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Abstract

The capability of anomaly detection (AD) to detect defects in industrial environments using
only normal samples has attracted significant attention. However, traditional AD methods
have primarily concentrated on the current set of examples, leading to a significant drawback
of catastrophic forgetting when faced with new tasks. Due to the constraints in flexibility and
the challenges posed by real-world industrial scenarios, there is an urgent need to strengthen the
adaptive capabilities ofADmodels. Hence, this thesis introduces a unified framework that inte-
grates continual learning (CL) and anomaly detection (AD) to accomplish the goal of anomaly
detection in the continual learning (ADCL). To evaluate the effectiveness of the framework, a
comparative analysis is performed to assess the performance of the three specific feature-based
methods for the AD task: Coupled-Hypersphere-Based Feature Adaptation (CFA), Student-
Teacher approach, and PatchCore. Furthermore, the framework incorporates the utilization
of replay techniques to facilitate continual learning (CL). A comprehensive evaluation is con-
ducted using a range of metrics to analyze the relative performance of each technique and
identify the one that exhibits superior results. To validate the effectiveness of the proposed
approach, theMVTec AD dataset, consisting of real-world images with pixel-based anomalies,
is utilized. This dataset serves as a reliable benchmark for Anomaly Detection in the context of
Continual Learning, providing a solid foundation for further advancements in the field.
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1
Introduction

Anomaly Detection (AD) involves identifying unexpected or diverse patterns within uniform
natural image collections. This has broad applications, including visual industrial inspections.
However, anomalies are extremely rare in manufacturing, making manual detection difficult.
Automating anomaly detection enables continuous quality control,mitigating attention lapses
and aiding human operators.

The evolution of anomaly detection methods has closely followed the advancement of Ma-
chine Learning andComputer Vision. Initially, the field relied on fundamental rules and static
statistical measures to identify unusual patterns [1]. The main issue is that statistical models
require restarting the training process each time new task’s data becomes available. In our dy-
namicworld, this practice is infeasible for data streams ormay only be available temporarily due
to storage constraints or privacy issues. However, with the surge in data complexity, innovative
strategies emerged.

Current state-of-the-art neural networks have achieved exceptional performance in address-
ing a wide range of classification and detection tasks, particularly within the area of Computer
Vision. The landscape of methodologies for unsupervised anomaly detection is broad, and nu-
merous approaches have been proposed to tackle this challenge. Among the initial strategies
introduced are reconstruction-based anomaly detection techniques, which draw upon gener-
ative models like autoencoders (AEs) and variational autoencoders (VAEs) architectures [2],
trained exclusively on defect-free images. These techniques strive to reconstruct defect-free
training samples through a bottleneck in the latent space. More recently, the emergence of
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Generative Adversarial Networks (GANs) has attracted significant attention [3]. While show-
ing promising results in basis function reconstruction, GANs suffer from mode-collapse and
inversion difficulties, which limits the applicability of such methods. The main idea lying be-
hind these methods intended for unveiling the anomalies is based on subtracting input and
reconstructed images. However, these algorithms struggle to learnmultiple tasks in succession.
Consequently, they are prone to Catastrophic Forgetting (CF) - a phenomenon wherein arti-
ficial neural networks frequently forget the previous tasks [4]. This phenomenon stems from
a broader issue within neural networks, known as the stability-plasticity dilemma [5], where
plasticity denotes the capacity to integrate new knowledge, while stability entails the retention
and encoding of prior knowledge. This significantly hinders the adoption of these approaches
in real-world scenarios and calls for systems that adapt continually and keep on learning over
time.

To address this issue, a new branch of machine learning has been introduced, known as
Continual Learning (CL) [6]. CL is a particular machine learning paradigm where the data
distribution and learning objective change through time, or where all the training data and
objective criteria are never available at once. The evolution of the learning process is modeled
by a sequence of learning experiences where the goal is to be able to learn new skills all along
the sequence without forgetting what has been previously learned. Concurrently, it aims at
the same time at optimizing the memory, the computation power and the speed during the
learning process. Various CL strategies have been proposed in the literature in recent years to
prevent catastrophic forgetting. Among these, the replay approach stands out as the most rec-
ognized and effective strategy for mitigating forgetting [7, 8]. This method involves retaining
some samples in their original format and reintroducing them during subsequent tasks, even
with limitations on memory size.

In this work, the general framework for Anomaly Detection in the Continual Learning
(ADCL) context is harnessed, as presented in [9]. Within this framework, the focus is on three
representative AD feature embedding-based approaches, which are adapted and subjected to
a comprehensive comparison from various angles, utilizing all the currently available valuable
performance metrics. Moreover, there is limited consensus in the literature on experimental
ADCL setups. While certain papers present evidence for specific model architecture settings
in the context of anomaly detection, to the best of knowledge, no comprehensive exploration
of its adaptation within the CL paradigm or extensive experimental comparisons have been
carried out thus far, apart from [9]. Ultimately, the obtained results demonstrate that the
application of the Coupled-Hypersphere-Based Feature Adaptation (CFA), Student-Teacher
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approach, and PatchCore method within the CL framework can yield optimal performances.
Assuming that, for a given task, all data becomes simultaneously accessible for offline training,
this permits learning across multiple epochs using the complete training dataset, with repeated
shuffling to ensure independent and identically distributed (i.i.d.) conditions. It is crucial to
note that data from preceding or subsequent tasks remains beyond reach, except for the mem-
orized samples. In terms of benchmark, the MVTec dataset [10] is proposed, designed to be
representative of many challenges of real-world pixel-level AD. Furthermore, this dataset en-
compasses 10 distinct object classes that serve as successive taskswithin theContinual Learning
framework.

The objective of this work is to assess the current cutting-edge approaches for anomaly de-
tection and suggest a framework for their adaptation and evaluation within the realm of Con-
tinual Learning (CL), usingMVTecDataset as benchmark and employing crucial performance
metrics. The focus is directed toward anomaly detection within the context of continual learn-
ing, with the ultimate goal of facilitating this demanding yet profoundly vital task, which finds
applicability in nearly every production line worldwide. This industrial and economic signifi-
cance underscores the need for robust solutions.

The thesis is structured as follows: Chapter 2 provides an overview of several anomaly detec-
tion methods. Chapter 3 reviews the continual learning framework. In Chapter 4, the dataset
MVTec AD is described. Chapter 5 presents the experimental setup and results, followed by
the conclusion in Chapter 6.

3
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2
Anomaly Detection

Anomaly detection has drawn a lot of attention over the last several decades and various com-
petitive approaches have been proposed till today. This task is crucial in several fields such as
fraud detection, intrusion detection, and industrial quality control. In that regard, humans
used to detect anomalies and give early indications of danger or to discover unique opportu-
nities, but due to the importance of these tasks and globally escalated need for high-speed and
accurate results, have recently focused more on artificial intelligence. The typical anomaly de-
tection setting is a one-class classification task, where the objective is to classify data as normal
or anomalous. The significance of the task, especially in industrial setting, comes from the
ability to detect a different pattern from those seen in the past, and therefore trigger further
inspection. This is fundamentally different from supervised learning approach, in which ex-
amples of all data classes are observed, but since inspection tasks often lack defective samples
or it is unclear what kinds of defects may appear, as such it is not applicable. There are many
relevant applications that must rely on unsupervised algorithms that are able to detect not just
if an anomaly is present, but also to localize anomalous regions. Moreover, the setting where
only normal data is on disposal as a training set is also well-known as self-supervised learning.

Images play a crucial role in anomaly detection as they provide rich and complex information
that can be used to identify abnormalities in various domains such as manufacturing, medical
diagnosis, and security. With the advent of deep learning, computer systems have becomemore
adept at processing images, enabling them to detect anomalies with high accuracy. Addition-
ally, images can provide valuable context for identifying the source and extent of an anomaly,
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enabling effective response and mitigation strategies. Overall, images are a critical component
in anomaly detection, providing a powerful tool for improving safety, efficiency, and overall
performance in various applications. Finally, methods for anomaly detection can be separated
in two categories: image-level methods identifying if entire image is anomalous, and sub-image
methods providing the segmentation of anomalous region.
There are three main classes of methods for image-level anomaly detection:

• reconstruction-based methods

• distribution-based methods

• classification-based methods.

Reconstruction-based methods learn a set of basis functions that refer to a set of learned
functions that are used to represent or approximate the training data.These functions form a
basis for the reconstruction process, where they are combined in specificways to reconstruct or
approximate the test images. To this end, various methods have been used: nearest neighbors,
low-rank, K-means, neural networks etc.[10]. Most recently, Generative Adversarial Networks
(GANs) have been introduced and become very popular[3]. As such, they show good perfor-
mances in basis function reconstruction, but suffer from mode-collapse and are difficult to
invert, which limits the applicability of such methods.

The second class ofmethods is distribution-based. Themain principle is tomodel the proba-
bility density function of the distribution of the normal data. Test samples are evaluated under
the probabilistic model, and test samples with low probability density values are detected as
anomalous. There are various distribution-basedmethods for anomaly detection, which differ
based on their distributional assumptions, the approximations used to estimate the probability
density function (PDF), and the training procedure. Examples of parametric methods include
Gaussian or mixture of Gaussians (GMM), while non-parametric methods include kernel den-
sity estimation.

Classification-based methods utilize split of feature-space regions containing normal data
from all other regions. Recently, they have achieved dominance for image-level anomaly detec-
tion, and enhanced their capabilities of finding a good feature space for performing the separa-
tion, bothby the classic kernelmethods aswell as by the recentdeep learning approaches[11][12][13].

To support research on anomaly detection, high-quality datasets have been introduced, such
as MVTec [10], which simulates industrial fault detection by detecting parts of images with
faults such as dents or missing parts. Additionally, ShanghaiTech Campus dataset was used as
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a benchmark throughout numerous papers - a dataset simulating a surveillance setting where
cameras observe a busy campus and the objective is to detect anomalous objects and activities
such as fights.

2.1 MVTec Dataset: The Ultimate Benchmark for
Anomaly Detection on Images

For the sake of developing machine learning models for such and other challenging scenarios
we require suitable data. To this end, for the first time in [1] was presented novel and compre-
hensive multi-object, multi-defect dataset for anomaly detection that provides pixel-accurate
ground-truth regions for all anomalies that focuses on real-world applications. It is MVTec
Anomaly Detection (MVTec AD) dataset that contains 5354 high-resolution images of five
unique textures and ten unique objects from different domains, which made feasible a lot of
work in the field of anomalous detection to be done and properly evaluated. Five categories
cover different types of regular (carpet, grid) or random (leather, tile, wood) textures, while the
remaining ten categories represent various types of objects. Some of these objects are rigidwith
a fixed appearance (bottle, metal nut), while others are deformable (cable) or include natural
variations (hazelnut). Additionally, it is the most recent challenging anomaly dataset contain-
ing a variety of faulty products taken in a controlled environment and constitutes a realistic
anomaly detection problem. It contains normal, i.e., defect-free, images intended for training
and images with anomalies intended for testing.

2.2 EvaluationMetricsforAnomalyDetectionTech-
niques

Assessing the performance and effectiveness of anomaly detection methods heavily relies on
evaluation metrics that quantify and measure their ability to accurately detect anomalies.

While the ROCAUC metric is extensively employed to evaluate anomaly detection meth-
ods due to its comprehensive performancemeasure, alternative metrics such as the PRO-score,
precision-recall and f1-score are also utilized in specific contexts to assess the effectiveness of
anomaly detection algorithms.

Metrics like ROC AUC, PRO-score and precision-recall are not functions of threshold, as
they evaluate a model’s performance across various threshold settings. In contrast, the f1-score
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is threshold-dependent, as it summarizes performance at a specific threshold.

2.2.1 ROCAUC

The ROCAUC metric serves as a widely adopted evaluation measure in anomaly detection.
It offers a comprehensive assessment by analyzing the algorithm’s performance in discriminat-
ing between normal and anomalous instances. The Receiver Operating Characteristic (ROC)
curve visually represents the trade-off between the true positive rate and false positive rate at
various classification thresholds. The Area Under the Curve (AUC) summarizes the overall
discriminative capability, with a higher value indicating a better performance. The ROCAUC
metrics are particularly valuable for imbalanced datasets as they provide a comprehensive eval-
uation regardless of the selected threshold. These metrics are crucial for comparing different
anomaly detection algorithms, aiding researchers in choosingmodels with superior discrimina-
tory power.

2.2.2 PRO-score

The Per-region-overlap (PRO) serves as an evaluation metric that ensures equal weighting of
ground-truth regions regardless of their sizes, as explained in [14]. This stands in stark contrast
to simplistic per-pixel metrics, where a single large correctly segmented region can compensate
for numerous inaccurately segmented smaller ones. To calculate the PROmetric, the process
begins by thresholding anomaly maps at a specified anomaly score, resulting in a binary deci-
sion for each pixel, indicating the presence or absence of an anomaly. Subsequently, for every
connected componentwithin the ground-truth, themetric computes the percentage of overlap
with the thresholded anomaly region.

2.2.3 Precision - Recall

The analysis of precision and recall holds significant importance and enjoys widespread usage
in the evaluation of pixel-level performance in tasks related to image processing and computer
vision.

Precision serves as a metric that measures the proportion of correctly identified positive pix-
els among all pixels classified as positive, thereby underscoring the reliability of positive predic-
tions. Conversely, recall assesses the ratio of correctly classified positive pixels to the entirety

8



of actual positive pixels, shining a spotlight on the method’s capacity to capture all relevant
information.
As a result, the precision-recall analysis finds particular relevance in scenarios characterized

by imbalanced classes or the presence of rare events. It enables the examination of the model’s
proficiency in making accurate positive predictions while concurrently minimizing the occur-
rence of false positives. It is also customary to visualize the trade-off between precision and
recall through the creation of a precision-recall (PR) curve.

2.2.4 f1-Score

The f1-score combines precision and recall using their harmonic mean:

f1 =
2 · Precision · Recall
Precision+ Recall

. (2.1)

The f1-score balances the trade-off between precision and recall. It provides a single score that
reflects both the model’s ability to make accurate positive predictions and its ability to capture
all relevant positive instances. The f1-score is particularly useful when there is an imbalance
between the two classes, as it takes into account false positives and false negatives.
A high f1-score indicates a model that achieves both high precision and high recall, while a

low f1-score suggests that the model may be biased toward one of these metrics at the expense
of the other.

2.3 Approaches for Unsupervised Anomaly
Detection

The landscape ofmethods for unsupervised anomaly detection is diverse andmany approaches
have been suggested to tackle the problem. The following paragraphs provide novel state-of-
the-art approaches, ranked fromgood tobest performing, alongwith their underlying ideas and
corresponding results achieved on theMVTecAnomalyDetection dataset. Their performance
for both segmentation and classification of anomalous images is assessed.

One of the first introduced reconstruction-based anomaly detection techniques are based
on generative models such as autoencoders (AEs) and variational autoencoders (VAEs) archi-
tectures trained solely on defect-free images. They attempt to reconstruct defect-free training
samples through a bottleneck (latent space). During testing, they fail to reproduce images that
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differ from the data that was observed during training. The anomaly score of an image is de-
fined as the difference between latent space representations of the original image and of the
reconstructed one. However, as a drawback, evidence show that probabilities obtained from
AEs, VAEs and other deep generative models might fail to model the true likelihood of the
training data[2][15].

Autoencoders and variational autoencoders (VAEs) are deep learning models that are com-
monly used for image reconstruction. Autoencoders consist of an encoder network that maps
an input image to a lower dimensional feature representation, followed by a decoder network
that maps the feature representation back to a reconstructed image. The encoder and decoder
networks are trained jointly to minimize the difference between the original and reconstructed
images. Variational autoencoders are a type of autoencoder that learn a probabilistic represen-
tation of the input images. The encoder networkmaps the input image to amean and variance
parameter, which are used to sample from a latent space distribution. The decoder network
then maps the sampled value back to a reconstructed image. The goal of VAEs is to learn a
continuous and smooth latent space that can be used for image generation and manipulation.

In [10]wereproposed and tested severalmethods such as convolutional autoencoders (CAEs),
AnoGAN,CNNFeatureDictionary andGMM-BasedTexture InspectionModel, out ofwhich
autoencoders outperformed all the others based on the results obtained on classification and
segmentation of anomalous images and regions, respectively. CAEs utilize comparison of the
reconstructed with its respective input image using either per-pixel L2-loss or structural simil-
iarity index (SSIM) in order to produce a one-channel spatialmap inwhich large values indicate
that a certain pixel belongs to an anomalous region. In order to obtain a final segmentation
result and make a binary decision for each pixel, a threshold must be determined on a set of
randomly selected validation images excluded from training set. For the image-classification
scenario, the accuracy of correctly classified images for anomalous and anomaly-free test im-
ages are measured. On the other hand, for segmentation performance evaluation, the extent to
which the segmentation overlaps with the ground truth on a per-region basis is assessed. How-
ever, for the sake of additional performance assessment independently of the pre-determined
threshold, the area under the receiver operating characteristic curve (ROCAUC) is evaluated,
both for image-level and pixel-level anomaly detection.

10



2.3.1 Reconstruction by Inpainting for Visual Anomaly
Detection (RIAD)

Anomalies are rare and diverse, making it difficult to collect annotated data, so generative ap-
proaches are preferred over discriminative models. These methods attempt to learn the distri-
bution of normal data and detect anomalies as outliers. Autoencoders are a popular approach,
but they often fail to accurately reconstruct anomalous regions due to their high generaliza-
tion capacity. Reconstruction by inpainting for visual anomaly detection (RIAD) was intro-
duced as an interesting approach in [16], which randomly removes partial image regions and
reconstructs the image from partial inpaintings. Unlike autoencoders which rely on the very
same region in input image that should be reconstructed, RIAD reconstructs local regions by
conditioning only on their immediate neighborhood, which makes accurately reconstructing
anomalies very unlikely. However, non-anomalous regions are reconstructed well since they
are modeled from large quantity of available anomaly-free images. The main contribution of
RIAD is casting anomaly detection as a reconstruction-by-inpainting problem. An input im-
age is resized to the dimension divisible by k and partitioned into square regions each of size
k × k which are assigned to n disjoint sets. Subsequently, image parts corresponding to each
disjoint set are removed from input image by using suitable masks and each such image is in-
painted (missing information is replaced with semantically plausible content) by the network
individually. The final image is created by summing those reconstructed images.

To improve the performance of autoencoders in anomaly detection, a multi-scale gradient
magnitude similarity (MSGMS) loss is proposed to penalize structural differences between the
reconstructed regions and the regions belonging to the original image. The MSGMS loss is
calculated over an image pyramid of different scales and eventually combined with SSIM loss
and L2-loss for regularization. MSGMS is used not only for training but also for anomaly
score estimation and heatmap creation. Anomaly maps are generated by subtracting the post-
processedMSGMSmap from amatrix of ones. RIAD, which employs this approach, achieves
state-of-the-art performance for anomaly localization, outperforming previous methods with
ROCAUC-score of 91.7% and 94.2% for anomaly detection and localization on the MVTec
dataset, respectively. The entire procedure is depicted in the Figure 2.1.
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Figure 2.1: RIAD.

2.3.2 Semantic Pyramid Anomaly Detection (SPADE)

On the other hand, the anomaly detection in sub-images is a special task in image processing
that has received less attention from the deep learning community. Various sub-imagemethods
have been proposed, including a K-means based classifier over dimensionality reduced features
and an attention-guided VAE approach. Moreover, many authors have recently presented ef-
fective sub-image alignment approaches that outperform previous methods in accuracy and
speed without requiring a dedicated training stage.

When deep pre-trained features are used, nearest neighbor (kNN) methods show excellent
performance in detecting anomalies when applied to whole images. However, these methods
are limited by their inability to provide a segmentation map that identifies the location of the
anomaly within the image. In [17], a novel approach to anomaly segmentation is introduced,
which is based on aligning an anomalous image with a fixed number of similar normal images.
The method is composed of several components:

• image feature extraction

• nearest neighbor retrieval of the nearest K normal images to the target

• pixel alignment with deep feature pyramid correspondences
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In the first step of the proposedmethod, the researchers use a pre-trainedWide-ResNet50-2
feature extractor on ImageNet datasetwithout theneed for retrainingon smaller datasets, as the
features produced by the intact network outperform those produced by using smaller training
datasets. At the initialization stage, features for all training images, which are normal, are com-
puted and stored. In the second step, K nearest normal images are found from the training
set based on the extracted features of the test image. The distance is measured using the Eu-
clidean metric between the image-level feature representations, which help to label the image
as normal or anomalous, using a threshold value. In the final step, multi-stage correspondence
is used to extract deep features at every pixel location of the relevant test and K nearest normal
training images using feature extractor F(xi, p). The average distance of K extracted features
at the pixel location p is then calculated and used as an anomaly score. The authors propose
dense correspondences for alignment to determine the normal and anomalous parts of the im-
age instead of explicitly aligning the images. The output of the last M blocks in the ResNet
CNN feature pyramid is concatenated to create a feature vector for effective alignment, which
includes both fine-grained local features and global context from shallow layers and deep lay-
ers, respectively. The proposed method, named SPADE, outperforms several previous works,
such as AE (SSIM), AE(L2), ANOGAN,CNNDICT, etc., in both image and sub-image level
anomaly detection using the average ROCAUC-score on the MVTec dataset. However, it is
noted that the ROCAUC-score is biased towards large anomalies. Therefore, a new metric is
proposed, the per-region overlap (PRO) curve metric, to reduce this bias. Furthermore, top K
neighboring normal images chosen as a reference outperformed random images choice, which
was initially tried. Eventually, SPADE approach slightly outperformed the previously analyzed
RIADwith per-pixel ROCAUC-score of 96.0% and PRO-score of 91.7%.

Figure 2.2: Patch embedding process used in PaDiM.
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2.3.3 PatchDistributionModeling (PaDiM)

Several discriminative approacheswere proposedbefore the introduction of thePatchDistribu-
tion Modeling Framework for Anomaly Detection and Localization (PaDiM) in [18]. These
methods either require training deep neural networks, which can be cumbersome, or rely on
K-NN algorithms applied to large datasets, leading to reduced inference speed during testing.
These scalability issues pose a challenge for deploying anomaly localization algorithms in in-
dustrial contexts. PaDiM overcomes these limitations by utilizing pre-trained convolutional
neural networks (CNNs) for patch embedding extraction, assuming that each patch position
is described by a multivariate Gaussian distribution. The approach examines ResNet18, Wide
ResNet-50-2, and EfficientNet-B5 as pre-trained CNNs. The training time complexity scales
linearly with the dataset size, as the Gaussian parameters (mean and covariance) are estimated
using the entire training dataset for every patch. As a result, each possible patch position is
associated with a multivariate Gaussian distribution represented by the matrix of Gaussian pa-
rameters (Figure 2.2). The correlations between different levels of the CNN are exploited to
better localize anomalies by concatenating activation vectors from different layers associated
with each patch to get embedding vectors carrying information from different semantic levels
and resolutions. To reduce the size of the large embedding vectors and speed up computa-
tion, random dimensionality reduction (Rd) is performed, which has been found to be a bet-
ter choice than the commonly used PCA. Finally, the Mahalanobis distance representing the
distance between the test patch embedding xij and the learned distributionN(μij;Σij) is com-
puted for each patch, based on which the anomaly map is formed. The method has low time
and space complexity at test time, independent of the dataset training size, making it suitable
for industrial applications. The evaluation protocol has been extended to assess the model’s
performance in more realistic conditions, such as non-aligned datasets. On average, PaDiM-
Wide-ResNet50-2-Rd550 outperforms all other methods, including SPADE, VAE, and AEs,
for all classes of the MVTec dataset in both per-pixel AUROC and PRO-score, with values of
97.5% and 92.1%, respectively. The method’s advantages include less memory usage, shorter
inference time, greater robustness to non-aligned images, and ease of use, making it suitable for
various applications, such as visual industrial control.

2.3.4 FastFlow

While current methods for unsupervised anomaly detection and localization produce satisfac-
tory results, they fall short in effectivelymapping image features to a tractable base distribution,
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Figure 2.3: (a) the whole pipline of FastFlow method, (b) one flow step for FastFlow.

which is crucial for identifying anomalies. To address this, theFastFlowapproachwasproposed
in [19], whichutilizes 2Dnormalizing flows as the probability distribution estimator. FastFlow
takes as input the features obtained from arbitrary deep feature extractors, such as ResNet and
Vision Transformer (ViT), all initialized with pre-trained weights from ImageNet, and with
their parameters frozen. FastFlow uses 20-step flows for CaiT and DeiT, and 8-step flows for
ResNet18 andWide-ResNet50-2. During training, FastFlow learns to transform the input vi-
sual feature into a tractable distribution, which it uses to recognize anomalies in the inference
phase. To sum up, there are twomain components of FastFlow: the feature extractionmodule
and the distribution estimation module.

FastFlow extends the original normalizing flow to two-dimensional space to retain the in-
herent spatial positional relationship of the two-dimensional image, which a one-dimensional
normalizing flow cannot do. A fully convolutional network is used as the subnet in the flow
model, as it can maintain the relative position of the space to improve the performance of
anomaly detection. During training, FastFlow is trained with normal images to transform
the original distribution to a standard normal distribution in a 2D manner. In other words,
the high-dimensional visual features extracted from typical backbone networks are projected
into probability density maps representing the likelihood of each pixel in the image under the
learned distribution. Anomalies are detected as regions with low density, which correspond to
regions that are far away from the distribution of normal data.

ForResNet18 andWide-ResNet50-2, the features of the last layer in the first three blocks are
directly used and put into the 2D flowmodel to obtain their respective anomaly detection and
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localization results, and the average value is taken as the final result. For Vision Transformer,
the method only uses feature maps of a specific layer, and does not require the design of com-
plicated multi-scale features manually. The entire procedure is shown in Figure 2.3.

The model is evaluated on several benchmark datasets, including MVTec AD, and outper-
forms several state-of-the-art methods in terms of both anomaly detection and localization.
FastFlow achieves a per-pixel AUROC of 98.5% on the MVTec AD dataset, which is a sig-
nificant improvement over previous methods, demonstrating the effectiveness of normalizing
flows for unsupervised anomaly detection and localization.

Figure 2.4: An example of the proposed out‐of‐distribution (OOD) detector for anomaly localization.

2.3.5 Conditional Normalizing Flows for Anomaly Detection
(CFLOW-AD)

Apart from Variational Auto-Encoders (VAE) and Generative Adversarial Networks (GANs),
normalizing flows are popular generative networks used for anomaly detection, as presented
in the FastFlow concept. In a recent paper [20], CFLOW-AD was proposed, which is based

16



on conditional normalizing flows. Similar to previous approaches, a pre-trained CNNon Ima-
geNet is used as a backbone to encode the embedding vectors. These vectors are then encoded
into conditional vectors using conventional positional encoding (PE), resulting inConditional
Flow. The unconditional flow framework of CFLOW is extended by concatenating interme-
diate vectors inside decoder coupling layers with the obtained conditional vectors. Multi-scale
embedding vectors from CNN are then processed independently by a set of decoders for each
k−th scale. The entire distribution-basedmodel, also knownas the out-of-distribution (OOD)
detector, learns the distribution of anomaly-free patches x with pX(x) density and transforms
it into a Gaussian distribution with pZ(z) density. The densities are modeled using K indepen-
dent decoder models due to multi-scale feature pyramid pooling setup. The estimated multi-
scale likelihoods are up-sampled to input size and summed to produce the anomaly map. Both
the encoder and decoders have convolutional translation-equivariant architectures. Finally, the
complete model separates in-distribution patches from the out-of-distribution patches using a
threshold τ computed as the Euclidean distance from the distribution mean (Figure 2.4). Fig-
ure 2.5 depicts the entire process.

Figure 2.5: Architecture of CFLOW‐AD.

CFLOW-ADachieves new state-of-the-art for popularMVTecADdatasetwith 98.26%AU-
ROC in detection, 98.62% AUROC and 94.60% AUPRO in localization. The results ob-
tained for the STC dataset were also satisfactory, with a 72.63% and 94.48%AUROC in detec-
tion and localization, respectively. In addition, the model is much smaller than other models
like SPADE and PaDiM, with a size that is 1.7 to 50 smaller than SPADE and 2 to 7 smaller
than PaDiM. Moreover, CFLOW-AD can be processed in real-time with 8 to 25 faster infer-
ence speed.
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2.3.6 Coupled-hypersphere-based Feature Adaptation (CFA)

The paper [21] proposes a novel approach called Coupled-Hypersphere-Based Feature Adap-
tation (CFA) that aims to obtain discriminative normal features while reducing memory re-
quirements. CFA applies transfer learning to a pre-trained CNN to produce target-oriented
features and mitigate bias issues caused by pre-training on datasets such as ImageNet, which
differ significantly from industrial images. To achieve this, CFA uses a learnable patch descrip-
tor that embeds target-oriented features and a scalablememory bank that is independent of the
size of the target dataset. This solves the problem of overestimating the normality of abnormal
features when using a pre-trained CNN.

Patch features are generated from feature maps at different depths of the CNN, with vary-
ing spatial resolutions. These feature maps are then interpolated and concatenated to form a
patch feature vectors that represent the semantic information of each pixel location. The patch
features are forwarded to an auxiliary network with learnable parameters called the patch de-
scriptor, which learns to densely cluster normal features and evade their multiple hypersphere
belonging using a novel loss function based on soft-boundary regression. The main idea ly-
ing behind the CFA approach is to optimize the hypersphere radius and center of the adapted
features so as to minimize the distance between the adapted features and the target features.
(Figure 2.6)

Figure 2.6: Overall structure of CFA method.

During transfer learning through CFA, a memory bank is required for effective adaptation
to the target dataset. Initially, all target-oriented features acquired from the train set, consisting
only of normal samples, are stored in the memory bank. K-means clustering is then performed
on them to obtain centroids asmemory entries. Tomitigate the downside of previousmethods
where memory space increases in proportion to the target dataset size, a compression scheme
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is applied. To this end, normal samples are forwarded one-by-one, and memorized entries are
updated based on the exponential moving average of the set of closest memorized entries and
the entire memory bank. (Figure 2.7) In the test phase, CFA matches patch features obtained
from an arbitrary sample in the test set with the nearest neighbor in thememory bank to gener-
ate heatmaps representing the degree of anomaly. Finally, a score map for anomaly localization
is calculated from the heatmaps using a specific scoring function. Despite its significantly re-
ducedmemory capacity, CFA achieves state-of-the-art performance in anomaly detection (AU-
ROC score of 99.5%) and anomaly localization (98.5%) on the MVTec AD benchmark. This
is due to the use of a memory bank that is compressed independently of the size of the target
dataset through feature adaptation. Additionally, CFA has smaller spatial complexity com-
pared to SPADE and PaDiM.

Figure 2.7: The process of modeling the memory bank and generating heatmaps through feature matching.

2.3.7 PatchCore

The PatchCore [22] is composed of several elements. These include gathering local patch fea-
tures into a memory bank, employing a coreset-reduction approach to enhance efficiency, and
the holistic algorithm that guides the process of making detection and localization choices.
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Spatially aware patch features

PatchCore employs a pre-trained network ϕ that was originally trained on ImageNet to create
features out of images. These features, denoted as ϕi,j, are obtained by extracting feature maps
ϕj(xi) from the output of intermediate network blocks obtained on image xi.

While using the last level of the feature hierarchy is one possible approach for feature repre-
sentation, PatchCore addresses two significant issues associated with relying solely on this level.
Firstly, this approach results in the loss of localized nominal information. Secondly, the deep
and abstract features derived from ImageNet-pretrained networks tend to exhibit bias towards
natural image classification, making them less suitable for the specific demands of industrial
anomaly detection and localization.

To surmount these challenges, PatchCore introduces a memory bank denoted asM, which
is composed of features at the patch level. These features function as intermediary or mid-
level representations that make effective use of the available training context. In contrast to
the general and ImageNet-specific features acquired from deeper levels, the patch-level features
encapsulate more pertinent details crucial for anomaly detection.

PatchCore’s calculation of patch-level features carefully considers the immediate local con-
text surrounding each patch. This process involves aggregating feature maps, with an initial
application of an adaptable average pooling operation to each map. Following this, resizing is
performed to match the dimensions of the largest feature map, after which average pooling is
carried out. This method not only augments the receptive field’s dimensions and strengthens
its capacity to withstand slight spatial deviations but also preserves the spatial resolution and
usefulness of the featuremaps. Importantly, this strategy avoids the pitfall of features becoming
overly generic or excessively skewed towards ImageNet classification, ensuring their relevance
for diverse anomaly detection tasks.

For all nominal training samples xi in XN, the memory bankM in PatchCore is defined as
follows:

M =
⋃

xi∈XN

Ps,p(ϕj(xi))

where Ps,p(ϕj(xi)) represents the collection of patch-level features computed using the aggrega-
tion function and neighborhood considerations.
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Figure 2.8: Overview of PatchCore.

Coreset-reduced patch-feature memory bank

As the cardinality of the setXN grows, thememory bankM also expands in size. Consequently,
this expansion leads to increased time taken for making inferences on test data, along with an
augmented demand for storage capacity. To tackle these challenges, it becomes imperative to
enable a meaningful search capability forM, particularly when dealing with larger images and
datasets. Such an ability facilitates comparative analysis at the patch level, benefiting tasks like
anomaly detection and segmentation. Preserving the encompassing range of inherent features
represented withinM stands as a pivotal requirement for achieving this objective. However, a
random selection of a subset fromMmight potentially result in the loss of crucial information
encapsulated by the range of nominal features.

In the mentioned study [22], the authors make use of a coreset subsampling technique to
shrink the memory bankM, effectively reducing its size. This approach aims to speed up the
inference process while maintaining performance.

The main goal of coreset selection is to identify a subset S taken from the larger setA. This
subset should yield solutions that closely resemble those obtained fromA but with faster com-
putation.

In the context of PatchCore, which deals with nearest neighbor computations, a minimax
facility location coreset selection approach is adopted. This approach ensures that the selected
coreset, referred to asMC , covers the feature space at the patch level in a similar manner to
the original memory bankM. Since finding the exact coresetMC is computationally difficult
(NP-Hard), an iterative approximate greedy method is used.

To further enhance the efficiency of coreset selection, random linear projections are applied
to reduce the dimensionality of the elements inM. This reduction directly reduces the com-
putation time during the coreset selection process.
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ThenotationPatchCore-n% represents a subsampling of the originalmemory bankby a per-
centage of n. For example, PatchCore-1% indicates a significant reduction ofM by a factor
of 100. The visual comparison of spatial coverage achieved through the greedy coreset subsam-
pling approach and random selection is illustrated in Figure 2.9.

Figure 2.9: Comparison: coreset (top) vs. random subsampling (bottom) (red) for 2D data (blue) sampled from (a) multimodal
and (b) uniform distributions.

With the nominal patch-featurememory bankM, the image-level anomaly score s ∈ R for a
test image xtest is estimated by calculating themaximumdistance score s∗ between the test patch
features in its patch collectionP(xtest) = Ps,p(ϕj(xtest)) and their respective nearest neighborm

∗

inM:

m∗
test,m∗ = arg max

mtest∈P(xtest)
arg min

m∈M
∥mtest −m∥2.

The image-level anomaly score is then calculated as:

s∗ = ∥m∗
test −m∗∥2.

Regarding PatchCore, the authors present results for different degrees of memory bank
downsizing (25%, 10%, and 1%). In the context of the anomaly detection task onMVTec AD,
PatchCore attained AUROC scores of 99.1%, 99.0%, and 99.0% corresponding to the respec-
tive subsampling levels. As for the anomaly localization task within MVTec AD, PatchCore
yielded AUROC scores of 98.1%, 98.1%, and 98.0% for the mentioned subsampling levels in
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the same order.

2.3.8 EfficientAD: Precise Detection of Visual Anomalies
withNegligible Latency

In industrial environments, ensuring high rates of production is vital for economic viability.
Nonetheless, strict time limits frequently present notable difficulties for systems designed to
detect anomalies. Deviating from these limits can result in a reduction in production rates
and subsequently impede the overall efficiency of the process. To tackle this crucial issue, the
authors introduce Efficient-AD [23], an innovative approach that underscores both compu-
tational efficiency and economic viability in methods for anomaly detection. This innovative
technique ensures real-world applicabilitywhile effectively detecting anomalies and optimizing
productivity.

EfficientAD initiates by efficiently extracting features from a pre-trained neural network. Al-
though anomaly detection methods commonly rely on the features of a deep pre-trained net-
work, likeWideResNet-101, EfficientAD employs a network with significantly reduced depth,
comprising merely four convolutional layers, as a feature extractor. This network, referred to
as a patch description network (PDN) Figure 2.10, generates descriptive 33×33 patches for
each output feature vector. The PDN is fully convolutional, making it suitable for processing
images of varying dimensions in a single forward pass. The PDN gets trained on images from
ImageNet by minimizing the mean squared difference between its output and the features ex-
tracted from the pre-trained network.

Figure 2.10: Patch description network (PDN) architecture.

In their strategy, the authors streamline the Student-Teacher (S-T) technique for identifying
unusual feature patterns. They achieve this by employing only one teacher (distilled PDN)
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and one student. The PDN’s structure acts as the model for the student, resulting in minimal
delay overall due to its swift execution. To boost the efficiency of anomaly detection without
influencing the computational demands during testing, they introduce a training loss. This
loss enhances anomaly detection by utilizing a hard feature loss, which concentrates on the
elements with the most substantial loss for backpropagation. This prevents the occurrence of
incorrect positive identifications on regular images.
Furthermore, the authors propose incorporating images fromthe teacher’s pretrainingdataset

(ImageNet) into the student’s training process. By randomly sampling an image from the
pretraining dataset in each training step, they penalize the student for overly generalizing the
teacher’s imitation to out-of-distribution images. This measure improves the student’s abil-
ity to accurately detect anomalies within images while maintaining efficiency in the detection
process.
In order to address logical anomalies like objects being in the wrong place, the authors in-

tegrate an autoencoder into their approach for identifying these problems. The process of
anomaly detection employed in EfficientAD is depicted in Figure 2.11. The autoencoder is
trained to predict the output of the teacher, utilizing a bottleneck of 64 latent dimensions to
encode and decode the entire image.

Figure 2.11: Anomaly detection methodology for EfficientAD.

Although the studentusingpatch-basedmethodology relies onproducingdescriptivepatches
to detect anomalies, the autoencoder faces difficulties in accurately reconstructing intricate
fine-grained patterns. This results in flawed reconstructions for both regular and anomalous
images. To prevent false-positive identifications, the authors enhance the student network by
increasing the number of output channels twofold. Subsequently, the student is trained to pre-
dict both the teacher’s output and the autoencoder’s output. This modification allows for suc-
cessful anomaly detectionwhile accounting for the autoencoder’s limitations in reconstructing
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images.
The student network acquires knowledge about the systematic reconstruction discrepan-

cies of the autoencoder, which include blurry recreations of normal images. Nevertheless, the
student remains unaware to the reconstruction inconsistencies concerning anomalies, as they
were not included in its training set. This disparity between the autoencoder’s and the stu-
dent’s outputs proves useful for generating the anomaly map. Similar to the ”local anomaly
map” produced by the student-teacher pair, the ”global anomaly map” is derived by squaring
the variations between the student’s and the autoencoder’s outcomes, followed by averaging
these differences across channels.
For the formationof theultimate ”combined anomalymap,” the ”local” and”global anomaly

maps” are averaged in combination. The anomaly score at the image level is established by
choosing the highest value from the combined map, thereby enabling effective anomaly detec-
tion.
In the evaluationof theEfficientADapproach, the authors examined twoversions: EfficientAD-

S and EfficientAD-M. EfficientAD-S adopts the architecture depicted in Figure 2.10 for both
the teacher and the student. In contrast, for EfficientAD-M, the authors doubled the number
of kernels in the hidden convolutional layers of both the teacher and the student. Moreover,
they introduced a 1×1 convolution after the second pooling layer and the final convolutional
layer.

In the anomaly detection task on MVTec AD, Efficient-AD achieved AUROC scores of
99.1% and 98.8% for EfficientAD-M and EfficientAD-S, respectively. For the anomaly seg-
mentation task on MVTec AD, Efficient-AD obtained AUROC scores of 96.9% and 96.8%
for EfficientAD-M and EfficientAD-S, respectively.

2.3.9 Student–Teacher Feature PyramidMatching for AD

A student-teacher framework was efficiently employed in [24] to learn normal feature distri-
butions from pre-trained models. In this work authors used the difference between student
and teacher model outputs, along with predictive uncertainty, as an anomaly scoring function.
However, two major challenges persisted: incomplete knowledge transfer due to model capac-
ity differences and the complexity of handling scaling. These issues opened doors for further
improvements that were introduced in [25].

In the study referenced as [25], the authors employ the student-teacher learning framework
to implicitly capture the feature distribution of normal training images, thereby achieving sig-
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nificant improvements in both accuracy and efficiency. The teacher, in this context, is a pow-
erful ResNet-18 network pre-trained on ImageNet. To mitigate information loss and address
the first challengementioned earlier, the student network shares the identical architecture with
the teacher. The precise position of knowledge distillation within deep neural networks is piv-
otal in this approach. Deep neural networks generate a feature pyramid for each input image,
which facilitates enhancement of the scale robustness by integrating multi-scale feature align-
ment between the student and teacher networks. Consequently, the student network gains a
comprehensive blend of multi-level knowledge, enabling it to effectively identify anomalies of
varying sizes. In essence, lower layers provide higher-resolution features that encode low-level
details such as textures, edges, and colors, while upper layers offer lower-resolution features
containing contextual information.
Given the varying receptive fields associated with different layers in deep neural networks,

this approach involves leveraging features extracted from three consecutive lower-layer groups
of the teacher network to guide the student’s learning process. For a visual representation of
this method using images from theMVTec AD dataset, refer to Figure 2.12.

Figure 2.12: Schematic overview of Student‐Teacher Feature Pyramid Matching.

The goal of the training phase is to create a student network capable of replicating the fea-
turemaps generation fromapre-trained teacher networkwhenprocessingnormal images. This
replication is intended to reveal discrepancies in feature maps across various network levels be-
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tween the student and teacher during the testing phase on anomalous images.

2.3.10 A discriminatively trained reconstruction
embedding for surface anomaly detection - DRÆM

The DRÆMmethod [26] is designed to solve a common issue with generative anomaly detec-
tion methods. These methods only learn from data that does not contain anomalies, which
makes them less effective at spotting real anomalies. This is because they do not have exam-
ples of actual anomalies to learn from during training. When trained using synthetic anoma-
lies, they become narrowly focused on these artificial examples and do not work well on real
anomalies. To avoid this overfitting problem,DRÆMsuggests training a discriminativemodel
that considers the joint appearance of both reconstructed and original data, including the re-
construction subspace. This helps the model to learn a local-appearance-conditioned distance
functionbetweenoriginal and reconstructed anomaly appearances,which generalizeswell across
real anomalies. To test this idea, they introduce a specialized network for detecting surface
anomalies which is trained in a way that uses artificially created patterns that are different from
the target anomalies. The network consists of a reconstructive sub-network followed by a dis-
criminative sub-network Figure 2.13.

Figure 2.13: The anomaly detection process of the DRÆM method.

Reconstructive sub-network

The reconstructive sub-network is trained to implicitly detect and reconstruct anomalies with
semantically plausible anomaly-free content, while keeping the non-anomalous regions of the
input image unchanged. It is formulated as an encoder-decoder architecture that converts the
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local patterns of an input image into patterns closer to the distribution of normal samples. The
network is trained to reconstruct the original image I from an artificially corrupted version
Ia obtained by a simulator. The simulated anomaly generation process Figure 2.14 involves
generating a binary anomalymaskMa fromPerlin noiseP. The anomalous regions are sampled
from a set A based on the values inMa and overlaid on the anomaly-free image I to create the
anomalous image Ia.

Figure 2.14: Simulated anomaly generation process.

An L2-loss is commonly used in reconstruction-based anomaly detection methods, even
though it assumes independence between neighboring pixels. That is why a patch-based Struc-
tural Similarity Index Measure (SSIM) loss is introduced as another metric. Total reconstruc-
tion loss is defined as:

Lrec(I, Ir) = λ · LSSIM(I, Ir) + l2(I, Ir)

where image I represents the input image, Ir is the reconstructed image output by the network,
and λ is a loss balancing hyper-parameter.
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Discriminative sub-network

Thediscriminative sub-networkutilizes aU-Net-like architecture. The inputof the sub-network,
denoted as Ic, is formed by the channel-wise concatenation of the output from the reconstruc-
tive sub-network (Ir) and the input image (Ia). As the reconstructive sub-network restores the
normality of the image, the joint appearance of Ia and Ir shows major differences in anoma-
lous images. These differences in joint appearance provide important information for accurate
anomaly localization. (Figure 2.15)

Figure 2.15: DRÆM joint space.

The network produces a map of anomaly scores, denoted asMo, with dimensions matching
those of the input image. To improve the precision of segmenting difficult instances, the result
from the discriminative sub-network goes through a Focal Loss (Lseg).

Considering the aims of both the segmentation and reconstructive sub-networks, the com-
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prehensive loss employed during DRÆM training is formulated as:

L(I, Ir,Ma,M) = Lrec(I, Ir) + Lseg(Ma,M)

whereMa andM represent the ground truth and output anomaly segmentation masks, re-
spectively.

Surface anomaly localization and detection

The output of the discriminative sub-network is a pixel-level anomaly detection mask, Mo,
which directly indicates the presence of anomalies in the image. To estimate the image-level
anomaly score, Mo is smoothed using a mean filter convolution layer. The final image-level
anomaly score, denoted as η, is computed by taking the maximum value from the smoothed
anomaly score map:

η = max(Mo ∗ fsf×sf),

where fsf×sf represents a mean filter of size sf× sf, and ∗ denotes the convolution operator.

The authors ofDRÆMreported its performance inboth the anomalydetection and anomaly
localization tasks on MVTec AD. DRÆM achieved an AUROC score of 98.0% for anomaly
detection and an AUROC of 97.3% for anomaly localization.

2.4 Comparison ofMethods Used for AD

The Table 2.1 compares the AUROC scores achieved on theMVTec dataset for both anomaly
detection (image-level) and anomaly localization (pixel-level) capabilities of the methods de-
scribed in this section. The results shown in the table originate from the referenced papers in
Section 2.3 for each method.
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Table 2.1: Anomaly detection and localization performance (Average ROCAUC %) on MVTec AD dataset.

Method Anomaly Detection Anomaly Localization
RIAD 91.7 94.2
SPADE 85.5 96.0
PaDiM 97.9 97.5
FastFlow 99.4 98.5
CFLOW-AD 98.3 98.6
CFA 99.5 98.5
Student-Teacher 97.0 95.5
EfficientAD 99.1 96.9
PatchCore 99.1 98.1
DRAEM 98.0 97.3
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3
Continual Learning

The idea of learning continually from experience has always been present in AI and robotics,
but it has only been systematically explored since the end of the 20th century. Until recent
years, research in this area was limited due to a lack of systemic approaches, limited data and
computational power, manually engineered features, and a focus on supervised learning. How-
ever, recent advancements inmachine learning research and technological progress have relaxed
these constraints, allowing for the exploration of more complex problems like continual learn-
ing. Continual learning (CL) is an approach to machine learning where a model is trained on
a sequence of tasks over a long period of time, and its knowledge is continuously updated to
avoid forgettingprevious tasks. In that sense, CLcanbe applied in caseswhere the data distribu-
tion and learning objective change through time, or where all the training data and objective
criteria are never available at once. This approach is particularly important in domains such
as robotics, where agents must continuously adapt to new environments and tasks without
forgetting previously learned behaviors. However, it is not without challenges, including the
problem of catastrophic forgetting.

Catastrophic forgetting occurs when a machine learning algorithm learns a new task and as
a result, forgets or loses performance on previously learned tasks. It happens because themodel
updates its parameters to better perform on the new task, which can cause it to lose its previous
knowledge. This is a significant problem also known as the stability-plasticity dilemma, with
plasticity referring to the ability of integrating new knowledge, and stability retaining previous
knowledge while encoding it. An effective CL solution to this problem is expected to have low
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forgetting, require low memory consumption and be computationally efficient.

3.1 Three Distinct Families in Sequential Learning

There are three methods for avoiding catastrophic forgetting in continual learning (Figure 3.1)
according to [6], based on how they store and utilize task-specific information throughout the
sequential learning process:

• Replay-based methods

• Regularization-based methods

• Parameter isolation methods

Figure 3.1: A tree diagram illustrating the different continual learning families of methods.

3.1.1 ReplayMethods

One of the most popular approaches is the replay method, where previous data is stored and
replayed to themodel during training to help it retain its previous knowledge. There are several
variations of the replay-based method, including: ideal replay, replay, generative replay, and
compressed replay.

In ideal replay, the algorithm is trained on a sequence of tasks, and each time a new task
is introduced, the algorithm replays data from all previous tasks. This method can be highly
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effective in preventing catastrophic forgetting, but it requires significant storage capacity and
can be computationally expensive.
Replay is a more practical version of ideal replay, where the algorithm stores and replays a

small subset of previous data instead of all of it. This method is cumulatively less computa-
tionally expensive than ideal replay, but it may not be as effective in preventing catastrophic
forgetting.
Generative replay involves using a generative model to create synthetic data that is similar

to previous data. The algorithm is then trained on both the new task and the synthetic data,
which can help it retain its previous knowledge. This method can be highly effective, but it
requires training a generative model, which can be computationally expensive.
Finally, compressed replay enables reduction of the storage cost of old training samples by

storing a compressed representation of previous data and replaying it during training. This
method can be highly effective in preventing catastrophic forgetting, but it requires developing
a compressed representation that retains enough information to help the algorithm retain its
previous knowledge.
The replay-based method for continual learning with the best performance shown on clas-

sification task with Tiny Imagenet dataset as a benchmark, according to [6], is iCaRL (Incre-
mental Classifier and Representation Learning). In iCaRL, a small subset of old data samples
from previous tasks, known as exemplars, are stored in memory, and are replayed alongside the
current task data during training. The exemplars are selected based on a distance metric to the
current task data to ensure that they are the most representative of the previous tasks. During
training, the network is first trained on the current task data alone, and then on a combina-
tion of the current task data and the exemplars from previous tasks. To prevent catastrophic
forgetting, a distillation loss is used to regularize the network’s output to match the probabili-
ties produced by the previous model on the exemplars. As new tasks are learned, the memory
size grows with the addition of new exemplars. However, to maintain a manageable memory
size, iCaRL employs a forgetting mechanism, which gradually removes old exemplars from
memory based on their distance to the current task data. In conclusion, iCaRL is an effective
replay-basedmethod for continual learning that can handle multiple tasks and has been shown
to outperform other state-of-the-art methods on a variety of benchmarks.

Overall, the replay-basedmethod is a powerful approach for avoiding catastrophic forgetting
in continual learning settings, and its numerous variations offer different trade-offs in terms of
effectiveness and computational complexity. Themajor drawback of replay methods is limited
scalability over the number of classes, requiring additional computation and storage of raw
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input samples.

3.1.2 Regularization-based methods

Another approach is the regularization-based method, which adds a penalty term to the loss
function to encourage the model to retain its previous knowledge. By avoiding the storage of
the inputs this method can be less computationally expensive and more acceptable in terms
of privacy than the replay-based method, but may not be as effective. There are two types of
regularization-based methods: data-focused methods and prior-focused methods.

The basic building block in data-focused methods, such as Learning without Forgetting
(LwF), is knowledgedistillation fromapreviousmodel (trainedonaprevious task) to themodel
being trained on the new data. This method has the advantage of being simple to implement
and computationally efficient. However, it assumes that the data distribution of the previous
task is similar to the current task, which may not always be true.

On the other hand, prior-focusedmethods, such as ElasticWeightConsolidation (EWC), in-
volve adding a regularization term that penalizes changes to important weights that are learned
during the previous task. To this end, Fisher matrix can be used to estimate the importance
of weights and produce an adapted regularization. For efficiency purpose, EWC only use the
diagonal of the Fisher matrix to estimate importance. This method has the advantage of being
able to handle significant changes in the data distribution between tasks, but it requires storing
the importance weights, which can be computationally expensive.

The choice between data-focused and prior-focused methods depends on the specific re-
quirements of the task, including the similarity of the data distribution between tasks and the
available computational resources.

3.1.3 Parameter isolation methods

The parametric-based method is a third approach that involves maintaining multiple sets of
model parameters for different tasks. Without constraints on architecture size, new branches
can be created for new tasks while freezing previous task parameters, or a model copy can be
dedicated to each task. Another option is to allocate fixed parts of the architecture to each
task and mask out previous task parts during new task training, either at the parameter level
or the unit level. However, these methods often require a task oracle to activate corresponding
masks or task branches during prediction. This approach can be highly effective, but it requires
significant computational resources.
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Among parameter isolation methods for continual learning, PackNet outperformed others
on classification taskwithTiny Imagenet dataset as a benchmark, according to [6]. It is a param-
eter isolation method for continual learning that allows explicit allocation of network capacity
per task, which inherently limits the total number of tasks. The approach involves iteratively
assigning parameter subsets to consecutive tasks by constituting binary masks. The method
has two training phases. First, the network is trained without altering previous task parame-
ter subsets. Then, a portion of the unimportant free parameters with the lowest magnitude
is pruned, and the remaining subset of important parameters is retrained. The pruning mask
preserves task performance and ensures that the task parameter subset is fixed for future tasks.
PackNet aims to preserve task performance while minimizing the overall size of the network.
By iteratively assigning new parameter subsets to each task and pruning away the unimportant
parameters, PackNet reduces redundancy and improves the overall efficiency of the network.
By design, this approach is limited to the Task-IL scenario, as task identity is required to select
the correct task-specific components.

3.2 Exploring Three Scenarios of CL and
High-PerformanceMethods

The focus is on the continual learning problemwhere a single neural networkmodel is required
to sequentially learn a series of tasks. The assumption is that during training, only data from the
current task is available and that the tasks are clearly separated. A crucial factor in determining
the level of difficulty in experimental protocols is whether task identity information is available
at test time and, if not, whether the model must explicitly identify the task it needs to solve. In
that regard, there are three scenarios of continual learning described in Table 3.1:

• task-incremental learning

• domain-incremental learning

• class-incremental learning

The first scenario of continual learning is called task-incremental learning (Task-IL), where
models always know which task they need to perform. This allows for training with task-
specific components using a ”multi-headed” output layer. In the second scenario, domain-
incremental learning (Domain-IL), task identity is not available at test time, but the structure
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Table 3.1: Overview of the three continual learning scenarios.

Scenario Required at test time
Task-IL Solve tasks so far, task-ID provided
Domain-IL Solve tasks so far, task-ID not provided
Class-IL Solve tasks so far and infer task-ID

of the tasks remains the same while the input-distribution changes. In the third scenario, class-
incremental learning (Class-IL), models must both solve each task seen so far and infer which
task they are presented with. This scenario includes the real-world problem of incrementally
learning new classes of objects.
For instance, in [6] authors consider the task incremental setting on classification problems

only, where data arrives in batches and each batch corresponds to a specific task, whichmay in-
volve learning a new set of categories. In this scenario, all data for a given task becomes available
simultaneously for offline training, allowing for multiple epochs over the training data. The
data is repeatedly shuffled to ensure independent and identically distributed conditions. Ad-
ditionally, during training there are clear and well-defined boundaries between the tasks to be
learned. It is important to note that data from previous or future tasks cannot be accessed, and
optimizing for a new task in this setting can result in catastrophic forgetting, which can cause
a significant drop in performance for old tasks unless specific measures are taken.

Furthermore, Task-IL confines the scope to a multi-head configuration, with an exclusive
output layer or head for each task. The distinction between multi-headed and single-headed
models is based on the architecture of a network’s output layer, while three aforementioned
scenarios reflect the evaluation conditions of the model. While the multi-headed approach
is the most common way to use task identity information in the literature, it is not the only
approach. Conversely, a single-headed approach may not require task identity to be known,
but the model may still use task identity in other ways, such as in its hidden layers.

In [6] various complexities of the models are examined and, eventually, it is found that ex-
cessively deep model architectures are not well-suited for the continual learning setup due to
possible overfitting, especially in the first tasks. Similarly, overly small models should also be
avoided, as the limited available capacity can result in forgetting. Additionally, it is shown that
the impact of the task order seems to be insignificant on final models’ performance.

On the other hand, when task identity must be inferred, such as in class-incremental learn-
ing, it has been found in [4] for experimental protocols involving the relatively simple classifi-
cation ofMNIST-digits that regularization-based approaches, like elastic weight consolidation
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(EWC), do notwork, and that replaying representations of previous experiences is necessary for
solving this case. In addition, it is found that even storing one example per class was enough
for any of the exact replay methods to outperform all regularization-based methods.
In Table 3.2 all three possible scenarios of continual learning for classification task are pre-

sented on the example of MNIST dataset.

Table 3.2: MNIST dataset according to each scenario.

Task-IL With task given is it the 1st or 2nd class?
(e.g., 0 or 1)

Domain-IL With task unknown is it a 1st or 2nd class?
(e.g., in [0,2,4,6,8] or in [1,3,5,7,9])

Class-IL With task unknown, which digit is it?
(i.e., choice from 0 to 9)

One interesting technique presented in [4] for addressing catastrophic forgetting is the distil-
lation lossmethod, which involves assigning a soft target to each input to be replayed, represent-
ing a vector of probabilities for each active class obtained from the output of themodel trained
on the latest task. As a result, regularization is achieved, which involves transferring knowledge
from one neural network to another by using a soft-target produced by the first network. By
distilling knowledge from the first network to the second network while the latter is learning
the second task, the second network can solve both tasks in the end. The Learning without
Forgetting (LwF) and Deep Generative Replay with distillation loss (DGR+distill) methods
utilize this technique to achieve good performance in the Domain-IL and Class-IL scenarios.
However, it is worth noting that only methods using replay, such as DGR, DGR+distill, and
iCaRL obtained good performance, above 90% in these two scenarios of CL.

All methods mentioned above except for iCaRL use the standard multi-class cross entropy
classification loss for themodel’s predictions on the current task data. Additionally, models are
trained for 2000 iterations per task using the ADAM-optimizer (β1 = 0.9, β2 = 0.999) with
learning rate 0.001. For each iteration, loss is calculated as average over 128 samples from the
current task. If replay was used, in each iteration also 128 replayed samples are used to calculate
additional loss term. For DGR and DGR+distill, a separate generative model is sequentially
trained on all tasks. Training of the generative model was also done with generative replay
(providedby its owncopy stored after finishing trainingon theprevious task) andwith the same
hyperparameters (i.e., learning rate, optimizer, iterations, batch sizes) as for the main model.

Recent research has shown that thesemethods can be highly effective in a variety of tasks, in-
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cluding classification, anomaly detection, and localization. As researchers continue to develop
new methods for avoiding catastrophic forgetting and improving performance on a sequence
of tasks, we can expect to see significant advances in robotics, computer vision, and other areas
where continual learning is necessary.

3.3 EvaluationMetrics for Assessing the
Performance of Continual LearningMethods

After evaluating an algorithm on a challenging benchmark, it is crucial to ensure that the evalu-
ation criteria are rigorous and encompass all aspects of the complete learning problem. Merely
observing high final accuracy is insufficient to determine if the algorithm can be effectively ap-
plied in practice. Evaluating the algorithm’s learning and forgetting speed, its ability to transfer
knowledge between tasks, and its stability and efficiency during the learning process are equally
important. In this section, a collection ofmetrics that provide a rigorous evaluation framework
for assessing continual learning approaches, is presented.

3.3.1 Average f1 score

In the continual learning setting, the average f1 score is a metric used to assess the overall perfor-
mance of a model across multiple tasks encountered during the learning process. It provides a
comprehensive measure that takes into account both the model’s ability to retain knowledge
fromprevious tasks and its capability to adapt and performwell on new tasks. By averaging the
f1 scores obtained on individual tasks, the average f1 score reflects the model’s overall ability to
balance knowledge retention and adaptation without suffering from catastrophic forgetting.

The average f1 score is particularly useful in evaluating themodel’s ability tomanage interfer-
ence between tasks. Interference occurs when learning new tasks disrupts the model’s perfor-
mance on previously learned tasks. A high average f1 score indicates effective management of
interference, with themodelmaintaining a reasonable level of performance on all tasks. On the
other hand, a low average f1 score suggests that the model struggles to adapt to new tasks with-
out significantly degrading performance on previously learned tasks. According to [9], average
f1 score ST ∈ [0, 1] at task T is defined as:

ST =
1
T

T∑
j=1

sT,j (3.1)
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where sT,j is the performance f1 of the model on the test set of task j after training the model
on task T.

3.3.2 Average forgetting

The average forgetting metric is a measure used to quantify the amount of forgetting that oc-
curs when a model learns new tasks while retaining performance on previously learned tasks.
It is typically computed by comparing the performance of the model on previously learned
tasks before and after the introduction of new tasks. A lower average forgetting value indicates
better retention of knowledge and less interference between tasks, indicating that themodel ef-
fectively manages to balance between retaining past knowledge and learning new information.
Average Forgetting Ft ∈ [−1, 1], the average forgetting measure at task T, according to [9] is
defined as:

FT =
1

T− 1

T−1∑
j=1

max
l∈{1,...,T−1}

sl,j − sT,j
sl,j

(3.2)

3.3.3 Other CL metrics

Apart from the two crucial metrics mentioned above, along with similar variants such as aver-
age accuracy and forgetting ratio presented in [27], there are several other valuable metrics that
should be taken into consideration in the context of continual learning. Backward Transfer
(BWT) and Forward Transfer (FWT) metrics are used to assess the influence of learning new
tasks on the performance of previously learned tasks and the impact of earlier tasks on the learn-
ing of new tasks, respectively. BWTmeasures the extent to which learning new tasks improves
or degrades the performance on earlier tasks, providing insights into the interference or transfer
of knowledge between tasks. FWT, on the other hand, evaluates how the knowledge acquired
from previous tasks benefits the learning and performance on new tasks. These metrics help
quantify the transfer of knowledge in both directions, aiding in the evaluation of continual
learning algorithms and understanding the trade-offs between retaining past knowledge and
acquiring new knowledge.

In addition to evaluating forgetting and knowledge transfer, it is argued that more compre-
hensive metrics are needed to robustly evaluate continual learning strategies, particularly in
embedded systems and robotics [27]. To address this, somemetricswere proposed in [28] in or-
der to create a unified evaluation framework. These metrics includeModel Size (MS), Samples
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Storage Size (SSS) efficiency and Computational Efficiency (CE). MS refers to the amount of
memory resources utilized by the model, SSS efficiency quantifies the storage requirements for
preserving samples, and CE evaluates the computational resources utilized by the CL strategy.
These metrics provide a practical way to assess the resource utilization aspects of CL strategies
in different conditions. Moreover, they can be combined in order to evaluate higher-level ca-
pabilities. As an example, if the scalability of a CL algorithm needs to be assessed, weighted
average of SSS, MS, and CE can be used [27].
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4
Dataset

4.1 Benchmark dataset overview

The MVTec AD dataset [10] is an extensive collection of images intended for evaluating and
advancing anomaly detection algorithms. It encompasses a diverse array of objects, materials,
and scenarios, making it suitable for assessing the robustness and generalization capabilities of
various anomaly detection techniques. This dataset’s realistic and challenging nature has led to
its widespread adoption in the research community, which is why it’s chosen as the benchmark
for the methods used in this thesis.

Within theMVTecADdataset, one could find high-resolution images depicting objects and
materials in both normal and anomalous states. These anomalies are introduced through vari-
ous methods such as scratches, dents, holes, stains, and irregularities. Each image is labeled as
either normal or anomalous, allowing for supervised training and algorithm evaluation. The
dataset is organized into different classes, each representing a distinct object or material.

4.2 Attributes, Categories and Scope of the MVTec
Anomaly Detection Dataset

Comprising 15 classes, the MVTec Anomaly Detection dataset consists of 3629 images for
training and validation, along with 1725 images for testing. In the training set, only images
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without defects are included, whereas the test set incorporates both faulty and faultless images.
Visual depictions of different categories, accompanied by sample defects, are showcased in Fig-
ure 4.1.

Figure 4.1: Illustrative images representing all ten object categories and five textures within the MVTec AD dataset. Each
category’s top row displays an image without anomalies. The middle row showcases an image with an anomaly, while the

bottom row offers a detailed view that emphasizes the affected area.

The categories encompass a range of textures and diverse object types. Some objects retain
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consistent appearances, while others are adaptable or exhibit natural variations. Variations in
poses are also considered, including objects with roughly aligned poses and others positioned
with random rotations. The test images incorporate an array of defects, spanning surface is-
sues like scratches and dents to structural anomalies and the absence of specific object compo-
nents. In total, there are 73 distinct types of defects, averaging about five per category. These
anomalies are manually introduced to replicate real anomalies often encountered in industrial
inspection settings. The images were taken using high-resolution industrial RGB sensors and
meticulously annotated with pixel-precise ground truth markings for faulty areas, totaling al-
most 1900 annotated regions. All image resolutions fall within the range of 700 × 700 to
1024× 1024 pixels.

In the context of this thesis, emphasis was given to the utilization of object categories. Specif-
ically, the examination is centered on the following 10 categories derived from theMVTec AD
dataset:

• Bottle

• Cable

• Capsule

• Hazelnut

• Transistor

• Metal Nut

• Pill

• Screw

• Zipper

• Toothbrush
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5
Methodology and Results

In this chapter, diverse architectures and their performances are assessed in anomaly detection
setting employing different continual learning strategies. The examined CL strategies are:

1. Single Model: This approach establishes the upper bound by training a distinct model
for each task.

2. Naive Approach: As the baseline, this strategy exposes the model sequentially to data
solely from the current task.

3. Replay: Utilizing a limited memory size of n images (where n is smaller than the entire
dataset), this strategy involves replaying data. In the experiments, memory sizes of n =
800 and n = 300 are utilized.

4. Multitask: The strategy where single model is trained using all available data simultane-
ously.

All experiments are conducted utilizing an NVIDIA GPU RTX 3060 for computational
processing.

5.1 CFA adaptation in CL framework

The Coupled-Hypersphere-Based Feature Adaptation (CFA) technique has been already dis-
cussed in Subsection 2.3.6, where its structure and operational principles were meticulously
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presented. Essentially, CFA contains a frozen Convolutional Neural Network (CNN) that
serves the purpose of extracting patch features from the target dataset. These features are gen-
erated by sampling from various depths of the CNN, resulting in feature maps with distinct
spatial resolutions that are then interpolated to achieve uniform resolution before being con-
catenated. This procedure yields patch features denoted as F ∈ RD×H×W. Here, H and W
signify the height and width of the largest feature map, respectively, while D represents the
sum of dimensions of the sampled feature maps. For instance, in this work the specification is
(D,H,W) = (1792, 56, 56), which led to 56× 56 patch features with a depth of 1792.

This tensor of patch features is subsequently fed through the Patch Descriptor network,
whose objective is to learn features extracted from normal samples within the target dataset,
ensuring a high density around the memorized features. In this work, the frozen CNN for
extracting patch features is WideResNet50-2, which had been pretrained on ImageNet. The
process begins with updating memorized patch features using an incremental average across
batches of the current class’s non-anomalous training dataset, before moving on to updating
CFA parameters. The aim is to bring patch features closer to the memorized ones, achieved
through a ”soft boundary loss” driven by two parameters, K and J, both set to 3. In essence,
distances from each patch feature to itsK nearest memorized neighbors are taken into account
in the first part of the total loss, provided they exceed the radius size r. Similarly, the next J
nearest neighbors (specifically, the (K + j)-th nearest) are considered if their distances are less
than r. The total loss formula is shown below:

LCFA = Latt+Lrep =
1
TK

T∑
t=1

K∑
k=1

max{0,D(φ(pt), ckt )−r2}+
1
TJ

T∑
t=1

J∑
j=1

max{0, r2−D(φ(pt), c
j
t)−α}

The total memory required to accommodatememorized patch features can be calculated by
performing the following calculation: 56 × 56 × 1792 × 4 bytes. Furthermore, additional
memory is required to store images used in the replay Continual Learning (CL) strategy. Two
variants are examined, utilizing 300 and 800 images respectively, in order to demonstrate the
impact of retaining more images on performance metrics. To store these images of size 224×
224× 3 channels× 1 byte, it is necessary to have 45.2 and 120.4MB on disposal, respectively.
The simulations are conducted over 30 epochs with a batch size of 4, with an additional 4
samples in the replay sampling strategy.

In order to provide clearer understanding of the pipeline and its computational implemen-
tation, the Algorithm 5.1 is given.
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Algorithm 5.1 CFAmemory bank update for replay method
Initialize: C← 0
for i = 0 toN− 1 ▷N = number of tasks

Ci ←memory bank modeling for task i
C← C× i

i+1 + Ci × 1
i+1

end for

During the test phase, CFA leverages patch features obtained from a given sample in the test
set. Itmatches these featureswith theirKnearest neighbors (in our case,K = 3) in thememory
bank, generating heatmaps that depict the degree of anomaly. In the final step, an anomaly
score map is formulated by applying softmin function on previously generatedK heatmaps.

Within the realm of CL, the adopted methodology employs domain-incremental learning.
This approach focuses solely on solving the designated task without making inferences about
the task itself.

In Figure 5.1 the displayed outcomes show anomaly localization across all classes. These re-
sults are obtained by employing the replay method with a memory of 300 images within the
CFA approach. Similarly, in Figure 5.2 the results for the replay method with a memory capac-
ity of 800 for theCFA approach are presented. The sequence of images beginswith the original
image, followed by the ground truth segmentation mask. The subsequent step involves utiliz-
ing the predicted heatmap to generate the predicted segmentation mask through thresholding.
Finally, the last image presents the segmentation result.
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Figure 5.1: Results of anomaly detection and segmentation process with replay method (memory 300) for CFA.
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Figure 5.2: Results of anomaly detection and segmentation process with replay method (memory 800) for CFA.

Table 5.1 shows a detailed performance overview of various strategies usingCFA. It includes
image-level and pixel-level metrics, training and inference times, average forgetting and relative
gap (δ) based on f1 pixel-level metric, memory usage for architecture and additional images or
features. The relative gap is computed at the f1 pixel-level by applying the standard relative-
error formula for each method in relation to the single-model corresponding value. This sum-
mary provides insights into strategy effectiveness and efficiency.

Additionally, CFA leverages a pre-trainedWide ResNet-50-2 as its backbone, which encom-
passes 68.9 million non-trainable parameters. Additionally, it incorporates a patch descriptor
network with 6.4 million trainable parameters. In total, the architecture of CFA is composed
of 75.3 million parameters.
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Table 5.1: Performance overview of CFA.

CFA Single Model Multitask Naive Replay
memory 300 memory 800

Image - level AUCROC 0.9848 0.9599 0.5670 0.9218 0.9312
f1 0.9849 0.9581 0.8277 0.9395 0.9419

Pixel - level

AUCROC 0.9854 0.9719 0.7185 0.9440 0.9462
f1 0.6553 0.6067 0.1965 0.5410 0.5472

Precision - recall 0.6629 0.5854 0.1465 0.5014 0.5138
AU PRO 0.9241 0.8617 0.4181 0.7440 0.7741

Time training 1h 27min 1h 25min 1h 34min 2h 16min 2h 20min
inference [ms] 41 31 41 41 41

Architecture memory [MB] 3012 301.2 301.2 301.2 301.2
Additional memory [MB] 225.0 22.5 22.5 67.7 143.0
Relative gap (δ) [%] 0 7.41 70.01 17.44 16.49
Average forgetting [%] / / 65.54 11.43 11.17

Moreover, an average f1 pixel-level score is computed for every stepwhen a new task is added,
which involves images from a distinct class. Basically, for each strategy retrainedmodel is tested
on all the tasks encountered up to that point, and the values are depicted in Figure 5.3.

Figure 5.3: Comparison of pixel‐level f1 metric trends as new tasks are added across various strategies.
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After reviewing the images in Figure 5.1 and Figure 5.2, and considering the results shown
in Table 5.1 for both the replay method with a memory capacity of 300 images and the replay
methodwith amemory capacity of 800 images, it becomes evident that the replaymethodwith
amemory of 800 images outperforms in terms of both performancemetrics and the generation
of anomaly maps that more closely resemble the ground truths. This finding highlights the
benefits of using a larger memory capacity within the replay method framework.

5.2 Student-Teacher model adaptation in CL frame-
work

The Student-Teacher (ST) approach has previously been summarized in Subsection 2.3.9, pro-
viding a extensive analysis of its model architecture and working mechanism. Notably, this
work incorporates the Feature PyramidMatching (FPM) strategy within the Continual Learn-
ing (CL) framework. Furthermore, in the quest to explore alternative Student-Teacher based
methods, EfficientAD presented in Subsection 2.3.8 is modified and utilized for this purpose.

However, former method stands out as the clear winner by outperforming the other one
across all evaluated performance metrics. Therefore, STFPM is the one used for final compari-
son.

Additionally,within the realmofCL,both adoptedmethodologies employdomain-incremental
learning. These approaches focus solely on solving the designated task without making infer-
ences about the task itself.

5.2.1 Student-Teacher Feature Pyramid Matching (STFPM) for
AD

In the study referenced in Subsection 2.3.9, the authors showcased the strong performance
of the Student-Teacher model within the domain of embedding similarity-based methods re-
liant on neural network architecture training. The very same architecture utilized in that study
forms the foundation of the Continual Learning (CL) framework implemented in this work.
In this context, the teacher network makes use of a ResNet-18 network pre-trained on Ima-
geNet, while the student network adopts an identical architecture but with randomly initial-
ized weights.

Throughout the training process, both the teacher and student networks generate three fea-
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ture pyramid blocks of maps for each input image. These blocks are subsequently compared
using an L2-loss computation based on the following formula:

ll(Ik)ij =
1
2
∣∣∣∣Flt(Ik)ij − (Fls(Ik)ij)

∣∣∣∣2
l2

where Ik is input image, Flt and Fls are feature maps generated in l-th layer (block) of a teacher
and student, respectively.

The total loss is then calculated as the sum of the losses from all the blocks and is employed
to update the parameters of the student’s network.

During the testing phase, the losses generated by each block, which can also be regarded
as intermediate anomaly maps, are multiplied on a pixel-level basis. Subsequently, the final
anomaly map is derived using the provided formula:

Ω(J) =
L∏
l=1

UpsampleΩl(J)

where J is test image, Ωl(J) is anomaly map generated after l-th block, L is total number of
blocks and Ω(J) is final anomaly map.

In this work, the training employs a batch size of 8 (8+8 in replay sampling strategy) over
100 epochs, with early stopping included. Additionally, two different replay memory buffers,
containing 300 and 800 images respectively, are utilized to demonstrate the impact of having
more images on performance metrics. To store these images of size 256× 256× 3 channels×
1 byte, it is necessary to have 59.0 and 157.3MB on disposal, respectively.

In Figure 5.4, the displayed outcomes show anomaly localization across all classes. These re-
sults are obtained by employing the replaymethodwith amemory of 300 images within the ST
approach. Similarly, in Figure 5.5, the results for the replay method with a memory capacity of
800 for the ST approach are presented. The sequence of images begins with the original image,
followed by the ground truth segmentation mask. The subsequent step involves utilizing the
predicted heatmap to generate the predicted segmentationmask through thresholding. Finally,
the last image presents the segmentation result.
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Figure 5.4: Results of anomaly detection and segmentation process with replay method (memory 300) for STFPM.

57



Figure 5.5: Results of anomaly detection and segmentation process with replay method (memory 800) for STFPM.

Table 5.2 shows a detailed performance overview of various strategies using this approach.
It includes image-level and pixel-level metrics, training and inference times, average forgetting
and relative gap (δ) based on f1 pixel-level metric, memory usage for architecture and addi-
tional images or features. The relative gap is computed at the f1-pixel level by applying the
standard relative-error formula for each method in relation to the single-model corresponding
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value. This summary provides insights into strategy effectiveness and efficiency.

Additionally, in the this Student-Teacher setting the teacher network consists of 11.7 mil-
lion non-trainable parameters, while the student network has an identical number of trainable
parameters. This results in a total of 23.4 million parameters.

Table 5.2: Performance overview of Student‐Teacher Feature Pyramid Matching for Anomaly Detection.

STFPM Single Model Multitask Naive Replay
memory 300 memory 800

Image - level AUCROC 0.9344 0.8952 0.5200 0.8934 0.8996
f1 0.9350 0.9165 0.8313 0.9029 0.9105

Pixel - level

AUCROC 0.9634 0.9022 0.6818 0.9198 0.9239
f1 0.6023 0.4573 0.1453 0.4674 0.4737

Precision - recall 0.5648 0.4158 0.0888 0.4329 0.4376
AU PRO 0.9086 0.7717 0.3943 0.8461 0.8502

Time training 1h 2min 25 min 23 min 27min 32min
inference [ms] 64 28 25 24 24

Architecture memory [MB] 936 93.6 93.6 93.6 93.6
Additional memory [MB] / / / 59.0 157.3
Relative gap (δ) [%] 0 24.07 75.87 22.39 21.35
Average forgetting [%] / / 81.06 15.45 14.97

Moreover, an average f1 pixel-level score is computed for every stepwhen a new task is added,
which involves images from a distinct class. Basically, for each strategy retrainedmodel is tested
on all the tasks encountered up to that point, and the values are depicted in Figure 5.6.

Considering the subset of test images in Figure 5.4, Figure 5.5, and considering the results
shown in Table 5.2 for both the replay method with a memory capacity of 300 images and
the replay method with a memory capacity of 800 images, it becomes apparent that the replay
method with a memory of 800 images outperforms in terms of both performance metrics and
the generation of anomaly maps that more closely resemble the ground truths. This finding
highlights the benefits of using a larger memory capacity within the replay method framework.
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Figure 5.6: Comparison of pixel‐level f1 metric trends as new tasks are added across various strategies.

5.2.2 Student-TeacherapproachderivedfromEfficientADmethod

Aligningwith theobjectives of this thesis, additional Student-Teacher (ST) approach is adapted,
modifying the network structures based on the architecture introduced in the EfficientAD pa-
per (Subsection 2.3.8). Instead of utilizing computationally intensive deep neural networks for
both the teacher and student during training and inference, a network with reduced depth is
employed. This network employs six convolutional layers for feature extraction (Figure 5.7),
referred to as a patch description network (PDN). The PDN fully employs convolution, allow-
ing compatibility with diverse image dimensions in a single pass.

The student is trained within the teacher’s feature space, incorporating Tiny-ImageNet im-
ages on which the teacher is pretrained. This step prevents overgeneralization. By squaring
the variations between student and teacher outcomes, an anomaly map is generated. The
image-level anomaly score is determined by selecting the highest value from the map. Further,
the anomaly map undergoes a normalization process to prevent noise-related issues, ensuring
clarity in the final map. For robustness, quantile-based normalization is used, employing p-
quantiles for sets qa and qb. During testing, the anomalymap is normalized using a linear trans-
formation. In this work, the training employs a batch size of 1 (1+1 in replay sampling strat-
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egy) over 70 epochs, with early stopping included. Additionally, two different replay memory
buffers, containing 300 and 800 images respectively, are utilized to demonstrate the impact of
having more images on performance metrics. To store these images of size 256 × 256 × 3
channels× 1 byte, it is necessary to have 59.0 and 157.3MB on disposal, respectively.

Figure 5.7: Patch description network (PDN) ‐ medium.

Within the realm of CL, the adopted methodology employs domain-incremental learning.
This approach focuses solely on solving the designated task without making inferences about
the task itself.

In Figure 5.8, the displayed outcomes show anomaly localization across all classes. These re-
sults are obtained by employing the replaymethodwith amemory of 300 images within the ST
approach. Similarly, in Figure 5.9, the results for the replay method with a memory capacity of
800 for the ST approach are presented. The sequence of images begins with the original image,
followed by the ground truth segmentation mask. The subsequent step involves utilizing the
predicted heatmap to generate the predicted segmentationmask through thresholding. Finally,
the last image presents the segmentation result.
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Figure 5.8: Results of anomaly detection and segmentation process with replay method (memory 300) for ST.
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Figure 5.9: Results of anomaly detection and segmentation process with replay method (memory 800) for ST.

Table 5.3 shows a detailed performance overview of various strategies using ST. It includes
image-level and pixel-level metrics, training and inference times, average forgetting and relative
gap (δ) based on f1 pixel-level metric, memory usage for architecture and additional images or
features. The relative gap is computed at the f1 pixel-level by applying the standard relative-
error formula for each method in relation to the single-model corresponding value. This sum-
mary provides insights into strategy effectiveness and efficiency.

Additionally, in this Student-Teacher setting the teacher network consists of 8.0millionnon-
trainable parameters, while the student network has an identical number of trainable parame-
ters. This results in a total of 16.0 million parameters.
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Table 5.3: Performance overview of ST.

ST Single Model Multitask Naive Replay
memory 300 memory 800

Image - level AUCROC 0.9601 0.8745 0.5768 0.8043 0.8184
f1 0.9489 0.9002 0.8389 0.8740 0.8819

Pixel - level

AUCROC 0.9214 0.8796 0.5913 0.8395 0.8463
f1 0.6249 0.5186 0.2015 0.4300 0.4447

Precision - recall 0.5777 0.4677 0.1461 0.3438 0.3533
AU PRO 0.7983 0.7166 0.3670 0.6156 0.6171

Time training 3h 34min 3h 37min 3h 41min 5h 27min 5h 33min
inference [ms] 48 48 48 48 48

Architecture memory [MB] 640 64 64 64 64
Additional memory [MB] / / / 59.0 157.3
Relative gap (δ) [%] 0 17.01 67.75 31.18 28.47
Average forgetting [%] / / 73.26 27.40 22.67

Moreover, an average f1 pixel-level score is computed for every stepwhen a new task is added,
which involves images from a distinct class. Basically, for each strategy retrainedmodel is tested
on all the tasks encountered up to that point, and the values are depicted in Figure 5.10.

Figure 5.10: Comparison of pixel‐level f1 metric trends as new tasks are added across various strategies.
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Considering the subset of test images in Figure 5.8, Figure 5.9, and considering the results
shown in Table 5.3 for both the replay method with a memory capacity of 300 images and
the replay method with a memory capacity of 800 images, it becomes apparent that the replay
method with a memory of 800 images outperforms in terms of both performance metrics and
the generation of anomaly maps that more closely resemble the ground truths. This finding
highlights the benefits of using a larger memory capacity within the replay method framework.
Moreover, it is crucial to emphasize that STFPM proves superior to the ST approach based on
EfficientAD, outperforming it in all evaluated aspects, particularly in terms of time efficiency
and average forgetting that can be deduced from Table 5.3 and Table 5.2 comparison.

5.3 PatchCore adaptation in CL framework

As detailed in Subsection 2.3.7, the PatchCore approach was introduced to conduct anomaly
detection adaptation by utilizing pre-trained convolutional neural network (CNN) for extract-
ing patch embeddings. In this approach, the training process does not involve neural network
parameters updates. Instead, it memorizes the coreset of patch features extracted from the en-
tire training set of normal images for a given task, utilizing the nearest neighbors algorithm to
create the final anomaly map. In this work, the frozen pre-trained Wide ResNet-50-2 is em-
ployed as the feature extractor. These features are obtained by sampling from various depths
of the CNN, generating feature maps with distinct spatial resolutions that are interpolated
to achieve uniform resolution before being concatenated. This incorporation of information
from different semantic levels and resolutions enables improved anomaly localization. This
process yields patch features of sizeD×H×W, whereH andW represent height and width,
andD is the sum of dimensions of sampled feature maps. For instance, in this work the speci-
fication is (D,H,W) = (1536, 28, 28), which results in 28 × 28 patch features with a depth
of 1536.

Within the context of PatchCore, which involves nearest neighbor computations, aminimax
facility location coreset selection approach is adopted. This ensures that the selected coreset,
denoted asMC , effectively covers the patch-level feature space similarly to the original memory
bankM.

To further enhance coreset selection efficiency, random linear projections with compression
factor (ε = 0.9) are applied to reduce the dimensionality of the elements inM. This directly
reduces computation time during the coreset selection process.

This work explores two distinct continual learning methods. The first method follows a

66



less continual approach, sequentially memorizing a coreset containing 1% of the total num-
ber of patches for each task during training. During inference, anomaly maps are created for
each learned class by calculating the distance between each patch of a test image and its nearest
neighbor in the correspondingmemorized coreset. The coresetwith the lowest average distance
over its corresponding map is automatically selected for the test-image class. The image-level
anomaly score is obtained by using the test patch and memorized patch, in addition with its 3
nearest neighbors, both corresponding to maximum value across the anomaly map. The pre-
cision of this method is 1 in the case of 10 tasks, making the decision criteria optimal. The
memory issue arising with new task introductions has led to labeling this method as ”less con-
tinual” and motivated the exploration of an alternative variant.

The second method is developed purely in a continual manner with a fixed-size memory.
The key concept involves maintaining a coreset for each task encountered during training con-
sisted of the total number of patches that can be stored inmemory (30000) divided by the total
number of learned tasks. This is achieved by incrementally applying coreset subsampling both
to new tasks and to previous tasks saved in memory. The decision criteria remains the same as
in the less continual approach described above, with perfect precision expectedly maintained.
Importantly, the performance metrics remain high-level even after transitioning to fixed mem-
ory. Moreover, the training and inference times are quite short, making this approach themost
favorable among all those tested in this work. The recommendation is to choose amemory size
of no less than 28× 28 multiplied by the total number of tasks.

In order to provide clearer understanding of a second continual method’s pipeline and its
computational implementation, the Algorithm 5.2 is given.

Algorithm 5.2 PatchCore memory bank update for CLmethod
Initialize: M← empty list
memory_size← 30000
for i = 0 toN− 1 ▷N = number of tasks

p← patches extracted for task i
for j = 0 to length(M)

M[j]← coreset_subsampling(M[j], memory_size/(i+ 1))
end for
m← coreset_subsampling(p, memory_size/(i+ 1))
M.append(m)

end for

Within the realm of CL, the adopted methodology employs domain-incremental learning
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with task inference ability. This approach focuses both on solving the designated task (produc-
ing anomalymap) andmaking inferences about the task itself (determining the specific class to
which the image belongs).

In Figure 5.11 the displayed outcomes show anomaly localization across all classes. These
results are obtained by employing the ”less continual” approach. Similarly, in Figure 5.12, the
results for fully continual variant are presented. The sequence of images begins with the orig-
inal image, followed by the ground truth segmentation mask. The subsequent step involves
utilizing the predicted heatmap to generate the predicted segmentation mask through thresh-
olding. Finally, the last image presents the segmentation result.
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Figure 5.11: Results of anomaly detection and segmentation process with less CL approach for PatchCore.
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Figure 5.12: Results of anomaly detection and segmentation process with CL approach for PatchCore.

Table 5.4 shows a detailed performance overview of various strategies using PatchCore. It
includes image-level and pixel-level metrics, training and inference times, average forgetting
and relative gap (δ) based on f1 pixel-level metric, memory usage for architecture and addi-
tional images or features. The relative gap is computed at the f1 pixel-level by applying the
standard relative-error formula for each method in relation to the single-model corresponding
value. This summary provides insights into strategy effectiveness and efficiency.

Additionally, in the PatchCoremethod, aWideResNet-50-2 architecture is employed as the
backbone. This Wide ResNet-50-2 was pre-trained on the ImageNet dataset, and it contains
a total of non-trainable 68.9 million parameters. However, in this particular approach, only
three consecutive blocks from the overall structure are employed, amounting to a utilization of
24.8 million parameters.

Table 5.4: Performance overview of PatchCore.

PatchCore Single Model Multitask Naive
Continual Sampling

Strategy
less CL CL

Image - level AUCROC 0.9729 0.9749 0.5293 0.9647 0.9708
f1 0.9653 0.9605 0.8349 0.9636 0.9642

Pixel - level

AUCROC 0.9764 0.9779 0.6784 0.9760 0.9763
f1 0.5838 0.5891 0.1691 0.5822 0.5837

Precision - recall 0.5564 0.5488 0.1007 0.5553 0.5542
AU PRO 0.8855 0.8918 0.4043 0.8841 0.8854

Time training 3min 59min 7min 3min 8min
inference [ms] 29 200 56 43 58

Architecture memory [MB] 2756 275.6 275.6 275.6 275.6
Additional memory [MB] 184.3 184.3 184.3 184.3 184.3
Relative gap (δ) [%] 0 0.09 71.03 0.27 0.02
Average forgetting [%] / / 75.43 0 0.90
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Moreover, an average f1 pixel-level score is computed for every stepwhen a new task is added,
which involves images from a distinct class. Basically, for each strategy retrainedmodel is tested
on all the tasks encountered up to that point, and the values are depicted in Figure 5.13.

Figure 5.13: Comparison of pixel‐level f1 metric trends as new tasks are added across various strategies.

Exploring the subset of test images in Figure 5.11, Figure 5.12, and considering the out-
comes presented in Table 5.4 for both the ”less continual” and continual learning framework,
it is quite interesting that both approaches yield nearly identical results in terms of performance
metrics and the production of anomaly maps. Despite the increase in training time when new
task is introduced, that is caused by implementing coreset subsampling across already memo-
rized coresets of tasks seen before, the fixedmemory requirement ismaintainedwhile achieving
consistent results in CL approach. As a result, a primary objective of the continual learning
framework is achieved. Notably, the training time increase from 3 minutes to 8 minutes re-
mains negligible, given the remarkable performance metrics and minimal memory demands.
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5.4 ComparisonofadaptedADapproaches inCLframe-
work

Upon examining the overall results across all three AD approaches used in the CL framework
for each performance measurement, as summarized in Table 5.5, it is clear that PatchCore
stands out as the clear winner in this comparison, excelling in every measured aspect. More-
over, the average forgetting around 0 and training time of just a fewminutes add to the fascina-
tion of these finding, underscoring the lightweight yet high-performing nature of PatchCore
approach.

The second-best outcomes, according to Table 5.5, belong to the CFA approach. Impor-
tantly, the CFA approach has slightly quicker inference time than PatchCore, although not by
enough to overshadow PatchCore’s position as the top method.

Conversely, the STFPMapproachdemonstrates the lowest effectivenesswhen assessed through
various image and pixel-level metrics, except for AU PRO. Nevertheless, it manages to achieve
faster training and inference times compared to CFA, albeit with slightly worse AD perfor-
mance and average forgetting rate. Consequently, the debate arises as to which of these two
methods holds the advantage. Furthermore, in the context of the embedding similarity-based
methods used in CL framework, which rely on training neural network architectures as pre-
sented in [9], STFPM shows significant competitiveness, particularly when considering the f1
metric.

To enhance visualization and facilitate quicker understanding and comparison of perfor-
mances across various approaches in CL framework, key metrics such as the f1 pixel-level per-
formance metric, total memory usage, and training time are illustrated in the form of barplot
(Figure 5.14). Specifically, reduced memory usage is considered for a more precise evaluation.
Therefore,whenpresenting results forCFAandSTFPM, the analysis takes into account amem-
ory limit of 300 images for replay method, whereas for PatchCore, CL method is chosen.
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Table 5.5: Performance comparison of anomaly detection strategies in continual learning setting.

Performance
Strategy CFA STFPM PatchCore

Replay
memory 300

Replay
memory 800

Replay
memory 300

Replay
memory 800 Less CL CL

Image - level AUCROC 0.9218 0.9312 0.8934 0.8996 0.9647 0.9708
f1 0.9395 0.9419 0.9029 0.9105 0.9636 0.9642

Pixel - level

AUCROC 0.9440 0.9462 0.9198 0.9239 0.9760 0.9763
f1 0.5410 0.5472 0.4674 0.4737 0.5822 0.5837

Precision - recall 0.5014 0.5138 0.4329 0.4376 0.5553 0.5542
AU PRO 0.7440 0.7741 0.8461 0.8502 0.8841 0.8854

Time training 2h 16min 2h 20min 27min 32min 3min 8min
inference [ms] 41 41 24 24 43 58

Architecture memory [MB] 301.2 301.2 93.6 93.6 275.6 275.6
Additional memory [MB] 67.7 143.0 59.0 157.3 184.3 184.3
Relative gap (δ) [%] 17.44 16.49 22.39 21.35 0.27 0.02
Average forgetting [%] 11.43 11.17 15.45 14.97 0 0.90

Figure 5.14: Comparison of f1 pixel‐level performance metric, total memory usage and training time for each approach in CL framework.

Additionally, in Table 5.6, an overview of the backbone architectures used for each method
and their corresponding number of parameters is presented.

Table 5.6: Overview of the backbone architectures used for each method.

Method Architecture Number of parameters [million]
CFA Wide ResNet-50-2 68.9
STFPM ResNet-18 23.4
PatchCore Wide ResNet-50-2 68.9
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6
Conclusion

In this research, various state-of-the-art anomaly detection (AD) methods are examined and
adapted for the continual learning (CL) framework. These adaptations yield exceptional per-
formance in detecting anomalies, even under the demanding condition where the model must
continuously learn new tasks while retaining knowledge of previous ones. Three AD meth-
ods are employed: Coupled-Hypersphere-Based Feature Adaptation (CFA), Student-Teacher,
and the PatchCore approach. It is important to note that this work is conducted with the
assumption of offline training, where data from preceding or subsequent tasks remains inac-
cessible, except for memorized samples. To the best of my knowledge, this is the first instance
where multiple state-of-the-art embedding similarity-based AD methods have been modified
and compared within the CL context.

To ensure a fair comparison not only between the methods in this work but also with past
and future results in this area, a range of recently established performancemetrics are employed.
These metrics include ROCAUC, PRO-score, precision-recall, and f1-score for AD evalua-
tion at both image and pixel levels. Additionally, CL performance is assessed using average
f1, average forgetting, time and memory requirements. The comprehensive experimental re-
sults presented in Table 5.5 shed light on the strengths and weaknesses of these methods, with
PatchCore outperforming all other approaches across all performance measures.

Numerous possible ways for future research are evident. Prioritizing the exploration and
evaluation of additional state-of-the-art ADmodels within the CL framework is essential. Fur-
thermore, making further enhancements to these models holds the potential to improve their

75



effectiveness in the realm of Anomaly Detection for Continual Learning. While the MVTec
Dataset is a valuable benchmark for Anomaly Detection, it would also be beneficial to leverage
alternative datasets to validate the efficacy of these models.
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