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ABSTRACT 
 

Extreme events, such as floods, are increasing in frequency and intensity, making it 

essential to understand the factors that influence them. The objective of this thesis is to 

analyze the impact of initial soil moisture conditions on the generation of flood events 

and develop a statistical tool to study the impact of climate change on the magnitude of 

floods. Specifically, the study is conducted by exploiting rainfall and streamflow records 

observed in five study sites located in the Veneto region. The analysis starts by defining 

a bivariate joint distribution of peak flow rate and antecedent cumulative soil moisture. It 

was possible to determine that the antecedent moisture calculated over the past 5 days is 

more correlated with the discharge as compared to the antecedent moisture calculated 

over longer time-windows. Three models were compared to study extreme events: the 

Generalized extreme value theory (GEV), the Simplified Metastatistical Extreme Value 

Distribution (SMEVD) based on a single class of data and the moisture accounting 

SMEVD. In particular, the SMEV distribution is derived from the more generalized 

Metastistical Extreme Value (MEV) approach, which allows the use of a much larger 

sample of data than GEV, enabling a better description of extreme events, even in the 

context of climate change. The moisture accounting SMEVD is a model that allows the 

fit of flow events by dividing them into classes. In this case, three classes were used, 

created according to moisture level: dry soil, average wet soil and wet soil. Different 

methodologies such as Goodness of fit and Cross Validation were used to measure the 

performance of the models. Goodness of fit showed better performance using the GEV, 

the moisture accounting SMEVD has lower performance only for the extreme event 

related to storm Vaia. Cross-Validation, on the other hand, showed better performance 

using the moisture accounting SMEVD model, highlighting the advantages of using this 

model over GEV. The moisture accounting SMEV model, can also be used to make 

assumptions about climate change, in fact in the last phase of the research it was used to 

hypothesize three climate change scenarios. The first scenario was developed, assuming 

a 50% reduction in the frequency of events in the soil class with the highest moisture 

content. The second scenario instead assumes a 15% increase in the scale parameter of 

the Gamma distribution used to fit the events to the model. The third scenario (the most 

pessimistic) combines the changes assumed in the first two. The first and last climate 

change scenarios identify a decrease in magnitude for events associated with low return 

times, while an increase in magnitude is observed for events with high return times. In 

contrast, the second scenario shows an increase in magnitude for events associated with 

all return times. 
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1. INTRODUCTION 

Extreme events are becoming a growing problem in the world. An extreme event is 

defined as a rare weather event (unusually high intensity) for a given location and/or time 

of the year. This definition was given by the IPCC, Intergovernmental Panel on Climate 

Change, the most important international organization for assessing climate change. The 

IPCC was founded in 1988 by the World Meteorological Organization (WMO) and the 

United Nations Environment Program (UNEP) to provide the world's population a clear 

view of the current and future climate conditions. The IPCC also prepares various types 

of reports, one of which is for politicians or policy makers to implement laws to try to 

limit extreme events. There are many types of extreme events, such as storms, heavy rain, 

floods, droughts, heat waves and wildfires. River floods occur when the water level 

exceeds the level of the banks or causes them to collapse due to excessive load, spilling 

water into the surrounding areas. This phenomenon is usually caused by intense weather 

events, such as intense and prolonged rainfall or the rapid melting of snow due to high 

temperatures. Climate change acts by causing higher temperatures, which favors more 

intense rainfall and accelerated snowmelt in some regions, thus increasing the risk of 

flooding. The consequences of floods are significant and can cause damage to both 

infrastructure and the local ecosystem. Climate change is mainly caused by the increase 

in greenhouse gases due to the use of fossil fuels. This phenomenon can be contained in 

built-up areas with the construction of reservoirs, but this is not always possible for 

economic or space reasons. The aim of this thesis is to analyze the impact of initial 

moisture conditions on the generation of flood events. To do this, three different models 

will be used to study extreme flood events. The three models are based on the use of two 

different distributions. The first approach uses the GEV (Generalized Extreme Value) 

distribution, a statistical distribution commonly used in the analysis of extreme events. 

The GEV is based on extreme value theory and is typically applied to the annual maxima 

of the flow time series. This distribution allows the probability of extreme flow events 

(such as floods) to be modelled based on the observed maxima in each year. The GEV 

distribution can easily fit the data, as it exploits three types of distributions Gumbel, 

Fréchet and Weibull. Nevertheless, the GEV distribution has some limitations. One of its 

main limitations is that it only considers annual maxima for the analysis of extreme 
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events, neglecting potential useful information that could be found in the other peaks. To 

overcome these limitations, an alternative approach was considered, the MEV 

(Metastatistical Extreme Value). This method allows the entire distribution of extreme 

data to be exploited and is not limited to considering a single value for each year. Through 

this assumption, it is possible to achieve greater precision in the description of the tail of 

the distribution, in other words a better fit between the distribution and the extreme 

events. The use of MEV also makes it possible to explore how the distribution of extremes 

may vary as a function of pre-existing climatic conditions. The other objective of this 

thesis is to develop three hypothetical climate change scenarios in order to observe how 

future climate conditions change. These future climate scenarios will be compared with 

the current climate condition and will make it possible to observe how the events 

associated with the same return time vary in intensity. By comparing these models and 

analyzing hypothesized scenarios, new knowledge will be acquired on the dynamics 

governing flood events and useful indications for flood risk management in the context 

of climate change. The expected results will be able to contribute to improving the ability 

to forecast extreme events and to refine adaptation strategies to new climatic conditions. 

In the following chapters, the methodologies used will be presented and explained in 

detail. In addition, the main analysis steps are explained. 
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2. METHODS 

In the following chapter, the methodologies used to perform the analysis of extreme 

events are presented. In particular, the types of models used to describe the course of 

extreme events, the procedure for calculating the parameters of the distributions and the 

procedures used to process and analyze the results will be analyzed. Each methodology 

will be discussed in relation to the research objectives and starting hypotheses, 

highlighting the advantages and possible limitations of each approach. The reasons 

behind the choice of these methods and their suitability for the specific study context will 

also be explained. 

2.1 Extreme Value Theory  

Extreme Value Theory (EVT) was born out of the need to describe the probability of 

extreme events, that is, events characterized statistically by a low probability of 

occurrence. These events are often associated with particularly violent and intense 

weather phenomena, capable of causing serious damage both to the environment where 

they occur and to the population. Extreme Value Theory, therefore, can be used as a study 

tool for processes such as the hydrologic cycle at locate or global scales, floods, wind 

speeds, earthquake magnitudes, ecological processes, marine storm-surge levels, 

pollutant dispersion dynamics, and many other applications, including for financial and 

programming use.  

The frequency of extreme events is associated with the so-called return period (Tr), which 

can be defined as the mean interarrival time between the occurrence of two subsequent 

events with intensity/magnitude equal or greater than an assigned intensity. Return 

period, however, presents some problems such as:  

- availability of only certain percentiles;  

- interpolation may induce errors; 

- Non-robustness of nonparametric estimates; 

- Underestimation of tails associated with theoretical pdfs; 

Extreme value theory succeeds in making up for these shortcomings and providing more 

robust estimation of high return periods.  
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Early studies regarding these topics were carried out by: Maurice René Fréchet, in 1927, 

presenting the Fréchet distribution; in 1928, Ronald Fisher and Leonard Henry Caleb 

Tippett show the generalized distribution of extreme values; an important contribution 

was made by mathematician Emil Julius Gumbel, who defined the concept of distribution. 

2.1.1 Traditional Extreme Value Theory (EVT) 

There are two possible equivalent approaches, to study the probability distribution of 

extremes, associated with a random variable: 

- Block Maxima Method (BM) 

- Peak Over Threshold Method (POT) 

 

Block Maxima theory (BM) allows a data set to be divided into non-overlapping blocks 

of equal length (usually one year). Within each block, the maximum observed value is 

considered. These maxima represent extreme events for each block. As in the case 

analyzed in this thesis, extreme flow events. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The maxima extracted from each block can be described using the GEV distribution also 

called the generalized extreme value distribution. The GEV can be defined as a family of 

distributions (Gumbel, Fréchet, Weibull) used to describe the extreme values extracted 

from a data sample. They can be extreme values understood as the maximum values or 

as the minimum values observed in a period. It is usually used in the fields of hydrology 

Figure 1 – Example Block Maxima Method 
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or meteorology. Its equation can be given in two forms, through the cumulative 

distribution function (CDF) or through the density function (pdf).  

The CDF of the GEV is given by: 

 

𝐺(𝑥) =

{
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𝜎
)

−
1
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(𝑥 − µ)

𝜎
)) , 𝑖𝑓 𝜉 = 0

 

 

Deriving the CDF yields the density function (pdf): 

𝑔(𝑥) =

{
 
 

 
 1

𝜎
(1 + 𝜉

(𝑥 − µ)

𝜎
)

− 
1
𝜉−1

exp(−(1 + 𝜉
(𝑥 − µ)

𝜎
)

−
1
𝜉

)

 

, 𝑖𝑓 𝜉 ≠ 0

1

𝜎
𝑒𝑥𝑝 (−

(𝑥 − µ)

𝜎
) exp(− 𝑒𝑥𝑝 (−

(𝑥 − µ)

𝜎
))             , 𝑖𝑓 𝜉 = 0

 

 

Where µ 𝜖 R corresponds to the position parameter, 𝜎 > 0 corresponds to the scale 

parameter and 𝜉𝜖 R corresponds to the shape parameter. Depending on the value assumed 

by the shape parameter, the GEV distribution uses a different distribution, controlling the 

tails accordingly: 

I. 𝜉 = 0   Gumbel distribution 

II. 𝜉 > 0   Fréchet distribution 

III. 𝜉 < 0   Weibull distribution 

 

Tails can be of three types:  

• Exponential, described by the Gumbel distribution 

• Heavy, defined by the power law and described by the Fréchet distribution 

• Finite, defined in a finite range and described by the Weibull distribution  
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(Eq. 3) 

 
(Eq. 4) 

 
(Eq. 4) 

 
(Eq. 4) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The GEV distribution is obtained as a result of the extreme value theorem. The theorem 

states that under certain assumptions the distribution of normalized maxima (or minima) 

referring to a sequence of independent and identically distributed variables converges 

using one of three distributions (Gumbel, Fréchet, Weibull). Normalized maxima are 

calculated by considering independent and identically distributed random variables, 

denoted as 𝑋1, 𝑋2, … , 𝑋𝑛. Mn is defined as the maximum of the random variables 

 𝑀𝑛 = max(𝑋1, … , 𝑋𝑛). The maximum Mn is standardized using linear transformations: 

 

𝑍𝑛 =
𝑀𝑛 − 𝑏𝑛
𝑎𝑛

 

Where the values 𝑎𝑛 and 𝑏𝑛 correspond to normalisation constants dependent on n. 

 

 

 

 

 

 

 

 

Figure 2 - Example of the different tails decay, depending on the 

shape parameter (ξ). In green the Weibull distribution, in red the 

Gumbel distribution and in blue the Fréchet distribution. 
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(Eq. 4) 

 
(Eq. 4) 

 
(Eq. 4) 

 
(Eq. 4) 

(Eq. 5) 

 
(Eq. 4) 

 
(Eq. 4) 

 
(Eq. 4) 

The Gumbel distribution is a continuous probability distribution with two parameters α 

and u, which is used to describe the extreme values of a continuous stochastic series. The 

parameter α is used for scale changes, if α >1 there is a compression, otherwise if α <1 

there is an extension. 

The parameter u controls the translation of the pdf, rightward if u>0, leftward if u<0. 

 

𝑃(𝑥) = 𝑃𝑟{𝑋 ≤ 𝑥} = 𝑒𝑥𝑝{−𝑒𝑥𝑝[−α(x − u)]} 
𝑝(𝑥) = α 𝑒𝑥𝑝{−𝑒𝑥𝑝[−α(x − u)] − α(x − u)} 

 

𝑃(𝑥) represents the cumulative probability of not exceeding and 𝑝(𝑥) is the density of 

probability. The Gumbel distribution is characterized with a mean (μ), a variance (σ2), 

and by a coefficient of skewness (γ). 

 
 

 

Fréchet Distribution is a continuous probability distribution with three parameters α, u 

and θ, where the last one corresponds to the shape parameter. The tail decay follows the 

power law and it is particularly significative and long compared to the Gumbel tail. 

 

𝑃(𝑥) = 𝑃𝑟{𝑋 ≤ 𝑥} = 𝑒𝑥𝑝{−[α(x − u)]−θ} 

𝑝(𝑥) = αθ [α(x − u)]−θ−1 −  𝑒𝑥𝑝{−[α(x − u)]−θ} 

Where x > u 

Figure 3 - Gumbel distribution with variation of scale parameter α.. 
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(Eq. 6) 

 
(Eq. 4) 

 
(Eq. 4) 

 
(Eq. 4) 

Also, the Fréchet distribution is characterized with a mean (μ), a variance (σ2), and by a 

coefficient of skewness (γ). 

 
 

 

Weibull Distribution is a continuous probability distribution with three parameters α, u 

and θ.  The distribution changes shape depending on the value of the shape parameter, 

going from an exponential to a bell-shaped distribution (see Figure 5). 

𝑃(𝑥) = 𝑃𝑟{𝑋 ≤ 𝑥} = 1 − 𝑒𝑥𝑝{−[α(x − u)]θ} 

𝑝(𝑥) = θα[α(x − u)]θ−1𝑒𝑥𝑝{−[α(x − u)]θ} 

Where 𝑥 ≥ 0 

Usually, this type of distribution is used to adjust the pattern of minimum. 

 

Figure 4 - Fréchet distribution with variation of shape parameter θ. 

Figure 5 - Weibull distribution with variation of scale parameter θ. 
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The Peak Over Threshold Theory (POT) can be used as an alternative to Block Maxima 

and consists of considering a series of events, above a set threshold (u). As can be easily 

guessed, the lower the threshold, the greater will be the amount of data selected above it, 

on the contrary if the threshold is placed high. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

One of the main problems with the POT method is the appropriate selection of the 

threshold. If the threshold is too high, one runs the risk of having too small a sample, 

limiting the robustness of the estimates. If, on the other hand, the threshold is too low, too 

much data is included, no longer focusing on true extreme events and violating the 

assumptions of the method. The choice of threshold could be problematic, if an increasing 

trend or a decreasing trend occurs in the sample under analysis. This is because the 

threshold is fixed and cannot be changed according to the trend in the data. To overcome 

this problem and others, a hybrid of the two methods (BM and POT) is used, which is 

presented and discussed in chapter 3.2. 

 

 

 

 

 

 

 

 

Figure 6 - Example Peak Over Threshold Method 
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(Eq. 7) 

 
(Eq. 4) 
 

(Eq. 4) 
 

(Eq. 4) 

2.1.2 Metastatistical Extreme Value Theory (MEV) 

The extreme value method (EVT) analyzed in Chapter 2.1, needs a large amount of data 

to extrapolate extreme values, either through the block maxima (BM) method or the Peak 

Over Threshold (POT) method. Moreover, once extracted, there turns out to be little 

observational data to adequately describe the chosen distribution (Gumbel, Weibull, 

Frechet, etc). To overcome this problem, a variation of EVT, called Metastatistical 

Extreme Values (MEV), defined by Professor Marco Marani & Massimiliano Ignaccolo 

(2015), was introduced. This approach makes it possible to take advantage of all available 

data, thus offering a reduction in uncertainty in the estimation of high quantile extremes, 

50 % greater than the traditional extreme value method (EVT). 

The method can be summarized according to these steps: 

• Consider the entire temporal series of data available; 

• Select all peaks in the time series of data, trying not to consider noise, due to 

measurement errors or other issues; 

• Divide the time period into annual blocks; 

• Fit a distribution (Weibull, Gamma, Gumbel, etc.) to the different period in order 

to characterize the variability of the maxima within each period; 

• Construct the MEV by combining all selected periods 

• Estimate the probability of extreme events 

• Validation and Analysis of Results Obtained 

 

The method allows one to identify the number of events in each block, denoted by n, and 

the parameter values, represented by �⃗�, of the parent distribution 𝐹(𝑥; �⃗�) as realizations 

of stochastic variables. The probability distribution of the maxima for each block can be 

defined, via the total probability theorem as: 

𝐺(𝑥) = ∑∫ 𝐹(𝑥; �⃗�)
𝑛
𝑔(𝑛; �⃗�)𝑑�⃗�

 

𝛺
�⃗⃗⃗�
 

∞

𝑛=1

 

Where 𝐹(𝑥; �⃗�)
𝑛

is the parent distribution for each annual block, 𝑔(𝑛; �⃗�) is the joint 

probability distribution of the number of events in one year and 𝛺�⃗⃗⃗� signifies the entire 

population of the parameter’s values. The MEV approach therefore uses all the observable 
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(Eq. 8) 

 
(Eq. 4) 
 

(Eq. 4) 
 

(Eq. 4) 

information available to characterize the probability distributions of common events in 

each data set, rather than simply considering only the extreme values of F(x). 

The expression of the probability distribution of maxima 𝐺(𝑥) can be simplified by 

substituting the integral in the set 𝛺�⃗⃗⃗� in Eq. 7 with the sample average computed over all 

the blocks in the time series, obtaining: 

𝐺(𝑥) =
1

𝑀
∑𝐹(𝑥; �⃗�𝑗)

𝑛𝑗
𝑀

𝑗=1

 

where M are the annual data recording blocks and the distribution chosen is applied to 

each jth block (𝑗 = 1,… ,𝑀). Usually, the blocks considered are one year in size. 

 

 

 

 

 

 

 

 

 

Figure 7 is an example of a graphical representation of the MEV approach, used for an 

analysis of rainfall extremes. As can be seen of the diagram on the left, the MEV 

distribution (represented by a curve in red), is obtained from the average of the cumulative 

distributions of annual maximum rainfall. The parameters of the Weibull distribution are 

estimated using the Probability Weighted Moments (PWMs) method, which succeeds in 

attributing greater importance to the tail’s distributions and is more reliable for small 

sample size. Similarly, the L-moments method that was used in this thesis (see pages 16-

17 ). On the right, the pdfs of the shape and scale parameters associated with the Weibull 

distribution 𝐹(𝑥; 𝐶, 𝑤) are highlighted. Finally, the pdf of the numbers of wet days, based 

on a number of years, is depicted.  

 

Figure 7 - Graphical representation of the MEV approach. Image taken from the scientific article “On the 

emergence of rainfall extremes fromordinary events,” written and edited by E. Zorzetto, G. Botter, and M. 

Marani. 
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(Eq. 9) 

 
(Eq. 4) 
 

(Eq. 4) 
 

(Eq. 4) 

In conclusion, the MEV method provides the following advantages: 

• It eliminates the asymptotic assumption and it does not require a large number of 

observations for each year; 

• Elimination of the assumption of poison distribution of the data; 

• Allows the annual maxima to be extrapolated not only from the tail of F(x), but 

from the entire data set; 

• In the case of the MEV-Weibull approach, allows the distribution of extreme 

events to be described by either a thin tail (associated with an exponential trend) 

or a fat tail (trend according to a power law. This can be deduced by varying the 

shape parameter. 

2.1.3 Simplified Metastatistical Extreme Value Theory 

(SMEVD) 

This simplified version of the MEVD, developed by Marra et al. (2019), allow one to 

neglect of interannual variability, captured by the standard MEV in equation 8 by j. 

SMEVD is usually adopted to improve parameter estimation in the presence of a small 

annual number of ordinary events. By doing so, the simplified equation can be defined:  

𝐺(𝑥) ≅ 𝐹(𝑥; �⃗�)
𝑛

 

𝐹(𝑥; �⃗�)
𝑛

 is the cumulative distribution of ordinary events and n is the average number of 

events per year. This method is commonly used when one does not have enough ordinary 

values for each year to be able to apply classical MEVD. So, the main difference is that 

classical MEVD considers the cumulative distribution function 𝐹(𝑥; �⃗�)
𝑛

for each year, 

while SMEVD considers the cumulative distribution function, applied over all ordinary 

events (even of different years). 

 

 

 

 

 



- 13 - 

(Eq. 10) 

 
(Eq. 4) 
 

(Eq. 4) 
 

(Eq. 4) 

2.1.4 Moisture-accounting SMEVD  

This method is based on the theory of simplified metastatic extreme values (SMEVD) but 

has been modified to apply it on a sample of ordinary events, divided into wetness classes. 

In this case, the sample will be divided into three soil moisture classes (dry class 1, 

medium class 2, wet class 3). This assumption makes it possible to make assumptions 

about climate change (see chapter 4.6 for a detailed description). The resulting equation 

is very similar to the SMEVD equation, the only difference being that the producer 

symbol is added in front of the cumulative distributions. The resulting formula is as 

follows: 

𝐺(𝑞) =∏𝐹𝑘(𝑞; 𝑆0𝑘)
𝑛𝑘

𝑘

1

 

On the above equation, 𝑘 corresponds to the number of wetness classes (in this case equal 

to 3), 𝑛𝑘 is the mean number of events per year, 𝑞 are the flow peaks, 𝑆0𝑘 is the cumulative 

soil moisture subdivided in classes and 𝐹𝑘(𝑞; 𝑆0𝑘) is the cumulative distribution of 

ordinary values for each class. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



- 14 - 

(Eq. 11) 

 
(Eq. 4) 

 
(Eq. 4) 

 
(Eq. 4) 

The distributions that are commonly used with MEVD or SMEVD to parameterize 

cumulative function distributions (CDFs) are as follows: Weibull distribution, Gamma 

distribution or generalized Pareto distribution (GPD). Below is a brief description of the 

Gamma distribution, chosen for the parameterization of the data in this thesis. 

 
 

 

Gamma distribution is described by two parameters α and β. α corresponds to the shape 

parameter and β corresponds to the scale parameter. The Gamma distribution is a 

probability distribution defined over the positive real numbers (R+). 

 

𝑃(𝑥) = 𝑃𝑟{𝑋 ≤ 𝑥} =
𝛾 (𝛼,

𝑥
β
)

Г(𝛼)
 

𝑝(𝑥) =
1

θ𝑘Г(𝛼)
𝑥𝛼−1𝑒

−
𝑥
β 

Where 𝑥 ≥ 0 

 

 

 

 

 

Figure 8 - Gamma distribution with variation of parameters α 
and 𝛽. The graph uses a different notation, but k = α e θ = β. 
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(Eq. 12) 

 
(Eq. 4) 
 

(Eq. 4) 
 

(Eq. 4) 

2.2 Optimal choice of model parameters 

In this chapter, it is shown how to identify and determine the parameters of the models 

seen in Chapter 2.1 on the basis of observed data sets. A fundamental prerequisite for 

proceeding in parameter identification is to consider a set of random, independent, 

identically distributed observations x = (𝑥1, … , 𝑥𝑛). It is also considered a probability 

density function 𝑝(𝑥|𝜃), defined in the domain  Г = R+, where 𝜃 is a vector of 

parameters.  The goal of this phase is to determine the vector 𝜃, through the method of 

maximum likelihood or the Method of L-moments. 

 

Method of Maximum Likelihood (ML) 

This method was compared with the L-moments method in order to choose the one that 

best estimates the parameters of the chosen distribution. The method of Maximum 

likelihood is based on the assumption of the vector 𝜃, consisting of the parameters 

𝑎1, … , 𝑎𝑚 and a sequence of random variables 𝑥1, … , 𝑥𝑛 (IID), distributed according to 

the distribution 𝑝(𝑥|𝜃). Under these assumptions it is possible to define the joint 

probability distribution function or also calls Likelihood function of X and 𝜃: 

𝐿(𝜃) = 𝑝𝑗𝑜𝑖𝑛𝑡(𝑥|𝜃) = 𝑝(𝑥1, … , 𝑥𝑛|𝑎1, … , 𝑎𝑚) 

                                           = 𝑝(𝑥1|𝑎1, … , 𝑎𝑚) ∙ … ∙ 𝑝(𝑥𝑛|𝑎1, … , 𝑎𝑚) 

                                           = ∏ 𝑝(𝑥𝑖|𝜃)
𝑁
𝑖=1  

It is important to note that it is a probability distribution function (pdf), if x is variable 

and 𝜃 is fixed, conversely if x is constant and 𝜃 is variable then it can be taken as a 

likelihood function (𝐿(𝜃)). Sometimes, it can be convenient to work with the Likelihood 

function in logarithmic format:  

𝑙(𝜃) = ln[𝐿(𝑎1, … , 𝑎𝑚)] = ∑ln[𝐿(𝑎1, … , 𝑎𝑚)]

𝑁

𝑖=1

 

In other words, the method of maximum likelihood aims to maximize the function 𝐿(𝜃) 

or 𝑙(𝜃). To choose the optimal values of the pdf’s parameters, this can be possible by 

applying the following conditions: 
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(Eq. 13) 

 
(Eq. 4) 
 

(Eq. 4) 
 

(Eq. 4) 

{
 
 

 
 
𝜕𝐿(𝑎1, … , 𝑎𝑚)

𝜕𝑎1
= 0

…
𝜕𝐿(𝑎1, … , 𝑎𝑚)

𝜕𝑎𝑚
= 0

                

{
 
 

 
 
𝜕𝑙(𝑎1, … , 𝑎𝑚)

𝜕𝑎1
= 0

…
𝜕𝑙(𝑎1, … , 𝑎𝑚)

𝜕𝑎𝑚
= 0

 

 

or similarly: 

𝜕𝐿(𝜃)

𝜕𝜃𝑖
|
𝜃𝑖
∗

= 0        
 
⇔        

𝜕𝑙(𝜃)

𝜕𝜃𝑖
|
𝜃𝑖
∗

= 0 

 

The system of equations to find the parameters of the distribution, must be solved 

numerically, since the calculations can be very time-consuming. The model also presents 

biases, on the basis of the considerations made. 

Despite this, the ML method has some advantages such as: it can also be applied to 

distributions with divergent moments; it is very general and therefore has many 

applications; it allows all data to be studied by giving equal importance to each one; and 

it can be used even in the absence of some data, knowing only their position with respect 

to a certain threshold. However, the MLE may suffer from the presence of extreme events 

in cases where the sample is limited. 

 

Method of L-Moments  

The method of L-moments is a variant developed to overcome certain limitations of the 

classical method of moments. It is based on linear combinations, in fact the L stands for 

linear combination. This technique can be used to estimate the parameters of a distribution 

and is particularly useful when distributions have a heavy or asymmetric tail (distributions 

very common in hydrology and finance). The method of L-moments compared to the 

method of maximum likelihood has several advantages such as greater robustness and 

sensitivity in the case of outliers. This method is based on linear combinations of 

statistical orders. By statistical orders, one means a sample of data of size n and ordered 

in ascending order from X1 the minimum and Xn the maximum. In addition, L-moments 

are created from statistical orders, but weighing them linearly, instead of raising them to 

powers, as in the classical method. This reduces the influence of extreme values. The 
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(Eq. 14) 

 
(Eq. 4) 

 
(Eq. 4) 

 
(Eq. 4) 

(Eq. 15) 

 
(Eq. 4) 

 
(Eq. 4) 

 
(Eq. 4) (Eq. 16) 
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(Eq. 17) 

 
(Eq. 4) 

 
(Eq. 4) 

 
(Eq. 4) 

(Eq. 18) 

 
(Eq. 4) 

 
(Eq. 4) 

 
(Eq. 4) 

calculation of the L-moments on Probability Weighted Moments (PWMs) polynomials 

and the generic formula (of order r) can be expressed in this way: 

𝑏𝑟 =
1

𝑛
∑𝑋𝑖 ∙

(𝑖 − 1)(𝑖 − 2)⋯ (𝑖 − 𝑟)

(𝑛 − 1)(𝑛 − 2)⋯ (𝑛 − 𝑟)

𝑛

𝑖=1

 

where b0 corresponds to the sample mean and b1, b2, b3 are used to calculate L-moments. 

From equation 14, L-moments can be calculated, the first four in particular are L1, L2, L3 

and L4. The first L-moment (L1) represents the sample mean and corresponds to the first 

moment of the traditional method, defined by the following formula: 

𝐿1 = 𝑏0 =
1

𝑛
∑𝑋𝑖

𝑛

𝑖=1

 

The second L-moment (L2) corresponds to the variance and is used to measure dispersion. 

It is calculated with the following equation and is based on the first two PWMs: 

𝐿2 = 𝑏0 − 2𝑏1 

The third L-moment (L3) allows to measure the skewness, using b0, b1 and b2 defined with 

PWMs. In other words, L3 allows the asymmetry of a distribution to be measured. 

𝐿3 = 𝑏0 − 6𝑏1 + 6𝑏2 

In the case analyzed in this thesis, the L-moments method was preferred to the maximum 

likelihood method for calculating the parameters of the gamma distribution calibrated on 

peak events. The parameters (α, β) of the gamma distribution can therefore be calculated 

using the following equations: 

𝑡 =
𝐿2
𝐿1

 

If 0 < t < 0.5  then  𝑧 = πt2  and  𝛼 =
1−0.3080 ∙ 𝑧

𝑧−0.05812 ∙ 𝑧2+0.01765 ∙ 𝑧3
 

 

If 0.5 ≤ t < 1  then  𝑧 = (1 − t)  and  𝛼 =
0.7213 ∙ 𝑧−0.5947 ∙𝑧2

1−2.1817 ∙𝑧+1.1213 ∙𝑧2
 

 

β =
L1
𝛼
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X_i ordered i P*(X_i)

X_1 1

X_2 2

… … …

X_n N

1

 +1

2

 +1

 

 +1

(Eq. 19) 

 
(Eq. 4) 
 

(Eq. 4) 
 

(Eq. 4) 

2.3 Model Performance Measures 

Various methods such as goodness of fit, cross-validation, Kling-Gupta efficiency 

(KGE), Nash-Sutcliffe efficiency (NSE), Root Mean Square Error (RMSE) and Standard 

Deviation (σ) were used to measure the performance of the models. Specifically, this 

chapter explains the various methods in detail and highlights their main advantages. 

2.3.1 Q-Q Plot 

 The goodness of fit of a sample can be observed using a graph, called the Q-Q Plot, which 

stands for Quantile-Quantile plot. It can be used to compare the distribution of two data 

sets, or it is often used to assess whether a data set follows a certain theoretical 

distribution. The method consists of considering a series of observations in ascending 

order, then assigning an index i that stands for the position of the data, and finally 

calculating the theoretical cumulative density function (CDF) of each observation (as 

shown in Table 1). The graph (see figure 9) is constructed by relating the theoretical 

quantiles on the y-axis and the sampled quantiles on the x-axis. The sampled quantiles 

correspond to the annual maxima extracted from ordinary events (e.g. if there are 30 years 

of data, 30 annual maxima are extracted). 

 

 

 

 

 

 

 

 

Table 1 - ordering procedur 

 
 

The theoretical quantiles are estimated by the theoretical distribution taken into 

consideration, via the following equation: 

𝑃(𝑥𝑖) ≅ 𝐺(�̂�) 
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𝑦𝑖 =  observed values 

𝑦�̂� =  predicted values 

�̅� =  mean of values 

 

(Eq. 20) 

 
(Eq. 4) 
 

(Eq. 4) 
 

(Eq. 4) 

P(xi) = cumulative frequency of non − exceedance  

G(x̂) = theoretical distribution  

 x̂ =  Theoretical quantiles 

xi =  Sample quantiles 

 

At this point, the graph can be constructed, and it is interesting to observe the closer points 

are to a 45° sloping line, the greater the fit with the distribution considered. The 

coefficient of determination, also known as R2, was used to estimate the goodness of fit. 

This index measures the link between the variability of the data and the correctness of the 

statistical model used. An R² = 1 indicates that the model perfectly predicts the observed 

data, meaning it explains all the variability. It is calculated by the formula: 

 

𝑅2 = 1 −
𝑆𝑆𝑅

𝑆𝑆𝑇
 

𝑆𝑆𝑅 =∑(𝑦𝑖 − 𝑦�̂�)^2 

𝑛

𝑖=1

=  Sum of Squared Residuals 

𝑆𝑆𝑇 =  ∑(𝑦𝑖 − �̅�)^2 

𝑛

𝑖=1

=  Total Sum of Squares 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9 – Q-Q Plot 
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(Eq. 21) 

 
(Eq. 4) 
 

(Eq. 4) 
 

(Eq. 4) 

(Eq. 22) 
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(Eq. 4) 
 

(Eq. 4) 

2.3.2 Cross Validation 

Cross validation is a method used to evaluate the performance of the model and allows 

the prediction of the probability of unobserved events. The method consists of dividing 

the ordinary events of the flow peaks into two parts. The first part of data, also called the 

training set, is the data that will be used exclusively in the training phase of the model. 

During this phase, the model will learn the relationship between the input variables and 

the output variables. The second part of data, on the other hand, is called the validation 

set and is used to test the performance of the model. This procedure is repeated a number 

of times, on each occasion the two data sets (calibration and validation set) are randomly 

extracted from the sample of flow peaks of ordinary events (detailed explanation chapter 

4.5). 

2.3.3 KGE, NSE, RMSE and Standard deviation 

Kling-Gupta Efficiency (KGE) 

 

 

 

 

• r: is the correlation coefficient between observed and simulated events; 

• α: is the ratio of the standard deviation of the simulated and observed events; 

• β: is the ratio of the averages of the simulated and observed events. 

Takes into account correlation, bias, and variance to evaluate model performance. Ideal 

value = 1. 

 

Nash-Sutcliffe Efficiency (NSE) 

 

 

 

 

• 𝑞𝑜𝑏𝑠: Are the observed events; 

• 𝑞𝑒𝑠𝑡: are the events predicted by the model. 

 

Measures how well the model reproduces the observed data compared to using the 

average of the data. Ideal value = 1. 

𝐾𝐺𝐸 = 1 − √(𝑟 − 1)2 + (𝛼 − 1)2 + (𝛽 − 1)2 

 𝑆𝐸 = 1 −
∑ (𝑞𝑒𝑠𝑡 − 𝑞𝑜𝑏𝑠)

2𝑛
1

∑ (𝑞𝑜𝑏𝑠 − 𝑞𝑜𝑏𝑠̅̅ ̅̅ ̅)2𝑛
1
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(Eq. 23) 

 
(Eq. 4) 
 

(Eq. 4) 
 

(Eq. 4) 

(Eq. 24) 

 
(Eq. 4) 
 

(Eq. 4) 
 

(Eq. 4) 

(Eq. 25) 

 
(Eq. 4) 
 

(Eq. 4) 
 

(Eq. 4) 

Root Mean Square Error (RMSE) 

 

 

 

 

 

• 𝑞𝑜𝑏𝑠: Are the observed values; 

• 𝑞𝑒𝑠𝑡: are the events predicted by the model; 

• n: is the number of observed values. 

Measures the size of the mean square error between observed and predicted values.  

Ideal value = 0. 

 

Standard Deviation (𝜎) 

 

The standard deviation is a statistical measure that quantifies the dispersion of data with 

respect to their mean. It indicates how far the data deviates on average from the central 

value (the arithmetic mean). A low standard deviation indicates that the data are 

concentrated around the mean, while a high standard deviation indicates that the data are 

more scattered and distributed away from the mean. The standard deviation is calculated 

using the following formula: 

𝜎 =  √ 
1

𝑛 − 1
∑(ε𝑖 − ε̅)2
𝑛

𝑖=1

 

Where n corresponds to the amount of data in the sample and 𝜀 ̅average of the relative 

errors. The standard deviation was applied to the relative errors calculated between the 

observed and estimated flow rates, in order to quantify their dispersion from their mean. 

The equation used to calculate relative errors is as follows: 

ε =
𝑞𝑜𝑏𝑠 −  𝑞𝑒𝑠𝑡

𝑞𝑜𝑏𝑠
 

 

 

𝑅𝑀𝑆𝐸 = √
∑ (𝑞𝑜𝑏𝑠 − 𝑞𝑒𝑠𝑡)2
𝑛
1

𝑛
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3. STAGES OF ANALYSIS 

In the following sub-chapters, the procedure followed to analyze the impact of initial soil 

moisture on the generation of flood events will be explained in detail. Specifically, three 

different methodologies for risk estimation and management of extreme events will be 

used. The methods are as follows: GEV distribution, Simplified MEV distribution and 

Modified MEV distribution (theoretical bases explained in chapter 2.1). 

3.1 Description of sites selected  

The choice of sites was made on the basis of several factors: 

• Availability of hourly rainfall and discharge data; 

• Small size of the basin; 

• Absence or low presence of snow, which could compromise accounts for flood 

wave generation; 

• Availability of stations equipped with instruments for measuring solar radiation, 

wind speed, humidity and temperature; 

• Sufficiently high correlation coefficient between peak flows and cumulative soil 

moisture; 

• Similar equation of the straight line below which cumulative soil moisture fails to 

generate a flow event; 

• Basins tending to an erratic regime (see chapter 3.1.2). 

 

Several basins, located in different parts of the Veneto region, were considered for this 

analysis. The analyzed basins are located in different locations: Posina at Stancari, Boite 

at Podestagno, Cordevole at Saviner, Fiorentina at Sottorovei and Padola at Santo 

Stefano. 
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Posina at Stancari 

The first basin considered is located between mountain ranges called Piccole Dolomiti, 

in province of Vicenza. The highest peak is Cima Palon, which measures a height of 2232 

m.a.s.l. The basin drains water into the Astico stream and covers an area of 117 km2. The 

closure section considered, corresponds with the station for flow measurement, located at 

Posina in Stancari (near the village of Arsiero). The rain gauge stations considered are as 

follows: Molini (Lakes), Contrà Doppio (Posina), Castana, Passo Xomo (Posina), 

Brustole' (Velo d'Astico) and Astico in Pedescala.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 - Posina Basin 

1:100000 
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Boite at Podestagno 

The second basin considered is located between mountain groups of the Dolomites, in 

province of Belluno. The surrounding peaks exceed 2500 m in altitude. The basin drains 

water into the Boite stream and covers an area of 30 km2. The closure section considered, 

corresponds with the station for flow measurement, located at Boite a Podestagno. The 

rain gauge station considered is located near to station for flow measurement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 - Boite Basin 
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Cordevole at Saviner 

The third basin considered is located is located between mountain groups of the 

Dolomites, in province of Belluno. The source is located at an elevation of 1919 m.a.s.l. 

The basin drains water into the Cordevole stream and covers an area of 105 km2. The 

closure section considered, corresponds with the station for flow measurement, located at 

Cordevole a Saviner. The rain gauge station considered is located near to station for flow 

measurement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12 - Cordevole basin 
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Fiorentina at Sottorovei 

The fourth basin is the Fiorentina basin and is located near Alleghe, in the Agordino 

territory. The highest peak is Cima Cernera, which measures a height of 2664 m.a.s.l. The 

basin drains water into the Fiorentina stream and covers an area of 57 km2. The closure 

section considered, corresponds with the station for flow measurement, located at 

Fiorentina a Sottorovei. The rain gauge station considered is located near to station for 

flow measurement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 13 - Fiorentina basin 
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Padola at Santo Stefano 

The last one is the Padola basin and it originates northeast of the Monte Croce di 

Comelico pass in the Altoatesino territory. The surrounding peaks reach altitudes over 

3000 m.a.s.l. The basin drains water into the Padola stream and covers an area of 121 

km2. The closure section considered, corresponds with the station for flow measurement, 

located at Padola a Santo Stefano. The rain gauge station considered is located near to 

station for flow measurement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14 - Padola basin 
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3.1.1 Tools used for basin delineation 

Catchment areas are defined as topographical areas delimited by a topographical 

watershed collecting water flowing over the ground surface into a specific water body. 

These areas are selected on the basis of land elevation, which is contained within a digital 

model called DTM (Digital Terrain Model). It is possible to see an example in image 16. 

The DTM files were downloaded from the Veneto Region Geoportal. They were acquired 

using remote sensing instruments called Lidar, which allow the distance of an object or 

surface to be determined using laser pulses. This instrument can be mounted in various 

vehicles, such as an airplane, helicopter or even a drone. Going into details, there are two 

types of surfaces that can be acquired by Lidar. The Digital Surface Model (DSM) and 

the previously mentioned Digital Terrain Model (DTM). The DSM considers as a surface, 

not only the ground, but also anthropogenic elements and vegetations that are on it. The 

DTM, on the other hand, represents the land surface free of obstacles. This surface is 

obtained by software interpolation from the DSM. 

 

 

 

 

 

Figure 16 - Digital Terrein Model (DTM) of the 

Boite a Podestagno basin 

Figure 15 – DSM vs DTM 
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3.1.2 River flow regimes 

It is interesting to note that streams can have different flow regimes. The flow regime 

refers to how water moves within the watercourse. The flow of water is influenced by 

various factors, such as the flow rate, the slope of terrain, the section of the channel and 

the friction between water and terrain. To study this behavior, you can observe the pdf of 

flow rates, in order to analyze the type of curve. Flow regimes can be classified into two 

distinct categories: erratic regime and persistent regime. 

The erratic regime is characterized by: a small basin size; an unstable flow, therefore with 

many fluctuations in flow rate; high probability of drought in a river; high probability of 

the river flooding; high sensitivity to climate changes. 

If the pdf is observed in relation to the flow rates, the erratic regime typically takes an 

asymmetrical, long-tailed form (see Figure 18). 

The persistent regime is characterized by: a large basin size; a constant and predictable 

flow; low probability of drought in a river; low probability of river flooding; low 

sensitivity to climate change. If the pdf is observed in relation to the flow rates, the erratic 

regime typically takes on a symmetrical bell shape (see Figure 17). 

 

 

 

Figure 18 - Erratic regime Figure 17 - Persistent regime 
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In the present case, all the streams in the five basins under analysis are characterized by 

an erratic regime. The Padola and Posina streams have a higher pdf for low specific flow 

values. This means that on average, the river regime is characterized by a lower specific 

flow (see figure 19). 

 

 

 

 

 

 

Figure 19 - CDF of the flow rates of the various streams. 
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3.2 Hydrological datasets 

In this chapter, more information on the source data will be given and the procedure 

followed for calculating the antecedent soil moisture data will be shown. Soil moisture is 

defined as the result of the difference between cumulative precipitation and 

evapotranspiration (ET).   

The rainfall, flow rate data and the various environmental characteristics of the different 

basins were requested on the website of ARPAV, a regional agency in the Veneto region 

that deals with environmental protection and prevention. Specifically, rainfall and flow 

rate data are defined on an hourly scale and have different time histories according to the 

basin considered. ARPAV's dedicated portal is called Ambiente Veneto and it is possible 

to consult and download the time series of data for the last 10 years. It can be reached 

from following link: https://www.ambienteveneto.it/stazioni/datiorari/ . 

For the Boite torrent basin, the Podestagno (Cortina d'Ampezzo) rainfall station number 

48 and the Boite flow station in Podestagno, identified by number 214, were considered. 

Both stations have a 31-year history of hourly data from 01/01/1993 to 31/12/2023.  

For the Cordevole stream basin, the Caprile rainfall station number 9 and the Cordevole 

flow station in Saviner, identified by number 6, were considered. Both stations have a 31-

year history of hourly data from 01/01/1993 to 31/12/2023.  

For the Fiorentina stream basin, the same rainfall station was considered as for the 

Cordevole stream, Caprile number 9, and the Fiorentina flow station at Sottorovei, 

identified by number 6. Both stations have a 31-year history of hourly data from 

01/01/1993 to 31/12/2023.  

For the Padola torrent basin, the rainfall station Santo Stefano di Cadore number 58 and 

the discharge station Santo Stefano di Cadore, identified by number 62, were considered. 

Both stations have a 34-year history of hourly data from 01/01/1990 to 31/12/2023.  

For the Astico torrent basin, 5 rainfall stations were considered Castana number 68, 

Astico a Pedescala (Posina) number 72, Contrà Doppio (Posina) number 73, Molini 

(Laghi) number 191, Passo Xomo (Posina) number 192 and the Posina flow rate station 

in Stancari, identified by number 407. Both stations have a 14-year history of hourly data 

from 01/01/2010 to 31/12/2023. Data on other environmental characteristics, such as 

temperature, humidity, wind, solar radiation, etc., are not available at all stations; only a 

https://www.ambienteveneto.it/stazioni/datiorari/
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few have the appropriate instrumentation for measurement. Furthermore, the data have a 

daily scale and not an hourly one. Time gaps are present in all-time series of data; these 

could be due to station maintenance periods or instrument malfunctions. Graphs 20-23 

show the rainfall time series of the various basins: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
Figure 21  - Precipitation and cumulative precipitation in the Cordevole and Fiorentina basin (same rain gauge 

station). 

 

 

 

 

 

Figure 20 - Precipitation and cumulative precipitation in the Boite basin. 
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Figure 22 - Precipitation and cumulative precipitation in the Padola basin. 

 
 
 
 

Figure 23 - Precipitation and cumulative precipitation in the Posina basin. 
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In some periods, some gaps can be seen where flow data are interrupted, these 

interruptions can be due to various reasons, such as: station maintenance, station 

installation before or after the considered time frame, etc. Graphs 24-28 show the time 

series of the flow rates of the various basins. It is also interesting to note, that during the 

period from 27 Oct 2018 to 3 Nov 2018, very intense flow events are measured in almost 

all basins (indicated in the graphs with a red circle). This period saw the occurrence of 

storm Vaia, a strong Mediterranean storm, characterized by hurricane-level wind gusts 

and heavy rainfall, which caused considerable damage mainly in the regions of Veneto, 

Trentino Alto Adige and Friuli Venezia Giulia. 

 

 

Figure 24 - Boite basin flows. 

Figure 25 - Cordevole basin flows. 
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                    Figure 28 - Posina basin flows. 

Figure 26 - Fiorentina basin flows. 

Figure 27 - Padola basin flows. 
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As explained in chapter 2.1 the advantage of MEV in general is that it can exploit a much 

larger amount of data to be able to study the behavior of extreme events more precisely. 

To consider extreme flow events, a hybrid method was used which is based on the two 

defined approaches of extreme events theory, which are as follows: Block Maxima 

Theory and Peak Over Threshold Theory (see chapters 2.1.1 for an exhaustive 

description). This method consists of assuming an increase in flow rate between a local 

minimum and a peak event; the threshold is different for each basin. The thresholds for 

different sites were chosen so that they are statistically comparable. This was achieved 

by observing the entire distribution of flow rates and calculating the associated quantiles. 

Another assumption made to be able to eliminate the noise in the data (by noise is meant 

the anomalous fluctuations, due to possible measurement errors of the rain stations) is to 

consider the data set average, to obtain a smoothed signal. This was done by considering 

a moving window with an overlap of a 6 hours amplitude, the following method allows 

the position of the peaks to be maintained over time. The width of the window was not 

chosen a priori, but trying to have the right number of events, which is neither too high 

or too low (e.g., considering a 24, 12 or 3 hours window). The resulting dummy curve is 

exploited to extract the flow rate maxima. This curve was used to consider actual peaks 

and not peaks due to instrumentation noise. 

 

 

Figure 29 - Zoom in: Hourly flow rate vs. flow rate obtained through average overlapping. 
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The number of maximum flow events extracted from the source dataset changes for each 

basin. They are summarized in table 2. 

 

basins number of 
events 

Boite 387 
Cordevole 397 
Fiorentina 344 
Padola 484 
Posina 195 

Table 2 – Number of events for each basin 

 

 

 

 

 

 

 

 

 

Figure 30 - Zoom in: Graph with peak flow rates highlighted. 
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3.3.1 Cumulative soil moisture content 

The other important factor to consider is precisely the cumulative soil moisture content, 

which is given by the subtraction of cumulative rainfall and cumulative 

evapotranspiration. It participates in the formation of the flood wave, so it is important to 

choose the number of cumulative days carefully. To do this, various ranges of days were 

considered for comparison: 30, 25, 20, 15, 10 and 5. For the selection of the intervals, the 

6 hours immediately preceding the peak events were excluded so that only the soil 

moisture antecedent to the flood wave of the event considered was considered. 

To calculate cumulative precipitation, the rainfall prior to the events was simply summed 

within a certain considered range (30, 25, 20, 15, 10, 5 d). To calculate 

Evapotranspiration, on the other hand, the Penmann-Monteith equations were used 

according to the FAO approach.  

3.3.2 Evapotranspiration (ET) 

The Evapotranspiration process is constituted by two distinct parts: 

• Evaporation: a fraction of water present in the soil is transformed into water 

vapors thanks to incoming solar energy. This phenomenon occurs in the upper 

horizon of the Root Zone; 

• Transpiration: a fraction of water is incorporated by plants and then it is released 

into the atmosphere as water vapors. This phenomenon involves the whole Root 

Zone. 

 

Evapotranspiration is calculated with the Penmann-Monteith equations according to the 

FAO approach. The main idea of this methodology is to separate the dependences on the 

climate, vegetation and water availability in order to better study the ET process. 

So, by applying the FAO method there are three steps to follow: 

1. Computation of the reference potential evapotranspiration ET0 that a reference 

crop produces during its growing season in the absence of water stresses under 

the actual climate conditions; 

2. Computation of the potential evapotranspiration ETC  that the actual crop produces 

in its actual live cycle in the absence of water stresses under the actual climate 
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(Eq. 26) 

 
(Eq. 4) 
 

(Eq. 4) 
 

(Eq. 4) 

conditions. This term is obtained as the product of the crop coefficient KC and the 

reference potential evapotranspiration ET0: 

𝐸𝑇𝐶 = 𝑘𝐶(𝑡) ∙ 𝐸𝑇0 

3. Computation of the actual evapotranspiration ET that the actual crop produces in 

its actual live cycle under the actual environmental conditions and the actual 

climate conditions. This term is obtained as the product of the water stress 

coefficient KS and the potential evapotranspiration ETC: 

𝐸𝑇 = 𝑘𝑆(𝑠(𝑡)) ∙ 𝐸𝑇𝐶 = 𝑘𝑆(𝑠(𝑡)) ∙  𝑘𝐶(𝑡) ∙  𝐸𝑇0 

ET0 is a stochastic parameter that depends on climatic conditions. In this 

relationship it is assumed as constant within the various seasons and is derived 

through the meteorological conditions of Feltre, through the Penmann-Monteith 

equation: 

𝜆 ∙ 𝐸𝑇0 =
𝛥

𝛥 + 𝛾 ∙ (1 +
𝑟𝑠
𝑟𝑎
)
𝑅𝑛 +

𝜌 ∙
𝐶𝑝
𝑟𝑎

𝛥 + 𝛾 ∙ (1 +
𝑟𝑠
𝑟𝑎
)
𝑉𝑃𝐷 

From which the inverse formula is obtained 

𝐸𝑇0 =
0.408 ∙ 𝛥

𝛥 + 𝛾 ∙ (1 + 0.34 ∙ 𝑢2)
(𝑅𝑛 − 𝐺) +

𝛾 ∙
900

𝑇 + 273 ∙ 𝑢2

𝛥 + 𝛾 ∙ (1 + 0.34 ∙ 𝑢2)
𝑉𝑃𝐷 

 

 

The Penmann-Monteith equation is composed of two terms: the first is called equilibrium 

evapotranspiration and depends on the net solar radiation Rn and the heat flow that 

propagates towards the deep layers G; while the second refers to the non-saturation of the 

air and wind. 

A series of values were calculated for each basin; for example, a summary table is given 

for the Fiorentina basin. The following formulas were applied below. 

• the psychrometric constant (γ) is a function of the pressure detected at an altitude 

of z = 264 s. l. m. 

𝑝 = 101.325 ∙ (1 − 2.26 ∙ 10−5 ∙ 264)5.256 = 98.19 𝐾𝑃𝑎 

𝛾 = 𝑝 ∙ 0.665 ∙ 10−3 = 0.07 𝐾𝑃𝑎/°𝐶 
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(Eq. 27) 

 
(Eq. 4) 
 

(Eq. 4) 
 

(Eq. 4) 

• Mean temperature (𝑇)  

𝑇 =
𝑇𝑚𝑖𝑛 + 𝑇𝑚𝑎𝑥

2
 

• the wind speed at two meters above the ground (𝑢2), using the Arpav data 

provided at a height of five meters. 

𝑢2 = 𝑢𝑧 ∙
ln (

𝑧
𝑧0
)

𝑙𝑛 (
𝑧𝑟𝑒𝑓
𝑧0
)
 

       𝑢𝑧 = wind speed 5 meters above the ground 

        𝑧 = 2 m above the ground 

        𝑧𝑟𝑒𝑓 = reference hight, in this case equal to 5 meters 

        𝑧0 = 0.2 m, roughness length, that change in function of the roughness class 

 

• Air vapor pressure deficit (VPD), which corresponds to the difference between 

the partial water vapor pressures in condition of saturation 𝑒𝑠
∗ and in actual 

condition 𝑒𝑎 

𝑒𝑠
∗(𝑇) = 0.6108 ∙ 𝑒

17.27∙𝑇
𝑇+273.3 

𝑒𝑠
∗ = 

𝑒𝑠
∗(𝑇𝑚𝑎𝑥) + 𝑒𝑠

∗(𝑇𝑚𝑖𝑛)

2
 

𝑒𝑎 = 
𝑒𝑠
∗(𝑇𝑚𝑎𝑥) ∙ 𝑅𝐻𝑚𝑖𝑛 + 𝑒𝑠

∗(𝑇𝑚𝑖𝑛) ∙ 𝑅𝐻𝑚𝑎𝑥
200

 

𝑉𝑃𝐷 =  𝑒𝑠
∗ − 𝑒𝑎  

 

• The slope of the curve of Clausius Clapeyron (Δ), obtained by averaging the value 

associated with the minimum and maximum temperature. 

𝛥(𝑇) =
4098 ∙ 𝑒𝑠

∗(𝑇)

(𝑇 + 273.3)2
 

𝛥 =
𝛥(𝑇𝑚𝑎𝑥) + 𝛥(𝑇𝑚𝑖𝑛)

2
 

• the heat flow (G) that propagates towards the deep layers, was assumed null. 

• The Net Radiation (Rn), function of the global radiation that reaches the ground 

(Rs), of the Albedo α assumed equal to 0.23 and the energy emitted by the earth's 

surface (Rnl). 
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(Eq. 28) 

 
(Eq. 4) 
 

(Eq. 4) 
 

(Eq. 4) 

σ = Constant of Stefan-Boltzmann = 4.90 ∙ 10−9 𝑀𝐽𝑚−2𝑘−4𝑑−1 

𝑅𝑎 =
𝑅𝑠

0.18 ∙ √𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛
 

𝑅𝑠,0 = (0.75 + 2 ∙ 10
−5 ∙ 𝑧) ∙ 𝑅𝑎 

𝑅𝑛𝑙 = 0.5 ∙ 𝜎 ∙ (𝑇𝑚𝑎𝑥
4 − 𝑇𝑚𝑖𝑛

4 ) ∙ (0.34 − 0.14 ∙ √𝑒𝑎) ∙ (1.35 ∙
𝑅𝑠
𝑅𝑠,0

− 0.35) 

𝑅𝑛 = (1 − 𝛼) ∙ 𝑅𝑠 − 𝑅𝑛𝑙 

Following these steps, the various ET0 values for each basin were obtained. 

At this point, soil moisture can be calculated as the difference between cumulative 

precipitation and evapotranspiration (ET0), taking care to exclude the 6 hours before peak 

flow events. 

 

3.3 Joint Distribution of flow peaks and antecedent soil 

moisture 

Before being able to study the distribution of extremes, applying SMEVD and GEV 

distribution, it is necessary to relate peak flow and antecedent soil moisture, considering 

different time lag, in order to choose the one with the greatest correlation coefficient. 

Antecedent soil moisture is considered to be equal to net precipitation, calculated as the 

difference between cumulative precipitation and cumulative evapotranspiration, prior to 

flood events. The periods before the events are considered by assuming a window of fixed 

duration but varying between 5 and 30 days. This procedure makes it possible to identify 

the time range that closely approximates the hydrological response of a catchment. The 

hydrological response refers to the way a catchment reacts to weather events, such as 

rainfall, by creating an outflow of water (flow). There are two main types of outflows, 

which contribute to the formation of the flood wave: surface runoff, which usually occurs 

within hours, and sub-surface runoff, which can take up to weeks. The joint distribution 

is very useful in this case, because it allows several variables to be related at the same 

time, referring to the same area or subject. In this case, the variables are peak flow and 

soil moisture, and the area they refer to is the various basins considered. 
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(Eq. 29) 

 
(Eq. 4) 
 

(Eq. 4) 
 

(Eq. 4) 

(Eq. 30) 

 
(Eq. 4) 
 

(Eq. 4) 
 

(Eq. 4) 

The joint probability of two variables can be defined by the following formula: 

 

𝑃(𝑥, 𝑦) = 𝑃[𝑋 < 𝑥 𝑒 𝑌 < 𝑦] 

to which corresponds a joint probability density 

𝑝(𝑥, 𝑦) =
𝑃[𝑋 ∈ (𝑥, 𝑥 + 𝑑𝑥) 𝑒 𝑌 ∈ (𝑦, 𝑦 + 𝑑𝑦)]

𝑑𝑥 𝑑𝑦
 

Where X and Y are random variables. 

 

The marginal distribution, on the other hand, refers to the probability of the variables 

contained in the subset of a collection of random variables. In this case, therefore, all 

relative frequencies, calculated with the joint distribution, referring to peak flow and soil 

moisture are added together. The results of the joint distribution are reported in chapter 

4.2. 
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3.4 Three models in comparison  

This chapter will explain the procedure for applying the three models SMEVD single 

class, moisture accounting SMEVD and the GEV distribution to events. These three 

models, which are explained in detail in Chapter 2.1, allow modelling the distribution 

tails of extreme events. The GEV distribution by definition only needs to be applied to 

annual maximum events, so it exploits a limited amount of data to study extreme events. 

In contrast, the SMEVD exploits a much larger number of data, selecting all peak flows, 

to make a more precise description of the extremes. What is to be demonstrated in this 

thesis is precisely the advantage of using the moisture accounting SMEVD. Before the 

methods can be applied, however, it is necessary to parameterize the distributions to the 

events. 

Parameterization involves the fitting of distributions to events. There are many 

distributions that can be used for this step, such as the Gamma distribution, the Weibull 

distribution and the generalized Pareto distribution (GPD). In this case, the Gamma 

distribution was chosen as it has a better fit with the data. Through the parameterization 

step, what one wants to do is estimate the parameters of the distribution so that it best 

describes the data to which it relates. Various statistical techniques can be used, such as 

the Maximum Likelihood (ML) Method or the method of L-moments (see Chapter 2.2). 

In this case, the L-moments method was preferred as it allows a more robust estimation 

of extreme events and greater stability for small samples. The true similarity method, on 

the other hand, was found to tend to underestimate the most extreme events, giving more 

weight to intermediate events. The parameters of the Gamma distribution that are 

estimated through parameterization are two: α scale parameter and β shape parameter. 

The Gamma distribution was chosen and compared with the Weibull distribution and the 

generalized Pareto distribution (GPD) through the goodness-of-fit step (which will be 

described in Chapter 3.5). To quantify the goodness-of-fit of the distributions, the 

coefficients of determination R2 were calculated, referring to the qq-plots (see Table 3). 

In some cases, the three distributions have very similar R2 coefficients, except for the 

generalized pareto distribution (GPD) applied to the single-class SMEVD, which fails to 

adjust correctly to events. The Gamma distribution was chosen, since in most cases it is 

the distribution that best fits the events. The procedure followed is slightly different for 
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the moisture accounting SMEVD, as it requires the division of soil moisture into classes 

before applying the parameterization. 

 

Table 3 - Coefficients for determining the various models, types of distributions and stream basins. 

 

In order to be able to apply the moisture accounting SMEVD, it is necessary to 

partitioning the soil moisture data sample into classes, which allows for a better fit of the 

SMEVD to the data. The division into classes therefore makes it possible to study soil 

moisture dynamics more specifically, creating classes of events with different moisture 

levels. Furthermore, this approach should allow a better description of the tail of 

distribution. The number of classes chosen for the various basins is three, class 1 for low 

values, class 2 for average values and class 3 for high levels of soil moisture. Once the 

various moisture classes have been created, the peak flow events associated with each 

moisture value are also divided into the classes, maintaining and not changing the 

relationship that exists between each moisture value and the associated flow events. The 

classes are not the same but change both in amplitude and in number of events within 

them. The class with low humidity values is the one with the highest number of events 

within it (so the most likely) and will allow a more precise description of the tail of the 

fit distribution. 

basins Types of 
distribution 

R^2 

SMEVD single 
class 

Moisture 
accounting 

SMEVD 
GEVD 

Boite 
Gamma 0.16 0.69 

0.86 Weibull 0.15 0.37 
Gp - 0.62 

Cordevole 
Gamma 0.37 0.82 

0.92 Weibull 0.36 0.71 
Gp - 0.81 

Fiorentina 
Gamma 0.35 0.70 

0.91 Weibull 0.33 0.62 
Gp - 0.75 

Padola 
Gamma 0.30 0.72 

0.91 Weibull 0.31 0.56 
Gp - 0.72 

Posina 
Gamma 0.61 0.74 

0.93 Weibull 0.60 0.72 
Gp - 0.67 
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Image 31 is an example of Gamma distributions applied to the three different soil 

moisture classes, referring to the Fiorentina basin. Graphs of all basins have not been 

included, as they are very similar to each other. 

 

 

 

 

 

 

 

Figure 31 - Fit of Gamma distribution on peak flow rates divided into classes, defined by subdividing 
cumulative soil moisture data (referring to the Fiorentina basin). 
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According to the SMEV and GEV model definitions, once the parameters of all Gamma 

and GEV distributions have been calculated, it is necessary to calculate the associated 

cumulative density functions. In the theoretical equations, it is denoted as F(x) (see 

chapter 2.1). At this point, one has all the tools to calculate the cumulative density 

functions associated with the three distributions.  

  

Figure 32 - Cumulative density function (CDF) of the Gamma distribution, applied to three soil moisture 
classes (for Fiorentina stream basin). 
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3.5 Goodness of fit 

To verify that the distributions of the three methods fit the soil moisture data samples 

correctly, a graph called qq-plot was used (see Chapter 2.3.1). To calculate theoretical 

quantiles, the equation 16 in the generic form was used:   

𝑃(𝑥𝑖) ≅ 𝐺(�̂�) 

Specifically, to calculate the theoretical quantile associated with the empirical CDF, a 

Matlab code had to be used to invert and numerically solve the non-linear equation. 

The Goodness of fit using the moisture accounting SMEVD, was done by considering 

theoretical distribution equal to the cumulative density function of the model. Considering 

𝐺(𝑥) equal to this equation: 

𝐺(𝑥) = 𝐹1(𝑥)
𝑛1 ∙ 𝐹2(𝑥)

𝑛2 ∙ 𝐹3(𝑥)
𝑛3 

The G(x) distribution was fit using all peak flow data, while only annual maxima were 

used to make the Q-Q Plot. In other words, if we consider a period of 30 years, a 

maximum flow rate value is extracted for each year, until 30 values are obtained. The 

calculation of goodness of fit of SMEVD with a single class is similar to the goodness of 

fit of the moisture accounting SMEVD, the only difference that in this case a soil moisture 

class is considered. The theoretical distribution will be equal to:  

𝐺(𝑥) = 𝐹(𝑥)𝑛 

In the end, it was calculated the goodness of fit of GEV distribution. In this case, the 

goodness of fit was calculated for the distribution with the same sample as the parameters 

of the distribution. The data sample corresponds to the maximum annual flow events.  
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3.6 Climate change scenarios 

After testing the performance of the models through cross-validation, three climate 

change scenarios were estimated based on certain assumptions. To this purpose in the 

scenarios, the moisture accounting SMEVD is used, which allows greater control over 

the events as they are divided according to associated soil moisture. The first climate 

change scenario was assumed by considering a 50% decrease in the frequency associated 

with flow events (and thus also rain events) associated with the highest soil moisture 

class. Flow events with higher intensity are contained in this class. Then the events 

removed from the wettest class are reinserted into the class with intermediate moisture or 

the class with driest soil (it does not matter which class they are placed in).  Events are 

removed randomly and the process repeated 1000 times in order to obtain an average 

climate change scenario. To represent this scenario through a graph, it was chosen to 

relate the return time (Tr) on the x-axis and the maximum flow events on the y-axis. In 

addition, the scenario referring to current climate conditions was included to compare the 

two cases. The climate change scenario has a confidence interval, within which the 

distribution can vary depending on the events removed.  In the second scenario, instead 

of changing the number of events falling within the wettest class, the associated scale 

parameter of gamma distribution is changed. The scaling parameter of the wettest class 

is simply increased by 15%. The last scenario considers both the change in the number of 

events and increase in the scale parameter considered in the two previous scenarios.  
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4. RESULTS 

This chapter brings together the main results of the analysis carried out in Chapter 3. 

4.1 Hydrological Variables 

One of the first aspects highlighted during the extraction of peak events is precisely the 

distribution of flow events over the years. Specifically, almost all the Piave River basins 

present the greatest number of events in the month of May. This is different for Astico 

and Fiorentina stream, which have two distinct peaks, one in May like the previous basins 

and one in November. Both months are transitional periods. May is a month that is often 

characterized by heavy spring rainfall due to the arrival of Atlantic disturbances and 

spring warming that can promote the development of thunderstorms and snowmelt. 

November is a month of autumn seasonality, Atlantic disturbances return frequently, and 

rainfall is often very heavy. In particular, the soil may already be saturated with water 

from previous autumn rains, reducing the absorption capacity and increasing flood events. 

Figure 38 shows several compound graphs, one for each basin. They consist of a 

histogram (represented in blue), which shows the frequency of events associated with 

each month, and a line of red, which depicts the number of events for each month. 
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Another interesting thing to observe is in graph 34 that represents the variation of 

evapotranspiration during the year, mediated over the years considered for each basin. In 

particular the Posina graph represents through thin lines, the evapotranspiration measured 

by each rainfall station considered. In bold is depicted the line that interpolates the 

evapotranspiration values measured by the various stations. 

 

Figure 33 - Frequency distribution of flood events considering Seasonality. 
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Figure 34 - Average evapotranspiration of various basins. 
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Table 4 shows the main parameters needed to calculate evapotranspiration (ET0), in this 

case the count refers to the Fiorentina stream basin. Tables of all basins have not been 

included, as they are not very significant for the analysis in this thesis. 

 

Table 4 - main parameters required for the calculation of evapotranspiration. Example referring to the Fiorentina 
stream basin. 

 

 

 

 

 

Units of measure Annual

°C 5.5

°C 17.7

°C 11.6

K 284.9

m/s 0.4

m/s 0.3

kPa 0.9

kPa 1.7

kPa 1.3

% 24

% 99

kPa 0.6

kPa 0.7

kPa/°C 0.05

kPa/°C 0.10

kPa/°C 0.07

MJ/m2/d 12.0

MJ/m2/d 19.0

MJ/m2/d 14.3

MJ/m2/d 0.0

MJ/m2/d 9.2

mm/d 2.1

cm/d 0.214

29.0 14.8

21.8 11.1

0.1 0.1

19.4 9.0

0.1 0.0

0.1 0.1

9.3 23.6

6.9 17.7

0.0 0.1

5.5 15.4

0.0 0.0

0.0 0.1

23.0 18.0

0.3 0.6

0.8 2.7 4.0 1.6

0.1 0.3 0.4 0.2

0.0 0.0 0.0 0.0

4.2 11.8 15.0 6.9

1.1 0.7

0.4 0.7 1.1 0.6

27.7 27.3

98.7 99.0 99.0 99.0

0.9 1.8 3.1 1.7

0.7 1.3 2.2 1.3

0.4 0.2

0.5 0.8 1.4 0.9

294.5 285.3

0.3 0.6 0.5 0.3

0.2 0.4

28.1 17.6

1.4 11.5 21.2 12.0

6.7 18.1

274.7 284.8

Winter Spring Summer Autumn

-4.0 5.0 14.2 6.3𝑇𝑚𝑖𝑛
𝑇𝑚𝑎𝑥

𝑇

𝑇

𝑢𝑧 (5𝑚)
𝑢𝑧 (2𝑚)

𝑒𝑠
∗(𝑇𝑚𝑖𝑛)

𝑒𝑠
∗(𝑇𝑚𝑎𝑥)

𝑒𝑠
∗

𝑅𝐻𝑚𝑖𝑛
𝑅𝐻𝑚𝑎𝑥
𝑒𝑎
𝑉𝑃𝐷

𝛥𝑇𝑚𝑖𝑛
𝛥𝑇𝑚𝑎𝑥

𝛥

𝑅𝑠
𝑅𝑎
𝑅𝑠,0

𝑅𝑛𝑙
𝑅𝑛

𝐸𝑇0
𝐸𝑇0
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4.2 Joint distribution of flow peaks and antecedent soil 

moisture 

Table 5 shows various linear correlation coefficients, calculated both by considering only 

cumulative precipitation and also including evapotranspiration in the joint distribution of 

flow peaks and antecedent soil moisture. The coefficients are higher or equal when 

evapotranspiration is also considered. This indicates that the linear regression line is 

better able to describe the trend of the points and therefore there is a greater correlation 

between the two variables. It can also be observed that the correlation coefficients while 

having an improvement considering evapotranspiration, remain rather low value, this may 

be due to the presence of snow, which goes to alter the hydrological response of the basin. 

The case with the highest correlation coefficient is when the cumulative soil moisture is 

considered, referring to the 5 days before the peak events. Therefore, for subsequent 

calculations, reference will always be made to the 5-day cumulative soil moisture. 

 

Table 5 - Correlation coefficients of the various ranges of cumulative soil moisture. 

 

Graphs 35-39 show the scatter points representing the marginal distributions between 

peak flow and antecedent moisture. Different colors indicate the joint distributions for 

different cumulative periods: 30, 25, 20, 15, 10 and 5 days. The respective linear 

regression line is also plotted for each distribution.  
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Figure 35 - Point cloud and interpolation lines referring to different cumulative soil moisture ranges. Referred to 
the Boite stream basin. 

Figure 36 - Point cloud and interpolation lines referring to different cumulative soil moisture ranges. Referred to 
the Cordevole stream basin. 
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Figure 37 - Point cloud and interpolation lines referring to different cumulative soil moisture ranges. Referred to 
the Fiorentina stream basin. 

Figure 38 - Point cloud and interpolation lines referring to different cumulative soil moisture ranges. Referred 
to the Padola stream basin. 
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Figures 40-44 shows the complete joint distribution between flow peaks and cumulative 

soil moisture of the 5 days preceding events. The two data sets have been divided into 

classes, so that the graph can be visualized more clearly. The frequency of each class is 

shown with a color scale (logarithmic scale, to emphasize the difference in color between 

cells). As can be seen, the Astico stream basin has numerous extreme events characterized 

by high intensity, compared to the other basins. The basins of the other streams generally 

present one extreme event that differs greatly from the others; that event is associated 

with storm Vaia. The Astico basin does not present a high deviation between Vaia and 

the other events, probably due to the fact that the storm was less intense than in the sites 

belonging to the Piave basin. 

 

 

  

Figure 39 - Point cloud and interpolation lines referring to different cumulative soil moisture ranges. Referred to 
the Astico stream basin. 
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Figure 40 - Joint distribution of cumulative soil moisture present 5 days before flood events and peak flood events. 
Referring to the Boite stream basin. 

Figure 41 - Joint distribution of cumulative soil moisture present 5 days before flood events and peak flood events. 
Referring to the Cordevole stream basin. 
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Figure 42 - Joint distribution of cumulative soil moisture present 5 days before flood events and peak flood events. 
Referring to the Fiorentina stream basin. 

Figure 43 - Joint distribution of cumulative soil moisture present 5 days before flood events and peak flood events. 
Referring to the Padola stream basin. 



- 59 - 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 44 - Joint distribution of cumulative soil moisture present 5 days before flood events and peak flood events. 
Referring to the Astico stream basin. 
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4.3 Goodness of fit 

Analyzing the qq-plots of the various methods, a significantly greater goodness of fit is 

found in the case of the GEV distribution, in all the basins considered. It can also be seen 

that the moisture accounting SMEVD fits the data much better than the SMEVD applied 

to a single class of data. This is because by increasing the number of params, the 

distributions can better describe the data. It is equally true that the drop in performance 

for moisture accounting SMEVD is mainly related to the most extreme event 

corresponding to storm Vaia. The model is not able to fit it correctly, given its great 

intensity compared to the other events. This thing can be appreciated by looking at 

coefficients of determination (see table 6). The closer the coefficient is to one, the greater 

the fit between the model and the observed data. 

 

Table 6 - R² coefficient of determination of qq-plots for various models and basins. Calculated using the Gamma 
distribution 

 

Looking at graphs 45-49 of the qq-plots, one can obtain more information on the fit of 

models to data. Specifically, one can see that in the graphs referring to SMEV 

distributions, for equal probabilities, the theoretical quantile distributions underestimate 

quantiles for high values. While for low values, theoretical quantiles overestimate 

observed quantiles. The qq-plot referring to the GEV distribution fits the data better. The 

quantile most extreme and isolated from the others is related to the Vaia storm. The best 

fit between samples and distribution is for the Fiorentina and Padola basins. Whereas for 

the Boite basin the fit is worse, probably due to the high extreme events it is subjected to. 

The graph referring to the Astico stream, on the other hand, only has 14 years of data 

available, which is why the quantiles represented have a lower number. 

 

 R^2 
basins SMEVD single class Moisture accounting SMEVD GEV 

Boite 0.16 0.69 0.86 
Cordevole 0.37 0.82 0.92 
Fiorentina 0.35 0.70 0.91 
Padola 0.30 0.72 0.91 
Posina 0.61 0.74 0.93 
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It was noted that by setting a threshold to predominantly extracted peak flow events, e.g. 

5, 10 or 15 mm/d, there is a progressive improvement in all models in the fit between the 

quantiles and the 45° straight line. By applying these thresholds, the number of events 

decreases dramatically, for example by setting the threshold equal to 10 mm/d for the 

Fiorentina stream, events decrease from 344 to 118. For this reason, it was decided not to 

raise the thresholds, so as not to affect the subsequent cross validation phase. 

 

 

 

 

 

 

 

 

 

 

  

 

  

Figure 45 - qq-plot of the three models, referring to the Boite stream. 
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Figure 46 - qq-plot of the three models, referring to the Cordevole stream. 

Figure 47 - qq-plot of the three models, referring to the Fiorentina stream. 
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Figure 48 - qq-plot of the three models, referring to the Padola stream. 

Figure 49 - qq-plot of the three models, referring to the Astico stream. 



- 64 - 

Figure 51 - CDF comparison of the three models. Referred to the Cordevole stream. 

4.4 CDF of the models compared 

In graphs 50-54, the cumulative density functions (CDF) of the various models are 

compared. Again, looking at the graphs, the SMEVD applied to a single class 

underestimates events with higher intensity, compared to the GEV, which describes them 

more accurately. The moisture accounting SMEVD, on the other hand, succeeds in 

describing the course of events better, coming closer to the GEV distribution. The 

comments on the various stream basins are the same as those made in Chapter 4.3 for 

goodness of fit. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

Figure 50 - CDF comparison of the three models. Referred to the Boite stream. 
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Figure 52 - CDF comparison of the three models. Referred to the Fiorentina stream. 

Figure 53 - CDF comparison of the three models. Referred to the Padola stream. 
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4.5 Cross Validation 

Two types of graphs were chosen to analyze the results of Cross Validation, one using 

boxplots on relative errors and the other analyzing the distributions of relative errors 

through the violin-plot. In the first case, boxplots are produced for each return time 

considered for the validation phase. In this case, in figures 55-69 the scenario that 

considers 10 years was chosen to represent the model calibration phase. As can be seen, 

the models single-class SMEVD and moisture accounting SMEVD overestimate events 

for small return times. In contrast, for large return times, they slightly underestimate 

events. The GEV distribution, on the other hand, provides a more accurate calculation for 

events with low return times, but large variance for high return times. If, on the other 

hand, we look at the boxplots in Appendix chapter, obtained using the most extreme 

scenario of 3-year calibration, the graphs referring to single-class SMEVD and GEV 

distribution have numerous outliers (indicated by red crosses). In contrast, moisture 

accounting SMEVD has far fewer outliers, a sign that the model performs a more robust 

estimation of outliers. 

 

 

Figure 54 - CDF comparison of the three models. Referred to the Astico stream. 
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Figure 55 - Boxplot relative errors SMEVD single class. Referring to the Boite stream basin. 

Figure 56 - Boxplot relative errors of moisture accounting SMEVD. Referring to the Boite stream basin. 

Figure 57 - Boxplot relative errors GEV distribution. Referring to the Boite stream basin. 
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Figure 60 - Boxplot relative errors GEV distribution. Referring to the Cordevole stream basin. 

Figure 58 - Boxplot relative errors SMEVD single class. Referring to the Cordevole stream basin. 

Figure 59 - Boxplot relative errors of moisture accounting SMEVD. Referring to the Cordevole stream basin. 
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Figure 61 - Boxplot relative errors SMEVD single class. Referring to the Fiorentina stream basin. 

Figure 62 - Boxplot relative errors of moisture accounting SMEVD. Referring to the Fiorentina stream basin. 

Figure 63 - Boxplot relative errors GEV distribution. Referring to the Fiorentina stream basin. 
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Figure 64 - Boxplot relative errors SMEVD single class. Referring to the Padola stream basin. 

Figure 65 - Boxplot relative errors of moisture accounting SMEVD. Referring to the Padola stream basin. 

Figure 66 - Boxplot relative errors GEV distribution. Referring to the Padola stream basin. 
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Figure 67 - Boxplot relative errors SMEVD single class. Referring to the Astico stream basin. 

Figure 68 - Boxplot relative errors of moisture accounting SMEVD. Referring to the Astico stream basin. 

Figure 69 - Boxplot relative errors GEV distribution. Referring to the Astico stream basin. 
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In the second case, the relative error distributions of the various models were analyzed 

using violin-plots. Two graphs were produced for each basin, the first considering relative 

errors associated with the last return time, while the second considers relative errors 

associated with the last 4 return times. The final return time changes depending on the 

stream being considered (as the available historical data are not the same for all basins) 

and the years used for the calibration phase. For example, if we consider 10 years of 

calibration for the analyzed sites, then the return times will be as follows: Boite stream 

22 years, Cordevole stream 19 years, Fiorentina stream 20 years, Padola stream 25 years 

and Astico stream 12 years. The graphs 70-74, referring to the last return time, allow the 

three models to be compared by considering 3, 5 and 10 years of events for the calibration 

phase. The models associated with 10 years of events for the calibration phase allow to 

observe bimodal distributions. The peaks characterized by high frequencies occur when 

storm Vaia is considered for the validation phase, indicating that models are unable to 

predict that event. The other peaks, on the other hand, are characterized by a lower 

probability and occur when the event associated with Vaia is not considered in the 

validation phase. Looking at these peaks, the model with the best predictive ability is the 

one using moisture accounting SMEVD. A special comment can be made about the basins 

of Boite and Astico streams. Looking at graphs 70 and 75 of the Boite torrent, no model 

fits the data correctly. This could be due to the unpredictable behavior of the Boite stream, 

which has many extreme events of great magnitude. Even looking at the graph referring 

to the last return time, no model seems able to predict event associated with storm Vaia. 

The graphs referring to the Astico stream, on the other hand, show that model using the 

GEV distribution manages to predict events better than models using the SMEVD. This 

may be due to the limited availability of data (14 years compared to 31 years for the other 

basins). The scenarios that consider 3 or 5 years for calibration, on the other hand, perform 

worse than the case analyzed with 10 years; this is because the distributions fit the data 

more imprecisely, given the low availability of events for calibration. However, these 

graphs allow to observe that the dispersion of relative errors is greater in the model using 

the GEV distribution. The graphs 75-79 show the same information but take the last four 

return times into consideration. In this case the moisture accounting SMEVD and the 

GEV distribution referring to 10 years of calibration, has a very similar error distribution. 
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By reducing the number of years of data for calibration, the GEV distribution also has a 

greater dispersion of errors.   

Figure 71 - Violin-plot containing the relative error distributions of three different models, referring to 
the last return time. Each model is represented considering 3, 5 or 10 years of events for the calibration 
sample. Referring to the Boite stream basin. 

Figure 70 - Violin-plot containing the relative error distributions of three different models, referring to 
the last return time. Each model is represented considering 3, 5 or 10 years of events for the calibration 
sample. Referring to the Cordevole stream basin. 
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Figure 72 - Violin-plot containing the relative error distributions of three different models, referring to 
the last return time. Each model is represented considering 3, 5 or 10 years of events for the calibration 
sample. Referring to the Fiorentina stream basin. 

Figure 73 - Violin-plot containing the relative error distributions of three different models, referring to 
the last return time. Each model is represented considering 3, 5 or 10 years of events for the calibration 
sample. Referring to the Padola stream basin. 
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Figure 74 - Violin-plot containing the relative error distributions of three different models, referring to 
the last return time. Each model is represented considering 3, 5 or 10 years of events for the calibration 
sample. Referring to the Astico stream basin. 

Figure 75 - Violin-plot containing the relative error distributions of three different models, referring to 
the last four return periods. Each model is represented considering 3, 5 or 10 years of events for the 
calibration sample. Referring to the Boite stream basin. 
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Figure 76 - Violin-plot containing the relative error distributions of three different models, referring to 
the last four return periods. Each model is represented considering 3, 5 or 10 years of events for the 
calibration sample. Referring to the Cordevole stream basin. 

Figure 77 - Violin-plot containing the relative error distributions of three different models, referring to 
the last four return periods. Each model is represented considering 3, 5 or 10 years of events for the 
calibration sample. Referring to the Fiorentina stream basin. 
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Figure 78 - Violin-plot containing the relative error distributions of three different models, referring to 
the last four return periods. Each model is represented considering 3, 5 or 10 years of events for the 
calibration sample. Referring to the Padola stream basin. 

Figure 79 - Violin-plot containing the relative error distributions of three different models, referring to 
the last four return periods. Each model is represented considering 3, 5 or 10 years of events for the 
calibration sample. Referring to the Astico stream basin. 
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To test the performance of the models, considering the latest return times, the error indices 

mentioned in chapter 2.3.3, were used. As can be seen from table 7, in most cases the 

model that best manages to estimate events is the SMEVD applied to three classes. This 

is due to the fact that KGE and NSE have higher values (best case when values are equal 

to 1) and RMSE has values that are lower (best case when values are equal to 0). The 

Boite site presents the same problems as described when looking at the cross-validation 

graphs, which confirms the fact that no model can correctly predict flood flow events. 

 

basins 

Error indexes 

Error types SMEVD single class 
Moisture 

accounting 
SMEVD  

GEVD 

Boite 

NSE -9.38 -58.74 -91.00 
KGE 0.03 -0.08 -0.70 

RMSE 41.99 43.93 34.67 
SD 0.38 0.53 0.27 

Cordevole 

NSE -22.51 -14.60 -12.95 
KGE 0.36 0.48 0.30 

RMSE 11.19 11.74 10.26 
SD 0.29 0.41 0.20 

Fiorentina 

NSE -8.53 -9.70 -9.14 
KGE 0.30 0.40 0.35 

RMSE 23.71 25.62 21.52 
SD 0.45 0.69 0.26 

Padola 

NSE -9.46 -9.24 -8.54 
KGE 0.27 0.38 0.35 

RMSE 10.36 11.11 9.19 
SD 0.47 0.70 0.26 

Posina 

NSE -3.28 -5.64 -3.89 
KGE 0.54 0.52 0.45 

RMSE 19.44 28.42 18.84 
SD 1.62 2.64 0.91 

Table 7 - Error indices (NSE, KGE, RMSE and SD) to measure the performance of the models, for the various sites. 
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4.6 Climate change scenarios 

This section discusses the results obtained from the three climate change scenarios 

assumed. Graphs 81-84 depict the first climate change scenario, referring to the different 

basins. It can be seen that by reducing the events in the highest soil moisture class by 50% 

and placing them in the driest soil class, a decrease in the flow rates of flood events for 

low to medium return times and an increase in the flow rates for high return times are 

induced. This is valid if one looks at the average case obtained from the random removal 

of events, considering 1000 iterations (in the graphs the average case is depicted with a 

red curve). The curve referring to the scenario of future climatic conditions has a 

confidence interval, which means that the forecast has a certain degree of uncertainty and 

can vary within the range indicated in the graphs by a pink area. In particular, graph 81 

referring to the Boite torrent can be observed, which is characterized by a very wide 

confidence interval, meaning that it is an uncertain estimation. Graphs 85-88 depict the 

second climate change scenario. In this scenario, a 15% increase in the scaling parameter 

of the gamma distribution of the third humidity class is assumed. Compared to the 

previous scenario, the future climate scenario increases for both high and low return 

times. Furthermore, the uncertainty interval is reduced, since in this case the selection of 

events is not changed, but only the scaling coefficient of the gamma distribution. Graphs 

89-92 depict the third climate change scenario, a hybrid case of the two previous 

scenarios, which assumes both a 50% reduction in events in the third moisture class and 

a 15% increase in the scaling coefficient. Combining the two assumptions, a more 

extreme climate change scenario is considered, which notes a greater increase in events 

with a medium to high return time and a lower reduction for events with a low return 

time, compared to the present climate condition. In all three scenarios there are blue 

circles, which correspond to the maximum annual events. Most of these events are 

associated with low return times, while the most extreme event is associated with storm 

Vaia and can have a return time varying between 200 and 1000 years depending on the 

site considered. 
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To compare the results of the various scenarios, a few return times (50, 100, 200, 500, 

1000) were taken and the percentage increase or decrease of events associated with 

the future climate condition was calculated, compared to the current one. The results 

were collected in tables 8-10. Table 9 refer to the second climate change scenario and 

shows that applying a 15% increase to the scale parameter, the events associated with 

the selected return periods also undergo a 15% increase in magnitude. 

 

basins 
Climate Change Scenario 1 

Tr = 50 y Tr = 100 y Tr = 200 y Tr = 500 y Tr = 1000 y 
Boite - 13.5% - 7.3% - 1.7% + 5.4% + 10.2% 
Cordevole - 10.1% - 7.0% - 3.7% + 0.3% + 2.8% 
Fiorentina - 11.7% - 6.3% - 1.2% + 4.8% + 8.4% 
Padola - 11.2% - 6.6% - 2.4% + 2.9% + 6.2% 
Astico - 9.1% - 7.2% - 5.8% - 3.9% - 2.8% 

Table 8 - Comparison of events associated with future climate conditions, compared to current climate conditions, 
calculated for return times 50, 100, 200, 500, 1000. Future climate conditions are calculated using climate change 
scenario 1. 

 

basins 
Climate Change Scenario 2 

Tr = 50 y Tr = 100 y Tr = 200 y Tr = 500 y Tr = 1000 y 
Boite + 15.1% + 14.9% + 15.1% + 15.1% + 15.2% 
Cordevole + 14.8% + 15.0% + 15.0% + 15.0% + 15.0% 
Fiorentina + 15.2% + 15.0% + 15.1% + 15.1% + 15.0% 
Padola + 15.0% + 15.4% + 15.1% + 15.1% + 15.0% 
Astico + 15.0% + 15.1% + 15.1% + 15.0% + 15.0% 

Table 9 - Comparison of events associated with future climate conditions, compared to current climate conditions, 
calculated for return times 50, 100, 200, 500, 1000. Future climate conditions are calculated using climate change 
scenario 2. 

 

basins 
Climate Change Scenario 3 

Tr = 50 y Tr = 100 y Tr = 200 y Tr = 500 y Tr = 1000 y 
Boite - 0.8% + 6.9% + 13.4% + 19.4% + 26.9% 
Cordevole + 3.2% + 7.4% + 11.1% + 15.3% + 18.1% 
Fiorentina + 2.0% + 8.0% + 14.2% + 20.3% + 24.5% 
Padola + 2.3% + 7.9% + 12.6% + 18.4% + 21.8% 
Astico + 4.7% + 6.7% + 8.5% + 10.5% + 11.7% 

Table 10 - Comparison of events associated with future climate conditions, compared to current climate conditions, 
calculated for return times 50, 100, 200, 500, 1000. Future climate conditions are calculated using climate change 
scenario 3. 
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Figure 81 - Climate change scenario 1, achieved by removing 50 % of the events in the highest 
soil moisture class. The removed events were considered in the driest soil class. Graph referring 
to the Boite stream. 

Figure 80 - Climate change scenario 1, achieved by removing 50 % of the events in the highest 
soil moisture class. The removed events were considered in the driest soil class. Graph referring 
to the Cordevole stream. 
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Figure 82 - Climate change scenario 1, achieved by removing 50 % of the events in the highest 
soil moisture class. The removed events were considered in the driest soil class. Graph referring 
to the Fiorentina stream. 

Figure 83 - Climate change scenario 1, achieved by removing 50 % of the events in the highest 
soil moisture class. The removed events were considered in the driest soil class. Graph referring 
to the Padola stream. 
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Figure 84 - Climate change scenario 1, achieved by removing 50 % of the events in the highest 
soil moisture class. The removed events were considered in the driest soil class. Graph referring 
to the Astico stream. 

Figure 85 - Climate change scenario 2, obtained by increasing the scale parameter of the highest 
soil moisture class by 15%. Graph referring to the Boite stream. 
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Figure 86 - Climate change scenario 2, obtained by increasing the scale parameter of the highest 
soil moisture class by 15%. Graph referring to the Cordevole stream. 

Figure 87 - Climate change scenario 2, obtained by increasing the scale parameter of the highest 
soil moisture class by 15%. Graph referring to the Fiorentina stream. 
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Figure 88 - Climate change scenario 2, obtained by increasing the scale parameter of the highest 
soil moisture class by 15%. Graph referring to the Padola stream. 

Figure 89 - Climate change scenario 2, obtained by increasing the scale parameter of the highest 
soil moisture class by 15%. Graph referring to the Padola stream.  
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Figure 90 - Climate change scenario 3, obtained by combining the alterations implemented 
in scenario 1 and 2. Graph referring to the Boite stream. 

Figure 91 - Climate change scenario 3, obtained by combining the alterations implemented 
in scenario 1 and 2. Graph referring to the Cordevole stream. 
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Figure 93 - Climate change scenario 3, obtained by combining the alterations implemented 
in scenario 1 and 2. Graph referring to the Fiorentina stream. 

Figure 92 - Climate change scenario 3, obtained by combining the alterations implemented 
in scenario 1 and 2. Graph referring to the Padola stream. 
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Figure 94 - Climate change scenario 3, obtained by combining the alterations implemented 
in scenario 1 and 2. Graph referring to the Astico stream. 
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5. CONCLUSIONS 

In this thesis, three models for the analysis of extreme events were examined, with the 

aim of studying the impact of initial moisture conditions on the generation of flood events. 

From an in-depth analysis of the joint distributions of peak flow rate and antecedent 

cumulative soil moisture, it was possible to determine that the antecedent moisture 

calculated over the past 5 days is more correlated with the discharge as compared to the 

antecedent moisture calculated over longer time-windows. Subsequently, the three 

models were compared: one based on SMEVD considering a single class of data, another 

based on moisture accounting SMEVD, and the last based on GEV distribution. By 

comparing the goodness of fit of the models using the qq-plot, it could be seen that the 

model that best fits the data is the one using the GEV distribution. This is usually due to 

two reasons:  

• Good flexibility, since the GEV distribution combines three types of extreme 

value distributions (Gumbel, Fréchet and Weibull); 

• Asymptotic characteristics: The GEV distribution is derived from the classical 

extreme value theory, based on independent and identically distributed maxima 

(i.i.d.). 

It is important to note that the performance for moisture accounting SMEVD only 

decreases for the event associated with storm Vaia. Cross-validation was used to measure 

the ability to predict unobserved events, which showed that the model based on the 

SMEVD applied to three soil moisture classes was able to predict flood flow events 

associated with high return times more accurately. The three-class SMEVD model 

performs better for the following reasons: 

• Metastatistical and heterogeneous structure, which means that instead of assuming 

that the extreme data comes from a uniform and stable distribution over time, the 

SMEV incorporates the possibility that the source population has time-varying 

characteristics or comes from a combination of subpopulations. 

• Better Representation of Extreme Tails, the SMEV allows for a more accurate 

description of the usually heavy tails typical of rare events; 

• Good adaptability in contexts of climate change. 
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The SMEVD model based on multiple classes of data allows assumptions to be made 

about climate change, which is not possible with single-class SMEVD and GEV models. 

For the last step, three climate change scenarios were assumed using the SMEVD model. 

The first scenario assumes a 50% reduction of extreme events in the wettest soil class and 

a redistribution of these to the driest soil class. The second scenario assumes a 15% 

increase in the scale parameter of the gamma distribution associated with the wettest soil 

class. The second scenario assumes a 15% increase in the gamma distribution scaling 

parameter associated with the wettest soil class. Finally, the third scenario considers a 

combination of the variations of the first and second scenarios. The first scenario 

identifies an increase in the intensity of events associated with high return times and a 

reduction in events for medium to low return times. The second scenario allows an overall 

increase in event intensity of 15% to be observed. The third scenario is the most 

pessimistic, showing an increase in events associated with medium-high return times and 

a reduction in events with low Tr. The major limitations and challenges associated to the 

presented analysis are the following: 

• Need for a wide range of data to carry out a more precise analysis (problem 

encountered with the study of the site associated with the Astico torrent, which 

had only 14 years of data). 

• Fitting difficulties and reduced performance of the SMEV and GEV models with 

respect to extremely high magnitude events, particularly in storm Vaia events, 

were found at almost all of the sites analyzed. 

In conclusion, this thesis highlights the advantages of using the antecedent moisture 

SMEVD as a tool to explore the non-obvious overall flood impact of drier conditions and 

more intense rainfall events likely brought about by climate change. This tool can be 

further developed and applied to a wider range of conditions than was done here and to 

account for different changes in rainfall regimes associated to global warming. 
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APPENDIX  

The following are the boxplots of relative errors, associated with Cross Validation. The 

graphs are obtained considering 3 years for the calibration phase. 
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Figure 95 - Boxplot relative errors SMEVD single class. Referring to the Boite stream basin. 

Figure 96 - Boxplot relative errors of moisture accounting SMEVD. Referring to the Boite stream basin. 

Figure 97 - Boxplot relative errors GEV distribution. Referring to the Boite stream basin. 
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Figure 99 - Boxplot relative errors SMEVD single class. Referring to the Cordevole stream basin. 

Figure 98 - Boxplot relative errors of moisture accounting SMEVD. Referring to the Cordevole stream basin. 

Figure 100 - Boxplot relative errors GEV distribution. Referring to the Cordevole stream basin. 
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Figure 101 - Boxplot relative errors SMEVD single class. Referring to the Fiorentina stream basin. 

Figure 102 - Boxplot relative errors of moisture accounting SMEVD. Referring to the Fiorentina stream basin. 

Figure 103 - Boxplot relative errors GEV distribution. Referring to the Fiorentina stream basin. 
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Figure 104 - Boxplot relative errors SMEVD single class. Referring to the Padola stream basin. 

Figure 106 - Boxplot relative errors GEV distribution. Referring to the Padola stream basin. 

Figure 105 - Boxplot relative errors of moisture accounting SMEVD. Referring to the Padola stream basin. 
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Figure 107 - Boxplot relative errors SMEVD single class. Referring to the Astico stream basin. 

Figure 108 - Boxplot relative errors of moisture accounting SMEVD. Referring to the Astico stream basin. 

Figure 109 - Boxplot relative errors SMEVD single class. Referring to the Astico stream basin. 
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