
UNIVERSITÁ DEGLI STUDI DI PADOVA

Corso di Laurea Magistrale in

INGEGNERIA DELL'AUTOMAZIONE

Implementation of distributed partitioning
algorithms using mobile wheelphones

Relatore: Prof. Luca Schenato Laureando: Schiesari Pietro

Anno Accademico 2016-2017

Abstract

Multi-robot coverage of an area is a fundamental problem in robotics. This

thesis presents the implementation process of partitioning algorithms from the

theorical ideas to sperimental results. In particular, the algorithms used are

two versions of the classic Lloyd method based on centering and partioning for

the computation of Centroidal Voronoid partitions. The di�erences between

these versions are the communication architectures: client-server and peer-to-

peer. In the �rst architecture the robots are allowed to comunicate with a

central server-base station, whereas in the second one the robots communicate

among neighboring peers. Therefore the tests have been conducted �rst on a

simulated control system designed using the softwares Matlab and Simulink

and then on the control of mobile Wheelphones that are innovative robotic

platforms for smartphones.

1

2

Contents

1 Introduction 7
1.1 Motivation . 7
1.2 State-of-the-art . 8
1.3 Original contribution . 9
1.4 Thesis overview . 10

2 Experimental Apparatus 11
2.1 Wheelphone Hardware . 11
2.2 Wheelphone Software . 12
2.3 Motion Capture . 17

3 The Coverage: Formulation and Algorithms 21
3.1 Voronoi Partitions, Centroids and Multicenter Function 21
3.2 Problem Formulation and Selected Approachs 22
3.3 Server-based Algorithm . 23
3.4 Distributed Gossip Algorithm . 26

4 Wheelphone Robot: modeling and control 29
4.1 Unicycle Model . 29

4.1.1 Dynamic Modeling . 29
4.1.2 Kinematic Modeling . 30

4.2 Motion Control . 31
4.2.1 Inner-Loop . 31
4.2.2 Outer-Loop . 33

5 Numerical and Experimental Results 37
5.1 Preliminary Results . 37
5.2 Pose Reconstruction with 3D Motion Capture System 40

5.2.1 Marker Labelling . 40
5.2.2 Pose Reconstruction . 43
5.2.3 Implementation . 44

5.3 Coverage Algorithms Simulations . 46
5.3.1 Server-Based Algorithm Implementation 47
5.3.2 Gossip Distributed Algorithm Implementation 48

5.4 Results . 51

6 Conclusions 59

7 APPENDIX 61

A Wheelphone Drivers 61
A.1 sfun_wheelphone.c . 61
A.2 sfun_wheelphone.tlc . 66
A.3 driver_wheelphone.c . 68
A.4 wheelphonelib.tlc . 73

3

4

List of Figures

1 Wheelphone Robots . 7
2 Wheelphone Components . 11
3 Phone-Robot Communication . 12
4 Simulink Block Process . 14
5 sfun_wheelphone . 15
6 Android Application's Life Cycle . 16
7 Optical Motion Capture System . 17
8 Passive Markers . 18
9 MAGIC Lab Con�guration . 18
10 Packet Structure . 19
11 Voronoi Partition. 21
12 Client-Server Communication Architecture. 23
13 Peer-to-Peer Comunication. 26
14 Partitioning Process of GD algorithm 26
15 A Gossip Distributed Iteration . 28
16 Motion Control. 29
17 Odometry. 31
18 Tracking. 31
19 Inner-Loop Controller. 32
20 Linear Velocity Trend . 33
21 Angular Velocity trend . 33
22 A Vehicle Trajectory . 34
23 Outer-Loop. 35
24 Application Simulink Scheme . 37
25 Phone-Computer Communication . 38
26 "Sequence of Points" Test1 . 39
27 Wheelphone Robot with Markers . 40
28 Robots Patterns . 41
29 Reference Model . 42
30 Simulink Motion Capture Block Scheme 44
31 "Sequence of Points" Test2 . 45
32 Gaussian Sensory Function . 46
33 Gaussian Sensory Function . 47
34 VoronoiBounded Output . 47
35 Poly2Centroid Output . 48
36 Evolution of the Partition in GB algorithm 50
37 Initial conditions. 51
38 Evolution of Simulate Server Based Algorithm 52
39 Evolution of Experimental Server Based Algorithm 53
40 Evolution of Simulate Gossip Distributed Algorithm 54
41 Evolution of Experimental Gossip Distributed Algorithm 55
42 Evolution of the cost function H. 56

5

6

1 Introduction

Wheelphone is an innovative mobile platform for smartphones built in 2013 by GC-
Tronics company. It allows mobile phones to move in the surrounding area thanks to
the presence of two wheels. Moreover the phone itself is the hardware that generates
the movement of the platform.
In this thesis we want to improve the capabilities of this device implementing on it
two area partitionig algorithms. Their task is to divide the enviroment in regions in
order to position the robots in the most e�ective way to cover the area.

Figure 1: Wheelphone Robots

1.1 Motivation

Nowdays autonomous robots perform a broad range of tasks. Robotic camera net-
works can monitor airports and other public infrastructures. Teams of vehicles can
perform surveillance, exploration, search and rescue operations. Groups of robots
can have logistic capacities in the transportation of goods and in the delivery of
services. There are many reasons for their use:

• Quality: for certain tasks that require high positioning precision and high
repeatability, robots can be better than humans in terms of work quality.

• Costs: the high level of produttivity, from one hand, and the reduction in the
number of wages, from the other hand, make robot more pro�table.

• Safety: the application of robots is safer in certain situations such as working
with dangerous materials or in extreme enviroment.

7

• Flexibility: a single robot can be used to perform multiple activities reducing
time and improving quality.

It is interesting to analyze the robot performance in the coverage area application
because of its importantance in everyday life and its di�culty in implementing it.
The coverage area topic consists in �nding the optimal robot position in order to
oversee a speci�c area. More robots are used, the more di�cult it becomes to get
good results. In fact the choosen zone has to be divided into N partitions each
of which is associated whith a particular robot. Each robot has to monitor only
the assigned sub-area. Moreover, assuming that the initial partitions and robots
position into the area are not e�cient, the comunication between the vehicles is
needed. For this reason it is important to take into account the physical limitations
of the robots: the range of communication signal and the computing power.
For example, considering a high communication range and a low computing power, it
is better to use a server-based communication architecture; otherwise, with inverted
values, it would be better to use a distributed architecture. In the �rst case the
robots interact with an external server that has the task of performing calculations
and redirecting them. In the second one the robots, communicating indipendently
between them, decide their best location.
Another interesting challenge in analysing this topic is that any single area point
can not have the same importance. To better explain this concept we consider the
monitoring of a forest by a group of robots for detecting possible wild�res. It is easy
to see that there is a direct correlation between the level of temperature and the
possibility of �res, so the most important area points are the warmest. Assuming
that, the robots should sorround the areas with the higher level of temperature
leaving uncovered the other zones.
All these considerations are on the basis of the development of this thesis whose
goal has been the implementation and the experimental validation of distributed
partitioning algorithms using Wheelphone robots.

1.2 State-of-the-art

The last few years have seen a fast progression in the eld of the robotic control and
new developments continue to expand the literature which presents continuously
new solutions and approaches along with the arising of always new and harder chal-
lenges.
In the classical coverage literature, there are many works [1]-[4]-[5]-[6]-[10] that
present a gradient descent strategy for a class of functions which encode optimal
coverage policies. The authors exploit the concept of centroidal Voronoi partitions
to optimally divide the monitored area focusing on di�erent aspects. In [1] and [10]
they consider a non-convex enviroment with the presence of obstacles whereas in
[4]-[5]-[6] the coordination problems for networked robots are presented. In [12] the
authors propose a policy for the optimal coverage of a line with perfectly known
non-uniform sensory function. In [7] only a limited number of noise-free samples of
the sensory function are considered. Finally, a distributed solution to the coverage
problem in the presence of known time-varying density functions is presented in [11].
Another research direction can be seen in [21]-[23]-[22] considering the sensory func-

8

tion not known by the robots. In these cases each robot independently estimates
the function of interest based on its own measurements and those gathered by its
neighbors.
We have also to consider what tasks Wheelphone robot can alredy perform. The
following list shows the name and the feratures of the main Applications that can
be downloaded from the web.

• Wheelphone : visualize all the sensor information on the phone and imple-
ment "move-around-on-table" behavior

• Wheelphone_follow : it allows the robot to follow an object in front of it,
using the front facing proximity sensors

• WheelphoneRecorder : record video while moving

• WheelphoneFaceme : face-tracking application. It keeps track of the posi-
tion of one face using the front facing camera, then controls the robot to try
to face always the tracked face

• WheelphoneBlobDetection : the Wheelphone robot follows a blob chosen
by the user through the interface

• WheelphoneLineFollowing : it allows the robot to follow a black (or white)
line on the �oor using the ground sensors.

• WheelphoneNavigator : environment navigation application. It allows the
robot to navigate an environment looking for targets while avoiding obstacles.
It has two modules to avoid the obstacles: (1) the robot's front proximity
sensors and (2) the camera + Optical Flow.

1.3 Original contribution

The goal of this thesis is to describe the implementation process and comparison of
two partitioning algorithms given Wheelphone robots.
The starting point was to analyze the tecnical features of a single Wheelphone robot
because, as is possible to see in the previous section, was not created for this type
of task. We veri�ed that we had the possibility to access the wheels speed and to
set these data as we please. Once we have �nished the analysis, we were able to
implement a motion control algorithm to drive Wheelphone in a speci�c position.
These were the basis for the realization of our algorithms.
The next step was to select two algorithms with di�erent characteristics : once based
on a synchronous client-server communication architecture and the other based on
an asynchronous and pairwise communication.
Once chosen them, we identi�ed a cost function, named Multicenter Function, that
gave us the goodness of an algorithm in terms of proximity to the optimal robots
position.
Going more in deep, the real original contribution of this thesis was that all the above
description was implemented for a smartphone application. Nowdays everybody
have smartphones which are an increasingly important part of day-to-day life. Many

9

tasks like home automation control, vehicle security, human body anatomy and
health maintenance have already been designed in the form of App which can be
easily installed. Making an App partition control can led, therefore, to signi�cant
advantages:

• Cost reduction : the control hardware component is almost entirely provided
sice it is the phone itself. That means there is no need to buy an external
hardware.

• Easier programming : the code used by Android phones is Java, that is
one of most common but not user-friendly. Indeed, if we want to change some
part or parameter of the algorithm, we have to know in detail all the code.
On the opposite, traditional controlling methods usually involve technical ex-
pertise and complicated software. For these reasons we decided to interface
the smartphone with Simulink MATLAB software. In this way we devided the
algorithm in indipendent Simulink-Blocks making easier the reprogramming.

• More accessible : it is easier for people to get in touch with these type of
tecnology. Therefore they can develop by their own a partition App that �ts
as best as it can people needs.

Moreover, in this thesis we build a robot simulator in MATLAB code that allow to
test the algorithms and to prevent programming errors.

1.4 Thesis overview

In this section is performed a short overview of the content of the thesis.
After the general introduction that has been presented in the previous paragraphs,
we will illustrate in Section 2 the experimental apparatus that includes both the
hardware and the software components used �rst in the simulations and then in the
experimental tests. In addition we will explain the process to interface the Wheel-
phone robot with Simulink MATLAB.
In Section 3 the coverage issue will be de�ned in detail presenting, in particular,
the approaches that we had selected. We will describe some geometric concepts
like Voronoid partition, centroid and Multicenter function used for the enviroment
patitioning. Furthermore in this section we will present the Server-Based algorithm
and the Gossip Distributed one illustrating their foundamental characteristics.
The Section 4 will introduce the mathematical model for an unicycle robot depict-
ing its dynamic and kinematic. Thanks to them we will design a Motion Controller
in order to move the vehicles to a de�ne position in the area.
In Section 5 we will focus on analysing the problems observed during the tests. We
will solve these issues implementing the Marker Labelling and the Pose Reconstrac-
tion algorithms essential to estimate the positions and orientations of the robots.
We will describe the implementation process of the partition algorithms in MAT-
LAB reporting then the �nal results.
Finally Section 6 summarizes the work done and the results obtained in this thesis
along with an overview of the possible developments that could be explored in the
near future.

10

2 Experimental Apparatus

This section presents the experimental apparatus used �rst in the simulations and
then in the experimental tests.
All the simulations are run in MATLAB R2015b on a laptop with a processor Intel
Core i3 and 4Gb of RAM. The tests, instead, are focus on the control of a robotic
platform for smarphones, Wheelphone, whose hardware and software components
will be respectively illustrated in Sections 2.1 and 2.2. We instantiated the partition-
ing algorithms in the smartphone Samsung GALAXY S3 mini through the MATLAB
Support Package for Android Sensors. Finally, to perform a better motion control,
we used the Motion Capture System of Padova's Engineering Department whose
features will be described in Section 2.3.

2.1 Wheelphone Hardware

Wheelphone is a vehicle with two parallel wheels, each one mounted beside their
center. It is able to steer thanks to a sliding surface placed on the front side of the
robot. The Figure 2 shows the components of a Wheelphone and the Table below
describes its features.

Figure 2: Wheelphone Components

Feature Tecnical Information

width 92 mm
length 102 mm
height 66 mm
weight 200 g
distance between wheels 92 mm
wheel diameter 68 mm
battery LiPo rechargeable battery (1660 mAh, 3.7 V)
processor microchip PIC24FJ64GB004; 16 MHz
memory RAM: 8 KB; Flash: 64 KB

sss
sss

11

Wheelphone vehicle has two direct current (DC) geared motors, one for wheel, that
can drive the robot with a maximum speed of 30 cm/s. There are not motor en-
coders and then the angular position of the wheels is estimated using the counter-
electromotive force. There are also 16 sensors:

• 4 front and 4 ground ambient sensors, that can measure the ambient light,

• 4 front and 4 ground infra-red sensors measuring the proximity of objects up
to 6 cm.

Wheelphone has a molded plastic case and an adaptable phone holder.

2.2 Wheelphone Software

GCtronic company provides users with the Wheelphone class, written in Java code,
that need to be instantiated in the application in order to communicate with the
robot. The robot-phone communication is established through a micro USB cable
and the exchange of packets occurs every 50 ms. There are two di�erent types of
packets: the packet transmited to the vehicle (Sending-Packet) and that one received
(Receiving-Packet).

Figure 3: Phone-Robot Communication

The packets length is 63 bytes where only the �rst 4 bytes are used in the Sendind-
Packet and only the �rst 23 bytes in the Receiving-Packet:
ss
ss

Byte Sending Packet

1 Update State
2 Left Desired Speed
3 Right Desired Speed
4 FlagPhoneToRobot

12

Byte Receiving Packet

1 Update State
2 Prox0 I-R Value
3 Prox1 I-R Value
4 Prox2 I-R Value
5 Prox3 I-R Value
6 Prox0 Ambient Value
7 Prox1 Ambient Value
8 Prox2 Ambient Value
9 Prox3 Ambient Value
10 Ground0 I-R Value
11 Ground1 I-R Value
12 Ground2 I-R Value
13 Ground3 I-R Value
14 Ground0 Ambient Value
15 Ground1 Ambient Value
16 Ground2 Ambient Value
17 Ground3 Ambient Value
18 Battery State
19 FlagRobotToPhone

20,21 Left Measured Speed
22,23 Right Measured Speed

ss
The bits of FlagRobotToPhone and FlagPhoneToRobot are used to comunicate some
speci�c information.
ss
FlagRobotToPhone:

1 bit : speed control enable/disable

2 bit : soft acceleration enable/disable

3 bit : obstacle avoidance enable/disable

4 bit : cli� avoidance enable/disable

5 bit : calibrate sensors

6 bit : calibrate odometry

7,8 bit : not used

ss
FlagPhoneToRobot:

5 bit : robot is charging

6 bit : robot is completely charged

13

other bits : not used

In order to implement the partitioning algorithms, we could either program in Java
code and directly create an application that recalls the Wheelphone class or we
could build the control scheme in MATLAB Simulink importing it in the embedded
system through rapid prototyping. We decided to follow the second strategy as it
brings many bene�ts:

• high-level programming and

• a faster addition or change of control components

To do this, the connection between Simulink and the low-level communication, spec-
i�ed in Wheelphone.java, has to be established through the use of an S-function.
S-functions (system-functions) provide a powerful mechanism for extending the ca-
pabilities of Simulink adding your own blocks to Simulink models. S-functions use a
special calling syntax that enables you to interact with Simulink's equation solvers.
This interaction is very similar to the interaction that takes place between the solvers
and built-in Simulink blocks. The form of an S-function is very general and can ac-
commodate continuous, discrete, and hybrid systems.

Figure 4: Simulink Block Process

14

In order to build our S-function, it is necessary understand which steps a Simulink
model is ran (Fig. 4). In the �rst phase, initialization, Simulink incorporates library
blocks into the model, propagates widths, data types, and sample times, evaluates
block parameters, determines block execution order, and allocates memory. Then
Simulink enters a simulation loop, where each pass through the loop is referred
to as a simulation step. During each simulation step, Simulink executes each of
the model's blocks in the order determined during initialization. For each block,
Simulink invokes functions that compute the block's states, derivatives, and out-
puts for the current sample time. This continues until the simulation is complete.
For our tasks we built an s-function, sfun_wheelphone, written in C code, ini-
tializing as input and as output the values shown in Figure 5.

Figure 5: sfun_wheelphone

ss
Now we have to istruite the Simulink Coder how generate the code linked to this
block. We used an integral component of Real-Time Workshop, called Target Lan-
guage Compiler (TLC), that transforms an intermediate form of a Simulink block
diagram into code based on target �le.
For this task we created a wrapped inlied S-function, sfun_wheelphone.tlc, and a
�le, driver_wheelphone.c . During each simulation step, sfun_wheelphone.tlc istru-
ites the Simulink Coder specifying that the otuputs of sfun_wheelphone.c have to
be taken using the methods of the �le driver_wheelphone.c.

15

In driver_wheelphone.c �le there are two methods that recall through Androidlib.tlc
the pre-existing methods of the Wheelphone library:

• getWheelphoneData(): it acquires the Receiving Packet values

• setWheelphoneSpeed(leftWheel,rightWheel): it sets the left and right wheel
speed equal to leftWheel and rightWheel.

The code of sfun_wheelphone.c, sfun_wheelphone.tlc and driver_wheelphone.c are
exposed in detail in Appendix A.
We use the MATLAB Support Package for android to download the application in
our device creating inside it two foundamental process:

• Simulink Process: this is the process where our Simulink scheme runs.

• Java Process: it converts the Simulink scheme into Android code, using sr-
mainandroid.tlc verifying that the code is compatible with our device through
srmainsamsung_galaxy_s4.tlc. Furthermore, when Simulink coder enters in
sfun_wheelphone.c, it activates through the process described above the meth-
ods of Wheelphone.tlc allowing the phone-robot communication.

The following diagram describe the life cycle of our Application.

Figure 6: Android Application's Life Cycle

16

2.3 Motion Capture

Motion Capture is the process of recording the movement of objects in the three
dimensional space. The interest for this topic spread among various �elds of research,
from sport and entertainment, to military applications and robotics. In this Section,
we want to analyze a optical Motion Capture System. It utilises data captured from

Figure 7: Optical Motion Capture System

image sensors to triangulate the 3D position and track a point of the subject in the
space between two or more cameras calibrated to provide overlapping projections.
The most common approach is still the so called marker-based approach. Special
markers that can be easily detected through the image sensor are placed on the
subject and the information about its movements can be retrieved once a proper
description of the constraints that relate a marker to each other is deduced. The
markers commonly used with these systems can be of two types:

• Active Markers are usually infrared LEDs placed on the subject. Rather
then re�ecting light back that is generated externally, the markers themselves
are powered to emit their own light. These systems o�er a simpler solution
to the marker labelling problem because they allow to illuminate just one
marker at a time but of course they are more expensive since each marker is
an active electronic component. The advances in computational power and
the elaboration of more sophisticated algorithms supported the widespread of
passive motion capture systems.

• Passive Markers are coated with a retrore�ective material to re�ect the
infrared light which is generated from infrared �ash lights placed near the lens
of each image sensor. An IR-pass �lter is placed above each camera so that
only the bright re�ective markers are captured ignoring the rest of the image

17

and simplifying the marker detection problem. The centroid of the marker is
estimated as a position within the two-dimensional image that is captured.

(a) Natural Light (b) Flash Light

Figure 8: Passive Markers

The laboratory, where we conducted the experimental tests, has a Motion Capture
System with 12 infrared cameras capable of capturing images with a maximum frame
rate of 360Hz provided by BTS Bioengineering [24].
The arrangement scheme of the cameras inside the room is represented in Figure 9
where the yellow area represents the actual usable volume of the laboratory.

Figure 9: MAGIC Lab Con�guration

18

The communication between the image sensors (cameras) and the central unit use
a TCP/IP communication protocol:

1. each camera captures the two-dimensional position of the marker in its plane
and transmits these data to the central unit through a TCP packet

2. the central unit receives the packet and, thanks to the triangulation algorithms,
is able to derive the positions in 3D space of each marker

3. the marker positions are saved in 4 �oating-point bytes and they are trans-
mitted through a UDP packet with the following structure:

Figure 10: Packet Structure

19

20

3 The Coverage: Formulation and Algorithms

This section resumes a variety of known results in geometric optimization and in
robotic coordination. Subsection 3.1 enunciates the notion of partitions and intro-
duces the multicenter function as a way to de�ne the optimal robots position in the
environment. Subsections 3.3 and 3.4 describe two control algorithms for the agent
motion coordination and for the environment partitioning based on the classic Lloyd
method.

3.1 Voronoi Partitions, Centroids and Multicenter Function

Let X be a compact convex subset of R2 with non-empty interior. An N-partition
of X, denoted by v = (vi)

N
i=1, is an ordered collection of N subsets of X with the

following properties:

1.
⋃
i∈{i,...,N} vi = X;

2. int(vi)
⋂
int(vj) is empty for all i, j ∈ {i, ..., N} with i 6= j; and

3. each set vi, i ∈ {i, ..., N} is closed and has non-empty interior.

Let x = (x1, ..., xN) ∈ XN denote the position of N agents in the environment X.
Given a group of N agents and an N -partition, each agent is one-to-one correspon-
dence with a component of the partition.

Figure 11: Voronoi Partition.

The Voronoi partition W (x) of X generated by x is the ordered collection of the

21

Voronoi regions (Wi(x))Ni=1, de�ned by

Wi(x) = {q ∈ X : ‖q − xi‖ ≤ ‖q − xj‖,∀j 6= i} . (3.1)

Now, given two distinct points xi and xj in X, de�ne the (xi;xj)-bisector half-space
by

Hbisector(xi;xj) = {q ∈ X : ‖q − xi‖ ≤ ‖q − xj‖} . (3.2)

The set Hbisector(xi;xj) is the closed half-space containing xi whose boundary is
the plane bisected by the segment from xi to xj. Note that bisector subspaces
satisfy Hbisector(xi;xj) 6= Hbisector(xj;xi) and the Voronoi partition of X satis�es
W (x) = X ∩ (∩j 6=iHbisector(xi;xj)).
Let µ : X→ R>0 be a distribution sensory function de�ned over X. Given a generic
partition v, for each region vi, i ∈ {vi, ..., vN}, its centroid with respect to µ can be
express as

Ci(vi) =

(∫
vi

µ(q)dq

)−1 ∫
vi

qµ(q)dq. (3.3)

A partition v = (v1, ..., vN) is said to be Centroidal Voronoi partition of the pair
(X, µ) if

v = W (C(v)), (3.4)

i.e., v coincides with Voronoi partition generated by C(v). At the end, with these
notations, we want to introduce the Multicer function H(v,x, µ) de�ned as

H(v,x, µ) =
N∑
i=1

∫
vi

‖q − xi‖2µ(q)dq. (3.5)

It can be shown in [5] that, for a �xed sensory function µ, the set of local minima
of H(·,C(·), µ) coincides with the Centroidal Voronoi partitions of the pair (X, µ).

3.2 Problem Formulation and Selected Approachs

This thesis wants to provide a correct partition of an area given a sensitive map
and a group of N robots. The goodness of the algorithms is given by Multicenter
Function that decribed how closest are the robots to the optimal locations. We
decided to take some restrictions to implement the partitioning algorithms. First
of all the robots can move only in a planar area represented by the convex set X.
Additionally, each agent i ∈ {1, ..., N} is assumed to have some computation and
sensing capabilities:

• it always knows its locations xi(t) at time t

• it can send information either to a central server-base station or to the closely
located agents

22

• it can move from its position xi,k to any desired location xi,k+1 of convex set
X

As seen in Section 1.2, there are many type of partitioning methods that have unique
features. In order to analyse which is the best typology for Wheelphone robots,
we decided to implement two algorithms that are as di�erent from each other as
possible. The �rst algorithm is based on a synchronous client-server communication
architecture, instead the second one is a distribuited gossip algorithm that requires
asynchronous and pairwise communication. The next Sections describes in detail
the features of the implemented methods.

3.3 Server-based Algorithm

The �rst algorithm considered is a version of the classic Lloyd algorithm based on
centering and partitioning for the computation of Centroidal Voronoi partitions.
ss

Figure 12: Client-Server Communication Architecture.

Let X ⊂ R2 be a convex and closed polygon and let µ : X→ R be a sensory function.
The coverage problem is equal to �nd the partition that minimize the Multicenter
Function:

min
v
{H(v,C(v), µ)} . (3.6)

The Lloyd's solution for this problem is to use an iterative algorithm that can be
divided in four parts:

23

1. INITIALIZATION: it chooses an initial N-partition v(0) of X

2. CENTERING: it computes the centroids C(v(k)) of the current partition k

3. PARTITIONING: it updates the new partition v(k+ 1) using Voronoi on new
centroids v(k + 1) = W (C(v(k))

4. TERMINATION: if the new partition and centroids meet some convergence
criterium, like using the Multicenter function, it terminates; otherwise it re-
turns to step 2.

It is easy to see that the �nal solution of this algorithm is not unique but it depends
on the initial condition. Indeed to improve the convergence of the algorithm the
best strategy is to choose wisely the initial partition v(0) using the Monte Carlo
method. It can be seen in detail in [9] that H is monotonically non-increasing along
the solutions of Lloyd's algorithm and these solutions converge asymptotically to
the set of Centroidal Voronoi partitions.
In this section we present a version of Lloyd's algorithm based on a synchronous
client-server communication architecture (Figure 12). In this case the robots are
allowed to communicate with a central server that:

• stores the map given by µ(X)

• receives the position of all robots every T seconds

• computes centroids and Voronoi regions of all robots

• sends information periodically to robots every T seconds

Each robot i always knows its position and, when receives the new location, moves
to this one. If the robot reaches the target point in time t < T , then it waits T − t
seconds to send the informations to the server; otherwise it stops in position xi(T)
and immediately communicates with the base. This synchronous communication is
necessary to implement the global Voronoi partitions and for this reason the setting
of T value has an important role for the algorithm convergence time. Furthermore, in
order to build a good algorithm, the packet dropouts and communications failures
must be considered. The client-server architecture is naturally resilient to these
problem. Indeed, in case that an input location is not received by the server, it
only computes the partitioning with others locations. Similarly, if a robot does not
receive the new target point, it just stands until the moment it receives the next
control input.

24

Algorithm 1 Server-Based Algorithm

1: SERVER
Require: The server stores in memory µ and has a clock that triggers an event every
T seconds.

2: if k = nT, n ∈ X then
3: Listen input locations
4: x(k) = x1(k), ..., xN(k) ← ROBOTS

5: Partition and Centroids update:
6: v(k) = W (x)

7: Ci =
(∫

vi
µ(q)dq

)−1 ∫
vi
qµ(q)dq ∀i

8: Targets-Points trasmission:
9: xi(k) = Ci ∀i
10: xi(k)→ ROBOTi ∀i
11: end if

12: ROBOTS
Require: A clock with sample time T.

13: if k = nT, n ∈ X then
14: if Robot is moving then
15: STOP
16: end if

17: Location trasmission:
18: xi(k)→ SERV ER

19: Listen target-point:
20: xi(k + 1)← SERV ER

21: Move to the new target-point

22: end if

�f

25

3.4 Distributed Gossip Algorithm

The coverage law, based upon the Lloyd algorithm and described in the previous
section, has some important limitations:

• Synchronized Communication: every T seconds each robot communicates
its position to the base station that calculates the new location,

• Base Station Presence: it must be positioned inside the range of comuni-
cation signal of each vehicle. It is easy to assume that this condition can not
be veri�ed in any situation, just think of the partitioning of a very large place.

For these reasons the aim of this chapter is to introduce an distributed coverage
algorithm that reduces the communication requirements in terms of reliability, syn-
chronization and topology.

Figure 13: Peer-to-Peer Comunication.

The key idea is to implement the Lloyd strategy only on two adjacent regions. When
two agents with distinct centroids communicate, their dominance regions evolve as
follows:

1. the union U of the two dominance regions is created

2. U is divided into two new dominance regions using the bisector half-space on
the two centroids

Figure 14: Partitioning Process of GD algorithm

26

This idea is well-posed in the sense that the sequence of collections v(t)t∈N is an
N-partition at all times t. Indeed it is immediate to see that the �rst two properties
3.1 are satis�ed at all time if they are satis�ed at initial time. Finally, at all times t,
each component of v(t) is closed and has non-empty interior. Indeed it is impossible
that exist a half-plane containing the interior of a region and not containing the
centroid of the same region.
The gossip coverage algorithm takes advantage of what has been said in the following
way. Let the collection (v1(0), ..., vN(0)) be an arbitrary poligonal N-partition of X.
For all t ∈ N, each agent i ∈ 1, ..., N mantains in memory the dominance region
vi(t), the sensory function µ and its position xi(t). At each t ∈ N one or more pairs
of distinct agents are selected by a random process. We de�ne pseudodist between
two closed region, va and vb, with non-empty interior:

pseudodist(va, vb) = inf {|a− b| : (a, b) ∈ int(va)× int(vb)} (3.7)

Consider i and j the two agents of a pair, they perfom the following tasks:

1. agent i transmits to agent j its dominance region vi(t) and its position xi(t)

2. agent j computes the pseudodist(vi, vj)

3. if pseudodist(vi, vj) > 0 then
the dominance regions are not adjacent; the robots do not change their regions
and positions:

xi,j(t+ 1) = xi,j(t)

vi,j(t+ 1) = vi,j(t)

4. else
the dominance regions are adjacent; the robots region and position change in
the following way:

vi(t+ 1) = (vi(t)
⋃
vj(t))

⋂
Hbisector(xi(t);xj(t))

vj(t+ 1) = (vi(t)
⋃
vj(t))

⋂
Hbisector(xj(t);xi(t))

xi(t+ 1) = Ci =
(∫

vi(t+1)
µ(q)dq

)−1 ∫
vi(t+1)

qµ(q)dq

xj(t+ 1) = Cj =
(∫

vj(t+1)
µ(q)dq

)−1 ∫
vj(t+1)

qµ(q)dq

5. agent j saves {vj(t+ 1), xj(t+ 1)} and transmits {vi(t+ 1), xi(t+ 1)} to agent
i

6. agents i and j move to new positions xi(t+ 1), xj(t+ 1)

ss
ss
In analysing this algorithm, we observed that there is a huge problem: it can gen-
erate non-convex partitions. As shown in Figure 14, that described an algorithm
iteration, when the bisector half -space cuts the U region it can happen that the

27

Figure 15: A Gossip Distributed Iteration

two new partitions become concave. This could implied, in the following iterations,
the creation of partitions with disconnected regions (Fig. 15).
In this case there are two negative consequences:

• from the computational point of view, the algorithm performance become less
e�cient;

• from the area subdivision point of view, it is easy to see that this type of
partition is not optimal. This is the reason why in almost any coverage problem
is desirable to mantain the components connectivity.

We overcome this issue adding another constraint in process. When agent j veri�es
that the dominance regions are adjacent, it also checks that the two partitions, cut
by the bisector half -space, are made up of connected components.

28

4 Wheelphone Robot: modeling and control

This section describes the process that must be considered to simulate, with Simulink
software, the patitioning algorithms of Chapter 3.
First of all, we have to create the Wheelphone object in our simulator. Subsection
4.1 enunciates the kinematic and dynamic model of an unicycle robot type (that is
the same type of Wheelphone). The second fase consists in designing the motion
contol (Fig:16) that allows to drive the vehicle from one point to another.

Figure 16: Motion Control.

4.1 Unicycle Model

An unicycle type robot is, in general, a robot moving in a 2D world, having some
forward speed but zero instantaneous lateral motion. In other words, it is a non-
holonomic system. Despite the unicycle name, it describes vehicles having usually
two parallel driven wheels, each one mounted beside their center. The unicycle type
robots modeling comprises their kinematics and dynamics study, as it is usual for
most the physical systems.

4.1.1 Dynamic Modeling

The dynamic modeling concerned with the study of forces and torques and their
e�ect on motion, de�ning the commanding speeds. The dynamic of the vehicle is{

M dv
dt

= −Kvv +Kmeam −Bvv

J dω
dt

= −Kωω +Kdead −Bωω
(4.1)

where v, ω are the linear and angular velocities of the vehicle, M and J are the
mass and the inertia of the vehicle, respectively; eam and ead are the average and
di�erential voltages applied to the wheels. Kv, Km, Kω, Kd are constant which map
forces, linear and angular velocities in forces and torques. Finally Bv and Bω are
the translational and rotational friction coe�cients, respectively.

29

The voltages applied to the wheels, VR e VL, are connected to eam e ead through{
eam = 1

2
(VR + VL)

ead = VR − VL
(4.2)

In the end, the relation among the linear velocities of the wheels and the linear and
angular velocities of the vehicle is{

vR = v + ωd

vL = v − ωd
(4.3)

The dynamic of the robot has been expressed through a state-space representation
using as input the vector [eam ead]

T , as state [v ω] and, as output, the vector of
wheels velocities [vR vL]T {

ẋ = Fx+Gu

y = Hx
(4.4)

where

F =

[
−Kv+Bv

M
0

0 −Kω+Bω
J

]
, G =

[
Km
M

0
0 Kd

J

]
e H =

[
1 d
1 −d

]

4.1.2 Kinematic Modeling

Kinematics modeling describes the trajectories that mobile robots follow when they
are subject to commanding speeds. The kinematic of the vehicle is

ẋ = 1
2
(vL + vR) cos(θ)

ẏ = 1
2
(vL + vR) sin(θ)

θ̇ = 1
2d

(vR − vL)

(4.5)

where x, y, θ is the pose of the vehicle, e.g. position and orientation in the plane,
vR and vL are the linear speed provided by the right and left wheel, while d is the
length of the semi-axis of the vehicle.
With the previous formula, it has been possible to estimate position changes over
time. The diagram (Fig: 17) shows the odometry where the three integrators are
used to convert velocities ẋ, ẏ, θ̇ in the vehicle pose x, y, θ.

30

Figure 17: Odometry.

4.2 Motion Control

This section describes the motion control laws which allows to drive the vehicle from
one point to another.
The proposed controller exhibits a inner-outer-loop structure (Fig:16). The inner-
loop control law is responsible to compute the adequate electrical signals (voltage)
that will tackle the wheels's motors to force the robot to move according to a desired
linear and angular velocity. These desired velocities are the control signals generated
by the outer-loop controller.

Figure 18: Tracking.

4.2.1 Inner-Loop

In order to drive robot to a desired linear velocity v and angular velocity ω, it
is essential compute the error between the true velocities and the desired ones.
Therefore, let ev and eω be respectively the linear and angular velocity errors, we

31

initially design a proportional control system{
eam = −KP1ev

ead = −KP2eω
(4.6)

In this case, if the dynamic of the robot has small static gains, the velocities errors
may remain signi�cant. Then, adding an integral term, we can enforce the steady
state error convergence to zero.{

eam = −KP1ev −KI1

∫ t
0
ev(τ)dτ

ead = −KP2eω −KI2

∫ t
0
eω(τ)dτ

(4.7)

In Fig. 19 there is the diagram used to implement the Inner-Loop controller through
Simulink software. The block Sat, placed before the state-space representation, has
the objective to saturate the average and di�erential voltages and, consequently, to
limitate the maximum speed of the wheels. Without any features regarding the be-
havior of the system in the transitional phase, we used an experimental calibration.
The two PI controller parameters are shown in Table 1.

Kp Ki

PI 1 25 5
PI 2 35 5

Table 1: Experimental values for PI controllers.

Figure 19: Inner-Loop Controller.

In the �gures 20 and 21 there is the trend of v and ω speeds in response to a reference
input step with amplitude 0,3m/s e 0,2rad/s respectively. The control manages to
bring the speeds to the desired values without overshooting that would be harmful
to the controls applied subsequently.

32

Figure 20: Linear Velocity Trend

Figure 21: Angular Velocity trend

4.2.2 Outer-Loop

The Outer-Loop objective is to generate the adequate desired linear and angular
velocity (vd, ωd) to force the position of the robot P = (x, y) to converge to the
reference position Pr = (xr, yr). We decided to control, istant by istant, these speeds
in proportion to the distance from the point of arrival and the missing angle to reach
the desired orientation. Therefore let:

• dist(t) =
√

(xr − x(t))2 + (yr − y(t))2 be the Euclidean distance and

• θr(t) = atan2((yr − y(t), (xr − x(t)) be the desired orientation,

33

the contro law is

vd = Kvdist(t)

ωd = Kω(θd(t)	 θ(t))
(4.8)

where Kv and Kω are the controller parameters and the operator 	 computes the
di�erence between the angles expressed as a value between −π and π.
For the same reason of paragraph 4.2.1, we used an experimental calibration to
determine Kv and Kω that are:

Kv = 4 Kω = 9.

The most important value that we have to de�ne is Kω. Indeed faster the robot
�nds the right direction less path it will take. The �gure 22 exhibits the trajectory
that the controller makes the robot do to reach the position (-0.5,0.5). As we can
see, it starts from the origin with an initial orientation equal to the one of the x-axis
untill it gets to the target.

Figure 22: A Vehicle Trajectory

ss
The diagram in Fig. 23 is the Outer-Loop implementation in Simulink software
where the Inner-Loop and Odometry blocks are the same used in Fig. 19 and Fig.
17.

34

Figure 23: Outer-Loop.

The hypot and atan2 blocks are provided by Simulink performing the followyng
math operation:

• hypot(x, y) =
√
x2 + y2

• atan2(x, y) = arctan(x
y
)

The F1 block, instead, is a function built by us, through MATLAB function block,
to perfom the 	 operator. In the next lines it is shown the F1 code

Algorithm 2 F1 function

1: function theta1 = F1(theta)

2: while theta > π do
3: theta = theta−2π;

4: end

5: while theta < −π do
6: theta = theta+2π;

7: end

8: theta1 = theta;

The process until here described, composed by:

• unicycle dynamic

• unicycle kinematic

• inner-loop controller

• outer-loop controller,

has allowed us to create a robot simulator whereby we tested the partitioning al-
gorithms in a simulated environment before implementing them on real devices.
These tests have improved the debugging phase of the algorithms letting us be more
e�cient in the experimental stage.

35

sss

36

5 Numerical and Experimental Results

This section presents in detail the steps performed in the MagicLab laboratory
of Padova's engineering department to implement the partitioning algorithms on
Wheelphone devices. It is organized in the following setting:

• we provide the features of the preliminary diagrams used to perform motion
control and its results

• we introduce the algorithms created for the reconstruction of the vehicles poses
having access to the data obtained from the Motion Capture System of Section
2.3

• we show how we implemented the Server-Based algorithm and the Distributed
Gossip algorithm in MATLAB Simulink.

• �nally, we show some real simulations of the two algorithms chosen in Section
3.

5.1 Preliminary Results

Before testing the validity of partitioning algorithms, we must make sure that the
motion control, designed in a simulated environment, is also robust with real devices.
Then we installed in our smartphone an Application that contained the Simulink
diagram of Figure 24.
The ODOMETRY and the MOTION CONTROLLER blocks have the same struc-
ture as those presented respectively in sections 4.1.2 and 4.2.2 while we replaced the
inner-loop block with sfun_wheelphone as it is no longer necessary to simulate the
robot dynamics. Since the S-function inputs, vL and vR, i.e. left and right wheel

Figure 24: Application Simulink Scheme

speeds, are di�erent from the Motion Controller outpus, v and ω, i.e. linear and
angular robot speeds, we included in the control chain a matrix gain H to perform
the conversion of the values:

H =

[
1 1
d −d

]
37

where d is the length of the semi-axis of the vehicle.
The communication between the vehicles and the central base has been established
through the UDP Receive and UDP Send blocks provided by MATLAB Support
Package for Android Sensors. Even in this situation we de�ned two types of packet:
the packet transmitted to the phone and the one received by it.

Figure 25: Phone-Computer Communication

The following tables show the structure of the packages that we used:

Byte Sending Packet

1:8 Desired X
9:16 Desired Y

�
�

Byte Receiving Packet

1:4 Proximity Values
5:8 Proximity Ambient Values
9:12 Ground Values
13:16 Ground Ambient Values
17 Battery State

18:21 Left and Right Wheel Speed
22:45 Odometry
46 Battery Charging State
47 Odom-Calibration State
48 Obstacle-Avoidance State
49 Cli�-Avoidance State

�

Finally, the Clock block of Fig.24 has the objective to make synchronous the move-
ments of the vehicles. It activates a timer when a packet comes from the central
base and, exceeding TClock = 20 seconds, it forces the linear and angular velocity

38

equal to zero. We chose to make synchronous the movement of the robots and not
their communication because creating independent clocks in the vehicles and in the
base station could lead to asynchronous communications implyng control failure.
�
Applying the above scheme through a huge number of experimental tests, we cali-
brated the proportional constants, Kv and Kω, of the motion controller, obtaining
the following values:

Kv = 2 Kω = 5.

Nevertheless we faced that in same cases the vehicle did not reach the desired �nal
position. In fact, placing the robot with a speci�c orientation and choosing as a
�nal point a destination distant at least 2 meters and that is exactly in the opposite
direction, the vehicle instead of steering mantains the initial orientation. This is
caused by the presence of internal saturators in the two robot motors that limit the
maximum wheels speed. In these situation, being our motion control proportional to
the distance, the velocity of the left and the right wheels would exceed the saturators
threshold and, not being possible, they are set equal to the threshold itself. To
solve this problem, we primarly reduced the Kv value realizing that also the vehicle
performance was lowered in the short-distance trips. For this reason we opted to
insert a saturator in the Motion Controller with the scope to limit the linear velocity
to the 80% of the threshold. In this way, even if the robot potentialities are under
exploited, the motion control is working equally for all range of distance.

Moreover we got an additional test to verify the control strength. The vehicle in
this case had to follow a sequence of points. Then, placing the robot in (0,0) position,
we transmitted to it, in di�ert times, four packets that contained respectively the
positions (0.5,0), (0.5,0.5), (0,0.5) and (0,0). As you can see by the Figure 26,

Figure 26: "Sequence of Points" Test1

39

the trajectory and the places where it stopped are di�erent from those in which
it thought to be. This anomaly could be caused by the lack of the encoders that
measure the actual speed of the motors. In fact, using the counter-electromotive
force, the engine speed in our device is only estimated. Being that an intrinsic
problem, is not possible to solve it through a software reprogramming and for this
reason we chose to adopt the Motion Capture System described in Section 2.3. In
the following subsection is explain in more detail the use of the Motion Capture
System in our application.

5.2 Pose Reconstruction with 3D Motion Capture System

In the section 2.3 we analized the modality which the Motion Capture System ac-
quires the markers position. The purpose of this chapter, instead, is to obtain the
Wheelphones pose, i.e. position and orientation in the three-dimensional space, from
markers data.
We choose to link each robot to a pattern of 4 markers since that one single marker
gives us only three degrees of freedom which represent its position but no information
about the orientation of the reference frame attached to it. To do this, we removed
the upper case installing a cardboard with the markers as you can see in Figure 27.
Before explaining how the robots pose is rebuilt, it is necessary to understand how

Figure 27: Wheelphone Robot with Markers

we make the markers labelling in order to connect each marker to the right pattern.
The following subsection will describe the structure of the used algorithm.
ss

5.2.1 Marker Labelling

Multiple markers are non distinguishable from a camera point of view, there are
no distinctive parameters intrinsic to the marker such as colour or shape, they all
look as bright elliptic blobs, whose position is later approximated by their centroid.

40

In this scenario it is clear that, when multiple markers are used, it is necessary
to develop some strategies to be able to keep track of each marker individually in
every set of frames. Our approach, to make marker labelling, takes advantage of
the rigidity constraints which link every point of the solid object. We placed four
markers on each Wheelphone robot in such a way that there were no equally spaced
pairs. Furthermore to distinguish a vehicle from another, we choose di�erent shape
patterns for each robot (Figure 28).
ss

Figure 28: Robots Patterns

These con�guration can be modelled with undirected connected graphs where the
nodes represent each di�erent marker and the weights of the edges represent the
distance between each pair of nodes of its pattern.
Considering a speci�c pattern, the distances between each pair of markers are invari-
ant for any rotation or translation of the robot due to the rigidity of the structure.
With this reasoning every node is uniquely identi�ed by the ordered triplet of the
weights of the edges connecting its three adjacent nodes. To achieve our purpose we
�rst need to create the reference models for the structures de�ned by the markers.

For any model we stores two matrices:

• Pmodel ∈ R3×4 that contains the four markers absolute position at initial time
ss

Pmodel =

xA xB xC xD
yA yB yC yD
zA zB zC zD

 (5.1)

41

Figure 29: Reference Model

• Dmodel ∈ R4×4 is the distance matrix where dij = ||pi − pj|| and pk represents
the k-th column of Pmodel

Dmodel =


0 d1 d2 d3
d1 0 d4 d5
d2 d4 0 d6
d3 d5 d6 0

 (5.2)

Considering N robots and then N patterns, we de�ne

P tot
model =

[
P 1
model ... PN

model

]
Dtot
model =

[
D1
model ... DN

model

]
where P i

model and D
i
model represent respectively the Pmodel and Dmodel of i-th pattern.

For any new marker set obtained at time t > 0 by cameras, we compute the matrices
Pcam ∈ R3×n and Dcam ∈ Rn×n with the same logic. Then we compared each column
of Dcam with each column of Dtot

model trying three matches. In this way it was possible
to rearrange the matrix Pcam so that the markers belonging to the same robot were
neighbors and eliminating any extraneous markers to the models.
The algorithm structure is visible in the following pseudocode.

Algorithm 3 Marker Labelling

Require: Pcam, Dcam, D
tot
model

1: N = size(Dtot
model)

2: for i=1 to N do

Find the index of the column with three correspondences:
3: j = whoAmI(Dtot

model(:, i), Dcam)
4: Pordered(:, i) = Pcam(:, j)

5: end

42

5.2.2 Pose Reconstruction

Obtained the correspondence between the initial models and each set of points at
t > 0, we want to implement an algorithm that reconstructs the Wheelphones poses.
It is important to underline that, since we need just three points to compute the
position and orientation of one vehicle in 3D space, using more markers improve the
algorithm robustness in case of one or more misdetections.
The pose reconstruction of any robot was connected to a least squares problem.
Indeed, let P =

[
p1 p2 ... pn

]
and Q =

[
q1 q2 ... qn

]
be two di�erent sets of

points, to �nd Wheelphone pose is equal to �nd the matrices R ∈ SO(3), rotation
matrix, and T, translation vector, that solve the following formula:

(R, T) = arg min
R,T

n∑
i=1

||(Rpi + T)− qi||2 (5.3)

Following the reasoning described in [25], let R̂ and T̂ be the two solution of (5.3),
then Q and Q′ = R̂Q have the same centroid:

cQ ≡ cQ′

where cQ and cQ′ represent rispectively the controid of Q and Q′.
Therefore, it is possible to divide the least squares problem into two equations to
derive the matrices R̂ and T̂ :

• R̂ = arg minR Σ2 = arg minR
∑n

i=1 ||h′i −Rhi||2

• T̂ = cQ − cP

where h′i = qi − cQ, hi = pi − cP and cP is the centroid of P .
In our case we want the centroid coincides with the point equidistant from the
wheels and belonging to their axis of rotation since in this way, as is easy to guess,
it makes the motion control more performing. To calculate the value of centroids,
see Fig A, is su�cient to �nd the intersection of the segments (P1-P3) and (P2-P4).
However, this value is not always possible to obtain since, due to inaccuracies of the
cameras, the two segments can not lie in the same plane. For this reason we have
chosen as the centroid the intersection between the segment (P2-P4) and the plane
perpendicular to it containing P1 and P3.
Finally to acquire R̂, we resolve the problem using the singular value decomposition
(SVD). De�ning

H =
N∑
i=1

hih
′T
i ,

the SVD of H is
H = UΛV T

where U and V are orthonormal matrices with appropriate size. If det(UV T) is equal
to 1, then (UV T) is our rotation matrix R̂.
Once we have found the rotation matrix R̂ for the reference frame attached to the
object to track, it is easy to extract the Euler angles [φ, θ, ψ], namely roll, pitch and

43

yaw, which express the rotation along the x, y and z axis. The rotation matrix can
be rewritten as follows:

R̂ =

cθcψ − sφsψsθ −sψcφ cθsφcψ + cψsθ
cθsψ + cψsφsθ cψcφ sψsθ − cψsφcθ
−cφsθ sφ cθcφ


which leads to the following relations:

ψ = Atan2(−r12, r22)

φ = Atan2
(
r32,

√
r231 + r233

)
θ = Atan2(−r31, r33)

where φ belongs to the interval (−π/2, π/2).
In our case, φ and ψ are always zero since the only rotation that the robot can
perform is around its z axis. Indeed only θ describes the orientation of the vehicle
and for this it is the only angle considered for our experiments.

5.2.3 Implementation

We con�gured the motion capture system to work with Simulink using the following
block scheme:

Figure 30: Simulink Motion Capture Block Scheme

The Packet Input block receives the packets with the structure of Figure 10 and,
through Bytes Array to Floats function, derives the spatial coordinates of each
marker. The blue and green blocks implement sequentially the algorithms of Mark-
ers Labelling and Pose Reconstruction described in the previous sections.
This scheme is performed by the Central-Base which must, in addition to send the
reference positions, transmit the actual locations of vehicles moment for moment.
Moreover we repeated the test of Section 6.1 in which the robot tried to follow a
sequence of points. In Figure 31 we compared the real trajectories and the real
places where the vehicle stopped using two di�erent motion control:

• Trajectory1 and Point1 are produced by the control utilizing the wheels
odometry,

44

• Trajectory2 andPoint2 refer to the control implemented through the Motion
Capture System.

As we can see, the second one is much more accurate detecting a maximum posi-
tioning error equal to 2 cm.
For this reason, the experimental results which will be shown in section 5.4, are
obtained using only the motion control implemented through the Motion Capture
System.

Figure 31: "Sequence of Points" Test2

45

5.3 Coverage Algorithms Simulations

In this section we want to exhibit how we implemented the partitioning algorithms
in MATLAB sofware using the previously described motion control.
We consider a team of N robots and a squared domain X = [0, 2]×[0, 2]. The sensory
function µ(x) is a combination of two bi-dimensional Gaussians:

µ(x) = e−
‖x−µ1‖

2

0.0313 + 2e−
‖x−µ2‖

2

0.125 (5.4)

where the Gaussian centers are located in position µ1 = [0.675, 0.675] and µ2 =
[1.625, 1.425]. This function is shown in Fig. 32 in three-dimensional space.

Figure 32: Gaussian Sensory Function

Successively, to use µ(x) in our algorithms, we represented it as a square matrix I
of size equal to 500×500 where I(i, j) = µ([xj, yi]). We de�ne

ki2m =
2 meters

500 index
= 0, 004

as the costant that convert the indexs of I in meters{
yi = ki2mi

xj = ki2mj
(5.5)

The matrix size is an important value that has to be calibrated because a higher
value implies that the Gaussians are more accurately discretized while a lower one
involves an improvement of the computation time.
The �gure 33 shows the matrix I in a grayscale image where the white color is
associated with higher values of µ while black with the lower ones.
This matrix is the map on which we apply the two partitioning algorithms.

46

Figure 33: Gaussian Sensory Function

5.3.1 Server-Based Algorithm Implementation

In order to obtain Voronoi paritions and centroids, we create two speci�c functions:
VoronoiBounded and Poly2Centroid .

• VoronoiBounded requires as inputs the positions of the robots and the vertices
of the region of interest X. It calculates the partitions vi through the MATLAB
function voronoin, it surrounds these in our domain and provides as output
the vertices of poligons inside X. ss

Figure 34: VoronoiBounded Output

The Figure 34 shows an example of the VoronoiBounded function using a

47

team of 8 robots arranged in a random way. The black and the blue lines
represent respectively the boundaries of our domain and those of voronoin
function generated by the robots position (red cross).

• Poly2Centroid requires as inputs the vertices of a polygon and the matrix I
that described the sensory function µ. It considers only the values of I inside
the polygon, calculates the centroid throgh the formula 3.3 and provides as
output the coordinates cx and cy of the point. ss

Figure 35: Poly2Centroid Output

The Figure 35 displays an example of Poly2Centroid function. Using the
vertices of the upper left partition of Fig.34 it cuts out the sensory function
computing its centroid (green circle).

To use both functions in MATLAB, we installed the Mapping Toolbox that provides
algorithms for performing operations on polygons.
Setting the values of cx and cy as "Desired X " and "Desired Y ", the server base
trasmits them to phone moving the vehicle to the centroid of its partition. Finally
this process "partitioning, centering and moving" was performed iteratively several
times. The Server-Based results are exposed in section 5.4.

5.3.2 Gossip Distributed Algorithm Implementation

The Gossip Distributed algorithm requires that, through a communication network,
the robots theirself store and calculate their partition without an external source
which oversees the process. This idea is inconsistent with our situation because is
the central base the one who calculates where the vehicles are located in the plane.
Without it the motion control, that is the basis of our partitioning algorithm, would
be impossible to implement. Furthermore, if we left to the vehicles deciding when
and to whom to transmit, many communication issues, for example the packets
collision, would be managed.
For these reasons we chose to simulate the distributed feature through a central
base. The central server knows each robots partition but it considers only two of

48

them in any iteration of the algorithm.
We implemented the Gossip Distributed algorithm in MATLAB performing the
following steps:

1. We randomly select two di�erent agent i, j. For these two vehicles we know
their positions xi, xj and the vertices vi, vj of their dominance regions.

2. We use a default MATLAB function, polybool, that perform the union between
two polygon given their vertices, using the following script:

vU = polybool(′or′,vi,vj);

where vU values are the vertices of resulting polygon. Furthermore this func-
tion handles the case in which the polygons are separated from each other. If
this happens, the polybool output will contain the vi vertices, a Not a Number
(NaN) and the vj vertices. In this way we can check the adjacency condition
before continuing with the execution of the algorithm.

3. Let xi, yi, xj, yj be the spatial coordinates of the robots positions xi and xj,
the straight line passing through these points has the following equation:

y − yi
yj − yi

=
x− xi
xj − xi

Let xM = (xM , yM) be the central point between xi and xj,

xM =

(
xi + xj

2
,
yi + yj

2

)
,

in order to implement Hbisector (formula..), we consider the straight line per-
pendicular to the previous one, passing through xM . It has the following
equation:

(y − yM) = −
(
xj − xi
yj − yi

)
(x− xM)

This line cuts the squared domain X in two regions whose vertices are store in
di�erent array v1 and v2.

4. We use again the polybool function but this time to perform two intersections
between polygons. The �rst intersection is generated by the Union polygon
and the region with v1 vertices while the second one derives from the same
polygon and the other region of Step 3. We utilized the following scrip:

vU1 = polybool(′and′,vU ,v1);

vU2 = polybool(′and′,vU ,v2);

where vU1, vU2 values are the vertices of resulting polygons. Moreover in
this function it is also handled the case in which the resulting polygons have
disconnected areas. If this happens, the polybool output will contain at least
a Not a Number. In this way we can check the connectivity condition before
continuing with the execution of the algorithm. The polygons created by vU1

and vU2 vertices are the new partitions of i and j agents overwriting vi and
vj.

49

5. Using the function Poly2Centroid, described in the previous section, we are
able to �nd the new centroids xi and xj.

6. The central base transmits to the phones these informations and returns to
Step 1.

The following �gure show graphically the step performed by GB algorithm.

Figure 36: Evolution of the Partition in GB algorithm

ss

50

5.4 Results

In this section we show the results obtained by the Server Based and Gossip Dis-
tributed algorithms. They are implemented both on ideal unicycles vehicles and
wheelphones devices. In the �rst case we used the motion control based on the
results given by the wheels odometry. In the other case the motion control designed
was based on the information resulting from the Motion Capture System.
To compare the four experiments we decided to use the same initial conditions
(Fig.37):

• 5 robots: four vehicles positioned in the corners of the squared domain and
one located in the central point

• Partitions: the dominance region of each agent is the Voronoid partition
given by the initial positions of the robots

• Map: the sensory function µ described in Section 5.3.

Figure 37: Initial conditions.

Each algorithm was processed 40 times and for each iteration the central server
stored the values of the vehicles position and the boundary of their partitions. In
the following �gures are shown some of the 40 iterations, speci�cally the numbers 1,
5, 20 and 40. Since for each algorithm we made two experiments, the �gures that
we obtained are four. Figures 38 and 39 refer to the Server Based approach, while
�gures 40 and 41 relate to the Gossip Distributed proces.

51

Figure 38: Evolution of Simulate Server Based Algorithm

52

Figure 39: Evolution of Experimental Server Based Algorithm

53

Figure 40: Evolution of Simulate Gossip Distributed Algorithm

54

Figure 41: Evolution of Experimental Gossip Distributed Algorithm

55

As it is possible to see, for all the four experiments the �nal positions are almost
the same: four robots surrond the most critical area (the yellow zone) while the
remaining vehicle stand on the less critical one. This result re�ects our expectations
since the sensory function is generated by the union of two Gaussian that have one
the twice amplitude respect to the other. Hence the most important zone have to
be monitored by more robots than the other area. Moreover, considering that each
iteration is depending on the previous one and the initial condition is the same for
all the experiments, it was predictable that the �nal positions were similar.
Analysing the partitions, we can see that there is a di�erence between the Server
Based approach and the Gossip Distributed one. In the �rst case there are always
convex partitions with a low number of vertices and simply shapes. This is due
to the global characteristic of the algorithm which obtain the dominance regions
studying all the agents position. In the second case we can �nd concave partitions
with complicated shapes. This is caused by pairwise comunications between agents,
in fact if two robots do not interact for many interations, the boundary between
their partitions can be a jagged line. In our case, since the number of robots used is
small, this problem have not a�ected the algorithm performances. In situations with
a huge number of agents, it is advisable to not choose randomly the two robots that
have to communicate, but to select them following speci�c criteria like, for example,
by increasing the communication possibility between vehicles with several vertices
partition.

To analyse the goodness of the algorithms we have to evaluate the Multicenter
function H. Figure 42 shows the relation of H (Eq.3.5) to the number of iterations.
ss

Figure 42: Evolution of the cost function H.

As expected, for all experiments the values of the cost function converge to the same
level that is one third of the initial one. This imply that the �nal partitions coverage

56

the domain more e�ciently than the initial conditions. Furthermore, since the SB
and GD algorithms are based on the classical method of Lloyd, H is characterized
by a non-increasing behavior.
Evaluating now the convergence rate of the function, we can see how the Server
Based algorithm is faster than the Gossip Distributed one. This di�erence is at-
tributed again to the di�erent approach of the algorithms. In the �rst case all the
vehicles are always involved in any iteration while in the second one only two of
them.
Finally we can note a worsening performance in the experiments where we used
real devices respect to ideal ones. This is caused by the di�erent accuracy of the
motion control. In the ideal case the robots are in the precise locations where the
partitioning algorithms commanded to stand. Instead, implementing the control on
real devices, although we utilized the Motion Capture System, there were always
small positioning errors.

57

58

6 Conclusions

In this work two partitioning algorithms were implemented on Wheelphones devices
in order to coverage optimally a speci�c area. We ran this process through an Ap-
plication for smartphones enhancing the traditional coverage methods.
After a brief introduction on the importance that this technology is assuming in these
years, we described the pre-existing hardware and software features of a Wheelphone
robot. Thanks to them and the Support Package for Android of MATLAB, we were
able to build a custom S-Function block in Simulink in order to handle the low-level
communication between the robot and the smartphone. This step has been crucial
for the success of our implementation as it allowed us to program with a high-level
language enabling a faster addition or change of the control components.
Successively we exposed the geometric concepts of Voroid partition and centroid used
by classic Lloyd method in order to �nd the optimal area partition. The algorithms
proposed in this thesis were two versions of this method with di�erent communica-
tion architecture. The �rst one employed a centralized approach where each agent
have to communicate only its position to a central server in a synchronous manner.
Afterwards, this server calculates the new partitions and positions retransmitting
them to the vehicles. The second algorithm followed a distributed method where
only two agents are involved in any iteration. In this case the vehicles themselves
have to compute the information about their partitions and positions.
Later we provided the mathematical model for an unicycle vehicle that is the same
type of Wheelphone robot. Studing its dynamic and kinematic we created a simple
motion control that allowed us to drive the vehicle from one point to another.
Finally we showed the work made in laboratory on Wheelphone devices. Before
that it was necessary to implement the Marker Labelling and Pose Reconstraction
algorithms essential to estimate the positions and orientations of the robots.
On the basis of the results obtained, we veri�ed the right functioning of the algo-
rithms succeeding in minimizing the Multicenter Function H in 5 and 35 iterations
respectively for the Server Based algorithm and the Gossip Distributed one.

Many future developments can be led at each level of the proposed work. From a
theorical point of view can be tested more complex partitioning algorithms including
a non convex enviroment with obstacles presence and time-varying density functions.
Then it is possible to exploit the phone and Wheelphone sensors, like camera, I-R
and ambient sensors. In this way the robots themselves can estimate the map that
has to be covered. In this regard we suggest the implentation of the algorithms of
[22] where the map estimation phase and the coverage one are simultaneoisly ran.
Furthermore can be designed a more robust and reliable motion control. In addition
to moving the robots from one point to another, it has to decide which trajectory
they have to follow. In this way the vehicles can avoid the other agents or obstacles
present in the area. Finally from the pratical point of view, can be installed on
Wheelphone two motors encoders in order to know exactly the angular positions
of the wheels. Managing the low-level communication, the Motion Control can be
indipendent from the Motion Capture System of the laboratory making robots able
to act in all type of environment.

59

60

7 APPENDIX

A Wheelphone Drivers

A.1 sfun_wheelphone.c

#define S_FUNCTION_NAME sfun_wheelphone

#define S_FUNCTION_LEVEL 2

#include "simstruc.h"

#define NUM_INPUTS 1

#define NUM_OUTPUTS 11

#define NUM_PARAMS 0

#define NUM_CONT_STATES 0

#define NUM_DISC_STATES 0

#define SAMPLE_TIME_0 INHERITED_SAMPLE_TIME

/* Input Port 0 (Left/right speed ref) */

#define INPUT_0_WIDTH 2

#define INPUT_0_DTYPE SS_INT32

#define INPUT_0_COMPLEX COMPLEX_NO

#define INPUT_0_FEEDTHROUGH 1

/* Output Port 0 (front proximity sensors) */

#define OUTPUT_0_WIDTH 4

#define OUTPUT_0_DTYPE SS_UINT8

#define OUTPUT_0_COMPLEX COMPLEX_NO

/* Output Port 1 (front ambient sensors) */

#define OUTPUT_1_WIDTH 4

#define OUTPUT_1_DTYPE SS_UINT8

#define OUTPUT_1_COMPLEX COMPLEX_NO

/* Output Port 2 (ground proximity sensors) */

#define OUTPUT_2_WIDTH 4

#define OUTPUT_2_DTYPE SS_UINT8

#define OUTPUT_2_COMPLEX COMPLEX_NO

/* Output Port 3 (ground ambient sensors) */

#define OUTPUT_3_WIDTH 4

#define OUTPUT_3_DTYPE SS_UINT8

#define OUTPUT_3_COMPLEX COMPLEX_NO

/* Output Port 4 (battery charge [%]) */

#define OUTPUT_4_WIDTH 1

#define OUTPUT_4_DTYPE SS_UINT8

#define OUTPUT_4_COMPLEX COMPLEX_NO

/* Output Port 5 (estimated left/right speed [mm/s]) */

#define OUTPUT_5_WIDTH 2

#define OUTPUT_5_DTYPE SS_INT16

#define OUTPUT_5_COMPLEX COMPLEX_NO

61

/* Output Port 6 (odometry - x [m], y [m], yaw [rad]) */

#define OUTPUT_6_WIDTH 3

#define OUTPUT_6_DTYPE SS_DOUBLE

#define OUTPUT_6_COMPLEX COMPLEX_NO

/* Output Port 7 (battery charging state) */

#define OUTPUT_7_WIDTH 1

#define OUTPUT_7_DTYPE SS_UINT8

#define OUTPUT_7_COMPLEX COMPLEX_NO

/* Output Port 8 (odometry calibration flag) */

#define OUTPUT_8_WIDTH 1

#define OUTPUT_8_DTYPE SS_UINT8

#define OUTPUT_8_COMPLEX COMPLEX_NO

/* Output Port 9 (obstacle avoidance flag) */

#define OUTPUT_9_WIDTH 1

#define OUTPUT_9_DTYPE SS_UINT8

#define OUTPUT_9_COMPLEX COMPLEX_NO

/* Output Port 10 (cliff avoidance flag) */

#define OUTPUT_10_WIDTH 1

#define OUTPUT_10_DTYPE SS_UINT8

#define OUTPUT_10_COMPLEX COMPLEX_NO

/* ====================*

* S-function methods *

*==================== */

/* Function: mdlInitializeSizes

== */

static void mdlInitializeSizes(SimStruct *S)

{

ssSetNumSFcnParams(S, NUM_PARAMS); /* Number of expected

parameters */

if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {

/* Return if number of expected != number of actual

parameters */

return;

}

ssSetNumContStates(S, NUM_CONT_STATES);

ssSetNumDiscStates(S, NUM_DISC_STATES);

if (! ssSetNumInputPorts(S, NUM_INPUTS)) return;

ssSetInputPortWidth(S, 0, INPUT_0_WIDTH);

ssSetInputPortDataType(S, 0, INPUT_0_DTYPE);

ssSetInputPortComplexSignal(S, 0, INPUT_0_COMPLEX);

ssSetInputPortDirectFeedThrough(S, 0, INPUT_0_FEEDTHROUGH);

ssSetInputPortRequiredContiguous(S, 0, 1); /* direct input

signal access */

if (! ssSetNumOutputPorts(S, NUM_OUTPUTS)) return;

62

ssSetOutputPortWidth(S, 0, OUTPUT_0_WIDTH);

ssSetOutputPortDataType(S, 0, OUTPUT_0_DTYPE);

ssSetOutputPortComplexSignal(S, 0, OUTPUT_0_COMPLEX);

ssSetOutputPortWidth(S, 1, OUTPUT_1_WIDTH);

ssSetOutputPortDataType(S, 1, OUTPUT_1_DTYPE);

ssSetOutputPortComplexSignal(S, 1, OUTPUT_1_COMPLEX);

ssSetOutputPortWidth(S, 2, OUTPUT_2_WIDTH);

ssSetOutputPortDataType(S, 2, OUTPUT_2_DTYPE);

ssSetOutputPortComplexSignal(S, 2, OUTPUT_2_COMPLEX);

ssSetOutputPortWidth(S, 3, OUTPUT_3_WIDTH);

ssSetOutputPortDataType(S, 3, OUTPUT_3_DTYPE);

ssSetOutputPortComplexSignal(S, 3, OUTPUT_3_COMPLEX);

ssSetOutputPortWidth(S, 4, OUTPUT_4_WIDTH);

ssSetOutputPortDataType(S, 4, OUTPUT_4_DTYPE);

ssSetOutputPortComplexSignal(S, 4, OUTPUT_4_COMPLEX);

ssSetOutputPortWidth(S, 5, OUTPUT_5_WIDTH);

ssSetOutputPortDataType(S, 5, OUTPUT_5_DTYPE);

ssSetOutputPortComplexSignal(S, 5, OUTPUT_5_COMPLEX);

ssSetOutputPortWidth(S, 6, OUTPUT_6_WIDTH);

ssSetOutputPortDataType(S, 6, OUTPUT_6_DTYPE);

ssSetOutputPortComplexSignal(S, 6, OUTPUT_6_COMPLEX);

ssSetOutputPortWidth(S, 7, OUTPUT_7_WIDTH);

ssSetOutputPortDataType(S, 7, OUTPUT_7_DTYPE);

ssSetOutputPortComplexSignal(S, 7, OUTPUT_7_COMPLEX);

ssSetOutputPortWidth(S, 8, OUTPUT_8_WIDTH);

ssSetOutputPortDataType(S, 8, OUTPUT_8_DTYPE);

ssSetOutputPortComplexSignal(S, 8, OUTPUT_8_COMPLEX);

ssSetOutputPortWidth(S, 9, OUTPUT_9_WIDTH);

ssSetOutputPortDataType(S, 9, OUTPUT_9_DTYPE);

ssSetOutputPortComplexSignal(S, 9, OUTPUT_9_COMPLEX);

ssSetOutputPortWidth(S, 10, OUTPUT_10_WIDTH);

ssSetOutputPortDataType(S, 10, OUTPUT_10_DTYPE);

ssSetOutputPortComplexSignal(S, 10, OUTPUT_10_COMPLEX);

ssSetNumSampleTimes(S, 1);

ssSetNumRWork(S, 0);

ssSetNumIWork(S, 0);

ssSetNumPWork(S, 0);

ssSetNumModes(S, 0);

ssSetNumNonsampledZCs(S, 0);

/* Specify the sim state compliance to be same as a built -in

block */

ssSetSimStateCompliance(S, USE_DEFAULT_SIM_STATE);

63

ssSetOptions(S, 0);

}

/* Function: mdlInitializeSampleTimes

================================== */

static void mdlInitializeSampleTimes(SimStruct *S)

{

ssSetSampleTime(S, 0, SAMPLE_TIME_0);

ssSetOffsetTime(S, 0, 0.0);

// notify need to access absolute time data

ssSetNeedAbsoluteTime(S, 1);

}

#undef MDL_INITIALIZE_CONDITIONS /* Change to #undef to remove

function */

#if defined(MDL_INITIALIZE_CONDITIONS)

/* Function: mdlInitializeConditions

================================= */

static void mdlInitializeConditions(SimStruct *S)

{

}

#endif /* MDL_INITIALIZE_CONDITIONS */

#define MDL_START /* Change to #undef to remove function */

#if defined(MDL_START)

/* Function: mdlStart

== */

static void mdlStart(SimStruct *S)

{

}

#endif /* MDL_START */

/* Function: mdlOutputs

== */

static void mdlOutputs(SimStruct *S, int_T tid)

{

}

#undef MDL_UPDATE /* Change to #undef to remove function */

#if defined(MDL_UPDATE)

/* Function: mdlUpdate

=== */

static void mdlUpdate(SimStruct *S, int_T tid)

{

}

#endif /* MDL_UPDATE */

64

#undef MDL_DERIVATIVES /* Change to #undef to remove function

*/

#if defined(MDL_DERIVATIVES)

/* Function: mdlDerivatives

== */

static void mdlDerivatives(SimStruct *S)

{

}

#endif /* MDL_DERIVATIVES */

/* Function: mdlTerminate

== */

static void mdlTerminate(SimStruct *S){

}

/* =============================*

* Required S-function trailer *

*============================= */

#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a

MEX -file? */

#include "simulink.c" /* MEX -file interface mechanism */

#else

#include "cg_sfun.h" /* Code generation registration

function */

#endif

65

A.2 sfun_wheelphone.tlc

%implements "sfun_wheelphone" "C"

%include "utillib.tlc"

%assign :: includeWheelphoneSupport = 1

%function BlockTypeSetup(block , system) void

%% %<LibAddToCommonIncludes("driver_wheelphone.h")>

%openfile buffer

extern void initWheelphone(void);

extern void getWheelphoneData(time_t , uint8_t *, uint8_t *,

uint8_t *,

uint8_t *, uint8_t *, int16_t *, double *,

uint8_t *,

uint8_t *, uint8_t *, uint8_t *);

extern void setWheelphoneSpeed(int32_t *, int32_t *);

extern void terminateWheelphone(void);

%closefile buffer

%<LibCacheFunctionPrototype(buffer)>

%<LibAddToModelSources("driver_wheelphone")>

%endfunction %% BlockTypeSetup

%function Start(block , system) Output

initWheelphone ();

%endfunction %% Start

%function Outputs(block , system) Output

/* %<Type > Block: %<Name > */

%assign pu0 = LibBlockInputSignalAddr (0, "", "", 0)

%assign pu1 = LibBlockInputSignalAddr (0, "", "", 1)

%assign py0 = LibBlockOutputSignalAddr (0, "", "", 0)

%assign py1 = LibBlockOutputSignalAddr (1, "", "", 0)

%assign py2 = LibBlockOutputSignalAddr (2, "", "", 0)

%assign py3 = LibBlockOutputSignalAddr (3, "", "", 0)

%assign py4 = LibBlockOutputSignalAddr (4, "", "", 0)

%assign py5 = LibBlockOutputSignalAddr (5, "", "", 0)

%assign py6 = LibBlockOutputSignalAddr (6, "", "", 0)

%assign py7 = LibBlockOutputSignalAddr (7, "", "", 0)

%assign py8 = LibBlockOutputSignalAddr (8, "", "", 0)

%assign py9 = LibBlockOutputSignalAddr (9, "", "", 0)

%assign py10 = LibBlockOutputSignalAddr (10, "", "", 0)

getWheelphoneData (%< LibGetTaskTimeFromTID(block)>,

%<py0 >, %<py1 >, %<py2 >, %<py3 >,

%<py4 >, %<py5 >, %<py6 >,

%<py7 >, %<py8 >, %<py9 >, %<py10 >);

66

setWheelphoneSpeed (%<pu0 >, %<pu1 >);

%endfunction %% Outputs

%function Terminate(block , system) Output

terminateWheelphone ();

%endfunction %% Terminate

67

A.3 driver_wheelphone.c

#include <jni.h>

#include <stdlib.h>

#include <math.h>

#define ENCODED_STATE_LEN 63

#define MAX_BATTERY_VALUE 152

#define SPEED_THR 3

#define NOT_CHARGING 0

#define CHARGING 1

#define CHARGED 2

#define LEFT_DIAM_COEFF 1.0

#define RIGHT_DIAM_COEFF 1.0

#define WHEEL_BASE 0.087

extern JavaVM *cachedJvm;

extern jobject cachedActivityObj;

extern jclass cachedMainActivityCls;

static jmethodID sgWheelphoneGetEncodedRobotStateID;

static jmethodID sgWheelphoneSetSpeedID;

static jmethodID sgWheelphoneSendCmdID;

static double leftDist = 0.0;

static double rightDist = 0.0;

static double leftDistPrev = 0.0;

static double rightDistPrev = 0.0;

static double timePrev = 0.0;

static double odometryX = 0.0;

static double odometryY = 0.0;

static double odometryTheta = 0.0;

void initWheelphone(void)

{

JNIEnv *pEnv;

(* cachedJvm)->AttachCurrentThread(cachedJvm , &pEnv , NULL);

sgWheelphoneGetEncodedRobotStateID = (*pEnv)->GetMethodID(

pEnv , cachedMainActivityCls ,

"getWheelphoneEncodedState","()[B");

sgWheelphoneSetSpeedID = (*pEnv)->GetMethodID(pEnv ,

cachedMainActivityCls ,

"setWheelphoneSpeed", "(II)V");

sgWheelphoneSendCmdID = (*pEnv)->GetMethodID(pEnv ,

cachedMainActivityCls ,

"sendWheelphoneCommands", "()V");

}

68

void getWheelphoneData(time_t time , uint8_t *frontProxs , uint8_t

*frontAmbients ,

uint8_t *groundProxs , uint8_t *groundAmbients ,

uint8_t *batteryCharge ,

int16_t *estimatedSpeed ,

double *odometry ,

uint8_t *chargeState ,

uint8_t *odomCalibFinish , uint8_t *

obstacleAvoidanceEnabled , uint8_t *

cliffAvoidanceEnabled)

{

if (sgWheelphoneGetEncodedRobotStateID != NULL)

{

JNIEnv *pEnv;

jbyteArray ret;

jbyte encodedState[ENCODED_STATE_LEN];

int16_t leftMeasuredSpeed , rightMeasuredSpeed;

uint8_t batteryRaw;

float batteryVoltage;

uint8_t flagRobotToPhone;

time_t totalTime;

double deltaDist;

(* cachedJvm)->AttachCurrentThread(cachedJvm , &pEnv , NULL

);

ret = (jintArray)(*pEnv)->CallObjectMethod(pEnv ,

cachedActivityObj , sgWheelphoneGetEncodedRobotStateID

);

if ((* pEnv)->ExceptionCheck(pEnv))

return; /* Exception during execution of

sgWheelphoneGetEncodedRobotStateID */

(*pEnv)->GetByteArrayRegion(pEnv , ret , 0,

ENCODED_STATE_LEN , (jbyte *) encodedState);

if ((* pEnv)->ExceptionCheck(pEnv))

{

(*pEnv)->DeleteLocalRef(pEnv , ret);

return; /* ArrayIndexOutOfBoundsException */

}

frontProxs [0] = (uint8_t)encodedState [1];

frontProxs [1] = (uint8_t)encodedState [2];

frontProxs [2] = (uint8_t)encodedState [3];

frontProxs [3] = (uint8_t)encodedState [4];

frontAmbients [0] = (uint8_t)encodedState [5];

frontAmbients [1] = (uint8_t)encodedState [6];

frontAmbients [2] = (uint8_t)encodedState [7];

frontAmbients [3] = (uint8_t)encodedState [8];

groundProxs [0] = (uint8_t)encodedState [9];

groundProxs [1] = (uint8_t)encodedState [10];

groundProxs [2] = (uint8_t)encodedState [11];

groundProxs [3] = (uint8_t)encodedState [12];

69

groundAmbients [0] = (uint8_t)encodedState [13];

groundAmbients [1] = (uint8_t)encodedState [14];

groundAmbients [2] = (uint8_t)encodedState [15];

groundAmbients [3] = (uint8_t)encodedState [16];

// battery level (from 0 to maxBatteryValue =152)

batteryRaw = (uint8_t)encodedState [17];

// battery voltage (from 3.5 to 4.2 volts)

// 915 is the ADC out at 4.2 volts

// 763 is the ADC out at 3.5 volts

// the "battery" variable actually contains the "

sampled value - 763"

batteryVoltage = 4.2*(float)((batteryRaw + 763) /915.0);

// remaining battery charge (from 0% to 100%)

batteryCharge = 100 batteryRaw/MAX_BATTERY_VALUE;

flagRobotToPhone = (uint8_t)encodedState [18];

// estimated speed (from back EMF) in [mm/s]

leftMeasuredSpeed = (uint8_t)encodedState [19] + 256*(

uint8_t)encodedState [20];

rightMeasuredSpeed = (uint8_t)encodedState [21] + 256*(

uint8_t)encodedState [22];

if (abs(leftMeasuredSpeed) < SPEED_THR) {

leftMeasuredSpeed = 0;

}

if (abs(rightMeasuredSpeed) < SPEED_THR) {

rightMeasuredSpeed = 0;

}

estimatedSpeed [0] = leftMeasuredSpeed;

estimatedSpeed [1] = rightMeasuredSpeed;

// estimated travelled distance [m]

leftDistPrev = leftDist;

rightDistPrev = rightDist;

totalTime = time - timePrev;

leftDist += (leftMeasuredSpeed /1000.0 * totalTime) *

LEFT_DIAM_COEFF;

rightDist += (rightMeasuredSpeed /1000.0 * totalTime) *

RIGHT_DIAM_COEFF;

deltaDist = ((rightDist - rightDistPrev) + (leftDist -

leftDistPrev)) / 2.0;

// odometry [m], [rad]

odometryX += cos(odometryTheta) * deltaDist;

odometryY += sin(odometryTheta) * deltaDist;

odometryTheta = ((rightDist - leftDist) / WHEEL_BASE) /

1000.0;

odometry [0] = odometryX;

odometry [1] = odometryY;

70

odometry [2] = odometryTheta;

// battery charging state

if ((flagRobotToPhone & 0x20) == 0x20) {

if ((flagRobotToPhone & 0x40) == 0x40) {

*chargeState = CHARGED;

} else {

*chargeState = CHARGING;

}

} else {

*chargeState = NOT_CHARGING;

}

// odometry calibration flag

if ((flagRobotToPhone & 0x80) == 0x80) {

*odomCalibFinish = 1;

} else {

*odomCalibFinish = 0;

}

// obstacle avoidance flag

if ((flagRobotToPhone & 0x01) == 0x01) {

*obstacleAvoidanceEnabled = 1;

} else {

*obstacleAvoidanceEnabled = 0;

}

// cliff avoidance flag

if ((flagRobotToPhone & 0x02) == 0x02) {

*cliffAvoidanceEnabled = 1;

} else {

*cliffAvoidanceEnabled = 0;

}

(*pEnv)->DeleteLocalRef(pEnv , ret);

}

}

void setWheelphoneSpeed(int32_t *lSpeed , int32_t *rSpeed)

{

if ((sgWheelphoneSetSpeedID != NULL) && (

sgWheelphoneSendCmdID != NULL))

{

JNIEnv *pEnv;

jint jlSpeed = (jint)*lSpeed;

jint jrSpeed = (jint)*rSpeed;

(* cachedJvm)->AttachCurrentThread(cachedJvm , &pEnv , NULL

);

(*pEnv)->CallVoidMethod(pEnv , cachedActivityObj ,

sgWheelphoneSetSpeedID ,

jlSpeed , jrSpeed);

if ((* pEnv)->ExceptionCheck(pEnv))

71

return; /* Exception during execution of

sgWheelphoneSetSpeedID */

(*pEnv)->CallVoidMethod(pEnv , cachedActivityObj ,

sgWheelphoneSendCmdID);

if ((* pEnv)->ExceptionCheck(pEnv))

return; /* Exception during execution of

sgWheelphoneSendCmdID */

}

}

void terminateWheelphone(void){

}

72

A.4 wheelphonelib.tlc

%function FcnGenWheelphoneLib () void

%assign tgtData = FEVAL("get_param", CompiledModel.Name ,

"TargetExtensionData")

%assign packageName = "%<tgtData.packagename >.%<

CompiledModel.Name >"

%openfile wheelphoneLibFile = "WheelphoneRobot.java"

%selectfile wheelphoneLibFile

package %<packageName >;

import android.content.Context;

import android.content.Intent;

import android.os.Handler;

import android.os.Message;

public class WheelphoneRobot {

// USB communication

private final static int packetLengthRecv = 63;

private final static int packetLengthSend = 63;

private final static int USBAccessoryWhat = 0;

private static final int APP_CONNECT = (int) 0xFE;

private static final int APP_DISCONNECT = (int) 0xFF;

private static final int UPDATE_STATE = 4;

private boolean deviceAttached = false;

private boolean isConnected = false;

private int firmwareVersion = 0;

private USBAccessoryManager accessoryManager;

// Packet received from PIC with encoded robot state

private byte[] encodedRobotState = new byte[packetLengthRecv

];

// Robot control (phone => robot)

private int lSpeed = 0, rSpeed = 0;

private static final int MIN_SPEED_RAW = -127;

private static final int MAX_SPEED_RAW = 127;

private static final int MIN_SPEED_REAL = -350;

private static final int MAX_SPEED_REAL = 350;

private static final double MM_S_TO_BYTE = 2.8;

private byte flagPhoneToRobot = 1;

// bit 0 => controller On/Off

// bit 1 => soft acceleration On/Off

// bit 2 => obstacle avoidance On/Off

// bit 3 => cliff avoidance On/Off

// others bits not used

private Context context;

private Intent activityIntent;

73

/*

* Interface that should be implemented by classes that

would like to

* be notified by when the WheelphoneRobot state is updated.

*/

public interface WheelphoneRobotListener {

void onWheelphoneUpdate ();

}

private WheelphoneRobotListener mEventListener;

// Handler for receiving messages from the USB Manager

thread

private Handler handler = new Handler () {

public void handleMessage(Message msg) {

byte[] commandPacket1 = new byte [2];

byte[] commandPacket2 = new byte[packetLengthSend];

switch (msg.what) {

case USBAccessoryWhat:

switch (((USBAccessoryManagerMessage) msg.

obj).type) {

case CONNECTED:

break;

case DISCONNECTED:

isConnected = false;

// Notify listener of a disconnection

if(mEventListener !=null) {

mEventListener.

onWheelphoneUpdate ();

}

break;

case READY:

String version = ((

USBAccessoryManagerMessage) msg.

obj).accessory.getVersion ();

firmwareVersion = getFirmwareVersion

(version);

switch (firmwareVersion) {

case 1:

deviceAttached = true;

break;

74

case 3:

// send information PIC

commandPacket1 [0] = (byte)

APP_CONNECT;

commandPacket1 [1] = 0;

accessoryManager.write(

commandPacket1);

deviceAttached = true;

// Wheelphone state

commandPacket2 [0] = (byte)

UPDATE_STATE;

commandPacket2 [1] = (byte)

0;

commandPacket2 [2] = (byte)

0;

commandPacket2 [3] =

flagPhoneToRobot;

accessoryManager.write(

commandPacket2);

break;

default:

break;

}

isConnected = true;

break;

case READ:

if (accessoryManager.isConnected ()

== false) {

return;

}

while (true) {

if (accessoryManager.available ()

< packetLengthRecv) {

break;

}

accessoryManager.read(

encodedRobotState);

switch(encodedRobotState [0]) {

case UPDATE_STATE:

// Notify listener of an

update

if(mEventListener !=null)

{

mEventListener.

onWheelphoneUpdate

();

}

75

break;

}

}

break;

case ERROR:

break;

default:

break;

}

}

}

};

/**

* brief Class constructor

* param a pass the main activity instance (this)

* return WheelphoneRobot instance

*/

public WheelphoneRobot(Context c, Intent i) {

context = c;

activityIntent = i;

mEventListener = null;

}

public void createUSBCommunication () {

accessoryManager = new USBAccessoryManager(handler ,

USBAccessoryWhat);

}

/**

* brief To be inserted into the "onResume" function of the

main activity class.

* return none

*/

public void openUSBCommunication () {

accessoryManager.enable(context , activityIntent);

}

/**

* brief To be inserted into the "onPause" function of the

main activity class.

* return none

*/

public void closeUSBCommunication () {

76

accessoryManager.disable(context);

switch (firmwareVersion) {

case 2:

case 3:

byte[] commandPacket = new byte [2];

commandPacket [0] = (byte) APP_DISCONNECT;

commandPacket [1] = 0;

accessoryManager.write(commandPacket);

break;

}

try {

while (accessoryManager.isClosed () == false) {

Thread.sleep (2000);

}

} catch (InterruptedException e) {

e.printStackTrace ();

}

isConnected = false;

}

/**

* brief Set listener to be notified by when the

WheelphoneRobot state is updated. .

* return none

*/

public void setWheelphoneRobotListener(

WheelphoneRobotListener eventListener) {

mEventListener = eventListener;

}

/**

* brief Remove listener to be notified by when the

WheelphoneRobot state is updated. .

* return none

*/

public void removeWheelphoneRobotListener () {

mEventListener = null;

}

/**

* brief Send the next packet to the robot containing the

last left and right speeds and flag data.

* Use the speed references set with the setSpeed methods.

* return none

*/

public void sendCommandsToRobot () {

if (accessoryManager.isConnected () == false) {

return;

}

byte[] commandPacket = new byte[packetLengthSend];

77

commandPacket [0] = (byte) UPDATE_STATE;

commandPacket [1] = (byte) lSpeed; // left

speed ref

commandPacket [2] = (byte) rSpeed; // right

speed ref

commandPacket [3] = flagPhoneToRobot; // (control

enable)

accessoryManager.write(commandPacket);

}

/**

* brief Turn Wheelphone motors off.

* return none

*/

public void turnMotorsOff () {

if (accessoryManager.isConnected () == false) {

return;

}

byte[] commandPacket = new byte[packetLengthSend];

commandPacket [0] = (byte) UPDATE_STATE;

commandPacket [1] = 0; // left

speed ref

commandPacket [2] = 0; // right

speed ref

commandPacket [3] = flagPhoneToRobot; // (control

enable)

accessoryManager.write(commandPacket);

}

/**

* brief Retrieve firmware version from USB version

* param string with USB version

* return firmware version installed on Wheelphone PIC24F

*/

private int getFirmwareVersion(String version) {

String major = "0";

int positionOfDot;

positionOfDot = version.indexOf('.');

if (positionOfDot != -1) {

major = version.substring (0, positionOfDot);

}

return new Integer(major).intValue ();

}

/**

* brief Return version of the firmware running on the robot

. This is useful to know whether an update is available

or not.

* return firmware version

*/

public int getFirmwareVersion () {

78

return firmwareVersion;

}

/**

* brief Return the encoded robot state (i.e. packet

received from onboard PIC)

* return encoded robot state

*/

public byte[] getEncodedRobotState () {

return encodedRobotState;

}

/**

* brief Indicate whether the robot is connected (and

exchanging packets) with the phone or not.

* return true (if robot connected), false otherwise

*/

public boolean isRobotConnected () {

return isConnected;

}

/**

* brief Set the new left and right speeds for the robot.

The new data

* will be actually sent to the robot when "

sendCommandsToRobot" is

* called the next time within the timer communication task

(50 ms cadence).

* This means that the robot speed will be updated after

* at most 50 ms (if the task isn't delayed by the system).

* param l left speed given in mm/s

* param r right speed given in mm/s

* return none

*/

public void setSpeed(int l, int r) { // speed given

in mm/s

if(l < MIN_SPEED_REAL) {

l = MIN_SPEED_REAL;

}

if(l > MAX_SPEED_REAL) {

l = MAX_SPEED_REAL;

}

if(r < MIN_SPEED_REAL) {

r = MIN_SPEED_REAL;

}

if(r > MAX_SPEED_REAL) {

r = MAX_SPEED_REAL;

}

lSpeed = (int) (l/MM_S_TO_BYTE);

rSpeed = (int) (r/MM_S_TO_BYTE);

}

79

/**

* brief Set the new left and right speeds for the robot.

For more details refer to "setSpeed ".

* param l left speed (range is from -127 to 127)

* param r right speed (range is from -127 to 127)

* return none

*/

public void setRawSpeed(int l, int r) {

if(l < MIN_SPEED_RAW) {

l = MIN_SPEED_RAW;

}

if(l > MAX_SPEED_RAW) {

l = MAX_SPEED_RAW;

}

if(r < MIN_SPEED_RAW) {

r = MIN_SPEED_RAW;

}

if(r > MAX_SPEED_RAW) {

r = MAX_SPEED_RAW;

}

lSpeed = l;

rSpeed = r;

}

%closefile wheelphoneLibFile

%endfunction

80

References

[1] S. Bhattacharya, R. Ghrist, and V. Kumar. Multi-robot Coverage and Ex-
ploration on Riemannian Manifolds with Boundary. International Journal of
Robotics Research, 33(1):113�137, January 2014.

[2] F. Bullo, R. Carli, and P. Frasca. Gossip Coverage Control for Robotic Net-
works: Dynamical Systems on the Space of Partitions. SIAM Journal on Con-
trol and Optimization, 50(1):419�447, 2012.

[3] J. Choi, S. Oh, and R. Horowitz. Distributed learning and cooperative control
for multi-agent systems. Automatica, 45(12):2802�2814, 2009.

[4] J. Cortés and F. Bullo. Coordination and geometric optimization via distributed
dynamical systems. SIAM Journal on Control and Optimization, 44(5):1543�
1574, 2005.

[5] J.Cortes,S.Martinez,T.Karatas,andF.Bullo. Coverage control for mobile sensing
networks. Automatica, 20(2):243�255, 2004.

[6] J. Cortes, S. Martinez, T. Karatas, and F. Bullo. Coverage control for mobile
sensing networks. Robotics and Automation, IEEE Transactions on, 20(2):243�
255, April 2004.

[7] P. Davison, M. Schwemmer, and N.E. Leonard. Distributed nonuniform cover-
age with limited scalar measurements. In Communication, Control, and Com-
puting (Allerton), 2012 50th Annual Allerton Conference on, pages 1455�1460.
IEEE, 2012.

[8] A.A. de Menezes Pereira, H.K. Heidarsson, C. Oberg, D.A. Caron, B.H. Jones,
and G.S. Sukhatme. A CommunicationFrameworkforCost-e�ectiveOperationof
AUVs in Coastal Regions. In The 7th International Conference on Field and
Service Robots, Cambridge, Massachusetts, 2009.

[9] Q. Du, V. Faber, and M. Gunzburger. Centroidal Voronoi tessellations: appli-
cations and algorithms. SIAM review, 41(4):637�676, 1999.

[10] J. W. Durham, R. Carli, P. Frasca, and F. Bullo. Discrete Partitioning and
Coverage Control for Gossiping Robots. Robotics, IEEE Transactions on,
28(2):364� 378, 2012.

[11] S.G. Lee, Y. Diaz-Mercado, and M. Egerstedt. Multirobot Control Using Time-
Varying Density Functions. Robotics, IEEE Transactions on, 31(2):489�493,
April 2015.

[12] N.E. Leonard and A. Olshevsky. Nonuniform coverage control on the line. In
Decision and Control and European Control Conference (CDC-ECC), 2011 50th
IEEE Conference on, pages 753�758. IEEE, 2011.

81

[13] N.E. Leonard, D.A. Paley, F. Lekien, R. Sepulchre, D.M. Fratantoni, and R.E.
Davis. Collective Motion, Sensor Networks, and Ocean Sampling. Proceedings
of the IEEE, 95(1):48�74, Jan 2007.

[14] S. Lloyd. Least squares quantization in PCM. Information Theory, IEEE Trans-
actions on, 28(2):129�137, Mar 1982.

[15] K.M. Lynch, I.B. Schwartz, P. Yang, and R.A. Freeman. Decentralized envi-
ronmental modeling by mobile sensor networks. Robotics, IEEE Transactions
on, 24(3):710�724, 2008.

[16] R. Patel, P. Frasca, J. W. Durham, R. Carli, and F. Bullo. Dy-
namic Partitioning and Coverage Control with Asynchronous One-To-Base-
StationCommunication. Control of Network Systems, IEEE Transaction on,
2015. To appear.

[17] M. Schwager, D. Rus, and J-J. Slotine. Decentralized, adaptive coverage con-
trol for networked robots. The International Journal of Robotics Research,
28(3):357�375, 2009.

[18] M.Schwager,M.P.Vitus,S.Powers,D.Rus,andC.J. Tomlin. Robust adaptive cov-
erage control for robotic sensor networks. IEEE Transactions on Control of
Network Systems, 2014.

[19] R.C. Shah, S. Roy, S. Jain, and W. Brunette. Data MULEs: modeling a three-
tier architecture for sparse sensornetworks. In Sensor Network Protocols and
Applications, 2003. Proceedings of the First IEEE. 2003 IEEE International
Workshop on, pages 30�41, May 2003.

[20] M. Todescato, A. Carron, R. Carli, G. Pillonetto, and L. Schenato. Video of
SB algorithm available at
http://automatica.dei.unipd.it/people/todescato/publications.html.

[21] Y. Xu, J. Choi, S. Dass, and T. Maiti. E�cient Bayesian spatial prediction
with mobile sensor networks using Gaussian Markov random �elds, Automatica,
49(12):3520�3530, 2013.

[22] M. Todescato, A. Carron, R. Carli,G. Pillonetto, L. Schenato Multi-Robots
Gaussian Estimation and Coverage Control: from Client-Server to Peer-to-Peer
Architectures, Automatica, 2016

[23] Y. Xu, J. Choi, andS. Oh. Mobile sensor network navigation using Gaussian pro-
cesses with truncated observations. IEEE Transactions on Robotics, 27(6):1118�
1131, 2011.

[24] http://www.btsbioengineering.com/it/

[25] K.S.Arun,T.S.Huang,S.D.Blostein, Least-Square Fitting of two 3D Point Set

82

