their product equals N . Of course if N is a prime number, this operation
will fail, but if it’s not, we can proceed to split it. After splitting N , we repeat the process on
the resulting factors until we obtain the prime factorization of N [7].
For brevity, let’s assume that we’ve already selected a value of a from the set Z

∗
N , that the

factors of N aren’t trivial and N isn’t a perfect power. With these conditions3 in place, our
approach is as follows [4]:

1. Let r be the order of ax modN , found with the QPE procedure.

2. If r is even and ar/2 ̸= −1modN (4):

a) Compute gcd(ar/2 − 1, N).

b) Compute gcd(ar/2 + 1, N).

3. See if one of these is a non-trivial factor, returning the factor if so.

4. If this point is reached, the algorithm failed to estimate the factors.

To see why this procedure leads to the solution, let’s consider the numbers:

ar/2 − 1 (modN), ar/2 + 1 (modN), (2.26)

as X2 − 1 = (X − 1)(X + 1), we can write

(ar/2 − 1)(ar/2 + 1) = ar − 1. (2.27)

But we know that ar (modN) = 1 by definition of order. So ar (modN) − 1 = 0 (modN).
This implies that N is a divisor of ar (modN) − 1 = (ar/2 − 1)(ar/2 + 1). Consequently, every
prime factor of N must divide either (ar/2 − 1), (ar/2 + 1) or both. Hence, we can factor N by
computing the gcd, a task efficiently accomplished using Euclid’s algorithm.

3If a /∈ Z
∗

N the gcd(a, N) is a factor; if N is even the factors are {2, N/2}.
4This condition, relative to the numbers in Eq. 2.26, implies that none of the factors obtained is a multiple

of N . This scenario causes the algorithm to fail. We can be tempted to write the condition ar/2 ̸= 1 mod N ,
but it’s unnecessary [11], since r is the smallest number that satisfy ax = 1 mod N .
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2.4 Implementation of the quantum circuit

Although the theoretical formulation of the problem is quite straightforward, implementing
the controlled Ua operators can be challenging and resource-intensive, requiring a significant
amount of qubits and gates.
The Qiskit circuit developed for this thesis is based on the modular exponentiation model
proposed by Vedral, Barenco, and Ekert in 1996 [3]. This model involves an arrangement of
custom gates designed for specific simple operations. In the following section, we will outline the
fundamental behavior of each of these operators and explain how they are combined together
to form the circuit.

2.4.1 Plain adder

The simplest gate to consider is the plain adder module, which takes two numbers and add
them together:

|a, b⟩ −→ |a, a+ b⟩ . (2.28)

Note that the reversibility is guaranteed, as we are keeping track of the value of a in the first
register.
If both a and b are encoded in n qubits, the second register must have n+ 1 qubits to prevent
overflow5. In addition, a third register (c) of n − 1 qubits initialized as |0⟩ is needed to write
provisionally the carries of the addition. A schematic illustrating the algorithmic construction
of the plain adder is depicted in Fig. 2.2:

Figure 2.2: The plain adder network computes carries iteratively until the last carry determines
the most significant digit of the result. Then all these operations apart from the last one are
undone in reverse order, and the sum of the digits is performed correspondingly. This picture
also show the fundamental operations used: CARRY (red), INVERSE CARRY (black), SUM

(blue). This structure can be implemented for any n.

5For instance, consider the scenario where the a and b registers each consist of n = 3 qubits, and both are
assigned the value a = b = 6. It becomes apparent that the b register lacks sufficient capacity to store the result
of the addition. This situation is commonly referred to as overflow.
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It’s worth pointing out that the adder operation can be easily reversed by computing the
circuit from right to left. This approach yields (a, a − b) for a ≥ b and (a, 2n+1 − (b − a))
otherwise.

2.4.2 Modular adder

As the name might suggests, this gate takes in input two numbers and adds them together
moduloN :

|a, b⟩ −→ |a, a+ bmodN⟩ , (2.29)

where 0 ≤ a, b ≤ N . Note that this last condition also guarantees the reversibility, as an
unconstrained choice of b could results in equal outcomes for different initial values. A schematic
interpretation of the modular adder is illustrated in Fig. 2.3. The size and complexity of the
circuit already prevents us to represent it explicitly.

Figure 2.3: Modular adder network. The black bars indicate the orientation of the module
attached: right-facing black bar signifies a standard adder application, while a left-facing one
indicates the addition of an inverse adder (adder in reverse order).

After the first adder, the register encoding a is swapped with a third register containing N ,
giving |N, a+ b⟩, then an inverse adder is applied leading to the state |N, a+ b−N⟩. If an
overflow happened in the subtraction (a+ b < N), this information is copied into a temporary
register |t⟩ initially prepared in state |0⟩. Particularly, in case of no overflow (t = 1) the
first register is reset6 to zero. Consequently, the third adder has no effect, as we are adding
zero to (a + b − N) = (a + bmodN). Following that, N is conditionally restored, leaving the
state |N, a+ b mod N⟩, a subsequent swap reintroduce the original value of a in its register,
resulting in the desired state |a, a+ b mod N⟩. In case of overflow (t = 0), the third adder
adds back N , resulting in the state |N, a+ b mod N⟩, from this point the procedure follows
the other case. The last two adders are used to bring back to zero the temporary qubit in a
reversible way. In fact, if the first time there was no overflow (a + b) > N , then the second
time with |a, (a+ bmodN) − a⟩ there will certainly7 be. After the reset, an adder restore our
desired state.

6It’s possible to do so with control not gates since we know its original state encodes N .
7If a + b − N > 0, then subtracting a gives b − N < 0, as we are operating for values a, b < N .
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2.4.3 Controlled modular multiplier

The following custom gate corresponds precisely to the previously introduced controlled unitary
operator Ua. The function fa,N(x) = axmodN can be efficiently implemented by adopting a
binary perspective, exploiting the conditional modular additions: ax = 20ax0 + 21ax1 + · · · ·
+2n−1axn−1.

Figure 2.4: Controlled modular multiplier network. Each arrow indicates that an entire register
is classically encoded if the two controls are satisfied. The bent arrow at the end of the circuit
is a conditional "copy".

The functioning of the circuit is quite straightforward and can be summarized in the following
equivalence:

|c;x, 0⟩ =







|c;x, axmodN⟩ if |c⟩ = |1⟩
|c;x, x⟩ if |c⟩ = |0⟩ .

(2.30)

Conditionally on the control qubit |c⟩ and the x encoding qubits, through some CCX gate,
before (and after) every modular adder, the value of 2ia is classically implemented (or removed).
If |c⟩ = |0⟩ the register encoding x is copied in the lower register.

2.4.4 Modular exponentiation

The modular exponentiation is the effective calculation that happens applying the controlled
Ua gates as in Fig. 2.1 to the state |1⟩, since fa,N(x) = ax modN (8) can be rewritten as
ax = a20x0 · a21x1 · · · a2m−1xm−1 . These operations can be performed utilizing the previously
constructed controlled multiplier, as illustrated in Fig 2.5.

8Note that there is an abuse of notation with the parameter x in the (2.4.3) and (2.4.4), as they are not the
same object.
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Figure 2.5: Modular exponentiation consists of successive modular multiplications by a2i

. The
even networks perform the reverse control modular multiplication by inverse of a2i

modN thus
resetting one of the registers to zero and freeing it for the next control modular multiplication.

In particular we have that, if xi = 1, the operation performed is:

∣
∣
∣a20x0+21x1+····+2i−1xi−1 , 0

〉

−→
∣
∣
∣a20x0+21x1+····+2i−1xi−1 , a20x0+21x1+····+2i−1xi−1+2ixi

〉

. (2.31)

Otherwise, if xi = 0 we obtain:

∣
∣
∣a20x0+21x1+····+2i−1xi−1 , 0

〉

−→
∣
∣
∣a20x0+21x1+····+2i−1xi−1 , a20x0+21x1+····+2i−1xi−1

〉

. (2.32)

The result can be written as
∣
∣
∣a20x0+21x1+····+2i−1xi−1 , a20x0+21x1+····+2i−1xi−1+2ixi

〉

in either cases.

To avoid storing partial data in the processes, an inverse control multiplier is attached af-
ter each control multiplier. However, it is crucial to emphasize that in this scenario, we must
initialize the inverse controlled multiplier with the modular multiplicative inverse of a2i

. The
overall process looks like this,

∣
∣
∣a20x0+21x1+····+2i−1xi−1 , 0

〉

−→ (2.33)
∣
∣
∣a20x0+21x1+····+2i−1xi−1 , a20x0+21x1+····+2i−1xi−1+2ixi

〉

(Multiplication) (2.34)
∣
∣
∣a20x0+21x1+····+2i−1xi−1+2ixi , a20x0+21x1+····+2i−1xi−1

〉

(swapping) (2.35)
∣
∣
∣a20x0+21x1+····+2i−1xi−1+2ixi , 0

〉

. (resetting) (2.36)

Why is it necessary to compute the multiplicative inverse for the inverse modular multiplier,
rather than solely relying on the inverse of the modular multiplier?
An intuitive explanation can be readily provided. Let’s consider the action of a modular
multiplier:

Ua,N |x, 0⟩ = |x, axmodN⟩ . (2.37)
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The inverse operation should be able to take |x, axmodN⟩ and yield |x, 0⟩. We can observe
this by considering how the operator is constructed and operates at a lower level, as follows:

U−1
a,N

∣
∣
∣x, 20ax0 + · · · + 2naxn

〉

=
∣
∣
∣x, 20ax0 + · · · + 2naxn − 20ax0 − · · · − 2naxn

〉

= |x, 0⟩ .
(2.38)

We can now transpose this reasoning on our initial problem. In particular, after swapping the
registers, the state we are dealing with is |axmodN, x⟩. If we apply U−1

a,N , we obtain:

U−1
a,N |axmodN, x⟩ = U−1

a,N

∣
∣
∣20ax0 + · · · + 2naxn, x

〉

=
∣
∣
∣20ax0 + · · · + 2naxn, x− 20ax0a− · · · − 2naxna

〉

.
(2.39)

This procedure certainly does not result in the second register being zero. Let’s try instead to
apply U−1

a−1,N :

U−1
a−1,N |axmodN, x⟩ =

∣
∣
∣20ax0 + · · · + 2naxn, x− 20ax0a

−1 − · · · − 2naxna
−1
〉

=

∣
∣
∣
∣
∣
∣
∣

axmodN, x− (20x0 + · · · + 2nxn)
︸ ︷︷ ︸

x

〉

= |axmodN, 0⟩ .
(2.40)

In this way we were able to successfully obtain the desired state of Eq. 2.36.



Chapter 3

Simulation and results

The algorithmic nature of the VBE (Vedral, Barenco, and Ekert) [3] modular exponentiation
method enables the creation of specific quantum circuits for factorizing any integer N . By
inputting the value of N , we can automatically generate a quantum circuit optimized for its
factorization, offering a pathway to scalability.
To implement the quantum circuit we used the Qiskit framework, an open-source python-
based SDK developed by IBM for creating and manipulating quantum programs. Whereas
for the execution, we relied on the software Quantum Matcha Tea: a quantum computer
emulator powered by matrix product states, in which it is possible to perform any measurement
accessible on a quantum computer, such as projective measurements. Further, by accessing the
entanglement entropy between different subsystems, the emulator allows the monitoring of the
entanglement generated during the algorithm execution.
The tensor network ansatz used for the representation of the wave function is the matrix
product state ansatz. This approach reduces the memory requirement from an exponential
scaling with the system size to a linear scaling, though quadratic in the bond dimension, the
critical parameter that controls the representation of quantum correlations.
In this framework, MPS simulations are not constrained by the number of qubits but rather by the

amount of entanglement accounted for in the wave function, making them possibly well-suited
for handling very large circuits. Particularly in our case, we were able to successfully simulate
circuits with more than 100 qubits, showcasing both the emulator’s proficiency in handling
substantial computational complexities and the correct crafting of the quantum circuit.

3.1 The program for Shor’s algorithm

In this section, we will provide a brief overview of the program’s interface. Fig. 3.1 illustrates
the steps to initialize it and obtain the desired results.
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Figure 3.1: Example of interface with N = 15.

To begin, the program prompts for the input of two values: N and a, where the value of a
can be specified directly or chosen randomly. After confirming that a and N are co-prime,
users are presented with the option to use the program solely as a modular exponentiation
calculator (ax modN) or to execute Shor’s algorithm in its entirety. The next parameter to
enter is the maximum bond dimension value, which modulates the amount of entanglement
that can be represented by the circuit ansatz. For instance, setting a low bond dimension risks
compromising circuit functionality by an excessive truncation.
Finally, it is possble to choose the execution environment: either local or cluster. This last
option works specifically on the INFN cluster of Padova.
Before presenting the results, the program provides information on both the number of gates
used by the circuit and the execution time.
After the simulation is completed, the results are shown as depicted in the Fig. 3.2.

Figure 3.2: Results of the simulation for N = 15 and a = 2.
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As common for quantum emulators, the simulation performs 1024 projective measurements
on the final state, offering statistical insights other than a single bitstring. In the specific
case illustrated in Fig. 3.2, we can see that the outcome presents four main readings, evenly
distributed. Assuming the correctness of the final estimation with order r = 4, it is easy to see
how each distinct phase estimation corresponds to a specific value of s.

• PHASE ESTIMATION 1: This corresponds to a value of s = 0. In this case the algorithm
fails and the function responsible for the continued fractions returns r = 1 by default.

• PHASE ESTIMATION 2: This aligns with a value of s = 1, which produces a phase
φs = s/r = 0.25. Here the algorithm successfully finds the factors of N .

• PHASE ESTIMATION 3: This case (s = 2) is rather peculiar, given that s and r
share common factors. In fact, as anticipated in Sec. 2.2.1, for such conditions the
continued fraction algorithm yields r′ that is a factor of r. Despite the algorithm’s failure
to identify the order, it remains worthwhile to proceed with classical processing, as it
may still provide the correct factors.

• PHASE ESTIMATION 4: Finally, the case correspondent to a value s = 3, which yelds
the correct results.

In general, the correct prime factors have been successfully identified in 76.1% of the cases.
Furthermore, in the case of N = 15, we have estimated the order of the function f(x) =
2x mod 15 to be r = 4. The correctness of this results is evident from the plot in Fig. 3.3:

Figure 3.3: Graphical representation of the function f(x) = 2x mod 15. The periodicity confirms
the correct estimation of the order found by phase estimation.

The high accuracy of this simulation is attributable, in part, to the ability to consistently
express the phase φs precisely as α/2m. This characteristic minimizes uncertainty, focusing it
solely on the superposition of different s values.

3.2 Network complexity analysis

An essential topic we have to address is the complexity of our circuit: how the number of qubits
and gates scales with the bit length n required to encode the integer number N .
Before delving into our analysis, it’s important to note that in the VBE paper [3], indices range
from zero to a certain number. For example, in Fig. 2.2, the value of a is actually encoded
in n + 1 bits, as the indices range from a0 to an. So in the following discussion, to avoid any
misunderstandings, we’ll consider the number of qubits only in relation to n = ⌈log2(N)⌉.
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3.2.1 Qubits resources requirements

Extracting a formula to express the total number of qubits q required to launch Shor’s algorithm
as a function of n is relatively easy, since its sufficient to count the registers dimensions in the
modular exponentiation modules. For instance, the plain adder requires 3n + 1 qubits, the
modular adder introduces n + 1 more, the controlled modular multiplier adds n + 1 qubits1,
and ultimately the controlled qubits are m = 2n, as already mentioned in Sec. 2.2. Adding
them together we obtain the following scaling for the required qubits, q(n) = 7n + 3. So we
end up with a linear trend:

Figure 3.4: Relation between total qubits count and the bit length n.

The RSA encryption keys are typically encoded in 2048 bits. Consequently, from Fig. 3.4
we can see that a circuit designed to break such encryption requires approximately 14k logical
qubits.

3.2.2 Gates resources requirements

Unlike for qubits, the exact number of gates cannot be directly expressed as a function of n, as
it also depends on the specific values chosen for N and a. However, we can observe how the gate
count scales with n in terms of order of magnitude. Following the approach used in the previous
section, we can analyze the contribution of each component of the modular exponentiation [3].
The count of elementary gates in the plain adder, modular addition, and controlled-modular
addition network increases linearly with n. Consequently, the controlled modular multiplica-
tion which involves n controlled modular additions, results in O(n2) elementary operations.
Similarly, the exponentiation network that uses roughly n controlled modular multiplications,
leads to a total count of elementary operations on the order of O(n3). Knowing from page 10
that the quantum Fourier transform scales as O(n2), we can conclude that the entire circuit
uses O(n3) elementary operations.
The transpilation process involves rewriting a circuit in an equivalent manner, potentially using
different types of basis gates or satisfying certain conditions. For instance, we might transpile
the circuit to utilize only nearest neighbor gates or avoid three-qubit gates. Does the O(n3)
complexity still hold in this context?

1The controlled qubit used in the controlled modular multiplier differs from the one employed in the modular
exponentiation. While theoretically they serve the same purpose, in practice, a dedicated qubit acts as a bridge
between the two and has to be taken into account.
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To check this, we analyzed the number of gates in different transpilation conditions.
In Fig. 3.5 it becomes evident that the scaling remains unchanged despite the transpilation
procedure.

Figure 3.5: Scalings in two different transpiling conditions. The grey dots represent the number
of gates for a nearest neighbor transpilation: meaning no ccx or long range cx, cp and swaps.
The brown crosses represent the number of gates for a specific basis gate transpilation: in
particular {cx, σi, cp, swaps}. Both cases fit best into a cubic interpolation with a value of
R2 = 0.99, where R2 is the coefficient of determination that quantify the goodness of the model.

3.3 Memory costs

The computational demands of implementing Shor’s algorithm program are considerable, par-
ticularly concerning RAM usage. For larger circuits (n ≥ 14), it can easily exceed 200 GB at
its peak.
During our simulations, we monitored memory usage continuously over time and observed a
distinct pattern that can be divided into two main regions. The first region corresponds to
the peak memory usage, typically occurring soon after the start of the simulation. This peak,
crucial for selecting an appropriate computing environment (a machine with enough RAM
available), is likely attributed to circuit preparation and transpilation processes. The second
region follows a rapid drop from the peak and stabilizes at an approximately constant value.
This stable memory usage, named RAM cut due to the sharp decrease, represents the memory
required for the emulator to conduct computations. In Figure 3.6, we present data illustrating
the RAM peak memory and RAM cut relative to n.

Figure 3.6: RAM peak and RAM cut over n. We can see the fast increase of the peak that
surpass 200 GB for n = 14. The trend is polynomial in both cases.
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It’s important to emphasize that these values are not solely dependent on the parameter n,
but are tightly linked to the maximum bond dimension set. Specifically, storing an MPS state
requires O(2q(n)χ2) numbers/memory, where χ denotes the bond dimension [13]. For this
reason, having used different max bond dimensions for each simulation represented, we didn’t
associate any trendline.

3.4 Searching for optimal values

As mentioned earlier, MPS simulations are not restricted by the number of qubits but by
the amount of entanglement generated in the quantum evolution. Keeping in mind that for
any N a random value of a ∈ Z

∗
N is chosen, we can analyze whether the chosen a minimizes

entanglement usage, thereby optimizing the algorithm for the emulator.
To achieve this, we set a fixed value of N = 119 and conducted multiple simulations varying
a in magnitude. Employing Quantum Matcha Tea functions, we extracted the maximum
entanglement levels both after the modular exponentiation and after the QFT. If a significant
correlation between a and the entanglement exists, it should be self-evident once collected
enough data. In Fig. 3.7 the results are illustrated:

Figure 3.7: Max entanglement for different values of a at fixed N = 119. The black dots are
the values before QFT, whether the blue ones corresponds to those after the QFT.

Based on the plot analysis, it appears that the data points are distributed without exhibiting
any particular pattern.
Luckily, a more comprehensive answer emerged from new investigations of continuous monitor-
ing of entanglement throughout the time evolution. In fact, we observed a significant correlation
between entanglement levels and the order r. In particular, various configurations of a and N
sharing the same order exhibited nearly identical entanglement patterns across all analyzed
scenarios. Unfortunately, lacking prior knowledge of the order prevents us from capitalizing
on this potentially advantageous property. Nevertheless, aiming for a deeper comprehension of
this behavior certainly constitutes an intriguing objective for future research.



Conclusion and future works

For this thesis hundreds of simulations were performed and the results were always obtained,
even if, according to the theory, fluctuations of the probabilities were encountered. The largest
circuit we were able to execute was the one that factorize N = 8453, corresponding to a bit
length n = 14, and therefore requiring a total number of qubits equals to 101. The simulation
took around 30 hours running on the GPU of the INFN cluster of Padua, giving a success rate
of 50.1% with a max bond dimension set at 10000, fairly small compared to the maximum
bond dimension 2q(n)/2 for an MPS. Unfortunatly, it also consumed an amount of peak mem-
ory (RAM) of 212 GB, nearing the available limit of 256 GB (effective 245 GB). Consequently,
simulations involving numbers with n > 14 were unachievable due to memory constraints. Nev-
ertheless, it is clear that a computer with greater capacity could accommodate more expensive
circuits in terms of qubits and gates.
Another noteworthy accomplishment of this thesis is undoubtedly the demonstration of the
tensor network emulator Quantum Matcha Tea’s capabilities. Through the utilization of Ma-
trix Product States (MPS), we successfully simulated circuits of significant complexity. Far
beyond the actual possibilities of a real quantum hardware, that wouldn’t be able to compute
the Shor’s algorithm circuit even in the simplest cases.
Ultimately, we validated the network complexity across different transpilation configurations
through experimental means and we investigated the relationship between the selection of a
and entanglement, finding interesting results that instead seem to show a strong correlation
between entanglement and order.
Looking ahead to future research, other than the already mentioned further investigation of this
last concept, it would be newsworthy to explore the creation of a circuit for Shor’s algorithm
utilizing diverse models of modular exponentiation. While VBE is a possible approach, it is
just one of several models available for executing this crucial step. For instance, there are QFT-
based circuits that demonstrate efficacy with fewer qubits [14]. Given that these alternative
methods may necessitate increased levels of entanglement, it would be interesting to conduct
a comparative analysis of the emulator’s efficiency with both approaches to discern any dis-
parities. Specifically, considering that MPS are indifferent to the number of qubits but rather
sensitive to the degree of entanglement, we could explore the trade-off between fewer qubits
and possible greater entanglement. By evaluating success rates and resource requirements, we
could thus determine the superior model of modular exponentiation to an MPS tensor network
emulator.
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