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Abstract

When people face challenging mental tasks, they tend to become more attentive and engage in

a more deliberate and careful type of reasoning, known as TZTUFN UXP. This mode of thinking
can reduce dependence on the intuitive and effortless kind of reasoning, known as TZTUFN POF,
which is prone to cognitive biases. One such bias is the JMMVTJPO PG DBVTBMJUZ, where individu-
als mistakenly perceive a causal relationship between unrelated events in associative learning

contexts. Díaz-Lago and Matute (2019a) found that a superficial perceptual feature, such as a

difficult-to-read font, can weaken the strength of this illusion.

Our study sought to explore whether QFSDFQUVBM EॷVFODZ – making something harder to
perceive – could similarly reduce the illusion’s strength across different conditions. In our first

experiment, we investigated whether changing the contrast between text and background in a

DPOUJOHFODZ MFBSOJOH UBTL would affect the illusion of causality. Although we successfully cre-
ated conditions of fluency and disfluency in a 200-participant online experiment, the results

showed no effect of contrast on the strength of the illusion. Following this null result, our sec-

ond experiment, with 100 participants, focused on manipulating font type to test if we could

replicate the findings of Díaz-Lago and Matute (2019a). Contrary to their results, we found

that different font types had no significant impact on the illusion’s strength, even though this

manipulation also created varying levels of task fluency and disfluency. These findings suggest

that not all forms of cognitive disfluency can influence biases in the same way. They empha-

size the need to reevaluate and refine our understanding of how (dis)fluency affects cognitive

processes and biases.

This thesis originates from a master’s internship dedicated to the programming and execu-

tion of an experiment on the causality heuristic. This effort culminated in a peer-reviewed

international journal publication (Dalla Bona & Vicovaro, 2024), which can be accessed via

the following link:

https://www.researchgate.net/publication/376262740_EXPRESS_Does_perceptual_disfluency_

affect_the_illusion_of_causality
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1
A higher point of view on biases

1.1 Cognitive biases and heuristics

The term DPHOJUJWF JMMVTJPO (or DPHOJUJWF CJॵ) encompasses a broad spectrumof phenomena that

collectively illustrate deviations in thinking, judgment, andmemory fromanobjectively correct

standard. Typically, biases are studied through experiments in which participants are assigned

specific tasks, and deviations in their judgments from an intersubjectively sharedmathematical

or logical baseline are observed as systematic patterns (Haselton et al., 2015).

Interest in the field of cognitive biases can be traced back to the early 1970s (Tversky &Kah-

neman, 1996), with the introduction of a research program on KVEHNFOU VOEFS VODFSUBJOUZ
(Tversky & Kahneman, 1974). Over the years, some authors have endeavored to identify and

catalog all cognitive biases (e.g., Benson, 2016), while others have asserted that an accurate and

unified definition of cognitive bias is unattainable (Caverni et al., 1990).

As it has been argued (Kahneman & Frederick, 2002), biases emerge from our tendency

to rely on IFVSJTUJDT – defined as sets of rules of thumb that can expedite decision-making in
an efficient manner. Heuristics can be functionally interpreted in two ways: as evidence of

distorted perception and flawed reasoning, resulting in biases, or as a set of processes that the

human mind employs to solve problems, which are functionally effective in decision-making
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processes most of the time. These two perspectives can both hold true simultaneously. Quick

and intuitive thinking is necessary to reduce the number of variables processed by the cognitive

system, which is crucial for efficiently analyzing problems and making adaptive responses to

the environment. However, this mode of thinking can also fail in correctly evaluating certain

types of problems, leading to distortions (Tversky & Kahneman, 1974). In this thesis, we aim

tomaintain a broader viewpoint, focusing primarily on the functional causes (i.e., mechanisms

and processes) and consequences of scenarios in which the humanmind opts for a different set

of rules than formal ones, specifically in the context of the illusion of causality.

1.2 Counter-intuitivity as a substitute for illusion

According to Roediger (1996), an analogy can be drawn between cognitive biases and optical

illusions. Just as sensory processing can lead to the misperception of a physical stimulus, the

processes of codification, elaboration, and retention of information can lead to numerous judg-

ment errors. Due to the limited processing capacity of the cognitive system, inmany situations

of judgment under uncertainty, the humanmind employs a small set of heuristics that can lead

to severe and systematic errors (Tversky & Kahneman, 1974), suggesting that cognitive biases

are robust, universal, and unavoidable. Pohl (2022) highlighted five analogies between cogni-

tive biases and optical illusions:

! %FWJBUJPO GSPN SFBMJUZ – the phenomenon represents a deviation from a correct norma-

tive standard.

! 4ZTUFNBUJD EFWJBUJPO GSPN UIF TUBOEBSE – the observed phenomenon deviates from the

normative standard in a predictable manner.

! *OWPMVOUBSZ QSPEVDUJPO PG UIF JMMVTJPO – biases appear without deliberative will.

! *NQPTTJCJMJUZ PG BWPJEJOH UIF JMMVTJPO – biases are hard or even impossible to avoid in their
manifestation.

! 6OJWFSTBM BQQFBSBODF PG UIF JMMVTJPO – biases appear across all people, independently of
confounding or psychological variables.
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As discussed by Gigerenzer (2008), this negative connotation of biases can be erroneous,

leading to a one-sided view of human rationality that focuses toomuch on errors and results in

a pessimistic view of human thinking. Furthermore, the analogy can be somewhat misleading.

First, fromour veryfirst stage of cognitive processing (i.e., perception),we TZTUFNBUJDBMMZ EFWJBUF
GSPN SFBMJUZ, as classically supported by studies from(FTUBMU psychology (Atkinson &Hilgard,

2017). When reasoning, we do not usually follow standard logical and mathematical rules.

Instead, what we can ask is in which context the tendency to base our judgment on heuristics

results in evident errors, how salient these results are considering the deviation from a rule and

the ecological validity of a task, and how the emergent phenomenon, in the specific paradigm,

unveils how we process the input to produce the output. Secondly, many relevant psychic

events occur in a non-conscious state, and the production of automatic responses does not

require intention and controlled processes (Cornoldi et al., 2018). Indeed, the production of

a biased response can be intended to be involuntary, but it could be asked why this property

should be a distinctive feature for biases, as most processes are unintentional. Additionally,

researchers have shown that biases can be mitigated in certain contexts (Pohl, 2022; see also

Maguire et al., 2018, for an example), and the appearance of an error in reasoning can largely

depend on the kind of task we propose to people (see Section 1.5).

Drawing analogies to provide a better understanding of phenomena can be important, but

the JMMVTJPO analogy may be inadequate. We propose that biases can be understood as counter-
intuitive results in cognitive tasks that provide a deeper understanding of the underlying pro-

cesses. They produce a paradoxical effect where the same cognitive system, intended as a whole,

that generally enables adaptive responses to the environment can sometimes lead to incorrect re-

sponses within the same properties of the system. Analyzing the production of these responses

is important for unveiling how we conduct certain types of reasoning.

This paradoxical definition is particularly apt when comparing cognitive biases to the study

of paradoxes in other fields. For example, in logic and mathematics, paradoxes have been in-

valuable in extending knowledge within the field. Without delving into an extensive history

of paradoxes (e.g., the liar paradox – * BN MZJOH – which dates back to ancient Greece), their
formulation, which often involves elements of self-reference and negation, shows that these

counter-intuitive propositions can serve to analyze rules of logic in greater detail and enhance

our understanding of the system as a whole.
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As an example, BertrandRussell’s famous paradox1 (see Equation 1.1) showed howGottlob

Frege’s attempt to reducemathematics to logic led to a contradiction, leading to a reevaluation

of the foundations of mathematics (Irvine &Deutsch, 2021).

A = {a : a /∈ a} =⇒ A ∈ A⇐⇒ A /∈ A (1.1)

1.3 Classifications

Pohl (2022) proposed a valuable distinction for biases, classifying them into three categories. It

is important to note that a particular bias may fall into multiple categories:

! *MMVTJPOT PG UIJOLJOH: These biases involve the application of certainmathematical or log-
ical rules (e.g., the DPOKVODUJPO QSPCBCJMJUZ SVMF) derived from a normative model, which

constitutes a standard against which human performance is evaluated.

! *MMVTJPOT PG KVEHNFOU: These biases occurwhen participants are asked to subjectively rate
a specific feature of given stimuli (e.g., their pleasantness), and certain featureswithin the

context of presentation may bias participants’ judgment in a particular direction.

! *MMVTJPOT PG NFNPSZ: These biases occur when individuals are required to recall infor-
mation that was encoded earlier, often leading to memory errors or distortions. In the

0YGPSE )BOECPPL PG .FNPSZ, Roediger and McDermott (2000) offer an extensive re-

view of various memory phenomena and distortions.

A similar distinction among cognitive biases has been proposed by Hell et al. (1993), who

also included misconceptions in physics. Over the years, various classifications have been sug-

gested, emphasizing different aspects of cognitive biases (Pohl, 2022).

Within the broader category of illusions of thinking, a useful distinction is based on the type

of reasoning involved in specific tasks. Reasoning, as a form of thought, can be divided into

two main types (Cornoldi et al., 2018):

13VTTFMMԙT QBSBEPY: let A be the set of all sets that are not members of themselves. If A is not a member of
itself, then by definition, it must be a member of itself. Conversely, if A is a member of itself, then according to
its definition, it cannot be a member of itself. Thus, we arrive at a contradiction.
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! %FEVDUJWF SFBTPOJOH: this type of reasoning involves drawing a conclusion from a set of

premises, where the truth of the conclusion is directly related to the truthof the premises.

Deductive reasoning is often employed in tasks that require logical analysis, such as solv-

ing "SJTUPUFMJBO TZMMPHJTNT (Cornoldi et al., 2018). One example of a task that assesses
deductive reasoning is the8BTPO TFMFDUJPO UBTL (WST;Wason, 1966). In this task, partic-

ipants are shown four cards, each displaying a letter or a number (e.g.,E −K − 4− 7).

They are informed that each card has a letter on one side and a number on the other.

Participants are given a conditional statement – *G UIFSF ॷ B DPOTPOBOU PO POF TJEF UIFO
UIFSF ॷ BO FWFO OVNCFS PO UIF PUIFS TJEF – and are asked to determine which cards need
to be flipped to test this rule. Participants often struggle with this task challenge due to

a bias toward confirming the rule rather than testing for disconfirmation. For instance,

theymay select the cardsK and 4 to check if they conform to the rule, rather than select-

ingK and 7 to test if the rule is violated. Performance on this task can improvewhen it is

presented in amore realistic context (Cornoldi et al., 2018), highlighting how familiarity

and context can affect reasoning abilities.

! *OEVDUJWF SFBTPOJOH: this type of reasoning involves drawing general conclusions ormak-
ing predictions based on a set of specific observations or patterns. It often includes ex-

trapolating general rules from limited data, estimating probabilities, categorizing events

to reduce variability, and making decisions based on observed trends. A common ex-

ample of a heuristic that can lead to a bias within inductive reasoning is the representa-

tiveness heuristic (Tversky & Kahneman, 1974). A bias occurs when people judge the

likelihood of an event based on howmuch it resembles a typical or representative exam-

ple, rather than on statistical probabilities or base rates. For instance, when people are

asked to judge the probability of a sequence of dice rolls, such as 2− 5− 4− 3− 4−
5− 1− 1− 6− 3, they might perceive it as more likely than a sequence of all ones (i.e.,

1−1−1−1−1−1−1−1−1−1), because the first sequence appears more random

and representative of what they expect from a fair dice roll. Despite the fact that both

sequences are equally probable, the representativeness heuristic leads people to favor the

one that seems more in line (i.e., representative) with their notion of randomness.
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1.4 Dual-process models

Figure 1.1: Dual-process models’ most common interpretation.

Numerousmodels havebeenproposed to account forheuristics andbiases, withdual-process

models being a prominent class. In this thesis, wewill focus on thesemodels because the results

from our study (see Section 3.4) can be interpreted through this specific framework. Dual-

processmodels (Pohl, 2022) are commonly used to understand biases and generally distinguish

between two types of reasoning (Evans, 2011). The first type, often referred to as UZQF POF rea-
soning, is automatic, relatively independent of working memory (WM), operates in parallel,

and is usually faster. The second type, known as UZQF UXP reasoning, is more controlled, relies
onWM, processes information serially, and is slower.

Stanovich (1999) introduced the terms TZTUFN POF and TZTUFN UXP to represent these two
types of processes. However, Evans (2011) cautioned that these labels can be somewhat mis-

leading, as they imply that only two cognitive systems underlie various tasks.

Functionally, system one rapidly generates intuitive responses, while system two monitors

and controls these responses, potentially endorsing, correcting, or overriding them. Judgments

are attributed to system one if they involve minimal modification from the initial intuitive pro-

6



posal (Kahneman & Frederick, 2002). According to Stanovich (1999), both systems operate

in parallel, with system one functioning continuously and system two intervening as needed.

As discussed by Kahneman (2012), system one is advantageous for quick and effortless deci-

sions, whereas system two is beneficial for tasks requiring computational power and deliberate

thought. The reliance on systemone increases the likelihood of using heuristics, which can lead

to biases. Although systemonemay be seen asmore primitive compared to system two, it is not

necessarily less capable (Kahneman&Frederick, 2002). In fact, complexmental operations can

shift from system two to system one as individuals become more skilled in a particular task. A

notable example of system one’s capability is seen in elite chess players, who, through extensive

practice, develop an intuitive ability to evaluate chess positions almost instantaneously.

Despite the widespread acceptance of dual-process models for interpreting heuristics and

biases, influential critics argue that single-process accounts might be sufficient (Kruglanski &

Gigerenzer, 2011). However, these critiques often overlook the robust evidence supporting

dual processing from cognitive psychology and neuroscience (Evans, 2011).

Evans (2012) identified several commonmisconceptions related todual-processmodels, which

highlight important considerations for understanding cognitive biases. One notable miscon-

ception is the assumption that system one (or type one processes) is always responsible for bi-

ases, while system two (or type two processes) is associatedwith normative responses. In reality,

system two, although necessary for performing well on complex cognitive tasks, is not always

sufficient for ensuring correct responses. Simply engaging system two, which involves more

resources and deliberate thought, does not guarantee accurate application of logical or math-

ematical rules. Furthermore, the notion that system one can produce incorrect responses is

primarily relevant in specific, controlled experimental paradigms where participants are faced

with novel and challenging tasks. In these contexts, the reliance on system one is often trig-

gered by particular cues. Additionally, it has also been supported that cognitive biases can arise

from both system one and system two processes (Pohl, 2022). To accurately capture the kind

of reasoning required by an experiment, it is essential to examine how the task prompts either

system one or system two. If a bias arises from system one’s involvement, researchers should

evaluate whether the task genuinely captures a meaningful phenomenon. While dual-process

models offer valuable insights, we have to acknowledge the limitations of standard models and

emphasize the importance of contextual relevance in understanding cognitive processes.
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1.5 Critiques

Evidence strongly supports the existence of biases and their significant impact on everyday life,

accounting for numerous phenomena. However, Pohl (2022) summarized several critiques

that have been pointed out by Gigerenzer (1991; 1996; 2008; Gigerenzer et al., 2008), high-

lighting the need to consider these critiques to improve the quality of studies and research:

! The task might be misleading, eliciting biased behavior in participants. For example, in

a famous task proposed byWason (1960), participants are asked to extrapolate a genera-

tive rule from a series of numbers presented, such as 2−4−6, and are then requested to

produce other series according to the rule they deduce. The experimenter then confirms

or rejects their responses. Participants might incorrectly infer that the rule is FWFO OVN�
CFST JO BTDFOEJOH PSEFS and produce series like 8−10−12, while the actual rule is simply
OVNCFST JO BTDFOEJOH PSEFS. When asked to state the underlying rule, participants often

respond incorrectly – not due to a bias, as originally intended, but because the initial

number series was misleading. This example underscores the importance of researchers

being aware of the potential intrinsic misleading effects of tasks and the need for careful

planning. However, even if a task is highly misleading, it does not invalidate the investi-

gation of the underlying processes, as long as the artificial pitfalls are acknowledged and

managed.

! Researchers might use an inadequate presentation format or material sampling. Using

inappropriate statistical formats, such as probabilities instead of frequencies, or engag-

ing in selective sampling could distort study results. For example, researchers might fo-

cus on specific samples ofmaterialswhere a positive result for their research canbe found,

neglecting other types of materials that are related to the same underlying processes and

might support that our reasoning and memory are not inherently flawed. This selective

approach can lead to biased conclusions, emphasizing the need for comprehensive and

balanced material selection in research.

! The experiment might present a task that simply highlights a lack of knowledge in par-

ticipants. For example, the DPOKVODUJPO GBMMBDZ (CF) illustrates individuals’ inability to in-
tuitively assess the conjunction probability rule (Fisk, 2016). This rule states that, given

two distinct events, the likelihood of a single event, P (A) or P (B), is invariably greater

than or equal to the probability of both events co-occurring, denoted as P (A ∧ B). It
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can be argued that people simply do not know the conjunction rule, thereby artificially

prompting the supposed bias. However, there are reasons to believe that the CF can

be considered a real and consistent phenomenon. For instance, even in contexts where

the application of a mathematical rule is more salient, people still manifest the fallacy

(Maguire et al., 2018). Recently, it has been accepted by the majority of researchers as a

genuine phenomenon, although some still debate its real-life implications (Fisk, 2016).

! The normative rule used might be wrong. To illustrate this, Gigerenzer (1991) argued

that probability rules are about frequencies and do not apply to judgments of single

events, typically used in cognitive biases experimental paradigms. For example, present-

ing the CF paradigm in terms of a frequentist interpretation of the task (i.e., examining

the probability within a group of 100 people rather than presenting a single case) can

result in a reduction in the incidence of the fallacy (Gigerenzer, 1991). Nonetheless,

contrary to this finding, it has been shown that presenting the CF in terms of a frequen-

tist kind of task does not always lead to a reduction of the bias (Fisk, 2016). However,

this critique is important as it prompts us to consider which kind of normative standard

is useful in a given context and how the results obtained can be used to draw conclusions

in a more ecological environment.

! Some phenomena might be explained without referencing a failure in our information

processing. For instance, what appears to be a cognitive bias might instead be a rational

response given the context or the available information. Rather than always indicating a

flaw, some biasesmay reflect adaptive strategies thatworkwell in everyday environments,

even if they lead to errors in experimental settings. Thus, it is essential to consider alter-

native explanations that do not necessarily involve faulty reasoning processes.

1.6 Reasoning upon statistics

Heuristics and biases studies have been successfully applied in various fields, underpinning ev-

eryday decision-making processes. These studies have proven valuable in economics (Cornoldi

et al., 2018), applied cognitive psychology (e.g., in medical decision-making and in eyewitness

testimony; Pohl, 2022), elderly psychology (De Beni & Borella, 2015), and clinical psychology

(e.g., in relation to obsessive-compulsive disorder; Pohl, 2022).
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Studies on heuristics and biases are also beneficial in understanding how people approach

mathematical and statistical concepts in educational settings or learning environments (Garfield,

2002). Theyprovide insights intohowpeople interpret data presented in scientific communica-

tion throughmassmedia, influencing assumptions and decision-making. Scientific and statisti-

cal communicationbridges the scientific community and the general public (e.g.,WHO, 2023).

This connection was particularly evident during the COVID-19 pandemic, significantly shap-

ing normative regulations and individual behaviors (Warren & Lofstedt, 2022).

Focusing on statistical communication, the literature highlights that conveying statistical

information is fraught with inherent complexities and potential pitfalls. From a top-down

perspective, statistical data can be misleading due to how it is presented (Huff, 1954) and vi-

sually represented (Pastore et al., 2017). Conversely, from a bottom-up approach, acquiring

proficiency in statistical knowledge encompasses a range of skills, including data interpretation,

understanding graphical representations, and calculating statistical measures (Garfield, 2002).

These skills engage various psychological processes, making the avoidance of errors andmiscon-

ceptions in statistical reasoning a significant challenge. Some statistical errors can be viewed as

the phenomenological manifestation of specific cognitive heuristics. Individuals often infer

statistical and probabilistic relationships between events and contingencies naively, frequently

violating normative mathematical principles (Pohl, 2022).

1.7 Categorization of the illusion of causality

Lastly, an effort shouldbemade to categorize the causality biaswithin the frameworksproposed

in Section 1.3. As we will detail in Section 2.3, this bias occurs when individuals erroneously

overestimate the causal link between a cue and an outcome after reviewing a series of trials, each

characterized by the presence or absence of the cue and the outcome. This overestimation is

believed to stem from our tendency to disproportionately emphasize evidence supporting the

presence of an effect. The illusion of causality, as an JMMVTJPO PG UIJOLJOH, can be understood as
a biased evaluation of raw data, where individuals tend to prioritize true positives – scenarios

where both the supposed cause and effect are observed – over true negatives, false positives,

and false negatives. The fact that individuals extrapolate a rule based on the observation of

the frequencies of different scenarios indicates that the causality heuristic aligns with JOEVDUJWF
type of reasoning and falls within the broader category of TUBUJTUJDBM IFVSJTUJDT.
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2
Illusion of causality

2.1 The nature of causality

As the illusion of causality pertains to individuals’ perception of causality itself, it raises the

fundamental question ofwhat causality is in its essence. While causality can be roughly defined

as the relation between two events, one ofwhich is the consequence (i.e., the effect) of the other

(i.e., the cause), philosophers have long explored the ontological nature of causality. Different

schools of thought have emerged over centuries, as described by Broadbent (2024).

Regarding the nature of causality, SFBMJTUT (e.g., Armstrong, 2016) argued that there are real
entities that exist independently of particular instances. They saw causation as something that

exists beyond the particular things that are causally related, a universal relation that underlies

and connects cause-effect pairs. In contrast, OPNJOBMJTUT held that there are no entities other
than what Lewis (1983) refers to as EJTUJODU FYJTUFODॶ. Nominalists argued that causation is not
a particular entity and it is not something that exists beyond its particular instances. In this

perspective, causation is nothing more than the sum of its specific occurrences.

Another perspective on causality is provided by Kant (1855/2007), extending ideas from

David Hume (Broadbent, 2024). Kant asserted that causation is not an objective thing but a

feature of our experience, arguing that causation is essential to any kind of experience.
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David Hume’s viewpoint holds a particularly important role within the field of psychology

(Wasserman et al., 1990), as he raised the question of how we know about causal connection.

For Hume (1740/2000), causal impression depends on previous experience. The impression

of causality between two events is formed when they are temporally contiguous, the cause pre-

cedes the effect, and there is a constant coincidence over time between these two. However, the

process by which the impression of causality is formed is not given by deliberative and inferen-

tial thinking, but rather by purely mechanistic learning.

2.2 Cognition of causality

As from the first conceptualization of the question about how we perceive causality by Hume,

psychologists’ interest in how causal inference works flourished, becoming a traditional re-

search topic in psychology explored from various perspectives, including comparative cogni-

tion (Blaisdell et al., 2006), psychology of reasoning (Waldmann et al., 2006), psychology of

learning (Dickinson et al., 1984), and visual perception (Michotte, 1963/2017). The psycho-

logical literature on this topic suggests that the understanding of cause-effect relationships is

an ability in which humans clearly outperform any other species (Bender, 2020).

With respect to the perception area, Michotte’s studies on causality hold significant rele-

vance. In a famous study paradigm (Michotte, 1963/2017), participants observed a moving

object, labeled as X , approaching and making contact with a stationary object, labeled as Y .

Upon contact, themotion ofX ceased, and Y began tomove. When Y startedmoving within

1/10 second after contact with X , and in the same direction as X , participants consistently

reported thatX caused Y to move. This generated a strong and reliable perception of causal-

ity. Michotte argued that causality is directly perceived, without the need for mediation by

higher-level cognitive processes.

However, in this thesis, we will focus on the impression of causality (i.e., the causality bias)

in contexts where associative learning occurs. Associative learning is a type of learning inwhich

two initially unrelated objects become connected in ourminds through a process known as con-

ditioning (Cornoldi et al., 2018). For this reason, the illusion of causality can also be classified

within the category of illusions of memory (see Section 1.3).
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2.3 Causality bias in a learning context

The illusion of causality occurs when a subject develops the belief that there is a causal connec-

tion between two events that are actually unrelated. It refers to the perception that one event

A, called the cue or potential cause, is causally linked to another eventB, called the outcome or

effect, when there is merely a coincidence between them. Generally, humans infer the presence

of a causal link through the (single or multiple) contingencies betweenA andB (Matute et al.,

2019), often showing great accuracy in detecting causal links that are genuinely present in the

environment. This ability is critical for survival, as it underlies the capacity to make accurate

predictions about future states of the world. However, sometimes contingency learning can

lead to an overestimation of the degree to which a causal link is present when, in fact, the two

events are independent (i.e., the probability ofA is substantially independent of the probability

ofB), resulting in the so-called PWFS�FTUJNBUJPO PG [FSP�DPOUJOHFODJॶ (Blanco et al., 2014).

0VUDPNF
A. Structure

B1 B2

A1 B C$VF
A2 D E

0VUDPNF
B. Presence

B1 B2

A1 25 5$VF
A2 5 5

0VUDPNF
C. Absence

B1 B2

A1 10 10$VF
A2 10 10

Table 2.1: Fundamental contingency table and illustrative variations.

One of the most widely used paradigms that has become a standard experiment to explore

causal learning in general and the illusion of causality in particular is the DPOUJOHFODZ MFBSOJOH
UBTL (CLT). In this task, participants are presented with a series of trials, each one characterized
by the presence or absence of event A and event B. Indeed, the presence or absence of event

A and event B gives rise to four hypothetical scenarios, where the respective frequencies can

be represented on a tetrachoric table (see Table 2.1 – Panel "� 4USVDUVSF): (a) event A and

event B are present (i.e., the cue and the outcome co-occur), (b) only event A is present (i.e.,

the cause manifests without the outcome), (c) only eventB is present (i.e., the cause does not

manifest, but the outcome does), and (d) eventA and eventB are not present (i.e., neither the

cue nor the outcome is present; Vadillo & Matute, 2007). In a context of observation, these

four combinations can appear with different frequencies, ranging from zero onwards.

Each trial shows the presence or absence of the potential causeA, linked to the presence or

absence of an effect B so that event A, whether present or absent, precedes event B; in this

way only A can signal B, giving rise to a POF�XBZ EFQFOEFODZ. Typically, events A and B are
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chosen so that it is plausible that A can be the potential cause and B the outcome. Studies

have proposed different types of eventsA andB that in principle can be causally related (e.g.,

a fertilizer as a potential cause and a flower blossom as an outcome; Matute et al., 2022).

After a certain number of trials, which is manipulated by the researcher, participants are

usually asked to estimate the degree to which there is a causal connection between the events.

Typically, a numeric scale from 0 to 100 is used to estimate the degree of the causal link, where

0 is interpreted as no causal connection and 100 as themaximumdegree of a causal connection.

While this scalemakes sense from a theoretical standpoint (as it reflects the∆P rule, whichwill

be discussed below in Section 2.4), it can be somewhatmisleading. For instance, amiddle point

of 50 can be interpreted by participants as an indecisive expression of causality or a moderate

presence of a causal link. Thus, it is not surprising that some research finds different results

based on the kind of scale used (Ng et al., 2024).

The presence or absence of the two target eventsA andB is manipulated by researchers in

their proportions so that, from a normative standpoint (i.e., according to the∆P rule; see Sec-

tion 2.4), there is or is not some degree of a statistical link between the two events. Researchers

systematically vary the frequencies of the a, b, c, d scenarios to create conditions with different

levels of contingency between the cue and the outcome. For example, in a positive contingency

condition, the cue and the outcome would frequently appear together (i.e., high frequency of

scenario a; see Table 2.1 – Panel#� 1SFTFODF) and rarely appear independently (i.e., low frequen-

cies for scenarios b and c). Conversely, in a low or null contingency condition, the cue and the

outcome would appear independently of each other, leading, for example, to balanced or low

proportions across all four scenarios (see Table 2.1 – Panel $� "CTFODF). When asked about

the causal link between events, people are typically fairly accurate in assessing the presence or

absence of a causal connection. However, in certain scenarios specifically manipulated by re-

searchers, where no real causal link is present, people tend to overestimate the extent of a causal

link between the events. This overestimation is the operational definition of the manifestation

of an illusion of causality. Thus, the illusion is typically JOEVDFE in participants, exposing them
to a series of trials where normative indices assert the absence of a causal link, and the frequen-

cies of the outcome, the cause, or both are increased to generate the illusion (see Section 2.4).
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In some variants of this paradigm, the presence or absence of the cause can be manipulated

by the participant, transitioning the procedure from passive observation to active engagement.

! In an active procedure, participants are given control over the presence of the cause.

They decide when to introduce the cause, while the outcome’s occurrence is still prob-

abilistically controlled by the researcher. This active engagement shifts the paradigm

towards the illusion of control (Matute et al., 2022). According to Langer (1975), the

illusion of control refers to the tendency of individuals to overestimate their influence

over outcomes that they have no actual control over.

! In a passive procedure, participants observe a series of trials where the presence or ab-

sence of the cause and the outcome are determined entirely by the experimenter. Partic-

ipants do not influence the events and act purely as observers. The illusion of causality,

as intended in our study, is primarily observed in this passive context.

2.4 Standard normative model

In the literature, different normative models of causal induction have been proposed (see Sec-

tion 2.6). However, the most widely used method to measure contingency is the∆P contin-

gency index (Allan, 1980), a normative model for human causal learning (Matute et al., 2022).

The∆P index is calculated by subtracting the probability of observing the outcome when the

cue event is not present, expressed as P (O|¬C) or P (B1|A2) (following Table 2.1 nomen-

clature), from the probability of observing the outcome when the cue is present, expressed as

P (O|C) or P (B1|A1) (following Table 2.1 nomenclature; Jenkins &Ward, 1965):

∆P = P (B1|A1)− P (B1|A2)⇐⇒
a

a+ b
− c

c+ d
(2.1)

where a, b, c, and d are the observed frequencies of the four scenarios represented in Table

2.1. Three cases can be observed depending on the value of∆P :

! If∆P equals zero (i.e.,P (B1|A1) = P (B1|A2)), then there is no contingency between

the cue and the outcome, indicating no causal link.
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! If ∆P is positive (i.e., P (B1|A1) > P (B1|A2)), a positive contingency and a causal

link are present.

! If∆P is negative (i.e., P (B1|A1) < P (B1|A2)), then the contingency is negative, sug-

gesting an inhibitory effect of the cue event on the outcome.

Theoretically, the overestimation of the extent to which A and B are causally related can

occur in any of these cases (i.e., when∆P is negative, null, or positive). However, the causality

bias has been predominantly studied in the case of null contingency (Allan, 1980).

The illusion arises mainly in the null contingency condition, specifically when:

! The frequencies of the scenarios in which the outcome is present (cells a and c in Table

2.1) are larger compared to the frequencies of the scenarios in which the outcome is

absent (cells b and d in Table 2.1), despite the∆P index being zero (Alloy &Abramson,

1979). This condition leads to the so-called PVUDPNF�EFOTJUZ CJॵ (Matute et al., 2015).

! The frequencies of the scenarios in which the cue is present (cells a and b in Table 2.1)

are larger compared to the frequencies of the scenarios in which the cue is absent (cells

c and d in Table 2.1), despite the ∆P index being zero (Allan & Jenkins, 1983). This

condition leads to the so-called DBVTF�EFOTJUZ CJॵ (Matute et al., 2015).

! The frequencies of both the cue and the outcome are jointly increased, leading to a

higher frequency of scenario a relative to the other three scenarios, while the ∆P in-

dex remains zero (e.g., a = 64, b = 16, c = 16, d = 4; see Blanco et al., 2013). The

emergence of a causality bias under this specific condition suggests that scenario a (i.e.,

when both the cue and the outcome are present) plays a particularly important role in

the causal induction mechanism, as we previously discussed in Section 1.7.

In all these cases, the judged strength of a causal relationship tends to be consistently and

systematically larger than what would be expected from the hypothetically correct normative

response (Blanco, 2017).

Lastly, it is important to assert that the strength of the perceived causal link between events

can be actively modulated – the researcher can create conditions with greater outcome-density

or cause-density, which can contribute to generate a greater illusion of causality.
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2.5 ∆P as a statistical rule

The ∆P index is a rule that people commonly (though approximately) follow when evaluat-

ing causal information in a learning context (see Section 2.3). In some specific cases in a null

contingency condition, people do not follow the∆P rule, and the discrepancy is indicated as

the illusion of causality. In this section, we endeavor to show how the∆P index is statistically

related to the DIJ�TRVBSFE (χ2) statistic (Allan, 1980), supporting that it can be employed as a

standard mathematical rule against which human performance can be evaluated.

Suppose we have two nominal variablesA andB, and we indicate absolute double frequen-

cies on a contingency table as nij , where i = 1, 2, . . . , k and j = 1, 2, . . . , h.

The contingency table (2.2) can be represented as:

B1 B2 · · · Bh Total
A1 n11 n12 · · · n1h n1.

A2 n21 n22 · · · n2h n2.
...

...
... . . . ...

...
Ak nk1 nk2 · · · nkh nk.

Total n.1 n.2 · · · n.h N

Table 2.2: Contingency table of variablesA andB.

Where:

! nij represents the frequency of observations for the combination of the i-th category of

A and the j-th category ofB.

! ni. is the total frequency for the i-th category ofA across all categories ofB.

! n.j is the total frequency for the j-th category ofB across all categories ofA.

! N is the grand total of all frequencies in the table.

To express the expected frequencies under the assumption of perfect independence between

A andB in a contingency table, we can use the formula:

Eij =
ni. · n.j

N
(2.2)
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The χ2 statistic is computed using the formula:

χ2 =
k∑

i=1

h∑

j=1

(nij − Eij)2

Eij
(2.3)

Where nij is the observed frequency in cell (i, j) andEij is the expected frequency for that

cell. A special case for applying theχ2 statistic involves a 2×2 contingency table, often referred

to as a UFUSBDIPSJD UBCMF, where we have two binary nominal variablesA andB. The table (2.3)

is structured as follows:

B1 B2 Total
A1 n11 n12 n1.

A2 n21 n22 n2.

Total n.1 n.2 N

Table 2.3: 2x2 contingency table (tetrachoric table).

At this point, it is important to note that Table 2.1 andTable 2.3 express the same condition

under different notations. The χ2 statistic can be computed using the formula:

χ2 =
N(n11 · n22 − n12 · n21)2

n.1 · n.2 · n1. · n2.
(2.4)

The Φ index, a measure of association between two variables on a tetrachoric table (that

varies from 0, corresponding to no association between the variables, to 1 or−1, which respec-

tively indicate complete association or complete inverse association), is based on frequency data

represented in 2× 2 tables. It can then be calculated as:

Φ =

√
χ2

N
(2.5)

Both χ2 and Φ reflect the dependence of variable A on variable B and the dependence of

variableB on variableA.

However, a different measure of dependency, denoted as∆P , represents the difference be-

tween two independent conditional probabilities and can be used to measure the one-way de-

pendency of one variable on another.
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The measure of dependency of variableB on variableA is given by:

∆PB←A = P (B1 | A1)− P (B1 | A2) =
n11

n11 + n12
− n21

n21 + n22
(2.6)

Where P (B1 | A1) is the probability ofB1 givenA1, and P (B1 | A2) is the probability of

B1 givenA2. This formula is the same expression of Equation 2.1.

Similarly, the measure of dependency of variableA on variableB is:

∆PA←B = P (A1 | B1)− P (A1 | B2) =
n11

n11 + n21
− n12

n12 + n22
(2.7)

Where P (A1 | B1) is the probability ofA1 givenB1, and P (A1 | B2) is the probability of

A1 givenB2.

Considering equations 2.4, 2.6, and 2.7, then the χ2 is calculated as:

χ2 = N ·∆PB←A ·∆PA←B (2.8)

That is, χ2 reflects a two-way dependency, and∆PB←A and∆PA←B each reflect a one-way

dependency.

2.6 Overview of alternative theoretical models

While the∆P model is one of the most widely used approaches for explaining how naive rea-

soners infer causality from contingency in an associative learning context, several other theo-

retical models have also been proposed over the years. Perales and Shanks (2007) provided a

comprehensive summary of the most significant models of covariation-based causal judgment.

In this final section we present a summary of some alternative models used to study causal

learning. Theoretical models of causal induction can generally be divided into two main cat-

egories: OPSN�CBTFE NPEFMT and BMHPSJUINJD NPEFMT, which we will introduce briefly in Sub-
sections 2.6.1 and 2.6.2, respectively. In Subsection 2.6.3, we will discuss in further detail a

specific algorithmic model of particular relevance.
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2.6.1 Norm-based models

Norm-based models assume that people acquire causal knowledge by applying psychological

processes that resemble rational strategies (Perales & Shanks, 2007). According to these mod-

els, individuals adopt a certain criterion to follow a rational analysis of causality, resulting in

a correspondence, to some degree, between the output produced by normative rules and the

outcome of psychological processes. The∆P rule can be included in this set of models.

Another model that can be included in this category is the QPXFS UIFPSZ PG QSPCBCJMJTUJD DPO�
USBTU or QPXFS 1$ model (Cheng, 1997). This theory is grounded in the∆P rule but extends

it by incorporating the concept of interactive causes (Matute et al., 2022).

Consider a potential cause, denoted as event A(1), alongside a set of other background

causes, represented by eventA(0). These other causes comprise both observed and unobserved

factors that operate in the background andmay, for instance, produce the outcome even in the

absence of event A(1) (i.e., cell c in Table 2.1; Perales & Shanks, 2007). Assuming that the

complete set of causes for a given event B can be partitioned into events A(0) and A(1), we

can illustrate their relationship using a directed arrow graph, whereB represents the common

effect of these two causes (A(1) → B ← A(0); Perales & Shanks, 2007). EventsA(0),A(1),

andB can be either present or absent.

In this model, the focus is on estimating the causal power of event A(1), denoted as αA(1),

defined as the probability with which an event A(1) produces an event B when event A(1)

is present. Causal power aims to capture the probability with which the cause actually causes

the effect. Indeed, causal power can also be estimated for A(0), denoted as αA(0). The causal

powerαA(k) for any eventA(k) assumes a probability value from 0 to 1. This probability value

can also be depicted as theweight assigned to one causal arrow in the graph (i.e., in this instance,

one forA(0) and one forA(1)), and αA(k) can be understood as a random variable represent-

ing the strength of event A(1) in influencing event B (Holyoak & Cheng, 2011). The causal

power αA(1) is denoted with a Greek letter, as it is a theoretical value and only indirectly esti-

mated. It differs from the probability of eventB given the presence of eventA(1), denoted as

P (B1|A(1)1), because the latter is directly observed (Cheng, 1997) and includes those occa-

sions when the eventA brought about eventB, as well as occasions on which the eventAwas

present but failed tobring about the eventB (Luhmann&Ahn, 2005). P (B1|A(1)1) = αA(1)

only when no other eventA(k) is present or exists.
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The power PC theory posits that people approach causal learning with four general prior

assumptions (Holyoak & Cheng, 2011):

! EventsA(1) andA(0) influence eventB independently.

! EventA(1) could produce eventB but not prevent it.

! Causal powersαA(0) andαA(1) are independent of the frequency of occurrence of events

A(0) andA(1).

! EventB does not occur unless it is caused.

In a context where there is a potentially generative event A(1) (i.e., one that is assumed to

QSPEVDF eventB; Perales & Shanks, 2007), the probability of observing eventB, as eventB can

be produced independently byA(1) orA(0), is given by:

P (B1) = P (A(1)1) · αA(1) + P (A(0)1) · αA(0)+

− P (A(1)1) · αA(1) · P (A(0)1) · αA(0)

(2.9)

That is,P (B1) is the sumof the probabilities of the constituents (i.e., eventsA(0) andA(1))

minus the probability of the intersection, according to the rule of the probability of unions.

The terms P (A(0)1) and P (A(1)1) are the observable probabilities of the presence of events

A(0) andA(1), respectively. These probability terms can be used to represent the presence (i.e.,

whenP (A(k)1) = 1) or absence (i.e., whenP (A(k)1) = 0) of the eventsA(0) andA(1). The

causal powersαA(0) andαA(1) correspond to the causal strengths of the background eventA(0)

and the eventA(1), respectively.

The probability of eventB given the presence of eventA(1), denoted asP (B1|A(1)1), can

be derived by conditioning Equation 2.9 on event A(1) being present — implying that the

term P (A(1)1) is equal to 1:

P (B1 | A(1)1) = αA(1) + P (A(0)1 | A(1)1) · αA(0)+

− αA(1) · P (A(0)1 | A(1)1) · αA(0)

(2.10)

Similarly, we can derive the probability of eventB given the absence of eventA(1), denoted

as P (B1|A(1)2), by conditioning Equation 2.9 on event A(1) being absent — implying that

the term P (A(1)1) is equal to 0:
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P (B1|A(1)2) = P (A(0)1 | A(1)2) · αA(0) (2.11)

The quantity of interest, causal power αA(1), can then be found:

αA(1) =
P (B1 | A(1)1)− P (B1 | A(1)2)
1− P (A(0)1 | A(1)1)× αA(0)

+

−
[P (A(0)1 | A(1)1)− P (A(0)1 | A(1)2)]× αA(0)

1− P (A(0)1 | A(1)1)× αA(0)

(2.12)

Equation 2.12 calculates the causal power of the eventA(1), yet it necessitates certain quan-

tities that remain inaccessible or unobservable. For instance, the term αA(0), representing the

causal power of the composite alternative eventA(0), is itself, like all causal powers, inherently

unobservable (Luhmann & Ahn, 2005). Consequently, the direct application of Equation

2.12 is impractical due to these limitations in observable data. However, when the occurrence

of the candidate cause A(1) is independent of the occurrence of the alternative cause A(0), a

condition mathematically expressed as P (A(0)1|A(1)1) = P (A(0)1|A(1)2) = P (A(0)1),

Equation 2.12 simplifies as:

αA(1) =
P (B1 | A(1)1)− P (B1 | A(1)2)

1− P (B1 | A(1)2)
(2.13)

As we already defined in Section 2.4,∆P is obtained by subtracting P (B1 | A(1)2) from

P (B1 | A(1)1) (see Equation 2.1), so that Equation 2.13 can be expressed as:

αA(1) =
∆P

1− P (B1 | A(1)2)
(2.14)

Equation 2.14 indicates when and how well ∆P gives an estimate of αA(1), and it relates

causal power to probabilities that are observable, allowing the estimation of the term αA(1).

The power PC model bases its predictions on causal powers, which, in general, only partly

determine∆P (Cheng, 1997).

In conclusion, the power PC model is a parameter estimation model (Perales & Shanks,

2007) that provides normative values for optimal causal inference (Matute et al., 2022).
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2.6.2 Algorithmic models

"MHPSJUINJD NPEFMT propose the use of chains of algorithms to describe the psychological pro-
cesses underlying causal induction. These models are also referred to as OPO�OPSNBUJWFmodels,
in the sense that they are not bound to any particular norm of rationality (Perales & Shanks,

2007), and, for that reason, they can allow researchers tomathematically predict the emergence

of biased evaluations of causality (Matute et al., 2022).

A subset of this model family is the SVMF�CBTFE models (Perales & Shanks, 2007), for which

individuals track the different frequencies or probabilities of scenarios presented during learn-

ing trials and follow specific rules to estimate the causal link between events. However, in these

models, either a different rule than that of a normative model is applied, or the tracked proba-

bilities are assigned different weights, meaning that some pieces of information are considered

inherently more important than others (Matute et al., 2022).

For instance, ameasure of contingency that emerged in the 1950s and canbe classifiedwithin

the rule-basedmodel familywas proposedby Inhelder andPiaget (1958/2013). They suggested

that people compute the difference between the diagonals of the tetrachoric table (seeTable 2.1)

to quantify the correlation between eventsA andB1:

∆D = (a+ d)− (b+ c) (2.16)

wherea, b, c, andd represent the observed frequencies of the four scenarios depicted inTable

2.1. The term (a + d) denotes the sum of the frequencies where events A andB either both

occur or both do not occur, while (b + c) represents the sum of the frequencies where the

occurrence of events A and B does not align. The psychological rationale for employing this

correlation method is based on the idea that individuals evaluate the evidence confirming the

existence of a causal link and compare it with the evidence that disconfirms such a link.

1As noted by Allan (1980), another measure of contingency that resembles∆D was proposed by Smedslund
(1963) in a study examining the naive concept of correlation on a tetrachoric table. Following Allan (1980)’s
notation, measures of correlation can be defined as the ratio of diagonals in Table 2.1:

∆R1 =
a+ d

b+ c
and ∆R2 =

a+ d

N
(2.15)

where a, b, c, and d are the observed frequencies of the four scenarios represented in Table 2.1, andN is the
total sum of frequencies.
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While∆P is a normative probabilisticmeasure, emphasizing the difference in the likelihood

of an outcome occurring with versus without the cause,∆D is a frequency-basedmeasure that

reflects the raw difference between confirming and disconfirming cases. In summary, ∆P is

grounded in probability theory, whereas∆D directly addresses the differences in frequencies

across the diagonals of the table.

Allan (1980) pointed out the inadequacy of∆D as a normative contingency measure, sum-

marizing Jenkins and Ward (1965)’ study, which showed that when ∆P = 0, ∆D = 0

only when marginal column and/or row frequencies are equal (i.e., a + b = c + d and/or

a+ c = b+d). If one of these conditions is notmet, then evenwhen the relationship between

eventsA andB is absent,∆D could still not be equal to 0, leading to an invalid conclusion. For

that reason, rather than a norm-based model,∆D should be considered an algorithmic one.

Focusing instead onweighted rule-basedmodels, using again the∆P rule as a guiding exam-

ple, it has been proposed to correlate causal judgment with a weighted version of∆P (Allan,

1993) rather than an unweighted DMBTTJDBM version (see Section 2.4). Specifically, cells in Ta-

ble 2.1 could be weighted such that P (B1|A1) is given more weight than P (B1|A2) (Perales

& Shanks, 2007). In this way, it should be noted that the ∆P rule is no longer considered a

normative model, but rather a modified version where different weights are assigned on the

tetrachoric table (e.g., wa > wb > wc > wd) in order to better predict and explain accurate

and biased causality judgments.

Within the set of algorithmic models, we can also include BTTPDJBUJWF NPEFMT, which assume
that causal links are learned by the functioning of an associative mechanism that accumulates

associative strength between the events.

2.6.3 Rescorla-Wagner model

A standard associative model is the3FTDPSMB�8BHOFS NPEFM (RWM;Rescorla &Wagner, 1972),

a simple yet powerful and elegant mathematical explanation for how associations are formed

and adjusted based on experience.

Causal learning can be viewed as a type of associative learning to which the RWM can be

applied (Pearce & Bouton, 2001). Since the RWMhas been studied in contexts involving mul-

tiple cues (i.e., multiple events A, whether presented simultaneously or not), illustrating how

these cues compete for predictive power with respect to their outcome (Chapman&Robbins,
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1990), wewill focus on an example where two eventsA can be present. Consider two potential

causes, eventsA(1) andA(2), an outcome eventB, and a contextX . Here,X represents a set

of background events that are always present and can be associated with the outcome eventB

just like any other eventA (Pearce & Bouton, 2001).

In a learning context, event B can be preceded by either A(1), A(2), both, or neither. Ac-

cording to the RWM, the change in associative strength for eventsA(1),A(2), and the context

X with respect to eventB is updated on each learning trial using the error-correction rule:

∆VA(k) = αA(k)β(λ−
∑

j∈A

Vj) (2.17)

Where:

! ∆VA(k) is the change in associative strength between eventA(k) (where k can be 1 or 2

in this case) or contextX and eventB on a given trial.

! αA(k) is the learning rate parameter specific to each eventA(k) (where k can be 1 or 2 in

this case) or contextX , which assumes values from 0 to 1.

! β is the learning rate parameter of eventB, which assumes values from 0 to 1.

! λ is themaximumassociative strength that eventB will support. λ is set equal to 0when

eventB is absent and is set equal to 1when eventB is present.

!
∑

j∈A Vj is the sum of the associative strengths of the eventsA(k) (where k can be 1 or

2 in this case) and contextX that are present on a given trial.

When all eventsA (i.e.,A(1) andA(2)) are present, the sum of their associative strengths is:

∑

j∈A

Vj = VA(1) + VA(2) + VX (2.18)

A change in associative strength is calculated for each eventA present in a trial. The changes

in associative strength for a generic eventA(k) depend on the sum of the associative strengths

of all eventsA(k)present (A(1) and/orA(2), andX in this case). Consequently, if one generic
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eventA(k) acquires associative strength, any other eventA(¬k) is less likely to acquire associa-

tive strength (Baker et al., 1996), as at the asymptote (i.e., the point at which no more learning

occurs), the sum of all associative strengths will be, following our example:

VA(1) + VA(2) + VX = λ (2.19)

This principle leads to what is known as DVF DPNQFUJUJPO (Baker et al., 1996): if one event

A(k) acquires associative strength, the others will not. When only one event A (i.e., A(1) or

A(2)) and one eventB are involved, and the learning parameters β are assumed to be equal for

both the presence and absence of an effect, the associative strength ofA converges to the∆P

value at the asymptote (see the Appendix for the demonstration).

In the context of causal learning, the RWMcan predict both correct and biased contingency

estimations (Matute et al., 2022).

Matute et al. (2019) showed that in a settingwithonly one eventA and contextX competing

for associative strength with respect to an eventB in a null contingency illusory condition, the

RWM algorithm predicts that the association between events A and B may initially increase

above 0. This occurs because contextX acquires associative strength more slowly than event

A, as contextX is less salient (i.e., the learning parameterαX is smaller than the learning param-

eterαA). Due to the coincidence of eventsA andB, and the initially weak association between

contextX and eventB, participants in the early phase of causal learning are expected to exhibit

the illusion of causality, as the association between events A and B becomes stronger. How-

ever, as more information is acquired over a certain number of trials, the associative strength

between contextX and event B increases, while the strength between events A and B weak-

ens, eventually approaching 0. At this stage, participants are expected to reduce the illusion

of causality, as the association between events A andB diminishes. Thus, the RWM predicts

that after enough trials, there should be a convergence towards the correct contingency value,

in accordance with the∆P rule. In summary, the RWM suggests that causality biases are pre-

asymptotic, meaning they are expected to occur primarily during the initial trials. However,

Barberia et al. (2019) challenged this prediction by finding that participants exposed to numer-

ous trials did not show a reduction in the illusion of causality.
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Figure 2.1: RWMpre-asymptotic causality bias simulation.

Figure 2.1 shows a graphical result from anRWMsimulation conducted inR (RCoreTeam,

2022)2 that replicates the RWM simulation by Matute et al. (2019), specifically in the context

of an illusory condition where the frequencies of both the cue (i.e., eventA) and the outcome

(i.e., event B) are jointly increased (i.e., when the frequency of cell a in Table 2.1 is increased,

while∆P remains 0; see Section 2.4). The simulation has been obtained using the Equations 1,

2, 3, 4 in the Appendix. The green line shows the progression of associative strength between

events A and B during trials, highlighting the pre-asymptotic bias prediction by the RWM,

whereas the red dotted line represents∆P .

2Learning parameters of the simulation (104 iterations): αA = 0.3, αX = 0.1, βA = βX = 0.8.
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3
Interaction with process fluency

3.1 Modulating the illusion

In Chapter 2, we asserted that the illusion of causality can be understood as a phenomenon

that consistently arises under certain circumstances. In a null contingency condition, where

the∆P index rule (see Section 2.4) would correctly advise rejecting a causal connection, par-

ticipants still express a positive causal evaluation between the events when specific conditions

are met (i.e., when cause or outcome frequencies are increased). By analyzing the contexts in

which this bias is either heightened or reduced, we can gain valuable insights into the underly-

ing mechanisms and cognitive processes responsible for the illusion.

First, we can inquire whether there are individual differences in themanifestation of the illu-

sion. According toMatute et al. (2015), the illusion is not related to intelligence or personality

traits. Instead, it arises from how themind has evolved to discern causality from contingencies,

with associative processes (i.e., conditioning) playing a fundamental role. However, it should

not be assumed that associative learning is a simple mechanistic phenomenon. Even the most

basic associative learning involves complex cognitive processes (Cornoldi et al., 2018). Further-

more, our data analyses (see Section 6.3) indicate that demographic features do not lead to

variations in the magnitude of the causality bias.
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Contrary to the notion of a consistently occurring phenomenon, it has been shown that cer-

tain variables can alter the illusion of causality, with mood being a notable example (Matute et

al., 2015). Blanco et al. (2012), in their examination of the illusion of causality within an active

procedure (i.e., the illusion of control, see Section 2.3), found that scores on depressive symp-

tom scales canmediate the phenomenon. Consistentwith the findings ofAlloy andAbramson

(1979), individuals with higher depressive symptoms were more accurate in their causal judg-

ments under null contingency conditions. However, an explanation of these results suggests

that this tendency may be linked to the type of procedure used (i.e., active vs. passive). Depres-

sion might reduce the tendency to initiate voluntary responses (i.e., choosing not to introduce

the cause in the active procedure), whereas non-depressed participants acted with greater fre-

quency than depressed participants to obtain the outcome (i.e., introducing the cause in the

active procedure). As a result, non-depressed participants were exposed to a higher number of

cause-outcome coincidences. Although this explanation pertains specifically to the active pro-

cedure, these findings underscore the significant role that the probability of the cause plays in

either enhancing or reducing the illusions of causality (Matute et al., 2015).

Furthermore, the tendency to jump to conclusions (i.e., deriving conclusions based on scarce

data) has been shown to mediate the effect of the illusion of causality. Participants with higher

scores on this tendencymadehigher causal judgments in anull contingency condition (Moreno-

Fernández et al., 2021). Additionally, attitudes and preferences also seem to play a role: the illu-

sion is enhanced when tasks are presented in a framework that aligns with personal preferences

and inclinations (Matute et al., 2022).

A modulation in the illusion of causality has also been observed in contexts where another

potential cause is available. Vadillo et al. (2013) found that participants informed about apoten-

tial alternative explanation for the outcome showed a reduced illusion of causality compared to

the group that received no suggestions about alternative explanations. Thus, informing people

about the existence of alternative causes canmitigate the illusion. Nonetheless, the presence of

an alternative cause can sometimes lead to erroneous conclusions. Yarritu et al. (2015) found

that presenting an illusory-cause condition (i.e.,∆P = 0) before an effective-cause condition

(i.e.,∆P > 0) could reduce the ability to detect the causal link in the latter condition.

Lastly, some research has specifically targeted bias reduction, hypothesizing and exploring

whether the causality bias can be diminished, as we will discuss in the next Subsection (3.1.1).
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3.1.1 Focusing on the illusion reduction

Matute et al. (2022) argued that the illusion of causality is a consistent and pervasive phe-

nomenonwith significant consequences in various domains, such as health and politics. Many

social judgments and behaviors are influenced by intuitive evaluations of causal relationships

between events (Crocker, 1981). Moreover, it has been suggested that the illusion is linked to

pseudoscientific thinking and beliefs (Matute et al., 2011). Griffiths et al. (2019) showed that

individuals prone to superstitious beliefs are also susceptible to the causality bias.

Given these concerns, researchers have focused on developing strategies to reduce the causal-

ity bias (Matute et al., 2022). Some efforts have been made to create psychoeducational in-

terventions aimed at eliminating cognitive biases or diminishing their intensity and frequency

(Lilienfeld et al., 2009), though the effectiveness of debiasing techniques remains debated (Arkes,

1981). Specific interventions targeting the reduction of causality bias have been proposed by

Barberia et al. (2013; see also Barberia et al., 2018), who provided participants with explicit

instructions on how to counteract the bias and think in a more scientific manner.

A reduction in the illusion has also been observed in studies that specificallymanipulated the

information presented in the classic CLT (see Section 2.3), as we will discuss in greater detail

in the next Sections (3.2 and 3.3).

3.2 Foreign language effect

In investigating ways to indirectly reduce the causality bias, Díaz-Lago and Matute (2019b)

found that a groupof participantswhoperformed theCLT in a foreign language (FL) exhibited

a reduced effect of the illusion of causality compared to a group that conducted the task in their

native language (NL). This result aligns with the GPSFJHO MBOHVBHF FFDU (FLE), a phenomenon
for which an increasing body of literature has shown that conducting a task in a context of a

FL can affect decision-making outcomes (Circi et al., 2021).

The FLE was first described by Keysar et al. (2012), who found that participants exposed to

the BTJBO EJTFBTF EJMFNNB in a FL exhibited less biased responses than those who conducted

the task in their NL. The asian disease problem is a task introduced by Tversky and Kahneman

(1981) to study how decision-making is influenced by the way choices are presented (i.e., the

way choices are GSBNFE). In this task, participants are asked to choose between a safe option and
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a risky option to deal with a hypothetical epidemic outbreak. This epidemic is expected to kill

600 people, and participants have to choose between two programs to combat the disease. Two

conditions are compared: onewith options presented in a HBJO frame and anotherwith options
presented in a MPTT frame. In the gain frame, participants choose between two options: P1, for

which 200 people will be saved, and P2, for which there is a 1/3 probability of saving 600

people and a 2/3 probability of saving no one. In the loss frame, participants choose between

two options: P1, for which 400 people will die, and P2, for which there is a 1/3 probability

that no one will die and a 2/3 probability that all people will die.

When the choices are framed in terms of gains, the majority of people tend to exhibit risk-

averse behavior (i.e., favoring option P1), whereas when the choices are framed in terms of

losses, the majority of people tend to exhibit risk-seeking behavior (i.e., favoring option P2).

The normative and expected values for options P1 and P2 are the same in the gain frame and

in the loss frame. Therefore, the difference in responses between the two framings is considered

a violation of the rules of rational choice (i.e., a biased response; Circi et al., 2021). Keysar et al.

(2012) found that when the asian disease problem was presented in a relatively low-proficient

FL, the effect of framingoptions in termsof gains or losseswas reduced, andparticipants tended

to choose the risk-averse option (i.e., P1) in both conditions to a similar extent.

At first glance, this seems like a counterintuitive result, as we would expect that the use of

a FL could potentially increase cognitive difficulty, thereby promoting heuristics rather than

reducing them (Keysar et al., 2012). Nonetheless, over the years, the FLE has proven consistent

across different tasks in loss-aversion paradigms, decision-making, and moral dilemmas (Circi

et al., 2021). For instance, Costa et al. (2014) replicated the findings from Keysar et al. (2012),

extending the evidence of the phenomenon to other heuristics, and showing how decision-

making, when problems are presented in a FL, is less subject to biases. Furthermore, in the area

ofmoral dilemmas, the FLE seems to promotemore VUJMJUBSJBO SFTQPOTॶ, which are judgments
aimed atmaximizing benefits andminimizing costs across affected individuals, in contrast with

EFPOUPMPHJDBM SFTQPOTॶ, which are judgments aimed at following specific duties regardless of the
consequences (e.g., Costa et al., 2014; Geipel et al., 2015; Cipolletti et al., 2016).

Without providing an extensive review of the discussion on the psychological reasons why

the FLEoccurs, wewill briefly introduce twoof themain ideas (see Subsections 3.2.1 and 3.2.2)

that can also be linked in some ways to the dual-process models (see Section 1.4).

32



3.2.1 Emotional explanation

A first explanation of the FLE was proposed in the original study by Keysar et al. (2012). The

authors argued that the FLE arises because using a FL creates psychological distance from the

emotional intensity typically associated with one’s NL. This psychological distance is believed

to attenuate emotional reactions, thereby reducing the influence of biases that are often emo-

tionally driven. As discussed in the meta-analysis by DelMaschio et al. (2022), the role of emo-

tions in decision-making under either a NL or a FL can be understood in two ways: the NL

may promote emotional responses that can lead to intuitive reasoning and biased decisions, or

the FL may attenuate emotional responses, provoking the same effect.

Within the field of moral dilemmas, Greene et al. (2001; see also Greene et al., 2004) pro-

posed a domain-specific dual-process model (Craigie, 2011), which assumes the existence of

two cognitive subsystems that are in competition during moral reasoning tasks. The first sub-

system is emotionally driven, rapid, and automatic, while the second is deliberative, slow, and

effortful. There are undoubtedly certain analogies between the dual-process models discussed

in Section 1.4 and Greene et al. (2001)’ model. However, it is important to exercise caution

when comparing these models, given that the intuitive processes underlying system one, as pre-

sented in Section 1.4, and the emotionally driven processes of the first subsystem introduced

by Greene et al. (2001) are conceptually distinct (Craigie, 2011), and there are structural dif-

ferences between themodels (Haidt, 2001). Nonetheless, in a broader sense, we can cautiously

suggest that this hypothesis implies either that using an FL reduces reliance on system one or

that the use of anNLprompts the engagement of system one, as conceptualized inGreene et al.

(2001)’ model.

3.2.2 Cognitive explanation

Kahneman and Frederick (2002), referencing the dual-process models discussed in Section 1.4,

suggests that contextual factors that elevate mental stress or cognitive load can significantly

influence which system becomes more dominant in decision-making. Specifically, increased

mental stress or cognitive load (through, for example, the disruption of process fluency on a

task; see next Section 3.3), can enhance the reliance on system two processes, thus leading to

more deliberate and analytical thinking (Del Maschio et al., 2022). Conversely, these psycho-

logical conditions may reduce the influence of system one, which operates through automatic
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and heuristic-based judgments. In the context of the FLE, this theoretical framework suggests

that using a FL could shift decision-making away from system one thinking towards greater

reliance on system two processes (Costa et al., 2014). When individuals engage in decision-

making tasks in a FL, the cognitive demands of processing a non-native language may increase

cognitive load andnecessitatemore effortful, analytical processing, characteristic of system two,

consequently leading to more reasoned and less biased decisions. However, as noted by Del

Maschio et al. (2022) and Circi et al. (2021), this explanation is not without limitations. Some

studies have shown that a FL context does not necessarily reduce cognitive biases when partici-

pants are presented with emotionally neutral tasks (e.g., Geipel et al., 2015; Vives et al., 2018).

These findings suggest that the relationship betweenFLusage and reduced cognitive biasesmay

be more complex and context-dependent than initially assumed.

3.3 Process fluency

Another study, conducted by the same researchers who found that the illusion of causality can

be reduced when the task is conducted in a FL (Díaz-Lago &Matute, 2019b), showed that su-

perficial aspects of the information presented, such as the font in which text is displayed, can

influence the illusion of causality (Díaz-Lago & Matute, 2019a). In their experiment, partici-

pants engaged in a CLT where scenario frequencies, as depicted in Table 2.1 (see Section 2.3),

were manipulated to induce an outcome-density bias (see Section 2.4). Participants were ran-

domly assigned to one of two conditions: one group completed the task in an easy-to-read font,

while the other completed it in a hard-to-read font. The results showed a significant reduction

in the causality bias among participants in the hard-to-read font condition compared to those

in the easy-to-read condition. Notably, this difference was not only statistically significant but

also ofNFEJVN FFDU TJ[F (see Section 4.2), indicating a substantial impact from this seemingly

minor change in the presentation of information.

To explain the influence of font type on the illusion of causality observed by Díaz-Lago and

Matute (2019a), it is helpful to build upon the framework discussed in Subsection 3.2.2 re-

garding the cognitive explanation of the FLE. In particular, the broader concept of QSPDFTTJOH
VFODZ (PF; see next Subsection 3.3.1) can shed light on how changes in cognitive effort may

alter decision-making and provoke a reduction in the illusion of causality.
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3.3.1 A tribe of fluency

PF refers to the subjective easewithwhich information is processed (Oppenheimer, 2008), serv-

ing as a metacognitive cue that significantly influences judgments and decision-making (Alter

&Oppenheimer, 2009). Thought processes are accompanied by the metacognitive experience

of the ease or difficulty with whichmental representations can be retrieved by the mind, or the

fluency or disfluency with which new information can be processed (Schwarz, 2004). These

experiences are in themselves informative to some extent, as the knowledge of processing ease

or difficulty can lead to useful inferences about the external environment, showing how hu-

man judgments reflect not only the content of thoughts but also the metacognitive experience

of processing those thoughts (Alter &Oppenheimer, 2009). People form OBJWF UIFPSJॶ about

the causes of their fluency experiences, which, in turn, guide how fluency influences domain-

specific judgments (Schwarz, 2004). These naive theories are shaped by past experiences and

the current context (Oppenheimer, 2008). For instance, if a written text is syntactically com-

plex and difficult to read – therefore disfluent – it may lead readers to classify the text as overly

complex and unpleasant. Conversely, applying the same level of syntactical complexity to po-

etry might make it seemmore intricate and interesting.

As argued by Oppenheimer (2008), the effects of processing (dis)fluency can be generated

by a wide array of cognitive processes, making it a difficult construct to capture. Any variable

capable of altering processing fluency could potentially lead to similar effects from a cognitive

standpoint (Schwarz, 2004). Moreover, every psychological experimental task can be described

on a continuum that ranges from effortless to effortful, resulting in a corresponding metacog-

nitive experience that spans from fluent to disfluent (Alter & Oppenheimer, 2009). Thus, flu-

ency experiences can arise as a byproduct of diverses cognitive processes, as illustrated in Figure

3.1, which has been adapted from the review by Alter and Oppenheimer (2009).

PF has been shown to influence judgments across a wide array of domains. For instance,

Schwarz et al. (1991), in a study on retrieval fluency, asked one group of participants to recall

6 examples of assertive behavior (an easy task) and another group to recall 12 examples (a more

difficult task). Participants who had to generate many examples found the process more dif-

ficult than those who had fewer examples to retrieve. Subsequently, participants rated their

own assertiveness. Results showed that their evaluations were based on how easily examples of

assertive behavior came to mind rather than on the number of examples they had generated.
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Figure 3.1: Various instantiations of fluency.

PF has also been studied in relation to other phenomena. For instance, Reber and Schwarz

(1999) showed that fluent statements are judged as more likely to be true than disfluent ones,

as people tend to associate fluency with truth and disfluency with falsehood (Schwarz, 2004).

Moreover, fluency is linked to judgments of liking (Alter & Oppenheimer, 2009). Reber et al.

(1998) found that participants rated fluent stimuli presented against highly contrastive back-

grounds asmore aesthetically pleasing than identical stimuli against less contrastivebackgrounds.

Additionally, research has shown that greater confidence in responses to questions is based on

the ease (i.e., fluency) with which those responses come to mind (Kelley & Lindsay, 1993).

Studies on PF have also extended beyond basic research, including applications in fields such

as marketing. For example, a study by Novemsky et al. (2007) indicates that the presentation

conditions of a product, which promote either fluency or disfluency, can play a key role in

determining whether a consumer makes a purchase. Specifically, when consumer products are

made disfluent, consumers are more likely to defer choice or opt for a default option compared

to when product names are fluently processed.

36



3.3.2 PF in relation to biases

PF is an influential factor in cognitive processing that can also be interpreted within the frame-

work of dual-process models (Oppenheimer, 2008). For instance, it has been suggested that

experienced difficulty (i.e., disfluency) on a task can prompt individuals to adopt a more sys-

tematic approach to information processing. Alter et al. (2007) conducted an experiment in

which participants took the DPHOJUJWF SFFDUJPO UFTU (CRT; Frederick, 2005), a measure of the
extent to which individuals rely on system one processing. The test includes items where an

intuitive mode of reasoning (i.e., system one) leads to incorrect answers, but participants can

override these initial responses by engaging inmore deliberate, analytical reasoning (i.e., system

two). The study found that participants who took the CRT in a hard-to-read font provided

more correct answers than those who took it in an easy-to-read font, suggesting that disfluency

led to a shift towards more systematic processing strategies.

The relationship betweenPF and themodulation of cognitive biases iswell-supported across

various domains. For example, increased disfluency has been shown to reduce susceptibility to

cognitive errors like the.PTॶ JMMVTJPO (Song&Schwarz, 2008) and toweaken the framing effect

(Korn et al., 2018). These findings highlight how lower fluency can lead to more effortful and

less biased reasoning by promoting a shift from intuitive to analytical processing.

Given these insights, we can hypothesize that high fluency, characterized by an effortless cog-

nitive experience, reinforces intuitive judgments alignedwith systemone processes. In contrast,

disfluency, marked by a challenging cognitive experience and increased cognitive load, prompts

more analytical and deliberate thinking associated with system two processes (Kahneman &

Frederick, 2002). In the study by Díaz-Lago and Matute (2019a), the use of a hard-to-read

font likely induced perceptual disfluency (see Figure 3.1), leading participants to rely less on

automatic, heuristic-based reasoning (system one) and more on deliberate, systematic process-

ing (system two). This shift in cognitive processing could explain the observed reduction in

the illusion of causality in the hard-to-read font condition. Considering that disfluency can

be triggered by various alterations that increase cognitive load and task difficulty, it is plausi-

ble that the reduction in the illusion of causality observed in both a hard-to-read font context

(Díaz-Lago &Matute, 2019a) and a FL context (Díaz-Lago &Matute, 2019b) may stem from

a common underlying mechanism involving heightened task difficulty.
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3.4 Study hypotheses

While the connection between PF and the illusion of causality is compelling, it is important to

remark the multidimensional nature of the PF construct. As we exposed in Subsection 3.3.1,

PF encompasses various manipulations that affect the subjective ease of information process-

ing. However, these manipulations may target different stages and types of cognitive process-

ing. For example, manipulating language fluency, as in the FLE, primarily affects syntactic

and semantic processing, which occurs at a later stage of text comprehension, whereas manip-

ulating font type influences only the perceptual processing of written text, an earlier stage of

comprehension. Consequently, while both forms of fluencymanipulationmight shift process-

ing from systemone to system two, the underlying cognitive processes involved are distinct and

warrant further empirical investigation. The study by Díaz-Lago andMatute (2019a) suggests

that perceptual disfluency, manipulated through font type, can reduce the magnitude of the

illusionof causality. Building on this finding, our first experiment aimed to testwhether percep-

tual disfluency, manipulated through the contrast of the written stimuli with the background,

similarly affects the illusion of causality. Thus, we formulated two hypotheses:

! )�� The illusion of causality will be reduced in a low-contrast condition compared to a
high-contrast condition in the CLT. Specifically, the mean judged strength of the cause-

effect relationship in the low-contrast condition is expected to be less than in the high-

contrast condition.

! )�� The mean judged strength of the cause-effect relationship in the low-contrast con-
dition will be equal to the mean judged strength in the high-contrast condition.

In the next Chapter (4), we will present the design analysis, participant recruitment, and

experimental procedure for our first experiment. In Chapter 5, we will detail the main results

related to our hypotheses. Given the null result observed, we decided to conduct a second

experiment to further investigate the phenomenon. We will discuss this experiment and its

results in Chapter 6. Finally, in Chapter 7, we will offer our analysis and interpretation of the

findings.
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4
First experiment: structure

4.1 Conditions

Within the context of a classic CLT paradigm (see Section 2.3), we manipulated the physical-

perceptual characteristics of the stimuli by adjusting the contrast of thewritten texts against the

background, using different colors on a white background. This manipulation aimed to alter

the perceptual fluency with which participants could perceive the stimuli and perform the task.

As shown by Reber and Schwarz (1999), contrast manipulation is a reliable source of variation

in perceptual fluency and has been successfully employed in other PF studies (e.g., in a research

on judgments of agent competence; Thompson & Ince, 2013).

We developed an online version of a standard CLT, characterized by two conditions: IJHI
DPOUSBTU (HC), where the written stimuli were displayed in dark blue on a white background,
and MPX DPOUSBTU (LC), where the written stimuli were displayed in light yellow on a white

background. The colors were chosen based on the PF literature (e.g., Reber & Schwarz, 1999;

Thompson & Ince, 2013). Yellow text on a white background has been shown to induce sig-

nificant disfluency, whereas blue text on a white background has generally been shown to be

easy-to-read.
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Additionally, we consulted the IVNBO�DPNQVUFS JOUFSBDUJPO literature in order to determine
the precise IFYBEFDJNBM (HEX) color codes for the online experiment (e.g., Hall & Hanna,

2004; Zuffiet al., 2007). For theLCcondition,we initially selectedHEX#FFFF00 (i.e., yellow),

which appeared sufficiently disfluent. However, due to variability in contrast across different

devices, we empirically observed that the contrast ratio needed adjustment. Consequently, we

further decreased the contrast ratio by using HEX #FFFF73 (i.e., a lighter yellow).

Another initial idea was to randomize the color of the text on a given randomized colored

background, maintaining a fixed contrast ratio between the background and the stimuli. This

approach aimed to evaluate the effect of contrast independently of the specific colors used.

However, we decided against this method to avoid introducing a confounding variable related

to polarity (i.e., dark text on a light background vs. light text on a dark background). This deci-

sion ensured that ourmanipulation strictly focused on the contrast and its effects onperceptual

fluency without introducing additional variables that could affect the outcomes.

To test whether the contrast manipulation affected the magnitude of the causality bias, we

combined the two contrast conditions with two different contingency conditions in a 2 (DPO�
USBTU: HC vs. LC) x 2 (DPOUJOHFODZ: USVF DPOUJOHFODZ vs. OVMM DPOUJOHFODZ) between-subjects
factorial design. The true contingency condition was characterized by a positive∆P , indicat-

ing an actual causal link between the cue and the outcome event. The null contingency con-

dition, characterized by a null∆P , indicated the absence of a real causal link between the cue

and the outcome event. An outcome-density bias was induced (see Section 2.4), as previous

studies (e.g., Díaz-Lago & Matute, 2019a, 2019b) have shown this condition to give rise to a

robust illusion of causality. If perceptual disfluency, induced by the LC condition, prompts

system two reasoning and reduces the magnitude of the illusion of causality, then in the null

contingency condition, lower causality ratings are expected in the LC condition compared to

the HC condition. As shown by previous studies (Díaz-Lago & Matute, 2019a, 2019b), no

effect of perceptual disfluency is expected in the true contingency condition, which served as

our control group.

To ensure transparency and replicability, we pre-registered the hypotheses (see Section 3.4),

alongwith the design features, on theOpen Science Framework (OSF)website at the following

link: https://osf.io/74d6g. The codes for the experiment, the raw data, and the script used for

the main analyses are available on OSF at the following link: https://osf.io/c26qa.
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4.2 Participants

Figure 4.1: Simulated power function for the critical comparison.

To determine the appropriate sample size, a QPXFS BOBMZTॷ must be conducted (see Figure

4.1). Through power analysis, we can ascertain the required sample sizeN based on fixed val-

ues for the probability of a UZQF * error (α), the probability of a UZQF ** error (β) and its com-
plement (power; 1 − β), and the effect size, which reflects the magnitude of the difference

between central tendency measures and their variability. We performed a power analysis using

the QXS package (Champely, 2020) in 3 (R Core Team, 2022). For the hypothesized effect

size, we referred to the results of a previous study by Díaz-Lago and Matute (2019a), which

reported a medium effect size (d = 0.58) for the difference in the rated strength of cause-effect

relationships between two conditions (i.e., easy-to-read font vs. hard-to-read font) in the null

contingency condition. We set the power to 0.8 to detect this medium effect size of 0.58 with

a standard α error probability of 0.05.

The result of the analysis was N = 37, with N referring to the number of participants in

each group (see the green dot in Figure 4.1). Given that there were four groups (i.e., 2 contin-

gency × 2 contrast), a total of 148 participants was necessary. With this sample size, as con-

41



firmed by a prospective design analysis using the 13%" package (Callegher et al., 2021) inR,

our UZQF M error was 1.16 and our UZQF S error was 0 1.

To further increase the statistical power of the critical comparison between the two contrast

conditions (HC vs. LC) in the null contingency condition, we decided to collect 60 partici-

pants for each of these two groups, raising the statistical power above 0.9 (see the red dot in

Figure 4.1). This result was confirmed by a retrospective design analysis with the 13%" pack-

age inR, which showed anM error of 1.04 and an S error of 0. For the two true contingency

groups (HC vs. LC), we recruited 40 participants each, targeting a total of 200 participants.

Thus, participants were randomly assigned to the four conditions in the following proportion:

3 (null contingency, LC): 3 (null contingency, HC): 2 (true contingency, LC): 2 (true contin-

gency, HC).

Participants were recruited through various advertisements on social networks and univer-

sity flyers. Those who agreed to participate had a chance to win 25 euros through a lottery,

with 6 prizes distributed randomly among those who completed the experiment.

A total of 209 participants took part in the experiment. However, data from 9 participants

were excluded based on the following B QSJPSJ exclusion criteria:

! Completing the experiment twice (5 participants).

! Reading the fictitious story in less than 10 seconds (4 participants).

! Completing the experiment in less than 180 seconds (0 participants).

! Completing the trial section in less than 160 seconds (0 participants).

! Responding to each of the two final questions in less than 2 seconds (0 participants).

The final sample consisted of 142 females and 58males, with an average age of 25.92 years

(SD = 9.59). A Pearson’s chi-square test of independence showed no significant difference in

the distribution of sexes across the four groups, χ2(3) = 3.99, p = 0.26. Given the positive

skewness in the age distribution (see Figure 4.2), a Kruskal-Wallis test was conducted to assess

age differences across groups. The test indicated no systematic differences in age across the four

groups, χ2(3) = 3.20, p = 0.36.
1TypeS error refers to the probability of obtaining a statistically significant result in the opposite direction to

the plausible one, while typeM error represents the factor by which a statistically significant effect is, on average,
exaggerated.
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Figure 4.2: Participants’ age and biological sex distribution.

4.3 Procedure

Before starting the experiment, participants read the online informed consent form approved

by the &UIJDT $PNNJUUFF GPS 1TZDIPMPHJDBM 3FTFBSDI at the6OJWFSTJUZ PG 1BEPWB 2 and then gave

their consent to participate through a response key.

Participants were automatically assigned to one of the four conditions using the 7&413
POMJOF TUVEJॶ portal (Morys-Carter, 2022). As participants started flowing through the data

collection procedure, this portal continuously self-balanced the assignment to conditions ac-

cording to the proportions indicated in Section 4.2. After assigning participants to conditions,

the program directed them to start the experiment on the 1BWMPWJB online platform (https:

//pavlovia.org), which hosted the study. The experiment was programmed from the ground

up using 1TZDIP1Z (Peirce et al., 2019), and the code was compiled in 1TZDIP+4. To ensure con-
sistency and control over the experimental conditions, participants were required to use a com-

puter to launch the experiment. The screen background was set to white. Participants were

asked three times to position themselves in a sufficiently illuminated roomwithout direct light

2Protocol number 5010, November 3rd, 2022.
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Figure 4.3: CLT structure and contrast differences.

on the screen. These reminders were provided when they received the recruitment link, in the

informed consent form, and on the first instructions screen.

The experiment consisted of a standard CLT (see Figure 4.3), using an adaptation of the al-

lergy task (Wasserman et al., 1990). The taskwaspresented in Italian language. In thefirst phase

of the experiment (see Figure 4.3 – Panel"� *OTUSVDUJPOT), a fictitious storywas presented to the
participants. Participants impersonated emergency room personnel and they were instructed

to determine if therewas a causal relationship between the presence of amedicine#BUBUSJN (i.e.,

the potential cause or cue) and the healing of the disease-JOETBZ 4ZOESPNF (i.e., the outcome).

Then, in the second phase (see Figure 4.3 – Panel #� 40 USJBMT), participants were exposed to
a succession of 40 patient records (i.e., 40 trials, ITI= 1 sec), in a random order. Each record

described one of four different scenarios (see Table 4.1), given by the possible presence or ab-

sence of the cue (i.e., UIF QBUJFOU IBE or IBE OPU UBLFO UIF NFEJDJOF UP SFDPWFS GSPN UIF EJTFBTF)
and the possible presence or absence of the outcome (i.e., UIF QBUJFOU IBE or IBE OPU SFDPWFSFE).
Through the manipulation of the frequency of the four scenarios, we created two different

contingency conditions, namely a null contingency condition, in which∆P = 0, and a true

contingency condition, in which ∆P = 0.60. The exact frequencies of the four scenarios
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/VMM DPOUJOHFODZ 5SVF DPOUJOHFODZ
B1 B2 P (X|Y ) B1 B2 P (X|Y )

A1 15 5 P (B1|A1) = 0.75 A1 15 5 P (B1|A1) = 0.75
A2 15 5 P (B1|A2) = 0.75 A2 3 17 P (B1|A2) = 0.15

∆P = 0 ∆P = 0.60

Table 4.1: Frequency of each scenario and corresponding conditional probabilities.

in each condition are reported in Table 4.1. It should be noted that, in the null contingency

condition, the probability of the presence of the outcome (i.e., P = .75) was much higher

than the probability of the absence of the outcome (i.e., P = .25). According to the results

from previous studies, this should lead to a outcome-density bias (Matute et al., 2015). Each

patient record was composed of three horizontal panels. The upper panel remained visible for

thewhole duration of the trial, and informed the participant about the presence/absence of the

cue (i.e.,5IF QBUJFOU Iॵ UBLFO UIF #BUBUSJN). Themiddle panel remained visible for the whole
duration of the trial as well, and it presented a predictive question, to maintain the attention

on the task. The participant was asked about whether the participant will heal after taking the

medicine, by clickingwith themouse on one of the two buttons. No time limits were provided

for the response. After the responsewas recorded, a third panel appeared below themiddle one,

which informed the participant about whether the patient had recovered or not. It is impor-

tant to notice that the response provided by the participant through the mouse click had no

influence on the information provided in the third panel. The three panels disappeared from

the screen after 2 seconds, and then a new patient record was presented. As in Díaz-Lago and

Matute (2019a)’ study, we avoided including any pictures of the drug and the patient, to force

the participants not to rely on shortcuts.

In the third phase of the procedure (see Figure 4.3–Panel$� 3BUJOH), participantswere asked
to judge the strength of the causal relationship between the two events (i.e., 5P XIBU FYUFOU
EP ZPV UIJOL UIBU #BUBUSJN Xॵ FFDUJWF JO IFBMJOH UIF DSJTॶ PG UIF QBUJFOUT ZPV IBWF TFFO ),
using a visual analog scale from 0 (%FOJUFMZ /PU) to 100 (%FOJUFMZ :ॶ). Once participants
clicked on the scale, a cursor appeared, and participants could drag the cursor along the entire

range between 0 and 100 to pick the exact judged discrete number. A numeric feedback was

presented under the visual scale.
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In the last phase (see Figure 4.3 – Panel%� 'JOBM RVFTUJPO), participants were asked to judge
the disfluency of the task through a single question ()PX EJDVMU IBWF ZPV GPVOE UIF SFBEJOH BD�
UJWJUZ EVSJOH UIॷ FYQFSJNFOU ), using a 7-point Likert scale (1=7FSZ &BTZ; 7=7FSZ %JDVMU) that
was similar to that used for the causality rating. We used a single item because, in this specific

domain, the application of a single question has been shown to be robust from a psychometric

standpoint and more understandable for participants with respect to multi-item scales (Graf

et al., 2018).

As for the manipulation of perceptual (dis)fluency in the HC condition, the text for the in-

structions, patients records, and causality rating was presented in blue on a white background

(HEX #000063; 17.79 contrast ratio; see the upper half of Figure 4.3), whereas in the LC con-

dition the text was presented in yellow on a white background (HEX #FFFF73; 1.07 contrast

ratio; see the lower half of Figure 4.3). In the reading difficulty rating phase, a black text on

white background (HEX #000000; 21 contrast ratio; see the fourth panel of Figure 4.3) was

used both in the HC and in the LC conditions. In each phase of the experiment an BSJBM font
was used, scaled to 0.03 height (i.e, the maximum height of any letter did not exceed 3 percent

of the height of the screen).
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5
First experiment: results

5.1 General data analysis procedure

After all 200 participants completed the experiment, we aggregated the individual data files

generated by 1TZDIP1Z for each participant into a single dataframe. We then used both 3 (R

Core Team, 2022) and +"41 (JASP Team, 2023) to conduct descriptive and inferential data

analyses, apply exclusion criteria (see Section 4.2), study the sample, evaluate the effectiveness

of the experimental manipulation, and extract the results. Graphics were produced using the

ॼQMPU� package in 3 (Wickham, 2016). Data analyses were primarily conducted within the

OVMM IZQPUIFTॷ TJHOJDBODF UFTUJOH (NHST) framework, as already implied by the presence of
the power analysis (see Section 4.2). For the critical tests in both experiment one and experi-

ment two (see Sections 5.3 and 6.6), in addition to theNHSTapproach, we employed#BZFTJBO
analyses to provide more direct evidence for eitherH1 orH0 (see the hypotheses formulated in

Section 3.4). Bayesian data analyses were also utilized in models comparison (see Section 7.2),

as the Bayesian approach offers distinct advantages in models selection.

In this chapter, wewill present the results of the first experiment, beginningwith the analysis

of the perceptual fluency data (see Section 5.2), followed by the results from the analysis of the

causality rating task (see Section 5.3).
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5.2 Manipulation check (perceptual fluency)

Figure 5.1: Subjective evaluation of reading difficulty expressed as percentages.

First, we expected the LC condition to induce a disfluency effect on participants. Perceptual

fluency was measured using both subjective and objective indices.

For the subjective measure, we considered scores from the single-item question on subjec-

tive reading difficulty (see Section 4.3), which are represented in Figure 5.1 as percentages and

Figure 5.2 as discrete distributions.

A two-way between-subjects BOBMZTॷ PG WBSJBODF (ANOVA) with factors contingency (null
vs. true) and contrast (HC vs. LC) showed a significant main effect of contrast, F (1, 196) =

184.99, p < .001, η2p = .48. Consistent with expectations, reading difficulty was rated higher

in the LC condition (M = 4.98, SD = 1.68) than in the HC condition (M = 1.96, SD =

1.46). Themain effect of contingency and the two-way interaction were not statistically signif-

icant [F (1, 196) = 0.179, p = .67, η2p = .0004; F (1, 196) = 1.704, p = .19, η2p = .004],

suggesting that contingency had no effect on perceived reading difficulty (M = 3.51, SD =

2.14 in the null contingency condition andM = 3.41, SD = 2.23 in the true contingency

condition).
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Figure 5.2: Subjective evaluation of reading difficulty expressed as discrete distributions.

For the objective measure, we considered the total time to complete the entire experimental

procedure (see Figure 5.3). Experiment time was analyzed with the same independent vari-

ables as the rated reading difficulty. The main effect of contrast was statistically significant

F (1, 196) = 4.61, p = .033, η2p = .02, due to longer experiment time in the LC condition

(M = 373.25 sec, SD = 105.68 sec) than in the HC condition (M = 341.03 sec, SD =

106.26 sec). The main effect of contingency and the two-way interaction were not statistically

significant [F (1, 196) = 1.27, p = .26, η2p = .006; F (1, 196) = 0.34, p = .56, η2p = .002],

suggesting that contingency had no effect on experiment time (M = 350.25 sec,SD = 96.26

sec in the null contingency condition andM = 367.48 sec, SD = 121.09 sec in the true con-

tingency condition).

Furthermore, although the relationship between the twomeasures of (dis)fluency (i.e., total

experiment time and subjective reading difficulty) is likely spurious, as they both depend on

the experimentalmanipulation of contrast (i.e., LC vs. HC), it is noteworthy that the objective

index and the subjective index were moderately correlated (rp = 0.20), as shown in Figure 5.4,

indicating the existence of an association between the two (dis)fluency measures.
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Figure 5.3: Experiment total time.

Figure 5.4: Correlation between time and subjective evaluation of reading difficulty.
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5.3 Causality ratings

Ourmain goal was to test if perceptual disfluency, induced by a low contrast of the written text

with the background,was able to produce the engagement of system two, leading to a reduction

in the illusion of causality induced in a null contingency scenario. The causality ratings are

represented in Figure 5.5 (the red dots on the charts indicate the means for each group).

A two-way between-subjects ANOVA with factors contingency (null vs. true) and con-

trast (HC vs. LC) showed a statistically significant main effect of contingency, F (1, 196) =

12.98, p < .001, η2p = .06. As expected, the causality ratings were larger in the true contin-

gency condition (M = 69.95, SD = 15.82) than in the null contingency condition (M =

60.82, SD = 18.62). However, it is worth highlighting the large mean value observed in the

null contingency condition, which confirms the presence of a robust illusion of causality. The

main effect of contrast was not statistically significant,F (1, 196) = 0.86, p = .36, η2p = .004,

as themeans of the causality ratings in theHC and the LC conditionwere similar to each other

(HC:M = 63.32, SD = 18.25; LC:M = 65.62, SD = 17.93). Crucially, the two-way

interaction was not statistically significant, F (1, 196) = 1.14, p = .29, η2p = .005, which is

at odds with the hypothesis that perceptual disfluency induced by low contrast can lead to a

decrease in the magnitude of the illusion of causality in the null contingency scenario.

In line with the pre-registered analysis plan (see Section 4.1), we also conducted a classic POF�
UBJMFE JOEFQFOEFOU TBNQMॶ U�UFTU and aone-sided#BZFTJBO U�UFTU to test if, in thenull contingency
condition, the causality ratings in the HC condition were larger than the causality ratings in

the LC condition. The results of the classic t-test were not statistically significant t(118) =

−1.32, p = .90, d = −0.24. It is worth noting that the difference is in a direction opposite

to that hypothesized, as the causality ratings in the HC condition (M = 58.58, SD = 18.51)

were slightly smaller than those in the LC condition (M = 63.05, SD = 18.64).

The Bayesian t-test was performed with both R (R Core Team, 2022) and +"41 (JASP

Team, 2023). The results and graphics yielded from +"41 software, as the main results are

redundant with the ones yielded by R, will not be presented, but they can be found on OSF

(see Section 4.1). InRwe performed the Bayesian t-test using the #BZॶ'BDUPS package (Morey

& Rouder, 2022).
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We used a function to perform a so-called +;4 t-test (Morey & Rouder, 2022), where the

standardized effect size1 under the alternative hypothesis (H1) has been characterized by a trun-

cated half-Cauchy prior distribution (see the dotted blue line in Figure 5.6) with a standard

width parameter of
√
2/2 (i.e., we assumed a probability of .50 that the effect size lay between

0 and∼ −0.707). The standardized effect size under the null hypothesis (H0) has been char-

acterized by a point-null prior spike distribution.

The computation of #BZॶ 'BDUPS (BF ) through a .BSLPW $IBJO .POUF $BSMP (.$.$ )
procedure showed that the observed data were over 11 timesmore likely under the null hypoth-

esis than under the alternative hypothesis (BF01 = 11.07), indicating strong evidence for the

null hypothesis (see the moon chart in Figure 5.6, which was inspired by the type of graphics

produced by +"41; JASP Team, 2023). The posterior distribution (see the red curve in Figure
5.6) was simulated through a .$.$ method (105 iterations) using the alternative model as

a prior. The posterior distribution for the alternative hypothesis was highly condensed near

0, in line with the conclusion of an absence of a significative disfluency effect (Mdn = 0.06,

CI = [−0.265;−0.002], see the red box in Figure 5.6).

Basedon these results, we can conclude that increasedperceptual disfluency, obtained through

the presentation of the CLT experiment with LC written stimuli, did not elicit a reduction in

the magnitude of the illusion of causality.

14UBOEBSEJ[FE FFDU TJ[F:

δ =
µ1 − µ2

σ
(5.1)

Where µ1 is the mean of the first group, µ2 is the mean of the second group, and σ is the standard deviation.
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Figure 5.5: Causality ratings.

Figure 5.6: Prior and posterior for the alternative hypothesis.
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6
Second experiment: an extension

6.1 Building upon the first experiment

We designed our first experiment as a generalization attempt of the findings reported by Díaz-

Lago and Matute (2019a). The primary objective was to provide empirical support for the

illusion-reduction hypothesis (see Section 3.4) through a targeted manipulation of the percep-

tual attributes of stimuli within a CLT paradigm. In particular, our first experiment sought to

investigate whether altering perceptual fluency via contrast manipulation could influence the

strengthof the illusion. While the experiment successfully inducedvariations in task (dis)fluency

through contrast manipulation (see Section 5.2), the anticipated effects on the magnitude of

the illusion did not materialize (see Section 5.3).

The null results suggest a nuanced relationship between fluency manipulations and the cog-

nitive processes underlying the illusion. Not all fluency manipulations, it appears, are capable

of modulating the illusion’s strength. This outcome underscores the necessity of a critical re-

assessment of the broader hypothesis that cognitive disfluency invariably triggers a shift towards

a more deliberative and effortful cognitive processing mode (i.e., system two).
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6.2 Conditions

Figure 6.1: Comparisons between previous and latter conditions.

To achieve amore nuanced understanding of how perceptual disfluency influences causality

bias, we designed experiment two to test whether the original effect observed byDíaz-Lago and

Matute (2019a) could be replicated in a similar experimental setting. Our aim was to further

explore the impact of font type on the magnitude of causality bias by conceptually replicating

their previous font-manipulation study.

Based on the results from the reading difficulty question discussed in Section 5.2, it is im-

portant to note that both the HC true contingency condition and the HC null contingency

condition from experiment one were characterized by the use of a font that was easy-to-read

(see Figure 6.1 – Panel "� )$ DPOEJUJPOT ԓ FBTZ�UP�SFBE GPOU). Specifically, in these conditions
that employed a fluent font, participants generally rated the task on a 7-point Likert scale as

reasonably easy, with a mean difficulty rating of 1.96 (SD = 1.46; see Figures 5.1 and 5.2).

For experiment two, we expanded upon this setup (i.e., the two HC conditions) by intro-

ducing two new participant groups who were presented with the experimental materials in a

hard-to-read font (i.e., an VQQFSDBTF CSVTI TDSJQU .5, hereafter referred to as CSVTI; see Fig-
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ure 6.1 – Panel $� )$ DPOEJUJPOT ԓ IBSE�UP�SFBE GPOU). Thus, we conducted a comparison
between the already collected data from the HC conditions and the fresh data from two new

groups of participants. These new groups were exposed to either a true contingency condition

(∆P = 0.60) or a null contingency condition (∆P = 0), as in the previous experiment.

The experimental design for experiment two was a 2 (GPOU: BSJBM, easy-to-read vs. CSVTI,
hard-to-read) × 2 (DPOUJOHFODZ: USVF DPOUJOHFODZ vs. OVMM DPOUJOHFODZ) between-subjects factorial
design. The task presented in the brush font can be seen in Figure 6.1 (Panel $� )$ DPOEJUJPOT
ԓ IBSE�UP�SFBE GPOU). Notice the difference with the LC conditions that we created in our first

experiment, which are shown in Figure 6.1 (Panel #� -$ DPOEJUJPOT ԓ FBTZ�UP�SFBE GPOU).

If perceptual disfluency induced by the use of a hard-to-read font reduces the strength of the

causality illusion, we hypothesize, in the same fashion as our first hypothesis (see Section 3.4),

that causality ratings will be lower in the disfluent condition compared to the fluent condition,

specificallywithin thenull contingency condition. Conversely, no significant effect of font type

is expected in the true contingency condition, which, again, constitutes our control group.

It is important to clarify a technical detail: the brush font used in experiment two differs

from theNJTUSBM font employed inDíaz-Lago andMatute (2019a)’ study (see Figure 6.1 –Panel

%� IBSE�UP�SFBE GPOU JO UIF PSJHJOBM TUVEZ). While visually similar, brushwas chosen for its prac-

tical suitability in online studies, as it does not require participants to download and install the

font on their devices. More information about this font can be found on the8�TDIPPMTwebsite
(https://www.w3schools.com/css/cssfontwebsafe.asp). The brush font is designed to mimic

handwriting, making it visually comparable to mistral. Moreover, it has been previously uti-

lized as a hard-to-read font to induce cognitive bias reduction (e.g., Song & Schwarz, 2008).

Based on empirical observations, we opted for an uppercase variant of the brush font to en-

sure increased reading difficulty in the online task. To maintain experimental rigor, we strictly

adhered to the procedures established in experiment one, ensuring consistency across both ex-

periments to facilitate direct comparisons between their results.

We pre-registered our new hypotheses and the methodological details for experiment two

on OSF at the following link: https://osf.io/4tdcy7. Additionally, the experimental code, raw

data, and scripts used for the primary analyses are available on OSF at the same link used for

the previous experiment: https://osf.io/c26qa.
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6.3 Participants

Figure 6.2: Participants’ age and biological sex distribution.

The sample size for experiment two was determined using the same criteria as those applied

in experiment one (see Section 4.2). In the previous experiment, 100 participants were tested

under the easy-to-read arial font condition (i.e., HC condition) – with 60 participants in the

null contingency condition and 40 participants in the true contingency condition. To main-

tain consistency and comparability, we recruited for the second experiment a new sample of

100 participants, who were randomly assigned to either the null contingency condition (60

participants) or the true contingency condition (40 participants). Indeed, the critical compari-

son maintained the same power achieved for experiment one (see Section 4.2).

Participants, all of whomwere native Italian speakers, were recruited via the online platform

1SPMJD (https://www.prolific.co/). Our sample comprised 60 females and 40males, with an
average age of 32.19 years (SD = 10.67). No participants were excluded from the analysis,

adhering to the same exclusion criteria applied in experiment one (see Section 4.2).

To assess demographic balance across the experimental groups (see Figure 6.2), a Pearson’s

chi-square test of independencewas conducted. The results indicated no significant differences
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in the distribution of biological sex across the four experimental groups, χ2(3) = 6.78, p =

0.08. However, a Kruskal-Wallis test revealed significant age differences between the groups,

χ2(3) = 42.27, p < 0.001, with the new sample’s average age being notably higher than that

of participants in the HC conditions of experiment one (M = 25.21 years, SD = 8.21). De-

spite these demographic differences, previous research on the illusion of causality consistently

shows that this cognitive biasmanifests independently of confounding factors (see Section 3.1).

Moreover, no substantial evidence in the literature suggests a demographic distinction in the

occurrence of the causality illusion. To confirm this, we combined data from all 300 partici-

pants across both experiments and conducted a#BZॶ GBDUPS HFOFSBM MJOFBS NPEFM BOBMZTॷ using
the #BZॶ'BDUPS 3 package (Morey & Rouder, 2022). This analysis aimed to evaluate the po-

tential influence of age and sex on causality judgments. The results supported the null model,

which had at least 7.37 times greater support compared to alternativemodels that included age,

sex, or both as predictors. We included sex as a predictor because the new sample exhibited a

more balanced distribution of sexes (60 females and 40males) compared to theHC conditions

of experiment one (70 females and 30males), although the Q�WBMVF for the chi-square test was
slightly above the threshold of statistical significance. These findings suggest that despite the

demographic variations between the samples, the comparison between the hard-to-read and

easy-to-read font conditions remains methodologically robust. The detailed results can be ac-

cessed on OSF at the following link: https://osf.io/c26qa.

6.4 Procedure

The procedural framework of experiment two remained largely consistent with that of experi-

ment one, with the exception of few specificmodifications. In this experiment, all instructions,

patient records, and causality rating taskswere presented in ahard-to-read font (i.e., brush)with

a blue color (HEX:#000063; 0.03 height; 17.79 contrast ratio). Participants recruited on1SP�
MJD platform were subsequently redirected to the 1BWMPWJB website to initiate the experiment.
Before beginning the experiment, participants were required to review and accept the same

online consent form as presented in Section 4.3.

In the following sections, we will present the results of the second experiment, beginning

with the analysis of the perceptual fluency data (see Section 6.5), followed by the results from

the analysis of the causality rating task (see Section 6.6).
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6.5 Manipulation check (perceptual fluency)

Figure 6.3: Subjective evaluation of reading difficulty expressed as percentages.

As for the subjective measure of disfluency, we considered scores from the single-item ques-

tion on subjective reading difficulty (see Section 4.3), which are represented in Figure 6.3 as

percentages and in Figure 6.4 as discrete distributions.

A two-waybetween-subjectsANOVAwith factors contingency (null vs. true) and font (arial

vs. brush) showed a significant main effect of font, F (1, 196) = 99.84, p < .001, η2p =

.34. As expected, reading difficulty was rated higher with the brush font (M = 4.48, SD =

2.07) than with the arial font (M = 1.96, SD = 1.46). The main effect of contingency and

the two-way interaction were not statistically significant [F (1, 196) = 0.03, p = .85, η2p =

.0002; F (1, 196) = 2.95, p = .08, η2p = .014], suggesting that contingency had no effect on

perceived reading difficulty (M = 3.20, SD = 2.14 in the null contingency condition and

M = 3.25, SD = 2.27 in the true contingency condition).

For the objective measure, we considered the total time to complete the entire experimental

procedure (see Figure 6.5). Experiment timewas analyzedwith the same independent variables

as the rated reading difficulty. Themain effect of font was statistically significant,F (1, 196) =
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Figure 6.4: Subjective evaluation of reading difficulty expressed as discrete distributions.

4.97, p = .03, η2p = .02, due to longer experiment time in the brush condition (M = 376.81

sec, SD = 122.37 sec) than in the arial condition (M = 341.03 sec, SD = 106.26 sec).

The main effect of contingency and the two-way interaction were not statistically significant

[F (1, 196) = 2.13, p = .15, η2p = .01; F (1, 196) = 3.86, p = .051, η2p = .02], suggesting

that contingency had no effect on experiment time (M = 344.58 sec, SD = 97.23 sec in the

true contingency condition andM = 368.47 sec, SD = 126.03 sec in the null contingency

condition). It is worth noting that the outlier shown in the left panel of Figure 6.5 (experiment

time longer than 900 sec) was associated with an acceptable Cook’s distance (0.11), and the

main results did not change even after removing that outlier from the dataset.

Furthermore, the two measures of (dis)fluency (i.e., total experiment time and subjective

reading difficulty) were moderately correlated (rp = 0.16), as shown in Figure 6.6, indicating,

again, the existence of an association between the two (dis)fluency measures.
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Figure 6.5: Experiment total time.

Figure 6.6: Correlation between time and subjective evaluation of reading difficulty.
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6.6 Causality ratings

The causality ratings are represented in Figure 6.7 (the red dots on the charts indicate the

means for each group). A two-way between-subjects ANOVA with factors contingency (null

vs. true) and font (arial vs. brush) showed a statistically significant main effect of contingency,

F (1, 196) = 30.11, p < .001, η2p = .13. As expected, the causality ratings were larger in

the true contingency condition (M = 72.74, SD = 16.72) than in the null contingency

condition (M = 58.13, SD = 19.44). The main effect of font was not statistically signif-

icant, F (1, 196) = 0.25, p = .61, η2p = .001, as the means of the causality ratings in the

brush and arial font conditions were similar to each other (brush: M = 64.63, SD = 21.14;

arial: M = 63.32, SD = 18.25). The two-way interaction was not statistically significant,

F (1, 196) = 1.08, p = .30, η2p = .005, which is at odds with the hypothesis that perceptual

disfluency induced by a hard-to-read font can lead to a decrease in the illusion of causality.

In line with the pre-registered analysis plan, we also conducted a classic one-tailed indepen-

dent samples t-test and a one-sided Bayesian t-test to test if, in the null contingency condition,

the causality ratings in the brush condition were smaller than the causality ratings in the arial

condition. The results of the t-test showed that the causality ratings associated with the disflu-

ent brush font (M = 57.68,SD = 20.48) were not significantly smaller than those associated

with the fluent arial font (M = 58.58, SD = 18.51), t(118) = 0.25, p = .40, d = .05.

We performed the Bayesian t-test using the #BZॶ'BDUPS package (Morey & Rouder, 2022)

in R, in the same manner as shown in Section 5.3, using a function to perform the +;4 t-

test using the same alternative and null priors as descibed in Section 5.3. The computation

of BF through a .$.$ procedure showed that the observed data were over 4 times more

likely under the null hypothesis than under the alternative hypothesis (BF01 = 4.20), indicat-

ing moderate evidence for the null hypothesis (see the moon chart in Figure 6.8). The poste-

rior distribution for the alternative hypothesis (see the red curve in Figure 6.8) was simulated

through a .$.$ method (105 iterations). The posterior distribution was moderately con-

densed near 0, in linewith the conclusion of an absence of a significative effect (Mdn = −0.13,

CI = [−0.418;−0.006], see the red box in Figure 5.6). Based on these results, we can con-

clude that increased perceptual disfluency, obtained through the presentation of the CLT ex-

periment with a hard-to-read font, did not elicit a reduction in the the illusion of causality.
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Figure 6.7: Causality ratings.

Figure 6.8: Prior and posterior for the alternative hypothesis.
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7
Discussion of results

7.1 Evidence of absence

We designed our second experiment as a replication attempt of the findings reported by Díaz-

Lago andMatute (2019a). Given that our first experiment did not provide evidence supporting

the hypothesis that perceptual disfluency could diminish the illusion of causality (see Section

5.3), we sought to investigate whether altering perceptual fluency through themanipulation of

font difficulty – using a hard-to-read font – could exert an influence on the magnitude of the

illusion of causality. The results from our second experiment indicate that while the manipula-

tion of font successfully induced variations in task (dis)fluency (see Section 6.5), this alteration

did not translate intomeasurable effects on the strength of the illusion of causality (see Section

6.6). This finding directly contrastswith the expectations set by the original study ofDíaz-Lago

andMatute (2019a).

In the following sections, we will present a comprehensive analysis of the combined data

from both of our experiments (see Section 7.2). Subsequently, we will engage in a thorough

discussion of our hypotheses in light of these results (see Section 7.3). This discussion will

explore possible explanations for the lack of observed effects, proposing directions for future

studies and research.
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7.2 Models comparison

Figure 7.1: Relationship between fluency, contingency, and rated causality.

To gain a deeper understanding of the potential influence of perceptual (dis)fluency on

causality judgments, we conducted a comprehensive analysis bymerging the datasets fromboth

experiments, resulting in a combined sample size ofN = 300. This larger dataset allowed us to

rigorously assess the relationship between perceptual fluency (i.e., fluency vs. font disfluency

vs. contrast disfluency), contingency (i.e., true vs. null), and the perceived strength of causality.

Figure 7.1 offers a visual summary of the interaction between fluency and contingency in

shaping participants’ causal judgments. In particular, the dot plot shows the judged strength

of causality for the six experimental groups. Each dot represents themean of the corresponding

group, and each line represents the standard deviation of the corresponding group. The low-

contrast boxes show the overall means (central line) and standard deviations (ends of the boxes)

for the null contingency and the true contingency conditions.

We employed four distinct linear models to systematically evaluate the relationship between

the dependent variable – judged strength of causality – and the key predictors: contingency

(i.e., model 1;M1), fluency (i.e., model 2;M2), contingency and fluency without interaction
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(i.e., model 3; M3), and contingency and fluency with the interaction effect (i.e., model 4;

M4). In these models, fluency was treated as a categorical variable with three distinct levels, as

depicted in the legend of Figure 7.1.

Toquantify the relative evidence for eachmodel, weutilized theBF , calculated via a.$.$
algorithmic approach, implemented in the BayesFactor package (Morey & Rouder, 2022).

Remarkably, the analysis revealed that M1, which excluded fluency as a predictor, demon-

strated the strongest explanatory power. Specifically, this model was found to be 19 to 3× 105

times more likely than the models that incorporated fluency as a predictor. This suggests that

the inclusion of fluency alongside contingency did not enhance the model’s ability to explain

the data, thereby weakening the case for an interaction effect between fluency and contingency.

To corroborate these findings, we also calculated"LBJLF XFJHIUT (using the"LBJLF JOGPSNBUJPO
DSJUFSJPO,"*$ ) and #BZFTJBO XFJHIUT (using the #BZFTJBO JOGPSNBUJPO DSJUFSJPO, #*$ ) with the
.V.*O package (Bartoń, 2023). These additional analyses consistently supported the dom-
inance ofM1 within the evidence, reinforcing the conclusion that this simple model, which

considers only contingency without fluency, provides the most robust explanation for the ob-

served data.

.PEFM 1SFEJDUPS	T
 BF10 "*$ XFJHIU #*$ XFJHIU
M1 Contingency 156163.60 0.69 0.99
M2 Fluency 0.05 < 0.01 < 0.01
M3 Contingency + fluency 7815.36 0.14 < 0.01
M4 Contingency × fluency (interaction) 3690.19 0.17 < 0.01

Table 7.1: Models’ descriptions and associated indices.

Table 7.1 presents a summary of themodels comparison, highlighting the superiority ofM1.

Figure 7.2 offers two heat maps (one for the AIC weights and one for the BIC weights) with

a direct one-on-one comparison between every combination of two models, including M0,

which constitutes the null model without predictor(s). The weight of a certainmodel has been

divided by the weight of another model, and the result has been log-transformed. On the X-

axis are represented the models at the numerator, whereas on the Y-axis are represented the

models at the denominator. Each cell value can be interpreted as the relative evidence in favor

(highlighted in red) or against (highlighted in blue) themodel placed on theX-axis with respect

to the model on the Y-axis (this representation was inspired by the manual by Pastore, 2015).
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Figure 7.2: Models’ (log-)relative evidences.

7.3 Interpretation of results

Our study found null results, supporting the notion that perceptual disfluency does not mod-

ulate the illusion of causality, at least in cases where the disfluency manipulation reaches a sig-

nificantmagnitude (see Subsection 7.3.1). These findings also lend support to the broader con-

clusion that the effects of processing fluency on cognition remain ambiguous, as highlighted

by Meyer et al. (2015). Importantly, the sample sizes were determined via an B QSJPSJ power
analysis (see Section 4.2), ensuring that the null results cannot be attributed to a lack of statis-

tical power. Furthermore, the absence of effects cannot be ascribed to ineffective experimental

manipulations, as both subjective and objective measures confirmed that LC and hard-to-read

font conditions were associated with reduced processing fluency compared toHC and easy-to-

read font conditions (see Sections 5.2 and 6.5).

In the following Subsections (7.3.1 and 7.3.2), we propose two potential explanations for

the null results observed in our study. These hypotheses are tentative and necessitate further

empirical investigation to establish their validity.
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7.3.1 U-shaped relationship hypothesis

Figure 7.3: Subjective difficulty and causality ratings in null contingency conditions.

Our first hypothesis suggests that the disruption of perceptual fluency may provoke the en-

gagement of a more deliberative and effortful mode of thinking (i.e., system two processes).

However, we posit that the relationship between processing fluency and the illusion of causal-

ity might follow a non-linear, U-shaped function. In this model, moderate disfluency could

enhance performance by engaging system two, but excessive disfluency might overload and sat-

urate the system’s capacities, thereby reducing or masking the engagement of system two.

If our hypothesis is accurate, it implies that the level of disfluency induced by LC and hard-

to-read font conditions in our study may have exceeded the optimal threshold for system two

engagement. Preliminary support for this hypothesis comes from comparing the disfluency

measures in our experiments with those in the study by Díaz-Lago and Matute (2019a). In

their study, fluency was assessed using three 7-point Likert scales that evaluated the ease of

reading, task fluency, and perceived task duration. While no significant effects were found for

perceived task duration, font type significantly influenced the ease of reading and task fluency,

with a mean difference of approximately 1.4 points between the two font types on the ease
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of reading scale1. In contrast, our experiments observed mean differences of approximately

3 points (experiment one) and 2.5 points (experiment two) in reading difficulty between the

disfluent and fluent conditions. These observations align with our proposed hypothesis, sug-

gesting that Díaz-Lago and Matute (2019a) may have observed a mitigated causality bias due

to the introduction of low tomoderate levels of disfluency. Conversely, our experiments failed

to replicate this bias attenuation, possibly due to the imposition of higher levels of disfluency.

While this comparison should be approached with caution, the use of a 7-point Likert scale in

both studies facilitates such an analysis.

Beyond these qualitative observations, a more rigorous test of the hypothesized U-shaped

relationship between processing fluency and the illusion of causality is enabled by the avail-

ability of materials and raw data from the study by Díaz-Lago and Matute (2019a) on OSF

(https://osf.io/vrukz/). We merged data from our experiments with data from their original

study (see Figure 7.3), focusing on the relationship between causality ratings and perceived

task difficulty in null contingency conditions2. We constructed two statistical models: one

with perceived task difficulty as a linear predictor, and the other with perceived task difficulty

as a quadratic predictor. To evaluate the strength of evidence supporting each model, we com-

puted the#' using a.$.$ procedure via the#BZॶ'BDUPS package (Morey&Rouder, 2022).

The results indicated that the null model (see the red line on Figure 7.3) was 9.66 times more

likely than the linear model and 4.33 times more likely than the quadratic model, countering

the hypothesis of a linear or non-linear relationship between perceived difficulty and causal-

ity judgments. It is crucial to note that the experiments considered here were not specifically

designed to examine a U-shaped relationship between task difficulty perception and causality

ratings. Furthermore, the original studybyDíaz-Lago andMatute (2019a) had a smaller sample

size (63 participants) compared to the larger sample sizes in our two experiments (180 partici-

pants). As a result, a small portion of ourmerged data was exposed to a less disfluent condition

relative to the larger and complementary subset. Therefore, these results should be interpreted

with caution. Future studies should address this hypothesis precisely.

1In Díaz-Lago andMatute (2019a)’ study, the easiness of reading was found to be higher for the easy-to-read
font (M = 5.72,SD = 1.11 in the null contingency condition;M = 5.62,SD = 1.12 in the true contingency
condition) with respect to the hard-to-read font (M = 4.35, SD = 1.20 in the null contingency condition;
M = 4.28, SD = 1.08 in the true contingency condition).

2The FBTJOFTT PG SFBEJOH item (7-point Likert scale) from the study byDíaz-Lago andMatute (2019a) has been
inverted in order to express the perceived difficulty of the task instead of the perceived easiness. This makes it
directly comparable with the ratings from our two experiments.
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7.3.2 Differential activation hypothesis

Our second hypothesis builds upon the absence of any discernible and systematic connection

between perceptual fluency and causality bias, as evidenced by the outcomes of our two exper-

iments. The results from our study and Díaz-Lago and Matute (2019a)’ study can be inter-

preted as conflicting evidence, wherein a standard NHST framework could be applied: in our

study, the probability of at least one of two critical statistical comparisons correctly rejecting

the null hypothesis – thereby detecting a significative effect, if present, given a hypothesized

effect size of 0.58Cohen’s E – was greater than 99%. Conversely, the results obtained by Díaz-

Lago andMatute (2019a) could represent a false positive with a standard α probability of 5%,

making our findings more likely from a statistical standpoint.

This hypothesis also considers the potential influence of the FLE (see Section 3.2) on the

illusion of causality (Díaz-Lago&Matute, 2019b). Although the literature on FLE remains in-

conclusive in explaining this phenomenon (Circi et al., 2021), many bilingual cognitivemodels

emphasize the role of cognitive control mechanisms (Schwieter & Ferreira, 2016). We hypoth-

esize that not all types of processing disfluency are equally effective in activating system two

processing. It is possible that system two activation is more closely linked to high-order lexi-

cal and semantic processes involved in processing a disfluent FL, while remaining unaffected

by manipulations of superficial perceptual features such as contrast or font type. This may ex-

plainwhypresenting theCLT in a disfluent FL reduces causality bias, while presenting theCLT

in a hard-to-read format does not. This hypothesis stands in contrast to the first hypothesis (see

Section 3.4) and the findings ofDíaz-Lago andMatute (2019a), as it suggests thatmanipulating

the perceptual features of information may not reduce the causality bias.

7.3.3 Conclusion

In conclusion, fluency serves as a versatile construct, playing a key role in gauging the perceived

difficulty of a task, which is closely tied to the cognitive load across various processes. How-

ever, the results from our two experiments raise doubts about the all-encompassing explana-

tory power of the fluency construct. These findings highlight the need for a more in-depth

and nuanced examination of the cognitive mechanisms that influence cognitive biases. Future

research should strive to pinpoint, with greater accuracy, the specific manipulations of PF that

can effectively reduce the illusion of causality.
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Appendix

Chapman and Robbins (1990) demonstrated that when a single eventA and a single eventB

are involved, the RWM (see Subsection 2.6.3) can be reduced to the∆P rule (see Section 2.4).

This demonstration relies on two key assumptions:

! The contextX is present during every trial.

! Learning continues until there is no more discrepancy between the actual and expected

outcomes (i.e., until∆VA(k) converges to 0).

TheRWMupdates the associative strengthVA(k) for each eventA (and contextX) based on

the RWM error-correction rule (see Equation 2.17) expressed in Subsection 2.6.3. In a typical

contingency judgment experiment involving one eventA and a contextX , there are four types

of trials, corresponding to the four cells a, b, c, and d, of the 2 × 2 Table 2.1. The RWM

equations for each trial type are as follows:

For a trials

∆VX = αXβ(1− (VX + VA))

∆VA = αAβ(1− (VX + VA))
(1)

For b trials

∆VX = αXβ(0− (VX + VA))

∆VA = αAβ(0− (VX + VA))
(2)

For c trials

∆VX = αXβ(1− VX) (3)

For d trials

∆VX = αXβ(0− VX) (4)
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Thus, for each trial type one equation is constructed for both eventA and contextX present

on that trial. The value of λ is set to 1 on trials with event B present and is set to 0 on trials

with event B absent. The associative strength VA is updated during a and b trials, while VX

is updated during all four types of trials. Thus, for any particular block of trials, the average

change inVA isweightedby the relative frequencies ofa and b trial types, and the average change

in VX is weighted by the relative frequencies of each trial type:

Mean∆VA = αAβ [a(1− (VX + VA)) + b(0− (VX + VA))] (5)

Mean∆VX = αXβ [a (1− (VX + VA)) + b (0− (VX + VA))+

+ c (1− VX) + d (0− VX)]
(6)

Simplifying:

Mean∆VA

αAβ
= a− VA(a+ b)− VX(a+ b) (7)

Mean∆VX

αXβ
= a+ c− VA(a+ b)− VX(a+ b+ c+ d) (8)

Learning continues until Equations 7 and 8 stabilize at zero. VA and VX become constants:

although they may fluctuate from trial to trial, their means will maintain a constant value over

many blocks of trials. We can set Equation 8 equal to zero and solve for VX :

VX =
a+ c− VA(a+ b)

a+ b+ c+ d
(9)

Setting Equation 7 equal to zero and substituting VX from Equation 9, we get:

0 = a− VA(a+ b)− (a+ b) [a+ c− VA(a+ b)]

a+ b+ c+ d
(10)

Solving Equation 10 for VA, Chapman and Robbins (1990) found that VA yields the∆P

index:

VA =
a

(a+ b)
− c

(c+ d)
= ∆P (11)
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* XPVME MJLF UP FYUFOE NZ HSBUJUVEF UP NZ 4VQFSWJTPS 1SPGFTTPS .JDIFMF 7JDPWBSP GPS Iॷ TVQ�
QPSU HVJEBODF BOE EFEJDBUJPO UISPVHIPVU NZ BDBEFNJD KPVSOFZ� )ॷ DPNNJUNFOU UP JNQSPWJOH
UIF RVBMJUZ PG UIॷ XPSL Iॵ CFFO JOWBMVBCMF� * BN BMTP EFFQMZ UIBOLGVM UP 1SPGFTTPS .BTTJNP
/VDDJ BOE 1SPGFTTPS "OESFB 4QPUP GPS UIFJS JOTJHIUGVM GFFECBDL BOE DPOUJOVPॸ FODPVSBHFNFOU
EVSJOH NZ .BTUFSԙT EFHSFF� .Z TJODFSF BQQSFDJBUJPO HPॶ UP 1SPGFTTPS .BTTJNJMJBOP 1BTUPSF GPS
Iॷ FYQFSU HVJEBODF JO IPOJOH NZ TLJMMT JO EBUB BOBMZTॷ�

" TQFDJBM UIBOLT UP NZ QBSFOUT 4BCSJOB BOE &NJMJP GPS UIFJS MPWF QBUJFODF BOE VOXBWFSJOH
CFMJFG JO NZ BCJMJUJॶ XIJDI IBWF CFFO GVOEBNFOUBM UP NZ BDBEFNJD BOE QFSTPOBM EFWFMPQNFOU� *
BN BMTP QSPGPVOEMZ HSBUFGVM UP NZ BOD©F &MFPOPSB GPS IFS TUFBEGBTU TVQQPSU BOE FODPVSBHFNFOU
UISPVHIPVU UIॷ DIBMMFOHJOH ZFU SFXBSEJOH KPVSOFZ� )FS VOEFSTUBOEJOH BOE GBJUI JO NF IBWF
CFFO USFNFOEPॸ TPVSDॶ PG TUSFOHUI BOE NPUJWBUJPO� 'JOBMMZ * XJTI UP FYQSFTT NZ EFFQ UIBOLT
UP NZ GSJFOET GPS UIFJS DBNBSBEFSJF BOE TVQQPSU� 5IFJS QSFTFODF Iॵ NBEF UIॷ KPVSOFZ NPSF
FOKPZBCMF BOE MFTT TPMJUBSZ�
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