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“When performance is measured, performance improves. When per-
formance is measured and reported back, the rate of improvement
accelerates.”

— Pearson’s Law
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Abstract

This thesis undertakes a comprehensive analysis of NBA players’ offensive categorization utilizing
Data Mining and Machine Learning techniques. This analysis is based on a dataset marked by
the absence of advanced offensive metrics, particularly player tracking data. Despite this limita-
tion, the study, spanning four regular NBA seasons and including data from over 2000 players,
establishes the viability of its scopes.
The investigation reveals that distinct classifiers successfully address specific tweaks of the catego-
rization challenge. K-means clustering proves useful at discerning broad player categories, while
Principal Component Analysis (PCA) avoids overfitting of the data. Notably, the study uncov-
ers the inherent limitations of the dataset in capturing intricate offensive behavoirs from players,
which, to be fully uncovered, would require to use both a wider and more complex dataset.
In dissecting offensive impact of each of the discovered clusters, also called categories of players,
the research employs Principal Component Regression (PCR) and Ridge Regression, revealing
their comparable efficacy. This insight suggests that, despite the inherent complexities of offen-
sive metrics, these regression models offer consistent performances.
The significance of this research lies in its novel role within the context of a relatively sparse
literature on the subject of NBA players categorization analysis. The study’s use of a partially
complete dataset serves as a starting point for further exploration and refinement. By revealing
the nuances of player categorization and offensive impact, this work establishes a foundation for
future research. It is a matter of fact that additional inquiries and methodological advancements
in the evolving landscape of NBA player analysis would be helpful on various aspects, from the
team building done by the NBA franchises, to scouts and coaches.
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1
Introduction

This chapter serves as an introduction to the work of this thesis. It introduces basketball and
some of its fundamental concepts to inexperienced readers on this matter, so to facilitate the
understanding. We then talk about the scientific problem at hand, its applications in the world
of NBA basketball, and the tools used for the analysis. Finally, we will introduce the structure of
this document.

1.1 Basketball
Invented in 1891 by the founding father of the sport, James Naismith, basketball is a team sport,
played by five players. Two teams play against each other, and win by realizing more points than
the opponents. Points are generated by throwing the ball in the basket, or rim, of the opponents:
depending on the position from which this happens, a shot can count for 2 or 3 points. Basketball
is, by his nature, divided in two main components for each of the two teams:

• Offense: when the team possesses the ball, and has to score.
• Defense: when the opposing team possesses the ball, and they have to stop them from

scoring.

This research will focus on the offensive side of the game. A technical reason for this choice
can be found in the main metrics by which players are measured when playing: while there are
lots of statistics regarding the offensive end of the floor, the same cannot be said for the defensive
one. Also, offense is the main reason for which basketball is watched by so many people. Fans
want to see their teams score, in a fun and efficient way, meaning there will always be a particular
attention for the offensive production of a team. This does not discredit the defensive side of
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basketball, which is equally interesting, and deserves attention as well as a proper research. At
the same time, basketball is a worldwide spread sport, but we still decided to analyze data from a
specific country. The data from our study are gathered from the National Basketball Association
(NBA), which is the most famous basketball league in the world. One of the reasons for this choice
relies, yet again, in advantages about data. The NBA has been studied and analyzed by now for
years, and data are collected about the players for each game, and each individual season, since
the 1970s. Additionally, while preparing for the 2013-2014 regular season, the league also started
collecting tracking data about players and teams. These refer to even more advanced metrics and
statistics on the offensive production for a player, such as the types of play a player run in order
to score. Another reason is, even in this case, related to popular interest and demand: although in
the US television shares went down during the last years, the NBA is still by far the most followed
professional basketball league in the world. This brings to the league lots of money and capital
investments, which in practice translates to a higher interest in maximizing the performances of
the players in a team.
We want to try to delve more deeply in the sport of basketball, so to introduce the actual work
of this thesis. Being more than a century old, basketball has seen many changes and different
play styles over the years. And while it is beyond the scopes of this thesis trying to synthesize
and coherently explain each of the past development of this sport, we still need to give some
information in order to better understand what we want to achieve. Giving the low number of
players at any time, and the small field in which they have to move in (28 meters, which become 14
meters when a team goes to offense, since they can use only the offensive half when they attack),
since the dawn of the sport coaches tried to give each player a role. Also, being a sport in which
a player is required to reach an elevated surface, the rim, taller players are more suited for the
game. This does not imply that short people cannot play the game, but it pushes even further
the need for a clear distinction in the roles, or positions, that each player should keep at any time.
Traditionally, there are three macro positions, which are then detailed into five. We decided to
stick to the official NBA description of each of these role, as they are given in the official website.
These are of course simplified descriptions, but serve the purpose of understanding what each
player is expected to do in each position.

• Guards

– Point guards: runs the offense and usually is the team’s best dribbler and passer.
– Shooting guards: usually the team’s best shooter. The shooting guard can make

shots from long distance and also is a good dribbler.

• Forwards

– Small forwards: plays against small and large players. They roam all over on the
court. Small forwards can score from long shots and close ones.

– Power forwards: does many of the things a center does, playing near the basket while
rebounding and defending taller players. But power forwards also take longer shots
than centers.
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• Centers: usually the tallest player on each team, playing near the basket. On offense, the
center tries to score on close shots and rebound.

Figure 1.1: Traditional basketball positions in an offensive scenario, from Kevin Bonsor, How Bas-
ketball Works: Who’s Who.

What is seen in Figure 1.1 has been, since the founding of the NBA in 1946, the go-to positions
in basketball. Each kid who wanted to start playing the game have been assigned one of these,
and each coach run, to some extent, plays and schemes depending on these definitions. Although
they are not monolithic, they are the de facto standard.
These definitions shaped the most effective ways to score points over the years. Knowing them,
we can elect three styles of play which, starting from the 1960s, up to the modern day, defined
the best and most effective strategies to score in a basketball game. Recall yet again that, for the
scope of this introduction, these are simplified distinctions, which cannot consider, for means of
space and time needed, all tweaks and currents NBA basketball saw over the years.

• Big man era (1960s-1990s): being the position which play the closest to the rim, the center
can shoot really easy, and high precision shots, often called layups. Being such an efficient
strategy, coaches, during the early days of the league, decided to dish the ball as often as
possible to the big man in their team, which was, most times, the center. It is not a case
that the most influential players in this span of times were all centers. Bill Russel, Wilt
Chambairlain, Kareem Abdul-Jabbar, and a long series of players whose main role was to
stick close to the basket and take safe shots, ones which was very probable to generate 2
points.

• Mid range era (1990s-2010s): when Micheal Jordan came into the NBA in 1984, it was
not a clear revolution the idea of shooting from the midrange, the position of the field
further from the rim, but inside the three point line. There were, in the previous years,
players which were famous in their own right while sticking to the inner side of the painted
area, but no one had, or have been able to reproduce, the effectiveness of Micheal Jordan.
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His influence, given by the fact that he was elected the most valuable player in the league
(MVP) five times in the 1990s, cannot be underestimated, and shows a clear break with
the past. Players such as Kobe Bryiant, Manu Ginobili, Dwayne Wayde, can be seen as
the heirs of this style of play. It was now preferred to stick further to the rim, in order to
avoid big man inside the area.

• Three point revolution (2010s-today): while for Jordan we noted that there was, even
before him, a tendency of shooting from inside the area, what happened starting from 2009
is unprecedented. In the 2010s, teams started took a big increase in amount of three point
shots, due to two main reasons. The fact that they are worth more points than two point
shots, and the presence of the Golden State Warriors, and in particular the player Steph
Curry, in the NBA. The latter played an important role in showing to the world, together
with his coach Steve Kerr, what a great number of three point shots per game can bring
in terms of points scored. It is less effective than layups and midrange shots, but they
are worth more. And in a general scenario, the more attempts a team does, the more it
will succeed in three point shots. This phenomenon is regarded today as the three point
revolution, and is guided by players as Steph Curry, Klay Thompson and James Harden.

We can gather a main conclusion from this very brief history of the NBA: over the years, less
importance was given to the position of a player, and more attention was put on the play-style.
This change in mentality is what created the idea for this research, which we can now proceed to
analyze.

1.2 Objectives of the research
From Section 1.1 we were able to gather a simple, yet insightful conclusion. In the modern NBA,
we see a switch in the paradigm and in the attentions of coaches and general managers alike. Posi-
tions, as we described them, and as they are presented nowadays, are less and less useful. Modern
players, the ones each team would want to build around, are the ones who are either good at many
things, or extremely good in one fundamental style.
But this is not revolutionary in its own as a concept. For years now scouting staffs have evolved in
order to meet these new needs. We are used now to see NBA personnel watching everything, from
college basketball games, up to European championship ones. And this cannot be seen in any
other way than as an effort in order to create a new generation of modern players. Our research,
in this sense, is born from a need: studying and analyzing a player from the inside out of his game
can be extremely complex, and require lots of hours of work. We want to facilitate this job, by
creating an Artificial Intelligence (AI) model which, starting from the statistics of a player, is able
to define its category. Then, for each of the generated categories, we want to understand which is
the best way of the players belonging to it to influence the offensive outcome of a game, through
some Data Mining techniques. A category, with respect to a role, can be much more flexible. It
can associate players who are similar in their style of play based on what they actually do on the
floor, which is measured through statistics. It is easy to see now why preferring the NBA was a
logical choice for such a project. Basic statistics about players have been registered for years, and
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hence there is the access to a potentially large dataset of players for an AI model. And although
some data, referring to before the advent of the internet, may still be a bit complex to access, the
ones from latest years are more widespread.
Such a tool would benefit many components of a NBA franchise. Starting from the scouts, de-
scribed earlier, going all the way up to managers and coaches: it would help introducing new
players into a specific team, by finding, for example, the best fit based on the current needs.
Straying away from the NBA world, this thesis can also be used in realms such as sports statistic,
which is most times associated with betting and sports predictions, more in general. Knowing in
advance which are the specialties and tendencies of a player on the offensive end of the field could
help drastically in formulating predictions.

1.3 Structure of the thesis
This chapter only serves as an entry point to analyze the aims of this thesis. The rest of the work
for this document is structured as follows.

• Dataset, chapter 2: describes the dataset used in this thesis, the way it was collected, and
the pre-processing that was applied to it. It also serves as a preliminary analysis for the
rest of the study.

• Machine learning methods, chapter 3: contains a brief introduction to machine learning
and introduces on a theoretical standpoint the methods used in the analysis.

• Machine learning predictions, chapter 4: shows the results of the analysis performed using
the methods described in Chapter 3.

• Data Mining methods, chapter 5: contains a brief introduction to data mining and intro-
duces on a theoretical standpoint the methods used in the analysis.

• Data Mining predictions, chapter 6: shows the results of the analysis performed using the
methods described in Chapter 5.

• Conclusions, chapter 7: sums up the content of all the results obtained in the work, possible
flaws and future scopes of this thesis.
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2
Dataset

This chapter introduces the preliminar analysis that is required in order to approach the objective
of this work, being it to find, in first instance, Machine Learning models that are able to distinguish
players based on their ”category” rather than their role. Hence, what we want to produce with
this preliminary work is a knowledge of trends in the modern NBA. The dataset we use for this
mean is a collection of all individual players statistics in the last four regular seasons. The regular
season of the NBA is a period of more than half a year, in which each team in the league plays 82
games against all the others. The statistics referring to the regular seasons are hence computed
based on all the games that a player participated in. In the last four years, more than 2500 players
starred in the NBA, and this is the foundation of our dataset. Each player gets labeled with his
name, and the year for which the statline is referred. For example, four different entries will be
present for Stephen Curry. This is done to monitoring the evolution of a player during the years.
The seasons took in account are: 2021-2022, 2020-2021, 2019-2020, 2018-2019.
We now take a look at the metrics with which the players are measured, which can be seen as the
covariates of our dataset.

• POS: classical position, or role, for a player (guard, forward, center).
• GP: games played in a season.
• MPG: minutes per game.
• MIN%: minutes percentage. Referrers to the percentage of minutes a player participates

in his team’s games.
• USG%: usage rate. Estimate of the percentage of a team’s play that go through a player.
• TO%: turnover rate. A turnover is when a player loses the ball while he is guiding an

offensive possession. Turnover rate specifies how many turnovers a player generates every
100 possess.
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• FTA: free throw attempts. When a player is fouled while he is shooting, he gets to throw
two or three uncontested shots, known as free throws. They score one point each.

• FT%: free throw percentage. Percentage of accuracy on free throw shots.
• 2PA: two point shots attempts.
• 2P%: two point shots percentage. Percentage of accuracy on two point shots.
• 3PA: three point shots attempts.
• 3P%: three point shots percentage. Percentage of accuracy on three point shots.
• eFG%: effective shooting percentage. If we count as an attempt from ground each shot,

without considering the type and excluding free throws, we can obtain FGM (from ground
makes), and FGA (from ground attempts). Then, effective shooting percentage is computed
as FGM+(213PM). This is FGA computed in order to account the bias of 3 point shots
being less accurate but worth more.

• PPG: points per game.
• RPG: rebounds per game. A rebound is counted when a player, either during offense or

defense, collects a loose ball after it has been shot.
• TRB%: total rebound percentage. An estimate of how many rebounds of a team are took

by a player.
• APG: assists per game. An assist is counted when a player passes the ball to a teammate

who manages to score.
• AST%: assists percentage. An estimated percentage of teammate field goals a player

assisted while on the floor.
• BPG: blocks per game. A block is counted when a player stops an opponent from scoring.
• TOPG: turnovers per game. 6
• SPG: steals per game. A steal is counted when a player manages to grab the ball from the

opponent.
• VI: versatility index. Versatility index is a metric that measures a player’s ability to produce

in points, assists, and rebounds.
• ORTG: number of points produced by a player per 100 total individual possessions.
• DRTG: number of points allowed by a player per 100 possessions he individually faced

while staying on the court.

We considered these metrics to be sufficient for two main reasons. They are the simplest to
gather, since they are widespread and easy to access from many sources. Also, we considered
them to be complex enough to give a clear distinction between categories of players. Using more
thorough metrics could be helpful in highlighting some interesting trends, but it would require
access to a much more difficult to obtain set of data. The data used for this analysis were obtained
from NBAStuffer, a commonly used platform for gathering data about sports in the US. Their
terms of service does not specify issues while using the data that are free for download on their site,
but a set of them is available only on payment. The NBA official website, the most obvious choice,
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displays all the data we needed for this analysis, but they are not directly available for download.
And, although there are some solutions such as Python plugins able to download those data, the
terms of service specify that a download of any sort is not accepted under any circumstance.
Finally, the four CSV files obtained from NBAStuffer where merged together thanks to a Python
script. The rest of the analysis is instead done with the R programming language3 (R Core Team,
2023), due to the presence of standard functions, as well as many libraries, specialised in statistical
analysis of large datasets.
From this point onward we begin the preliminary analysis of this set of data. The way we will
proceed is the following, and will be the same for each “traditional” position.

1. Analyze the trends that, in the recent years, have emerged for a determined position. For
example, the explosion of three point shots for guards, or the increment of driving plays
for forwards.

2. For each trend, define a set of “centers” of this clusters. Players who can be considered the
elite for that particular specialty and are hence elected as the standard to follow. Each of
these trend is considered a category of players.

3. Check how much the categories overlap. For example, if we find out that two categories
share the exact same players, we consider them to be weak, while independent ones are
considered as strong starting points for the classification model.

This way, we are able to highlight the differences and variety inside the traditional positions,
which is the starting point to move towards a satisfying AI model.
The first step that is required in the analysis of our dataset is, as imaginable, the act of importing
it. This gives us also the opportunity to look for different problems or inconsistencies in the data.
We are, in particular, searching for:

• Missing data in one or more variables.

• Factor variables that might need to be correctly read by the software.

As expected, the transformation from CSV to R dataframe, the type of object used by the
programming language, creates an inconsistency with the factor variables. There are only two in
our dataset, that is the team of a player, and its position. We convert those by hand into factors.
Done this, the only thing we have to consider now are the NA’s regarding ORTG and DRTG. These
are, in particular, some advanced metrics that are computed using a large variety of stats and
data of a player, defensively and offensively. For the scope of this research, we are not interested
in training a model with players who did not play enough. It would imply adding to the dataset a
section of players who do not have meaningful information on offensive performances. Hence, we
decided to delete them from the dataset. As a consequence, we lose roughly 100 players. These
are mainly rookies, players who are in their first professional year, G-League players, who are sent
to a minor league to get better, and bench players, which are not meaningful for our purposes
(while still deserving all our respects for being professional athletes of the NBA).
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2.1 Traditional Roles
This section gives the reader a graphical representation of the current state of “traditional” po-
sitions, and how they are used in the league as of today. These labels are pretty stale and not
expressive enough, as we believe. The dataset we employ utilize a hybrid categorization with
the positions. It includes the three main roles, guards, forwards and centers, but expand them
not in the way we showed in the introduction. Rather they create the following hybrid positions,
G-F, F-G, F-C, C-F. These are supposed to include players who, for example, have played both
as guard and forward, or forward and center. The order of the letters then tells us which is the
position the player was implied the most. While distinguishing players by position, these players
can be included in either the categories they belong to.
The first plot we want to display is hence how much usage percentage each position has received
in the last four years. The variable USG% is, in this sense, a common metric in the NBA, used
to give an estimate of how many team plays, in percentage, employ a specific player. More specif-
ically, we are looking at how much players who play in a specific role are used for making plays
on the floor.

Figure 2.1: Boxplots representing the USG% of players with respect to their role.

Figure 2.1 shows that, overall, there is a uniformity in the distribution of the roles and the usage
percentage. This implies that almost each role is used with the same frequency by teams during
their games. We will not see, for example, centers stay on the floor and not contributing to the
game. Some exceptions are related to two main positions.

• G: guards are a complex group, containing both shooting guards and playmakers, and in
the last 10 years have seen bigger and bigger usage. This is the natural consequence of the
three point shot revolution, guided by Stephen Curry.
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• F-C: nowadays, to accommodate a better shooting percentage, classical Centers (high,
heavy and stationary) are replaced by more complex figures, which move in a hybrid way.
In this sense, there has been an increase in centers and big forwards who are able to create
game by assisting teammates and shoot from long distance. We will investigate this in our
work.

A good way to see how much positions are influential in the modern NBA is also to analyze how
many players fall in a determined role. For example, seeing too many players in a single position
would imply that the considered position is not expressive enough.

Figure 2.2: Scatterplot representing the number of players that, over four regular seasons, played in
each position.

What we assumed above is clearly the case, as Figure 2.2 highlights. Guards alone are not
distinguishable this way, since 930 players cannot play in the same manner. Forwards also see
a similar problem. Even in the case we allow a distinction, between point guards and shooting
guards, and power forwards small forwards, these roles are not manageable. A coach would not
be able to infer interesting data from these distinction alone, and would resort to watch tapes,
himself or with the help of staff, to better understand the novelties of the game of a player. Being
the most crowded position by far, we considered interesting to start directly from them.
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2.2 Guards
On a higher level, which does not include statistical measures related to tracking, we can define
three main roles that guards, whether modern or traditional in their style of play, have to excel
at in the NBA.

• Three points shooting. The heritage of the last 10 years of the NBA, it is impossible, as
of right now, to imagine a guard which has not a solid three point shot in his arsenal. If
that’s the case, we want to examine in which ways the guard can still become dangerous
in producing score.

• Generating points through assists. The so called “ground generals” are a more traditional
idea of guards, but they cannot be considered outdated. Considering the latest trend in
three point shooting, an assist is now worth around 2.4 points. This is because finding an
open teammate who can shoot without a defender upfront is still the most efficient way to
score.

• Two points shooting. While being still less worth than a three point shot, it is a fundamental
which cannot be overlooked. Two point shots can still be reliable, and guards tend to prefer
them in what is called “isolation”, or off a screen. Isolation can be defined as a play in
which one offensive player has the ball with other offensive players nearby, but not in close
enough proximity to where the ball handler can pass. Instead, shooting off a screen happens
when a bigger sized player blocks the defender of the guard, creating a so called “screen”,
which allows to take an uncontested shot.

On a last point before proceeding, we wanted to note a detail about two point shooting for
guards. While it would be possible to create an even further distinction between what are called
“hero players”, which takes lots of isolation posses, and players who utilize well screens, we are
limited by the expressivness of the dataset. These information are contained in what are called
“tracking statistics”, which the NBA started officially registering in 2013. Due to their age, and
the fact that they can be extremely complex to gather, there is still not a reliable, open source
way to gather them. Hence we will stick, for the moment, to the category of two point shooting
guard.

2.2.1 Three point shooting
We can define elite three point shooters in the modern NBA players that shoot from behind the
arch with two conditions.

• Shoot more than 5 threes per game. On an 82 games per season, 410 threes overall.
• Shoot with a precision of 35%, meaning at least a third of the shots will generate points.

Players as such, which are an increasing category, can be defined as the elite shooters from three
points in the NBA. Obviously not each player specialized in 3 point shooting can be considered
an elite specialist. In particular, the green points we see in Figure 2.3 should be considered as
centers of a natural cluster related to players who are specialized in 3 point shooting.
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Figure 2.3: A plot showing the normal distribution of 3 point shooting for players considered
Guards. Blue points represent elite shooters.

2.2.2 Ground generals
Similarly to what we have done for three point shooting, we have to define conditions to understand
what a ground general is. A guard as such must satisfy the following requirements.

• Provide at least 6 assists per game.
• Have an AST% of at least 35%. This would imply that at least a third of the assists

provided by the player are of good quality, reaching a free teammate for an easy shot.

Players as such are a valuable asset for a team, since they posses what is called, in the field,
“basketball IQ”. They are the players who can set up complex plays and free teammates for an
easy shot to the basket. Hence, while being really strict requirements, there are still 80 players
who qualify for this category, which are represented by the blue points in Figure 2.4.

2.2.3 Efficiency landscape offensively for guards
Even with the few data we have gathered so far, it can be interesting to assess a possible flaw
our methodology for the research. In particular, we want to see if there is a style of play which is
particularly better than the other in terms of efficiency impact on the scoring of the game. Let’s
put for example that a three point shot is able to generate three point even only 20% of the times,
and a guard start to takes lots of them. Doing this, would imply that a classification model could
correlate a high index of three point attempts to a high offensive rating for a player. This would
then lead to classify into a three point specialist even a player who cannot be considered as such.
To prove that these categories are equally, or so, efficient, we provide Figure 2.5, that shows how
ORTG is impacted by three point shooting and assists.
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Figure 2.4: A plot showing the distribution of assists for players considered Guards. Blue points
represent ground generals.

Figure 2.5: Scatter plots used to analyze ORTG with respect to 3P% and AST%.

Comparing these two plots allows us to gather insightful relationships. The clouds of points
are similar and follow a recognizable pattern. This implies that shooting well from 3 point and
providing good assists are both good means for a guard to impact on the scoring. A consequence
should be in the fact that we should not see each and every guard mapped to only one of these two
specialties. The interval highlighted in the plot serves the point of showing a “good” ORTG, which
is between 100 and 120 points for 100 possesses. Another interesting result is in understanding
what can be a good mean of 3P% to be considered a three point specialist. We see that a consistent
ORTG is reached when a player shoots between 25% and 50%.
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2.3 2-point shooting
Going even further with respect to guards we arrive to the 2 point shooting. We purposely did
not include this analysis in the guards section, due to the nature of this kind of fundamental. The
two points, in all their forms, are the most widely used mean of improving the score for each and
every type of position.

• Guards may utilize their small frames in order to penetrate the area and shoot from
midrange.

• Centers generally utilize their bodies in order to “post-up” defenders, ending up with fade
always or layups. Going to post is the practice that implies a player attacking while being
turned from the defender, in order to defend the ball. It allows, if the player is able to find
a way, to score points directly under the rim.

• Forwards may utilize both these tools. This implies that a complete analysis of the players
who behave well on two-point shooting must consider each and every position. We want to
see if particular roles have a bigger tendency in generating score with 2-points, as well as
discover whether there is a distinction inside the roles themselves.

This implies that a complete analysis of the players who behave well on two-point shooting
must consider each and every position. We want to see if particular roles have a bigger tendency
in generating score with 2-points, as well as discover whether there is a distinction inside the roles
themselves.

Figure 2.6: Boxplots showing shooting efficiency of shooting per role.

Figure 2.6 allow us to gather some first interesting information about 2-point shooting, with respect
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to the 3-point case. In terms of attempts alone, all roles more or less try the same quantity of shots
from inside the arch. This is a first result that suffragettes our initial hypothesis: all roles equally
prefer 2-point shots, meaning there it is suffocating to have roles so limiting. Instead, as far as
3-point shots go, guards are the premier terminals for such weapons. Together with forwards, and
their hybrid categories, they are the roles that tend to take most of these shots. Interesting is the
clear presence of outliers in centers, since it hints towards a rising category of players, commonly
known as “modern centers”.
As far as the quality of these two type of shots goes, it is not a surprise to see that 3 point shots
will have lower chances of going in: they are performed further from the rim. In a similar fashion,
it is easy to see that centers, forwards, and their hybrid roles, will tend to have a higher percentage
on 2 point transformations, since they tend to position around the rim and in the paint. Finally,
guards are the category which suffers the most the 2 point shoot: we see a big issue in relating
under-performance, since lots of shots have bad quality. This can be related to the presence of
“deep twos”, which are 2 point shots made far from the rim, almost on the 3 point line. Overall,
we see that half of the 2 point shots are transformed by each role, since the mean of 2P% in our
dataset is 0.5049. But since we described briefly how different these type of shots may be, we want
now to analyze perks and differences. First of all, how determinant is the 2 point shot in terms of
scoring efficiency for a player? We can gather this information from a simple scatter plot about 2
point accuracy and points per game of the players.

Figure 2.7: 2P shooting efficiency in the whole NBA.

Results of Figure 2.7 are particularly interesting. Again we see an overall mean in the two point
shot transformation which is almost exactly 1

2 . This exemplifies why so much players will tend to
take an overwhelming amount of these shots. That being said, some data we wanted to highlight
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are about the relationships between pure roles and the two point shot.

• Guards, being the most overcrowded position by far, are also the position which tend to
take the most of these shots. But most interestingly, we see that their efficiency is below
the mean of the NBA as a whole. Guards indeed tend to shoot 0.4677022% from the two
point area, as it was already seen. This can be connected to the difficulty of the shots taken
by guards, as well as to the overall preference to go for open 3 point shots, as seen in the
previous section. That being said, we will see in a moment if there is a category of guards
who indeed prefer the 2 point shot with respect to the 3 point one.

• Forwards, being a sort of hybrid terminal of attack, in between centers and guards, are the
position which sticks the most to the mean of the NBA on the two point shot. There are
mainly two ways in which a forward is expected to score from two points. Midrange shots
are the ones taken from inside the area, and are a classic basketball shot to the rim. Layups
are instead the act of penetrating the area with an athletic effort, and finishing close to
the rim, for higher efficiency. The evolution of the game in the last years has backed off
from the midrange to behind the three point line, meaning the overall shot preferred by
this category is the layup. We will see later whether there are players who still prefer the
midrange as a tool to score.

• Centers, being the players closest to the rim, will tend to have easier shots, and indeed shoot
with 0.5759899% from the two point area. But, as we have seen, there are also centers who
will nowadays prefer to alter the three point shot with the two point one, meaning we can
hypothesize a division inside this position.

2.3.1 Guards and 2 point shooting
Firstly, we start by analyzing the efficiency landscape of two point shooting among guards, as we
did for the three point shot, and the results are shown in the Figure 2.8 scatterplot.
As for before, we can define an elite two point shooter as a player averaging the following statistics:

• Shoot more than 6 two point shots per game. 500 overall in an 82 games season.
• Shoot with a precision of 50% or more, which, as established, is the current average of the

NBA, and higher than the average for the role itself.

As an interesting result, we can analyze that this cluster is not as populated as expected. The
evolution of the game deeply impacted what a guard should nowadays do, and indeed there is a
set of “just” 50 players, which is still much less with respect to the previous categories.
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Figure 2.8: A plot showing the normal distribution of 2 point shooting for players considered
Guards. Blue points represent elite shooters.

2.3.2 Considerations on guard’s clusters

Figure 2.9: Venn’s diagram to analyze the intersections between the player’s categories analyzed for
guards.

Before moving forwards to other positions, we wanted to give a last consideration on guards.
What we intended to do in the first place was to find interesting categories, and then comparing
the sets of players found, to see how much they overlap. We show this result through a Venn’s
diagram, in Figure 2.9.
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What we see from this diagram is surely encouraging. Recalling that these are supposed to be
ideal clusters, we see an independence between different clusters. It can be seen, fist of all, in how
much the pure assisting guards and three point shooting guards are independent from one another.
The only intersection which gets a considerable amount of players is the one between two point
shooters and assists specialists. This is due to a more traditional style of play, and should not
come as much of a big surprise.
Overall, the results prove to be satisfying, and can help us lead the way in the next section, in
which we proceed to analyze forwards.
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2.4 Forwards
Similar analysis to the ones we have seen for guards could be done here for forwards. It can be
tricky indeed to identify which are the specialties of such an hybrid position. They should be
good enough to compete with small and big framed defenders, meaning their expertise should be
wide overall. That being said, for the sake of diversity, we want now to try and see other metrics,
which could help us identify particular types of forwards. In particular, we will be looking for the
following.

• Driving forwards. As hinted before, driving is the act with which a forwards penetrates the
area and goes close to the rim, to get a high percentage shot. A possible flaw in studying
this metric is in the fact that we do not have access to tracking statistics, and it is hence
complicated to study such a behavior. The solution we came up with is to analyze free
throws. The idea is simple: the more a player will try penetrations, the more he will get
fouled, since it is very easy to be touched during a shot while running towards the rim.
This cluster will be hence identified through free throw percentage.

• Three point shooting. Although we already did a similar analysis for guards, one of our
main interests in this research is to get a cohesive analysis of how much the three point
revolution has impacted the modern NBA. Hence, we will try to see how many big framed
players, supposed to work inside the area, behave with respect to three point shots.

• Rebounding proficiency. This is one of the more “traditional” aspects of a forward. While
not being a center directly under the rim at all times, it is still expected to box out smaller
defenders, and take a loose ball when is comes on the floor.

2.4.1 Driving forwards
Due to the difference in the frame of the players, during the years the biggest distinction between
guards and forwards were drawn by size and athleticism. In general, the trend is for the last type
of players to try shots closer to the rim. A good way to analyze how much of an impact the
penetration of a player has on the flow of the game is the free throw percentage.
Figure 2.10 is able to acquire interesting information about the relationship between forwards
and free throw attempts. In particular, the dotted line represents the NBA mean in free throw
attempts. It shows, on its own, that there are lots of player which can regularly cut the area and
go for a drive towards the rim in the role forwards. Then, the elite players are defined as the ones
to shoot with 75% from the line, meaning they will sink 3

4 of their attempts. In this sense, we are
able to see a big group of specialists of this style of attack. Indeed, there are 143 players which
enroll in this category.
The further requirement, for shooting efficiently from the free throw line, is needed to clear out
some players who cannot be otherwise considered efficient in attack, and hence cannot be consid-
ered centers of a cluster. Also, we address the issue in analyzing drivings to the basket this way,
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Figure 2.10: A plot showing the distribution of drivers for players considered Forwards. Blue points
represent elite drivers.

and recognize is a bit of a logic connection. We still believe that, with the exception of some noise,
this is a representative cluster, due to the less and less use of midrange of today players.

2.4.2 3 point shooting

Figure 2.11: A plot showing the normal distribution of 3 point shooting for players considered For-
wards. Blue points represent elite shooters.
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Figure 2.12: A plot showing the distribution of rebounds for players considered Forwards. Blue
points represent elite rebounders.

The result from Figure 2.11 is interesting, not for the distribution seen in the plot, which is
similar to the one of guards, with less players of course, due to the nature of a three point shot, but
rather in the players which showed up in the results. There are only 19 players in this category, and
only one (Duncan Robinson) has been consistent during all the last seasons in being a member of
this subset of forwards. Other players, such as Lebron James in 2021/2022, became only recently
a good shooter. It shows an interesting trend in which elite shooters can be drawn from many
different categories. We chose to study only the case in the pure forwards role, being there more
observations. Also, these kind of players tend to be historically pretty different from guards, in
terms of size and style of play. This shows hence an interesting melting pot between different
positions.

2.4.3 Rebounding proficiency
In order to understand which forwards are considered proficient rebounders we took a precise
bottom line:

• The player has to have taken at least 6 rebounds per game.

• The player has to have taken at least 12% in TRB% for the season.

These value are not randomly generated. They are the mean for rebounding metrics in the
center position. Being centers considered the players who should take most rebound in a game,
we wanted to analyze whether there is a case for forwards to mix in this specialty, and this is
indeed the case.
Figure 2.12 shows that there are 68 players who belong to this category, showing a big increase
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in the fact that forwards should also belong closer to the rim, and confirming how hybrid this
position is in style of play. This, along with the previous result of forwards who tend to shoot from
3 point and forwards who prefer to drive to the rim, shows an interesting trend in the variability
of specialties forwards have achieved in the analyzed period.

2.4.4 Considerations on forward’s clusters

Figure 2.13: Venn’s diagram to analyze the intersections between the player’s categories analyzed
for forwards.

We have so far been able to discover three main clusters for the role of forwards. In particular,
they were the driving forwards, the long distance shooters, and the rebounders, which can be seen
as the main roles that such a role might perform (in still a very general scenario). We want now
to see how much these clusters overlap with one another.
The results, assisted via Figure 2.13, prove to be extremely satisfactory. We see that rebounders
and sharpshooters never overlap with one another, proving to be completely separated. Rebound-
ers share with driving forwards some players, but are still well separated (66% of rebounders are
explicitly good at this specialty). Finally, shooters share with driving forwards a big part of their
cluster, but we have to recall how the latter specialty was computed. It was done by analyzing
trips to the free throw line, meaning this data can be influenced by fouls done on the three point
line to shooters.
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2.5 Centers
So far we went out and did not consider ‘hybrid roles’ present in the dataset due to a main reason:
the guards and forwards role were already really populated with observations. This is not the case
for the pure center role, meaning we will consider, in the means of this analysis, also the category
Center-Forward. These are players who played in both positions during their career. The same
can be said for the hybrid role Forward-Center, hence also this is considered. Doing so, we go
from a sample of 198 observations to one of 464.

2.5.1 Classic centers
Basketball, as we will see time and time again in this research, has evolved a lot across the years.
In the early days of the game, there was a pretty defined tendency, which gave the name to the
mainstream playstyle: the big man era. Big men, in this sense, can be identified as centers. The
definition of classic center can guide our research efforts into two main areas, which so far we
have already seen for other roles. We want to study rebounding proficiency of centers, trying to
find a cluster of efficient rebounders in the modern NBA, as well as a more general category of
hyper-efficient two point shooters. The last consideration is linked to what we already have seen
in the 2 point shot introduction: being the centers close to the rim, they must take easier shots,
and hence we want to find the ones who shoot from inside the paint with pin point precision.

Rebounders

Figure 2.14: A plot showing the distribution of rebounds for players considered Centers. Blue points
represent elite rebounders.
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By doing a simple query, we could see that the bar set for efficient forwards rebounders is too
low. Being it formed by the mean of the center position, it is not a good way of analyzing which
are the really efficient ones. This can be seen by the vertical dotted line showing the mean of
TRB% for centers, while the horizontal one shows the previously expected 6 rebounds per game.
The new conditions we used are considerably higher:

• The center must take 8 rebounds per game.
• The center must be involved into the 16% of rebounds that happen while he is playing.

This are of course much higher expectations. In basketball, when a player achieves more than
10 points and rebounds, he achieves what is called a “double double”. This becomes a “triple
double” if he manages to create 10 assists too. We are asking basically our centers to average a
double double or triple double including rebounds, as well as a participation in almost a fifth of all
defensive and offensive rebounds that happen on the court. But even with these high requirements,
Figure 2.14, we can see that a lot of centers are up to the task.

Paint specialists

The same analysis we introduced for guards who can be considered skilled from over the arch will
be done here for centers, as shown in Figure 2.15. We are able to identify an interesting cluster
of size 65, but the most interesting piece of information from this plot can be gathered from the
position of the points. In particular, we are able to see in practice what we have analyzed so much
up until this point: being closer to the basket centers will take easier shots, and, in practice, have
a higher 2P% with respect to other players. This is easy to understand from the fact that we see
really few centers that shoot under 50% from 2 points.

Figure 2.15: A plot showing the distribution of 2 point shooting for players considered Centers.
Blue points represent elite shooters.
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2.5.2 Modern centers
“You can’t teach height”. This has been, for many years, the guideline that coaches and general
managers in NBA utilized to create good teams. As we said, big man era brought to the league
a generation of big centers, which had to utilize size and weight to fight directly under the rim.
And the reason for that is simple, as we just saw: close shots under the rim are the most efficient
weapon that players has to generate scoring, still to this day. This was true until the introduction
of the three point line, in the 1979/1980 season. Of course, it took years in order for teams to
adapt to this new introduction, and consequentially step away from the rim, but eventually this
happened. Also, due to revolutions in the rules for charges and fouls in the paint, centers lost
the opportunity to be “bullies”, which was a big style of play. We finally enter the 2011/2012
season, where the league, understanding this trend, opted for a big change: in the all star voting
ballots for 2012 the position “center” was removed, and instead it was merged with the forwards,
creating the backcourt. This is a real revolution for the NBA, since the following season teams
attempted more than 20 threes a game, signaling that the revolution had started and it was now
unstoppable. We come this way to the modern day centers: players who have a skillset similar
to a playmaker, players who built over the years a respectable three-point shot, and centers that
start from outside the area and drive towards the rim. All of these new tendencies open the floor
for a more complex analysis, overcoming the original concept of center position. In this sense,
we hope now to illustrate meaningful clusters of centers with particular strengths, comparable to
guards or on-ball forwards.

3 point shooting

Figure 2.16: A plot showing the normal distribution of 3 point shots for players considered Centers.
Blue points represent elite shooters.
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We introduced this cluster of players earlier in our search, highlighting that there were some
outliers in the 3PA and 3P% boxplots for the center positions. Now we want to see whether or not
there is a real case for shooting centers, which would be a huge deal in the modern NBA. Small
sized guards could not guard a center that decides to lift his hands and shoot, due to the physical
mismatch. Obviously, we cannot keep the requirements we had for 3 point shooting guards to
define what a shooting center is. It would be way too restrictive, as the dotted lines in Figure 2.16
highlight. According to the official NBA website the mean of 3PA for centers is of roughly 2 3PA
per game, meaning that, in an 82 game season, we will see 164 attempts. Also, we estimate a
30% shot efficiency, which is not a huge drop from the 35% set for guards. This overall builds the
profile of a versatile center. The numbers may not seem that much outstanding, but they serve
a purpose: imagine being a coach that has to guard a profile as such. What would be the best
option when he gets to the three point line? Such a player can drive, pull a jump shot, or pass
the ball. Overall, it is not possible to find a player who is ready to guard all these options with
exceptions for the best defenders in the league. This simple realization is what makes players as
such so much valuable in modern NBA. Another point we would like to address is how, over the
year, the presence of shooting centers can be seen as a positive trend. In the league, we want to
analyze whether or not there has been an “arms race” towards such profiles.

Figure 2.17: Diagram showing the increase in presence, over the years, of shooting centers.

This is an encouraging result for a future research. There has been a steady yet continue growth
in the field of shooting centers, and we can expect that, over the years, we will see an even more
extreme volume, with an increasing accuracy, in this specialty.
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Big framed point guards

Figure 2.18: A plot showing the distribution of assists for players considered Centers. Blue points
represent ground generals.

A similar approach as in the previous section can be drawn for assists. Again, the requirements
for playmakers and ground generals are way too strict, and we have to tie them down. In particular,
we want to see which are the centers who distribute at least 3 assists or more per game.
Yet again, we are able to find in Figure 2.18 a significant cluster, of size 46. The most interesting
results is the AST%: we see that, in general, centers will try to distribute less assists, but they
are really meaningful for the team. This can be seen in the fact that such a satisfactory result of
35% AST% is reached so quickly by so many players. It is an interesting metric of how, nowadays,
centers are expected to have intelligence and keep an eye on every part of the game.

2.5.3 Considerations on center’s clusters
As we did for the other roles, we now want to look at the independence measure of clusters. This
is found by seeing how many players belong to different categories. It allows us to see how likely a
good classifier will be able to create independent groups. Results show that some clusters are, as
expected, more independent than others. The plot can be divided by the colors in two categories:
yellow regions show clusters of “modern” centers, while in blue we show the classic ones. In
particular, we are able to see in Figure 2.19 that classic centers, while being independent in the
rebounding category, are also rather mixed up with one another. But the distinction should be
clear enough in order to highlight two different specialties, and a more general “classic center”
category, able to do both things good. The most interesting result by far is the one of three point
shooting centers. As we have seen, they are a rising category, but the results of the plot are very
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Figure 2.19: Venn’s diagram to analyze the intersections between the player’s categories analyzed
for centers.

encouraging. Indeed this category, in its pureness, is the most populated. A similarly optimistic
result cannot be feasible for assist centers as well. The results in its independence are very poor,
and it serves the purpose of highlighting that this is indeed an existing trend, but a slowly rising
one. The back to back MVP of the league Nikola Jokic is the obvious reference for this style of
play, but it might still take a while for this trend to stabilize as a tendency for players and coaches
in the league.
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2.6 Stars and versatile players
Among all team sports, basketball is the one to have its outcomes dictated by star players the
most. This is not a surprise to anyone familiar with the sport: having only five players at any
times on the field, in such a small place, will mean that a particularly gifted talent can manually
alter the flow of a game. Being the NBA the most important basketball league in the world, it
is not a surprise hence that such a number of star players have gathered, over the years, in such
a way. Nowadays, the NBA is over the idea of “star power vs team power”. Recent proceedings
(the player empowerment movement for example) has shown how much a single movement from
a star player can alter the balance of all teams in the league. This are the main reasons why
we cannot, in our work, ignore the presence of stars. These are, in the modern league, versatile
players, able to do pretty much everything above the mean of the other players. Players such as
Russel Westbrook, Klay Thompson, Lebron James, Giannis Antetokoumpo and Nikola Jokic have
in their arsenal each and every aspect of the game we already studied, and are efficient in both
offense and defense. Moreover, each of these players play in a different classic “position”, starting
from point guard all the way to center.
This is why we will now study the so called “versatility index”, an approximate measure which
shows how much a player is proficient in different styles of play. An average player scores around
5 in VI, while a star has 10 or over. To study offensive efficiency, we will analyze it in relationship
to PPG by a player. Figure 2.20 shows how well the versatility index is positively correlated with
the PPG for a player.

Figure 2.20: Scatterplot analyzing Versatility Index and PPG.

Of course, we are talking about the peak of modern NBA, and do not expect to find a big cluster,
yet we still want to analyze how well spread it is among the traditional positions, and this can be
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seen in the plot from Figure 2.21. The plot is obtained by querying our dataset to find out how
many players with V I ≥ 10 are present for each position.

Figure 2.21: Plot showing how many

Results of this analysis are influenced by the size of the original positions. Guards and forwards
being so populated with respect to the others will naturally imply the presence of more star players.
Still, it is interesting to analyze that guards will tend to achieve more PPG with respect to other
categories, showing how much shooting from three points, or creating free shots, can improve the
scoring outcome of a game.
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3
Machine learning methods

This chapter introduces the machine learning methods to approach the problem addressed by our
research. In particular, we are trying to define a model which, starting from a statline of an NBA
basketball player, is able to find his ”category”. With this term, we intend a more precise definition
of what the player is good at on the basketball floor, with respect to the current distinction in
roles.
The problem we are looking is hence, by definition, a classification one. Starting from a dataset,
it is necessary to find an accurate algorithm to create these categories. Despite the presence of
studies on classification problems, and a large set of solutions to them, we find ourselves restricted.
The dataset introduced in Chapter 2 does not have labels about categories of players. And while
this shows how much of a novelty problem this is in the realm of Machine Learning, it leaves us
with the necessity to employ a branch of techniques known as unsupervised machine learning.

3.1 Framework for unsupervised machine learn-
ing

A first high level description of unsupervised learning can be given by describing the differences
with its counterpart, supervised learning. In the latter case, a machine is given a sequence of
outputs y1, y2, ..., yn and has to learn how to reproduce a ”good” output, given a never seen input.
In other terms, it goes through a training phase, in which it learns from past data, and then it
gets tested to see how well it behaves. Unsupervised learning, instead, receives only inputs as
x1, x2, ..., xn, but it never gets supervised or rewarded based on how it behaved. It represents, in
other terms, the idea of finding patterns in data, going above and beyond noise.
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The cornerstones of unsupervised learning are clustering and dimensionality reduction. Both these
techniques rely on learning a probabilistic model, starting from the data. The machine is expected
to estimate a model that represents the probability distribution for a new input xt given previous
inputs x1, ..., xt−1. In other words, it has to build a learning tool that can model P (xt|x1, ..., xt−1).
This probabilistic model can indeed be used for classification, and find its fundamentals in Bayes
rule

P (y|x) = P (x|y)P (y)

P (x)

where P represents the probability, P (y|x) is the probability of class y given the input x, and P (x|y)
is the converse. P (x) is the probability of observing input x across all classes.This definition allows
to create a statistical framework for machine learning, which in practice influences the techniques
we want to address. The learner we are trying to build has beliefs about the world of data analyzed,
which have to be translated numerically. By accepting what are known as the Cox axioms, it is
possible to obtain a remarkable result4: if the machine is to represent the strength of its beliefs
by real numbers, then the only reasonable way of manipulating these beliefs is to have them
satisfy the rules of probability, such as the Bayes rule. This opens up a consequence. Saying
P (X = x|Y = y) can be seen as the degree of belief that X = x, knowing that Y = y.
Hence, the Bayes rule allows to define a simple framework for machine learning, as explained and
proved by Ghahramani, Zoubin5. Assume a universe of models Ω, where Ω = {1, ...,M}, and M is
not needed to be finite or countable. The learner will start with some prior beliefs over the models,
m ∈ Ω, such that

∑M
m=1 P (M) = 1. In this sense, a model is simply a probability distribution

over data points, in other words P (m). We can assume data to be sampled independently and
identically distributed. After observing a dataset D = {x1, ..., xN}, the beliefs over models are
given by

P (m|D) =
P (m)P (D|m)

P (D)
∝ P (m)

N∏

n=1

P (xn|m),

which can be read as the posterior over models is the prior multiplied by the likelihood, normalized.
Finally, the predictive distribution over new data is

P (x|D) =
M∑

m=1

P (x|m)P (m|D)

which can be drawn from rules of probability theory, and the fact that the models are assumed to
produce independently and identically distributed data.
This latter assumption makes sense with respect to the problem at our hand, as seen in the
preliminary data analysis. Data from our dataset do not have a clear structure, meaning the
assumption fits well.
Dimensionality reduction and clustering both find their basis in latent variable models, and are
the main techniques we will use in order to infer our data. The framework we introduced above
is able to fit well a large range of models which include these two strategies.
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3.2 Clustering methods
Clustering stands as the most known and studied unsupervised learning problem. It deals with
the problem of giving a structure to unlabeled data by creating, as the name suggests, clusters. A
cluster is defined, by T. Soni Madhulatha6, as a collection of objects which are ”similar” between
them and are ”dissimilar” to the ones belonging to other clusters. In this sense, a clustering
problem is usually defined by requiring that clusters optimize a given objective function Φ, which
satisfies a specific property.
There are two types of clustering.

1. Hierarchical: defined as the set of algorithms which find the successive clusters using pre-
viously established ones. These algorithms can further be sub divided into.

• Bottom-up: begin with each element as a separate cluster and merge them along the
different iterations of the algorithms.

• Top-down: begin with the whole set as an input and divide them along the different
iterations of the algorithms.

2. Partitional: defined as the set of algorithms which find all clusters at the same time.

In the most general case, the input of a clustering problem consists of a set of points which
belong to a metric space. This is defined as an ordered pair (M,d), where M is a set, and d(·) is a
metric on M . A metric can also be called a distance function. The most known is the Minkowsky
distance, or Euclidean distances, as defined by Jure and Rajaraman (2016)7.

Definition 1 Euclidean distance
Let X,Y ∈ R, with X = (x1, x2, ..., xn)T and Y = (y1, y2, ..., yn)T . For r ≥ 1, the Lr− distance
between X and Y , also known as Lr− norm can be defined as:

dLr (X,Y ) =

(
n∑

i=1

|xi − yi|r
) 1

r

This formula, depending on the value assigned to r, can hold different implications.

• r = 1. This is referred to as the Manhattan distance. It represents the sum of the absolute
differences of coordinates in each dimension, and is useful in grid-like environments.

• r = 2. The classic euclidean distance, useful in the Rn scenario, is also denoted with || · ||.

• r → ∞. It is the maximum absolute differences of the coordinates, over all dimensions.

With this formula it is possible to capture the notion of similarity, which is at the core of
algorithms such as K-Means.
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Before taking a look at the theoretic aspects of the subject, we must specify that all these algo-
rithms are not designed to provide an optimal solution in polynomial time. This is due to the
constraint known as NP-hardness. For such problems the best approach revolves around find-
ing an approximate solution, close to the optimal one. Since problems related to clustering can
often be represented as minimization or maximization ones, we can hence give the definition of
c-approximation.

Definition 2 C-approximation algorithm
For c ≥ 1, a c-approximation algorithm A for a combinatorial optimization problem is an algorithm
that, for each instance i ∈ I returns a feasible solution A(i) ∈ Si, where S is the set of solutions.
Given the objective function for the problem Φ, in case of a minimization:

Φ(A(i)) ≤ c mins∈SiΦ(s)

Instead, in case of a maximization:

Φ(A(i)) ≥ 1

c
maxs∈SiΦ(s)

The value of c is called approximation ratio, and the instance of the solution A(i) a c-approximation.

3.2.1 Centroid clustering
At its core, centroid clustering can be seen as a subset of center-based clustering methods. The
latter are the most known problems in the realm of clustering analysis, including examples such
as k-nearest-neighbor or k-center. In practice, a k-clustering center-based, on a set P , is defined
as a tuple C = (C1, C2, ..., Ck; c1, c2, ..., ck)T , where:

• (C1, C2, ..., Ck)T are partitions of P
• c1, c2, ..., ck are suitably selected centers for the clusters, with ci ∈ Ci ∀ 1 ≤ i ≤ k.

With this knowledge, we can now talk about K-means. It is an algorithm which aims at
minimizing within-cluster variance. This is done by constructing a minimization problem which
finds the minimum possible squared Euclidean distances. Given a center-based clustering, the
objective function for k-means can be defined as follows. It is desired a set of centers which
minimizes

Φkmeans(C) =
k∑

i=1

∑

a∈Ci

{
(d(a, ci))

2
}
.

Hence, for each point in the cluster the average euclidean squared distance from its center is
minimum. Due to the presence of a quadratic dependence, this can be rather sensitive to outliers.
On its own, this problem is of course NP-hard, and hence hard to solve in linear time or space.
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The particular property of K-means related to the so called centroids, which helps to simplify this
problem. Given the notion of Euclidean distance as in Section 3.2, we can define a centroid as
follows.

Definition 3 Centroid
The centroid of a set P of N points in RD is

c(P ) =
1

N

∑

X∈P

X,

where the sum is component-wise.

Note that a centroid is, by definition, not necessarily a point belonging to P . This result is
particularly interesting thanks to a Lemma, demonstrated by Jure and Rajaraman7, which states
that the centroid c(P ) of a set P ⊆ RD is the point of RD which minimizes the sum of the square
distance to all points of P . The lemma implies that, when seeking a k-clustering for points in an
euclidean space which minimizes the objective function Φkmeans, the best set of centers to select
for each cluster is the centroid of each one. This can be done in a variety of ways. During the years,
lots of heuristics have been developed which are able to approximate efficiently and accuretely a
solution for the k-means problem. Among all, we analyze the three solutions implemented by the
standard kmeans function in the R programming language R (R Core Team, 2023), used for the
analysis in the thesis. We will start from the default choice in R, that’s the Hartigan and Wong
implementation.

Hartigan-Wong

Developed by Hartigan, J. A. and Wong, M. A.8, firstly published in 1979, this algorithm is
the default choice for many programming languages. The main algorithmic concept behind this
solution is in the local search optimization. This is utilized by many heuristics used for solving
NP-hard problems, and consists in finding a solution which minimizes a criterion among a set of
candidate solutions. In our case, we are trying to maximize the objective function Φkmeans. In the
Hartigan-Wong approach, the local search optimization tries to relocate a sample into a different
cluster with the intent of improving the objective function. When no sample can be relocated
with an improvement, the method stops.

At each iteration of Algorithm 3.1, it is possible to move an observation with two different
strategies:

• First-improvement: any improving relocation is applied.
• Best-improvement: each possible relocation is computed and then the best one is applied.

Of course, here the trade-off is relative to speed and precision. The first strategy favorites the
efficiency, while the second can get to a closer solution to the global optimum.
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Algorithm 3.1 Hartigan Wong Algorithm
Let Φkmeans(Sj) be the individual cost of Sj, which is defined by the use of a
distance function. Let (c1, ..., ck) be the centers of the clusters.
Assigning Step

Partition the points initially into random clusters {Sj}j∈{1,...,k}.
Update Step

Given n,m ∈ {1, ..., k} and x ∈ Sn, determine wether the following function
reaches a maximum.

∆(m,n, x) = Φkmeans(Sn)+Φkmeans(Sm)−Φkmeans(Sn!{x})−Φkmeans(Sm!∪ {x})

Meaning that, if a point can be moved from cluster Sn to Sm with an improve-
ment of the value of the objective function, its position is changed.

Termination
The algorithm terminates once ∀ x,m, n, ∆(x,m, n) is less than zero.

An interesting observation is the one appointed by the Authors, where they underline that ”it is
guaranteed that no cluster will be empty after the initial assignment in the subroutine”. Without
a condition for termination though, it is possible that the algorithm itself may end trapped in
a local optimum, which is a common problem for such heuristics. Many implementations allow
indeed to specify a condition to avoid such a danger.

Figure 3.1: Hartigan-Wong algorithm iteration, credits to Matus Telgarsky and Andrea Vattani1.

Figure 3.1 shows the example of one iteration of the Hartigan-Wong algorithm. Since the hulls
represent the dimensions of the clusters, it is easy to see that a green point is too far from its
centroid. Based on this, it is reassigned to the blue cluster.
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Lloyd-Forgy

Firstly published by Lloyd, S.9, Lloyd’s algorithm is known under many names, such as Forgy’s
algorithm, or Voronoi iteration. It utilizes to full advantage the theorem we analyzed about cen-
troids. This is possible by repeatedly finding the centroid of every set in the partition, and then
re-partitioning the input according to which of these centroid each point is closer.
While being thought for Euclidean planes, and hence a cost function equal to the Minkowski
distance with p = 2, the algorithm works well even with high-dimensionality and non-Euclidean
metrics.

Algorithm 3.2 Lloyd Algorithm
Let Φkmeans(Sj) be the individual cost of Sj, which is defined by the use of a
distance function. Let (c1, ..., ck) be the centers of the clusters.
Assigning Step

Partition the points initially into random clusters {Sj}j∈{1,...,k}.
Update Step

For each partition Si, i ∈ {1, ..., k}, compute the centroid c′i, and create a new
partition C. If it holds that:

Φkmeans(C) < Φkmeans(S)

then C becomes the new partition. The points get assigned to the closest new
center.

Termination
When a global minimum for Φkmeans is reached, the algorithm terminates.

Figure 3.2 gives a graphical representation of this process.

Figure 3.2: Example of Lloyd’s algorithm iteration, credits to https://www.kdnuggets.com/
2018/07/clustering-using-k-means-algorithm.html.

Algorithm 3.2, as proven in7, always terminates, but with certain limitations. As for the Hartigan-
Wong solution though, points are initially randomly split in the partitions, meaning that a local
optmimum far from the actual solution may be reached. With k = 3 and an Euclidean plane, a
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situation such as the one in Figure 3.3 may occur.

Figure 3.3: Example of Lloyd’s algorithm trap.

Also reaching the global optimum, without a condition for termination, may be really expensive
on a computational stand-point. On a theoretical standpoint this algorithm is not promising.
Nevertheless, empirical studies show that the algorithm requires almost linear iterations to the size
of the dataset. This comes as an intuitive conclusion, due to the fact that multiple programming
languages offer the support for such an heuristic.

MacQueen

The third and last implemented algorithm for k-means by the R programming language is the
MacQueen (1967)10. It is a simple solution to the k-means problem, that utilizes, as Lloyd’s
implementation, the concept of centroids and their properties.
When Lloyd’s solution tries to update the assignments of datapoints, it does not move the centroids.
This is problematic, as with each new assignment the centroid changes its position. It can happen
that an observation is wrongfully assigned to a centroid simply because said centroid was not
updated. MacQueen tries to cope with this, as it updates the centroids with each new assignment.
Obviously this results in additional computational time.
As in the other cases, we are looking at a minimization problem, where we want Φkmeans to be as
small as possible. Again, the distance function can be of any kind, since the algorithm works well
in an Euclidean space with multiple dimensions, as well as in other scenarios.
We now proceed to show an high level description of the algorithm, provided by prof. Matteo
Matteucci.
The procedure shown by Algorithm 3.3 stays pretty close to the one developed by Lloyd. Being a
simple heuristic, or greedy algorithm, it serves the purpose of finding efficiently an approximate
solution to this problem. Rather than being a different solution with respect to Lloyd’s it tries to
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Algorithm 3.3 MacQueen Algorithm
Let Φkmeans(Sj) be the individual cost of Sj, which is defined by the use of a
distance function d(·). Let S = (c1) be a randomly chosen centroid in the cluster.

Assigning Step
For each ci such that i = 2, ..., k assign the next centroid while maximizing
d(ci, S). Assign each point in S to its closest centroid.

Update Step
For each partition Si, i ∈ {1, ..., k}, compute the centroid c′i, and create a new
partition C. If it holds that:

Φkmeans(C) < Φkmeans(S)

then C becomes the new partition. The points get assigned to the closest new
center.

Termination
When a global minimum for Φkmeans is reached, the algorithm terminates.

address the biggest weak point of the latter, being the initial position of the centroids. In both
implementations, reproducing an experiment multiple times may mitigate this issue.
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3.2.2 Density based clustering
An analogy that different clustering methods share resides in the concept of within-group similar-
ity. And although so far we have seen a particularly precise group of centroid-based algorithms,
this concept stands still. Density based clustering techniques utilize the same premises already
described, a data space with a set of points, and a notion of dissimilarity expressed through a dis-
tance metric, whichever the form. Centroid based techniques try to minimize the sum of squared
pairwise dissimilarities between cluster objects, starting from a value k expressing the final number
of clusters. The results of these assumptions are usually clusters of convex shape.
Differently from what seen so far, density-based clustering is, as for Kriegel, Hans-Peter et al.11, a
nonparametric approach, where all clusters are considered to by high-density areas of density p(x).
Being nonparametric, it does not require the number of clusters k as an input parameter, and
no assumption is made on the density p(x), or about the variance within the clusters. A direct
consequence of this last point is the fact that no clusters are created based on the concept of
pairwise within-cluster dissimilarity as measured by a dissimilarity function d(·). Hence, clusters
can be of any arbitrary shape, not just convex. The result is, in general, a set of data object
spread in the data space over a contiguous region of high density objects. These are separated
from other density-based clusters by contiguous regions of low density objects.
The reason to investigate such a methodology is in the concept of ”natural clusters”. Sometimes
density-based clusters can be interpreted this way, due to the absence of the convex shape limita-
tion. The results are hence in particular handy for studies related to nature-inspired applications.
Basketball, in this sense, can be seen closer to such a field of study. The simplest implementa-
tion to create natural clusters makes use of single-linkage clustering. Given two clusters C1, C2,
single-linkage clustering measures the distance between them by the following formula

D(C1, C2) = min
x1∈C1,x2∈C2

D(x1, x2),

meaning that the distance between two clusters is given by the distance between the two closest
points in each one. A naive approach to create natural clusters can be defined as following: group
all objects below a given distance threshold at a first level, then increase it and repeat this process
until all objects belong to a group. This technique has an inherit problem represented by the so
called ”chaining effect”. In this way, different clusters indeed can be connected via the existence
of a ”chain” of single objects between two clusters. Both Wishart, D.12 and Hartigan, J.13 tried
to create a generalization of this problem. The latter achieves a more general formalization of a
density-based cluster.

Definition 4 Density based cluster (Hartigan, 1975)
Given a density p(x) at each point x, a density treshold λ, and links specified for some pair of
objects, a density-contour cluster at level λ is defined as a maximally connected set of points xi

such that p(xi) > λ.

Definition 4, as well as the one from Hartigan, utilizes the intuition of what constitutes a cluster.
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The basic assumption is that the data set D ⊂ Rd is a sample from some unknown probability
density p(x), and clusters are high-density areas of this density p(x). Finding such high-density
areas usually requires two actions.

• A local density estimate at each point. Typically an algorithm for k-nearest neighbor can
be used to address the issue.

• A notion of connectivity between objects. Typically, points are considered connected if
they are within a certain distance ε from one another.

Clusters are then considered as sets of observations that are connected to other observations
whose density exceeds some treshold λ. The set {x|p(x) > λ} of all high-density objects is called
the density level set of p at λ. Different density-based algorithms may differ in how the density
is computed, how the notion of connectivity is defined, and wheter the algorithm used to detect
connected components is scalable or not.

DBSCAN: Density Based Spatial Clustering of Applications with
Noise

Single-linkage algorithms such the ones developed by Wishart and Hartigan are pretty naive, and
not efficient. When large datasets are added, it is necessary to consider scalable solutions. Density
Based Spatial Clustering of Applications with Noise14 can solve this issue, since it allows the use
of index structures for density estimations. We proceed now to explain the main concepts and
structures behind this algorithm.
Consider a set of points D ⊂ Rd that needs to be clustered. Let ε be a parameter specifying the
radius of a neighborhood, applied to any point. DBSCAN clustering classify points in three ways,
as follow.

• Core point: a point p is considered a core point if at least minPts points are within distance
ε of it, including p.

• Directly reachable: a point q is considered directly reachable from p if point q is within
distance ε from point p. Points directly reachable are considered as such if and only if are
reachable from core points.

• Reachable: a point q is considered reachable if there is a path p1, ..., pn, with p1 = p and
pn = q, where each pi+1 is directly reachable from pi. This has the consequence that all
points in the path have to be core points, with the only exception of q.

All points not reachable from any other point are outlier, also called noise points. If p is a core
point, then it forms a cluster together with all points reachable from it. Each cluster contains
hence at least one core point, and non core ones can belong to it, but they form an edge, since
they cannot be used to reach more points. All these concepts are shown in Figure 3.4.

For the example, let minPts = 4. Red points, among with the one labeled as A, are core
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Figure 3.4: DBSCAN structures example, credits to https://en.wikipedia.org/wiki/DBSCAN.

points, since the area surrounding these points is an ε containing at least 4 points. Because they
are all reachable from one another via a path, they form a single cluster. Points B and C are not
core points, but are reachable from A via other core points. Hence, they belong to the cluster,
and form the edge. Point N is a noise point that is neither core not directly reachable. With
this knowledge, we can proceed to show the abstract algorithm of DBSCAN. It requires, as input
parameters, ε and minPts. This algorithm is able to surpass k-means in some aspects. First and

Algorithm 3.4 DBSCAN
Find the points in the neighborhood of size ε of every point, and identify the core
points with more than minPts neighbors.
Find the connected components of core points on the neighbor graph, ignoring
all non-core points.
Assign each non-core point to a nearby cluster if the cluster is an ε neighbor,
otherwise assign it to noise.

foremost, as we introduced, it is able to find arbitrary shaped clusters, since we are not relying
anymore on quadratic formulae. These were also the cause for the sensibility of k-means towards
outliers, which DBSCAN is able to avoid thanks to the noise data-type.
The drawbacks for such an algorithm are related, from the ground-up, to the distance function
used. As any clustering algorithm, it has inherit flaws related to the discovery of an appropriate
ε value.
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3.3 Dimensionality reduction
Along with clustering, the principal tool for unsupervised machine learning is dimensionality reduc-
tion. Also known as dimension reduction, it is the transformation of data from a high-dimensional
space into a low-dimensional one. This transformation is able to retain some meaningful properties
of the original data. It is useful in many different fields, and mainly thought for two reasons: to
analyze data that are usually computationally intractable, due to size of complexity, and, in a
similar way, to address the so called curse of dimensionality.
Coined by Richard E. Bellman15, the curse of dimensionality can appear in many different fields,
since it is related to an issue that various data have inherently. High-dimensional spaces, such as
the one we are treating, are usually more complex to analyze with respect to three-dimensional
physical spaces. Intuitively, when the dimensionality increase, the volume of the space increases
so fast that the available data become sparse. To address this issue, a trivial solution is to add
more observations, since that way data are more compact, but this cannot be considered a one-
fits-all solution. In the machine learning field, some rule of thumbs have been created over the
years16, such as having at least five observations for each feature in the dataset. But these also
are unreliable.
Going further from an intuitive approach, one of the main reasons for which curse of dimension-
ality is such an issue is related to the distance function used. A great summary for this issue is
given by Pedro Domingos17.

”Our intuitions, which come from a three-dimensional world, often do not apply
in high-dimensional ones. In high dimensions, most of the mass of a multivariate
Gaussian distribution is not near the mean, but in an increasingly distant “shell”
around it; and most of the volume of a high-dimensional orange is in the skin, not
the pulp. [...] This is bad news for machine learning, where shapes of one type are
often approximated by shapes of another.”

Another development on this theme is a proof18 which helps showing how much distance become
insignificant in high dimensional scenarios. In particular, given a distribution on the real numbers
Rd, and any fixed n, it turns out that the difference between the minimum and the maximum
distance between a random reference point q and a list of number n random data points p1, ..., pn
become indiscernible compared to the minimum distance. Given E an Euclidean distance function,

lim
d→∞

E(
distmax(d)− distmin(d)

distmin(d)
) → 0.

This is the usual proof that demonstrates why, in high dimensions, distance functions lose their
usefulness.
Addressed why dimensionality reduction is so important in our scenario, we can proceed to describe
it, and address the practical implementations we will try in the research.
Dimensionality reduction methods can be divided in two main categories:

• Feature selection methods. Such approaches try to find a subset of the input variables, and
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can be done manually by filtering out non meaningful information, or automatically. It is
useful to obtain a more accurate reduced space for regression or classification.

• Feature projection methods. These are techniques which transform data from the high-
dimensional original space to one of fewer dimensions.

We will focus on the second family of approaches. The main concept behind all techniques is
the one of creating a reduced set of features, known as feature vector. Among all, we will start
from one of the most important technique, known as principal components analysis.

3.3.1 Principal component analysis
Principal component analysis19 (PCA) is a dimensionality reduction technique, which allows to
summarize a set of variables with a smaller number of representative variables, that are able to
explain most of the variability in the original set. It is an unsupervised approach, meaning that it
only involves a set of features X1, X2, ...Xp, and no associated response variable Y . Formally, the
principal components can be seen as a collection of p vectors, where the i-th vector is the direction
that best fits the data while being orthogonal to the first i−1 vectors. Other sources2 rephrase this
concept, underlying that principal component analysis seeks a small number of dimensions that
are as interesting as possible. Interesting can then be defined by how much an observation varying
along each dimension. We can see how each dimension is found, starting from the first principal
component, following the approach from James, Witten, Hastie, Tibshirani2 (2021, Chapter 12.1).
Let φ11, ...,φp1 be the so called loadings of the first principal component, which form the loading
vector φ1 = (φ11,φ21, ...,φp1)T . The first principal component of a set of variables X1, X2, ..., Xp

is the normalized linear combination of the variables with the first loading vector,

Z1 = φ11X1 + φ21X2 + ...+ φp1Xp

The normalized attribute adds one more constraint, namely
∑p

j=1 φ
2
j1 = 1. This is done to avoid

the loadings getting large in a non useful manner. We are looking to maximize the observed
quantity

zi1 = φ11xi1 + φ21xi2 + ...+ φp1xip

which is the score of the first principal component. Loadings are found by maximizing the variance
associated to the principal components, under the constraint.

max
φ11,...,φp1





1

n

n∑

i=1




p∑

j=1

φj1xij




2




subject to

p∑

j=1

φ2
j1 = 1

This problem is usually solved, in the realm of mathematics, via an eigen decomposition. The
most common geometrical interpretation for the first principal component implies that φ1 defines
a direction in the feature space along which data vary the most. By then projecting x1, ..., xn ∈ X

in this direction, the projected value represent exactly the scores z11, ..., zn1, as for Figure 3.5.
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Figure 3.5: First principal component, plotted over a dataset about population and advertisement
spending, from James, Witten, Hastie, Tibshirani2 (2021, Chapter 12.1).

Then, the second principal component is the linear combination of X1, ..., Xp that has maximal
variance out of all linear combinations which are uncorrelated with Z1. Doing this, the scores
z12, z22, ..., zn2 are computed as

zi2 = φ12xi1 + φ22xi2 + ...+ φp2xip,

where φ2 is the second principal component loading vector. To find φ2 we can solve the optimiza-
tion problem from before, simply substituting φ2 with φ1. This constraints geometrically translate
to the direction of φ2 being orthogonal to the direction of φ1. In a similar way, for larger datasets
with p > 2, more distinct principal components can be computed following this same idea. Once
all interesting components are obtained, they can be plotted to show a low-dimensional view of
the data.
Computing all ”interesting” components is not an easy matter, due to the fact that such a concept
is by its nature personal and subjective. We know that by the definition of the loading vectors
there are, for a dataset X of size n× p, min(n− 1, p) distinct principal components. But, recall-
ing our original aim, which is finding a way to capture the most information from a large set of
features p with a subset of that information, we cannot consider them all. Typically, the choice
of how many principal components obtaining is done via a scree plot. The way that the analysis
works is looking for an elbow in the plot: once further principal components begin to explain less
and less variance, then we can stop adding them.
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4
Machine learning predictions

This chapter presents the results of the application of the techniques described in Chapter 3 to the
analysis of NBA basketball data. The aim of this analysis is to find, in a dataset of NBA players
described by their stat line in a year, an appropriate role, which should be more accurate than
the notion of position. To this aim, we will focus on the clustering and dimensionality reduction,
in the context of a classification problem.

4.1 Preparing the dataset
A first step required for the analysis is to prepare the data set. We will do so by filtering some
information, going further with respect of what has been done in Chapter 2. The techniques we
are going to use cannot be applied in presence of factor variables, meaning that we will need to
create a subset of our original data set without the information of TEAM and POS. These are, as
we recall, the team in which a player played during the referred year, and the position in which
the player is recognized. Finally, we want to scale the numeric attributes, as this is a critical step.
In particular, we apply the scale function provided by the R programming language. Given a data
set, in our case a 2423 × 26, the root-mean-square of a column gets defined as

√∑
(x2)/(n− 1).

For our problem, scaling data is fundamental due to the nature of our observations. For example,
getting 10 rebounds is way more significant than getting 10 points inside a basketball game. A
coach will prefer, almost always, a player with 10 rebounds with respect to one with 10 points. In
a similar fashion, even greater is the impact obtained by a single assist: due to the three point
revolution, in recent years an assist is worth roughly 3.47 points, factoring in the possibility of
getting free throws for each shot attempt. Hence, we complete our pre-processing by scaling the
data, meaning they are ready for the actual computation, starting with clustering. According to
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different models, we will specify whether or not further pre-processing is needed.

4.2 Clustering methods

4.2.1 Centroid clustering analysis
As for centroid clustering, we will try to solve our problem of creating a categorization model via
the use of the k-means algorithm. This decision comes from the fact that it is, indeed, one of the
easiest ways to assess this problem. But, as discussed in Section 3.2.1, one of the biggest issues
regarding centroid analysis, and hence k-means, resides in choosing the number of clusters. We
obviously want a number which is not too high, otherwise our data in the resulting clusters would
be too scattered, but, at the same time, we wish to get as much distinction as possible.
There are several ways to choose in a guided way this number, since there are a number of heuristics
created for this sole reason. Three are particularly well known and used.

• Computing the within-cluster-sum of squared errors for different number of centers.
• Computing the silhouette value for different numbers of centers.
• Computing the gap statistic for different numbers of centers.

A data set with 26 variables which has not got through any reduction, due to the curse of
dimensionality, is very likely to suffer the use of Euclidean distance, and this can be easily seen
by looking at the plots for these methods. In each case it was applied the function fviz_nbclust,
belonging to the factoextra package, external from the R standard library.

Listing 1 Call for the fviz_nbclust function.
fviz_nbclust(players.data.numeric.scaled, kmeans,
method = c("wss", "silhouette", "gap_stat"))

Figure 4.1 highlights the result obtained by within-cluster-sum of square errors. We can see, first
and foremost, that there is not a clear elbow, meaning that in any case it will be particularly hard
to find a meaningful point. The closest thing we can highlight is that, for two centers, the total
within sum of square errors drops significantly, and after it goes down constantly. But this cannot
be an answer to our problem. We need at least six categories to define players, otherwise we would
end up with a similar distinction that the positions create. We hence deepen our analysis, looking
at the silhouettes for different number of centers.
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Figure 4.1: Results for the fviz_nbclust using the within-cluster-sum of squared errors.

Similarly to what we have seen for within-cluster-sum of squared errors, the silhouette analysis
in Figure 4.2 suggests to choose a number of centers equal to two. We have already explained why
this cannot be considered a meaningful choice, meaning we will conclude this first preliminary
analysis looking at the results of the gap statistic.

Figure 4.2: Results for the fviz_nbclust using the silhouette.
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The interesting result of the analysis from Figure 4.3 deserves a bit of attention. Even with an
high dimensionality, the gap statistic suggested to cluster our data in five different clusters. And
while this is indeed not enough for our study, we want to underline that this is the exact number
of positions currently used in the mainstream media when talking about basketball. Meaning our
set of variables is for sure enough to explain all the positions classically used, but we need to push
its limits in order to find a more clear distinction.

Figure 4.3: Results for the fviz_nbclust using the gap statistic.

For our purposes, we hence cannot choose any of the suggested number of centers, which puts the
focus on how much of a complex matter is to choose the value k for clustering analysis.

Figure 4.4: Classification of advanced roles offensively and defensively, provided by Hack a stat.

The website Hack a stat created the helpful guide from Figure 4.4 to define advanced roles in
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basketball. We want to focus on the left column, where the offensive roles are defined, since, for the
scope of this research, we won’t consider defensive parameters. We are able to see, distinguished
by different colors, eight different macro categories, which are then further divided. But, as a
matter of fact, we want to focus solely on the macro distinctions, since the smaller ones are hard
to grasp given the nature of our data set. As explained in Chapter 2, we do not have access to
advanced offensive metrics, which implies we cannot distinguish, for example, between a post-up
shooter and a pure shooter. Not having access to the Post-up% for each player would imply that
while a distinction between these players does exist, they could only be classifiable as ”shooters”.
The only further assumption cluster we will assume, other than the eight suggested by the source,
is the superstar cluster. We already talked about how much in NBA the presence of star players
is fundamental in order to create a successful team, and found out in the preliminary analysis
that there is indeed the presence of more versatile player than others, thanks to the VI,versatility
index, information we have in our data set. With all of this being said, we proceed to analyze
the k-means clustering with nine centers, done without dimensionality reduction, with the three
algorithms that the R programming language offers, starting from its default option.

Hartigan-Wong

For purposes of reproducibility for this experiment, we will always set the seed for the analysis at
123. That being said, we can proceed to the first call to the kmeans function.

Listing 2 Call for the kmeans function using the Hartigan-Wong heuristic.
km.res <- kmeans(players.data.numeric.scaled,
centers = 9, iter.max = 50, nstart = 25,
algorithm = "Hartigan-Wong", trace = FALSE)

Listing 2 can be explained as follows: we are looking at our dataset, filtered and scaled, trying
to find on it nine clusters. The number of iterations is usually set to 10, but due to the high
dimensionality of this dataset it had to be increased.
After the execution, we end up with a clustered version of the dataset, which cannot be visualized
on its own, since 26 dimensions cannot be plotted. To solve this issue, we resolve to dimensionality
reduction, thanks to the function fviz_cluster, belonging to the factoextra package. We hence plot
the nine found clusters on two dimensions, to analyze the result obtained.
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Figure 4.5: Hartigan-Wong heuristic result

A first way to address the results from Figure 4.5 is to look graphically at the clusters. We
see that there are roughly four of them which are precise, being 2, 4, 5 and 9. These have their
observations rather independent, while the remaining ones mix with one another, which hints to
a degree of between-cluster-dissimilarity. In other words, observations may be very similar to one
another in these groups. We can look closer at the within sum of squares with Table 4.1.

Table 4.1: The Within-Cluster-Sum of Squared Errors for Hartigan-Wong heuristic

Cluster number WSS
1 3334.156
2 1481.673
3 5167.883
4 2590.099
5 2611.655
6 4773.328
7 4702.025
8 4044.474
9 3117.240
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Table 4.1 shows that clusters 2, 4, 5 and 9 are the ones with the more contained within sum of
squares, which implies that players inside those groups are more similar to one another and less
similar to the ones outside them. Hence, this result confirms our initial hypothesis obtained by
looking at the plot.
Before addressing a comprehensive analysis of the results, we would like to explain the methodology
used for this purpose. For clusters which are hard to analyze, a subset was chosen, based on the
mean of games and minutes played in the league, as for official NBA statistics. This implies players
were discarded when they played less than 20 minutes per game and 40 games per season. For
clusters 3, 6 and 7, these requirements were too much, and the results were almost empty classes.
This alone is an index of the fact that in here we will find mostly role players, which do not find
much times in games and hence will need a thorough analysis. In cases like cluster 8, instead, this
was a very useful mean of understanding characteristics of the players.
To get a complete picture and understand how we can get better results, we proceed now to
analyze each one in detail.

• Cluster 1: composed almost entirely by guards, this cluster contains what we called the
ground generals. In particular, they are smaller-shaped players who are aimed at developing
plays for their teammates, generally by providing assists. This is indicated by a high AST
and AST%. A good example for this cluster is Draymond Green, which has the shape of a
Forward but is known for his assists proficiency on the court, meaning that not only trivial
players are being included. Another interesting result is the presence of a center, such as
Marc Gasol, which can be seen as the ”father” to the modern center role, without ever fully
achieving it.

• Cluster 2: this cluster is particular, since it contains relegated players. This is easily
noticeable by the fact that, overall, they played 8 minutes per game, probably garbage
time. With this definition we refer to minutes played in games where the score is almost
decided, and hence coaches resort to use players who usually stand in second lines. Among
all of the listed players, only two of them are still in the NBA, meaning that finishing in
this cluster is a good way of detecting wheter a player needs to be cut off a team.

• Cluster 3: we see a high presence of players who still need development and more time
in the league. Predominantly, we find shooters, and they are less likely to be close to
the relegation cluster. This can also be highlighted geographically, since the cluster is in
between cluster 2, and the more meaningful ones. Yet again, an analysis of this cluster
can show that it is filled by roughly 80% with guards and forwards. A proper analysis of
the forwards present in this cluster show that they are usually shooters, either from 2 or 3
points, meaning that they are less physical players, but preferably shooters.

• Cluster 4: this can be summed up as the superstardom cluster. It is one of the easiest
to analyze: we find in here the most valuable players of each season, as well as the best,
well-rounded players in the league. They are most of the times players good at pretty much
anything, meaning that a rough classifier will almost any times classify them together. The
VI plays for sure a major role in this distinction, as we have seen in Chapter 2. We would
like to address players we described as ”shooting centers” are all present in this cluster.
For this reason, one of the most coveted weapons in modern basketball is classified almost
always with a superstar label. The reason is simple: a shooting center will be good at high
percent 2 point shots, will be close to the league mean in 3P%, all while take rebounds in
a game. This will, by default, boost their VI.
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• Cluster 5: contains the role players regarded as good 3 point shooters in the league. This
can be seen by the fact that their mean on 3P% is roughly 37%, higher than the mean
of the elite shooters in the league. This aligns with the initial analysis showing that this
cluster was more independent with respect to the others.

• Cluster 6: big framed players with less playtime, still very proficient in rebounding. Again
as in cluster 1, we can see that this classification is working even for not ”classic” rebounders,
which are centers and big forwards, by looking at the guards which are present in the cluster.
We see in here more physical guards, such as Patrick McCaw, Gary Payton II and John
Konchar, which are all known for their athleticism.

• Cluster 7: similarly to cluster 3, we see a high presence of players who still need development
and more time in the league. Predominantly, we find drivers, and players who are more
likely to become belonging to cluster 8 with more development and minutes in their favor.
Again, this cluster differ from number 3 with respect to the preferences that the players
have in generating scoring. While cluster 3 players prefer shots and assists, these ones will
rely more on free throws and rebounds.

• Cluster 8: cluster containing a wide variety of players, and indeed one of the most populated
ones, mostly of which are proficient inside the paint. Hence they are most of the times on-
ball players who prefer to try drives to the rim, or two point shots. This can be seen by the
percentage on 2P%, close to the average of the league, and FT%. The attempts for these
two types of attacking shots need to be adapted: these players, since they average less time
on the court, cannot expect to attempt the same number of free throws or 2 point shots
as the starting five of each team, since they will also be less likely to be the focal point of
attack for each team.

• Cluster 9: finally, we find the classic center cluster. This is easy to see due to the fact that,
for example, there are no guards and very few forwards in this group. The only exception
comes from Brandon Clarke, listed as a Forward Guard, but this can be seen as a mistake
on the dataset, since it is a clear example of big framed, close to the rim, forward. We
do not find only trivial centers, but also guards with a preference towards rebounding and
high-percentage 2 point shots. Indeed, the mean for 2P% is 60% in this cluster, meaning
we find players with highly efficient shots, which imply they stay closer to the rim.

A final result we want to address is how much clusters are balanced between one another with
respect to number of members, to understand possible trends and preferences in the modern NBA.
Indeed, we can gather very interesting results from Figure 4.6 alone. Firstly, that the most crowded
cluster is number 3, containing role players for 2 and 3 point shooting. This is yet another proof
to the concept we tried to explain in Chapter 1: the three point revolution is the most present
trend of the last years in NBA basketball, and teams are trying their hardest to achieve excellence,
by gathering a large number of shooters in order to find efficiency in this department. In a similar
fashion, players from cluster 8, which is the second most crowded, are fundamental. Drivers to
the rim, and generally multi-layered second unit players, who can do almost anything, that enter
the game when the superstars from cluster 4 are tired. The latter is indeed the least crowded
among the clusters which meaningful players for the obvious reason that superstars are a rare
exception, and not the norm in the NBA. Other interesting trends can be seen in the fact that
ground generals and classic centers are less populated, meaning that we are moving from static
roles with two or three precise specialties to more fluid ones. Nowadays each player is supposed
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Figure 4.6: Balance of clusters size.

to do almost anything at a good level. Still, they are fundamental in today’s NBA: any team still
want a specialized game creator which dishes assists, and a big man who can gather rebounds and
score in an efficient manner.

Lloyd-Forgy

This heuristic of k-means will follow all the previous assumptions made for the Hartigan-Wong
analysis.

Listing 3 Call for the kmeans function using the Hartigan-Wong heuristic.
km.res <- kmeans(players.data.numeric.scaled,
centers = 9, iter.max = 50, nstart = 25,
algorithm = "Lloyd", trace = FALSE)

The call to the function kmeans from the R library remains the same, with the exception of the
algorithm used, which of course becomes ”Lloyd”. All the other parameters remain the same,
since the dataset did not undergo any other change, and the number of centers is the same for
the reasons explained before. All of this said, we proceed to show the output for the algorithm,
plotted again in two dimensions.
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Figure 4.7: Lloyd-Forgy heuristic result.

The results from Figure 4.7 prove to be especially similar to the Hartigan-Wong heuristic. This
comes from the two being particularly similar, meaning overall we cannot expect to have much
more different results. We can see graphically how much the two methods differ from one another
thanks to a free online tool, Diffchecker.
Graphically, as shown in Figure 4.8, we cannot infer any particular difference in the classificators:
the generated ellipses look to be slightly larger in the Hartigan-Wong method, but apart from
that even the outliers look to be the same. About this topic, we want to spend a few words
talking about them, to understand if the classificator is failing, or where the dataset may still be
incomplete or wrong.

• 1297: Derrick Walton Jr, 2021.2022, playing for the Detroit Pistons. While he can be
indeed be listed as a floor general, averaging 7 APG with a 27% AST% for his team, what
makes him a sort of outlier for his cluster was his abysmal 2 point shooting, one of the
worst of the league. This made him end up further from the clusters with good shooters,
while still belonging to the ground generals.

• 2459: Jordan Sibert, 2018-2019, playing for the Atlanta Hawks. Listed as belonging to
cluster 3, played only for 4 minutes during the whole season, but his ORTG was computed
nevertheless, despite the evident lack of substantial information. It can be safely removed
from the dataset.

• 1570, 2171: James Harden, 2019-2020, playing for the Houston Rockets. What sets this
observation as an outlier is the immeasurable metric Harden obtained during this particular
season. Indeed, Harden shot 800 free throws during the regular season, an all time record,
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Figure 4.8: Difference checking results between Hartigan-Wong and Lloyd-Forgy heuristics, via
Diffchecker.

with an outstanding 87% efficiency. The reason for this point being an outlier is, hence, due
to this player pushing a common statistic to its breaking point. James Harden, 2018-2019,
playing for the Houston Rockets. The same exact line of reason as before applies, with
Harden shooting 857 free throws, with an 88% efficiency. In this case, he ended up winning
the trophy for best player in the season, since even in other metrics his offensive efficiency
was so outstanding to set many records for years to come.

• 307, 379, 1148: Damian Jones, 2020-2021, playing for the Los Angeles Lakers. He was
shooting with a very interesting percentage of success, roughly 94% with 2 shots a game,
but they were not enough to categorize him as a shooter, and ended up for his frame and
rebounds to be listed as an athletic center, belonging to cluster 6. Patrick McCaw, 2020-
2021, playing for the Toronto Raptors. He played roughly 30 minutes the whole season,
with 5 minutes per game, and ended up shooting just one shot, which went in, keeping
him at a 100% efficiency. Obviously his presence is debatable in this dataset, but for the
scope of our work we do not consider him interesting enough as a sample, and we resort to
remove him. Reggie Perry, 2020-2021, playing for the Indiana Pacers. The contributions
he provided to the team were obviously not enough, since, after his move to the Pacers he
ended up playing only 9 minutes, and his ORTG was computed, and is one of the highest
in the dataset, at 200. As for the other samples, we resort to remove him.

We can hence conclude that the outliers are due to two main factors in our classificator. The
first being the players averaging statistics which are outstanding, or polarized to one specific
strenght of a player’s game, as we have seen for Harden and Walton Jr respectively. The second
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reason is due to the dataset, which list an ORTG for players whose contributions to their team
were limited at best, resorting in extreme situations as we have seen. Recall that, in Chapter 2,
we excluded from the dataset any player for which ORTG was not computed. With this analysis,
we conclude that our classificator is not having a clear case of errors in the outliers, and proceed
to analyze the within sum of squares, comparing the results for the Hartigan-Wong and Lloyd
method.

Table 4.2: Comparison for Within-Cluster-Sum of Squared Errors between the nine clusters .

1 2 3 4
Hartigan-Wong WSS 3334.156 1481.673 5167.883 2590.099

Lloyd-Forgy WSS 3408.436 2025.303 4975.658 2683.734
5 6 7 8 9

2611.655 4773.328 4702.025 4044.474 3117.240
2596.632 4793.108 4415.512 3969.081 2969.687

We can see that the within sum of square remains pretty much the same, with slight variations
considering the overall values. The Lloyd method is less precise in cluster 2, which wasn’t an issue
to begin with, since it was the easiest to classify.

MacQueen

We are looking at the final proposed implementation for the standard library of k-means by the R
language. Being MacQueen solution different in a measure from the previous ones, the parameters
for the call need some tuning.

Listing 4 Call for the kmeans function using the MacQueen heuristic.
km.res <- kmeans(players.data.numeric.scaled,
centers = 9, iter.max = 100, nstart = 25,
algorithm = "MacQueen", trace = FALSE)

The call to the function kmeans from the R library here has seen mainly the change in number of
iterations needed to reach convergence. The previous number of 50 was not enough anymore, and
we decided to double it, to be completely sure of not missing any meaningful information during
the call. Apart from this, the heuristic used has changed, hence we show now the results for the
aforementioned call.
Figure 4.9 shows that we are not able to see pretty much any difference with the previous results.
While graphically we are in presence of an almost identical result to the two before, we want to
dig even deeper in this case, and find out whether or not there are any significant changes in the
results. Firstly, we do so by taking a look at a complete version of the WSS table.
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Figure 4.9: MacQueen heuristic result

Table 4.3 indeed shows that the decision for the heuristic used is not as clear as one could expect:
all the proposed solutions tend to line up on defined results, and apart from the occasional errors
and diversions on, for example, cluster 2, we are not able to say that one is clearly better than
the other. Being it the default choice for the R programming language, we will from now on refer
to Hartigan-Wong result as the main one.

Table 4.3: Comparison for Within-Cluster-Sum of Squared Errors between the nine clusters consider-
ing all heuristics.

1 2 3 4
Hartigan-Wong WSS 3334.156 1481.673 5167.883 2590.099

Lloyd-Forgy WSS 3408.436 2025.303 4975.658 2683.734
MacQueen WSS 3394.839 1979.975 4970.335 2855.353

5 6 7 8 9
2611.655 4773.328 4702.025 4044.474 3117.240
2596.632 4793.108 4415.512 3969.081 2969.687
2695.762 4799.396 4233.201 4016.438 2900.387

Finally, we wanted to explore if this result and the main one, from Hartigan-Wong, diverge con-
ceptually. The dplyr library allows to examine the different values referring to them as sets, and
we are able to use it in order to understand where the algorithms diverge. This analysis has been

61



carried on by looking at the ”misplaced” players: the observations which were categorized in a
cluster from Hartigan-Wong’s method, and then were differently treated by MacQueen’s one.
The conclusion is that the algorithms do not diverge conceptually, and all the found clusters are
identical to the ones described in Hartigan-Wong’s solution. The only instances of different catego-
rizations were the ones which were actually more thin-lined. Players such as Kyle Anderson, who
can indeed be classified as a center, as well as a driving forward on-ball, or Evan Fournier, which
is categorized as a guard, and is very proficient both in shooting and assisting his teammates.
All the discussions above prove that, at least in this realm, changing the k-means algorithm is
unlikely to have any meaningful impact on the results of our experiments. As a positive con-
sequence, we are also able to underline that k-means, for our purposes, is stable in each of its
implementations, and will, almost anytime, provide safe results. In some cases it can even be
useful to execute different algorithms, to get a more clear view for players which are hard to be
defined in just one category, like the ones listed above.

Analysis of the superstardom cluster

During the analysis done in section 4.2.1, we were able to discover a particular set of players
which was briefly discussed, and requires, as we believe, closer attention. The superstar cluster
indeed contains a wide variety of players, and we can safely assume that they were grouped due to
their VI. This variable explains if a player can be considered a high-level one, and it measures the
versatility of their playstile. Indeed, superstar players excel at almost any aspect of the game, but
they too have their specialties: Stephen Curry, who is famous for his 3 point shot, is in the same
category as Giannis Antetokoumpo, which main capability is his presence under the rim. Hence,
what we aim to achieve in this section is to find a second level of clustering, by applying some of
the techniques analyzed so far to the cluster number four obtained in section 4.2.1.
We will adapt on this smaller scale all the preparations that were done in the previous analysis. In
particular we will use a slimmer dataset, where we remove the following variables: X, AGE, TO%,
eFG%, TS%, SPG, BPG, TOPG, ORTG, DRTG, MIN%, USG%, cluster. We will then also be
sure to scale the variables, as it is a step required by all the proposed methods for the analysis.
We will focus solely on the kmeans approach, utilizing the Hartigan-Wong algorithm. First of all,
we have to understand the optimal number of clusters for this new subset of a dataset, and we
will do so by analyzing it with the gap statistic method. We have seen before in section 4.2.1 that
this analysis provided the closest results to the value we used in the end. And while it is also the
most expensive in computational terms, we can safely use it, due to the very reduced number of
players that we need to analyze. The results from this first research can be seen in Figure 4.10.
The result is straightforward in its analysis, meaning we will choose as our value k, number of
clusters, three. As for the number of iterations, 50 can be considered almost too high for the
means of this experiment, but it also allow us to avoid missing any information. The heuristic, as
we concluded before, does not meaningfully influence the final results of the algorithm itself. In
Figure 4.11 we find the results for this experiment, where the seed was again set to 123.
Again, we find the outcome particularly interesting, since it allows us, first of all, to have a deep
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Figure 4.10: Results for the fviz_nbclust function using the gap statistic, applied to cluster 4 found
in section 4.2.1

Figure 4.11: Results from applying k-means on the cluster 4 obtained in section 4.2.1.

look inside a cluster. Inside of it, there are indeed some sorts of natural clusters, which are
highlighted by the ones in the results. Indeed, even if the clusters overlap with one another, this is
due to the nature of k-means, which can only generate elliptical shapes. Before going in details of
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Table 4.4: Within-Cluster-Sum of Squared Errors for the clusters found by applying k-means to
cluster 4 obtained in section 4.2.1.

1 2 3
WSS 490.23 386.21 591.32

the found clusters, we can take a look at the within-cluster-sum of squared errors for the resulting
clusters.
The results, again, prove to be extremely encouraging, and are by far lower than the ones we found
during the previous experiments. With this consciousness, we can finally analyze the results cluster
by cluster. Before proceeding, we want to notice that the clusters are balanced as well in their
sizes, going from 46 observations to 58.

• Cluster 1: this category of superstars includes the ones which are not seen as the main
scoring terminal of their teams. While there are exceptional players in terms of efficiency
from 2 and 3 point shooting, such as Jimmy Butler in the first case, or Kyrie Irving in the
second, they are not the players responsible to carry their team’s offensive maneuvers. They
are mainly guards, due to the fact that they are expected to act as selfless players, able
to dish assists to their teammates, as the presence of Derrick Rose during the 2019-2020
season can show.

• Cluster 2: in here we are able to find some of the most important players in any team’s
offensive efforts. These are the most extremely efficient 2 or 3 point shooters, players such
as Stephen Curry, Devin Booker or James Harden. We are able to see miscellaneous players
such as guards or forwards inside this cluster. This serves to prove even further that the
main mean of offense in recent years is, indeed, the three point shot.

• Cluster 3: while the three point shot has seen an increasing attention during the last years
due to the development in its productivity, we still have to recall that the most efficient
shots in basketball are those taken closer to the rim. In this final cluster we find such
players, who play significantly closer to the rim, usually shooting, and are as well able to
gather a large amount of free throws by driving and dribbling. Also, there are the players
with the highest efficiency ratio, due to their high usage and the type of shot they take.
In here, there are mainly centers and forwards. Some examples are players such as Nikola
Jokic, Julious Randle or Lebron James.

Another further note on this discussion is on how the same player, from season to season, is
not always categorized in the same cluster. For example, Derrick Rose was a fundamental asset
in 2019-2020 for the Detroit Pistons, and the sole player who could carry assists to the rest of
his teammates. Instead, on following years, he was categorized as primarily a floor general. This
is an interesting consideration, which could incentives the use of this tool also during parts of a
season, in order to understand the development of a player.
We conclude this section by stressing that what we have seen could indeed be a further method
of analysis for all the found clusters in previous sections. It could help reducing the margin of
error, as we have seen in Table 4.4. There is, in this method, the inherit risk of creating too many
meaningless categories. We decided to show this analysis for the particular case of the superstar
cluster, being it in the gray line of being a meaningful, but not detailed enough result.
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4.2.2 DBSCAN analysis
To go beyond the main issues of centroid clustering, we defined in Chapter 3 the concept of density-
based clustering, introducing the DBSCAN routine. This allows to implement a nonparametric
function, in which we do not have to specify the number of clusters we want to obtain. Also, it
will help us understanding whether or not there are natural clusters inside the original dataset we
are using for this study.
While not utilizing a parametric approach, the function still needs two important input values,
which, as we explained in Chapter 3, serve the purpose of understanding which are the core points
of our datasets. These are MinPts and ε. These are usually found in the order we propose here. In
particular, MinPts follows a rule of thumb, which is pretty simple, and goes by MinPts ≥ D+1,
where D is the number of dimensions in our dataset. Given that there are in total 26 numerical
variables, we will assume for a first example a value of MinPts = 27. Another usual configuration
is MinPts = 2 ·D. On the other hand, ε is a bit less straightforward to obtain. We want to find,
given each point and its k-nearest neighbors, a value of the mean distance which is high, but not
too big to handle. To do this, these k-distances are plotted in an ascending order, and the aim is
to determine the “knee”, which corresponds to the optimal ε parameter. A knee corresponds to a
threshold where a sharp change occurs along the k-distance curve. Inside the dbscan package, we
utilize the kNNdistplot function, which is used in this case to draw the k-distances plot. In this
experiment, k = MinPts = 27.

Figure 4.12: K-nearest neighbors distances plotted in ascending order.

The elbow, as Figure 4.12 shows, is at, roughly, 5.5, and is indicated by the horizontal dotted
line. For the experiment, this will be the value of ε. These distance may seem low considering our
dataset, but we recall that, for all the analysis in this chapter, we are using the scaled version of
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our dataset, in order to avoid problems related to variability of the observations.
In the R programming language there are mainly two ways to compute the DBSCAN analy-
sis, which are almost at all similar, but with a slight difference in performances. The function
fpc::dbscan is the old implementation for the function, and is slow for nowadays standards where
there are large and multi dimensional datasets. Instead, the dbscan::dbscan function is able to
compute almost any dataset in a much more efficient manner, making it the default choice for
larger inputs. In our study, we carried on the analysis with the same input parameters and with
both the implementations, which gave always the same result. The call to the function only re-
quires the three parameters we already expressed, which are the numerical scaled dataset, the ε

value and the MinPts value. We proceed now to show the results from this first analysis.

Figure 4.13: Results for DBSCAN execution.

Obviously results from Figure 4.13 cannot be considered satisfactory. The algorithm was only
able to find one cluster containing more or less all the observations present in the dataset. We
want to note that the representation of the results, based on the first two principal components
of the dataset, is just a mean of visualizing, and does not influence in any way the result of the
algorithm itself. On why these are the results, many can be the cases, but mainly we can focus
ourselves on the followings.

1. The dataset being too overcrowded with similar observations on some statistics. While
DBSCAN is indeed useful in real world scenarios, it may be a better fit for data which are
not so crowded among the mean in every statistical field. Most players in the NBA cannot
either exceed to much or go down a certain treshold in almost every statistical field. In the
first case, every player would be a superstar one, in the second, they would be cut by any
team. This implies that most of the observations will have particular success in one of the
main metrics and statistics, but will inevitably fall in the mean for most of the others.
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2. Not being able to give the algorithm the number of clusters. What we discussed in point
one, stands as well in the analysis we carried on for centroid clustering, and yet there we
were able to see very interesting results. This comes from the idea that centroid clustering
allows to choose the number of clusters, which cannot be done for DBSCAN. And while
this can be seen as an advantage, in our specific scenario we will see that these are not
enough limits, making it impossible to gain any relevant information.

Figure 4.14: K-nearest neighbors distances plotted in ascending order for the reduced dataset.

From these considerations, we are able to gain insight on why the DBSCAN algorithm cannot
work on our dataset, as it is, to create a meaningful result. In order to address problem [1] for
the previous experiment, we try a different approach, which is based on creating a more slim,
and hopefully diverse, dataset. Indeed, some of the information for our dataset can be considered
redundant, since it either expresses a defensive proficiency for a player or a superfluous concept.
The first case can be seen for variables such as turnovers, steals, or blocks, while the second
instance relates to variables such as age, offensive and defensive ratings. We hence remove the
following variables from our dataset, to create a subset which highlights variety in the data and
relates more to the problem at hand. The removed variables are X, AGE, TO%, eFG%, TS%,
SPG, BPG, TOPG, ORTG, DRTG, MIN%, USG%. With this new dataset, we want to try once
again the same experiment, repeating the procedure we already analyzed. Firstly, we set MinPts

to 15, since we end up with 14 scaled variables after the reduction. Then, we analyze the plot for
the distance of the k-nearest neighbors.
While less clear, as Figure 4.14 shows, the elbow is still present, and in particular we assign it to
3. Meaning that the parameters for the execution of the algorithm will be MinPts = 15, ε = 3.
Unfortunately, our expedient was not enough to produce variability in the dataset, which, as it
can be seen in Figure 4.15, is still too much compact around the mean, and is not able to create
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Figure 4.15: Results for DBSCAN execution for the reduced dataset.

more natural shapes. We can conclude, after these experiments, that DBSCAN is not a good
solution for the analysis of our dataset as it is.
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4.3 Dimensionality reduction - Principal Com-
ponent Analysis

In this section we apply the principal component analysis, or PCA, to reduce the dimensionality
of our dataset. In order to perform the experiments and the analysis on the dataset, the packages
used, external from the standard library provided by the R programming language and the ones
used so far, are corrr, ggcorrplot and FactorMineR.
Since principal component analysis is deeply connected to how much variables are correlated with
each other, the first step we will carry on is to look at the correlation matrix for all the covariates
present in the dataset.

Figure 4.16: Correlation matrix for the whole dataset.

The result from Figure 4.16 is too complex, being it crowded and hence hard to read. We were
also able to understand, in Section 4.2.2, that not all the information among the covariates is
inherently important for our scopes, meaning we will proceed to analyze, in this section, the subset
of variables discussed previously. This way, we can have all the valuable information regarding
offensive measurements, allowing a clearer explanation of the results, as well as a facilitation for
the dimensionality reduction process. The new correlation matrix will be shaped as in Figure 4.17.
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Figure 4.17: Correlation matrix for the reduced dataset.

What we are able to gather from this new result is much clearer, and allows us to assemble
interesting considerations on the behavior of players.

• Points per game are mostly influenced by the volume of attempts: a player who shoots,
assist or rebound a lot, will likely collect more points. This has a natural connection to
minutes per game. A more bold player who can accurately pick his spots will more likely
get more play time.

• There are shooters who focus on three point shooting, being 3P% being so deeply correlated
with the number of attempts, but also we find some correlation with 2 point shooting and
free throw attempts, making them more volatile and complex to guard.

• The TR% for a player has a very low interaction with almost all types of shots, except for 2
point shooting, meaning that we will very unlikely see a whole class of shooting or assisting
players who also excel at rebounding.

• Assists are less correlated with 2 point shooting and more with 3PA and 3P%. This is a
clear indication of how, over time, point guards cannot be considered anymore traditional,
and are instead more and more ”going backwards” in the floor, leaving two point shots to
bigger, more consistent players. It is indeed more efficient to take a 3 points shot if it has
the same probability of going in as a 2 points one.

• The attempts from 2 point shooting are very correlated with free throws, meaning there
is an interest in players who can stay inside the area and gather fouls, being physical and
playing in the post. Of course there are also more complete players who can shoot both for
2 and 3 points.
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• Versatility index is correlated more or less equally with all the main statistical aspects of
offensive basketball, which does not come as a surprise. Superstars are defined as such by
their ability to excel at most of the aspects of the game.

With this knowledge, we can intuitively know what to expect from the principal component
analysis, which can sum up all this information in way less covariates than our original dataset.
For our experiment, we will use the function princomp, with the following call.

Listing 5 Call for the princomp function.
res.pca <- princomp(corr.matrix, scores = TRUE)

The output for function 5 is an object of class princomp, which we can analyze in R via its
summary, to gather information about how much variance is explained by each component, and
hence how many components are needed for a comprehensive analysis. In this case, 14 principal
components were computed, the same number as the remaining covariates. Obviously, we cannot
consider them all, since it would defeat the purpose of dimensionality reduction as a whole. We
instead notice, by looking at the cumulative proportion section, that by component 4 we are
able to explain already 91.34% of all the variance in our dataset. This implies that almost all the
dataset can be explained by just using four components. We can see this line of reason graphically,
by looking at the scree plot for the resulting object. For this scope, another function belonging to
the factorextra package was used.

Figure 4.18: Scree plot resulting from the principal component analysis.
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Figure 4.18 shows that, by component 4, the largest part of the dataset is explained, and going
onward we see that each component explains less and less about our data, meaning we are satisfied
with this selection.
Now that we have decided on the number of components, we focus on another topic, which is
understanding what these four components explain in the dataset. For each one of them, a
loading vector is computed, which shows, intuitively, which variables are explained by each of the
components. The problem at hand can be explored by looking at how each covariate relates to to
the loading vectors of each principal component. Table 4.5 tries to summarize this, and we can
take a look at the results.

Table 4.5: Loading vectors for the four first principal components.

Covariates Comp.1 Comp.2 Comp.3 Comp.4
GP 0.21861001 0.04989261 0.41191551 0.165400242

MPG 0.33888977 0.11535413 0.14733025 -0.059984948
FTA 0.30786353 0.26768958 0.11295934 0.014530819
FT% 0.10605456 -0.23009869 0.14731534 0.008127742
2PA 0.31359315 0.26450952 0.14619084 0.012837700
2P% -0.17736815 0.17204186 0.15483731 0.777520530
3PA 0.36054956 -0.11955980 0.29884207 0.059240373
3P% 0.14235527 -0.41952488 0.12761571 -0.397457618
PPG 0.34287963 0.16106356 0.05581184 -0.047437905
RPG 0.02787427 0.48224811 0.09752389 -0.268528854

TRB% -0.29849835 0.50887304 -0.01188722 -0.306196150
APG 0.37274200 0.02700750 -0.37348524 0.090254569

AST% 0.29623693 -0.04578527 -0.59266378 0.161927136
VI 0.13090892 0.22239491 -0.34599180 -0.010096116

We can see that the components do a good job at explaining at any time almost all the covariates
in the reduced dataset, since we decided to highlight in green all the variables positively explained
by a component. And while this information could bring us to initial considerations, we would
rather like a graphical representation of the table, since otherwise it can be hard to grasp all the
novelties in this analysis. We hence opt for a mosaic of biplots. While this may be an unusual
concept, having discovered four principal components implying that there may be, combining
them, a variety of relationships. These can be discovered via usual biplots, where it is able to
underline which variables are influence the most a component, as well as clustering patterns. We
decided hence to compute all possible combinations of two dimensional biplots, to get the most
complete picture possible.
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Figure 4.19: Biplots combining all the four principal components, result of PCA.

Firstly, we would like to address the colors used in Figure 4.19. Each variable is indeed colored
according to its cos2 for the considered components. This metric measures the proportion of
variance in the variable that is explained by the principal components. It ranges between 0 and 1,
and, when close to 1, it means the variable contributes significantly to the variance captured by
the principal components and is well aligned with the principal axes. The biplots from Figure 4.19
analyze in details the associations between variables in the discovered principal components: we
hope, this way, to find meaningful clusters about types of players, similarly to what we have done
in Chapter 2. Going plot from plot, we can gather the following information:

• Components 1 and 2 allows us to see players which are reliable, with lots of minutes per
game, and are consistent in FTA, 2PA, 3PA, and PPG. They may well be the superstars
of the league. Component 2 also tends to represent pretty accurately the variance referred
to rebounds, and we see a smaller cluster of rebounders, with a good value of RPG and
TRB%.

• Components 1 and 3 do an especially good job at explaining shooters, where we indeed see
good tendencies for 3PA, 2PA, FTA, and, as a consequence, MPG. We see firstly here that
dimension 3 has also a big information related to assists, since we see a big emphasys on
APG and AST% on the horizontal axys.

• Components 1 and 4 trace the picture for players which can be called ground generals.
Indeed, these components represent well modern players with a good value of APG, AST%,
3PA, and 3P%, which are all the metrics which measure a good point guard.
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• Components 2 and 3 show a particular influence from RPG and TR%, which means we
will more likely see players with big frames who play close to the rim. Indeed, we see that
3P% and AST% influence very negatively these components.

• Components 2 and 4 show players which are hard to pin down. They can be good at two
point shooting, while not good at all at 3P%. Indeed, they also show, on dimension 4,
a good attitude towards rebounding, making them a good candidate for the ”traditional
center” category. Still, dimension 4 does not represent particularly well that specialty.

• Components 3 and 4 show another complex scenario to pin down exactly. We see again an
influence from AST% and 2P%, but in two very different directions, meaning the covarietes
do not couple well together. Also, any other metric is poorly represented, including MPG
and PPG, meaning we could be in front of players who still need development.

To conclude our study on principal component analysis, we want to address that this is still
a particularly novel approach to such problems, since we weren’t able to find any article or even
discussion about categorization of basketball players via the use of dimensionality reduction meth-
ods. Still, we are satisfied to see a degree of similarity between the results obtained in the k-means
analysis, and in the PCA analysis, which implies that, from our dataset, it is indeed possible to
gather information about players categorization. Still, by the values of cos2 in PCA, and dis-
similarity in k-means, we can safely say that still a better job can be done on the creation of
the dataset, and on the goodness of variables selected. Indeed, for our initial aim, we can safely
conclude that the use of advanced metrics, as explained in the beginning of this chapter, could
have helped considerably in achieving more meaningful and less trivial clusters. Still we were able
to find interesting results, and we will discuss even further how this study can gain more relevance
with the use of an advanced and more complex dataset.
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5
Data mining methods

This chapter finds its main goal in making predictions about the results found in Chapter 4. We
were able to discover a distinction of NBA players in categories, a notion which tries to go further
the idea of position, or role. The aforementioned results have been achieved via clustering and
dimensionality reduction techniques. We want now to expand more our research, and try to
understand how different categories of players can impact the outcome of a game offensively. In
practice, this will concern analyzing, and making predictions, about the variable PPG, points per
game, for each category of players.
To achieve this result, we want now to give an overview of theoretical aspects and techniques that
we are going then to apply in Chapter 6 to the resulting clusters obtained in Section 4.2.1. We
want to give a comprehensive list of what we will see in detail before going forward.

• Linear regression
• Principal component regression
• Random forest regression
• Shrinkage methods, in particular Lasso and Ridge regression

5.1 Fundamentals on statistical learning
Data mining techniques are connected to the analysis of existing datasets, with the aim of finding
patterns. These results are then used, in many realms, to make predictions about future results.
The idea of ”pattern” in a dataset is, by itself, confusing and vague. In its most general form, it
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can be formalized as follows, as for the approach by James, Witten, Hastie, Tibshirani2 (2021,
Chapter 2.1). Given a set of variables known as predictors X = (X1, X2, ..., Xp), and a quantitative
response variable Y , we want to assess if there is a relationship

Y = f(X) + ε.

In this case f is an unknown function of variables X1, X2, ..., Xp, and ε is known as an error term,
independent of X. At its core, we can hence reformulate the aim of statistical learning as the one
of estimating f . Once the estimate of f , known as f̂ , is found, it can then be used in a new setting

Ŷ = f̂(X)

in order to make predictions for Y . The accuracy level of Ŷ actually depends on two factors,
namely, the irreducible and reducible errors. Using the best possible statistical learning technique
to estimate f will allow us to act on the reducible error for f̂ . However, even in the best case
scenario where f̂ = f , the irreducible error, introduced by ε would still be present. Its nature is
related to the fact that f itself cannot measure all aspects of real world data. And if a particular
aspect is not measured, f cannot be used to make predictions on it. In the same way as in our
dataset we can’t infer if, in a particular season, a player faced a debilitating injury, resulting
in a drop of his performances. Formally, this can be seen considering the previous relationship
Ŷ = f̂(X). If we consider fixed f̂ and X, we can show that

E(Y − Ŷ )2 = E[f(X) + ε− f̂(X)]2

= [f(X)− f̂(X)]2 +Var(ε)

where E(Y − Ŷ )2 represents the expected value of the squared difference between the predicted
and actual Y , and V ar(ε) instead shows the variance of the error term ε. In other terms, we will
always have to expect, from our statistical learning techniques, an irreducible error ε.
In our treatment of the topic we will range from techniques which are more flexible, and less
interpretable, to the opposite. In this sense, we will not always try the absolute best to fit f

perfectly. The reason stands in the fact that less flexible models are way more useful when the
aim is to infer information on the data. Instead, when the main goals of an analysis are the final
predictions, techniques which can adapt more to f while being less interpretable can be preferred.
Even in this case, there are risks in fitting too perfectly the target function, with the phenomenon
of overfitting. We can discuss this topic in the bigger scenario of evaluation for a model’s accuracy.
The idea itself of utilizing a wide variety of models comes from the fact that one cannot stand
above the others by itself. And the way we assess which model is better than the other is by
measuring how well the predictions on the observed data match the latter ones. In the realm of
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regressions, the mean square error (MSE) is the most common metric.

MSE =
1

n

n∑

i=1

{
yi − f̂(xi)

}2

Here, f̂(xi) is the prediction that f̂ gives for the ith observation. Obviously, with a value of MSE
close to 0 the predictions will be considered accurate. In ??, we are referring to the training MSE,
since it was computed on the training data for a given model. This value though is often considered
useless, since every given dataset, before analysis, is splitted into training and testing observations.
The first allow the model to be fitted on the function f , while the second ones are used then to
assess the quality of f̂ . In practice, observations known as {(x1, y1), (x2, y2), ..., (xn, yn)} are used
to obtain f̂ , whereas (x0, y0) is a previously unseen test observation not used to train the statistical
technique. Hence, we are looking to minimize

Ave(y0 − f̂(x0))
2

known as the average squared prediction error for the test observations (x0, y0), or test MSE.
Statistical learning holds a particular property, which stands for the most part in all models and
datasets: as model flexibility increases, training MSE will decrease, but test MSE may not. And
the reason behind it is overfitting. The idea is that the statistical technique is doing too good of
a job at finding patterns in the data, picking up some casually generated noise rather than actual
properties. This will lead to a large test MSE due to the fact that the model is trying to find
patterns that in real data do not exist.
Knowing these few initial fundamentals on statistical learning we can start talk about the tech-
niques we will use in our analysis, starting from the most basic one, being it linear regression.

5.2 Linear regression
Linear regression is one of the simplest and most common statistical learning techniques. Most
times, complex studies resort to it as a mean to compute the lower bound of their research. As
Ethington Corinna, Thomas Scott and Pike Gary underline in their work20, this concept was
firstly introduced by Sir Francis Galton in 1894, in order to quantify the relationship between
variables in a mathematical set. This concept obviously resembles the one of correlation, which
enables the research for patterns into data, and then the creation of predictions on future data.
Following the approach from Dastan Hussen Maulud, Adnan Mohsin Abdulazeez21, in order to
understand linear regressions we can classify it in three categories:

• Simple linear regression: a model with a single independent variable, or predictor, X. The
dependence is then expressed as Ŷ = β0 + β1X + ε.

• Multiple linear regression: the answer variable is predicted using a number of predictors,
hence X = (X1, X2, ..., Xp). The basic model form for this model is Ŷ = β0 + β1X1 + ...+
βpXp + ε.
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• Polynomial regression: a special case of multiple linear regression, in which the each pre-
dictor is polynomial, allowing for the creation of curvilinear predictors. The model for this
case is expressed as Ŷ = β0 + β1X1 + β2X2

2 + ...+ βpXp
p + ε.

Knowing this basic distinction we can talk about the goal of linear regression, which is to fit
the best possible values of (β0,β1, ...,βp), coefficients of the model, used to find patterns in the
data.
In order to understand how this estimation happens, we can consider the case of a simple linear
regression, where we are trying to predict the ith response variable yi. The estimation will be, in
this case, ŷi = β̂0 + β1̂xi, where β0̂, β1̂ are our candidates to estimate the optimal values β0,β1.
Then ei will represent the ith residual, computed as ei = yi − ŷi. Knowing this, we can define the
residual sum of squares (RSS) as

RSS = e21 + e22 + ...+ e2n,

which we can rewrite as follows.

RSS =
n∑

i=1

[
yi − (β0̂ + β1̂xi)

]2
.

The minimization of this quantity is known as least square method, theorized by Gauss in 180922,
and can be seen in practice in Figure 5.1.

Figure 5.1: Example of the least square method on real data, as for from James, Witten, Hastie,
Tibshirani2 (2021, Chapter 3.1.1). Each grey segment represents a residual.

Once the choice on the coefficients has been done, a fundamental step is to assess their accuracy,
especially when there are more than one, as in the multiple linear regression. There are lots of
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way to perform such tests, we can, in particular, talk about two of them.
t-Test is used in order to evaluate independent variables, or predictors, Xi ∈ X. It is connected to
the concept of hypothesis test, where the aim, in the most general case, is determining whether a
variable xi ∈ X has a relationship with Y . If this does not hold, it is safe to delete the variable from
the dataset, meaning βi = 0, since it does not capture any information about the data. Simply
put, the t-statistic for a variable can be determined by the following formula for a predictor xi,
where n is the size of the dataset.

ti =
βî√∑
(yi−ŷi)

2

n

The resulting value is connected to a Student-t distribution, which is then used to determine the
probability of seeing any number greater than or equal to |t| under the premise that βi = 0. A
tiny result suggests that it is unlikely to see such a relationship between the predictor and the
response through random chance. This probability is known as the p-value. In this situation, Xi

is retained for analysis. The variable is eliminated if the opposite is true and the p-value is high..
The considerations on p-value are not always stable, and hence, for completeness, we briefly discuss
the F-test, which is more stable in the context of multiple linear regression. This test considers a
bigger hypotheses test, where the whole regression coefficients are investigated on whether or not
they are 0. The F-statistic is computed for this test as follows,

F =
(TSS −RSS)/p

RSS/(n− p− 1)

where TSS is the total sum of squared differences between each data point and the mean of the
dependent variable. The numerator computes the so called mean square for the model containing
all the covariates we are analyzing for the hypothesis test, while in the denominator we are instead
considering the mean square for a model with only the intercept β0. The numerator difference
is then divided by the degrees of freedom for the model with all the covariates. This number
corresponds to the number of predictors. Instead, the degrees of freedom for the denominator
is equal to the total number of observations, minus the number of predictors, minus one. The
results are easy to interpret: when the final computed value is close to 1 we have a strong case for
discarding all the coefficients in the analysis. If, instead, the F-statistic is larger than 1 we can
reject the hypothesis and keep the selection.
In the realm of multiple linear regression, once the analysis of the F-test first, and the p-values
then are done, it is important to decide which are the most important variables in a predictor.
Most times the response variable is associated with only a subset of predictors, and its formation
is called variable selection. This can be done of course by hand, iteratively removing one at the
time the least important variable until a satisfactory model is obtained. But in the case where p,
the number of predictors, gets large this process could become unbearable. For this reason, three
methods are generally used, in order to make this process systematic and automatic.

• Forward selection: it starts with an empty model, with no predictors and just the intercept
β0. Then, p linear regression models are fitted, and the variable which has the lowest RSS
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is added to the empty model. Until a breaking condition is reached, or the whole variables
are added, this process continue.

• Backward selection: the starting point is a model with all the variables, and at each iteration
the one with highest p-value is removed. This process is done until a breaking condition is
reached, or all the variables are removed.

• Mixed selection: a combination of both forward and backward selection, where we start
with an empty model as in the first case. Then, the variable which acts as the best fit is
added, and this process is repeated. If, at some point, one of the variables reaches a p-value
too high, it gets discarded from the model. This process is continued until all the variables
present in the model have a reasonable p-value, and all the discarded ones have a p-value
too high if added to the model.

Forward selection, among all, is the considered a greedy approach, since it might include predic-
tors which are early on considered meaningful, and going onward become less and less important.
This issue is fixed by mixed selection.

5.3 Principal Component Regression
Principal Component Regression finds its fundamental concepts in two notions, being dimension-
ality reduction, described in Section 3.3, and the creation of principal components starting from
a dataset, discussed in Section 3.3.1. We will not discuss again these concepts, but they are the
basis for what we are going to see now. The only difference that stands, in this scenario, is the
aim, which in this case resides in building a regression model rather than a clustering one.
The key idea is similar to the one we have already seen for clustering: once Z1, ..., ZM , with M ≤ p,
principal components are computed on the original dataset, we want to obtain the smallest set of
them which is able to capture most of the variability in the data. Usually, what happens is that
the directions in which X1, ..., Xp show the most variation are the directions associated the most
with Y . This is the fundamental assumption for Principal Component Regression. If this holds,
as it usually does, it is obviously more convenient to fit a least squares model on Z1, ..., ZM , rather
than on X1, ..., Xp, since most of the information on the data is the one captured by the first set.
An obvious first advantage for this method is avoiding overfitting: we are losing, creating M

principal components, some information which may not relate to the response variable, and which
risks to be recognized and inserted in the regression model. It is also easy to see that it can reduce
the variability of a dataset, summing up the content of the predictors. And while this is not a
feature selection method, as the automatic ones we have seen at the end of Section 5.2, it can still
be seen as an improvement. Indeed, we are not leaving behind any predictor, and we are giving
value only to the ones which actually matter. Still, what PCA uses is a linear model. It implies
that the least squares can actually steer the analysis in the exact opposite direction of progress,
if a dataset has a hidden nonlinear pattern. Also, Jiang Hong and Kent Eskridge23 found out
that the bias of PCA results was affected by the sampling error in their trials, meaning that this
method still have flaws and has to be treated in a way to minimize them in order to function
efficiently.

80



5.4 Random Forest Regression

In order to first understand how random forest regression works, some preliminary theory pieces
have to be addressed, as they are the basis for the model we are going to see. In particular, we
are referring to regression trees and bootstrap sampling, also called bagging.
Regression trees can be considered as a variant of decision trees, designed to approximate values
related to real world scenarios. A decision tree is generated when each decision node in the tree
contains a test on some input variable’s value. This can be achieved via what’s called binary re-
cursive partitioning, as explained by Hastie, Tibshirani, and Friedman24. It is an iterative process
that splits the data into partitions or branches, and then continues splitting each partition into
smaller groups as the method moves up each branch. In practice, it works as follows: initially,
all records in the Training Set are grouped into the same partition. The algorithm then begins
dividing the data into the first two partitions, or branches, using every possible binary split on
every field. The algorithm selects the split that minimizes the sum of the squared deviations from
the mean in the two separate partitions. This splitting rule is then applied to each of the new
generated nodes. The step of dividing is then repeated until each node reaches a user-specified
minimum node size and becomes a terminal node. If the sum of squared deviations from the mean
in a node is zero, then that node is considered a terminal node even if it has not reached the
minimum size. It is easy to see that this process inherently generates overfitting in the model: the
tree will try to explain every single deviation in the training set, ignoring that one of them may
be generated from instability of real-world data. This creates a scenario with very high variance.
The other principle we have to explain before going further with explaining random forest regres-
sion is bootstrap sampling, also called bagging.

Figure 5.2: An illustration for the concept of bootstrap aggregation, By Sirakorn - Own work, CC
BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=85888768.
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This technique tries to address the instability and overfitting issues related to regression trees. In
particular, the technique, which can be visualized in Figure 5.2, works as follows. Given a standard
training set X of size n, bagging generates m new training sets Xi, each of size n′, by sampling
from X uniformly and with replacement. By sampling with replacement, we intend that some
observations may be repeated in each Xi. When n′ = n, each set Xi is expected to have 1− 1

e , or
roughly 63.2%, of unique examples from X, the rest being duplicates, as proven by Aslam, Javed,
Popa, Raluca25. This kind of sample is known as a bootstrap sample. Sampling with replacement
ensures each bootstrap is independent from the others, as it does not depend on previous chosen
samples. Finally, m models are fitted using the above m bootstrap samples. The final results are
combined either by averaging the output, in the case of regression models,

f̂avg(x) =
1

B

B∑

b=1

fb(x)

or by voting, for classification ones. While this method indeed reduces the variance introduced
by decision trees, it is expanded even further by the random forest technique. The reduction of
variance is given by the concept of averaging the results of multiple trees using not correlated
datasets. Bootstrap sampling is hence a way of de-correlating the trees by showing them different
training sets. Finally, it is possible to compute the measure of uncertainty in the prediction.

σ =

√∑B
b=1(fb(x)− f̂)2

B − 1
.

This value is obviously deeply influenced by the number of samplings B, which can be decided
thanks to cross-validation. Other measures for this estimating the error rate for bagging can be,
for example, the Out-of-Bag estimation.
It is finally possible to move from bagging to random forests regression methods. The general
method of random decision forests was first proposed by Tin Kam Ho in 199526. The small tweak
that set random forests away from bagging is in a further decorrelation of trees. The procedure
remains the same, in the sense that a number n of trees are built on bootstrapped training samples.
During the construction of these trees, what happens is that a random sample of typically m ≈ √

p

predictors is chosen as split candidates, where p is the whole set of predictors. The regression
model is allowed to use only one of the proposed splits. In other words, the model used for
regression in a random forest is not allowed to consider the whole set of observations, nor the
whole set of predictors.
The rational concept behind this choice is pretty intuitive: suppose that, in a regression scenario,
there is a predictor that is clearly stronger than the others. By using only bagging, it is highly
possible that all the generated trees will look like one another, since they will all base themselves
on the specific strong predictor. Hence, the predictions from the bagged trees will be highly
correlated. In this worst case scenario we described, it may not lead to a substantial reduction
of variance with respect to the use of a single decision tree. In this sense, the idea of regression
forests is to suppress this issue by allowing each model to consider only a set of predictors. On
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average, in the worst case, p−m
p of the splits won’t consider the strong predictor, leaving the other

a fair field. This is why random forests are used in the context of decorrelating trees. A large issue
in random forest is in the choice for the size of m. When m = p, we are simply applying bagging,
while m =

√
p may not always be the solution. While this remains an issue, once again applying a

cross-validation approach may solve this issue. Instead, the main problem relating random forests
is in their interpretability. By far the best advantage of simple models such as linear regression or
decision trees is in their interpretability: being able, for a developer or an analyst, to understand
easily why a model is acting in a determined way. Random forests suppress this advantage, in
favor of minimizing variance and bias in the final predictions.

5.5 Shrinkage methods

We analyzed, at the end of Section 5.2, techniques and methods which are commonly used when
the aim is to simplify a model. In that particular case, a subset of the original variables is chosen,
based on their influence on the final model. Later, in Section 5.3, we were able instead to sum up
the content of all variables into a number of principal components. The aim is clear and simple
so far: we want to achieve a model that finds pattern in the original data with a low MSE, while
avoiding to overfit those data. The so called shrinkage methods try a different approach from
the ones seen so far. Instead of summing up the content of all the variables, or excluding the
non meaningful ones, the aim is to constraint or regularize the estimated coefficients β1̂, ...,βp̂

associated to the p predictors of the model. The two examples we will see are ridge regression and
lasso, which are the fundamentals for these kind of techniques.

5.5.1 Ridge regression

The concept nowadays known as ridge regression was thought and invented in many different
contexts throughout the beginning of the XXth century. In particular, in the 1920’s, it began
widely known thanks to the work of Andrey Tikhonov27 and David L. Phillips. The main concept
is pretty straight-forward. It shares lots of similarities with the least squares, except the coefficients
are estimated by minimizing a different quantity. In particular, we are talking about

n∑

i=1



yi − β0 −
p∑

j=1

βjxij




2

+ λ
p∑

j=1

β2
j = RSS + λ

p∑

j=1

β2
j
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which can be rewritten as

β̂ridge =min
β

N∑

i=1



yi − β0 −
p∑

j=1

xijβj




2

subject to
p∑

j=1

β2
j ≤ t.

where λ ≥ 0 is called a tuning parameter, which is separately found, generally via cross-validation.
The second term of the first equation is called shrinkage penalty, and it is a small quantity when
β1, ...,βp are close to zero, with the effect of shrinking these estimates close to zero. In the
particular case where λ = 0 no term is penalized and the resulting model is the same as the one
obtained with traditional least squares. On the other hand, where λ → ∞, the impact of the
shrinkage penalty grows too much, and the coefficient estimates approach zero. The output of
ridge regression will be different with respect to the value of λ. Of course we will everytime see an
approximation for β1, ...,βp, but a different set will be produced for each value of λ, hence βridge

λ
ˆ .

We want now to address the advantages of ridge regression, where the biggest one stands in the
bias-variance trade-off. With an increase of λ, the flexibility of the ridge regression fit decreases,
leading to consequent decrease in variance and an increase of bias. Then, with λ = 0, the variance
is high but there is no bias. The key to ridge regression is hence finding the good fit for λ,
which can be chosen by analyzing the trend for MSE with respect to the value of the tuning
parameter itself. When λ reaches its optimal value, most times going further will not give any
more significant decrease for the MSE. Ridge regression has its best utility in scenarios where
the results for linear regression found a very high MSE. This recalls the concept explained at the
beginning of Section 5.2, for which linear regression was a lower bound with respect to the optimal
result. Obviously, ridge regression has an obvious advantage over subset selection efficiency, since
the latter has to analyze 2p models, whereas, for every single value of λ, ridge regression fits a
single model.
The main flaw with ridge regression is clear and easy to see. Unlike the methods explained at the
end of Section 5.2, Ridge Regression will, at the end of the of its process, include all the predictors
in the final model. The penalty factor λ

∑
β2
j will shrink all coefficients towards zero but never

exactly to zero. And while this issue does not constitute a real issue in terms of prediction accuracy,
it can lead to a lack of interpretability when p, the number of predictors, gets large.

5.5.2 Lasso

In the realm of statistical learning, lasso, or least absolute shrinkage and selection operator, is used
to perform both variable selection and regularization, in order to enhance both prediction accuracy
and interpretability. The term and its formalization were popularized by Robert Tibshirani28.
The lasso estimation for the coefficients is pretty similar to the ones computed by ridge regression,
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and can be expressed as follows

n∑

i=1



yi − β0 −
p∑

j=1

βjxij




2

+ λ
p∑

j=1

|βj | = RSS + λ
p∑

j=1

|βj |

which can be rewritten as

β̂lasso =min
β

N∑

i=1



yi − β0 −
p∑

j=1

xijβj




2

subject to
p∑

j=1

|βj | ≤ t,

where, as it can be seen, the penalization factor includes a norm of the coefficients, with respect
to ridge regression. Lasso behaves similarly to ridge regression in the sense that shrinks some
coefficient estimates towards zero. But in the case of this new method, the penalization has the
effect of forcing some of the coefficient estimates to be exactly zero when the tuning parameter
λ is sufficiently large. Indeed, when lasso is performed we are trying to find the set of coefficient
estimates that lead to the smallest RSS, as in the least squares, but with the constriction that
there is a response variable t for how large

∑p
j=1 |βj | can be. If the response variable is pretty

large, then the constraint does not have to be too much restrictive, and the coefficient estimate
can be closer to the least squares. If instead t is small, then the quantity must be small in order
to avoid violating the constraint

∑p
j=1 |βj | ≤ t. Obviously this line of reason apply similarly to

ridge regression, with the difference that, in this case, some of the coefficients are allowed to be
exactly zero.
As in the ridge regression, but with an even higher importance, finding the correct tuning param-
eter λ is extremely important. In this case, the risk is to not consider some parameters which can
indeed be meaningful for the analysis, as in the case where λ is too large. Again though, a good
selection of this parameter can be done through cross-validation.
We can conclude this treatment by considering whether or not there is a clear better candidate
between ridge regression and lasso. The analysis of examples in the literature, in particular from
James, Witten, Hastie, Tibshirani2 (2021, Chapter 6.2.2, Figure 6.9), show that there isn’t a
method which always overcome the other. In general, the line of reason is again simple: in cases
there are models where the predictors highlighted from the least squares are substantial, lasso
is preferred due its ability to shrink some of them even to zero. Instead, ridge regression will
perform better when the estimated coefficients are of roughly equal size. We recall once again
that the best way to find the tuning parameter, as well as the method which provides the least
MSE is the cross-validation. Finally, in general lasso can be employed in situations where better
interpretability is preferred, while ridge presents more variability, in contexts where predictions
are the clear preference.
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6
Data mining predictions

The primary objective of this chapter is to implement the data mining methodologies outlined
in Chapter 5 on the specific issue at hand. In Chapter 4, we established that it is indeed pos-
sible to categorize NBA players effectively by analyzing their performance metrics, as indicated
by their statistical records during a given regular season. Building upon this foundation, our
current focus is to employ these data mining techniques for each newly identified category. By
doing so, we aim to check the possibility of deriving meaningful predictions within each cluster.
Moreover, our intention is to extract insights that can guide improvements in order to enhance
player performances.

6.1 Preparation of the dataset for analysis
As a first step, we need to load the results obtained in Chapter 4. Among all the ones we
obtained, we chose to consider in particular the ones from Section 4.2.1, being them the 9 clusters
resulted from k-means analysis with Hartigan-Wong. This choice is motivated by the relative
homogeneity across the various k-means results. In essence, the selection of this specific result
does not anticipate significant deviations in the subsequent analysis, making it a suitable candidate
for our investigation. Moreover, this result comes in a particularly handy format, being it 9 subsets
of the original dataset, which means it is much easier to manipulate for an analysis, with respect
to the results of, for example, PCA, where 4 components were used to sum up the predictors. In
a similar way, we opted for not excluding any predictor from the dataset, even the ones which are
counter intuitive to keep, such as SPG, BPG, or DRTG. We just removed, for obvious reasons, POS,
TEAM and FULL.NAME, being them the only categorical variables in our initial dataset. The
obtained datasets were then scaled, since it fosters fairness, optimization, and robustness across a
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spectrum of techniques, such as the ones described in Chapter 5. This preparatory step ensures
that the subsequent analyses are reliable, unbiased and easily interpretable. Furthermore, we
opted for creating, in each subset of the original dataset, a separation between training and testing
observations. The partitioning of data into training and testing sets fundamentally addresses the
requirement to measure the model’s ability to generalize beyond the data it was trained on. When
a model is trained solely on a specific dataset, there is a risk of overfitting, whereby the model
might memorize the training data rather than truly understanding the underlying patterns. This
would result in poor performance when presented with new, unseen data. For each partition, we
opted for a separation where 2

3 of the observations are used for training, and the remaining 1
3 is

used for testing the model. The distribution of a larger portion for training leaves to the model
the opportunity to discern complex patterns and relationships within the dataset. This exposure
assists the model in capturing patterns and generalizing trends effectively.
Finally, before moving forward, we want to address the topic of the chosen response variable.
Indeed, there isn’t in our scenario a clear candidate for this role. Our final aim is to measure
whether it is possible to make predictions on the offensive proficiency of players given their category,
which is rooted on the idea that each category of players will excel in different aspects of the game.
Hence, we focus ourselves on the three main metrics which measure offensive effectivness of a
player.

• PPG: a direct and intuitive metric that quantifies a player’s scoring contribution. It reflects
the average number of points a player scores in each game they participate in. PPG
is valuable as it encapsulates a player’s ability to consistently contribute to their team’s
offensive output.

• MPG: this metric is crucial because it accounts for a player’s playing time, which directly
influences their opportunity to contribute offensively and participate to plays on the court.
Players who have higher MPG are entrusted with more playing time to impact the game,
indicating their value to the team’s offensive strategy and execution.

• ORTG: it is an advanced metric that evaluates a player’s offensive efficiency. It represents
the number of points a player produces per 100 possessions while on the court. ORTG
goes beyond raw statistics by factoring in a player’s scoring contribution in relation to
the team’s overall offensive possessions. It is more complex, since it contains aspects like
scoring, passing, and overall offensive decision-making.

Each of these metrics is a good candidate, with obvious pros and cons, which can be further
elaborated by looking at their distributions as in Figure 6.1. First and foremost, we can see that
the PPG distribution has a right-skewed normal distribution, whereas the MPG roughly has no
tails, and has most of the observations around the mean of the curve, and finally ORTG suffers a
similar problem. Similarly to MPG, most of the observations position around the mean, making it
difficult to assess any real information, but it presents a few players on the tails. Basing ourselves
on the description we made earlier, it is easy to understand why this is happening. Most players
will play a similar number of minutes per game, and indeed the distribution creates a sort of
categorization: there are players who will play few minutes per game, most players who will play
around the mean of the league during a game, and a few superstars who will be held responsible
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(a) Distribution of PPG. (b) Distribution of MPG.

(c) Distribution of ORTG.

Figure 6.1: Comparison of candidate response variables distributions.

on the floor almost at all times, increasing considerably their MPG. In ORTG we can define a
similar pattern, where most players will position themselves around the mean of the league, and
there are very few players which are below and above. In practice, a response variable with most
observations around the mean can lead to the construction of a sub-optimal model by limiting
variability, biasing coefficient estimates, inflating p-values, hindering generalization, and increasing
the risk of overfitting. It’s crucial to have a diverse range of response values to allow the model to
accurately capture the true relationships between predictors and the response. For this reasons,
and given the fact that it is the most straight forward metric, we will choose PPG as the response
variable for our analysis. We have highlighted that this does not follow a normal distribution, and
we furthermore want to address that the canonical transformations, logarithmic or power, did not
help this issue. Not having a normal distribution for a response variable can introduce potential
problems, related to assumptions of statistical methods and models. While these issues might be
slight in some cases, we will always try to understand if this restriction is being too limiting for
the model at hand. With all the preparations for the dataset finished, we can start addressing
the resulting models for each technique. In every analysis, 9 models were computed, due to the
presence of 9 subsets of the original dataset. This process was entirely automatized via the R
programming language, and additional libraries needed for each analysis.
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6.2 Linear Regression
In our current problem, the application of traditional linear regression presents a significant chal-
lenge which originates from the dimensionality of the dataset. With a substantial 25 covariates
involved, and 9 clusters to analyze, the resulting number of potential models becomes overwhelm-
ingly vast, 2p ·9 = 301989888, rendering thorough analysis practically infeasible. Traditional linear
regression techniques entail estimating coefficients for each covariate, and with such a multitude
of predictors, the model complexity explodes exponentially. This complexity not only hampers
the interpretability of the results but also intensifies the risk of overfitting, wherein the model
may capture noise rather than meaningful patterns. The computational burden of processing an
enormous number of models further intensify the issue. Given these considerations, the use of
traditional linear regression becomes impractical and consequently we rely on automatic selection
methods, described in Section 5.2.
The setup for the experiments is the same in all the three automatic selection methods applied,
which are forward, backward, and mixed selection. We can explain the process as follows.

1. At the beginning, 9 automatic selection models are trained on the training data of each
cluster, utilizing the regsubsets function, from the leaps library.

2. For each of the computed models, we store three metrics, which are utilized to understand
the best subset of variables. These are the RSS, Adjusted R2, and BIC. Since the RSS
always suggested to utilize all the original variables for the analysis, we decided to consider
only the latter two metrics.

3. Two models are computed in this step, one which contains the subset of variables suggested
by the Adjusted R2, one with the ones suggested by the BIC, utilizing once again the
training data of each cluster.

4. To understand which of the two newly computed models is better for each cluster, the
function anova is applied, since, in each case, the model suggested via BIC is contained by
the one obtained via Adjusted R2. Then, a threshold of 0.10 is utilized to understand the
results of the function anova. If the p-value obtained from the function is smaller than the
treshold, then the hyphotesys test is confirmed, and we can keep the more complex model,
the one suggested by Ajusted R2, otherwise we keep the simpler one, suggested by BIC.

5. The residuals for each of the final chosen models are plotted, as well as the predictions done
on the testing data.

Doing this process, we are able to cut the complex number of models we need to analyze from
301989888 to just 27, since for each cluster three automatic selection methods are applied. These
are still too many for the purposes or our analysis, and hence we try to further reduce this number,
with the aim of going down to a single model for each cluster. This is done, again, by analyzing
statistics of the different models. For each of the three models computed, we analyze the RSS, or
residual sum of squares, the Adjusted R2, and the F -statistic. The models which achieve, among
the three, the least RSS, and highest Adjusted R2 and F -statistic are the ones we will show in the
results of this analysis. This analysis gives us another opportunity, that being to analyze which
of the automatic selection methods is better for our case study. Table 6.1 shows us the results of
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the aforementioned analysis.

Table 6.1: Comparison of the results from the automatic selection methods.

RSS Adjusted R2 F -statistic
1 (M) 0.201 0.962 349.67
2 (B) 0.213 0.953 49.97
3 (M) 0.207 0.955 495.89
4 (B) 0.108 0.988 515.79
5 (F) 0.121 0.984 694.06
6 (F) 0.273 0.925 218.55
7 (M) 0.264 0.918 290.46
8 (B) 0.171 0.969 506.03
9 (M) 0.136 0.981 713.34

Beside every cluster’s number, we highlighted the model which gave the best overall results. The
results seen here are very encouraging for the scopes of our analysis. We are able to underline a
low overall value for the RSS, as well as values for the Adjusted R2 which never go below 0.90,
which is considered a safe threshold, and finally, the F -statistic value is always high enough to
confirm that we are not considering a subset of variables without any significance. Knowing all of
these results, and the methodologies of our analysis, we can go on showing the results. For each
cluster, only the best model’s residuals and predictions will be shown, going from the first to the
last cluster.

Figure 6.2: Residuals for cluster 1 with linear regression.

Figure 6.2 shows the residuals obtained by the mixed selection approach for cluster 1. We can
consider these results as somewhat satisfactory, considering that, apart from the ”Residuals vs

91



Fitted” plot, which resembles on some sort of shape, following the red line. This does not happen
in the ”Scale-location” plot, which shows a cloud of points. The ”Normal Quantile-Quantile” is
extremely satisfactory, showing almost all points on line, and the final ”Residual vs Leverage” plot
shows a few points which Cook’s Distance is close to 1, meaning they can be identified as outliers.
As we have seen in Chapter 4, these are expected in our scenario, due to the nature of our data.
Figure 6.3 show the predictions for this model.

Figure 6.3: Predictions for cluster 1 with linear regression.

Just by looking at these results we can consider ourselves partially satisfied. This is by far the
easiest model used for predictions, and it is already showing most points on the red bisector, or
at most close to it, which is an interesting starting point. The point to the furthest right is the
outlier which was also highlighted by Figure 6.2 most certainly. The variables selected by this
model, for the cluster relating the so called ”ground generals” are 14, with a particular weight on
MPG, USG%, 2P% and APG. It shows us that the best way that guards have to influence the
offensive end of a game is by creating assists or two point attempts. This last particular informa-
tion reveals us that, most probably, these players will leave more complex three point shots to
more specialized players in that department.
The results for cluster 2 are not shown since are not deemed as satisfactory on a graphical stand-
point. The main reason for why this applies only to this subset of players is related to the number
of observations we find in the correspondent cluster. There are only 47 of them, which implies
that 12 were used for the predictions, and the remaining 35 for the training of the model. And
while it could be interesting if this was from the ground up a meaningful category, we would like
to recall that this are the players who are most likely to get next to none minutes on the floor,
and probably relegated to a lower level of basketball play. To evaluate their performances, it
would be more meaningful to have them included in a larger dataset with players of their lever,
to understand the flaws and variety of their game. For these reasons, we move to cluster 3, which
sees presence of smaller sized shooters with less minutes than the average players of the league.
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Figure 6.4: Residuals for cluster 3 with linear regression.

Figure 6.4 are similar to the ones seen before, but while the ”Residual vs Fitted” gets better, likely
due to the presence of more observations in the cluster, we can see that the ”Normal Quantile-
Quantile” gets worse, due to a deviation in the final part of the line. Finally, in this case, we see
that there are no players over the level of 1 in Cook’s distance, meaning there will not be any
significant outliers.

Figure 6.5: Residuals for cluster 3 with linear regression.

In Figure 6.5 we can see a significant presence of observations which are on the bisector, or close
to it, as well as points which deviates a lot, showing a high error. This can be due to a reason: the
cluster considered for this analysis contains players which are in a sort of gray area, since they are
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not really relied on from their team, but are expected to contribute to the offense of a game. For
this reason, it is possible to see players who can play few games and have a great performances,
as well as ones who show up lots of times in a season with a contained number of PPG. This may
be the reason why some observations are harder to pin down than others. Indeed, the coefficients
underline that the variable which most influences their PPG is the minutes they play in a game.
Getting more minutes will naturally lead to more points for these players, and they can be scored
in a variety of ways, especially 2PA, and 3PA, which are coefficients that positively influence the
predictions.

Figure 6.6: Residuals for cluster 4 with linear regression.

Figure 6.7: Residuals for cluster 4 with linear regression.
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As for cluster 4, the superstars one, we can safely say that the results shown in Figure 6.6 are
satisfactory. Apart from some forms of outliers, which are shown in the Residual vs Leverage,
and a small deviation in the ”Normal Quantile-Quantile”, Figure 6.6 show a good behavior. The
outliers in particular can be explained due to the presence of statistical anomalies in this category,
such as James Harden in the season in which he won the League’s MVP award. This results are
substantiated by Figure 6.7, where it is easy to see that almost all the players stand on or close
the bisector. Lots of coefficient influence positevely such a category of players, apart from all
the offensive metrics such as shot attempted, assists and rebounds. In particular, USG% sees a
particular positive impact, underlining that if there is a player which can be considered a superstar
in a team, lots of plays should be directed towards him.

Figure 6.8: Residuals for cluster 5 with linear regression.

Figure 6.9: Predictions for cluster 5 with linear regression.

Cluster 5 contains players who can be considered pure shooters, contributing to the score of a
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team almost only by shooting. As for the residuals, we can see that there are no clear problems,
apart from the ”Residuals vs Fitted” in Figure 6.8, where the points follow the shape of the red
line. What we can than see in Figure 6.9 is solid considering the simplicity of the model we are
utilizing. The coefficients which most influence this category of players are, of course, the shot
attempts, in particular 2PA and 3PA, which lead naturally to a big coefficient regarding TS%.
There is also an interesting accent on the RPG, which positively influence the PPG a shooting
player obtain, putting an emphasis on how basketball has achieved throughout the years great
fluidity in the roles of the players.

Figure 6.10: Residuals for cluster 6 with linear regression.

Figure 6.11: Predictions for cluster 6 with linear regression.

96



We start to see that linear regression models have a similar pattern for our results: the ”Residual
vs Fitted” in Figure 6.10 shows once again a presence of points around the red line in the plot,
while the others look fairly stable, with some occasional exceptions. There are some outliers even
at this point, and it can be further elaborated in Figure 6.11, where most points position them-
selves around the red bisector, with occasional exceptions. In this case, we can see a particular
tendency of points to form some more complex behavior, further linear ones, which we can fur-
ther try to investigate when we move on to more complex techniques. Cluster 6 is populated by
mostly big framed players with a tendency for rebounds and not many minutes, and indeed it is
underlined that, with more minutes and possesses, they can excell in PPG. The variables which
mostly influence this category are TS%, and, as expected, the number of rebounds per game.

Figure 6.12: Residuals for cluster 7 with linear regression.

Figure 6.13: Predictions for cluster 7 with linear regression.

As for cluster 7, residuals shown in Figure 6.12 can be deemed very similar to the ones discussed
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above. This cluster is actually pretty complex to pin down, since it contains what we earlier
defined as ”drivers”. But even considering its variety of players and preferences, linear regression
did a good job at simplifying this problem, obtaining one of the most slim models above the ones
obtained by this set of experiments. The interesting coefficients of this model deserve some atten-
tion: while it is suggested that a higher USG% can improve the PPG of players in this category,
MPG has a negative impact. This implies that, for these players, it is better to have more plays
running through them rather than having actually more minutes on the floor. Finally, we want
to underline that the predictions in Figure 6.13 on this cluster are acceptable considering the
simplicity of a linear model, since most points are in an area close to the bisector.

Figure 6.14: Residuals for cluster 8 with linear regression.

Figure 6.15: Predictions for cluster 8 with linear regression.

The predictions for this cluster present one of the highest Adjusted R2 above all the other mod-
els, which is a particularly interesting feat considering the complexity of this cluster. They are
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predominantly players who stay inside the paint and construct their efficiency from rebounds and
inside points closer to the rim, which is a wide definition, which allows for a broader interpretation.
Even though this is the case, we can see that the residuals from Figure 6.14 follow the similar
pattern for all the other models, being that apart from the presence of occasional outliers and
the apparent deterministic behavior in the ”Residual vs Fitted”, these are overall interesting and
precise results. Predictions showed in Figure 6.15 also confirm this behavior, since they do not
show much dispersion at all. The discovered models contains lots of coefficient actually, but we
want in particular to consider a few of them which are interesting. This category of players is
required, in order to produce more points, to act in a more modern way, with respect to what
someone could expect. Usually, big players are required to stand inside the area and take easy
shots towards the rim. Players from cluster 8 are instead more likely to generate points by taking
2 and 3 shots, as well as assists and rebounds.

Figure 6.16: Residuals for cluster 9 with linear regression.

Cluster 9 was actually one of the easiest to pin down in our original analysis of categories, being
it reserved for the ”classical centers”. What we see in the results of linear regression is indeed a
cluster with good behavior of the residuals, as seen in Figure 6.16, as well as good predictions,
with a total absence of outliers. We see that in Figure 6.17 there are not points who are drastically
misplaced, and we see an overall uniformity in the predictions, with some bigger variations at the
start and at the end of the predictions. The coefficients which influenced the most such a category
were actually rather interesting: with respect to cluster 8, there is not a big suggestion in raising
the minutes per game of players in this category. And while indeed their USG% is particularly
high, since most difficult plays in a tough situation will revolve around the biggest player on the
floor, being him the safest way to secure at least two points, there is an accent on the shooting
again, as in the previous analysis. 2PA and 3PA are positive coefficients for this model, once
again explaining that indeed, there is the need for even bigger players to get more skilled on such
aspects of the game, a concept that in the 2010’s was still revolutionary, and that just nowadays
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Figure 6.17: Predictions for cluster 9 with linear regression.

is gaining more and more consideration.
The results of this first analysis are, indeed, encouraging for each and every cluster, with exception
for cluster 2, which will be excluded from all further analysis for the reasons explained above. We
were able to discover 8 robust models for each meaningful cluster. We believe that the recurring
problems related to the residuals in the ”Residual vs Fitted” is caused by two major causes: first
of all, the non-normal behavior of our response variable, which has of course consequences on the
goodness of discovered models, and the lack of more data for our analysis. Moreover, the presence
of outliers is inherit in such a field of study. Given the inherent volatility of basketball, akin to
any sport, instances of statistical anomalies are anticipated year after year, making impossible
to create a comprehensive explanations by predictive models. Overall we are satisfied with the
numerical results and the graphical ones, considering that this is the most slim and easy to inter-
pret model. We will see how much more complex models can improve these results, but we will
need to be careful on a particular information. As the plots for the residuals show, most of the
model’s covariates were chosen based on the Adjusted R2 statistic. This implies that, almost at
all times, the more complex model was preferred with respect to the simpler one. It brings up the
question of how intricate the problem we’re studying really is, and aligns with what we’re trying
to predict, a player’s Points Per Game, which is influenced by many different factors. Given this,
it makes sense for us to explore slimmer models, that still do a good job of predicting, as they
might capture the important factors without adding unnecessary complexity.
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6.3 Principal Component Regression
This analysis in particular is interesting in the scope of our study, considering we already applied
Principal Component Analysis in Section 4.3 in order to discover clusters in our dataset. We were
able that way to find out that with just 4 principal components it is possible to describe almost
the entirety of variation expressed by our dataset. Principal component Regression is available in
the R programming language thanks to the pls library, whose functions were used in this set of
experiments. The experimental setup can be described as follows.

1. The seed 123 is set at the beginning of this analysis, for repeatability purposes. Then, for
each cluster, a principal component regression model is computed, utilizing 20 as a roof
for the number of components, ncomp. Also, cross-validation is implemented as a further
mean to create reliable models. For each one of these, the training indices of each group of
players are used.

2. A validation plot is computed, with two metrics, MSEP (mean square error of prediction)
and R2, useful to understand how much variability in the dataset is explained by each
component.

3. The number of optimal components is chosen by applying the onesigma method, as for
Hastie, Tibshirani and Friedman, 2009. It returns the first model where the optimal CV
is within one standard error of the absolute optimum. We hence simply use the standard
deviation of the cross-validation residuals, in line with the procedure used to calculate the
error measure itself. During different tests, it came out that onesigma provides overall more
precise models with respect to the randomization approach, as for Van der Voet, 1994.

4. A final coefplot is computed for the clusters, with the choice suggested by the onesigma
approach. The coefplot in principal component regression is useful for understanding the
contribution of each original predictor variable to the principal components used in the
regression. It displays the coefficients associated with each principal component and each
original predictor variable. Each coefficient represents how much a unit change in the
predictor variable affects the response variable after accounting for the effect of the other
variables in the model.

5. Finally, the predictions for the models are plotted, as well as some numerical metrics which
are stored in a dataframe, in particular MSE, RMSE and R2.

Principal Component Regression is anticipated to provide improved outcomes compared to
Linear Regression due to its ability to mitigate multicollinearity and enhance model performance.
In Linear Regression, when predictor variables are highly correlated, estimation of coefficients
becomes unstable, leading to inflated standard errors and potentially misleading interpretations
of predictor significance. Additionally, PCR’s dimensionality reduction aims at minimizing over-
fitting, as fewer predictors are utilized in the regression equation. This enhances the model’s
generalization to new data, leading to improved predictive accuracy. Moreover, PCR tends to be
less sensitive to outliers due to the inherent mitigating effect of the principal component transfor-
mation, which we have seen can be of major importance in a dataset with outliers such as ours.
We will start explaining the results of this set of experiments by showing the numerical outcomes
of the models computed for each cluster. As said, three metrics were computed to give a clear
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view of how well each model is behaving. We recall that RMSE stands for ”Root Mean Square
Error.” It is a commonly used metric to measure the accuracy of a model’s predictions. RMSE
calculates the square root of the average of the squared differences between the predicted values
and the observed values, which is just RMSE =

√
MSE.

MSE RMSE R2

1 0.04725655 0.2173857 0.9445747
2 0.26880427 0.5184634 0.7524244
3 0.13462047 0.3669066 0.8745699
4 0.02109796 0.1452514 0.9789797
5 0.01930319 0.1389359 0.9829199
6 0.06485296 0.2546624 0.9357083
7 0.10021650 0.3165699 0.9229646
8 0.04145602 0.2036075 0.9613650
9 0.03085809 0.1756647 0.9672226

Table 6.2: Performance metrics for PCR models, computed for each cluster.

These results are without doubt interesting. We see models with poorer performances, as well
as ones that are similar to the ones we analyzed in Section 6.2. In particular, models related to
clusters 2, 3 and 7 have poor performances. And while we can make a case for cluster 2 being un-
derfitted due to the lack of observations, the instances of cluster 3 and 7 are particular and needs
to be addressed. Overall, these can be considered, strictly from numerical scores, good enough
as models, but they indeed perform worse with respect to linear regression. A first hypothesis on
why this is happening can be pretty simple: linear regression may choose, at times, a larger set of
variables than principal component regression, which tries to ”sum up” the content of the various
predictors. We proceed now to show the graphical results for this analysis, starting from the choice
in number of components for each model. This analysis in needed in order to understand if there
are any analogies between Principal Component Analysis and Principal Component Regression.
At first glance, Figure 6.18 shows us the answer we were looking for: there are no correlations
between what we found in Principal Component Analysis and the results from this experiments.
The reasons are, of course, many. First of all, the fact that we are trying to predict a single variable
instead of ”just” summing up the content of the dataset. This implies that the components are
required to express the variability of PPG, which is a further requirement that may create the need
for a larger number of components. Secondly, we recall that in Section 4.3 we utilized a slimmer
version of the dataset, which we did not imply for uniformity in the experiments for this section.
Indeed, to a higher number of predictors will naturally correspond a higher number of principal
component needed. Finally, we can look at the actual results. Apart from some particular cases
like cluster 8, where the number of components needed to reach a justifiable value in both MSE
and R2 is lower, or cluster 2, where those values are never reached, all clusters behave similarly:
to reach a value of 0.1 MSE and 0.9 R2, the number of optimal components ncomp is always
contained in the following way, 10 ≤ ncomp ≤ 14. And while this is a less efficient result than
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Figure 6.18: MSEP and R2 analysis for each cluster.

the one obtained in Section 4.3, we can consider this still to be an interesting point of view on our
problem. Principal Component Regression is useful to give us a lower bound on the information
needed to express the variability of our response variable, PPG. And doing this, not always brings
us particularly efficient results, as Table 6.2 shows, meaning that there is a clear limit under which
our problem cannot be simplified. Still, we want to take a look at how well a simplified version
of our problem works, which can be done by analyzing the predictions for each cluster. Starting
from cluster 1, which can be seen in Figure 6.19, we have a robust model with a very low MSE and
a solid value in R2. These influence the predictions of the model significantly, and we are able to
see that almost all predictions are near the red bisector, with contained deviations. There is, even
in this case, the issue with the usual outlier for this cluster, which not even Principal Component
Regression is able to manage. This cluster was able to sum up almost all variability of PPG with
the use of just 11 principal components, which is one of the best results among all clusters.
We recall that cluster 2 is not considered in these analysis due to the lack of observations which
lead to poor performances in terms of both numerical scores and graphical ones. Just looking
at Table 6.2 we are able to see that this model was not able to go further than 0.75 on the R2.
Cluster 3 required 14 principal components, which is the mode among all the models. 6

9 of the
models ended up choosing this number of components to explain the variability of PPG. Cluster
3 in particular is not a very stable model, presenting numerical results which are barely accept-
able, and this reflects in the predictions presented in Figure 6.20. Here we see the presence of
both observations which do not deviate too much from the bisector, as well as lots of outliers and
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Figure 6.19: Predictions for cluster 1 with PCR.

Figure 6.20: Predictions for cluster 3 with PCR.

mispredicted players. And while this is a hard cluster to precisely pin down, containing players
who still need development in the league, linear regression with its simplicity was more accurate
utilizing 19 predictors. This can be an indicator of the fact that this cluster’s best approach to
obtain correct predictions may not be a shrinking method. The predictions for cluster 4 are shown
in Figure 6.21, and can be considered satisfactory. Indeed this model already presents one of the
highest numerical results, implying that we will see next to none variety along the red bisector,
obtaining really good predictions. In particular, we want to address that, for this cluster, principal
component regression is able to solve one of the issues that linear regression had, which is being
robust to outliers. Even in presence of players such as Lebron James or James Harden, this model
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Figure 6.21: Predictions for cluster 4 with PCR.

is able to fit observations pretty consistently. This model, being one of the easiest to address,
utilized 11 principal components in order to express PPG’s variability.

Figure 6.22: Predictions for cluster 5 with PCR.

The model associated to cluster 5 is actually the best one obtained by this analysis, and it shows
clearly as well in the predictions. Where we have seen in Figure 6.9 that the model was doing
a good job at making predictions, with errors at the beginning and at the end of the curve, this
model stays consistent along all the observations. Indeed we can also see an MSE of 0.01, and a
R2 of 0.98, making for a really solid model. Cluster 5 contains the shooters for the league, and
being them one of the most searched players among the various NBA team’s this model could be
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really useful in detecting which athlete has the best chance of developing a high profile in PPG.
This model was predicted utilizing 13 principal components.

Figure 6.23: Predictions for cluster 6 with PCR.

A couple of considerations can be drawn so far by the few examples of models we saw. As Fig-
ure 6.23 shows, the predictions for cluster 6 aren’t precise as, for example, the one’s from cluster 1,
4 and 5. This is happening, without surprise, for clusters whose categories are harder to precisely
define. As we said, cluster 1 contains the best passers, cluster 4 the superstars, and cluster 5 the
best shooters, but cluster 3 and 6 both contain players who still need time and development in
the league. They are specialized in different aspects of the game, indeed we do not see a model
which is mispredicting every observation, but without the minutes on the floor as other players
get, it is harder to understand the best way for them to gain points while playing. For this reason,
while cluster 6, as well as 3, contains interesting results in terms of predictions, linear regression
still does a better job because it utilizes more covariates, trying to explain variability which is not
needed for easier to understand clusters. Another hint of this phenomenon is the fact that clusters
3, 6, 7 and 8, the harder ones to define, all utilize 14 components, which is the maximum number
these models show.
What we have just said can be easily seen in Figure 6.24 and Figure 6.25, where the predictions
are still coherent, but the number of components needed is higher in order to do so. In particular,
we can see that principal component regression is once again doing a good job at containing the
issues related to outliers. And we can safely say that, in particular for cluster 8, the predictions
are at most time around the bisector without much deviations. Indeed, this model still presents
a high R2 and MSE, proving that even in more difficult clusters principal component regression
can still do a good job at creating a good model. The reason why we believe this happens only
for cluster 8 is related to the presence of more observations in this cluster with respect to others.
Of course, having more observations in cluster 3, 6 and 7 would lead to similar models, since the
nature of the considered clusters is similar. Moreover, having more observations in the easier to
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Figure 6.24: Predictions for cluster 7 with PCR.

Figure 6.25: Predictions for cluster 8 with PCR.

understand clusters could lead to even more precise models. As already specified, both models for
cluster 7 and 8 were created utilizing 14 principal components.
We head to the final model, for cluster 9. It averages the third best numerical results, since it
is a fairly precise cluster, containing classic centers. It utilizes 14 principal components still, and
the predictions shown in Figure 6.26 are not as good as the ones for cluster 4 and 5, which have
similar scores. What we believe is happening here is another proof for the absence of observations
in the subset of the dataset. The predictions themselves are rather precise, but we believe a better
graphical behavior could be shown if the testing dataset was bigger than the one used for this
experiment.
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Figure 6.26: Predictions for cluster 9 with PCR.

Overall, we have gained interesting considerations by this analysis, and by its comparison with the
results obtained by linear regression. In particular, we have seen that for more ”straightforward”
clusters, being them 1, 4, 5, and 9, the principal component regression obtains better results with
respect to linear regression. A larger number of observations would have lead to even better graph-
ical results, and maybe a lower number of principal components used, although this last claim
would need more testing. The same line of reason can be applied for harder to grasp clusters, in
particular 3, 6, 7 and 8, since the latter was by far the one with best results due to the presence
of more observations in the subset with respect to the other clusters. We conclude that principal
component regression is indeed a good way of making predictions about PPG for NBA players,
being better than linear regression in the more clear clusters, and worse in the lesser ones, since
automatic selection was allowed, in that case, to use a larger number of predictors, in order to
make up for the variability not explained in the response variable.
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6.4 Random Forest Regression
In the realm of predictive modeling, it is essential to explore diverse regression techniques to com-
prehend their effectiveness in addressing complex and multi-dimensional datasets. We analyzed
and utilized so far Linear Regression and Principal component Regression, and their results can be
categorized as satisfactory. Linear Regression, a fundamental approach, seeks to establish linear
relationships between predictors and a response variable, making assumptions of homoscedasticity
and independence of residuals. PCR, on the other hand, leverages dimensionality reduction via
Principal Component Analysis, aiming to alleviate multicollinearity concerns and improve predic-
tion accuracy, but still applying a least squares approach to the obtained components. However,
these techniques may encounter limitations when faced with intricate relationships or non-linear
patterns within the data. Random Forest Regression, an ensemble learning algorithm, offers a
promising solution by aggregating multiple decision trees and introducing non-linearity, enabling
the capture of intricate interactions among variables, as explained in Section 5.4. In this context,
the exploration of Random Forest Regression as a complementary method stands to unveil its po-
tential in addressing the shortcomings of Linear Regression and Principal Component Regression,
while yielding insights into its applicability and performance on our case study.
The randomForest package in the R programming language allows us to conduct our experiments
with this technique, and, once again, we begin our treatment by explaining the setup that has
been used for the analysis of each of the nine clusters.

1. For each cluster, a random forest model is built in the R programming language, using the
call to function randomForest with the following parameters. The response variable, PPG,
the training indices for each cluster, and three training parameters. Firstly, the number of
variables randomly sampled as candidates at each split, or mtry. Given p the number of
predictors, the default values are different for classification problems, where √

p is used, and
regression, where p

3 is used. Hence, the number of covariates is divided by 3 and rounded
without any decimals. Secondly, ntree is the training parameter which specifies how many
trees are builded during this phase. A common practice is to set the ntree parameter
to a larger value, such as 500 or 1000, and then evaluate the model’s performance. If the
performance metrics stabilize or show minimal improvement after a certain number of trees,
it is possible to stop increasing the number of trees. In our case, 500 was a good tradeoff
between accuracy and computational efficiency. Finally, the replace parameter was set to
TRUE, to enable bootstrapping with replacement.

2. The numerical scores, MSE, RMSE and R2 are computed and inserted in a dataframe in
order to be analyzed, and the predictions are plotted to validate the model.

These are all the steps that we utilized for the random forest regression method. Note that,
differently from the linear regression and principal component regression analysis, some inter-
pretability information is lost in order to get a more efficient model. Explained our experimental
setup, we will now provide a table with the numerical scores of the random forest models for each
cluster. Table 6.3 shows clearly that this experimentation did not go as well as the previous ones.
Recalling the boundaries we used for Principal Component Regression, the MSE of this model
never goes below 0.1, except for model 9, and the same happens for the R2, where the threshold of
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MSE RMSE R2

1 0.14104298 0.3755569 0.8345763
2 0.27891650 0.5281255 0.7431108
3 0.18734953 0.4328389 0.8254406
4 0.11074226 0.3327796 0.8896655
5 0.16042099 0.4005259 0.8580546
6 0.22560899 0.4749831 0.7763435
7 0.30601510 0.5531863 0.7647692
8 0.18518841 0.4303352 0.8274133
9 0.08772464 0.2961835 0.9068191

Table 6.3: Performance metrics for Random Forest models, computed for each cluster.

0.9 is never reached except for that one occasion. This is a clear issue. We are dealing with a model
that cannot be considered at all stable or utilized, and we have to investigate the reasons why this
might be happening. First and foremost, one of the main reasons for suboptimal results could be
the presence of noisy or irrelevant features in the dataset. Since Random Forest constructs trees
based on random subsets of features, irrelevant or noisy variables can lead to the creation of trees
with weak predictive capabilities, ultimately affecting the overall ensemble performance. On this
topic, a dataset not generic as the one we are utilizing, and more specific on offensive capabilities,
could lead to a more significant result. In particular because Random Forest Regression is the
only model so far who is not able to make a selection of which are the most meaningful variables.
Moreover, Random Forest can struggle when dealing with imbalanced datasets, where one class
significantly outweighs the others. This can lead the model to prioritize the majority class and
neglect the minority class, resulting in biased predictions. This should not be the case for our
dataset, since we have seen that at least a few coefficients are always needed in order to get a full
comprehension of the variability in the dataset. The only help we can get our model is to use
the slimmer version of our dataset we already considered for Section 4.3, which removed all the
information which were not strictly related to offensive parameters, which the models we analyzed
so far were able to mitigate. The results for this analysis can be found in Table 6.4 and are even
poorer, which bring us to make us further considerations on why the random forest regression is
failing for our dataset. Further experimentation with random forest would of course need a new
dataset. In the realm we are trying to analyze it is clear that this technique cannot create a com-
plex model with just these information. What could indeed help is a larger set of offensive metrics.
We believe that the second example, created via the use of a slimmer dataset, was following the
right track, but the lack of observations and of more meaningful covariates ended up creating a
model which still fell too short. In a low-observation scenario, the randomness introduced by the
model’s feature sampling during the construction of individual trees may lead to high variance
and unreliable predictions. Since each tree in the ensemble is constructed using different subsets
of the data, the aggregated predictions might not adequately capture the underlying patterns or
relationships within the data. Additionally, the model might struggle to identify meaningful splits
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MSE RMSE R2

1 0.3135424 0.5599486 0.6322586
2 0.5996733 0.7743857 0.4476856
3 0.3123129 0.5588496 0.7090084
4 0.3548560 0.5956979 0.6464508
5 0.4033897 0.6351297 0.6430685
6 0.3581553 0.5984608 0.6449443
7 0.4317126 0.6570484 0.6681468
8 0.4383922 0.6621119 0.5914395
9 0.2890561 0.5376394 0.6929653

Table 6.4: Performance metrics for Random Forest models, computed for each cluster on a smaller
set of predictors.

and decision boundaries in the data due to the limited instances available for analysis.
All the aforementioned reasons bring us to believe that the actual predictions are not fundamental
to show, due to their inability to capture any meaningful information in our dataset. Even in the
special case of the model for cluster 9 which utilized all the covariates, where the R2 was higher
than 0.9 and the MSE smaller than 0.1, the predictions ended up being not much meaningful,
probably due to an overfitting of the training data.
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6.5 Shrinkage Methods
In the realm of sport’s predictive modeling, where the task is to unveil intricate patterns within
data and craft accurate predictions, traditional approaches like linear regression and principal
component regression often encounter challenges posed by multicollinearity, noise, and model
complexity, as we were able to see so far. Shrinkage methods, such as Lasso and Ridge regression,
offer a promising avenue to transcend these limitations. These techniques, rooted in the broader
context of regularization, extend the principles of linear regression by adding penalty terms that
constrain the coefficients of predictors. Lasso employs L1 regularization to induce sparsity, driving
some coefficients to exactly zero, thus facilitating feature selection and potentially yielding simpler
and more interpretable models. Conversely, Ridge regression utilizes L2 regularization to control
the influence of coefficients, which can mitigate the impact of multicollinearity and reduce the vul-
nerability to noise. In this series of experiments, we delve into the implementation and evaluation
of Lasso and Ridge regression, scrutinizing their ability to counteract overfitting, enhance predic-
tive accuracy, and offer insights into feature importance. Through these investigations, we aim
to not only advance our understanding of shrinkage methods but also to harness their potential
in overcoming the limitations inherent in linear regression and principal component regression for
the problem at hand, with the hope to achieve a more robust and reliable predictive model.
The functions needed for this specific analysis in the R programming language are present in the
glmnet package.

6.5.1 Ridge Regression
We logically start from the type of model which not shrink the coefficients exactly to zero, and
talk hence about the experimental setup for Ridge Regression. For this analysis, as well as any
other, the seed was set to 123 for purposes of repeatability. We can describe the setup as follows.

1. For each cluster, create a ridge regression model without cross validation, and one with
this further requirement. The models are created starting from the training indices of the
original datasets.

2. Two plots are computed. The model without cross validation is used to plot the behavior
of coefficients with an increasing value of log(λ), while the cross validation one is utilized
to compute the best possible λ. The two dashed lines are the values of the minimum λ and
the minimum one with one degree of freedom, which is usually more penalizing.

3. A new model is computed for each cluster, and it is trained using the minimum λ obtained
at step [2].

4. The numerical scores for the optimal model are computed, in particular we save the corre-
spondent λ, the MSE, as well as the explained deviance and the R2.

5. The predictions for the optimal model are plotted utilizing the testing indices, together
with two graphical representations of the final penalization chosen.
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MSE ED R2

1 0.06768770 0.9582596 0.9375058
2 0.25030115 0.9558004 0.8111838
3 0.05395081 0.9541981 0.8798625
4 0.02179382 0.9862570 0.9831053
5 0.02063096 0.9820917 0.9770505
6 0.11170450 0.9240984 0.9420257
7 0.11151018 0.9155337 0.9336214
8 0.04308615 0.9670073 0.9562272
9 0.02687474 0.9788065 0.9662002

Table 6.5: Performance metrics for the Ridge Regression models, computed for each cluster.

The numerical results for these models can be seen in Table 6.5. These are pretty in line with
what we were able to identify with the previous models. We see a different parameter with respect
to the RMSE, being the ED, or explained deviance, of each model. These models are behaving
similarly, for example, to the ones we already seen for linear regression and PCR. In the particular
case of cluster 2, there is a MSE of 0.25 which makes it its analysis further more easy to discard.
Overall, we can be satisfied with these models, even though the penalization factor, as we will see,
never gets too high, implying that in order to obtain this score in terms of explained deviance
almost all variables are needed. We can look cluster by cluster at the graphical predictions for
this model. Together with the predictions for the different models, we will provide two graphical
examinations, containing the trend of the penalization factor with an increasing value of log(λ)

as well as a plot showing the explained deviance with the current choice of λ.

Figure 6.27: λ choice for cluster 1 with Ridge Regression.
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Figure 6.28: Predictions for cluster 1 with Ridge Regression.

Figure 6.27 shows practically what we were just talking about. The penalization factor is indeed
very low, but this comes with the obvious consequence of a better explanation of the response
variable as a whole. In Figure 6.28 we are able to see that indeed the points are almost at all
times close to the bisector of the plot. As in Section 6.2, we are able to see that, for cluster 1,
the coefficients which prominently influence the PPG for a player are APG and 2PA. Also 3PA,
in this case, have an importance on the final outcome. Most of the other coefficients are shrinked,
to the point of having a really small impact on the final outcome.

Figure 6.29: λ choice for cluster 3 with Ridge Regression.
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Figure 6.30: Predictions for cluster 3 with Ridge Regression.

With respect to cluster 1 results, which related to a pretty stable and reliable model overall,
what we see in cluster 3 could be anticipated slightly from Table 6.5. We have one of the smallest
R2 values, which can indeed be linked to the fact that this is one of the harder to grasp clusters.
And while the penalization factor is again low, the predictions this time around do not behave
as well. Most points are indeed in a contour of the optimal results, but we fail to see a reliable
predictor, considering also that this cluster is filled with outliers that we failed at almost all times
to fit well. The results from Figure 6.30 are indeed in line with the models obtained so far.

Figure 6.31: λ choice for cluster 4 with Ridge Regression.
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Figure 6.32: Predictions for cluster 4 with Ridge Regression.

Cluster 4 was in all the analysis seen so far, and still is, one of the easiest clusters to analyze.
Indeed, superstars has so many ways of efficiently increase their PPG, that pretty much any pre-
dictor was able to obtain a solid result, as the one we are able to see in Figure 6.32. As all the
other cases, the penalization factor is low, and the most influential coefficient is the USG%. This
does not come as a surprise, since any team with a superstar want the ball to be in their hands
during the most plays, being him the best player at generating points in a variety of ways.

Figure 6.33: λ choice for cluster 5 with Ridge Regression.

Cluster 5, being it populated by the most efficient shooters in the league, is once again one of
simple analysis, and the ridge regression model does not fail to gain results. We are able to see a
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Figure 6.34: Predictions for cluster 5 with Ridge Regression.

particularly interesting result, with a very low presence of outliers, and most points gathering in
the near proximity of the bisector, as in Figure 6.34. Again, players who are really specialized in
shooting are one of the most important assets in the modern NBA: for this sole reason, cluster 5
is the only other case, other than 4, in which USG% has such an high impact on the overall PPG.
Without surprise, the second most important coefficient is, in this case, the TS%.

Figure 6.35: λ choice for cluster 6 with Ridge Regression.

We can see from this set of results another situation which is in line with the previously analyzed
models. Cluster 6 is one of the harder to grasp group of players, meaning that achieving on it a
R2 of 0.94 with an explained deviance of 0.92 is a good result, but not one of the most stable. The
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Figure 6.36: Predictions for cluster 6 with Ridge Regression.

predictions for this group reflect this behavior, having most points indeed in the proximity of the
bisector, but with smaller or larger deviations. Although the predictions aren’t as precise as they
can be, we can underline that still the predictions are in line with the results from Figure 4.2.1,
since this model is suggesting that cluster 6 players should work on their rebounding proficiency
to gather more points, as it is underlined by the positive coefficient in RPG.

Figure 6.37: λ choice for cluster 7 with
Ridge Regression.

Figure 6.38: Predictions for cluster 7 with
Ridge Regression.

Being cluster 7 and 8 so similar to what we are able to see in Figure 6.36, we gathered the results.
Again, the penalization factor from Figure 6.37 is low, creating a stable but somewhat reliable
model, since it is able to satisfy the lower bound requirements on a numerical score stand-point.
The R2 is indeed higher than 0.90 and the MSE is just high the 0.10 bound. We believe once again,
as explained in Section 6.3, that the main reason why cluster 7 and 8, being similar semantically
as they are, create different models in term of efficiency is related to the difference in the number
of observations. Cluster 8 sees a much higher number of observations with respect to cluster 7,
and this create not only smoother predictions, as it can be seen in Figure 6.40, but better scores
as well. The MSE drops to 0.04, and the explained deviance goes up by 5 units with respect to the

118



previous cluster. With all of this being said, we can conclude once again that a higher presence
of observations would lead to a much more uniform and reliable set of predictors overall.

Figure 6.39: λ choice for cluster 8 with
Ridge Regression.

Figure 6.40: Predictions for cluster 8 with
Ridge Regression.

Figure 6.41: λ choice for cluster 9 with Ridge Regression.

We finally conclude with cluster 9, one of the easier to ones to grasp, which indeed reflects this
behavior with very promising results. The nature of the predictions, Figure 6.42, which may seem
at first glance scattered around the red bisector, is merely an effect of the low presence of observa-
tions in the testing subset. This model is instead one of the best among the ones discovered, and
indeed confirms our claims on the nature of the cluster itself. An accent is put in this model on the
RPG, as well as in the shooting. Both 2 and 3 point shoots predictors have positive coefficients,
where the first have a higher impact than the second. This is an interesting result with respect to
what we assumed in Chapter 2, which is the rising attention in the role of modern centers.
In conclusion, the outcomes obtained from the ridge regression analysis have yielded results that
align incredibly well with those obtained through both linear regression and principal component
regression methodologies. This consistency across diverse modeling techniques underscores the
robustness of our findings. Moreover, it is noteworthy that the computed penalization factors for
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Figure 6.42: Predictions for cluster 9 with Ridge Regression.

all the clusters found in the original dataset were consistently low. This observation highlights the
relatively gentle regularization impact of ridge regression on the model coefficients. The nature of
these results not only reinforces the validity of our approach but also suggests that ridge regres-
sion has facilitated the development of predictive models that effectively manage multicollinearity
without introducing excessive penalty to the coefficients. Furthermore, as we reflect throughout
the current section, it becomes evident that with larger sample sizes and more advanced predictor
variables, the potential for further enhancing model performance is promising. This can be seen in
the results obtained for cluster 8, as well as in the fact that reliable results were obtained just con-
sidering standard performance metrics. Having access to advanced offensive measurements would
of course yield more deep and useful considerations. Therefore, our work stands as a foundation
in exploring the potential of ridge regression, as well as the other methodologies we analyzed, in
complex predictive modeling scenarios. As we move forward, we believe that having access to more
advanced datasets will solidify the efficacy of the techniques we used. In this context, our study
serves as a proof of concept for more intricate investigations, showing that the present findings are
just the top of the iceberg of what could become state of the art methodologies for both coaches
and general managers in the NBA.

6.5.2 Lasso
In attempting to extend our analysis to include Lasso regression, an unforeseen challenge arose
that made impossible its applicability to our dataset. Upon implementation, the warning message
from listing 6 surfaced. It indicates that the Lasso regression procedure resulted in a list of models
with extremely few nonzero coefficients, rendering the visualization and interpretation of the
regularization results ineffective. Not only this, but the results of all numerical scores as well were,
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Listing 6 Warning obtained for every cluster while applying Lasso Regression.
Warning: 1 or less nonzero coefficients;
glmnet plot is not meaningful.

without surprise, set to 0, meaning that not a single significant model was produced. This outcome
can be attributed to the relationship between the L1 regularization term employed by Lasso and
the specific characteristics of our dataset. As Lasso aggressively shrinks coefficients toward zero
and performs feature selection by pushing some coefficients exactly to zero, the resulting model
may encounter difficulty accommodating the complexity of the relationships among predictors and
the response variable. Ridge regression solved this issue by applying a gentle penalization factor,
which is not as easy in Lasso regression. This phenomenon can be particularly pronounced when
dealing with datasets of limited sample size or intricate predictor relationships. Where the first
issue has already been explained, the second one is once again related to the nature of the used
predictors. The ones we considered relate to the main metrics utilized to measure players in the
basketball realm. A use of advanced metrics may favor the shrinking of coefficients towards zero:
indeed, the three point shot for a solely post up player may as well be 0, leaving more floor to
shrink most of the coefficients. Moving forward, a more nuanced approach to dataset preparation,
feature selection, or modification of the regularization parameter may be necessary to overcome
this challenge and unlock the potential benefits of Lasso regression in the analysis of NBA players.
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7
Conclusions

We have dissected, throughout this thesis, the possibility of utilizing data mining and machine
learning techniques to the real of sports analysis, with the specific focus of NBA basketball. The
main achievements we wanted to obtain were two:

1. Obtain Machine Learning models able to differentiate players in ”categories”, which is a
more complex definition of the traditional ”position” concept in basketball.

2. Find the best Data Mining technique that, for the categories we found, is able to predict
the best way for players to impact the offensive outcome of a game.

We can conclude that, in general, these objectives were satisfied. Even with a dataset in which
advanced offensive statistics were not recorded, we were able to tackle the problem using the tra-
ditional offensive ones, such as points, assists, rebounds and shooting percentages.
Chapter 4 showed that the best, most solid model for categorizing the starting dataset is the
k-means algorithm, with a preference for Hartigan-Wong implementation, even though its com-
parison with other similar algorithms proved that differences are minimal. We were able to discover
9 categories, some more precise and coherent with the initial dataset evaluations, some more vague,
and this can be attributed to the presence, in those cases, of players with less minutes played,
which creates an unbalanced input. A particularly interesting result was re-applying the same al-
gorithm inside one of the more defined categories, which was done in Subsection 4.2.1.4, referring
to the NBA’s ”superstars”. In that case, the analysis showed much more precise predictions, which
is a nice future work that can be done for this study: find out how much a recursive application
of this algorithm in the discovered clusters would help boost precision and obtain more complex
definitions, with the possible downside of overfitting the dataset. In Chapter 4, we were also
able to discover a method which was not a good fit for our problem, being it DBSCAN, which
helped show the complexity of the problem addressed. Finally, an experimentation with Principal
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Component Analysis was carried, and was able to discover four principal components to explain
91.34% of the variance in our dataset. With this result, combining all the principal components
with one another, we were able to define some clusters less dependent on the minutes played by
a player. We believe that such a technique can prove to be helpful when analyzing a dataset
inconsistent as ours, where both superstars and role players are included.
In Chapter 6 we addressed the second aim of this thesis, which is applying Data Mining techniques
to each of the discovered clusters. A variety of techniques were applied, starting from a simple
linear regression with automatic selection of variables, since with 27 covariates a manual analysis
would have been impossible, going to methods such as Principal Component Regression, Random
Forest and Shrinkage methods. Overall, looking at this set of techniques it is easy to understand
which was our aim: for each cluster we wanted to reduce as much as possible the number of
influential variables, in order to understand if it is true that a cluster formed by shooters and
a cluster formed by players specialized in assists influence differently the offensive outcome of a
game. This point was indeed addressed by our analysis, since the best techniques overall were
Principal Component Regression and Ridge Regression, both methods useful for dimensionality
reduction. In a similar way, not all techniques were able to obtain meaningful results, as this was
the case for Random Forest Regression and Lasso: in the first case, Random Forest Regression
interacts badly with particularly imbalanced datasets, while for the latter we can assume that
the Lasso penalization factor was too much of a requirement for our case study, due to a limited
number of samples or to a larger issue, which we want to address now as the biggest limitation
for this study.
We have previously hinted towards the fact that the dataset used for this analysis did not include
advanced offensive metrics to describe more precisely a player’s statline. For the whole duration
of the study, this has been the most prominent issue, since advanced metrics include information
which would have been tremendously helpful in our analysis. Information on, for example, touches
and post ups would have incremented the possibility of seeing a separate cluster inside the tradi-
tional centers one we were able to discover with k-means. Similarly, a distinction between pull
up and catch and shoot three point specialists would have helped seeing a distinction between
more ”self-centered” players and ones which are more connected to the offensive structure of a
team. Having this metrics would help in a more coherent way to construct an entire team: using
the trained models discovered in both Chapter 4 and Chapter 6 it could be useful to try different
combination of types of players and see which one min-maxes the offensive capability of the team.
It is also an interesting mean of studying successful teams, such as 2017 Golden State Warriors,
which included perfectly in synergy players in positions not traceable to the traditional ones. For
our study, we were limited due to the fact that, as of right now, most of these datasets are behind
paywalls, and if that’s not the case, the owners (such as the NBA itself) do not authorize the
download of any data for personal use. But if it was possible to obtain such metrics a much more
deep and precise analysis could be carried on without doubts, and this is the case since a general
distinction was clear using the most common metrics. We can conclude on this topic that our
study can be seen as a start for a much deeper analysis in NBA players categorization, helped by
our conclusions on many topics. The importance of using techniques which mitigate the naturally
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imbalanced nature of such realm of study, as well as the lower bound of 9 clusters, from which
much more detailed categories can be discovered. Another final point stands in the fact that, for
this study, we focused more on stable, reliable techniques and algorithms. An interesting expan-
sion to this study could revolve around utilizing more complex ways to achieve the purposes we
intended to achieve.
We believe that the future of sports is deeply linked to the ability of teams and organizations,
such the ones in NBA, to gather insightful data that can be used for means such as the ones we
discussed here. The specific aim of categorization is still not a topic in the literature for NBA
data analysis, while the one of determining the offensive impact of players has seen some interest
in recent years. Due to the wide range of applications this instruments may have, we believe that
interest on this topics will grow more and more in future years, and will become a standard in the
NBA of the future, which analyses thousands of players from all around the world and needs, for
this reason, modern and efficient ways to do so.
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