UNIVERSITA DEGLI STUDI DI PADOVA

DEPARTMENT OF GENERAL PSYCHOLOGY

Master’s Degree Course in Applied Cognitive Psychology

MASTER’S THESIS

The Impact of Perceptual (Dis)fluency on Causality

Heuristics in an Associative Learnin g Pézmdz'gm

L’Impatto della (Dis)fluenza Percettiva sulle Euristiche di
Causalita in un Paradigma di Apprendimento Associativo

SUPERVISOR: CANDIDATE:
Michele Vicovaro Stefano Dalla Bona
University of Padua Student ID: 2017380

Academic Year 2023 — 2024






«LET THE SUN SHINE ON, BEHIND ME, THEN!

THE WATERFALL THAT SPLITS THE CLIFFS’ BR OAD EDGE,

I GAZE AT WITH A GROWING PLEASURE, WHEN

A THOUSAND TORRENTS PLUNGE FROM LEDGE TO LEDGE,
AND STILL A THOUSAND MORE POUR DOWN THAT STAIR,
SPRAYING THE BRIGHT FOAM SKYWARDS FROM THEIR BEDS.
AND IN LONE SPLENDOUR, THROUGH THE TUMULT THERE,
THE RAINBOW'S ARCH OF COLOUR, BENDING BRIGHTLY,

IS CLEARLY MARKED, AND THEN DISSOLVED IN AIR,
AROUND IT THE COOL SHOWERS, FALLING LIGHTLY.
THERE THE EFFORTS OF MANKIND THEY MIRROR.

REFLECT ON IT, YOU'LL UNDERSTAND PRECISELY:

WE LIVE OUR LIFE AMONGST REFRACTED COLOUR.»

— JOHANN W OLFGANG VON G OETHE, FAUST, 1832.






Abstract

When people face challenging mental tasks, they tend to become more attentive and engage in
a more deliberate and careful type of reasoning, known as system rwo. This mode of thinking
can reduce dependence on the intuitive and effortless kind of reasoning, known as system one,
which is prone to cognitive biases. One such bias is the illusion of causality, where individu-
als mistakenly perceive a causal relationship between unrelated events in associative learning
contexts. Diaz-Lago and Matute (2019a) found that a superficial perceptual feature, such as a
difficult-to-read font, can weaken the strength of this illusion.

Our study sought to explore whether perceptual disfluency — making something harder to
perceive — could similarly reduce the illusion’s strength across different conditions. In our first
experiment, we investigated whether changing the contrast between text and background in a
contingency learning task would affect the illusion of causality. Although we successfully cre-
ated conditions of fluency and disfluency in a 200-participant online experiment, the results
showed no effect of contrast on the strength of the illusion. Following this null result, our sec-
ond experiment, with 100 participants, focused on manipulating font type to test if we could
replicate the findings of Diaz-Lago and Matute (2019a). Contrary to their results, we found
that different font types had no significant impact on the illusion’s strength, even though this
manipulation also created varying levels of task fluency and disfluency. These findings suggest
that not all forms of cognitive disfluency can influence biases in the same way. They empha-
size the need to reevaluate and refine our understanding of how (dis)fluency affects cognitive
processes and biases.

This thesis originates from a master’s internship dedicated to the programming and execu-
tion of an experiment on the causality heuristic. This effort culminated in a peer-reviewed
international journal publication (Dalla Bona & Vicovaro, 2024), which can be accessed via

the following link:

https://www.researchgate.net/publication/376262740_EXPRESS_Does_perceptual _disfluency_

affect_the_illusion_of_causality


https://www.researchgate.net/publication/376262740_EXPRESS_Does_perceptual_disfluency_affect_the_illusion_of_causality
https://www.researchgate.net/publication/376262740_EXPRESS_Does_perceptual_disfluency_affect_the_illusion_of_causality
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A higher point of view on biases

1.1 COGNITIVE BIASES AND HEURISTICS

The term cognitive illusion (or cognitive bias) encompasses a broad spectrum of phenomena that
collectively illustrate deviations in thinking, judgment, and memory from an objectively correct
standard. Typically, biases are studied through experiments in which participants are assigned
specific tasks, and deviations in their judgments from an intersubjectively shared mathematical

or logical baseline are observed as systematic patterns (Haselton et al,, 2015).

Interest in the field of cognitive biases can be traced back to the early 1970s (Tversky & Kah-
neman, 1996), with the introduction of a research program on judgment under uncertainty
(Tversky & Kahneman, 1974). Over the years, some authors have endeavored to identify and
catalog all cognitive biases (e.g., Benson, 2016), while others have asserted that an accurate and

unified definition of cognitive bias is unattainable (Caverni et al., 1990).

As it has been argued (Kahneman & Frederick, 2002), biases emerge from our tendency
to rely on heuristics — defined as sets of rules of thumb that can expedite decision-making in
an efficient manner. Heuristics can be functionally interpreted in two ways: as evidence of
distorted perception and flawed reasoning, resulting in biases, or as a set of processes that the

human mind employs to solve problems, which are functionally effective in decision-making



processes most of the time. These two perspectives can both hold true simultaneously. Quick
and intuitive thinking is necessary to reduce the number of variables processed by the cognitive
system, which is crucial for efficiently analyzing problems and making adaptive responses to
the environment. However, this mode of thinking can also fail in correctly evaluating certain
types of problems, leading to distortions (Tversky & Kahneman, 1974). In this thesis, we aim
to maintain a broader viewpoint, focusing primarily on the functional causes (i.e., mechanisms
and processes) and consequences of scenarios in which the human mind opts for a different set

of rules than formal ones, specifically in the context of the illusion of causality.

1.2 COUNTER-INTUITIVITY AS A SUBSTITUTE FOR ILLUSION

According to Roediger (1996), an analogy can be drawn between cognitive biases and optical
illusions. Just as sensory processing can lead to the misperception of a physical stimulus, the
processes of codification, elaboration, and retention of information can lead to numerous judg-
ment errors. Due to the limited processing capacity of the cognitive system, in many situations
of judgment under uncertainty, the human mind employs a small set of heuristics that can lead
to severe and systematic errors (Iversky & Kahneman, 1974), suggesting that cognitive biases
are robust, universal, and unavoidable. Pohl (2022) highlighted five analogies between cogni-

tive biases and optical illusions:

R
**

Deviation from reality — the phenomenon represents a deviation from a correct norma-

tive standard.

R
o

Systematic deviation from the standard — the observed phenomenon deviates from the

normative standard in a predictable manner.

% Involuntary production of the illusion — biases appear without deliberative will.

R
**

Impossibility of avoiding the illusion — biases are hard or even impossible to avoid in their

manifestation.

R
**

Universal appearance of the illusion — biases appear across all people, independently of

confounding or psychological variables.



As discussed by Gigerenzer (2008), this negative connotation of biases can be erroneous,
leading to a one-sided view of human rationality that focuses too much on errors and results in
a pessimistic view of human thinking. Furthermore, the analogy can be somewhat misleading.
First, from our very first stage of cognitive processing (i.e., perception), we systematically deviate

from reality, as classically supported by studies from Gestalt psychology (Atkinson & Hilgard,
2017). When reasoning, we do not usually follow standard logical and mathematical rules.
Instead, what we can ask is in which context the tendency to base our judgment on heuristics
results in evident errors, how salient these results are considering the deviation from a rule and
the ecological validity of a task, and how the emergent phenomenon, in the specific paradigm,
unveils how we process the input to produce the output. Secondly, many relevant psychic
events occur in a non-conscious state, and the production of automatic responses does not
require intention and controlled processes (Cornoldi et al., 2018). Indeed, the production of
a biased response can be intended to be involuntary, but it could be asked why this property
should be a distinctive feature for biases, as most processes are unintentional. Additionally,
researchers have shown that biases can be mitigated in certain contexts (Pohl, 2022; see also
Maguire et al., 2018, for an example), and the appearance of an error in reasoning can largely

depend on the kind of task we propose to people (see Section 1.5).

Drawing analogies to provide a better understanding of phenomena can be important, but
the illusion analogy may be inadequate. We propose that biases can be understood as counter-
intuitive results in cognitive tasks that provide a deeper understanding of the underlying pro-
cesses. They produce a paradoxical effect where the same cognitive system, intended as a whole,
that generally enables adaptive responses to the environment can sometimes lead to incorrect re-
sponses within the same properties of the system. Analyzing the production of these responses

is important for unveiling how we conduct certain types of reasoning.

This paradoxical definition is particularly apt when comparing cognitive biases to the study
of paradoxes in other fields. For example, in logic and mathematics, paradoxes have been in-
valuable in extending knowledge within the field. Without delving into an extensive history
of paradoxes (e.g., the liar paradox — I am lying — which dates back to ancient Greece), their
formulation, which often involves elements of self-reference and negation, shows that these
counter-intuitive propositions can serve to analyze rules of logic in greater detail and enhance

our understanding of the system as a whole.



As an example, Bertrand Russell’s famous paradox' (see Equation 1.1) showed how Gottlob
Frege’s attempt to reduce mathematics to logic led to a contradiction, leading to a reevaluation

of the foundations of mathematics (Irvine & Deutsch, 2021).

A={a:a¢a} = AcA<= A¢gA (1.1)

1.3 CLASSIFICATIONS

Pohl (2022) proposed a valuable distinction for biases, classifying them into three categories. It

is important to note that a particular bias may fall into multiple categories:

% Illusions of thinking: These biases involve the application of certain mathematical or log-
ical rules (e.g., the conjunction probability rule) derived from a normative model, which

constitutes a standard against which human performance is evaluated.

% Illusions of judgment: These biases occur when participants are asked to subjectively rate
aspecific feature of given stimuli (e.g., their pleasantness), and certain features within the

context of presentation may bias participants’ judgment in a particular direction.
text of p tat y bias participants’ judgment in a particular direct

K2

% Illusions of memory: These biases occur when individuals are required to recall infor-
mation that was encoded earlier, often leading to memory errors or distortions. In the
Oxford Handbook of Memory, Roediger and McDermott (2000) offer an extensive re-

view of various memory phenomena and distortions.

A similar distinction among cognitive biases has been proposed by Hell et al. (1993), who
also included misconceptions in physics. Over the years, various classifications have been sug-
gested, emphasizing different aspects of cognitive biases (Pohl, 2022).

Within the broader category of illusions of thinking, a useful distinction is based on the type
of reasoning involved in specific tasks. Reasoning, as a form of thought, can be divided into

two main types (Cornoldi et al., 2018):

" Russell’s paradox: let A be the set of all sets that are not members of themselves. If A is not a member of
itself, then by definition, it must be a member of itself. Conversely, if A is a member of itself, then according to
its definition, it cannot be a member of itself. Thus, we arrive at a contradiction.



R
%

Deductive reasoning: this type of reasoning involves drawing a conclusion from a set of
premises, where the truth of the conclusion is directly related to the truth of the premises.
Deductive reasoning is often employed in tasks that require logical analysis, such as solv-
ing Aristotelian syllogisms (Cornoldi et al., 2018). One example of a task that assesses
deductive reasoning is the Wason selection task (WST; Wason, 1966). In this task, partic-
ipants are shown four cards, each displaying a letter or a number (e.g., £ — K — 4 — 7).
They are informed that each card has a letter on one side and a number on the other.
Participants are given a conditional statement — If there is a consonant on one side, then
there is an even number on the other side — and are asked to determine which cards need
to be flipped to test this rule. Participants often struggle with this task challenge due to
a bias toward confirming the rule rather than testing for disconfirmation. For instance,
they may select the cards K and 4 to check if they conform to the rule, rather than select-
ing K and 7 to test if the rule is violated. Performance on this task can improve when it s
presented in a more realistic context (Cornoldi et al., 2018), highlighting how familiarity

and context can affect reasoning abilities.

Inductive reasoning: this type of reasoning involves drawing general conclusions or mak-
ing predictions based on a set of specific observations or patterns. It often includes ex-
trapolating general rules from limited data, estimating probabilities, categorizing events
to reduce variability, and making decisions based on observed trends. A common ex-
ample of a heuristic that can lead to a bias within inductive reasoning is the representa-
tiveness heuristic (Tversky & Kahneman, 1974). A bias occurs when people judge the
likelihood of an event based on how much it resembles a typical or representative exam-
ple, rather than on statistical probabilities or base rates. For instance, when people are
asked to judge the probability of a sequence of dice rolls, suchas 2 —5—-4 -3 —4 —
5—1—1—6 — 3, they might perceive it as more likely than a sequence of all ones (i.c.,
1-1-1-1-1-1-1-1—1-1),because the first sequence appears more random
and representative of what they expect from a fair dice roll. Despite the fact that both
sequences are equally probable, the representativeness heuristic leads people to favor the

one that seems more in line (i.e., representative) with their notion of randomness.



1.4 DUAL-PROCESS MODELS
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Figure 1.1: Dual-process models’ most common interpretation.

Numerous models have been proposed to account for heuristics and biases, with dual-process
models being a prominent class. In this thesis, we will focus on these models because the results
from our study (see Section 3.4) can be interpreted through this specific framework. Dual-
process models (Pohl, 2022) are commonly used to understand biases and generally distinguish
between two types of reasoning (Evans, 2011). The first type, often referred to as rype one rea-
soning, is automatic, relatively independent of working memory (WM), operates in parallel,
and is usually faster. The second type, known as zype two reasoning, is more controlled, relies
on WM, processes information serially, and is slower.

Stanovich (1999) introduced the terms system one and system two to represent these two
types of processes. However, Evans (2011) cautioned that these labels can be somewhat mis-
leading, as they imply that only two cognitive systems underlie various tasks.

Functionally, system one rapidly generates intuitive responses, while system two monitors
and controls these responses, potentially endorsing, correcting, or overriding them. Judgments

are attributed to system one if they involve minimal modification from the initial intuitive pro-
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posal (Kahneman & Frederick, 2002). According to Stanovich (1999), both systems operate

in parallel, with system one functioning continuously and system two intervening as needed.

As discussed by Kahneman (2012), system one is advantageous for quick and effortless deci-
sions, whereas system two is beneficial for tasks requiring computational power and deliberate
thought. The reliance on system one increases the likelihood of using heuristics, which can lead
to biases. Although system one may be seen as more primitive compared to system two, it is not
necessarily less capable (Kahneman & Frederick, 2002). In fact, complex mental operations can
shift from system two to system one as individuals become more skilled in a particular task. A
notable example of system one’s capability is seen in elite chess players, who, through extensive

practice, develop an intuitive ability to evaluate chess positions almost instantaneously.

Despite the widespread acceptance of dual-process models for interpreting heuristics and
biases, influential critics argue that single-process accounts might be sufficient (Kruglanski &
Gigerenzer, 2011). However, these critiques often overlook the robust evidence supporting

dual processing from cognitive psychology and neuroscience (Evans, 2011).

Evans (2012) identified several common misconceptions related to dual-process models, which
highlight important considerations for understanding cognitive biases. One notable miscon-
ception is the assumption that system one (or type one processes) is always responsible for bi-
ases, while system two (or type two processes) is associated with normative responses. In reality,
system two, although necessary for performing well on complex cognitive tasks, is not always
sufficient for ensuring correct responses. Simply engaging system two, which involves more
resources and deliberate thought, does not guarantee accurate application of logical or math-
ematical rules. Furthermore, the notion that system one can produce incorrect responses is
primarily relevant in specific, controlled experimental paradigms where participants are faced
with novel and challenging tasks. In these contexts, the reliance on system one is often trig-
gered by particular cues. Additionally, it has also been supported that cognitive biases can arise
from both system one and system two processes (Pohl, 2022). To accurately capture the kind
of reasoning required by an experiment, it is essential to examine how the task prompts either
system one or system two. If a bias arises from system one’s involvement, researchers should
evaluate whether the task genuinely captures a meaningful phenomenon. While dual-process
models offer valuable insights, we have to acknowledge the limitations of standard models and

emphasize the importance of contextual relevance in understanding cognitive processes.



I.5

CRITIQUES

Evidence strongly supports the existence of biases and their significant impact on everyday life,

accounting for numerous phenomena. However, Pohl (2022) summarized several critiques

that have been pointed out by Gigerenzer (1991; 1996; 2008; Gigerenzer et al., 2008), high-

lighting the need to consider these critiques to improve the quality of studies and research:

o

R
**

% The task might be misleading, eliciting biased behavior in participants. For example, in

a famous task proposed by Wason (1960), participants are asked to extrapolate a genera-
tive rule from a series of numbers presented, such as 2 — 4 — 6, and are then requested to
produce other series according to the rule they deduce. The experimenter then confirms
or rejects their responses. Participants might incorrectly infer that the rule is even num-
bers in ascending order and produce series like 8 — 10 — 12, while the actual rule is simply
numbers in ascending order. When asked to state the underlying rule, participants often
respond incorrectly — not due to a bias, as originally intended, but because the initial
number series was misleading. This example underscores the importance of researchers
being aware of the potential intrinsic misleading effects of tasks and the need for careful
planning. However, even if a task is highly misleading, it does not invalidate the investi-
gation of the underlying processes, as long as the artificial pitfalls are acknowledged and

managed.

Researchers might use an inadequate presentation format or material sampling. Using
inappropriate statistical formats, such as probabilities instead of frequencies, or engag-
ing in selective sampling could distort study results. For example, researchers might fo-
cus on specific samples of materials where a positive result for their research can be found,
neglecting other types of materials that are related to the same underlying processes and
might support that our reasoning and memory are not inherently flawed. This selective
approach can lead to biased conclusions, emphasizing the need for comprehensive and

balanced material selection in research.

The experiment might present a task that simply highlights a lack of knowledge in par-
ticipants. For example, the conjunction fallacy (CF) illustrates individuals’ inability to in-
tuitively assess the conjunction probability rule (Fisk, 2016). This rule states that, given
two distinct events, the likelihood of a single event, P(A) or P(B), is invariably greater

than or equal to the probability of both events co-occurring, denoted as P(A A B). It



can be argued that people simply do not know the conjunction rule, thereby artificially
prompting the supposed bias. However, there are reasons to believe that the CF can
be considered a real and consistent phenomenon. For instance, even in contexts where
the application of a mathematical rule is more salient, people still manifest the fallacy
(Maguire et al., 2018). Recently, it has been accepted by the majority of researchers as a

genuine phenomenon, although some still debate its real-life implications (Fisk, 2016).

% The normative rule used might be wrong. To illustrate this, Gigerenzer (1991) argued
that probability rules are about frequencies and do not apply to judgments of single
events, typically used in cognitive biases experimental paradigms. For example, present-
ing the CF paradigm in terms of a frequentist interpretation of the task (i.e., examining
the probability within a group of 100 people rather than presenting a single case) can
result in a reduction in the incidence of the fallacy (Gigerenzer, 1991). Nonetheless,
contrary to this finding, it has been shown that presenting the CF in terms of a frequen-
tist kind of task does not always lead to a reduction of the bias (Fisk, 2016). However,
this critique is important as it prompts us to consider which kind of normative standard
is useful in a given context and how the results obtained can be used to draw conclusions

in a more ecological environment.

R
**

Some phenomena might be explained without referencing a failure in our information
processing. For instance, what appears to be a cognitive bias might instead be a rational
response given the context or the available information. Rather than always indicating a
flaw, some biases may reflect adaptive strategies that work well in everyday environments,
even if they lead to errors in experimental settings. Thus, it is essential to consider alter-

native explanations that do not necessarily involve faulty reasoning processes.

1.6 REASONING UPON STATISTICS

Heuristics and biases studies have been successfully applied in various fields, underpinning ev-
eryday decision-making processes. These studies have proven valuable in economics (Cornoldi
etal, 2018), applied cognitive psychology (e.g., in medical decision-making and in eyewitness
testimony; Pohl, 2022), elderly psychology (De Beni & Borella, 2015), and clinical psychology

(e.g., in relation to obsessive-compulsive disorder; Pohl, 2022).



Studies on heuristics and biases are also beneficial in understanding how people approach
mathematical and statistical concepts in educational settings or learning environments (Garfield,
2002). They provide insights into how people interpret data presented in scientific communica-
tion through mass media, influencing assumptions and decision-making. Scientific and statisti-
cal communication bridges the scientific community and the general public (e.g., WHO, 2023).
This connection was particularly evident during the COVID-19 pandemic, significantly shap-
ing normative regulations and individual behaviors (Warren & Lofstedt, 2022).

Focusing on statistical communication, the literature highlights that conveying statistical
information is fraught with inherent complexities and potential pitfalls. From a top-down
perspective, statistical data can be misleading due to how it is presented (Huft, 1954) and vi-
sually represented (Pastore et al., 2017). Conversely, from a bottom-up approach, acquiring
proficiency in statistical knowledge encompasses a range of skills, including data interpretation,
understanding graphical representations, and calculating statistical measures (Garfield, 2002).
These skills engage various psychological processes, making the avoidance of errors and miscon-
ceptions in statistical reasoning a significant challenge. Some statistical errors can be viewed as
the phenomenological manifestation of specific cognitive heuristics. Individuals often infer
statistical and probabilistic relationships between events and contingencies naively, frequently

violating normative mathematical principles (Pohl, 2022).

1.7 CATEGORIZATION OF THE ILLUSION OF CAUSALITY

Lastly, an effort should be made to categorize the causality bias within the frameworks proposed
in Section 1.3. As we will detail in Section 2.3, this bias occurs when individuals erroneously
overestimate the causal link between a cue and an outcome after reviewing a series of trials, each
characterized by the presence or absence of the cue and the outcome. This overestimation is
believed to stem from our tendency to disproportionately emphasize evidence supporting the
presence of an effect. The illusion of causality, as an illusion of thinking, can be understood as
a biased evaluation of raw data, where individuals tend to prioritize true positives — scenarios
where both the supposed cause and effect are observed — over true negatives, false positives,
and false negatives. The fact that individuals extrapolate a rule based on the observation of
the frequencies of different scenarios indicates that the causality heuristic aligns with inductive

type of reasoning and falls within the broader category of statistical heuristics.

I0



[llusion of causality

2.1 THE NATURE OF CAUSALITY

As the illusion of causality pertains to individuals’ perception of causality itself, it raises the
fundamental question of what causality is in its essence. While causality can be roughly defined
as the relation between two events, one of which is the consequence (i.e., the effect) of the other
(i.e., the cause), philosophers have long explored the ontological nature of causality. Different

schools of thought have emerged over centuries, as described by Broadbent (2024).

Regarding the nature of causality, realists (e.g., Armstrong, 2016) argued that there are real
entities that exist independently of particular instances. They saw causation as something that
exists beyond the particular things that are causally related, a universal relation that underlies
and connects cause-effect pairs. In contrast, nominalists held that there are no entities other
than what Lewis (1983 ) refers to as distinct existences. Nominalists argued that causation is not
a particular entity and it is not something that exists beyond its particular instances. In this

perspective, causation is nothing more than the sum of its specific occurrences.

Another perspective on causality is provided by Kant (1855/2007), extending ideas from
David Hume (Broadbent, 2024). Kant asserted that causation is not an objective thing but a

feature of our experience, arguing that causation is essential to any kind of experience.

II



David Hume’s viewpoint holds a particularly important role within the field of psychology
(Wasserman et al., 1990), as he raised the question of how we know about causal connection.
For Hume (1740/2000), causal impression depends on previous experience. The impression
of causality between two events is formed when they are temporally contiguous, the cause pre-
cedes the effect, and there is a constant coincidence over time between these two. However, the
process by which the impression of causality is formed is not given by deliberative and inferen-

tial thinking, but rather by purely mechanistic learning.

2.2 COGNITION OF CAUSALITY

As from the first conceptualization of the question about how we perceive causality by Hume,
psychologists’ interest in how causal inference works flourished, becoming a traditional re-
search topic in psychology explored from various perspectives, including comparative cogni-
tion (Blaisdell et al., 2006), psychology of reasoning (Waldmann et al., 2006), psychology of
learning (Dickinson et al., 1984), and visual perception (Michotte, 1963/2017). The psycho-
logical literature on this topic suggests that the understanding of cause-effect relationships is

an ability in which humans clearly outperform any other species (Bender, 2020).

With respect to the perception area, Michotte’s studies on causality hold significant rele-
vance. In a famous study paradigm (Michotte, 1963/2017), participants observed a moving
object, labeled as X, approaching and making contact with a stationary object, labeled as Y.
Upon contact, the motion of X ceased, and Y began to move. When Y started moving within
1/10 second after contact with X, and in the same direction as X, participants consistently
reported that X caused Y to move. This generated a strong and reliable perception of causal-
ity. Michotte argued that causality is directly perceived, without the need for mediation by

higher-level cognitive processes.

However, in this thesis, we will focus on the impression of causality (i.c., the causality bias)
in contexts where associative learning occurs. Associative learning is a type of learning in which
two initially unrelated objects become connected in our minds through a process known as con-
ditioning (Cornoldi et al., 2018). For this reason, the illusion of causality can also be classified

within the category of illusions of memory (see Section 1.3).
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2.3 CAUSALITY BIAS IN A LEARNING CONTEXT

The illusion of causality occurs when a subject develops the belief that there is a causal connec-
tion between two events that are actually unrelated. It refers to the perception that one event
A, called the cue or potential cause, is causally linked to another event B, called the outcome or
effect, when there is merely a coincidence between them. Generally, humans infer the presence
of a causal link through the (single or multiple) contingencies between A and B (Matute et al.,
2019), often showing great accuracy in detecting causal links that are genuinely present in the
environment. This ability is critical for survival, as it underlies the capacity to make accurate
predictions about future states of the world. However, sometimes contingency learning can
lead to an overestimation of the degree to which a causal link is present when, in fact, the two
events are independent (i.e., the probability of A is substantially independent of the probability

of B), resulting in the so-called over-estimation of zero-contingencies (Blanco et al., 2014).

Outcome Outcome Outcome

A. Structure B, B, B. Presence B, B, C. Absence B, B,
Al a b Al 25 5 A1 10 10
Cue ay ¢ a4 | 4 5 5 | 4, 10 10

Table 2.1: Fundamental contingency table and illustrative variations.

One of the most widely used paradigms that has become a standard experiment to explore
causal learning in general and the illusion of causality in particular is the contingency learning
task (CLT). In this task, participants are presented with a series of trials, each one characterized
by the presence or absence of event A and event B. Indeed, the presence or absence of event
A and event B gives rise to four hypothetical scenarios, where the respective frequencies can
be represented on a tetrachoric table (see Table 2.1 — Panel A. Structure): (a) event A and
event B are present (i.e., the cue and the outcome co-occur), (b) only event A is present (i.c.,
the cause manifests without the outcome), (c) only event B is present (i.e., the cause does not
manifest, but the outcome does), and (d) event A and event B are not present (i.e., neither the
cue nor the outcome is present; Vadillo & Matute, 2007). In a context of observation, these
four combinations can appear with different frequencies, ranging from zero onwards.

Each trial shows the presence or absence of the potential cause A, linked to the presence or
absence of an effect B so that event A, whether present or absent, precedes event B; in this

way only A can signal B, giving rise to a one-way dependency. Typically, events A and B are
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chosen so that it is plausible that A can be the potential cause and B the outcome. Studies
have proposed different types of events A and B that in principle can be causally related (e.g.,
a fertilizer as a potential cause and a flower blossom as an outcome; Matute et al., 2022).

After a certain number of trials, which is manipulated by the researcher, participants are
usually asked to estimate the degree to which there is a causal connection between the events.
Typically, a numeric scale from 0 to 100 is used to estimate the degree of the causal link, where
01is interpreted as no causal connection and 100 as the maximum degree of a causal connection.
While this scale makes sense from a theoretical standpoint (as it reflects the A P rule, which will
be discussed below in Section 2.4), it can be somewhat misleading. For instance, a middle point
of 50 can be interpreted by participants as an indecisive expression of causality or a moderate
presence of a causal link. Thus, it is not surprising that some research finds different results
based on the kind of scale used (Ng et al., 2024).

The presence or absence of the two target events A and B is manipulated by researchers in
their proportions so that, from a normative standpoint (i.e., according to the A P rule; see Sec-
tion 2..4), there is or is not some degree of a statistical link between the two events. Researchers
systematically vary the frequencies of the a, b, ¢, d scenarios to create conditions with different
levels of contingency between the cue and the outcome. For example, in a positive contingency
condition, the cue and the outcome would frequently appear together (i.e., high frequency of
scenario a; see Table 2.1 — Panel B. Presence) and rarely appear independently (i.e., low frequen-
cies for scenarios b and c). Conversely, in a low or null contingency condition, the cue and the
outcome would appear independently of each other, leading, for example, to balanced or low
proportions across all four scenarios (see Table 2.1 — Panel C. 4bsence). When asked about
the causal link between events, people are typically fairly accurate in assessing the presence or
absence of a causal connection. However, in certain scenarios specifically manipulated by re-
searchers, where no real causal link is present, people tend to overestimate the extent of a causal
link between the events. This overestimation is the operational definition of the manifestation
of an illusion of causality. Thus, the illusion is typically induced in participants, exposing them
to a series of trials where normative indices assert the absence of a causal link, and the frequen-

cies of the outcome, the cause, or both are increased to generate the illusion (see Section 2.4).
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In some variants of this paradigm, the presence or absence of the cause can be manipulated

by the participant, transitioning the procedure from passive observation to active engagement.

% In an active procedure, participants are given control over the presence of the cause.
They decide when to introduce the cause, while the outcome’s occurrence is still prob-
abilistically controlled by the researcher. This active engagement shifts the paradigm
towards the illusion of control (Matute et al., 2022). According to Langer (1975), the
illusion of control refers to the tendency of individuals to overestimate their influence

over outcomes that they have no actual control over.

% In a passive procedure, participants observe a series of trials where the presence or ab-
sence of the cause and the outcome are determined entirely by the experimenter. Partic-
ipants do not influence the events and act purely as observers. The illusion of causality,

as intended in our study, is primarily observed in this passive context.

2.4 STANDARD NORMATIVE MODEL

In the literature, different normative models of causal induction have been proposed (see Sec-
tion 2.6). However, the most widely used method to measure contingency is the AP contin-
gency index (Allan, 1980), a normative model for human causal learning (Matute et al., 2022).
The AP index is calculated by subtracting the probability of observing the outcome when the
cue event is not present, expressed as P(O|—=C') or P(B;|A;) (following Table 2.1 nomen-

clature), from the probability of observing the outcome when the cue is present, expressed as

P(O|C) or P(By|A;) (following Table 2.1 nomenclature; Jenkins & Ward, 1965):

a C

a+b c+d

AP = P(BllAl) — P(Bl|A2) < (Z.I)

where a, , ¢, and d are the observed frequencies of the four scenarios represented in Table

2.1. Three cases can be observed depending on the value of AP:

% If AP equalszero (i.c., P(B1|A1) = P(B1]As)), then there is no contingency between

the cue and the outcome, indicating no causal link.

IS



R
%

R
%

If AP is positive (i.e., P(B1]A1) > P(B1|A2)), a positive contingency and a causal

link are present.

If AP is negative (i.e., P(B1|A;) < P(Bj|A3)), then the contingency is negative, sug-

gesting an inhibitory effect of the cue event on the outcome.

Theoretically, the overestimation of the extent to which A and B are causally related can

occur in any of these cases (i.e., when AP is negative, null, or positive). However, the causality

bias has been predominantly studied in the case of null contingency (Allan, 1980).

The illusion arises mainly in the null contingency condition, specifically when:

% The frequencies of the scenarios in which the outcome is present (cells @ and c in Table

R
**

2
%

2.1) are larger compared to the frequencies of the scenarios in which the outcome is
absent (cells band d in Table 2.1), despite the A P index being zero (Alloy & Abramson,

1979). This condition leads to the so-called outcome-density bias (Matute et al., 2015).

The frequencies of the scenarios in which the cue is present (cells @ and b in Table 2.1)
are larger compared to the frequencies of the scenarios in which the cue is absent (cells
c and d in Table 2.1), despite the AP index being zero (Allan & Jenkins, 1983). This

condition leads to the so-called cause-density bias (Matute et al., 2015).

The frequencies of both the cue and the outcome are jointly increased, leading to a
higher frequency of scenario a relative to the other three scenarios, while the AP in-
dex remains zero (e.g., a = 64,0 = 16, c = 16, d = 4; see Blanco et al., 2013). The
emergence of a causality bias under this specific condition suggests that scenario a (i.e.,
when both the cue and the outcome are present) plays a particularly important role in

the causal induction mechanism, as we previously discussed in Section 1.7.

In all these cases, the judged strength of a causal relationship tends to be consistently and

systematically larger than what would be expected from the hypothetically correct normative

response (Blanco, 2017).

Lastly, it is important to assert that the strength of the perceived causal link between events

can be actively modulated - the researcher can create conditions with greater outcome-density

or cause-density, which can contribute to generate a greater illusion of causality.
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2.5 AP AS A STATISTICAL RULE

The AP index is a rule that people commonly (though approximately) follow when evaluat-
ing causal information in a learning context (see Section 2.3). In some specific cases in a null
contingency condition, people do not follow the AP rule, and the discrepancy is indicated as
the illusion of causality. In this section, we endeavor to show how the A P index is statistically
related to the chi-squared (x?) statistic (Allan, 1980), supporting that it can be employed as a
standard mathematical rule against which human performance can be evaluated.

Suppose we have two nominal variables A and B, and we indicate absolute double frequen-
cies on a contingency table as n;;, wheret = 1,2,... , kandj = 1,2,... h.

The contingency table (2.2) can be represented as:

B1 BQ cee Bh Total
Ay nyy nNi2 -0 Map ni.
A,y No1 Moz -+ TNogp U»3
Ay, NEgr Mgz o0 Ngp ng.
Total n; nas -+ ny N

Table 2.2: Contingency table of variables A and B.

Where:

% n,; represents the frequency of observations for the combination of the i-th category of

A and the j-th category of B.
% n,. is the total frequency for the i-th category of A across all categories of B.
% n; is the total frequency for the j-th category of B across all categories of A.
% N is the grand total of all frequencies in the table.

To express the expected frequencies under the assumption of perfect independence between
Aand B in a contingency table, we can use the formula:
ni. -Nj

Eij == N (2.2)
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The x? statistic is computed using the formula:

eoyy el )

i=1 j=1

Where n;; is the observed frequency in cell (4, j) and E;; is the expected frequency for that
cell. A special case for applying the x? statistic involves a 2 X 2 contingency table, often referred
to as a tetrachoric table, where we have two binary nominal variables A and B. The table (2.3)

is structured as follows:

Bl BQ Total
Ay N1 Ni2 ny.
Ay N1 Na2 N2,
Total na no N

Table 2.3: 2x2 contingency table (tetrachoric table).

At this point, it is important to note that Table 2.1 and Table 2.3 express the same condition
under different notations. The x? statistic can be computed using the formula:

2 N(nn *Ngg — N2 - n21)2

X = (2.4)
nNi-Ng- Ny - Na.

The @ index, a measure of association between two variables on a tetrachoric table (that
varies from 0, corresponding to no association between the variables, to 1 or —1, which respec-
tively indicate complete association or complete inverse association), is based on frequency data
represented in 2 X 2 tables. It can then be calculated as:

2
X

o= N (2.5)

Both x? and @ reflect the dependence of variable A on variable B and the dependence of
variable B on variable A.

However, a different measure of dependency, denoted as AP, represents the difference be-
tween two independent conditional probabilities and can be used to measure the one-way de-

pendency of one variable on another.
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The measure of dependency of variable 53 on variable A is given by:

ni no1

APBHA:P(Bl‘Al)—P(Bl|A2):

(2.6)

N1+ N2 Nop + Nagg

Where P(B; | Ay) is the probability of By given Ay, and P(B; | Ay) is the probability of
By given Ay. This formula is the same expression of Equation 2.1.

Similarly, the measure of dependency of variable A on variable B is:

n n
APy = P(A, | B)) — P(4, | By) = LI 12 (2.7)

N1+ No1 N2 + Nag

Where P(A; | By) is the probability of A given By, and P(A; | By) is the probability of
Ay given Bs.

Considering equations 2.4, 2.6, and 2.7, then the x? is calculated as:

X>=N-APg 4 APy p (2.8)

That s, x? reflects a two-way dependency, and A Pp, 4 and AP, p each reflect a one-way

dependency.

2.6 OVERVIEW OF ALTERNATIVE THEORETICAL MODELS

While the AP model is one of the most widely used approaches for explaining how naive rea-
soners infer causality from contingency in an associative learning context, several other theo-
retical models have also been proposed over the years. Perales and Shanks (2007) provided a
comprehensive summary of the most significant models of covariation-based causal judgment.

In this final section we present a summary of some alternative models used to study causal
learning. Theoretical models of causal induction can generally be divided into two main cat-
egories: norm-based models and algorithmic models, which we will introduce briefly in Sub-
sections 2.6.1 and 2.6.2, respectively. In Subsection 2.6.3, we will discuss in further detail a

specific algorithmic model of particular relevance.
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2.6.1 NORM-BASED MODELS

Norm-based models assume that people acquire causal knowledge by applying psychological
processes that resemble rational strategies (Perales & Shanks, 2007). According to these mod-
els, individuals adopt a certain criterion to follow a rational analysis of causality, resulting in
a correspondence, to some degree, between the output produced by normative rules and the
outcome of psychological processes. The AP rule can be included in this set of models.

Another model that can be included in this category is the power theory of probabilistic con-
trast or power PC model (Cheng, 1997). This theory is grounded in the AP rule but extends
it by incorporating the concept of interactive causes (Matute et al., 2022).

Consider a potential cause, denoted as event A(1), alongside a set of other background
causes, represented by event A(0). These other causes comprise both observed and unobserved
factors that operate in the background and may, for instance, produce the outcome even in the
absence of event A(1) (ie., cell ¢ in Table 2.1; Perales & Shanks, 2007). Assuming that the
complete set of causes for a given event B can be partitioned into events A(0) and A(1), we
can illustrate their relationship using a directed arrow graph, where B represents the common
effect of these two causes (A(1) — B <— A(0); Perales & Shanks, 2007). Events A(0), A(1),
and B can be either present or absent.

In this model, the focus is on estimating the causal power of event A(1), denoted as « A(1)s
defined as the probability with which an event A(1) produces an event B when event A(1)
is present. Causal power aims to capture the probability with which the cause actually causes
the effect. Indeed, causal power can also be estimated for A(0), denoted as a4(g). The causal
power  4(x) for any event A(k) assumes a probability value from 0 to 1. This probability value
can also be depicted as the weight assigned to one causal arrow in the graph (i.e., in this instance,
one for A(0) and one for A(1)), and cvq(xy can be understood as a random variable represent-
ing the strength of event A(1) in influencing event B (Holyoak & Cheng, 2011). The causal
power a4(1) is denoted with a Greek letter, as it is a theoretical value and only indirectly esti-
mated. It differs from the probability of event B given the presence of event A(1), denoted as
P(B1]A(1)1), because the latter is directly observed (Cheng, 1997) and includes those occa-
sions when the event A brought about event B, as well as occasions on which the event A was
present but failed to bring about the event B (Luhmann & Ahn, 2005). P(B;|A(1)1) = aaq)

only when no other event A(k) is present or exists.
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The power PC theory posits that people approach causal learning with four general prior

assumptions (Holyoak & Cheng, 2011):

R
**

Events A(1) and A(0) influence event B independently.

R
*o*

Event A(1) could produce event B but not prevent it.

% Causal powers v 4 () and v 4 (1) are independent of the frequency of occurrence of events

A(0)and A(1).

R
4%

Event B does not occur unless it is caused.

In a context where there is a potentially generative event A(1) (i.e., one that is assumed to
produce event B; Perales & Shanks, 2007), the probability of observing event 3, as event I3 can

be produced independently by A(1) or A(0), is given by:

P(By) = P(A(1)1) - aaq) + P(A(0)1) - aa)+

— P(A(1)1) - uaqry - P(A(0)1) - aeao

(2.9)

Thatis, P(B) is the sum of the probabilities of the constituents (i.e., events A(0) and A(1))
minus the probability of the intersection, according to the rule of the probability of unions.
The terms P(A(0);) and P(A(1);) are the observable probabilities of the presence of events
A(0) and A(1), respectively. These probability terms can be used to represent the presence (i.e.,
when P(A(k);) = 1) orabsence (i.e., when P(A(k);) = 0) of theevents A(0) and A(1). The
causal powers o 4(g) and av4(1) correspond to the causal strengths of the background event A(0)
and the event A(1), respectively.

The probability of event B given the presence of event A(1), denoted as P(B;]A(1)1), can
be derived by conditioning Equation 2.9 on event A(1) being present — implying that the

term P(A(1);) is equal to 1:

P(By | A(1)1) = aaqy + P(A(0)y | A(1)1) - aa@)+

— aaq) - PLA(0)1 [ A(1)1) - ao)

(2.10)

Similarly, we can derive the probability of event B given the absence of event A(1), denoted
as P(B1|A(1)3), by conditioning Equation 2.9 on event A(1) being absent — implying that
the term P(A(1);) is equal to 0:
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P(Bl|A(].)2) = P(A(O)l | A(l)g) . OéA(O) (Z.II)

The quantity of interest, causal power av4(1), can then be found:
P(By| A(1))) — P(By | A(1)) |
1= P(A(0)1 [ A(L)1) x aa)

[P(A(0) | 1)1) — P(A(0)1 | A(1)2)] X a0
— P(A(0)1 | A(1)1) X avaqo)

@A) =
(2.12)

Equation 2.12 calculates the causal power of the event A(1), yet it necessitates certain quan-
tities that remain inaccessible or unobservable. For instance, the term o 4(g), representing the
causal power of the composite alternative event A(0), is itself, like all causal powers, inherently
unobservable (Luhmann & Ahn, 2005). Consequently, the direct application of Equation
2.12 is impractical due to these limitations in observable data. However, when the occurrence
of the candidate cause A(1) is independent of the occurrence of the alternative cause A(0), a
condition mathematically expressed as P(A(0)1]A(1)1) = P(A(0)1]A(1)2) = P(A(0)1),

Equation 2.12 simplifies as:

P(B; | A(1);) — P(By | A(1)2) (2.13)
1— P(B; | A(1)2) .3

QA =

As we already defined in Section 2.4, AP is obtained by subtracting P(B; | A(1)2) from

P(B; | A(1)1) (see Equation 2.1), so that Equation 2.13 can be expressed as:

AP
@40 = T P8, [A()y) (2.14)

Equation 2.14 indicates when and how well AP gives an estimate of 41, and it relates
causal power to probabilities that are observable, allowing the estimation of the term a4().
The power PC model bases its predictions on causal powers, which, in general, only partly
determine AP (Cheng, 1997).

In conclusion, the power PC model is a parameter estimation model (Perales & Shanks,

2007) that provides normative values for optimal causal inference (Matute et al., 2022).
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2.6.2 ALGORITHMIC MODELS

Algorithmic models propose the use of chains of algorithms to describe the psychological pro-
cesses underlying causal induction. These models are also referred to as non-normative models,
in the sense that they are not bound to any particular norm of rationality (Perales & Shanks,
2007), and, for that reason, they can allow researchers to mathematically predict the emergence
of biased evaluations of causality (Matute et al., 2022).

A subset of this model family is the rule-based models (Perales & Shanks, 2007), for which
individuals track the different frequencies or probabilities of scenarios presented during learn-
ing trials and follow specific rules to estimate the causal link between events. However, in these
models, either a different rule than that of a normative model is applied, or the tracked proba-
bilities are assigned different weights, meaning that some pieces of information are considered
inherently more important than others (Matute et al., 2022).

For instance, a measure of contingency that emerged in the 1950s and can be classified within
the rule-based model family was proposed by Inhelder and Piaget (1958/2013). They suggested
that people compute the difference between the diagonals of the tetrachoric table (see Table 2..1)

to quantify the correlation between events A and B':

AD = (a+d) — (b+¢) (2.16)

where a, b, ¢, and d represent the observed frequencies of the four scenarios depicted in Table
2.1. The term (a + d) denotes the sum of the frequencies where events A and B either both
occur or both do not occur, while (b + ¢) represents the sum of the frequencies where the
occurrence of events A and B does not align. The psychological rationale for employing this
correlation method is based on the idea that individuals evaluate the evidence confirming the

existence of a causal link and compare it with the evidence that disconfirms such a link.

*As noted by Allan (1980), another measure of contingency that resembles A D was proposed by Smedslund
(1963) in a study examining the naive concept of correlation on a tetrachoric table. Following Allan (1980)’s
notation, measures of correlation can be defined as the ratio of diagonals in Table 2.1:

AR; = (2.15)

a+d a+d
A =
b+c and R2 N

where a, b, ¢, and d are the observed frequencies of the four scenarios represented in Table 2.1, and N is the
total sum of frequencies.
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While A P is a normative probabilistic measure, emphasizing the difference in the likelihood
of an outcome occurring with versus without the cause, A D is a frequency-based measure that
reflects the raw difference between confirming and disconfirming cases. In summary, AP is
grounded in probability theory, whereas AD directly addresses the differences in frequencies
across the diagonals of the table.

Allan (1980) pointed out the inadequacy of AD as a normative contingency measure, sum-
marizing Jenkins and Ward (1965)’ study, which showed that when AP = 0, AD = 0
only when marginal column and/or row frequencies are equal (ie,, a + b = ¢ + d and/or
a+c = b+ d). If one of these conditions is not met, then even when the relationship between
events Aand B is absent, A D could still not be equal to 0, leading to an invalid conclusion. For
that reason, rather than a norm-based model, A D should be considered an algorithmic one.

Focusing instead on weighted rule-based models, using again the A P rule as a guiding exam-
ple, it has been proposed to correlate causal judgment with a weighted version of AP (Allan,
1993) rather than an unweighted classical version (see Section 2.4). Specifically, cells in Ta-
ble 2.1 could be weighted such that P(B;|A;) is given more weight than P(B;|A,) (Perales
& Shanks, 2007). In this way, it should be noted that the AP rule is no longer considered a
normative model, but rather a modified version where different weights are assigned on the
tetrachoric table (e.g., w, > wy, > w, > wy) in order to better predict and explain accurate
and biased causality judgments.

Within the set of algorithmic models, we can also include associative models, which assume
that causal links are learned by the functioning of an associative mechanism that accumulates

associative strength between the events.

2.6.3 RESCORLA-WAGNER MODEL

A standard associative model is the Rescorla-Wagner model (RWM; Rescorla & Wagner, 1972),
a simple yet powerful and elegant mathematical explanation for how associations are formed
and adjusted based on experience.

Causal learning can be viewed as a type of associative learning to which the RWM can be
applied (Pearce & Bouton, 2001). Since the RWM has been studied in contexts involving mul-
tiple cues (i.e., multiple events A, whether presented simultaneously or not), illustrating how

these cues compete for predictive power with respect to their outcome (Chapman & Robbins,
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1990), we will focus on an example where two events A can be present. Consider two potential

causes, events A(1) and A(2), an outcome event B, and a context X . Here, X represents a set

of background events that are always present and can be associated with the outcome event B

just like any other event A (Pearce & Bouton, 2001).

In a learning context, event B can be preceded by either A(1), A(2), both, or neither. Ac-

cording to the RWM, the change in associative strength for events A(1), A(2), and the context

X with respect to event B is updated on each learning trial using the error-correction rule:

AV = aamBN — Z Vi) (2.17)

JjEA

Where:

Y
**

2
%

%
%

2
%

AV () is the change in associative strength between event A(k) (where k can be 1 or 2

in this case) or context X and event B3 on a given trial.

v A(k) is the learning rate parameter specific to each event A(k) (where k can be 1 or 2 in

this case) or context X, which assumes values from 0 to 1.
{3 is the learning rate parameter of event B, which assumes values from 0 to 1.

A is the maximum associative strength that event B will support. A is set equal to 0 when

event B3 is absent and is set equal to 1 when event B is present.

> jea Vjis the sum of the associative strengths of the events A(k) (where k can be 1 or

2 in this case) and context X that are present on a given trial.

When all events A (i.e., A(1) and A(2)) are present, the sum of their associative strengths is:

> Vi=Vaw + Vap + Vx (2.18)

jEA

A change in associative strength is calculated for each event A presentin a trial. The changes

in associative strength for a generic event A(k) depend on the sum of the associative strengths

of all events A(k) present (A(1) and/or A(2), and X in this case). Consequently, if one generic
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event A(k) acquires associative strength, any other event A(—k) is less likely to acquire associa-
tive strength (Baker et al., 1996), as at the asymptote (i.e., the point at which no more learning

occurs), the sum of all associative strengths will be, following our example:

Vaay + Vae) +Vx = A (2.19)

This principle leads to what is known as cue competition (Baker et al., 1996): if one event
A(k) acquires associative strength, the others will not. When only one event A (i.e., A(1) or
A(2)) and one event B are involved, and the learning parameters /3 are assumed to be equal for
both the presence and absence of an effect, the associative strength of A converges to the AP
value at the asymptote (see the Appendix for the demonstration).

In the context of causal learning, the RWM can predict both correct and biased contingency
estimations (Matute et al., 2022).

Matute etal. (2019) showed thatin a setting with only one event A and context X competing
for associative strength with respect to an event B in a null contingency illusory condition, the
RWM algorithm predicts that the association between events A and B may initially increase
above 0. This occurs because context X acquires associative strength more slowly than event
A, as context X isless salient (i.e., the learning parameter v x is smaller than the learning param-
eter & 4). Due to the coincidence of events A and B, and the initially weak association between
context X and event B, participants in the early phase of causal learning are expected to exhibit
the illusion of causality, as the association between events A and B becomes stronger. How-
ever, as more information is acquired over a certain number of trials, the associative strength
between context X and event B increases, while the strength between events A and B weak-
ens, eventually approaching 0. At this stage, participants are expected to reduce the illusion
of causality, as the association between events A and B diminishes. Thus, the RWM predicts
that after enough trials, there should be a convergence towards the correct contingency value,
in accordance with the AP rule. In summary, the RWM suggests that causality biases are pre-
asymptotic, meaning they are expected to occur primarily during the initial trials. However,
Barberia et al. (2019) challenged this prediction by finding that participants exposed to numer-

ous trials did not show a reduction in the illusion of causality.
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Figure 2.1: RWM pre-asymptotic causality bias simulation.

Figure 2.1 shows a graphical result from an RWM simulation conducted in R (R Core Team,
2022)* that replicates the RWM simulation by Matute et al. (2019), specifically in the context
of an illusory condition where the frequencies of both the cue (i.e., event A) and the outcome
(i.e., event B) are jointly increased (i.e., when the frequency of cell a in Table 2.1 is increased,
while A P remains 0; see Section 2.4). The simulation has been obtained using the Equations 1,
2, 3, 4 in the Appendix. The green line shows the progression of associative strength between
events A and B during trials, highlighting the pre-asymptotic bias prediction by the RWM,

whereas the red dotted line represents A P.

*Learning parameters of the simulation (10 iterations): vy = 0.3, ax = 0.1, 84 = Bx = 0.8.
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Interaction Wlth PTrocess ﬂuency

3.1 MODULATING THE ILLUSION

In Chapter 2, we asserted that the illusion of causality can be understood as a phenomenon
that consistently arises under certain circumstances. In a null contingency condition, where
the AP index rule (see Section 2.4) would correctly advise rejecting a causal connection, par-
ticipants still express a positive causal evaluation between the events when specific conditions
are met (i.e., when cause or outcome frequencies are increased). By analyzing the contexts in
which this bias is either heightened or reduced, we can gain valuable insights into the underly-

ing mechanisms and cognitive processes responsible for the illusion.

First, we can inquire whether there are individual differences in the manifestation of the illu-
sion. According to Matute et al. (2015), the illusion is not related to intelligence or personality
traits. Instead, it arises from how the mind has evolved to discern causality from contingencies,
with associative processes (i.c., conditioning) playing a fundamental role. However, it should
not be assumed that associative learning is a simple mechanistic phenomenon. Even the most
basic associative learning involves complex cognitive processes (Cornoldi et al., 2018). Further-
more, our data analyses (see Section 6.3) indicate that demographic features do not lead to

variations in the magnitude of the causality bias.
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Contrary to the notion of a consistently occurring phenomenon, it has been shown that cer-
tain variables can alter the illusion of causality, with mood being a notable example (Matute et
al., 2015). Blanco etal. (2012), in their examination of the illusion of causality within an active
procedure (i.e., the illusion of control, see Section 2.3 ), found that scores on depressive symp-
tom scales can mediate the phenomenon. Consistent with the findings of Alloy and Abramson
(1979), individuals with higher depressive symptoms were more accurate in their causal judg-
ments under null contingency conditions. However, an explanation of these results suggests
that this tendency may be linked to the type of procedure used (i.c., active vs. passive). Depres-
sion might reduce the tendency to initiate voluntary responses (i.e., choosing not to introduce
the cause in the active procedure), whereas non-depressed participants acted with greater fre-
quency than depressed participants to obtain the outcome (i.e., introducing the cause in the
active procedure). As a result, non-depressed participants were exposed to a higher number of
cause-outcome coincidences. Although this explanation pertains specifically to the active pro-
cedure, these findings underscore the significant role that the probability of the cause plays in

either enhancing or reducing the illusions of causality (Matute et al., 2015).

Furthermore, the tendency to jump to conclusions (i.., deriving conclusions based on scarce
data) has been shown to mediate the effect of the illusion of causality. Participants with higher
scores on this tendency made higher causal judgments in a null contingency condition (Moreno-
Ferndndezetal., 2021). Additionally, attitudes and preferences also seem to play a role: the illu-
sion is enhanced when tasks are presented in a framework that aligns with personal preferences

and inclinations (Matute et al., 2022).

A modulation in the illusion of causality has also been observed in contexts where another
potential cause is available. Vadillo etal. (2013) found that participants informed about a poten-
tial alternative explanation for the outcome showed a reduced illusion of causality compared to
the group that received no suggestions about alternative explanations. Thus, informing people
about the existence of alternative causes can mitigate the illusion. Nonetheless, the presence of
an alternative cause can sometimes lead to erroneous conclusions. Yarritu et al. (2015) found
that presenting an illusory-cause condition (i.e., AP = 0) before an effective-cause condition

(i.e., AP > 0) could reduce the ability to detect the causal link in the latter condition.

Lastly, some research has specifically targeted bias reduction, hypothesizing and exploring

whether the causality bias can be diminished, as we will discuss in the next Subsection (3.1.1).
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3.1.1 FOCUSING ON THE ILLUSION REDUCTION

Matute et al. (2022) argued that the illusion of causality is a consistent and pervasive phe-
nomenon with significant consequences in various domains, such as health and politics. Many
social judgments and behaviors are influenced by intuitive evaluations of causal relationships
between events (Crocker, 1981). Moreover, it has been suggested that the illusion is linked to
pseudoscientific thinking and beliefs (Matute et al., 2011). Griffiths et al. (2019) showed that
individuals prone to superstitious beliefs are also susceptible to the causality bias.

Given these concerns, researchers have focused on developing strategies to reduce the causal-
ity bias (Matute et al., 2022). Some efforts have been made to create psychoeducational in-
terventions aimed at eliminating cognitive biases or diminishing their intensity and frequency
(Lilienfeld etal., 2009), though the effectiveness of debiasing techniques remains debated (Arkes,
1981). Specific interventions targeting the reduction of causality bias have been proposed by
Barberia et al. (2013; see also Barberia et al., 2018), who provided participants with explicit
instructions on how to counteract the bias and think in a more scientific manner.

A reduction in the illusion has also been observed in studies that specifically manipulated the
information presented in the classic CLT (see Section 2.3), as we will discuss in greater detail

in the next Sections (3.2 and 3.3).

3.2 FOREIGN LANGUAGE EFFECT

In investigating ways to indirectly reduce the causality bias, Diaz-Lago and Matute (2019b)
found thata group of participants who performed the CLT in a foreign language (FL) exhibited
areduced effect of the illusion of causality compared to a group that conducted the task in their
native language (NL). This result aligns with the foreign language effect (FLE), a phenomenon
for which an increasing body of literature has shown that conducting a task in a context of a
FL can affect decision-making outcomes (Circi et al.,, 2021).

The FLE was first described by Keysar et al. (2012), who found that participants exposed to
the asian disease dilemma in a FL exhibited less biased responses than those who conducted
the task in their NL. The asian disease problem is a task introduced by Tversky and Kahneman
(1981) to study how decision-making is influenced by the way choices are presented (i.c., the

way choices are framed). In this task, participants are asked to choose between a safe option and
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a risky option to deal with a hypothetical epidemic outbreak. This epidemic is expected to kill
600 people, and participants have to choose between two programs to combat the disease. Two
conditions are compared: one with options presented in a gain frame and another with options
presented in a Joss frame. In the gain frame, participants choose between two options: 1, for
which 200 people will be saved, and P2, for which there is a 1/3 probability of saving 600
people and a 2/3 probability of saving no one. In the loss frame, participants choose between
two options: P1, for which 400 people will die, and P2, for which there is a 1/3 probability
that no one will die and a 2/3 probability that all people will die.

When the choices are framed in terms of gains, the majority of people tend to exhibit risk-
averse behavior (i.e., favoring option P1), whereas when the choices are framed in terms of
losses, the majority of people tend to exhibit risk-seeking behavior (i.e., favoring option P2).
The normative and expected values for options P1 and P2 are the same in the gain frame and
in the loss frame. Therefore, the difference in responses between the two framings is considered
aviolation of the rules of rational choice (i.e., a biased response; Circi et al., 2021). Keysar et al.
(2012) found that when the asian disease problem was presented in a relatively low-proficient
FL, the effect of framing options in terms of gains or losses was reduced, and participants tended

to choose the risk-averse option (i.e., P1) in both conditions to a similar extent.

At first glance, this seems like a counterintuitive result, as we would expect that the use of
a FL could potentially increase cognitive difficulty, thereby promoting heuristics rather than
reducing them (Keysar etal., 2012). Nonetheless, over the years, the FLE has proven consistent
across different tasks in loss-aversion paradigms, decision-making, and moral dilemmas (Circi
etal,, 2021). For instance, Costa et al. (2014) replicated the findings from Keysar et al. (2012),
extending the evidence of the phenomenon to other heuristics, and showing how decision-
making, when problems are presented in a FL, is less subject to biases. Furthermore, in the area
of moral dilemmas, the FLE seems to promote more #tilitarian responses, which are judgments
aimed at maximizing benefits and minimizing costs across affected individuals, in contrast with
deontological responses, which are judgments aimed at following specific duties regardless of the

consequences (e.g., Costa et al,, 2014; Geipel et al,, 2015; Cipolletti et al., 2016).

Without providing an extensive review of the discussion on the psychological reasons why
the FLE occurs, we will briefly introduce two of the main ideas (see Subsections 3.2.1 and 3.2.2)

that can also be linked in some ways to the dual-process models (see Section 1.4).
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3.2.1 EMOTIONAL EXPLANATION

A first explanation of the FLE was proposed in the original study by Keysar et al. (2012). The
authors argued that the FLE arises because using a FL creates psychological distance from the
emotional intensity typically associated with one’s NL. This psychological distance is believed
to attenuate emotional reactions, thereby reducing the influence of biases that are often emo-
tionally driven. As discussed in the meta-analysis by Del Maschio et al. (2022), the role of emo-
tions in decision-making under either a NL or a FL can be understood in two ways: the NL
may promote emotional responses that can lead to intuitive reasoning and biased decisions, or
the FL may attenuate emotional responses, provoking the same effect.

Within the field of moral dilemmas, Greene et al. (2001; see also Greene et al., 2004) pro-
posed a domain-specific dual-process model (Craigie, 2011), which assumes the existence of
two cognitive subsystems that are in competition during moral reasoning tasks. The first sub-
system is emotionally driven, rapid, and automatic, while the second is deliberative, slow, and
effortful. There are undoubtedly certain analogies between the dual-process models discussed
in Section 1.4 and Greene et al. (2001)’ model. However, it is important to exercise caution
when comparing these models, given that the intuitive processes underlying system one, as pre-
sented in Section 1.4, and the emotionally driven processes of the first subsystem introduced
by Greene et al. (2001) are conceptually distinct (Craigie, 2011), and there are structural dif-
ferences between the models (Haidt, 2001). Nonetheless, in a broader sense, we can cautiously
suggest that this hypothesis implies either that using an FL reduces reliance on system one or
that the use of an NL prompts the engagement of system one, as conceptualized in Greene et al.

(2001)” model.

3.2.2 COGNITIVE EXPLANATION

Kahneman and Frederick (2002), referencing the dual-process models discussed in Section 1.4,
suggests that contextual factors that elevate mental stress or cognitive load can significantly
influence which system becomes more dominant in decision-making. Specifically, increased
mental stress or cognitive load (through, for example, the disruption of process fluency on a
task; see next Section 3.3), can enhance the reliance on system two processes, thus leading to
more deliberate and analytical thinking (Del Maschio et al., 2022). Conversely, these psycho-

logical conditions may reduce the influence of system one, which operates through automatic
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and heuristic-based judgments. In the context of the FLE, this theoretical framework suggests
that using a FL could shift decision-making away from system one thinking towards greater
reliance on system two processes (Costa et al., 2014). When individuals engage in decision-
making tasks in a FL, the cognitive demands of processing a non-native language may increase
cognitive load and necessitate more effortful, analytical processing, characteristic of system two,
consequently leading to more reasoned and less biased decisions. However, as noted by Del
Maschio et al. (2022) and Circi et al. (2021), this explanation is not without limitations. Some
studies have shown that a FL context does not necessarily reduce cognitive biases when partici-
pants are presented with emotionally neutral tasks (e.g., Geipel et al., 2015; Vives et al., 2018).
These findings suggest that the relationship between FL usage and reduced cognitive biases may

be more complex and context-dependent than initially assumed.

3.3 PROCESS FLUENCY

Another study, conducted by the same researchers who found that the illusion of causality can
be reduced when the task is conducted in a FL (Diaz-Lago & Matute, 2019b), showed that su-
perficial aspects of the information presented, such as the font in which text is displayed, can
influence the illusion of causality (Diaz-Lago & Matute, 2019a). In their experiment, partici-
pants engaged in a CLT where scenario frequencies, as depicted in Table 2.1 (see Section 2..3),
were manipulated to induce an outcome-density bias (see Section 2.4). Participants were ran-
domly assigned to one of two conditions: one group completed the task in an easy-to-read font,
while the other completed it in a hard-to-read font. The results showed a significant reduction
in the causality bias among participants in the hard-to-read font condition compared to those
in the easy-to-read condition. Notably, this difference was not only statistically significant but
also of medium effect size (see Section 4.2), indicating a substantial impact from this seemingly

minor change in the presentation of information.

To explain the influence of font type on the illusion of causality observed by Diaz-Lago and
Matute (2019a), it is helpful to build upon the framework discussed in Subsection 3.2.2 re-
garding the cognitive explanation of the FLE. In particular, the broader concept of processing
Sfluency (PF; see next Subsection 3.3.1) can shed light on how changes in cognitive effort may

alter decision-making and provoke a reduction in the illusion of causality.
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3.3.1 A TRIBE OF FLUENCY

PF refers to the subjective ease with which information is processed (Oppenheimer, 2008), serv-
ing as a metacognitive cue that significantly influences judgments and decision-making (Alter
& Oppenheimer, 2009). Thought processes are accompanied by the metacognitive experience
of the ease or difficulty with which mental representations can be retrieved by the mind, or the
fluency or disfluency with which new information can be processed (Schwarz, 2004). These
experiences are in themselves informative to some extent, as the knowledge of processing ease
or difficulty can lead to useful inferences about the external environment, showing how hu-
man judgments reflect not only the content of thoughts but also the metacognitive experience
of processing those thoughts (Alter & Oppenheimer, 2009). People form naive theories about
the causes of their fluency experiences, which, in turn, guide how fluency influences domain-
specific judgments (Schwarz, 2004). These naive theories are shaped by past experiences and
the current context (Oppenheimer, 2008). For instance, if a written text is syntactically com-
plex and difficult to read — therefore disfluent — it may lead readers to classify the text as overly
complex and unpleasant. Conversely, applying the same level of syntactical complexity to po-
etry might make it seem more intricate and interesting.

As argued by Oppenheimer (2008), the effects of processing (dis)fluency can be generated
by a wide array of cognitive processes, making it a difficult construct to capture. Any variable
capable of altering processing fluency could potentially lead to similar effects from a cognitive
standpoint (Schwarz, 2004). Moreover, every psychological experimental task can be described
on a continuum that ranges from effortless to effortful, resulting in a corresponding metacog-
nitive experience that spans from fluent to disfluent (Alter & Oppenheimer, 2009). Thus, flu-
ency experiences can arise as a byproduct of diverses cognitive processes, as illustrated in Figure

3.1, which has been adapted from the review by Alter and Oppenheimer (2009).

PF has been shown to influence judgments across a wide array of domains. For instance,
Schwarz et al. (1991), in a study on retrieval fluency, asked one group of participants to recall
6 examples of assertive behavior (an easy task) and another group to recall 12 examples (a more
difficult task). Participants who had to generate many examples found the process more dif-
ficult than those who had fewer examples to retrieve. Subsequently, participants rated their
own assertiveness. Results showed that their evaluations were based on how easily examples of

assertive behavior came to mind rather than on the number of examples they had generated.
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Figure 3.1: Various instantiations of fluency.

PF has also been studied in relation to other phenomena. For instance, Reber and Schwarz
(1999) showed that fluent statements are judged as more likely to be true than disfluent ones,
as people tend to associate fluency with truth and disfluency with falsehood (Schwarz, 2004).
Moreover, fluency is linked to judgments of liking (Alter & Oppenheimer, 2009). Reber et al.
(1998) found that participants rated fluent stimuli presented against highly contrastive back-
grounds as more aesthetically pleasing than identical stimuli against less contrastive backgrounds.
Additionally, research has shown that greater confidence in responses to questions is based on

the ease (i.e., fluency) with which those responses come to mind (Kelley & Lindsay, 1993).

Studies on PF have also extended beyond basic research, including applications in fields such
as marketing. For example, a study by Novemsky et al. (2007) indicates that the presentation
conditions of a product, which promote either fluency or disfluency, can play a key role in
determining whether a consumer makes a purchase. Specifically, when consumer products are
made disfluent, consumers are more likely to defer choice or opt for a default option compared

to when product names are fluently processed.
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3.3.2 PFINRELATION TO BIASES

PF is an influential factor in cognitive processing that can also be interpreted within the frame-
work of dual-process models (Oppenheimer, 2008). For instance, it has been suggested that
experienced difficulty (i.e., disfluency) on a task can prompt individuals to adopt a more sys-
tematic approach to information processing. Alter et al. (2007) conducted an experiment in
which participants took the cognitive reflection test (CRT; Frederick, 2005), a measure of the
extent to which individuals rely on system one processing. The test includes items where an
intuitive mode of reasoning (i.e., system one) leads to incorrect answers, but participants can
override these initial responses by engaging in more deliberate, analytical reasoning (i.e., system
two). The study found that participants who took the CRT in a hard-to-read font provided
more correct answers than those who took it in an easy-to-read font, suggesting that disfluency

led to a shift towards more systematic processing strategies.

The relationship between PF and the modulation of cognitive biases is well-supported across
various domains. For example, increased disfluency has been shown to reduce susceptibility to
cognitive errors like the Aoses illusion (Song & Schwarz, 2008) and to weaken the framing effect
(Korn et al., 2018). These findings highlight how lower fluency can lead to more effortful and

less biased reasoning by promoting a shift from intuitive to analytical processing.

Given these insights, we can hypothesize that high fluency, characterized by an effortless cog-
nitive experience, reinforces intuitive judgments aligned with system one processes. In contrast,
disfluency, marked by a challenging cognitive experience and increased cognitive load, prompts
more analytical and deliberate thinking associated with system two processes (Kahneman &
Frederick, 2002). In the study by Diaz-Lago and Matute (2019a), the use of a hard-to-read
font likely induced perceptual disfluency (see Figure 3.1), leading participants to rely less on
automatic, heuristic-based reasoning (system one) and more on deliberate, systematic process-
ing (system two). This shift in cognitive processing could explain the observed reduction in
the illusion of causality in the hard-to-read font condition. Considering that disfluency can
be triggered by various alterations that increase cognitive load and task difficulty, it is plausi-
ble that the reduction in the illusion of causality observed in both a hard-to-read font context
(Dfaz-Lago & Matute, 2019a) and a FL context (Dfaz-Lago & Matute, 2019b) may stem from

a common underlying mechanism involving heightened task difficulty.
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3.4 STUDY HYPOTHESES

While the connection between PF and the illusion of causality is compelling, it is important to
remark the multidimensional nature of the PF construct. As we exposed in Subsection 3.3.1,
PF encompasses various manipulations that affect the subjective ease of information process-
ing. However, these manipulations may target different stages and types of cognitive process-
ing. For example, manipulating language fluency, as in the FLE, primarily affects syntactic
and semantic processing, which occurs at a later stage of text comprehension, whereas manip-
ulating font type influences only the perceptual processing of written text, an earlier stage of
comprehension. Consequently, while both forms of fluency manipulation might shift process-
ing from system one to system two, the underlying cognitive processes involved are distinct and
warrant further empirical investigation. The study by Dfaz-Lago and Matute (2019a) suggests
that perceptual disfluency, manipulated through font type, can reduce the magnitude of the
illusion of causality. Building on this finding, our first experiment aimed to test whether percep-
tual disfluency, manipulated through the contrast of the written stimuli with the background,

similarly affects the illusion of causality. Thus, we formulated two hypotheses:

% Hr: Theillusion of causality will be reduced in a low-contrast condition compared to a
high-contrast condition in the CLT. Specifically, the mean judged strength of the cause-
effect relationship in the low-contrast condition is expected to be less than in the high-

contrast condition.

% Ho: The mean judged strength of the cause-effect relationship in the low-contrast con-

dition will be equal to the mean judged strength in the high-contrast condition.

In the next Chapter (4), we will present the design analysis, participant recruitment, and
experimental procedure for our first experiment. In Chapter s, we will detail the main results
related to our hypotheses. Given the null result observed, we decided to conduct a second
experiment to further investigate the phenomenon. We will discuss this experiment and its
results in Chapter 6. Finally, in Chapter 7, we will offer our analysis and interpretation of the

findings.

38



First experiment: structure

4.1 CONDITIONS

Within the context of a classic CLT paradigm (see Section 2..3), we manipulated the physical-
perceptual characteristics of the stimuli by adjusting the contrast of the written texts against the
background, using different colors on a white background. This manipulation aimed to alter
the perceptual fluency with which participants could perceive the stimuli and perform the task.
As shown by Reber and Schwarz (1999), contrast manipulation is a reliable source of variation
in perceptual fluency and has been successfully employed in other PF studies (e.g., in a research
on judgments of agent competence; Thompson & Ince, 2013).

We developed an online version of a standard CLT, characterized by two conditions: high
contrast (HC), where the written stimuli were displayed in dark blue on a white background,
and low contrast (LC), where the written stimuli were displayed in light yellow on a white
background. The colors were chosen based on the PF literature (e.g., Reber & Schwarz, 1999;
Thompson & Ince, 2013). Yellow text on a white background has been shown to induce sig-
nificant disfluency, whereas blue text on a white background has generally been shown to be

easy-to-read.
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Additionally, we consulted the human-computer interaction literature in order to determine
the precise bexadecimal (HEX) color codes for the online experiment (e.g., Hall & Hanna,
2004; Zuffietal., 2007). For the LC condition, we initially selected HEX #FFFFO00 (i.e., yellow),
which appeared sufficiently disfluent. However, due to variability in contrast across different
devices, we empirically observed that the contrast ratio needed adjustment. Consequently, we

further decreased the contrast ratio by using HEX #FFFF73 (i.c., a lighter yellow).

Another initial idea was to randomize the color of the text on a given randomized colored
background, maintaining a fixed contrast ratio between the background and the stimuli. This
approach aimed to evaluate the effect of contrast independently of the specific colors used.
However, we decided against this method to avoid introducing a confounding variable related
to polarity (i.e., dark text on a light background vs. light text on a dark background). This deci-
sion ensured that our manipulation strictly focused on the contrast and its effects on perceptual

fluency without introducing additional variables that could affect the outcomes.

To test whether the contrast manipulation affected the magnitude of the causality bias, we
combined the two contrast conditions with two different contingency conditions in a 2 (con-
trast: HC vs. LC) x 2 (contingency: true contingency vs. null contingency) between-subjects
factorial design. The true contingency condition was characterized by a positive A P, indicat-
ing an actual causal link between the cue and the outcome event. The null contingency con-
dition, characterized by a null AP, indicated the absence of a real causal link between the cue
and the outcome event. An outcome-density bias was induced (see Section 2.4), as previous
studies (e.g., Dfaz-Lago & Matute, 2019a, 2019b) have shown this condition to give rise to a
robust illusion of causality. If perceptual disfluency, induced by the LC condition, prompts
system two reasoning and reduces the magnitude of the illusion of causality, then in the null
contingency condition, lower causality ratings are expected in the LC condition compared to
the HC condition. As shown by previous studies (Difaz-Lago & Matute, 2019a, 2019b), no
effect of perceptual disfluency is expected in the true contingency condition, which served as

our control group.

To ensure transparency and replicability, we pre-registered the hypotheses (see Section 3.4),
along with the design features, on the Open Science Framework (OSF) website at the following
link: https://ost.io/74d6g. The codes for the experiment, the raw data, and the script used for

the main analyses are available on OSF at the following link: https://osf.io/c26qa.
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4.2 PARTICIPANTS
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Figure 4.1: Simulated power function for the critical comparison.

To determine the appropriate sample size, a power analysis must be conducted (see Figure
4.1). Through power analysis, we can ascertain the required sample size /N based on fixed val-
ues for the probability of a rype I error (), the probability of a rype II error (3) and its com-
plement (power; 1 — [3), and the effect size, which reflects the magnitude of the difference
between central tendency measures and their variability. We performed a power analysis using
the pwr package (Champely, 2020) in R (R Core Team, 2022). For the hypothesized effect
size, we referred to the results of a previous study by Diaz-Lago and Matute (2019a), which
reported a medium effect size (d = 0.58) for the difference in the rated strength of cause-effect
relationships between two conditions (i.e., easy-to-read font vs. hard-to-read font) in the null
contingency condition. We set the power to 0.8 to detect this medium effect size of 0.58 with
a standard « error probability of 0.05.

The result of the analysis was N = 37, with IV referring to the number of participants in
each group (see the green dot in Figure 4.1). Given that there were four groups (i.c., 2 contin-

gency x 2 contrast), a total of 148 participants was necessary. With this sample size, as con-
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firmed by a prospective design analysis using the PRD.4 package (Callegher et al., 2021) in R,
our type M error was 1.16 and our type S error was 0 *.

To further increase the statistical power of the critical comparison between the two contrast
conditions (HC vs. LC) in the null contingency condition, we decided to collect 60 partici-
pants for each of these two groups, raising the statistical power above 0.9 (see the red dot in
Figure 4.1). This result was confirmed by a retrospective design analysis with the PRD.A pack-
age in IR, which showed an M error of 1.04 and an S error of 0. For the two true contingency
groups (HC vs. LC), we recruited 40 participants each, targeting a total of 200 participants.
Thus, participants were randomly assigned to the four conditions in the following proportion:
3 (null contingency, LC): 3 (null contingency, HC): 2 (true contingency, LC): 2 (true contin-
gency, HC).

Participants were recruited through various advertisements on social networks and univer-
sity flyers. Those who agreed to participate had a chance to win 25 euros through a lottery,
with 6 prizes distributed randomly among those who completed the experiment.

A total of 209 participants took part in the experiment. However, data from 9 participants

were excluded based on the following « priori exclusion criteria:
% Completing the experiment twice (5 participants).

% Reading the fictitious story in less than 10 seconds (4 participants).

9,
*o*

Completing the experiment in less than 180 seconds (0 participants).

R
**

Completing the trial section in less than 160 seconds (0 participants).

% Responding to each of the two final questions in less than 2 seconds (0 participants).

The final sample consisted of 142 females and 58 males, with an average age of 25.92 years
(SD = 9.59). A Pearson’s chi-square test of independence showed no significant difference in
the distribution of sexes across the four groups, x*(3) = 3.99,p = 0.26. Given the positive
skewness in the age distribution (see Figure 4.2), a Kruskal-Wallis test was conducted to assess

age differences across groups. The test indicated no systematic differences in age across the four

groups, x*(3) = 3.20,p = 0.36.

"Type S error refers to the probability of obtaining a statistically significant result in the opposite direction to
the plausible one, while type M error represents the factor by which a statistically significant effect is, on average,
exaggerated.
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Figure 4.2: Participants’ age and biological sex distribution.

4.3 PROCEDURE

Before starting the experiment, participants read the online informed consent form approved
by the Ethics Committee for Psychological Research at the University of Padova * and then gave
their consent to participate through a response key.

Participants were automatically assigned to one of the four conditions using the VESPR
online studies portal (Morys-Carter, 2022). As participants started flowing through the data
collection procedure, this portal continuously self-balanced the assignment to conditions ac-
cording to the proportions indicated in Section 4.2. After assigning participants to conditions,
the program directed them to start the experiment on the Pavlovia online platform (https:
//pavlovia.org), which hosted the study. The experiment was programmed from the ground
up using PsychoPy (Peirce et al., 2019), and the code was compiled in Psycho/S. To ensure con-
sistency and control over the experimental conditions, participants were required to use a com-
puter to launch the experiment. The screen background was set to white. Participants were

asked three times to position themselves in a sufficiently illuminated room without direct light

2Protocol number 5010, November 3rd, 2022.
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Figure 4.3: CLT structure and contrast differences.

on the screen. These reminders were provided when they received the recruitment link, in the

informed consent form, and on the first instructions screen.

The experiment consisted of a standard CLT (see Figure 4.3), using an adaptation of the al-
lergy task (Wasserman etal., 1990). The task was presented in Italian language. In the first phase
of the experiment (see Figure 4.3 — Panel A. Instructions), a fictitious story was presented to the
participants. Participants impersonated emergency room personnel and they were instructed
to determine if there was a causal relationship between the presence of a medicine Batatrim (i.c.,

the potential cause or cue) and the healing of the disease Lindsay Syndrome (i.e., the outcome).

Then, in the second phase (see Figure 4.3 — Panel B. 40 trials), participants were exposed to
a succession of 40 patient records (i.e., 40 trials, ITI= 1 sec), in a random order. Each record
described one of four different scenarios (see Table 4.1), given by the possible presence or ab-
sence of the cue (i.e., the patient bad or bhad not taken the medicine to recover from the disease)
and the possible presence or absence of the outcome (i.e., the patient had or had not recovered).
Through the manipulation of the frequency of the four scenarios, we created two different
contingency conditions, namely a null contingency condition, in which AP = 0, and a true

contingency condition, in which AP = 0.60. The exact frequencies of the four scenarios
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Null contingency True contingency
B, By, P(X|Y) By By PX|Y)
A 15 5 [PBIA) =075 A 15 5 | P(BiA;) =0.75
AP =0 AP =0.60

Table 4.1: Frequency of each scenario and corresponding conditional probabilities.

in each condition are reported in Table 4.1. It should be noted that, in the null contingency
condition, the probability of the presence of the outcome (i.e., P = .75) was much higher
than the probability of the absence of the outcome (i.e., P = .25). According to the results
from previous studies, this should lead to a outcome-density bias (Matute et al., 2015). Each
patient record was composed of three horizontal panels. The upper panel remained visible for
the whole duration of the trial, and informed the participant about the presence/absence of the
cue (i.e., The patient bas taken the Batatrim). The middle panel remained visible for the whole
duration of the trial as well, and it presented a predictive question, to maintain the attention
on the task. The participant was asked about whether the participant will heal after taking the
medicine, by clicking with the mouse on one of the two buttons. No time limits were provided
for the response. After the response was recorded, a third panel appeared below the middle one,
which informed the participant about whether the patient had recovered or not. It is impor-
tant to notice that the response provided by the participant through the mouse click had no
influence on the information provided in the third panel. The three panels disappeared from
the screen after 2 seconds, and then a new patient record was presented. As in Diaz-Lago and
Matute (2019a)’ study, we avoided including any pictures of the drug and the patient, to force
the participants not to rely on shortcuts.

In the third phase of the procedure (see Figure 4.3 — Panel C. Rating), participants were asked
to judge the strength of the causal relationship between the two events (i.e., To what extent
do you think that Batatrim was effective in bealing the crises of the patients you have seen?),
using a visual analog scale from 0 (Definitely Not) to 100 (Definitely Yes). Once participants
clicked on the scale, a cursor appeared, and participants could drag the cursor along the entire
range between 0 and 100 to pick the exact judged discrete number. A numeric feedback was

presented under the visual scale.
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In the last phase (see Figure 4.3 — Panel D. Final question), participants were asked to judge
the disfluency of the task through a single question (How difficult have you found the reading ac-
tivity during this experiment?), using a 7-point Likert scale (1= Very Easy; T= Very Difficulr) that
was similar to that used for the causality rating. We used a single item because, in this specific
domain, the application of a single question has been shown to be robust from a psychometric
standpoint and more understandable for participants with respect to multi-item scales (Graf
etal, 2018).

As for the manipulation of perceptual (dis)fluency in the HC condition, the text for the in-
structions, patients records, and causality rating was presented in blue on a white background
(HEX #000063; 17.79 contrast ratio; see the upper half of Figure 4.3), whereas in the LC con-
dition the text was presented in yellow on a white background (HEX #FFFF73; 1.07 contrast
ratio; see the lower half of Figure 4.3). In the reading difficulty rating phase, a black text on
white background (HEX #000000; 21 contrast ratio; see the fourth panel of Figure 4.3) was
used both in the HC and in the LC conditions. In each phase of the experiment an arial font
was used, scaled to 0.03 height (i.e, the maximum height of any letter did not exceed 3 percent

of the height of the screen).
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First experiment: results

5.1 GENERAL DATA ANALYSIS PROCEDURE

After all 200 participants completed the experiment, we aggregated the individual data files
generated by PsychoPy for each participant into a single dataframe. We then used both R (R
Core Team, 2022) and JASP (JASP Team, 2023) to conduct descriptive and inferential data
analyses, apply exclusion criteria (see Section 4.2), study the sample, evaluate the effectiveness
of the experimental manipulation, and extract the results. Graphics were produced using the
goplotz package in R (Wickham, 2016). Data analyses were primarily conducted within the
null hypothesis significance testing (NHST) framework, as already implied by the presence of
the power analysis (see Section 4.2). For the critical tests in both experiment one and experi-
ment two (see Sections 5.3 and 6.6), in addition to the NHST approach, we employed Bayesian
analyses to provide more direct evidence for either H; or H (see the hypotheses formulated in
Section 3.4). Bayesian data analyses were also utilized in models comparison (see Section 7.2),

as the Bayesian approach offers distinct advantages in models selection.

In this chapter, we will present the results of the first experiment, beginning with the analysis
of the perceptual fluency data (see Section 5.2), followed by the results from the analysis of the

causality rating task (see Section 5.3).
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5.2 MANIPULATION CHECK (PERCEPTUAL FLUENCY)
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Figure s5.1: Subjective evaluation of reading difficulty expressed as percentages.

First, we expected the LC condition to induce a disfluency effect on participants. Perceptual
fluency was measured using both subjective and objective indices.

For the subjective measure, we considered scores from the single-item question on subjec-
tive reading difficulty (see Section 4.3), which are represented in Figure 5.1 as percentages and
Figure 5.2 as discrete distributions.

A two-way between-subjects analysis of variance (ANOVA) with factors contingency (null
vs. true) and contrast (HC vs. LC) showed a significant main effect of contrast, F'(1,196) =
184.99, p < .001, 775 = .48. Consistent with expectations, reading difficulty was rated higher
in the LC condition (M = 4.98, SD = 1.68) than in the HC condition (M = 1.96, SD =
1.46). The main effect of contingency and the two-way interaction were not statistically signif-
icant [F'(1,196) = 0.179,p = .67, = .0004; F'(1,196) = 1.704,p = .19,72 = .004],
suggesting that contingency had no effect on perceived reading difficulty (M = 3.51, 5D =
2.14 in the null contingency condition and M = 3.41, 5D = 2.23 in the true contingency

condition).
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Figure 5.2: Subjective evaluation of reading difficulty expressed as discrete distributions.

For the objective measure, we considered the total time to complete the entire experimental
procedure (see Figure 5.3). Experiment time was analyzed with the same independent vari-
ables as the rated reading difficulty. The main effect of contrast was statistically significant
F(1,196) = 4.61,p = .033, nf, = .02, due to longer experiment time in the LC condition
(M = 373.25 sec, SD = 105.68 sec) than in the HC condition (M = 341.03 sec, SD =
106.26 sec). The main effect of contingency and the two-way interaction were not statistically
significant [F(1,196) = 1.27,p = .26,72 = .006; F(1,196) = 0.34, p = .56, 72 = .002],
suggesting that contingency had no effect on experiment time (M = 350.25 sec, SD = 96.26
sec in the null contingency condition and M = 367.48 sec, SD = 121.09 sec in the true con-

tingency condition).

Furthermore, although the relationship between the two measures of (dis)fluency (i.c., total
experiment time and subjective reading difficulty) is likely spurious, as they both depend on
the experimental manipulation of contrast (i.e., LC vs. HC), itis noteworthy that the objective
index and the subjective index were moderately correlated (1, = 0.20), as shown in Figure .4,

indicating the existence of an association between the two (dis)fluency measures.
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Figure 5.4: Correlation between time and subjective evaluation of reading difficulty.
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5.3 CAUSALITY RATINGS

Our main goal was to test if perceptual disfluency, induced by a low contrast of the written text
with the background, was able to produce the engagement of system two, leading to a reduction
in the illusion of causality induced in a null contingency scenario. The causality ratings are
represented in Figure 5.5 (the red dots on the charts indicate the means for each group).

A two-way between-subjects ANOVA with factors contingency (null vs. true) and con-
trast (HC vs. LC) showed a statistically significant main effect of contingency, F'(1,196) =
12.98,p < .001, 77]2) = .06. As expected, the causality ratings were larger in the true contin-
gency condition (M = 69.95, SD = 15.82) than in the null contingency condition (M =
60.82, SD = 18.62). However, it is worth highlighting the large mean value observed in the
null contingency condition, which confirms the presence of a robust illusion of causality. The
main effect of contrast was not statistically significant, F'(1,196) = 0.86, p = .36,72 = .004,
as the means of the causality ratings in the HC and the LC condition were similar to each other
(HC: M = 63.32,SD = 18.25; LC: M = 65.62,SD = 17.93). Crucially, the two-way
interaction was not statistically significant, F'(1,196) = 1.14,p = .29, 77; = .005, which is
at odds with the hypothesis that perceptual disfluency induced by low contrast can lead to a
decrease in the magnitude of the illusion of causality in the null contingency scenario.

In line with the pre-registered analysis plan (see Section 4.1), we also conducted a classic one-
tailed independent samples t-test and a one-sided Bayesian t-test to testif, in the null contingency
condition, the causality ratings in the HC condition were larger than the causality ratings in
the LC condition. The results of the classic t-test were not statistically significant ¢(118) =
—1.32,p = .90,d = —0.24. It is worth noting that the difference is in a direction opposite
to that hypothesized, as the causality ratings in the HC condition (M = 58.58, 5D = 18.51)
were slightly smaller than those in the LC condition (M = 63.05, 5D = 18.64).

The Bayesian t-test was performed with both R (R Core Team, 2022) and J4SP (JASP
Team, 2023). The results and graphics yielded from JASP software, as the main results are
redundant with the ones yielded by R, will not be presented, but they can be found on OSF
(see Section 4.1). In R we performed the Bayesian t-test using the BayesFactor package (Morey

& Rouder, 2022).
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We used a function to perform a so-called /ZS t-test (Morey & Rouder, 2022), where the
standardized effect size” under the alternative hypothesis (/1) has been characterized by a trun-
cated half-Cauchy prior distribution (see the dotted blue line in Figure 5.6) with a standard
width parameter of V2 /2 (i.e., we assumed a probability of .50 that the effect size lay between
0and ~ —0.707). The standardized effect size under the null hypothesis () has been char-
acterized by a point-null prior spike distribution.

The computation of Bayes Factor (BF') through a Markov Chain Monte Carlo (MCMC)
procedure showed that the observed data were over 11 times more likely under the null hypoth-
esis than under the alternative hypothesis (5 £y = 11.07), indicating strong evidence for the
null hypothesis (see the moon chart in Figure 5.6, which was inspired by the type of graphics
produced by /4SP; JASP Team, 2023). The posterior distribution (see the red curve in Figure
5.6) was simulated through a A/CMC method (10° iterations) using the alternative model as
a prior. The posterior distribution for the alternative hypothesis was highly condensed near
0, in line with the conclusion of an absence of a significative disfluency effect (Mdn = 0.06,
C1 = [-0.265; —0.002], see the red box in Figure 5.6).

Based on these results, we can conclude thatincreased perceptual disfluency, obtained through
the presentation of the CLT experiment with LC written stimuli, did not elicit a reduction in

the magnitude of the illusion of causality.

' Standardized effect size:
H1 — H2
6 = —— (S'I)
o

Where (11 is the mean of the first group, ji2 is the mean of the second group, and o is the standard deviation.
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Figure 5.6: Prior and posterior for the alternative hypothesis.

53







Second experiment: an extension

6.1 BUILDING UPON THE FIRST EXPERIMENT

We designed our first experiment as a generalization attempt of the findings reported by Diaz-
Lago and Matute (2019a). The primary objective was to provide empirical support for the
illusion-reduction hypothesis (see Section 3.4) through a targeted manipulation of the percep-
tual attributes of stimuli within a CLT paradigm. In particular, our first experiment sought to
investigate whether altering perceptual fluency via contrast manipulation could influence the
strength of theillusion. While the experiment successfully induced variations in task (dis)fluency
through contrast manipulation (see Section s5.2), the anticipated effects on the magnitude of

the illusion did not materialize (see Section 5.3).

The null results suggest a nuanced relationship between fluency manipulations and the cog-
nitive processes underlying the illusion. Not all fluency manipulations, it appears, are capable
of modulating the illusion’s strength. This outcome underscores the necessity of a critical re-
assessment of the broader hypothesis that cognitive disfluency invariably triggers a shift towards

a more deliberative and effortful cognitive processing mode (i.e., system two).

55



6.2 CONDITIONS
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Figure 6.1: Comparisons between previous and latter conditions.

To achieve a more nuanced understanding of how perceptual disfluency influences causality
bias, we designed experiment two to test whether the original effect observed by Dfaz-Lago and
Matute (2019a) could be replicated in a similar experimental setting. Our aim was to further
explore the impact of font type on the magnitude of causality bias by conceptually replicating
their previous font-manipulation study.

Based on the results from the reading difficulty question discussed in Section 5.2, it is im-
portant to note that both the HC true contingency condition and the HC null contingency
condition from experiment one were characterized by the use of a font that was easy-to-read
(see Figure 6.1 — Panel 4. HC conditions — easy-to-read font). Specifically, in these conditions
that employed a fluent font, participants generally rated the task on a 7-point Likert scale as
reasonably easy, with a mean difficulty rating of 1.96 (SD = 1.46; see Figures 5.1 and 5.2).

For experiment two, we expanded upon this setup (i.e., the two HC conditions) by intro-
ducing two new participant groups who were presented with the experimental materials in a

hard-to-read font (i.e., an uppercase brush script MT, hereafter referred to as brush; see Fig-
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ure 6.1 — Panel C. HC conditions — hard-to-read font). Thus, we conducted a comparison
between the already collected data from the HC conditions and the fresh data from two new
groups of participants. These new groups were exposed to either a true contingency condition

(AP = 0.60) or a null contingency condition (AP = 0), as in the previous experiment.

The experimental design for experiment two was a 2 (font: arial, easy-to-read vs. brush,
hard-to-read) x 2 (contingency: true contingencyvs. null contingency) between-subjects factorial
design. The task presented in the brush font can be seen in Figure 6.1 (Panel C. HC conditions
— hard-to-read font). Notice the difference with the LC conditions that we created in our first

experiment, which are shown in Figure 6.1 (Panel B. LC conditions — easy-to-read font).

If perceptual disfluency induced by the use of a hard-to-read font reduces the strength of the
causality illusion, we hypothesize, in the same fashion as our first hypothesis (see Section 3.4),
that causality ratings will be lower in the disfluent condition compared to the fluent condition,
specifically within the null contingency condition. Conversely, no significant effect of font type

is expected in the true contingency condition, which, again, constitutes our control group.

It is important to clarify a technical detail: the brush font used in experiment two differs
from the mistral font employed in Dfaz-Lago and Matute (2019a)’ study (see Figure 6.1 — Panel
D. bard-to-read font in the original study). While visually similar, brush was chosen for its prac-
tical suitability in online studies, as it does not require participants to download and install the
font on their devices. More information about this font can be found on the W3schools website
(https://www.w3schools.com/css/cssfontwebsafe.asp). The brush font is designed to mimic
handwriting, making it visually comparable to mistral. Moreover, it has been previously uti-
lized as a hard-to-read font to induce cognitive bias reduction (e.g., Song & Schwarz, 2008).
Based on empirical observations, we opted for an uppercase variant of the brush font to en-
sure increased reading difficulty in the online task. To maintain experimental rigor, we strictly
adhered to the procedures established in experiment one, ensuring consistency across both ex-

periments to facilitate direct comparisons between their results.

We pre-registered our new hypotheses and the methodological details for experiment two
on OSF at the following link: https://osf.io/ 4tdcy7. Additionally, the experimental code, raw
data, and scripts used for the primary analyses are available on OSF at the same link used for

the previous experiment: https://osf.io/c26qa.
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6.3 PARTICIPANTS
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Figure 6.2: Participants’ age and biological sex distribution.

The sample size for experiment two was determined using the same criteria as those applied
in experiment one (see Section 4.2). In the previous experiment, 100 participants were tested
under the easy-to-read arial font condition (i.e., HC condition) — with 60 participants in the
null contingency condition and 40 participants in the true contingency condition. To main-
tain consistency and comparability, we recruited for the second experiment a new sample of
100 participants, who were randomly assigned to either the null contingency condition (60
participants) or the true contingency condition (40 participants). Indeed, the critical compari-
son maintained the same power achieved for experiment one (see Section 4.2).

Participants, all of whom were native Italian speakers, were recruited via the online platform
Prolific (https://www.prolific.co/). Our sample comprised 60 females and 40 males, with an
average age of 32.19 years (SD = 10.67). No participants were excluded from the analysis,
adhering to the same exclusion criteria applied in experiment one (see Section 4.2).

To assess demographic balance across the experimental groups (see Figure 6.2), a Pearson’s

chi-square test of independence was conducted. The results indicated no significant differences
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in the distribution of biological sex across the four experimental groups, x*(3) = 6.78,p =
0.08. However, a Kruskal-Wallis test revealed significant age differences between the groups,
x*(3) = 42.27, p < 0.001, with the new sample’s average age being notably higher than that
of participants in the HC conditions of experiment one (M = 25.21 years, SD = 8.21). De-
spite these demographic differences, previous research on the illusion of causality consistently
shows that this cognitive bias manifests independently of confounding factors (see Section 3.1).
Moreover, no substantial evidence in the literature suggests a demographic distinction in the
occurrence of the causality illusion. To confirm this, we combined data from all 300 partici-
pants across both experiments and conducted a Bayes factor general linear model analysis using
the BayesFactor R package (Morey & Rouder, 2022). This analysis aimed to evaluate the po-
tential influence of age and sex on causality judgments. The results supported the null model,
which had atleast 7.37 times greater support compared to alternative models that included age,
sex, or both as predictors. We included sex as a predictor because the new sample exhibited a
more balanced distribution of sexes (60 females and 40 males) compared to the HC conditions
of experiment one (70 females and 30 males), although the p-value for the chi-square test was
slightly above the threshold of statistical significance. These findings suggest that despite the
demographic variations between the samples, the comparison between the hard-to-read and
easy-to-read font conditions remains methodologically robust. The detailed results can be ac-

cessed on OSF at the following link: https://osf.io/c26qa.

6.4 PROCEDURE

The procedural framework of experiment two remained largely consistent with that of experi-
ment one, with the exception of few specific modifications. In this experiment, all instructions,
patient records, and causality rating tasks were presented in a hard-to-read font (i.e., brush) with
ablue color (HEX: #000063; 0.03 height; 17.79 contrast ratio). Participants recruited on Pro-
lific platform were subsequently redirected to the Pavlovia website to initiate the experiment.
Before beginning the experiment, participants were required to review and accept the same
online consent form as presented in Section 4.3.

In the following sections, we will present the results of the second experiment, beginning
with the analysis of the perceptual fluency data (see Section 6.5), followed by the results from

the analysis of the causality rating task (see Section 6.6).
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6.5 MANIPULATION CHECK (PERCEPTUAL FLUENCY)
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Figure 6.3: Subjective evaluation of reading difficulty expressed as percentages.

As for the subjective measure of disfluency, we considered scores from the single-item ques-
tion on subjective reading difficulty (see Section 4.3), which are represented in Figure 6.3 as
percentages and in Figure 6.4 as discrete distributions.

A two-way between-subjects ANOVA with factors contingency (null vs. true) and font (arial
vs. brush) showed a significant main effect of font, F'(1,196) = 99.84,p < .001, 7]2 =
.34. As expected, reading difficulty was rated higher with the brush font (M = 4.48,SD =
2.07) than with the arial font (M = 1.96, SD = 1.46). The main effect of contingency and
the two-way interaction were not statistically significant [F'(1,196) = 0.03,p = .85, 772 =
.0002; F(1,196) = 2.95, p = .08, 7 = .014], suggesting that contingency had no effect on
perceived reading difficulty (M = 3.20, SD = 2.14 in the null contingency condition and
M = 3.25,5D = 2.27 in the true contingency condition).

For the objective measure, we considered the total time to complete the entire experimental
procedure (see Figure 6.5). Experiment time was analyzed with the same independent variables

as the rated reading difficulty. The main effect of font was statistically significant, F'(1,196) =
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Figure 6.4: Subjective evaluation of reading difficulty expressed as discrete distributions.

4.97,p = .03, 7712, = .02, due to longer experiment time in the brush condition (M = 376.81
sec, SD = 122.37 sec) than in the arial condition (M = 341.03 sec, SD = 106.26 sec).
The main effect of contingency and the two-way interaction were not statistically significant
[F(1,196) = 2.13,p = .15,772 = .01; F(1,196) = 3.86,p = .051,771% = .02], suggesting
that contingency had no effect on experiment time (M = 344.58 sec, SD = 97.23 sec in the
true contingency condition and M = 368.47 sec, SD = 126.03 sec in the null contingency
condition). Itis worth noting that the outlier shown in the left panel of Figure 6.5 (experiment
time longer than 900 sec) was associated with an acceptable Cook’s distance (0.11), and the

main results did not change even after removing that outlier from the dataset.

Furthermore, the two measures of (dis)fluency (i.e., total experiment time and subjective
reading difficulty) were moderately correlated (r, = 0.16), as shown in Figure 6.6, indicating,

again, the existence of an association between the two (dis)fluency measures.
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6.6 (CAUSALITY RATINGS

The causality ratings are represented in Figure 6.7 (the red dots on the charts indicate the
means for each group). A two-way between-subjects ANOVA with factors contingency (null
vs. true) and font (arial vs. brush) showed a statistically significant main effect of contingency,
F(1,196) = 30.11,p < .001, 77]% = .13. As expected, the causality ratings were larger in
the true contingency condition (M = 72.74,SD = 16.72) than in the null contingency
condition (M = 58.13,5SD = 19.44). The main effect of font was not statistically signif-
icant, F'(1,196) = 0.25,p = .61,7, = .001, as the means of the causality ratings in the
brush and arial font conditions were similar to each other (brush: M = 64.63, 5D = 21.14;
arial: M = 63.32, 5D = 18.25). The two-way interaction was not statistically significant,
F(1,196) = 1.08,p = .30, 7, = .005, which is at odds with the hypothesis that perceptual
disfluency induced by a hard-to-read font can lead to a decrease in the illusion of causality.

In line with the pre-registered analysis plan, we also conducted a classic one-tailed indepen-
dent samples t-test and a one-sided Bayesian t-test to test if, in the null contingency condition,
the causality ratings in the brush condition were smaller than the causality ratings in the arial
condition. The results of the t-test showed that the causality ratings associated with the disflu-
ent brush font (M = 57.68, SD = 20.48) were not significantly smaller than those associated
with the fluent arial font (M = 58.58, SD = 18.51),#(118) = 0.25,p = .40,d = .05.

We performed the Bayesian t-test using the BayesFactor package (Morey & Rouder, 2022)
in R, in the same manner as shown in Section 5.3, using a function to perform the /ZS t-
test using the same alternative and null priors as descibed in Section 5.3. The computation
of BF through a MCAMC procedure showed that the observed data were over 4 times more
likely under the null hypothesis than under the alternative hypothesis (5 Fy; = 4.20), indicat-
ing moderate evidence for the null hypothesis (see the moon chart in Figure 6.8). The poste-
rior distribution for the alternative hypothesis (see the red curve in Figure 6.8) was simulated
through a MCMC method (10° iterations). The posterior distribution was moderately con-
densed near 0, in line with the conclusion of an absence of a significative effect (M dn = —0.13,
CI = [-0.418; —0.006], see the red box in Figure 5.6). Based on these results, we can con-
clude that increased perceptual disfluency, obtained through the presentation of the CLT ex-

periment with a hard-to-read font, did not elicit a reduction in the the illusion of causality.
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Discussion of results

7.1 EVIDENCE OF ABSENCE

We designed our second experiment as a replication attempt of the findings reported by Diaz-
Lago and Matute (2019a). Given thatour first experiment did not provide evidence supporting
the hypothesis that perceptual disfluency could diminish the illusion of causality (see Section
5.3), we sought to investigate whether altering perceptual fluency through the manipulation of
font difficulty — using a hard-to-read font — could exert an influence on the magnitude of the
illusion of causality. The results from our second experiment indicate that while the manipula-
tion of font successfully induced variations in task (dis)fluency (see Section 6.5), this alteration
did not translate into measurable effects on the strength of the illusion of causality (see Section
6.6). This finding directly contrasts with the expectations set by the original study of Diaz-Lago
and Matute (2019a).

In the following sections, we will present a comprehensive analysis of the combined data
from both of our experiments (see Section 7.2). Subsequently, we will engage in a thorough
discussion of our hypotheses in light of these results (see Section 7.3). This discussion will
explore possible explanations for the lack of observed effects, proposing directions for future

studies and research.



7.2 MODELS COMPARISON
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Figure 7.1: Relationship between fluency, contingency, and rated causality.

To gain a deeper understanding of the potential influence of perceptual (dis)fluency on
causality judgments, we conducted a comprehensive analysis by merging the datasets from both
experiments, resulting in a combined sample size of N' = 300. This larger dataset allowed us to
rigorously assess the relationship between perceptual fluency (i.e., fluency vs. font disfluency
vs. contrast disfluency), contingency (i.e., true vs. null), and the perceived strength of causality.

Figure 7.1 offers a visual summary of the interaction between fluency and contingency in
shaping participants’ causal judgments. In particular, the dot plot shows the judged strength
of causality for the six experimental groups. Each dot represents the mean of the corresponding
group, and each line represents the standard deviation of the corresponding group. The low-
contrast boxes show the overall means (central line) and standard deviations (ends of the boxes)
for the null contingency and the true contingency conditions.

We employed four distinct linear models to systematically evaluate the relationship between
the dependent variable — judged strength of causality — and the key predictors: contingency

(i.e., model 1; M1), fluency (i.e., model 2; M 2), contingency and fluency without interaction
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(i.e., model 3; M 3), and contingency and fluency with the interaction effect (i.c., model 4;
M4). In these models, fluency was treated as a categorical variable with three distinct levels, as

depicted in the legend of Figure 7.1.

To quantify the relative evidence for each model, we utilized the BF, calculated viaa MCMC
algorithmic approach, implemented in the BayesFactor package (Morey & Rouder, 2022).
Remarkably, the analysis revealed that M1, which excluded fluency as a predictor, demon-
strated the strongest explanatory power. Specifically, this model was found to be 19 to 3 x 10°
times more likely than the models that incorporated fluency as a predictor. This suggests that
the inclusion of fluency alongside contingency did not enhance the model’s ability to explain
the data, thereby weakening the case for an interaction effect between fluency and contingency.
To corroborate these findings, we also calculated Akaike weights (using the Akaike information
criterion, AIC) and Bayesian weights (using the Bayesian information criterion, BIC) with the
MuMIn package (Bartori, 2023). These additional analyses consistently supported the dom-
inance of M1 within the evidence, reinforcing the conclusion that this simple model, which
considers only contingency without fluency, provides the most robust explanation for the ob-

served data.

Model Predictor(s) BFi AIC weight  BIC weight
M1 Contingency 156163.60 0.69 0.99
M2 Fluency 0.05 < 0.01 < 0.01
M3 Contingency + fluency 7815.36 0.14 < 0.01
M4 Contingency x fluency (interaction)  3690.19 0.17 < 0.01

Table 7.1: Models’ descriptions and associated indices.

Table 7.1 presents a summary of the models comparison, highlighting the superiority of M1.
Figure 7.2 offers two heat maps (one for the AIC weights and one for the BIC weights) with
a direct one-on-one comparison between every combination of two models, including M0,
which constitutes the null model without predictor(s). The weight of a certain model has been
divided by the weight of another model, and the result has been log-transformed. On the X-
axis are represented the models at the numerator, whereas on the Y-axis are represented the
models at the denominator. Each cell value can be interpreted as the relative evidence in favor
(highlighted in red) or against (highlighted in blue) the model placed on the X-axis with respect

to the model on the Y-axis (this representation was inspired by the manual by Pastore, 2015).
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Figure 7.2: Models’ (log-)relative evidences.

7.3 INTERPRETATION OF RESULTS

Our study found null results, supporting the notion that perceptual disfluency does not mod-
ulate the illusion of causality, at least in cases where the disfluency manipulation reaches a sig-
nificant magnitude (see Subsection 7.3.1). These findings also lend support to the broader con-
clusion that the effects of processing fluency on cognition remain ambiguous, as highlighted
by Meyer et al. (2015). Importantly, the sample sizes were determined via an a priori power
analysis (see Section 4.2), ensuring that the null results cannot be attributed to a lack of statis-
tical power. Furthermore, the absence of effects cannot be ascribed to ineffective experimental
manipulations, as both subjective and objective measures confirmed that LC and hard-to-read
font conditions were associated with reduced processing fluency compared to HC and easy-to-

read font conditions (see Sections 5.2 and 6.5).

In the following Subsections (7.3.1 and 7.3.2), we propose two potential explanations for
the null results observed in our study. These hypotheses are tentative and necessitate further

empirical investigation to establish their validity.
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7.3.1 U-SHAPED RELATIONSHIP HYPOTHESIS
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Figure 7.3: Subjective difficulty and causality ratings in null contingency conditions.

Our first hypothesis suggests that the disruption of perceptual fluency may provoke the en-
gagement of a more deliberative and effortful mode of thinking (i.e., system two processes).
However, we posit that the relationship between processing fluency and the illusion of causal-
ity might follow a non-linear, U-shaped function. In this model, moderate disfluency could
enhance performance by engaging system two, but excessive disfluency might overload and sat-
urate the system’s capacities, thereby reducing or masking the engagement of system two.

If our hypothesis is accurate, it implies that the level of disfluency induced by LC and hard-
to-read font conditions in our study may have exceeded the optimal threshold for system two
engagement. Preliminary support for this hypothesis comes from comparing the disfluency
measures in our experiments with those in the study by Diaz-Lago and Matute (2019a). In
their study, fluency was assessed using three 7-point Likert scales that evaluated the ease of
reading, task fluency, and perceived task duration. While no significant effects were found for
perceived task duration, font type significantly influenced the ease of reading and task fluency,

with a mean difference of approximately 1.4 points between the two font types on the ease
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of reading scale’. In contrast, our experiments observed mean differences of approximately
3 points (experiment one) and 2.5 points (experiment two) in reading difficulty between the
disfluent and fluent conditions. These observations align with our proposed hypothesis, sug-
gesting that Diaz-Lago and Matute (2019a) may have observed a mitigated causality bias due
to the introduction of low to moderate levels of disfluency. Conversely, our experiments failed
to replicate this bias attenuation, possibly due to the imposition of higher levels of disfluency.
While this comparison should be approached with caution, the use of a 7-point Likert scale in

both studies facilitates such an analysis.

Beyond these qualitative observations, a more rigorous test of the hypothesized U-shaped
relationship between processing fluency and the illusion of causality is enabled by the avail-
ability of materials and raw data from the study by Diaz-Lago and Matute (2019a) on OSF
(https://ost.io/vrukz/). We merged data from our experiments with data from their original
study (see Figure 7.3), focusing on the relationship between causality ratings and perceived
task difficulty in null contingency conditions*. We constructed two statistical models: one
with perceived task difficulty as a linear predictor, and the other with perceived task difficulty
as a quadratic predictor. To evaluate the strength of evidence supporting each model, we com-
puted the BF using a MCAMC procedure via the BayesFactor package (Morey & Rouder, 2022).
The results indicated that the null model (see the red line on Figure 7.3) was 9.66 times more
likely than the linear model and 4.33 times more likely than the quadratic model, countering
the hypothesis of a linear or non-linear relationship between perceived difficulty and causal-
ity judgments. It is crucial to note that the experiments considered here were not specifically
designed to examine a U-shaped relationship between task difficulty perception and causality
ratings. Furthermore, the original study by Diaz-Lago and Matute (2019a) had a smaller sample
size (63 participants) compared to the larger sample sizes in our two experiments (180 partici-
pants). Asaresult, a small portion of our merged data was exposed to a less disfluent condition
relative to the larger and complementary subset. Therefore, these results should be interpreted

with caution. Future studies should address this hypothesis precisely.

In Diaz-Lago and Matute (2019a)’ study, the easiness of reading was found to be higher for the easy-to-read
font(M = 5.72,5D = 1.11 in the null contingency condition; M = 5.62, SD = 1.12 in the true contingency
condition) with respect to the hard-to-read font (M = 4.35, SD = 1.20 in the null contingency condition;
M = 4.28, SD = 1.08 in the true contingency condition).

*The easiness of reading item (7-point Likert scale) from the study by Diaz-Lago and Matute (2019a) has been
inverted in order to express the perceived difficulty of the task instead of the perceived easiness. This makes it
directly comparable with the ratings from our two experiments.
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7.3.2 DIFFERENTIAL ACTIVATION HYPOTHESIS

Our second hypothesis builds upon the absence of any discernible and systematic connection
between perceptual fluency and causality bias, as evidenced by the outcomes of our two exper-
iments. The results from our study and Diaz-Lago and Matute (2019a)’ study can be inter-
preted as conflicting evidence, wherein a standard NHST framework could be applied: in our
study, the probability of at least one of two critical statistical comparisons correctly rejecting
the null hypothesis — thereby detecting a significative effect, if present, given a hypothesized
effect size of 0.58 Cohen’s d — was greater than 99%. Conversely, the results obtained by Diaz-
Lago and Matute (2019a) could represent a false positive with a standard o probability of 5%,
making our findings more likely from a statistical standpoint.

This hypothesis also considers the potential influence of the FLE (see Section 3.2) on the
illusion of causality (Dfaz-Lago & Matute, 2019b). Although the literature on FLE remains in-
conclusive in explaining this phenomenon (Circi et al,, 2021), many bilingual cognitive models
emphasize the role of cognitive control mechanisms (Schwieter & Ferreira, 2016). We hypoth-
esize that not all types of processing disfluency are equally effective in activating system two
processing. It is possible that system two activation is more closely linked to high-order lexi-
cal and semantic processes involved in processing a disfluent FL, while remaining unaffected
by manipulations of superficial perceptual features such as contrast or font type. This may ex-
plain why presenting the CLT in a disfluent FL reduces causality bias, while presenting the CLT
in a hard-to-read format does not. This hypothesis stands in contrast to the first hypothesis (see
Section 3.4) and the findings of Diaz-Lago and Matute (2019a), as it suggests that manipulating

the perceptual features of information may not reduce the causality bias.

7.3.3 (CONCLUSION

In conclusion, fluency serves as a versatile construct, playing a key role in gauging the perceived
difficulty of a task, which is closely tied to the cognitive load across various processes. How-
ever, the results from our two experiments raise doubts about the all-encompassing explana-
tory power of the fluency construct. These findings highlight the need for a more in-depth
and nuanced examination of the cognitive mechanisms that influence cognitive biases. Future
research should strive to pinpoint, with greater accuracy, the specific manipulations of PF that

can effectively reduce the illusion of causality.
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Appendix

Chapman and Robbins (1990) demonstrated that when a single event A and a single event B
are involved, the RWM (see Subsection 2.6.3) can be reduced to the A P rule (see Section 2.4).

This demonstration relies on two key assumptions:
% The context X is present during every trial.

% Learning continues until there is no more discrepancy between the actual and expected

outcomes (i.e., until AV converges to 0).

The RWM updates the associative strength V41 for each event A (and context X') based on
the RWM error-correction rule (see Equation 2.17) expressed in Subsection 2.6.3. In a typical
contingency judgment experiment involving one event A and a context X, there are four types
of trials, corresponding to the four cells a, b, ¢, and d, of the 2 x 2 Table 2.1. The RWM
equations for each trial type are as follows:

For a trials

AVx = axf(l — (Vx +Va))

(1)
AVy = aaB(l — (Vx +Va))
For b trials
AVx = axB(0— (Vx +Va)) ()
AV = B0 — (Vx + Va))
For c trials
AVyx = axp(1 - Vx) (3)
For d trials
AVx = axp(0 - Vx) (4)
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Thus, for each trial type one equation is constructed for both event A and context X present
on that trial. The value of A is set to 1 on trials with event B present and is set to 0 on trials
with event B absent. The associative strength V4 is updated during a and b trials, while V
is updated during all four types of trials. Thus, for any particular block of trials, the average
changein V4 is weighted by the relative frequencies of a and b trial types, and the average change

in Vx is weighted by the relative frequencies of each trial type:

Mean AV = axfB [a(1 — (Vx + Vi) + b0 — (Vx + V)] (s)

Mean AVx = axfla(l — (Vx +Va)) +b(0 — (Vx +Vi4)) +

(6)
+C(1 —Vx) +d(0—VX)]
Simplifying:
Mean AV,
TR i~ Vala+b) — Vi(a+b) (7)
asf
Mean A
.J%%;k:a+c—VMa+@—VkM+b+C+® (8)
X

Learning continues until Equations 7 and 8 stabilize at zero. V4 and Vx become constants:
although they may fluctuate from trial to trial, their means will maintain a constant value over

many blocks of trials. We can set Equation 8 equal to zero and solve for Vx:

a+c—Va(a+Db)

V pu—
YT T a+btctd ©)
Setting Equation 7 equal to zero and substituting Vx from Equation 9, we get:
b -V b
O:a—VA(a+b)—<a+ Jatc=Vala+ )] (10)

a+b+c+d

Solving Equation 10 for V4, Chapman and Robbins (1990) found that V4 yields the AP

index:
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