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Introduction

The equation describing the conduction of heat in solids holds a special stand-
ing in modern mathematics and physics. It is a key element in the analysis of
problems involving the transfer of heat in physical systems, moreover it in-
spires the mathematical formulation of many other physical processes dealing
with di↵usion phenomena [14].

This partial di↵erential equation allows to describe mathematically the
transient process of heat conduction within a system characterized by poten-
tially spatially-varying quantities such as thermal conductivity and capacity,
and holding into account possible interactions with the external environment
through its boundary.

The heat equation has been the object of wide studies, both from a theo-
retical point of view, it is even considered as a prototype for parabolic PDEs,
and more recently from a numerical standpoint; this allowed to achieve good
results regarding its well-posedness (see [6]), and a wide range of numerical
methods to solve it, from classical methods such as finite element methods
(FEM), able to provide accurate and robust algorithms (see [23]), to more
modern approaches taking advantage of machine learning and in particular
of neural networks (see [10], [2]).

Hence we can rely on trusted numerical methods when solving the heat
equation with a fixed choice of parameters, however there are situations where
we look for a method capable of solving this problem given any choice of the
parameters in a suitable space.

In other words, we are looking for an operator that assigns to each vector
of parameters its associated solution; [3], [12] and [15] approach this problem
for certain classes of PDEs by using an operator neural network that takes
into consideration the physical principles involved trying to insert these into
the learning procedure through the use of priors (also known as biases in [8],
intended with a positive connotation).
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This physically informed approach is particularly useful because it allows
to make predictions in a small data regime and improves the robustness
of the method (see [8]). While the Universal Approximation Theorem for
Operators [3] lays the theoretical basis and guarantees the feasibility of this
strategy, [12] introduces a high-level network architecture called DeepONet
and implements it in practical applications.

VarMiON, a variationally mimetic operator network introduced in [15],
drawing inspiration from DeepONet, refines the high-level network archi-
tecture motivated by the discretization of a variational formulation of the
problem, and customizes the optimization problem introducing a custom
loss function that takes into consideration the physical setting.

In particular [15] addresses the steady-state heat conduction problem,
providing an implementation that outperforms DeepONet, while [17] ad-
dresses the time-dependent heat conduction problem using a loss-informed
DeepONet.

Inspired by these results, the aim of this thesis is to develop a variationally
mimetic operator neural network for the time-dependent heat equation, with
appropriate initial and boundary conditions, and to compare its performance
to a DeepONet network.

In Chapter 1 we state the particular cases of the heat conduction problem
that we will address in the remainder of the thesis and derive their varia-
tional formulations, whose discretization, following the Galerkin method, are
presented in Chapter 2. Chapter 3 we review neural networks and the tools
that will be used in the numerical experiments. In Chapter 4 we provide an
account of physics informed neural networks and in particular of the opera-
tor approximation approach; in Chapter 5 we review the VarMiON operator
for the steady-state heat equation and introduce the high-level architecture
for a variationally mimemtic operator network for the time-dependent heat
equation. Finally in Chapter 7 we present the numerical results obtained for
both the steady-state and the time-dependent heat equation.



Chapter 1

Heat Equation

The heat equation is a partial di↵erential equation (PDE) first formulated by
Joseph Fourier in 1807 to model how heat di↵uses within a system and has
since inspired the formulation of various other physical processes in terms of
di↵usion (for a historical overview [14]).

This equation has been the object of wide studies, both from a theoretical
point of view, it is even considered a prototype for parabolic PDEs, and from
a numerical standpoint.

In this chapter we state the di↵erential problems that we will address in
the remainder of the thesis and derive their variational formulations (in a
manner analogous to what is done in [6] and [1]). These alternative formu-
lations will serve as the basis for the numerical algorithms developed using
the finite element method (for reference [18] [23]).

We first study the particular case in which the temperature field is con-
stant over time and then we treat the case of a general temperature field.

1.1 Steady-state heat equation

Consider the steady-state heat conduction equation1[1], [18],that describes a
stationary (i.e. that does not evolve over time) field of temperature within a
system:

�r · (✓(x)ru(x)) = f(x), 8x 2 ⌦ (1.1)

1Also known as Poisson’s equation.

1
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where ⌦ ⇢ Rd is an open domain with piecewise smooth boundary and
the variables have the following interpretation:

• u is the temperature field,

• ✓ is the thermal conductivity, and

• f represents volumetric heat sources.

Adding appropriate boundary conditions we obtain a well-posed problem
provided that the parameters satisfy certain properties. The case we are
interested in is with zero Dirichlet and Neumann boundary conditions:

�r · (✓(x)ru(x)) = f(x), 8x 2 ⌦

✓(x)ru(x) · n(x) = ⌘(x), 8x 2 �⌘

u(x) = 0, 8x 2 �g

(1.2)

where ⌘ is the heat flux through the part �⌘ of the boundary.
The above problem admits the following weak formulation, which can be

derived with a procedure analogous to the one described in [6].

Definition 1.1.1 (Weak formulation of (1.2)). Let H1
g
= {v 2 H1(⌦) :

v|�⌘ = 0}.
Find u 2 H1

g
such that

a(u, v; ✓) = L(v), 8v 2 H1
g

(1.3)

where

a(u, v; ✓) =

Z

⌦

✓(x)ru(x)rv(x) dx

L(v) =

Z

⌦

f(x)v(x) dx+

Z

�⌘

⌘(x)v(x) dx
(1.4)

Now we describe how the forms a and L are obtained. Let w 2 H1
g
, by

multiplying both sides of the first equation in (1.2) by w and integrating over
⌦ we get

�

Z

⌦

r · (✓ru)w dx =

Z

⌦

fw dx (1.5)

We have
Z

⌦

r · (✓ru)w dx =

Z

⌦

(ru ·r✓ + ✓�u)w dx,
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and since by Green’s formula
Z

⌦

✓w�u dx =

Z

@⌦

✓wru · n ds�

Z

⌦

r(✓w) ·ru dx

we obtain
Z

⌦

r · (✓ru)w dx =

Z

@⌦

✓wru · n ds�

Z

⌦

✓ru ·rw dx

Moreover, using @⌦ = �g [ �⌘ we find that
Z

@⌦

✓wru · n ds =

Z

�g

✓wru · n ds+

Z

�⌘

✓wru · n ds =

Z

�⌘

⌘w ds

because w = 0 on �g and ✓ru · n = ⌘ on �⌘.
Finally, putting everything in (1.5), we obtain the thesis:

Z

⌦

✓ru ·rw dx =

Z

⌦

fw dx+

Z

�⌘

⌘w ds

1.1.1 Well-posedness

Definition 1.1.2. Let ⌦ be an open domain, we define H1(⌦) = {v 2 L2(⌦) :
rv 2 L2(⌦)d}.

Proposition 1.1.1 (Trace operator). Let ⌦ ⇢ Rd
is an opend bounded do-

main with smooth Lipschitz boundary.

There exists a unique linear continuous operator �0 : H1(⌦) ! L2(@⌦)
such that if u 2 C(⌦, then �0(u) = u|@⌦.

Proof. See [1].

To discuss the well-posedness of a weak elliptic PDE it is fundamental
the following

Theorem 1.1.1 (Lax-Milgram Lemma). Let V be an Hilbert space with norm

|| · ||V , a : V ⇥ V ! R a bilinear form and L : V ! R a linear form that

satisfy the following properties:

1. coercivity: there exists ↵ > 0 such that a(v, v) � ↵||v||2
V

for every

v 2 V ;
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2. continuity: there exists � > 0 such that |a(u, v)|  �||u||V ||v||V for

every u, v 2 V ;

3. there exists c > 0 such that |L(v)|  c||v||V for every v 2 V .

Then there exists a unique u 2 V such that

a(u, v) = L(v) 8v 2 V. (1.6)

Moreover ||u||V 
1
↵
||L||V 0 with ||L||V 0 := sup

v2V,v 6=0
|L(v)|
||v||V .

Proof. See [1].

Proposition 1.1.2. If f 2 L2(⌦) and ✓ 2 L1(⌦) with inf⌦ ✓ > 0, then the

weak formulation in definition def:wfssiswell�posed, i.e.thereexistsauniqueu
2 H1

g
such that a(u, v; ✓) = L(v) for every v 2 H1

g
.

Proof. We apply Lax-Milgram lemma with V = H1
g
, hence we just need to

prove that a is continuous:

|a(u, v; ✓)|  ||✓ru||L2(⌦) ||rv||L2(⌦)

 ||✓||1 ||ru||L2(⌦) ||rv||L2(⌦)

 ||✓||1 ||u||H1
g
||v||H1

g
,

(1.7)

that it is coercive:

a(v, v) � inf
⌦

✓ ||rv||2
L2⌦ � inf

⌦
✓C ||v||2

H1
g
, (1.8)

where we used the Poincaré inequality in [1], and that L is continuous:

|L(v)|  ||f ||L2(⌦)||v||L2(⌦) + ||g||L2(@⌦)||�0v||L2(@⌦)

 ||f ||L2(⌦)||v||H1
g
+ ||g||L2(@⌦)||�0v||L2(@⌦)

 ||f ||L2(⌦)||v||H1
g
+ ||g||L2(@⌦)C�0 ||v||H1

g

 (||f ||L2(⌦) + ||g||L2(@⌦)C�0) ||v||H1
g
.

(1.9)
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1.2 Time-dependent heat equation

Consider the time-dependent heat conduction equation that describes how
heat is transferred within a system over time:

C(x)@tu(t,x)�r · (✓(x)ru(t,x)) = f(t,x), 8(t,x) 2 (0, T )⇥ ⌦
(1.10)

where the variables have the following interpretation:

• u is the temperature field,

• C is the thermal capacity,

• ✓ is the thermal conductivity, and

• f represents volumetric heat sources.

As before, we can obtain di↵erent problems by adding certain boundary
conditions to this equation, we are interested in two situations: the case with
zero initial and zero mixed Dirichlet-Neumann boundary conditions, and the
case with zero initial condition and Robin boundary condition.

The formulation of the first case is:

C(x)@tu(t,x)�r · (✓(x)ru(t,x)) = f(t,x), 8(t,x) 2 (0, T )⇥ ⌦

✓(x)n(x) ·ru(t,x) = 0, 8(t,x) 2 (0, T )⇥ �⌘

u(t,x) = 0, 8(t,x) 2 (0, T )⇥ �g

u(0,x) = 0, 8x 2 ⌦

(1.11)

where �g,�⌘ ⇢ @⌦ cover the whole @⌦.
And for the second case:

C(x)@tu(t,x)�r · (✓(x)ru(t,x)) = f(t,x), 8(t,x) 2 (0, T )⇥ ⌦

✓(x)n(x) ·ru(t,x) = hbt(u(t,x)� g(t,x)), 8(t,x) 2 (0, T )⇥ @⌦

u(0,x) = 0, 8x 2 ⌦
(1.12)

where hbt is a heat transfer constant relative to the boundary and g rep-
resents the heat flux through the boundary (0, T )⇥ @⌦.
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For both problems we discuss two variational formulation. The first is
obtained by discretizing the derivative with respect to time, which gives a
sequence of elliptic problems similar to 1.1, so their weak formulation is
obtained through an analogous process. The second formulation is obtained
by treating time and space variables on the same level.

In the first approach we use the implicit Euler method to discretize the
time derivative as described inthe next definition.

Definition 1.2.1 (Time-discretization of (1.10)). Let 0 = t0 < t1 < ... <
tN = T be a uniform partition of (0, T ) with step �t = T

N
.

Consider the problem (1.10) and let un(x) = u(tn,x) and fn(x) = f(tn,x)
for x 2 ⌦ and n 2 {0, ..., N}.

A time-discretization of (1.10) obtained via implicit Euler is given by

u0(x) = 0,

C(x)un+1(x)��tr · (✓(x)run+1(x)) = C(x)un(x) +�tfn+1(x)
(1.13)

for x 2 ⌦ and n 2 {0, ..., N � 1}.

Case 1

Definition 1.2.2 (Weak formulation of (1.11) with semi-discretization in
time). The weak formulation of the boundary value problem (1.11), using the

time-discretization in 1.2.1, is the following.

Find a sequence (u1, ..., uN) ⇢ H1
g
(⌦) such that

a(un+1, v;C, ✓) = Ln+1(v;C), 8n 2 {0, ..., N � 1} (1.14)

where

a(u, v;C, ✓) =

Z

⌦

(C(x)u(x)v(x) +�t ✓(x)ru(x) ·rv(x))dx

Ln+1(v;C) =

Z

⌦

(C(x)un(x) +�tfn+1(x))v dx, n 2 {0, ..., N � 1}

(1.15)

Definition 1.2.3 (Space-time weak formulation of (1.11)). Find u 2 H1
g
((0, T )⇥

⌦) such that

a(u, v;C, ✓) = L(v) 8v 2 H1
g
((0, T )⇥ ⌦) (1.16)
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where

a(u, v;C, ✓) =

Z

⌦

C(x)

Z
T

0

@tu(t,x) v(t,x) dtdx+

Z

⌦

✓(x)

Z
T

0

ru(t,x) ·rv(t,x) dtdx

L(v) =

Z

⌦

Z
T

0

f(t,x) v(t,x) dtdx

(1.17)

Case 2

Definition 1.2.4 (Weak formulation of (1.12) with semi-discretization in
time). The weak formulation of the boundary value problem (1.12), using the

time-discretization in 1.2.1, is the following.

Find a sequence (u1, ..., uN) ⇢ H1(⌦) such that

a(un+1, v;C, ✓, h) = Ln+1(v;C, h, g), 8n 2 {0, ..., N � 1} (1.18)

where

a(u, v;C, ✓, h) =

Z

⌦

(C(x)u(x)v(x) +�t ✓(x)ru(x) ·rv(x))dx��t h

Z

@⌦

u(x) v(x) dx

Ln+1(v;C) =

Z

⌦

(C(x)un(x) +�tfn+1(x))v dx��t h

Z

@⌦

g(x) v(x) dx, n 2 {0, ..., N � 1}

(1.19)

Definition 1.2.5 (Space-time weak formulation of (1.12)). Find u 2 H1((0, T )⇥
⌦) such that

a(u, v;C, ✓, h) = L(v;h, g) 8v 2 H1((0, T )⇥ ⌦) (1.20)

where

a(u, v;C, ✓) =

Z

⌦

C(x)

Z
T

0

@tu(t,x) v(t,x) dtdx+

+

Z

⌦

✓(x)

Z
T

0

ru(t,x) ·rv(t,x) dtdx� hbt

Z

@⌦

Z
T

0

u(t,x) v(t,x) dtdx,

L(v;h, g) =

Z

⌦

Z
T

0

f(t,x) v(t,x) dtdx� hbt

Z

@⌦

Z
T

0

g(t,x) v(t,x) dtdx

(1.21)
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Chapter 2

Finite element method for the
heat equation

In this chapter we present the Galerkin method [18] [16], a general procedure
that aims to transform variational problems into a more tractable form, and
the finite element method [1], which o↵ers a specific framework for solving
these redefined problems.

Finally, we show how to apply the Galerkin method to certain parametrized
PDEs seen in the first chapter.

2.1 Galerkin method for weak PDEs

In this section we outline the Galerkin method for tranforming a weak PDE
into a sequence of discrete problems whose solutions converge to the solution
of the initial weak PDE.

Suppose we are given a continuous problem:

Find u 2 V such that a(u, v) = L(v) 8v 2 V (2.1)

for some bilinear form a : V ⇥ V ! R and linear form L : V ! R,
satisfying Lax-Milgram lemma so that there exists a unique solution ū 2 V

Let {Vn}n2N be a family of finite dimensional subspaces of V with increas-
ing dimension, i.e. dim(Vn) = n 8n 2 N, and satisfying the approximability
property:

lim
n!+1

inf
vn2Vn

||v � vn||V = 0 8v 2 V. (2.2)

9
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meaning that every element of V can be approximated arbitrarily well in
Vn for n large enough.

For each n 2 R we can consider the finite dimensional problem:

Find un 2 Vn such that a(un, vn) = L(vn) 8vn 2 Vn. (2.3)

which also admits a unique solution ūn 2 Vn because Lax-Milgram still
applies given that Vn ⇢ V .

We can prove that limn!+1 ||ū� ūn||V = 0, i.e. that {ūn}n converges to
ū, moreover the following estimate (Cea’s lemma) holds for every n 2 N:

||ū� ūn|| 
�

↵
inf

vn2Vn

||ū� vn||V , (2.4)

where ↵, � > 0 are the coercivity and continuity constants of a respec-
tively.

Now we show how to transform problem 2.3 into a linear system; fix a
basis {�i}

n

i=1 of Vn so that we can write un(x) =
P

n

j=1 uj�j(x) with {uj}
n

j=1 ⇢

R, then 2.3 is equivalent to:

nX

j=1

uja(�j,�i) = L(�i) 8i 2 {1, ..., n} (2.5)

If we let U = (ui)i and define A = (a(�i,�j))ij and b = (L(�i))i, called
the sti↵ness matrix and the load vector respectively, then we can rewrite the
previous system as:

AU = b (2.6)

2.2 Finite element method

The finite element method (FEM) gives us a general procedure to solve the
problem described in the previous section; its main ingredients are: a mesh
T on some space ⌦, a space of piecewise polynomial functions P on ⌦ and a
set of degrees of freedom L. These objects actually describe what we call a
finite element.

We introduce a particular case of finite element that will be used in the
following chapters.

10



Let ⌦ be an open, bounded domain with piecewise smooth boundary; as
a mesh of ⌦ we consider a sequence T = {Ki}

N

i=1 ⇢ ⌦ of closed simplices
(triangles if d = 2, tetrahedra if d = 3 and so on) that forms a triangulation
of ⌦, that is:

1. K̊i 6= ? for every i 2 {1, ..., N};

2. K̊i \ K̊j = ? for every i, j 2 {1, ..., N} with i 6= j;

3.
S

N

i=1 Ki = ⌦̄;

4. for every i, j 2 {1, ..., N} with i 6= j, the intersection Ki \Kj is either
empty or an entire m-face (vertex for m = 1, edge for m = 2 and so
on) shared by Ki and Kj.

As space of piecewise polynomial functions we choose P = P1(T ) = {v 2

C
0(⌦̄) : v|K 2 P1(Rd) 8K 2 T} where Pk(Rd) is the space of polynomials

of degree at most k in d variables.
Finally as degrees of freedom L we take the dual basis of � = {�h

i
}
M

i=1,
where M is the number of the vertices V1, ..., VM of the polyhedra in T and
�h

i
: ⌦ ! R is the function in P1(T ) such that �h

i
(Vj) = �ij for each i =

1, ...,M .
Now that we have described the main objects involved, we explain the

solution process when ⌦ = (0, 1)d, the generalization to ⌦ = (0, T )⇥(0, 1)d�1

is easy to obtain.
For any n 2 N+, we can define a uniform grid on ⌦ with stepsize h = 1

n

and vertices {xi}
Mh
i=1 where Mh = (n + 1)d. Using this grid we define a

triangulation Th of ⌦ by subdividing each d-cube of the grid (with side length
h and vertices in {xi}

Mh
i=1) into d! simplices, obtaining a total of N = ndd!

simplices, or elements, Ki.
Finally we define the space of piecewise polynomial functions Ph = P1(Th)

and the basis functions {�h

i
}
Mh
i=1.

Consider now problem 2.1, assuming V is a normed space containing
Ph for every h > 0, we can apply the Galerkin method with Vn = VMh

=
span(�h

1 , ...,�
h

Mh
) and use the basis {�h

i
}
Mh
i=1 to transform the problem in a

linear system.
Note that dimVn 6= n, but it is true that {dimVn}n is increasing and

diverges for n ! +1, hence the result on convergence of the previous section
still holds provided that {Vn}n satisfies the approximability property.

11



In the remainder of this chapter we apply the Galerkin method to the
problems seen in the first chapter; we observe that since we are treating
parametrized PDEs we obtain linear systems depending on one or more pa-
rameters.

2.3 Steady-state heat equation with zero
Dirichlet-Neumann boundary conditions

Consider the problem 1.2 with zero Neumann boundary condition:

�r · (✓(x)ru(x)) = f(x), 8x 2 ⌦

✓(x)ru(x) · n(x) = 0, 8x 2 �⌘

u(x) = 0, 8x 2 �g

(2.7)

Our goal is to approximate the solution operator

S : X := F ⇥ T ! V ✓ H
1
g
, (f, ✓) 7! u(·; f, ✓) (2.8)

of the associated variational problem: find u 2 H1
g
(⌦) such that

a(u, v; ✓) = L(v), 8v 2 H1
g
(⌦) (2.9)

where

a(u, v; ✓) =

Z

⌦

✓(x)ru(x)rv(x) dx

L(v) =

Z

⌦

f(x)v(x) dx
(2.10)

First we choose a space V
h = span(�1(x), ...,�q(x)) that approximates,

in some sense, V ; this space contains our candidate solvers.
Next we project our data into V

h, that is we define a function

P : X ! X
h := F

h
⇥ T

h
✓ V

h
⇥ V

h, (f, ✓) 7! (fh, ✓h) (2.11)

that approximates the PDE data in X
h.

Since any element gh 2 V
h can be expressed as a linear combination of

the basis functions:

gh(x) =
qX

j=1

Gj�j(x), 8x 2 ⌦ (2.12)
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with G = (G1, ..., Gq)T , it follows that we can represent fh and ✓h, with
coordinates F and ⇥ respectively, in this basis.

In particular, to approximate some g 2 V in V
h we look for gh 2 V

h such
that (gh, vh) = (g, vh) 8vh 2 V

h.
This is equivalent to:

(gh,�i) = (g,�i), 8i 2 {1, ..., q} (2.13)

that becomes a q ⇥ q linear system of equations:

qX

j=1

(�i,�j)Gj = (g,�i), 8i 2 {1, ..., q} (2.14)

Let M = ((�i,�j)ij), then we have

MG = G (2.15)

with G = (G1, ..., Gq)T and G = ((g,�1), ..., (g,�q))T .
The matrix M is positive definite, because (·, ·) is a scalar product, and

hence invertible, so we obtain

G = M
�1
G (2.16)

Applying this reasoning to f and ✓ we have F = M
�1
F and ⇥ = M

�1
⇥.

Now we are able to discretize the weak formulation of our problem ob-
taining: find uh

2 V
h such that

a(uh, vh; ✓h) = (vh, fh), 8vh 2 V
h (2.17)

and since uh =
P

q

j=1 Uj�j, this is equivalent to a q ⇥ q linear system of
equations

qX

j=1

a(�j,�i; ✓
h)Uj = (�i, f

h), 8i 2 {1, ..., q} (2.18)

letting K(✓h) = (a(�i,�j; ✓h)ij), this can be written as

K(✓h)U = F (2.19)

and assuming that the basis {�i}i is chosen so that K is invertible for
every ✓h 2 T

h, we finally get the unique solution

13



U = K(✓h)�1
MF (2.20)

2.4 Steady-state heat equation with Dirichlet-
Neumann boundary conditions

Consider problem 1.2:

�r · (✓(x)ru(x)) = f(x), 8x 2 ⌦

✓(x)ru(x) · n(x) = ⌘, 8x 2 �⌘

u(x) = 0, 8x 2 �g

(2.21)

Our goal is to approximate the solution operator

S : X := F ⇥ T ⇥N ! V ✓ H1
g
(⌦), (f, ✓, ⌘) 7! u(·; f, ✓, ⌘) (2.22)

of the associated variational problem 1.2.
As in the previous section, we choose a space Vh = span(�1(x), ...,�q(x))

of candidate solvers that approximates V ; then we project the data into this
space, that is we define a function

P : X !, (f, ✓) 7! (fh, ✓h) (2.23)

where X
h := F

h
⇥ T

h
⇥N

h
✓ V

h
⇥ V

h
V

h
|�⌘ .

We can represent fh,✓h and ⌘h, with coordinates F, ⇥ andN respectively,
in the basis {�i}

q

i=1:

fh = F
T
�(x), ✓h = ⇥

T
�(x), ⌘h = N

T
�(x)|�⌘ (2.24)

Now we are able to discretize the weak formulation of our problem ob-
taining: find uh

2 V
h such that

a(uh, vh; ✓h) = (vh, fh) + (vh, ⌘h)�⌘ , 8vh 2 V
h (2.25)
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and since uh =
P

q

j=1 Uj�j, this is equivalent to a q ⇥ q linear system of
equations

qX

j=1

a(�j,�i; ✓
h)Uj = (�i, f

h) + (�i, ⌘
h)�eta , 8i 2 {1, ..., q} (2.26)

letting K(✓h) = (a(�i,�j; ✓h))ij, this can be written as

K(✓h)U = F+N (2.27)

with F = ((f,�1), ..., (f,�q))T and N = ((⌘,�1)�⌘ , ..., (⌘,�q)�⌘)
T .

Defining M = (�i,�j)ij and M̃ = ((�i,�j)�⌘)ij we finally obtain:

K(✓h)U = MF+ M̃N (2.28)

and assuming that the basis {�i}i is chosen so that K is invertible for
every ✓h 2 T

h, we finally get the unique solution

U = K(✓h)�1(MF+ M̃N). (2.29)

2.5 Time-dependent heat equation with zero
Dirichlet-Neumann boundary conditions

Consider the problem 1.11, our goal is to approximate the solution operator

S : X := F ⇥ T ⇥ C ! V ✓ H
1
g
, (f, ✓, C) 7! u(·; f, ✓, C) (2.30)

First we choose a space V
h = span(�1(t,x), ...,�q(t,x)) that approxi-

mates, in some sense, V and represents our class of candidate solvers; the
continuous basis functions {�i}i.

Next we project our data into V
h, that is we define a function

P : X ! X
h := F

h
⇥ T

h
⇥ C

h
✓ V

h
⇥ V

h

0 ⇥ V
h

0 , (f, ✓, C) 7! (fh, ✓h, Ch)
(2.31)

that approximates the PDE data in X
h.

We can represent fh, ✓h and Ch with coordinates F 2 Rq, and ⇥,C 2 Rq
0

respectively.
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Let M = ((�i,�j)ij), then M is positive definite, because (·, ·) is a scalar
product, and hence invertible, so we can write F = M

�1
F, ⇥ = M̃

�1
⇥ and

C = M̃
�1
C.

Now we can discretize the weak formulation of the problem obtaining:
find uh

2 V
h such that

a(uh, vh; ✓h, Ch) = (vh, fh), 8vh 2 V
h (2.32)

and since uh =
P

q

j=1 Uj�j, this is equivalent to a q ⇥ q linear system of
equations

qX

j=1

a(�j,�i; ✓
h, Ch)Uj = (�i, f

h), 8i 2 {1, ..., q} (2.33)

letting W(Ch) = ((
R
⌦ Ch

R
T

0 @t�j · �i)ij) and A(✓h) = ((
R
⌦ ✓h

R
T

0 r�j ·

r�i)ij) this can be written as

(W(Ch) +A(✓h))U = F (2.34)

and assuming that the basis {�i}i is chosen so that W +A is invertible
for every (✓h, Ch) 2 T

h
⇥ C

h, we finally get the unique solution

U = (W(Ch) +A(✓h))�1
MF (2.35)

2.6 Time-dependent heat equation with Robin
boundary condition

Consider the problem 1.12, our goal is to approximate the solution operator

S : X ! V ✓ H
1, (f, g, ✓, C, h) 7! u(·; f, g, ✓, C, h) (2.36)

where X := F ⇥ G ⇥ T ⇥ C ⇥ I is the parameters’ space.
First we choose a space V

h = span(�1(t,x), ...,�q(t,x)) that approxi-
mates, in some sense, V and represents our class of candidate solvers; the
continuous basis functions {�i}i.

Next we project our data into V
h, that is we define a function

P : X ! X
h := F

h
⇥G

h
⇥T

h
⇥C

h
⇥I ✓ V

h
⇥V

h
⇥V

h

0⇥V
h

0⇥I, (f, g, ✓, C, h) 7! (fh, gh, ✓h, Ch, h)
(2.37)

16



that approximates the PDE data in X
h.

We can represent fh, gh, ✓h and Ch with coordinates F,G 2 Rq, and
⇥,C 2 Rq

0
respectively.

Let M = ((�i,�j)ij), then M is positive definite, because (·, ·) is a scalar
product, and hence invertible, so we can write F = M

�1
F, G = N

�1
G,

⇥ = M̃
�1
⇥ and C = M̃

�1
C.

Now we can discretize the weak formulation of the problem obtaining:
find uh

2 V
h such that

a(uh, vh; ✓h, Ch) = (vh, fh)� h(vh, gh)[0,T ]⇥@⌦, 8vh 2 V
h (2.38)

and since uh =
P

q

j=1 Uj�j, this is equivalent to a q ⇥ q linear system of
equations

qX

j=1

a(�j,�i; ✓
h, Ch)Uj = (�i, f

h)� h(�i, g
h)[0,T ]⇥@⌦, 8i 2 {1, ..., q}

(2.39)

letting W(Ch) = ((
R
⌦ Ch

R
T

0 @t�j ·�i)ij), A(✓h) = ((
R
⌦ ✓h

R
T

0 r�j ·r�i)ij),

Q(h) = ((h
R
@⌦

R
T

0 �j�i)ij) this can be written as

(W(Ch) +A(✓h)�Q(h))U = F� hG (2.40)

and assuming that the basis {�i}i is chosen so thatW+A�Q is invertible
for every (✓h, Ch, h) 2 T

h
⇥ C

h
⇥ I, we finally get the unique solution

U = (W(Ch) +A(✓h)�Q(h))�1(MF� hNG) (2.41)
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Chapter 3

Neural Networks

3.1 Artificial Neural Networks: main ex-
amples and Universal Approximation The-
orem

An artificial neural network (ANN) is a machine learning model designed to
approximate a function. Its architecture consists of units connected to each
other that perform computations on the values they receive as inputs using
learnable parameters; the kind of computation made depends on the type of
ANN. These units are called (artificial) neurons because their functioning is
inspired by the neurons in the human brain.

We will focus only on supervised learning and discuss just one type of
ANN called feedforward neural network (FNN).

The simplest neural network model is the perceptron (for a detailed de-
scription see [21]) that is made of a single neuron, more specifically it consists
in a linear model to which is then applied an activation function:

Rn
3 (x1, ..., xn) 7! �

� nX

i=1

wixi + ✓
�
2 R (3.1)

where w 2 Rn and ✓ 2 R are the trainable parameters and � : R ! R is
Heaviside step function: �(t) = 1[0,1)(t).

The perceptron is a linear classifier, hence its expressivity, i.e. the class
of functions that it can approximate, is limited: as an example the XOR
function is outside of its possibilities.
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A more expressive model can be obtained by combining a certain number
of perceptrons, as shown by the

Theorem 3.1.1 (Universal Approximation Theorem, [4]). Let � : R ! R be

a continuous sigmoidal
1
function, then finite sums of the form

G : [0, 1]n ! R, x 7!

NX

j=1

↵j�(w
T

j
x+ ✓j) (3.2)

with wj 2 Rn
, ✓j 2 R for j = 1, ..., N , are dense in C([0, 1]n).

In other words, given a function f 2 C([0, 1]n) and ✏ > 0, there is a sum,

G, of the above form, for which:

|f(x)�G(x)| < ✏ 8x 2 [0, 1]n (3.3)

Proof. See [4].

This density theorem states that the class of neural networks of the form
(3.2) is a universal approximator, nonetheless, due to e�ciency reasons, it
is useful to consider extensions of this class with multiple hidden layers or
other kind of activation functions.

These more general model are called multilayer perceptrons (MLPs) and
we can describe their architecture as in the following (see [20]).

Let F : Rd
! RD be an MLP consisting of L+2 layers: a source layer, L

hidden layers and an output layer. We denote by Hl, l 2 {0, ..., L+ 1} the
width of the l-th layer, in particular H0 = d and HL+1 = D, and by x

l
2 RHl

the output vector of the l-th layer.
We have that:

xl

i
= �(

Hl�1X

j=1

W l

ij
xl�1
j

+ bl
i
), 1  i  Hl, 1  j  Hl�1 (3.4)

where W l

ij
and bl

j
are known as the weights and bias associated to the

i-th neuron of the l-th layer.
We define A

l : RHl�1 ! RHl ,xl�1
7! W

lxl�1 + b
l with W

l
2 RHl⇥Hl�1

as the weight matrix and b
Hl the bias vector of the l-th layer; then we can

rewrite the formula above as:

x
l = �(A(xl�1)) (3.5)

1This means that limt!+1 �(t) = 1 and limt!�1 �(t) = 0.
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and the whole network as:

F(x0) = A
L+1

� .... �A1(x0). (3.6)

It should be noted that the activation function is not necessarily the same
in every layer, actually some evidence has been presented in favour of using
di↵erent activation functions (see [25]), and we will see example of this in
chap:varmion.

3.2 Activation functions

We present a list of activation functions, limited to the ones relevant to this
work.

The Sigmoid activation function �(x) = 1
1+e�x , used in [10] for instance,

is one the first activation functions introduced and its graph shows a gradual
rise from zero, followed by a relatively rapid increase before it levels o↵ near
one.

The Rectified Linear Unit (ReLU) �(x) = max(0, x) used in [12] and [15]
for example, it also known as ramp function and was introduced in the 1960s
and has become one the most popular activation functions.

The Tanhshrink activation function �(x) = x � tanh(x) used in [15],
unlike the previous activation functions, this function is unbounded both
from below and from above.

3.3 Radial Basis function (RBF)

A�ne transformations are not the only operation that can be performed in
the hidden layers of a neural network.

Another possibility is to use a radial basis function (see [22]), that is a
function � : Rd

! R that depends only on the distance between the input
variable x 2 Rd and some other point c 2 Rd, i.e. �(x) = ⇢(||x � c||2) for
some function ⇢ : R ! R such as ⇢ = exp.

A simple example of neural network using an RBF is given by a three-
layered network F : Rd

! R such that:

F(x0) =
H1X

i=1

↵i⇢(||x
0
� ci||2) (3.7)
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3.4 Transposed convolution

The networks discussed so far only utilize fully-connected layers, but there
are other types of networks where it is not true that every neuron in a hidden
layer or in the output layer is connected to every neuron in the preceding
layer. For instance convolutional neural networks (CNNs), thought to be
used with images as inputs and thus also with bi-dimensional grids, perform
discrete convolutions using learnable kernels and pooling operations (mostly
average and maximum) to reduce the size of a layer (see [11]).

Transposed convolutions are another kind of operation that can be im-
plemented in a neural network that is not fully-connected (see [5]). Such
operations go in the opposite direction of a normal convolution, in the sense
that they can increase the size of layers. Moreover their parameters are the
same type of a convolution (kernel, stride, padding). Although transposed
convolution are sometimes called also ’deconvolution’, they are not the in-
verse operation of convolution, but it is true that the size of input and output
are connected by a relation inverted with respect to a convolution.
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Chapter 4

Physics-informed Neural Net-
works

Simulating physics problems still presents many challenges despite the progress
in using the numerical discretization of partial di↵erential equations; in par-
ticular high-dimensional, problems governed by parameterized PDEs are very
di�cult to tackle.

Solving inverse problems with hidden physics, such as unknown material
properties, also poses di�culties, it is often too expensive and requires a
significant amount of work. Machine learning, in particular deep learning,
has emerged as a promising alternative especially thanks to the large growth
of available data and computing resources.

A problem with the deep learning approach is that deep neural networks
require a lot of data to be trained and in practice the cost of data acquisition
and processing can be prohibitive or the amount of data necessary could even
be impossible to collect.

Moreover, purely data-driven models may produce accurate predictions
on the training dataset, but then fail to generalize the underlying physical
model on new samples.

One way of tackling these obstacles is to provide the model with ’infor-
mative priors’, that is modifying the learning algorithm in order for it to be
in some sense aware of the physical laws involved in the phenomena under
consideration.

This new type of learning, called physics-informed learning is defined as
”the process by which prior knowledge stemming from our observational, em-
pirical, physical or mathematical understanding of the world can be leveraged
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to improve the performance of a learning algorithm” [8].
An example of physics-informed learning is given by physics-informed

neural networks (PINNs), a class of deep learning algorithms that provides
suitable informative priors, that is strong theoretical constraints and induc-
tive biases1, derived from the physical nature of the problem.

When dealing with a PINN we can distinguish three categories of biases:
observational, inductive and learning bias.

Introducing an observational bias means providing su�cient data to cover
the input domain of a learning task, in fact ML methods have demonstrated
remarkable power in achieving accurate interpolation between the dots, even
for high-dimensional tasks. These observational data ought to reflect the
underlying physical principles that dictate their generation, and, in principle,
can be used as a weak mechanism for embedding these principles into an ML
model during its training phase” [8].

Physical systems can easily take advantage of this technique by observ-
ing the evolution of the studied phenomena across the spatial and temporal
scales.

”Inductive biases correspond to prior assumptions that can be incorpo-
rated by tailored interventions to an ML model architecture, such that the
predictions sought are guaranteed to implicitly satisfy a set of given physical
laws, typically expressed in the form of certain mathematical constraints”
[8].

A way of adding this type of bias is by designing a specialized architecture
for the neural network that implicitly embeds any prior knowledge.

A relevant example is given by Convolutional Neural Networks, CNNs
were developed in the field of computer vision and are designed in such a
way to respect invariance along the groups of symmetries and distributed
pattern representations found in natural images [11].

We will see other detailed examples of specialized neural networks archi-
tectures in sec:deeponet and chap:varmion.

Finally a learning bias can be introduced by adopting a loss function
that takes into account the underlying physics of the problem and explicitly
favours convergence towards solutions that agree with it.

It is worth noting that these biases can be combined and actually it is pos-
sible to study what e↵ect is produced by implementing one or more of them in

1We emphasize that in this context ’bias’ is used to denote ’prior’, in particular it has
a positive connotation.
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a model; an example is given in [17] as shows fig:errorcomparison, wherethreedifferentPINNsareimplemented :
avanillaDeepONet, aDeepONetwithL2-loss function and a VarMiON (also
a ’variant’ of DeepONet with a stronger inductive and learning bias); and the
relative L2 error on the testing dataset are compared showing the advantage
of introducing biases in the learning procedure, further details on this models
in sec:deeponet and chap:varmion.

Figure 4.1: Comparison of the error probability density on the testing dataset
for a steady-state heat equation, [17]

4.1 Development of Physics-informed neu-
ral networks for solving PDEs

Although with di↵erent names, PINNs were already introduced in the 1990s.
In [10] a general boundary value problem with either Dirichlet or Neumann
boundary conditions is treated:

L(u(x)) = f(x) 8x 2 ⌦, such that

u(x) = g(x) 8x 2 @⌦ or

n(x) ·ru(x) = ⌘(x) 8x 2 @⌦

(4.1)

with ⌦ ⇢ Rn and L a di↵erential operator.
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To solve (4.1) the authors employ a multi-layer perceptron N and intro-
duce a learning bias by considering a loss function that penalizes also the
violation of the boundary constraint:

E( ) =
qX

i=1

(L(N (xi))� f(xi))
2 + �

q
0X

j=1

(N (x
b

j
)� g(xb

j
))2 (4.2)

for the Dirichlet case, and

E( ) =
qX

i=1

(L(N (xi))� f(xi))
2 + �

q
0X

j=1

(n(xb

j
) ·rN (x

b

j
)� ⌘(xb

j
))2 (4.3)

for the Neumann case.
The loss function is computed at sensor points {xi}

q

i=1 in the domain ⌦
and at {x

b

j
}
q
0

j=1 on the boundary @⌦;  represents the set of trainable pa-
rameter of the neural network; and � is a positive penalty factor determining
how accurately the boundary conditions are to be satisfied.

This method turns out to be computationally e�cient, but the solution
provided does not satisfy exactly the boundary conditions, thus the authors
use it only to obtain a model that gives an approximate solution, and then
refine such model with a computationally heavier method that enforces the
constraints by construction.

More recently, [19] revisits the idea of solving a PDE through neural
networks adopting a loss function based on the underlying physics of the
problem, but using modern computational tools.

The problem treated is a general nonlinear PDE of the form:

@tu(t,x) +N (u(t,x)) = 0, 8(t,x) 2 [0, T ]⇥ ⌦ (4.4)

where ⌦ ⇢ Rn andN is a nonlinear di↵erential operator, with appropriate
boundary conditions.

To solve (4.4), the hidden function u is approximated by a neural net-
work, then f(t,x) := @tu(t,x)+N (u(t,x)) is also derived, through automatic
di↵erentiation, from a neural network that shares the parameters with the
first network.

The loss function used to learn the shared parameters is:

26



E( ) =
1

Nu

NuX

i=1

(u(ti
u
,xi

u
)� ui)2 +

1

Nf

NfX

j=1

(f(tj
f
,xj

f
))2 (4.5)

which is computed using the data {ti
u
,xi

u
, ui

}
Nu
i=1 relative to the initial and

boundary conditions and the points {tj
f
,xj

f
}
Nf

j=1 in the domain.
In the experiments it can be observed that this approach introduces a reg-

ularization mechanism that used with relatively simple feed-forward neural
network architectures trained with small amounts of data allows to achieve
good prediction accuracy provided that the PDE is well-posed, the architec-
ture of the network is su�ciently expressive and the number of points (tj

f
,xj

f
)

is su�ciently large.
It is noted that PINNs are not a replacement of classical numerical meth-

ods for solving PDEs (e.g. finite element methods), rather they can coexist
and the latter may o↵er essential intuition in constructing structured predic-
tive algorithms.

An important example of this will be seen in chap:varmion, where the
high-level architecture of the networks is inspired by the solving process of
the finite element method.

4.2 Operator Networks

The methods presented so far only discuss how to train a neural network to
solve a specific PDE, however in practice we may have a parametrized PDE
and want to solve it for multiple choices of the parameters.

This could be useful for example in many-query tasks like uncertainty
quantification and optimization that require solutions corresponding to mul-
tiple instances of input functions.

A notable case is that of physical problems, where the parameters, or
input, could consists of functions specifying one or more of:

• the initial conditions,

• the boundary conditions,

• the forcing terms, and

• the material properties of the system.
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Instead of re-training the neural network every time a problem with even
slightly di↵erent inputs is given, which would not be immediate since that
would also require generating a new relevant training set, a new way of ad-
dressing this challenge is to train the neural network to approximate directly
an operator that maps the inputs to the corresponding solution.

Since the focus is now shifted on learning an operator, rather than a
single function, such neural networks are called Operator Networks. The
main advantage of this point of view is that it is possible to solve a whole
class of problems whose input functions were not even necessarily present in
the training set. Of course this also raises questions about the accuracy and
robustness of the approximation method.

4.2.1 Universal approximation theorem for opera-
tors

An important step in this direction is presented in [3] where the possibility of
approximating the output of a nonlinear operator defined on some compact
set of a Banach space with a neural network is showed.

The main result is the following:

Theorem 4.2.1 (Universal approximation theorem for operators). Suppose
g is a Tauber-Wiener function

2
, X is a Banach space, K1 ✓ X and K2 ✓ Rn

are compacts, V ✓ C(K1) is compact, and G : V ! C(K2) is a nonlinear

continuous operator.

Then for any ✏ > 0 there are positive integers M,N,m, constants ck
i
, ⇣k, ⇠kij 2

R and points !k 2 Rn
, xj 2 K1 with i = 1, ..,M , k = 1, .., N and j = 1, ..,m,

such that

|G(u)(y)�
NX

k=1

MX

i=1

ck
i
g(

mX

j=1

⇠k
ij
u(xj) + ✓k

i
) · g(!k · y + ⇣k)| < ✏ (4.6)

holds for all u 2 V and y 2 K2

Having in mind a general parametrized PDE, we can think of

• V ⇢ C(K1) as the space containing the input functions,

2By definition, g : R ! R is a Tauber-Wiener function if the set of linear combinationsPN
i=1 cig(�ix+ ✓i), with ci,�i, ✓i 2 R for i = 1, ..., N , is dense in every space C[a, b].
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• K2 = ⌦ as the space where the PDE lives, and

• G as the solution operator S : V ! C(⌦) associating to an instance
of the PDE with relative input u the solution y 7! S(u)[y] relative to
that instance.

Let us fix ✏ > 0, then the theorem above implies that with the right choice
of parameters , we can define a neural network Ŝ that maps an input u 2 V
to a function Ŝ (u) that approximates pointwise the true solution S(u) with
an error less than ✏.

fig:univapproxophelpsusvisualizethestructureofthenetworkthatcanbethoughtasdividedintotwopieces :

• the first part consists in N subnetworks, each one with input y =
(y1, ..., yn) and a hidden layer with activation function g:

y 7! g
� nX

l=1

!klyl + ⇣k
�
, k = 1, ..., N (4.7)

• the second part also consists in N subnetworks, indexed by k, each
one with input u := (u(x1), ..., u(xm)). A fully-connected hidden layer,
that uses g as activation function, returns as output (zk1 , ..., z

k

M
):

u 7! zk
i
:= g

� mX

j=1

⇠k
ij
u(xj) + ✓k

i

�
, k = 1, ..., N and i = 1, ...,M.

(4.8)
Then for each subnetwork we simply compute a linear combination of
(zk1 , ..., z

k

M
):

z
k
7!

MX

i=1

ck
i
zk
i
, k = 1, ..., N. (4.9)

Finally these two parts are connected by the inner product:

(u,y) 7!
NX

k=1

� MX

i=1

ck
i
zk
i

�
· g

� nX

l=1

!klyl + ⇣k
�

(4.10)
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Figure 4.2: Architecture of the neural network in th:univapproxop, [3]

4.3 DeepONet

An implementation of a neural network inspired by th:univapproxopisintroducedin[12]withthenameDeepONet.
Technically DeepONet is not a network operator, but rather a high-level

network architecture in which the overall network is split into two parts,
called trunk subnetwork and branch subnetwork, whose outputs are combined
via dot product, as fig:stackeddeeponetshowsusingthenotationofth : univapproxop.

The trunk subnetwork takes the spatial coordinates of the problem and
maps them to a latent vector of fixed dimension p, while the branch subnet-
work takes samples of the input functions at discrete points called sensors
(with no constraints on their location except that they must be the same for
every instance of the input functions) and maps them to a latent vector of
the same fixed dimension p.

We can interpret the trunk network as providing a basis of functions with
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Figure 4.3: High-level architecture of a stacked DeepONet operator

which we can represent the solution of the PDE, and the branch network as
determining the coe�cients relative to this basis associated to the solution.

In order to increase the expressivity of the network, in the subnetworks
we can choose architectures more complex than the one hidden layer ones, de-
scribed in th:univapproxop; twopossibilitiesareFNNs(experimentsusingthesecanbeseeninchap : num)andCNNs.

Moreover, since in practice p is at least of the order of 10, the p branch nets
require a considerable computational and memory e↵ort; because of this we
are led to consider a new high-level architecture in which the branch nets are
substituted by a unique branch net (see fig:unstackeddeeponet).WerefertothisnewmodelasunstackedDeepONetandtotheoriginaloneasstackedDeepONet.

Figure 4.4: High-level architecture of an unstacked DeepONet operator

Several improvement of DeepONet have been presented, for example
adding terms driven by the residual of the original systems of equations to
the loss function [24] or encoding variational principles into the loss function
in a physical problem [7].

Other extension of DeepONet include allowing the sensor points to vary
from one sample to another.
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Chapter 5

VarMiON

In this chapter we present VarMiON (from Variationally Mimetic Operator
Network), a high-level network architecture introduced in [15] to solve certain
parametrized PDEs of the form:

D(u(x), ✓(x)) = f, 8x 2 ⌦ (5.1)

where D is a di↵erential operator, ✓ a vector of parameters, f the source
term and u the unknown function, subject to Dirichlet and/or Neumann
boundary conditions. In particular the authors of [15] address both a linear
problem, the steady-state heat equation with spatially varying thermal con-
ductivity, and nonlinear problems, an advection-di↵usion-reaction equation
and a regularized eikonal equation.

The VarMiON is an evolution of DeepONet, with important modifications
regarding the high-level architecture of the network and the loss function.

As for the network’s architecture, the basic structure is maintained: there
are two subnetworks, which we call trunk subnetwork and branch subnetwork
whose outputs are then combined via a dot product.

As with DeepONet, the trunk subnetwork takes the spatial coordinates
of the problem, while the branch subnetwork takes samples of the input
functions at discrete points called sensors, and they both produce a vector
of latent dimension p.

The interpretation of these subnetworks remains the same: the trunk
network provides a basis of functions with which we can represent the solution
of the PDE, and the branch network determines the coe�cients relative to
this basis associated to the solution; the innovation lies in the structure of
the branch subnetwork: in DeepONet this is simply a fully connected neural
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network, while in VarMiON it has a more complex design motivated by the
discrete form of the space-time variational formulation of the problem under
analysis.

In addition the loss function is customized, it computes (an approximation
of) the L2 norm of the error between the numerical solutions in the training
set and the predictions computed by the network. As we will see in chap:num
this implies that we should handle the dataset carefully, samples relative to
the same PDE instance must be grouped together and with an appropriate
ordering.

A further aspect of VarMiON is the availability of an a-priori error esti-
mate for the solutions that reveals how the overall network error (including
the error in the solver) can be reduced by: using more accurate solutions
in the training, using a larger dataset, designing a branch subnetwork sta-
ble with respect to perturbations in the input, and sampling the input and
output functions with a larger number of points.

Finally, it is worth noting that in the previous chapter we saw examples
of PINNs that introduce an observational and learning bias ([3], [19]), and
an observational and inductive bias ([12]); on the other hand the VarMiON
succeeds in introducing all three types of bias (in the sense of prior) and,
as will be showed in the result section of chap:num, this leads to improved
performance.

In the next section we describe in detail how to obtain the high-level
architecture of the branch subnetwork and define a custom loss function for
the steady-state heat equation.

5.1 VarMiON for the steady-state heat equa-
tion

We consider the steady-state heat conduction problem discussed previously
in eq:SSHeq:

L(u(x); ✓(x)) = f(x), 8x 2 ⌦

✓(x)n(x) ·ru(x) = ⌘(x), 8x 2 �⌘

u(x) = 0, 8x 2 �g

where L is the di↵erential operator L(u(x); ✓(x)) = �r · (✓(x) ·ru(x)),
but for the purposes of this section it could be any elliptic operator as long
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as the boundary value problem is well-posed.
We shortly recall the core ideas of the finite element method for solving

this problem.
The variational formulation is given in definition (1.1.1):
find u 2 H1

g
such that for every w 2 H1

g
the following holds

a(u, w; ✓) = (w, f) + (w, ⌘)�⌘ (5.2)

for a certain bilinear form a; we define the associated solution operator
as

S : F ⇥ T ⇥N ! V , (f, ✓, ⌘) 7! u(·; f, ✓, ⌘), (5.3)

and we use the finite element method to obtain the discrete weak formu-
lation (2.41):

K(✓h)U = MF+ M̃N (5.4)

with K symmetric positive-definite for any ✓h 2 T
h, from this we derive

the numerical solution operator:

S
h : Vh

⇥ V
h
⇥ V

h
|�⌘ ! V

h,

uh(·; fh, ✓h, ⌘h) = (K(✓h)�1(MF+ M̃N))T�(·)
(5.5)

that motivates the architecture of the VarMiON:

(F̂, ⇥̂, N̂,x) 7! (D(⇥̂)(AF̂+ ÃN̂))T⌧ (x) (5.6)

or, from an operator point of view:

Ŝ : Rk
⇥ Rk

⇥ Rk
0
! V

⌧ , (F̂, ⇥̂, N̂) 7! (D(⇥̂)(AF̂+ ÃN̂))T⌧ (5.7)

where (F̂, ⇥̂, N̂) should be understood as an appropriate sampling of the
input functions f, ✓ and ⌘; V⌧ is a suitable space of neural networks; A and
Ã are learnable matrices; D(⇥̂) is the output of a nonlinear subnetwork with
input data ⇥̂; and ⌧ is the trunk subnetwork.

The input data fed into the neural network is acquired by sampling the
input functions; for this purpose we choose the sensor nodes {x̂i}

k

i=1 ⇢ ⌦ and
the boundary sensor nodes {x̂b

i
}
k
0

i=1 ⇢ @⌦.
Formally this corresponds to defining a data sensing operator:
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P̂ : F ⇥ T ⇥N ! Rk
⇥ Rk

⇥ Rk
0
, (f, ✓, ⌘) 7! (F̂, ⇥̂, N̂) (5.8)

where

F̂ = (f(x̂1), ..., f(x̂k))
T ,

⇥̂ = (✓(x̂1), ..., ✓(x̂k))
T ,

N̂ = (⌘(x̂b

1), ..., ⌘(x̂
b

k0))
T

(5.9)

so that for a certain latent dimension p we have A 2 Rp⇥k, Ã 2 Rp⇥k
0
,

D(⇥̂) 2 Rp⇥p, and ⌧ (x) = (⌧1(x), ..., ⌧p(x)) where each ⌧i : Rd
! R for

i = 1, ..., p is a trainable network whose structure usually varies for di↵erent
models.

Therefore the high-level implementation of the VarMiON has a schematic
representation as in fig:varmion2input.

Figure 5.1: VarMiON high-level architecture [15]

To train the neural network, i.e. to choose the best parameters, we need
a loss function that tells us how good a certain choice of the parameters
is; while DeepONet uses the mean square error (MSE) function, VarMiON
adopts a custom loss function that takes into account the physical nature
of the data, to fully understand this we first explain how the samples are
generated.

Note that a sample has the form (F̂, ⇥̂, N̂,x, y), where (F̂, ⇥̂, N̂) is ob-
tained through the data sensing operator for some input functions (f, ✓, ⌘),
x 2 ⌦ and y = uh(x; fh, ✓h, ⌘h).
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Thus we need to fix a number J 2 N of instances of eq:SSHeq to be
simulated with inputs (fj, ✓j, ⌘j) 2 X for 1  j  J , and a number L of
output nodes {xl}

L

l=1 ⇢ ⌦ on which we evaluate uh (these points might be
di↵erent from the sensor nodes).

Then we compute the discrete approximation of the inputs (fh

j
, ✓h

j
, ⌘h

j
) 2

X
h using P : X ! X

h, and numerically integrate the equation obtaining
uh

j
= S

h(fh

j
, ✓h

j
, ⌘h

j
) for 1  j  J .

Finally, we sample the input functions (fj, ✓j, ⌘j) on the sensor nodes:
(F̂j, ⇥̂j, N̂j) = P̂(fj, ✓j, ⌘j) for each 1  j  J ; and the numerical solutions
uh

j
on the output nodes: uh

jl
= uh

j
(xl) for 1  l  L and 1  j  J .

Collecting this data we obtain a dataset of: J ⇥ L samples:

S = {(F̂j, ⇥̂j, N̂j,xl, u
h

jl
) : 1  j  J, 1  l  L} (5.10)

Now we can define the loss function; the idea is to minimize the sum of
the L2 norm of the errors uh

j
� ûj between the numerical solutions uh

j
and

the model predictions ûj = Ŝ(F̂j, ⇥̂j, N̂j) of the instances of eq:SSHeq in the
training set, i.e. to find the set of trainable parameters  ⇤ such that

 ⇤ = argmin 

JX

j=1

Z

⌦

(uh

j
� ûj[ ])

2 (5.11)

Since we cannot compute this quantity directly, we have to resort to nu-
merical integration. To this end, let us choose {wl}

L

l=1 ⇢ R (positive) weights,
corresponding to the output nodes {xl}

L

l=1, for the numerical integration of
the square of a function on ⌦, i.e. such that for a function g : ⌦ ! R:

LX

l=1

wlg
2(xl) ⇡

Z

⌦

g2(x)dx (5.12)

At last we define the loss function as:

⇧( ) =
1

J

JX

j=1

⇧j( ), with ⇧j( ) =
LX

l=1

wl(u
h

jl
� Ŝ (F̂j, ⇥̂j, N̂j)[xl])

2

(5.13)
and obtain the optimization problem:

 ⇤ = argmin ⇧( ) (5.14)
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Finally,[15] proves that, with appropriate assumptions on the spaces where
the parameters live, on the output nodes and on the quadrature weights, it
is possible to approximate the operator K(✓)�1, arising in the discretization
process, using the trained VarMiON components.

5.2 VarMiON for the time-dependent heat
equation

Now we consider the time-dependent heat equation, mentioned in 1.10, and
use the technique described above for the steady-state case to define a vari-
ationally mimetic Operator Network.

For the time-dependent equation there are di↵erent variational formu-
lations, in Chapter 1 we described the space-time discretization and the
semidiscretization in time; we choose to base the network architecture on
the space-time discretization.

5.2.1 VarMiON for the time-dependent heat equa-
tion with Dirichlet and Neumann boundary con-
ditions

We recall the time-dependent heat conduction problem discussed previously
in eq:HeqD :

C(x)@tu(t,x)�r · (✓(x)ru(t,x)) = f(t,x), 8(t,x) 2 (0, T )⇥ ⌦

✓(x)n(x) ·ru(t,x) = 0, 8(t,x) 2 (0, T )⇥ �⌘

u(t,x) = 0, 8(t,x) 2 (0, T )⇥ �g

u(0,x) = 0, 8x 2 ⌦

The space-time variational formulation is given in definition 1.16:
find u 2 H1

g
such that for every v 2 H1

g
the following holds

a(u, v;C, ✓) = L(v) (5.15)

with a and L as in 1.16; we define the associated solution operator as

S : X := F ⇥ T ⇥ C ! V (f, ✓, C) 7! u(·; f, ✓, C) (5.16)
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and we use the finite element method to obtain the discrete weak formu-
lation 2.34:

(W(Ch) +A(✓h))U = MF (5.17)

with W + A invertible for any (✓h, Ch) 2 T
h
⇥ C

h, from this we derive
the numerical solution operator:

S
h : Vh

⇥ V
h

0 ⇥ V
h

0 ! V
h,

uh(·; fh, ✓h, Ch) = ((W(Ch) +A(✓h))�1
MF)T�(·)

(5.18)

that motivates the architecture of a variationally mimetic operator net-
work, that we also call VarMiON:

(F̂, ⇥̂, Ĉ, t,x) 7! (D(L1Ĉ+ L2⇥̂)BF̂)T⌧ (t,x) (5.19)

or, from an operator point of view:

Ŝ : Rk
⇥ Rk

⇥ Rk
! V

⌧ , (F̂, ⇥̂, Ĉ) 7! (D(L1Ĉ+ L2⇥̂)BF̂)T⌧ (5.20)

where (F̂, ⇥̂, Ĉ) should be understood as an appropriate sampling of the
input functions f, ✓ and C; V⌧ is a suitable space of neural networks; L1,
L2 and B are learnable matrices; D is a nonlinear subnetwork; and ⌧ is the
trunk subnetwork.

We define a data sensing operator P̂ to describe how to obtain the input
data to be supplied to the neural network; first we have to choose the time
sensor nodes {t̂i}ri=1 ⇢ [0, T ] and the sensor nodes {x̂i}

k

i=1 ⇢ ⌦ at which to
sample the inputs, then:

P̂ : [0, T ]⇥F ⇥ T ⇥ C ! Rk
⇥Rk

⇥Rk, (t, f, ✓, C) 7! (F̂, ⇥̂, Ĉ) (5.21)

where
⇥̂ = (✓(x̂1), ..., ✓(x̂k))

T ,

Ĉ = (C(x̂1), ..., C(x̂k))
T .

(5.22)

and F̂ is obtained interpolating {(f(t̂i, x̂1), ..., f(t̂i, x̂k))}ri=1.
Thus for a certain latent dimension p we have L1,L2 2 Rk⇥k, B 2 Rp⇥k,

D : Rk
! Rp⇥p, and ⌧ : Rd

! Rp.
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Figure 5.2: VarMiON high-level architecture

We can visualize the high-level implementation of the VarMiON for prob-
lem 1.11 in fig:timedirichletnet.

As in the previous section, we now wish to define a custom loss function
that exploits the underlying physics; the main idea is unchanged, but we
should point out some di↵erences that occur since we are dealing with a
time-dependent problem and di↵erent input functions.

Samples have the form (F̂, ⇥̂, Ĉ, t,x, y), where (F̂, ⇥̂, Ĉ) is obtained
through the data sensing operator for some input functions f, ✓, C, t 2 [0, T ],
x 2 ⌦ and y = uh(t,x; fh, ✓h, Ch).

Thus we need to fix a number J 2 N of instances of eq:HeqDtobesimulatedwithinputs(fj, ✓j, Cj) 2
X for 1  j  J , a number M 2 N of time nodes {ti}Mi=1 and a number L 2 N
of output nodes {xl}

L

l=1 ⇢ ⌦ on which we evaluate uh (these nodes might be
di↵erent from the sensor ones).

Then we compute the discrete approximation of the inputs (fh

j
, ✓h

j
, Ch

j
) 2

X
h using P : X ! X

h, and numerically integrate the equation obtaining
uh

j
= S

h(fh

j
, ✓h

j
, Ch

j
) for 1  j  J .

Finally, we sample the input functions (fj, ✓j, Cj) on the sensor nodes:
(F̂ij, ⇥̂j, Ĉj) = P̂(t̂i, fj, ✓j, Cj) for each 1  i  r, 1  j  J ; and the
numerical solutions uh

j
on the time and output nodes: uh

jil
= uh

j
(ti,xl) for

1  i  M , 1  l  L and 1  j  J .
Collecting this data we obtain a dataset of M ⇥ J ⇥ L samples:

S = {(F̂ij, ⇥̂j, Ĉj, ti,xl, u
h

jil
) : 1  i  M, 1  j  J, 1  l  L} (5.23)

Now we look for parameters that minimize the sum of the L2 norm of the
errors uh

j
� ûj between the numerical solutions uh

j
and the model predictions
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ûj = Ŝ(F̂j, ⇥̂j, N̂j) of the instances of eq:HeqDinthetrainingset, i.e.welookforasetoftrainableparameters ⇤

such that

 ⇤ = argmin 

JX

j=1

Z
T

0

Z

⌦

(uh

j
� ûj[ ])

2 (5.24)

We choose {wil : 1  i  M, 1  j  L} ⇢ R (positive) weights,
corresponding to the nodes {ti}Mi=1 and {xl}

L

l=1, for the numerical integration
of the square of a function on [0, T ] ⇥ ⌦, i.e. such that for a function g :
[0, T ]⇥ ⌦ ! R:

MX

i=1

LX

l=1

wilg
2(ti,xl) ⇡

Z
T

0

Z

⌦

g2(t,x)dtdx (5.25)

Lastly we define the loss function as:

⇧( ) =
1

J

JX

j=1

⇧j( ), with ⇧j( ) =
MX

i=1

LX

l=1

wil(u
h

jil
�Ŝ (F̂ij, ⇥̂j, Ĉj)[xl])

2

(5.26)
and obtain the optimization problem:

 ⇤ = argmin ⇧( ) (5.27)

5.2.2 VarMiON for the time-dependent heat equa-
tion with Robin boundary condition

We recall the time-dependent heat conduction problem discussed previously
in eq:HeqR :

C(x)@tu(t,x)�r · (✓(x)ru(t,x)) = f(t,x), 8(t,x) 2 (0, T )⇥ ⌦

✓(x)n(x) ·ru(t,x) = h(u(t,x)� g(t,x)), 8(t,x) 2 (0, T )⇥ @⌦

u(0,x) = 0, 8x 2 ⌦

The space-time variational formulation is given in definition 1.20:
find u 2 H1 such that for every v 2 H1 the following holds

a(u, v;C, ✓, h) = L(v;h, g) (5.28)

with a and L as in 1.20; we define the associated solution operator as
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S : X ! V (f, g, ✓, C, h) 7! u(·; f, g, ✓, C, h) (5.29)

and we use the finite element method to obtain the discrete weak formu-
lation 2.40:

(W(Ch) +A(✓h)�Q(h))U = F� hG (5.30)

with W +A�Q invertible for any (✓h, Ch, h) 2 T
h
⇥ C

h
⇥ I, from this

we derive the numerical solution operator:

S
h : X h

! V
h,

uh(·; fh, gh, ✓h, Ch, h) = ((W(Ch) +A(✓h)�Q(h))�1 (MF� hNG))T�(·)
(5.31)

that motivates the architecture of a VarMiON network:

(F̂, Ĝ, ⇥̂, Ĉ, h, t,x) 7! (D(L1Ĉ+L2⇥̂+L3h) (B1F̂+B2hĜ))T⌧ (t,x) (5.32)

or, from an operator point of view:

Ŝ : Rk
⇥ Rk

0
⇥ Rk

⇥ Rk
⇥ R ! V

⌧ ,

(F̂, Ĝ, ⇥̂, Ĉ, h) 7! (D(L1Ĉ+ L2⇥̂+ L3h) (B1F̂+B2hĜ))T⌧
(5.33)

where (F̂, Ĝ, ⇥̂, Ĉ) should be understood as an appropriate sampling of
the input functions f, g, ✓ and C; V⌧ is a suitable space of neural networks;
L1, L2, B1 and B2 are learnable matrices; L3 is a learnable vector; D is a
nonlinear subnetwork; and ⌧ is the trunk subnetwork.

We define a data sensing operator P̂ to describe how to obtain the input
data to be supplied to the neural network; first we have to choose the time
sensor nodes {t̂i}ri=1 ⇢ [0, T ], the sensor nodes {x̂i}

k

i=1 ⇢ ⌦ and the boundary
sensor nodes {x̂b

i
}
k
0

i=1 ⇢ @⌦ at which to sample the inputs, then:

P̂ : [0, T ]⇥ X ! Rk
⇥ Rk

0
⇥ Rk

⇥ Rk
⇥ R,

(t, f, g, ✓, C, h) 7! (F̂, Ĝ, ⇥̂, Ĉ, h)
(5.34)

where
⇥̂ = (✓(x̂1), ..., ✓(x̂k))

T ,

Ĉ = (C(x̂1), ..., C(x̂k))
T .

(5.35)

42



while F̂ is obtained by interpolating {(f(t̂i, x̂1), ..., f(t̂i, x̂k))}ri=1 and Ĝ

by interpolating {(g(t̂i, x̂1), ..., g(t̂i, x̂k))}ri=1.
Thus for a certain latent dimension p we have L1,L2 2 Rk⇥k, L3 2 Rk,

B1 2 Rp⇥k, B2 2 Rp⇥k
0
,D : Rk

! Rp⇥p, and ⌧ : Rd
! Rp.

We can visualize the high-level implementation of the VarMiON for prob-
lem 1.12 in fig:timerobinnet.

Figure 5.3: VarMiON high-level architecture

We now describe the dataset generation procedure, for which some di↵er-
ences with the previous case occur since we are dealing with di↵erent input
functions.

Samples have the form (F̂, Ĝ, ⇥̂, Ĉ, h, t,x, y), where (F̂, Ĝ, ⇥̂, Ĉ) is ob-
tained through the data sensing operator for some input functions f, g, ✓, C,
h 2 R, t 2 [0, T ], x 2 ⌦ and y = uh(t,x; fh, gh, ✓h, Ch, h).

Thus we need to fix a number J 2 N of instances of eq:HeqRtobesimulatedwithinputs(fj, gj, ✓j, Cj, hj) 2
X for 1  j  J , a number M 2 N of time nodes {ti}Mi=1 and a number L 2 N
of output nodes {xl}

L

l=1 ⇢ ⌦ on which we evaluate uh (these nodes might be
di↵erent from the sensor ones).

Then we compute the discrete approximation of the inputs (fh

j
, gh

j
, ✓h

j
, Ch

j
, hj) 2

X
h using P : X ! X

h, and numerically integrate the equation obtaining
uh

j
= S

h(fh

j
, gh

j
, ✓h

j
, Ch

j
, hj) for 1  j  J .

Finally, we sample the input functions (fj, gj, ✓j, Cj, hj) on the sensor
nodes:

(F̂ij, Ĝij, ⇥̂j, Ĉj, hj) = P̂(t̂i, fj, gj, ✓j, Cj, hj) (5.36)
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for each 1  i  r, 1  j  J ; and the numerical solutions uh

j
on the time

and output nodes: uh

jil
= uh

j
(ti,xl) for 1  i  M , 1  l  L and 1  j  J .

Collecting this data we obtain a dataset of M ⇥ J ⇥ L samples:

S = {(F̂ij, Ĝij, ⇥̂j, Ĉj, hj, ti,xl, u
h

jil
) : 1  i  M, 1  j  J, 1  l  L}

(5.37)
The definition of the loss function is analogous to the previous section:

⇧( ) =
1

J

JX

j=1

⇧j( ), with ⇧j( ) =
MX

i=1

LX

l=1

wil(u
h

jil
�Ŝ (F̂ij, Ĝij, ⇥̂j, Ĉj, hj)[xl])

2

(5.38)
where  is the set of trainable parameters. As before, the optimization

problem consists in finding  ⇤ such that:

 ⇤ = argmin ⇧( ) (5.39)
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Chapter 6

Learning Process and Numeri-
cal results

In this chapter we present the detailed architecture of the models discussed
in the previous chapters and the numerical results obtained by comparing
them, demonstrating that variationally mimetic architectures have better
performance than a vanilla DeepONet.

We consider first the steady-state heat equation and then the time-dependent
heat equation with di↵erent boundary conditions in a two-dimensional box
domain.

6.1 The learning procedure and algorithms

In our experiments we first partition the dataset into two parts: training and
validation set and testing set; then we further split the former in k = 5 equally
sized subsets on which we perform cross-validation to train the network, and
finally we use the testing set to check the accuracy of the trained network.

The cross-validation mechanism we employ consists in: for a number of
times, say nfold, we successively choose one of the k subsets as validation set
and the remaining k � 1 as training set, then for a number of epochs, say
n epochs, we shu✏e the training set and perform the forward and backward
pass.

In the following we take the training and validation set and the testing set
size with a 9 : 1 ratio, we fix n epochs = 10, and we choose nfold according
to the speed of convergence.
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It must be noted that DeepONet only accepts a single input function,
in the sense that the branch subnetwork is a deep neural network and is
not divided in more subnetworks, while the problems discussed have more
input functions, following [15] we simply concatenate the values of the input
functions and feed the result into the branch subnetwork as if it was a single
input function.

In addition, to allow for a fair comparison, the architectures of the trunk
networks of DeepONet and VarMiON, that is the branches used to con-
struct the basis functions, are taken to be identical; furthermore we choose
the architectures so that each model has roughly the same number of total
parameters.

The learning procedure implemented in the feedforward neural networks
considered consists in solving a sequence of nonlinear least squares, or a
variant of it, formulated with a loss function [13].

To minimize the loss function we adopt Adam algorithm [9] that is a
first-order gradient-based optimization algorithm that uses adaptive learning
rates for di↵erent parameters based on the first and second moments of the
gradients.

In order to compute e�ciently the gradients of the loss function with re-
spect to the neural network’s parameters, we use the backpropagation algo-
rithm. This algorithm computes the gradients proceeding backwards through
the layers and applies the chain rule avoiding redundant computations.

It is important to note how we obtain the performance results in the
following experiments. In fact, these results are not relative to the model
obtained at the end of the training phase; instead, they refer to the ’best’
model between those generated during training. At the end of each epoch
we save the trained model, i.e. we save the model’s parameters  , so that
once the training phase is completed we have a sequence ( 1, ..., n epochs)
containing the trainable parameters at each epoch. Now, to determine the
best model we compute for each set of parameters  i the average relative L2

error on the validation dataset and then we select the model relative to the
epoch with the lowest error.

Moreover to avoid overfitting we also keep track of the values of the
loss function on the training and validation dataset at each epoch and stop
the learning process when the loss relative to the validation dataset stops
decreasing significantly.

A final remark about the software utilized in these simulations.
All code is implemented in Python, supplemented by libraries for scien-
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tific computing and machine learning including NumPy, mpi4py and SymPy.
In particular in the implementation of the neural networks we use PyTorch,
while in the solution of PDEs using the finite element method we use FEn-
iCSx, the latest version of FEniCS, that supports e�cient parallel computa-
tion using MPI.

6.1.1 Gaussian random fields

A Gaussian random field f on Rn is a collection (fx)x2Rn of random variables
such that for any choice of x1, ...,xN 2 Rn, with N 2 N, the random vector
(fx1 , ..., fxN ) is Gaussian (see [12]).

In addition, let kl(x1,x2) := exp
�
�

kx2�x2k2
2l2

�
be the radial-basis function

(RBF) kernel with a length-scale parameter l > 0, if every fx has zero mean
and the covariance kernel is kl, i.e.

cov(fx1 , fx2) = kl(x1,x2), 8x1,x2 2 Rn (6.1)

then we write f ⇠ G(0, kl).

The parameter l controls the smoothness of the field: the larger l, the
smoother it is.

6.1.2 Numerical integration

Let ⌦ = [0, 1]d and f 2 C and suppose we want to estimate
R
⌦ f(x) dx

with a quadrature formula of the form
P

M

i=1 wif(xi) for appropriate weights
{wi}

M

i=1 ⇢ R.
Let us fix n 2 N+, we consider a triangulation of ⌦ obtained by first

taking a uniform grid of (n+1)d points xi 2 ⌦ and then by subdividing each
d-cube in ⌦ with sides of length h = 1

n
and vertices 2d of the xi’s, into d!

congruent simplices {sj}Sj=1 with S = d!⇥ nd total number of simplices.

Let xj

i
, i = 1, ..., d+ 1 be the vertices of the simplex sj for every j.

Now we consider the space of continuous functions on ⌦ such that they are
polynomial of degree  1 on each simplex sj and as a basis we take {�j

i
}ijwith

i = 1, .., d + 1 and j = 1, ..., S where �i is the unique function in that space
such that �j

i
(xl

k
) = �ik �jl for every k 2 {1, ..., d+ 1} and l 2 {1, ..., S} .

47



We can write

Z

⌦

f(x) dx =
SX

j=1

Z

sj

f(x) dx

⇡

SX

j=1

Z

sj

d+1X

i=1

f(x)�j

i
(x) dx

=
SX

j=1

d+1X

i=1

f(xj

i
)

Z

sj

�j

i
(x) dx

=
SX

j=1

d+1X

i=1

f(xj

i
)
Area(sj)

d+ 1

=
A

d+ 1

SX

j=1

d+1X

i=1

f(xj

i
) =

A

d+ 1

(n+1)dX

l=1

f(xl)|N(l)|,

(6.2)

where A = 1
S
is the area of any sj and N(l) = {x

j

i
: xj

i
= xl, 1  i 

d+ 1, 1  j  S} for every l = 1, ..., (n+ 1)d.
Therefore we may take as weights wi =

1
S(d+1) |N(i)| with i = 1, ...,M =

(n+ 1)d.

6.2 Steady-State Heat Equation with zero
Dirichlet and Neumann boundary con-
ditions

We consider the steady-state heat conduction problem (1.2) with zero Dirich-
let and Neumann boundary conditions:

�r · (✓(x)ru(x)) = f(x), 8x 2 ⌦

✓(x)ru(x) · n(x) = 0, 8x 2 �⌘

u(x) = 0, 8x 2 �g

(6.3)

where the domain is ⌦ = (0, 1)2 and the boundaries are �⌘ = (0, 1)⇥{0, 1}
(top and bottom edges of ⌦) and �g = {0, 1}⇥ (0, 1) (left and right edges of
⌦).
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Our goal is to find a set of parameters such that N̂ �P̂ well-approximates
S on X = F ⇥ T in the L2 sense, where N̂ is an operator network.

6.2.1 Dataset generation

To this end we first generate a dataset of 106 = 10, 000 ⇥ 100 samples of
the form (F̂, ⇥̂,x, u) that we will then use to train and test the operator
networks.

We choose f and ✓ to be Gaussian random fields (see 6.1.1) on ⌦ with
length scales 0.2 and 0.4 respectively and create 10, 000 realizations: (fh

j
, ✓h

j
)

with j = 1, ..., 10, 000. Moreover we rescale each realization so that min fh

j
=

min ✓h
j
= 0.02 and max fh

j
= max ✓h

j
= 0.99 for every j.

Each realization of the pair (f, ✓) is used to solve numerically an instance
of (6.3) in FEniCSx using the variational formulation given in 1.1.1 with
a mesh of 2048 triangular elements on a uniform grid 33 ⇥ 33, obtaining
uh

j
, 1  j  10, 000.
Evaluating each (fh

j
, ✓h

j
, uh

j
) on the sensor nodes {xl}

100
l=1 that we choose as

a uniform 10⇥ 10 grid on ⌦ we finally get the samples: (F̂j, ⇥̂j,xl, uh

j
(xl)) 2

R100
⇥ R100

⇥ R2
⇥ R, with j = 1, ..., 10, 000 and l = 1, ..., 100.

6.2.2 Training

The samples in our dataset can be divided in ordered subsets of cardinality
100, each corresponding to an instance of (6.3), for a total of 10, 000 ’fields’:
{(F̂j, ⇥̂j,xl, uh

j
(xl))}100l=1 with j = 1, ..., 10, 000.

A field can be considered as a unit of the dataset for all practical pur-
poses during the training; it only make sense to compute the VarMiON loss
function of a mini-batch containing a single field or an integer number of
them, therefore when we split or shu✏e the dataset we must keep each field
unvaried.

This partition of the dataset turns out to be advantageous not only for
the VarMiON network, but also for the vanilla DeepONet one: having mini-
batches containing entire fields allows the network to focus on the physical
meaning of the samples instead of trying to replicate a single instance of the
dataset that is produced by a Gaussian process and thus not particularly
meaningful.
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6.2.3 Details of the experiments

In this section we compare a VarMiON and a vanilla DeepONet on the prob-
lem (6.3).

First we test their performance when the basis function is constructed
using a ReLU network and then using radial basis functions.

The detailed architecture of the networks (suggested in [15]) is described
in figure 6.1 for the ReLU case and in figure 6.2 for the RBF case.

To evaluate the performance of the models we compute the relative L2

error:

R
⌦(ûj � uh

j
)2R

⌦(u
h

j
)2

⇡

P
L

l=1 wl(ûj(xl)� uh

jl
)2

P
L

l=1 wl(uh

jl
)2

(6.4)

between each testing field and its prediction and then we determine the
average and standard deviation of these errors.

Figure 6.1: Operator architectures for two input functions with uniformly
sampled input and ReLU trunk [15]
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Figure 6.2: Operator architectures for two input functions with uniformly
sampled input and RBF trunk [15]

6.2.4 Results

In tab:sseq are summarized the settings of the experiments together with the
average error on the testing dataset and its standard deviation.

We observe that in both comparisons VarMiON obtains a lower aver-
age error than the DeepONet and also the error standard deviation is lower
indicating VarMiON is more robust than DeepONet.

In fig:ssddensitydenseandfig : ssddistrdenseweexaminethescaledprobabilitydensityfortheaverageL2

error and the distribution of individual errors respectively in the case of a
ReLU trunk network; as suggested by the average results, in the first fig-
ure we see that the VarMiON exhibits a tighter error probability density
than DeepONet, and in the rug plot we also see that DeepONet has a larger
number of test cases with error far from the average.

In fig:ssddensityrbfandfig : ssddistrrbfweinspectthesamequantitiesinthecaseofanRBFtrunknetworkandweseethatwhileV arMiONstillperformsbetterthanDeepONet, althoughitsdistributionoferrorsisnotasclusteredaroundthemeanasintheReLUtrunknetworkcase.ThereverseholdsforDeepONet, ithasbetterperformancewithanRBFtrunknewtwork, bothintermsofaccuracyandofrobustness.
This result partly reproduces the experiments in [15], where VarMiON

has better performance than DeepONet, but does not fully agree with them,
in our experiment VarMiON with an RBF trunk network does not perform
better than with a ReLU trunk network.

This suggests that the current initialization choice for the RBF trunk
network’s parameters in our experiments could be improved and further ex-
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periments are needed.
In fig:ssdlossdenseandfig : ssdlossrbfwereportthetrendofthelossfunctionforbothDeepONetandV arMiON.DeepONetconvergesbeforetheendoftraining, infactitsbestmodelsareobtainedaroundthe300thand400thepochinthetwocases, whileV arMiONerrorisstillslowlydecreasingatthe500thepoch, butwestopitstrainingtocompareresultswithDeepONet.
The spikes that can be observed in the loss graph are due to the change

of datasets in the cross-validation procedure.

Model Number of parameters Relative L2 error Number of epochs

DeepONet (w/ ReLU trunk) 49,928 0.71± 0.53% 500
VarMiON (w/ ReLU trunk) 46,281 0.19± 0.16% 500

DeepONet (w/ RBF trunk) 17,911 0.53± 0.40% 500
VarMiON (w/ RBF trunk) 17,345 0.33± 0.25% 500

Table 6.1: Summary of VarMiON and vanilla DeepONet performance

Figure 6.3: Loss for the steady-state heat equation with Dirichlet-Neumann
boundary condition, ReLU trunk network
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Figure 6.4: Error probability density for the steady-state heat equation with
Dirichlet-Neumann boundary condition, ReLU trunk network

Figure 6.5: Error distribution for the steady-state heat equation with
Dirichlet-Neumann boundary condition, ReLU trunk network

Figure 6.6: Loss for the steady-state heat equation with Dirichlet-Neumann
boundary condition, RBF trunk network
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Figure 6.7: Error probability density for the steady-state heat equation with
Dirichlet-Neumann boundary condition, RBF trunk network

Figure 6.8: Error distribution for the steady-state heat equation with
Dirichlet-Neumann boundary condition, RBF trunk network
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6.3 Time-Dependent Heat Equation with Dirich-
let and Neumann boundary conditions

We consider the time-dependent heat conduction problem (1.11) with zero
Dirichlet and Neumann boundary conditions where the spatial domain ⌦ =
(0, 1)2 is observed during the time interval (0, T = 1); the boundaries are
�⌘ = (0, 1)⇥{0, 1} (top and bottom edges of ⌦) and �g = {0, 1}⇥ (0, 1) (left
and right edges of ⌦).

Our goal is to find a set of parameters such that N̂ �P̂ well-approximates
S on X = F ⇥ T ⇥ C in the L2 sense, where N̂ is an operator network.

6.3.1 Dataset generation

To this end we first generate a dataset of 10, 000 ⇥ 100 ⇥ 5 samples of the
form (F̂, ⇥̂, Ĉ, (t,x), u) that we will then use to train and test the operator
networks.

We choose f(t, ·), ✓ and C to be Gaussian random fields on ⌦ with
length scales 0.2, 0.4 and 0.4 respectively and create 10, 000 realizations:
(fh

j
, ✓h

j
, Ch

j
) with j = 1, ..., 10, 000. Moreover we rescale each realization so

that min fh

j
(ti, ·) = min ✓h

j
= minCh

j
= 0.02 and max fh

j
(ti, ·) = max ✓h

j
=

maxCh

j
= 0.99 for every j.

Each realization of the pair (f, ✓, C) is used to solve numerically an
instance of 1.11 in FEniCSx using the variational formulation with time
semidiscretization 1.11 with a mesh of 2048 triangular elements on a uniform
grid 33⇥ 33 at the time instants ti = 0.2 ⇤ i, 1  i  5, obtaining for each ti,
uh

j
(ti, ·), 1  j  10, 000.
Evaluating each (fh

j
(ti, ·), ✓hj , u

h

j
) on the sensor nodes {xl}

100
l=1 that we

choose as a uniform 10⇥10 grid on ⌦ we finally get the samples: (F̂ij, ⇥̂j, Ĉj, (ti,xl), uh

j
(ti,xl)) 2

R100
⇥R100

⇥R100
⇥R3

⇥R, with i = 1, ..., 5, j = 1, ..., 10, 000 and l = 1, ..., 100.

6.3.2 Training

The samples in our dataset can be divided in ordered subsets of cardinality
500, each corresponding to an instance of eq:HeqD, foratotalof10,000fields :{
(ij, ⇥̂j, Ĉj, (ti,xl), uh

j
(ti,xl))} 1i5,

1l100
with j = 1, ..., 10, 000.

As previously mentioned a field can be considered as a unit of the dataset
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for all practical purposes during the training and therefore when we split or
shu✏e the dataset we must keep each field unvaried.

6.3.3 Details of the experiments

In this section we compare a VarMiON and a vanilla DeepONet on the prob-
lem (1.11).

The detailed architecture of the networks is described in the figures 6.10
and 5.2 for the ReLU.

Figure 6.9: DeepONet architecture for problem 1.11 with uniformly sampled
input and ReLU trunk

To test the performance of the models we compute the relative L2 error:

R
T

0

R
⌦(ûj � uh

j
)2

R
T

0

R
⌦(u

h

j
)2

⇡

P
M

i=1

P
L

l=1 wil(ûj(ti,xl)� uh

jil
)2

P
M

i=1

P
L

l=1 wil(uh

jil
)2

(6.5)

between each testing field and its prediction and then we determine the
average and standard deviation of these errors.
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Figure 6.10: VarMiON architecture for problem 1.11 with uniformly sampled
input and ReLU trunk

6.3.4 Results

In tab:timedirwefindthesettingsoftheexperimentandthemainperformancestatistics.
VarMiON performs better in terms of accuracy, with the average error on

the testing dataset being approximately 0.2% lower than that of DeepONet.
Additionally VarMiON shows slightly better performance in terms of the
standard deviation of the error, in fact observing the rug plot of the error
6.12 we notice that VarMiON errors are a little more clustered than those of
DeepONet.

In fig:tddensitydensewereportthetrendofthelossfunctionforbothDeepONetandV arMiON.Thelossfunctionofbothmodelsisstillslowlydecreasingafter200epochs, butthebestselectedmodelisbetweenthe100thand120thepoch, suggestingthatalongertrainingphasewouldnotimproveperformance.

Model Number of parameters Relative L2 error Number of epochs

DeepONet time (w/ ReLU trunk) 60,383 0.73± 0.36% 200
VarMiON time (w/ ReLU trunk) 66,645 0.53± 0.30% 200

Table 6.2: Summary of VarMiON time and DeepONet time performance
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Figure 6.11: Error probability density for the time-dependent heat equation
with Dirichlet-Neumann boundary condition, ReLU trunk network

Figure 6.12: Error distribution for the time-dependent heat equation with
Dirichlet-Neumann boundary condition, ReLU trunk network

Figure 6.13: Loss for the time-dependent heat equation with Dirichlet-
Neumann boundary condition, ReLU trunk network
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Chapter 7

Conclusions

In this thesis we studied the problem of approximating an operator that asso-
ciates a vector of parameters to the solution of the heat equation depending
on such parameters. In particular we followed the approach of [15], designing
a variationally mimetic operator neural network inspired by the discretization
of the space-time weak formulation of the time-dependent heat equation. To
define such operator we first transformed the di↵erential problem with ap-
propriate initial and boundary value conditions into a variational form and
then we discretized this form to exploit the structure of the neural network,
and finally we defined a custom loss function based on the L2-error.

In addition we implemented this new operator network and compared it
with a DeepONet network as a baseline; we found that VarMiON is more
accurate than DeepONet and slightly more robust, validating the idea of
informing the learning procedure through the use of physical biases, but
we noted that in this case the improvement is not as significant as for the
steady-state heat equation. This led us to ask if it possible to modify the
low-level architecture of the network to improve the performance; a possible
line of investigation is suggested by the use of an appropriate type of radial
basis functions which proved to be particularly advantageous in [15] for the
steady-state case.

Moreover we performed additional experiments, trying to reproduce the
results presented in [15] and [17] comparing VarMiON and DeepONet and
we confirmed the better performance of VarMiON.

The aim of this thesis has also a possible industrial application with re-
spect to the L. Rinaldi’s PhD project ”A bread baking digital twin to avoid
energy waste”. Especially having a particularly accurate and robust oper-
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ator network for the time-dependent heat equation could be a key point to
formulate a surrogate model of bread baking, starting from its FEM formula-
tion, which has to run simultaneously with the real system, on an embedded
microcontroller, to the end of monitoring the energy consumption and avoid
waste.
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