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Introduction

The study of sequences of dependent random variables arose at the
beginning of the twentieth century. In 1906 the Russian mathemati-
cian Andrei Andreyevich Markov (1856-1922), a Chebyshev’s pupil,
introduced some mathematical models to this end. His focus was
where the present is a sufficient statistis of the past to predict the
future. These sequence have been named Markov chains .
Even if it was a significant step in probability theory history, these
models were not immediately considered by the scientific commu-
nity. They were really appreciated only a few years later. Indeed,
the study of Markov chains hugely spread only from the 1950s on.
Nowadays, on the other hand, they are utilized in a variety of ap-
plications ranging from biology to psychology, from genetics to elec-
trical engineering.
It is interesting to study how such models evolve over time and if
they converge to a stationary situation, namely there is a limiting
probability distribution. The convergence of a Markov chain, how-
ever is not always guaranteed, and it is not known a priori how much
time takes to converge. These facts make the use of a Markov chain
model more complex than its relatively simple theory.
Suppose we only deal with Markov chains whose convergence is guar-
anteed. In many applications, it is desirable to control the Markov
chain by changing its transition mechanisms so as to achieve min-
imum cost, minimum queue length, etc. Another goal may be to
drive the chain to a desired distribution at a given final time. This
is achieve by the theory of Schrödinger bridges .
The purpose of this thesis is to describe the recently developed the-
ory of Schrödinger bridges for Markov chains, and to investigate its
effectiveness by simulation on various examples.
Of particular interest to us are chains that converges slowly to the
equilibrium distribution such as those that arise from random geo-
metric graphs.
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Schrödinger bridges allow in principle the possibility of controlling
a chain to its invariant distribution in finite time.

The outline of this thesis is as follows.

In Chapters 1 − 3, we collect some basics material on probability ,
combinatorics and random variables ;

In Chapters 4 − 7, we introduce Markov chains, their properties
and classificate them. We then give some examples distinguishing a
Markov chain according its state space, namely finite or countable.
Finally, we analyze the most important examples previously given.

In Chapters 8 − 9, first we deal with general maximum entropy
problems , then we focus on the theory of Schrödinger bridges .

In Chapters 10− 11, after introducing the average consensus prob-
lem, we discuss the importance of random geoemtric graphs. Finally
we explain the algorithm of simulation for Schrödinger bridges giv-
ing a time analysis of its execution.



Contents

1 Probability 9

1.1 Sample space and events . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Probability axioms . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Conditional probability and multiplication of probabilities . . . . 11

1.4 Bayes’ rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5 Independent events . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Combinatorics 17

2.1 Dispositions without repetition . . . . . . . . . . . . . . . . . . . 17

2.2 Combinations without repetition . . . . . . . . . . . . . . . . . . 18

2.3 Dispositions with repetition . . . . . . . . . . . . . . . . . . . . . 19

2.4 Combinations with repetition . . . . . . . . . . . . . . . . . . . . 20

3 Random variables 21

3.1 Random variable . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Random variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4.1 Bernoulli trial . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4.2 The binomial distribution . . . . . . . . . . . . . . . . . . 28

3.4.3 The geometric distribution . . . . . . . . . . . . . . . . . 29

3.4.4 The hypergeometric distribution . . . . . . . . . . . . . . 30

4 Markov chains 31

4.1 Historical background . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3



4 CONTENTS

4.3 Examples of Markov chains with finite state space . . . . . . . . 37

4.3.1 Random walk with absorbing barriers . . . . . . . . . . . 38

4.3.2 Random walk with reflecting barriers . . . . . . . . . . . . 38

4.3.3 Cyclical random walk . . . . . . . . . . . . . . . . . . . . 39

4.3.4 The Ehrenfest model of diffusion . . . . . . . . . . . . . . 40

4.3.5 The Bernoulli-Laplace model of diffusion . . . . . . . . . . 41

4.3.6 Random placements of balls . . . . . . . . . . . . . . . . . 42

4.3.7 Wright-Fisher model . . . . . . . . . . . . . . . . . . . . 43

4.4 Examples of Markov chains with countable state space . . . . . . 44

4.4.1 Success runs . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4.2 Random walk on Z . . . . . . . . . . . . . . . . . . . . . . 45

4.4.3 Random walk on Z+
0 . . . . . . . . . . . . . . . . . . . . . 46

5 Classification of states and asymptotic analysis 47

5.1 Communication classes and closed sets . . . . . . . . . . . . . . . 47

5.2 Classification of states . . . . . . . . . . . . . . . . . . . . . . . . 49

6 Finite Markov chains 55

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.2 Analysis of examples . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.2.1 Random walk with absorbing barriers . . . . . . . . . . . 57

6.2.2 Random walk with totally reflecting barriers . . . . . . . 58

6.2.3 Random walk with partially reflecting barriers . . . . . . 59

6.2.4 Cyclical random walk . . . . . . . . . . . . . . . . . . . . 60

6.2.5 The Ehrenfest model of diffusion . . . . . . . . . . . . . . 60

6.2.6 The Bernoulli-Laplace model of diffusion . . . . . . . . . . 61

6.2.7 Random placements of balls . . . . . . . . . . . . . . . . . 61

6.2.8 Wright-Fisher model . . . . . . . . . . . . . . . . . . . . . 62

7 Analysis of examples with countable state space 63

7.1 Success runs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7.2 Random walk on Z . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.3 Random walk on Z+
0 . . . . . . . . . . . . . . . . . . . . . . . . . 65



CONTENTS 5

8 Maximum entropy problems 69

8.1 Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

8.2 Convex functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

8.3 The simplex of probability distributions . . . . . . . . . . . . . . 71

8.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

8.4.1 A finite Gibbs variational principle . . . . . . . . . . . . . 71

8.4.2 Maximum entropy problems with a given expectation . . 74

9 Schrödinger bridges 79

9.1 Martingales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

9.1.1 Martingales and submartingales . . . . . . . . . . . . . . . 79

9.1.2 Space-time harmonic functions . . . . . . . . . . . . . . . 80

9.2 Information divergence . . . . . . . . . . . . . . . . . . . . . . . . 80

9.3 Schrödinger bridges . . . . . . . . . . . . . . . . . . . . . . . . . . 81

9.4 Existence and uniqueness for the Schrödinger system . . . . . . . 88

10 Mixing Markov chain 91

10.1 The average consensus problem . . . . . . . . . . . . . . . . . . . 91

10.2 Fastest mixing Markov chain problem . . . . . . . . . . . . . . . 92

10.3 A class of slow mixing Markov chain: Random geometric graph . 95

11 Simulation for Schrödinger bridges 99

11.1 Simulation for Schrödinger bridges . . . . . . . . . . . . . . . . . 99

11.2 Time analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

11.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

A Some modern application of Markov chains 113

A.1 Identifying genes in genomic DNA . . . . . . . . . . . . . . . . . 113

A.2 The Google Page Rank algorithm . . . . . . . . . . . . . . . . . . 113

A.3 Markov chain Monte Carlo . . . . . . . . . . . . . . . . . . . . . 114

A.4 Distribution of epithelial cells . . . . . . . . . . . . . . . . . . . . 114



6 CONTENTS

B Matlab 117

B.1 Package functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

B.1.1 size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

B.1.2 disp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

B.1.3 fsolve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

B.1.4 rand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

B.1.5 randi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

B.1.6 diag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

B.1.7 sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

B.1.8 zeros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

B.1.9 ones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

B.1.10 eye . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

B.1.11 abs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

B.1.12 eig . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

B.1.13 sort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

B.1.14 rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

B.1.15 all . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

B.1.16 find . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

B.2 Implemented functions . . . . . . . . . . . . . . . . . . . . . . . . 122

B.2.1 System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

B.2.1.1 isfull . . . . . . . . . . . . . . . . . . . . . . . . . 122

B.2.1.2 pit . . . . . . . . . . . . . . . . . . . . . . . . . . 122

B.2.1.3 pi0 . . . . . . . . . . . . . . . . . . . . . . . . . . 123

B.2.1.4 periodt . . . . . . . . . . . . . . . . . . . . . . . 123

B.2.1.5 slem . . . . . . . . . . . . . . . . . . . . . . . . . 124

B.2.1.6 schsys . . . . . . . . . . . . . . . . . . . . . . . . 124

B.2.1.7 pibar . . . . . . . . . . . . . . . . . . . . . . . . 125

B.2.1.8 pibart . . . . . . . . . . . . . . . . . . . . . . . . 125

B.2.1.9 lpibar . . . . . . . . . . . . . . . . . . . . . . . . 126

B.2.1.10 schsyssolve . . . . . . . . . . . . . . . . . . . . . 127

B.2.1.11 binomial . . . . . . . . . . . . . . . . . . . . . . 127

B.2.1.12 metropolis . . . . . . . . . . . . . . . . . . . . . 128

B.2.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

B.2.2.1 Success runs . . . . . . . . . . . . . . . . . . . . 129



CONTENTS 7

B.2.2.2 Rsparse . . . . . . . . . . . . . . . . . . . . . . . 129

B.2.2.3 Laplace . . . . . . . . . . . . . . . . . . . . . . . 130

B.2.2.4 Cyclical random walk . . . . . . . . . . . . . . . 130

B.2.2.5 Random walk . . . . . . . . . . . . . . . . . . . 131

B.2.2.6 Random geometric graph . . . . . . . . . . . . . 132

B.2.2.7 Randomsparse . . . . . . . . . . . . . . . . . . . 133

B.2.2.8 Blocksparse . . . . . . . . . . . . . . . . . . . . . 134

B.2.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 136

B.2.3.1 Wsimul . . . . . . . . . . . . . . . . . . . . . . . 136

B.2.3.2 Csimul . . . . . . . . . . . . . . . . . . . . . . . 137

B.2.3.3 Ssimul . . . . . . . . . . . . . . . . . . . . . . . . 138

B.2.3.4 Rsimul . . . . . . . . . . . . . . . . . . . . . . . 139

B.2.3.5 Lsimul . . . . . . . . . . . . . . . . . . . . . . . 140

B.2.3.6 Rggsimul . . . . . . . . . . . . . . . . . . . . . . 141

B.2.3.7 Bsimul . . . . . . . . . . . . . . . . . . . . . . . 142

C Matrix properties 143

C.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

C.2 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

C.3 Determinant and inverse matrix . . . . . . . . . . . . . . . . . . . 145

C.4 Rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

C.5 Eigenvalues and eigenvectors . . . . . . . . . . . . . . . . . . . . 146



8 CONTENTS



Chapter 1

Probability

1.1 Sample space and events

Let us consider experiments whose outcome cannot be predicted for
certain. Although the outcome of the experiment is not known a
priori, we suppose that the set of all the possible outcomes is finite
and denote its cardinality by n.

Definition 1.1.1. The set of all the possible outcomes Ω is called
sample space, and denoted with Ω = {ω1, ω2, . . . , ωn}.

Every subset E of the sample space, namely P (Ω), is called an
event . If the outcome of an experiment is contained in E, we say
that E occurred. The event ∅ (empty set) is called impossible event
as it never occurs. The event Ω is called certain as it always occurs.

Definition 1.1.2. Given two events E and F of the sample space Ω,
we define E ∪ F as the union of these events, that means the set
of all the possible outcomes which belong to E, F or both of them.
On the other hand E∩F , called intersection of E and F , represents
all the outcomes contained both in E and F .

If E ∩ F = ∅, E and F are incompatible. Given two events E and
F , if all the outcomes of E are also of F , we say that E is contained
in F (E ⊆ F ) or with the same meaning F contains E (F ⊇ E).
Remark 1.1.3. If it is true that E ⊆ F and F ⊆ E at the same time,
we say E and F coincide and write E = F .

9



10 CHAPTER 1. PROBABILITY

Finally, every event E has its complement Ec which contains all the
outcomes of the sample space that E does not.

Proposition 1.1.4. Operations above introduced, such as union, in-
tersection and complementation, enjoy some properties:

1. Commutative

(a) E ∪ F = F ∪ E;
(b) E ∩ F = F ∩ E;

2. Associative

(a) (E ∪ F ) ∪G = E ∪ (F ∪G);
(b) (E ∩ F ) ∩G = E ∩ (F ∩G);

3. Distributive

(a) (E ∪ F ) ∩G = (E ∩G) ∪ (F ∩G);
(b) (E ∩ F ) ∪G = (E ∪G) ∩ (F ∪G).

There are also two relations, called De Morgan’s laws, which connect
union, intersection and complementation operation(

n
∪
i=1
Ei

)c
=

n
∩
i=1
Ec
i (1.1)

(
n
∩
i=1
Ei

)c
=

n
∪
i=1
Ec
i (1.2)

1.2 Probability axioms

Let us consider a function

p : Ω→ [0, 1] , (1.3)

such that
n∑
i=1

p (ωi) = 1. (1.4)

We call p (ωi) the probability of outcome ωi. For any event E its
probability define

P (E) :=
∑
ωi∈E

p (ωi) , P (∅) = 0. (1.5)

Such a map P is called a probability measure on P (Ω). It must
satisfy the following axioms:
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1. P (Ω) = 1;

2. P
(
m
∪
i=1
Ei

)
=

m∑
i=1

P (Ei) whenever Ei, Ej are pairwise disjoint

sets, namely Ei ∩ Ej 6= ∅, for each couple (i, j) i 6= j.

Example 1.2.1. Let us toss a die. Supposing it is unbiased, each
face is equiprobable. Hence we get P ({1}) = P ({2}) = P ({3}) =
P ({4}) = P ({5}) = P ({6}) = 1

6
. The probability of getting an

even number is

P ({2, 4, 6}) = P ({2}) + P ({4}) + P ({6}) =
1

2
.

Due to our definition of probability of an event, we have some more
properties:

1. E and Ec are always disjoint. Moreover E∪Ec = Ω⇒ P (Ec) =
1− P (E);

2. E ⊂ F ⇒ P (E) ≤ P (F ) ;

3. P (E ∪ F ) = P (E) + P (F )− P (E ∩ F ) ≤ P (E) + P (F ).

Example 1.2.2. Now suppose to toss two distinguishable dice. Let
E and F be the event of the first and second die respectively to get
an even number. We get

P (E ∪ F ) =
1

2
+

1

2
− 1

4
=

3

4
.

1.3 Conditional probability and multiplication of
probabilities

Conditional probability is the probability of some event E, given the
occurrence of some other event F and is written P (E|F ).

Definition 1.3.1. For P (F ) > 0, the conditional probability is defined
by

P (E|F ) :=
P (E ∩ F )

P (F )
(1.6)
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and let us now consider some basic properties:

1. P (E|E) = 1;

2. P (∅|E) = 0;

3. E ⊆ F ⇒ P (F |E) = 1;

4. F ⊆ E ⇒ P (F |E) = P (F )
P (E)

.

Using the conditional probability definition we calculate the proba-
bility of the intersection of two events i.e. E and F

P (E ∩ F ) = P (E|F ) · P (F ) (1.7)

namely the multiplication of probabilities formula.

Assuming P (E1 ∩ E2 · · · ∩ En) > 0, the latter can be generalized by
induction to n events

P (E1 ∩ E2 · · · ∩ En) = P (E1)·P (E2|E1) · · ·P (En|E1 ∩ E2 · · · ∩ En−1)
(1.8)

As before conditional probability enjoys the same three axioms:

1. 0 ≤ P (E|F ) ≤ 1;

2. P (Ω|F ) = 1;

3. P

(
∞
∪
j=1
Ei|F

)
=
∞∑
j=1

P (Ei|F ) whenever Ei, i = 1, 2, . . . are pair-

wise disjoint sets.

Example 1.3.2. This time, a die is tossed once. Let E = {5, 6} and
F be the event of getting an odd number at first toss, F = {1, 3, 5}.
The conditional probability of E given F is

P (E | F ) =
1
6
1
2

=
1

3
.
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1.4 Bayes’ rule

By the multiplication of probabilities formula (1.7), in the case of
P (E) > 0 and P (F ) > 0, we get Bayes’ rule

P (F |E) =
P (E|F )P (F )

P (E)
. (1.9)

Definition 1.4.1. Let F1 · · · Fn be pairwise disjoint sets with positive
probabilities so that

m
∪
i=1
Fi = Ω,

namely{Fi}mi=1 provide a partition of Ω.

For any event E, we have E =
n
∪
i=1
E ∩ Fi composed by pairwise

disjoint sets. We get the law of total probability

P (E) =
n∑
i=1

P (E|Fi) · P (Fi) , (1.10)

that is the weighted average of conditional probabilities P (E|Fi).

Since {F, F c} constitute a partition of Ω we get an important special
case of (1.10)

P (E) = P (E|F )P (F ) + P (E|F c)P (F c) . (1.11)

Then combining (1.9) with (1.10), we get a more general form of
Bayes’ formula:

P (Fj|E) :=
P (E|Fj) · P (Fj)
n∑
i=1

P (E|Fi) · P (Fi)
. (1.12)

By (1.11) the latter has the special case

P (F |E) =
P (E|F ) · P (F )

P (E|F )P (F ) + P (E|F c)P (F c)
. (1.13)

Remark 1.4.2. In statistical applications, Fj are called hypotheses .
The P (Fj) are called prior probabilities because they do not take
into account any information of E and the P (Fj | E), the condi-
tional probability of Fj, given E are called posteriori probabilities
because they are derived from or depends upon the specified value
of E.
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Example 1.4.3. An urn contains two coins C1 and C2. The first is
a fair coin, while C2 has probability 1

3
of getting head. Suppose a

coins is drawn at random and toss: we get head. Hence we want to
know the probability that it is the unbiased coin C1.

We have a sample space Ω = {C1H,C1T,C2H,C2T}. The probabil-
ities are

P (C1) = P (C2) =
1

2

P (H|C1) = P (T |C1) =
1

2

P (H|C2) =
1

3
.

By (1.13) we then get

P (C1|H) =
P (C1)P (H|C1)

P (H|C1)P (C1) + P (H|C2)P (C2)
=

1
2
· 1

2
1
2
· 1

2
+ 1

3
· 1

2

=
3

5
.

1.5 Independent events

Definition 1.5.1. Given two events i.e. E and F we say they are
independent if

P (E ∩ F ) := P (E) · P (F ) (1.14)

assuming P (F ) and P (E) are both positive. They are called de-
pendent otherwise. This means the occurrence of F doesn’t change
the probability that E could occur.

Remark 1.5.2. In this case, the conditional probability

P (E|F ) =
P (E ∩ F )

P (F )
= P (E) (1.15)

Let E and F be two independent events. Then also E and F c are
independent. Moreover let E, F and G be three events, if they are
independent they are linked by these relations:

1. P (E ∩ F ∩G) = P (E) · P (F ) · P (G);

2. P (E ∩ F ) = P (E) · P (F );

3. P (E ∩G) = P (E) · P (G);

4. P (F ∩G) = P (F ) · P (G).
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We should observe that if E, F and G are independent, E is inde-
pendent of each event made by F and G, i.e F ∪G for instance.

As before independence can be extended to n distinct events E1,
E2· · · En. They are called independent if each subset E1, · · · Er,
r ≤ n enjoys

P (E1 ∩ E2 · · · ∩ Er) = P (E1) · P (E2) · · ·P (Er) (1.16)

Example 1.5.3. Consider again the tossing of two fair dice. Let E be
the event “the sum of dice equals 6” and F be the event “the first
die is 4”. We notice they are dependent, indeed

P (E ∩ F ) = P ({(4, 2)}) =
1

36
,

while
P (E)P (F ) =

5

36
· 1

6
=

5

216
.

Example 1.5.4. Let us draw at random one card from a French deck.
Let E be the event “the card is an ace” and let F be the event “the
suit of the card is hearts”. We have

P (E ∩ F ) =
1

52
=

1

13
· 1

4
= P (E) · P (F ) .

Hence, E and F are independent.
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Chapter 2

Combinatorics

Consider a uniform sample space Ω. Namely for each event E ⊆ Ω,
P (E) = |E|

|Ω| . Thus computing the probability of any event reduces
to counting its elements. Many counting problems are simply enu-
merating dispositions (sorted) or combinations (not sorted) of a set
In of n distinct element, namely {1, ..., n}.

2.1 Dispositions without repetition

A k-disposition, or disposition of k elements without repetition of In,
is a sorted k-tuple (a1, ..., ak) of distinct elements of In we indicate
with P (n, k). We have

P (n, k) = n (n− 1) · · · (n− (k − 1)) =
n!

(n− k)!
, (2.1)

where 0! = 1 by definition. Moreover when k = n, namely a
n-disposition is called permutation.

P (n, n) = n (n− 1) · · · 2× 1 = n!. (2.2)

Example 2.1.1. From a urn containing n enumerated balls, we draw
k balls without replacement. The outcome of the experiment is
described by a k-disposition (a1, ..., ak), where ai is the number of
the i-th ball drawn. The sample space Ω has P (n, k) elements.
With k = 2 and n = 3, the sample space is

Ω = {(1, 2) , (1, 3) , (2, 1) , (2, 3) , (3, 1) , (3, 2)} .

17
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Example 2.1.2. We place k distinct objects in n cells where at most
one object is allowed in a cell. The outcome of the experiment
is described by a k-disposition (a1, ..., ak), where ai is the number
of the i-th cell with the i-th object inside. The sample space has
P (n, k) elements. With k = 2 and n = 3, the sample space is

Ω = {(1, 2) , (1, 3) , (2, 1) , (2, 3) , (3, 1) , (3, 2)} .

2.2 Combinations without repetition

A k-combination without repetition of k elements of In is a subset of
k < n distinct elements {a1, . . . , ak} of In. With C (n, k) we indicate
the number of k-combinations without repetition of In.

C (n, k) =
P (n, k)

k!
=

n!

k! (n− k)!
:=

(
n

k

)
(2.3)

is called binomial coefficient and read “n choose k”. For k < 0 or
k > n we set

(
n
k

)
= 0. It owns its name to the expansion

(a+ b)
n

=

n∑
k=0

(
n

k

)
an−kbk, (2.4)

where
(
n
0

)
= 1 by definition.

Binomial coefficients have some useful properties:

1.
(
n

k

)
=

(
n

n− k

)
;

2.
(
n

1

)
=

(
n

n− 1

)
= n.

Moreover, we have Pascal’s rule(
n

k

)
+

(
n

k + 1

)
=

(
n+ 1

k + 1

)
, 0 ≤ k < n. (2.5)

Example 2.2.1. From a urn containing n enumerated balls we draw
k balls without replacement. The outcome of the experiment is
described by a k-combination {a1, ..., ak}, where a1, . . . ak are the
numbers of drawn balls. The sample space Ω has C (n, k) elements.
With k = 2 and n = 3, the sample space is

Ω = {{1, 2} , {1, 3} , {2, 3}} .
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Example 2.2.2. We place k indistinguishable objects in n cells where
at most one object is allowed in a cell. The outcome of the experi-
ment is described by a k-combination {a1, ..., ak}, where a1, . . . , ak
indicate the numbers of cells with an object inside. The sample
space has C (n, k) elements. With k = 2 and n = 3, the sample
space is

Ω = {{1, 2} , {1, 3} , {2, 3}} .

2.3 Dispositions with repetition

A k-disposition, or disposition of k elements of In, is a sorted k-tuple
(a1, ..., ak) of elements of In eventually repeated. According to the
multiplication principle1 the number of k-dispositions of In is nk.
Recalling 2.4 where a = b = 1 we get

n∑
k=0

(
n

k

)
= 2k, (2.6)

namely the binary sequences of length k.

Example 2.3.1. From a urn containing n enumerated balls we draw k
balls with replacement. The outcome of the experiment is described
by a k-disposition (a1, ..., ak), where ai is the number of the i-th
ball drawn. The sample space Ω has nk elements. With k = 2 and
n = 3, the sample space is

Ω = {(1, 1) (1, 2) , (1, 3) , (2, 1) , (2, 2) , (2, 3) , (3, 1) , (3, 2) , (3, 3)} .

Example 2.3.2. We place k distinct objects in n cells where any num-
ber of objects is allowed in a cell. The outcome of the experiment
is described by a k-disposition (a1, ..., ak), where ai is the number of
the i-th cell with at least one object inside. The sample space has
nk elements. With k = 2 and n = 3, the sample space is

Ω = {(1, 2) , (1, 2) , (1, 3) , (2, 1) , (2, 2) , (2, 3) , (3, 1) , (3, 2) , (3, 3)} .
1We suppose an experiment can be split into a walk made up of m steps. Moreover ri,

namely the number of outcomes at the i-th step, is independent from the outcome of the
previous step. If from different walks we gain distinct final outcomes, the experiment has
r1 × r2 × · · · × rm different outcomes.
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2.4 Combinations with repetition

A k-combination of k elements of In is a subset of k < n elements
{a1, . . . ak} of In possibly repeated. The number of k-collections of
In is

C (k + n− 1, k) = C (k + n− 1, n− 1) (2.7)

Example 2.4.1. From a urn containing n enumerated balls we draw k
balls with replacement. The outcome of the experiment is described
by a k-combination {a1, ..., ak}, where a1, . . . , ak are the numbers
of drawn balls. The sample space Ω has C (k + n− 1, k) elements.
With k = 2 and n = 3, the sample space is

Ω = {{1, 1} , {1, 2} , {1, 3} , {2, 2} , {2, 3} , {3, 3}} .

Example 2.4.2. We place k indistinguishable objects in n cells where
every number of objects is allowed in a cell. The outcome of the ex-
periment is described by a k-combination {a1, ..., ak}, where a1, . . . , ak
indicate the numbers of cells with at least one object inside. The
sample space has C (k + n− 1, k) elements. With k = 2 and n = 3,
the sample space is

Ω = {{1, 1} , {1, 2} , {1, 3} , {2, 2} , {2, 3} , {3, 3}} .



Chapter 3

Random variables

3.1 Random variable

Definition 3.1.1. Let X 6= ∅ be a set. A collection F of subsets of X
is called a σ-algebra if it satisfies the following properties:

1. X ∈ F ;

2. E ∈ F ⇒ Ec ∈ F ;

3. Ei ∈ F , i = 1, 2, . . .⇒
( ∞
∪
i=1
Ei

)
∈ F .

A collection that satisfies 1 and 2 above, but it is only closed under
finite unions, is called an algebra.

Example 3.1.2. Let X 6= ∅. Then two (trivial) σ-algebras are F =
{∅, X} and F = P (X). For X = R the real numbers, B (R) denotes
the Borel sets . This is the smallest (intersection of two σ-algebras
is a σ-algebra) σ-algebra containing all open sets.

Definition 3.1.3. A triple (Ω,F , P ) is called probability space if

1. Ω 6= ∅;

2. F is a σ-algebra of subsets of Ω;

3. P : F → [0, 1] is such that

(a) P (Ω) = 1;

(b) P
( ∞
∪
i=1
E
)

=
∞∑
i=1

P (Ei) if

i. Ei ∈ F , i = 1, 2, . . .;

21
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ii. Ei ∩ Ej = ∅, i 6= j;

Remark 3.1.4. In the case when the cardinality of Ω is finite or count-
ably infinite, the above definition coincides with the previous one
when F = P (Ω).

Let (Ω,F , P ) be a probability space.

Definition 3.1.5. A random variable X is a function X : Ω → R such
that

{ω : X (ω) ∈ B} ∈ F , ∀B ∈ B (R) . (3.1)

Remark 3.1.6. Condition (3.1) ensures that the probability

P ({ω : X (ω) ∈ B}) (3.2)

has a meaning. It actually suffices to require condition (3.1) when
B = (−∞, x], namely {ω : X (ω) ≤ x} ∈ F , ∀x ∈ R.

Given a random variableX, the probability measure PX on (R,B (R))
given by

PX (B) := P ({ω : X (ω) ∈ B}) , B ∈ B (R) (3.3)

is called probability distribution of X. The function F

FX (x) := P (ω : X (ω) ≤ x) (3.4)

is called cumulative distribution function and represents the proba-
bility that the random variable is minus or equal x.

Moreover F enjoys some properties

1. F is not decreasing

2. lim
x→∞

FX (x) = 1

3. lim
x→−∞

FX (x) = 0

4. F is right-continuous and admits left limit for every x ∈ R.

Definition 3.1.7. A random variable X is called discrete if it takes
finite or countably infinite values in the set X , namely the state
space of X. Let X = {x1, x2, . . .}, the probability distribution pX
on X is defined by

pX (xi) := P (ω : X (ω) = xi) , (3.5)
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where
pX (xi) ≥ 0 i = 1, 2, . . . 0 otherwise. (3.6)

Since X takes at least one of xi values

∞∑
i=1

pX (xi) = 1. (3.7)

From now on let us consider random variables on a discrete proba-
bility space (Ω,P (Ω) , P ).

Definition 3.1.8. The expected value of X, denoted by E (X), is the
weighted average of the values that X takes.

E (X) :=
∑

xi:pX(xi)>0

xipX (xi) . (3.8)

Example 3.1.9. LetX be the outcome of tossing a die, supposing each
face equiprobable. The state space is X = {1, 2, 3, 4, 5, 6}and being
P ({1}) = P ({2}) = P ({3}) = P ({4}) = P ({5}) = P ({6}) = 1

6
we get

E (X) = 1

(
1

6

)
+ 2

(
1

6

)
+ 3

(
1

6

)
+ 4

(
1

6

)
+ 5

(
1

6

)
+ 6

(
1

6

)
=

7

2
.

Example 3.1.10. Let X be a constant, namely X ≡ c. Then E (X) =
c.

It satisfies the following properties:

1. |E (X) | ≤ E (|X|);

2. E (aX + b) = aE (X) + b, a, b ∈ R;

3. E (y (X)) =
∑

xi:pX(xi)>0

y (xi) pX (xi), where y is a real valued func-

tion.

Proposition 3.1.11. Let V be the vector space of all random variables

1. E (aX + bY ) = aE (X) + bE (Y ) a, b ∈ R, ∀X,Y ∈ V;

2. X (ω) ≥ 0, ∀ω ⇒ E (X) ≥ 0.

(a) In particular X (ω) ≥ Y (ω) , ∀ω ⇒ E (X) ≥ E (Y ) ;
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3. (E (|X · Y |))2 ≤ E
(
X2
)
· E
(
Y 2
)
, namely the Cauchy-Schwarz in-

equality.

Definition 3.1.12. The variance of X is defined by

V ar (X) := E
(

(X − E (X))
2
)

(3.9)

or

V ar (X) = E
(
X2
)
− (E (X))

2 (3.10)

and represents the dispersion of the values of the random variable
about its mean. The quantity σ =

√
V ar (X) is called standard

deviation.

In particular it is true

V ar (iX + j) = i2V ar (X) , ∀i, j ∈ R. (3.11)

Example 3.1.13. Let us toss a die. E (X) = 7
2
and

E
(
X2
)

= 12
(

1

6

)
+ 22

(
1

6

)
+ 32

(
1

6

)
+ 42

(
1

6

)
+ 52

(
1

6

)
+ 62

(
1

6

)
=

91

6
.

Hence V ar (X) = 91
6
−
(

7
2

)2
= 35

12
and σ =

√
35
12
.

Theorem 3.1.14. (Markov’s Inequality) Let X be a nonnegative ran-
dom variable. Then

P (ω : X (ω) ≥ ε) ≤ 1

ε
E (X) , ∀ε > 0. (3.12)

Corollary 3.1.15. (Chebyshev’s Inequality) Let X be a random vari-
able. Then

P (ω : |X (ω)− E (X) | ≥ ε) ≤ 1

ε2
V (X) , ∀ε > 0. (3.13)

3.2 Random variables

From now on we use the shorthand notation P (X = x) to denote
P (ω : X (ω) = x).

Definition 3.2.1. Let X and Y be two random variables with state
space X and Y , respectively. The function pXY (x, y) defined on
X × Y
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pXY (x, y) := P (X = x, Y = y) ≥ 0 (3.14)

is called joint probability distribution of X and Y .

In particular

pX (x) := P (X = x) =
∑

y:p(x,y)>0

p (x, y) (3.15)

and
pY (y) := P (Y = y) =

∑
x:p(x,y)>0

p (x, y) (3.16)

are called marginal distributions.

Definition 3.2.2. We define the covariance between X and Y

Cov(X, Y ) := E ((X − E (X)) (Y − E (Y ))) (3.17)

or
Cov (X, Y ) = E (XY )− E (X) · E (Y ) (3.18)

and represents a measure of how much two variables change to-
gether.

It enjoys the following properties:

1. Cov (X, Y ) = Cov (Y,X);

2. Cov (X,X) = V ar (X) (variance is a special case of the covari-
ance when the two variables are identical);

3. Cov (aX, Y ) = aCov (X, Y );

4. Cov

(
n∑
i=1

Xi,
m∑
j=1

Yj

)
=

n∑
i=1

m∑
j=1

Cov (Xi, Yj) .

Remark 3.2.3. It easy to verify that

V (X + Y ) = V (X) + V (Y ) + 2Cov (X, Y ) . (3.19)

The correlation coefficient of X and Y is defined by

ρ (X,Y ) :=
Cov (X,Y )√

V ar (X) · V ar (Y )
(3.20)

and
− 1 ≤ ρ (X, Y ) ≤ 1. (3.21)
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The correlation coefficient is a dimensionless measure of linear de-
pendence between X and Y .

More precisely, it is 1 in the case of an increasing linear relationship,
−1 in the case of a decreasing linear relationship.

In all other cases, it indicates the degree of linear dependence be-
tween the variables.

The closer the coefficient is to either −1 or 1, the stronger the cor-
relation between the variables.

Definition 3.2.4. The expected value of X and Y is

E (f (x, y)) =
∑
y

∑
x

f (x, y) pXY (x, y) , (3.22)

where pXY (x, y) is the joint probability distribution.

3.3 Independence

Given two events E and F , (1.6) defines the conditional probability
of E given F .

Definition 3.3.1. The conditional probability distribution of E given
F is

pX|Y (x|y) = P (X = x|Y = Y ) =
p (x, y)

pY (y)
, ∀y : pY (y) > 0. (3.23)

Hence the conditional expectation of X given that Y has taken the
value y ∈ Y is the function g (·) defined on Y by

g (y) = E (X|Y = y) =
∑
x∈X

xpXY (x|y) , ∀y : pY (y) > 0. (3.24)

The conditional expectation of X given Y is the random variable
g (Y ) which takes the value E (X|Y = y) with probability pY (y). If
we have random variablesX, Y1, . . . , Yn taking values in X ,Y1, . . . ,Yn
we can define

gn (y1, . . . , yn) = E (X|Y1 = y1, . . . Yn = yn) (3.25)

=
∑
x∈X

xP (X = x|Y1 = y1, . . . Yn = yn) . (3.26)
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Remark 3.3.2. Let f be any function. Then

E (X · f (Y ) |Y ) = f (X|Y ) , (3.27)

in particular when X ≡ 1, we get

E (f (Y ) |Y ) = f (Y ) . (3.28)

Theorem 3.3.3. (Iterated conditioning) We have

E (E (X|Y1, . . . Yn)) = E (X) (3.29)

and when 1 ≤ i1 < · · · < ik ≤ n we have

E (E (X|Y1, . . . , Yn) |Yi1 , . . . Yik) = E (X|Yi1 , . . . Yik) . (3.30)

Definition 3.3.4. Two random variables are called independent if they
satisfy

P (X = x, Y = y) = P (X = x) · P (Y = y) , ∀x ∈ X ,∀y ∈ Y ,
(3.31)

they are called dependent otherwise.

Remark 3.3.5. Two independent random variables X and Y are un-
correlated , namely ϕ (X, Y ) = Cov(X, Y ) = 0, but uncorrelation
does not imply independence.

Example 3.3.6. Let X and Y be two random variables such that

P (X = 0) = P (X = 1) = P (X = −1) =
1

3

and

Y =

{
0 X 6= 0

1 X = 0
.

We notice that XY = 0 which implies E (XY ) = 0 and E (X) = 0.
Hence by (3.18) we get

Cov (X, Y ) = 0,

however X and Y are clearly dependent.

In particular (3.14) becomes

pXY (x, y) = pX (x) · pY (y) ∀x, y. (3.32)

Under the same assumption of independence (3.31) the conditional
probability distribution (3.23) is now

pX|Y (x|y) = pX (x) . (3.33)
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Also the expected value (3.22) becomes

E (f1 (X) f2 (Y )) = E (f1 (X)) · E (f2 (Y )) . (3.34)

Remark 3.3.7. If X is independent of Y , the relation (3.19) is now

V (X + Y ) = V (X) + V (Y ) , (3.35)

and
E (X|Y ) = E (X) (3.36)

because (3.31) leads to P (X = x|Y = y) = P (X = x).

Definition 3.3.8. Let F1,F2 be two algebras (3.1.1). They are called
independent if all pairs (E1, E2) ∈ F1 × F2 are independent. If E
and F are independent, so are the algebras F1 = {E,Ec, ∅,Ω} and
F2 = {F, F c, ∅,Ω}. In general the algebras F1, . . .Fn are called
independent if (E1, . . . , En), Ei ∈ Fi are independent.

Remark 3.3.9. Pairwise independence does not imply independence.

3.4 Examples

3.4.1 Bernoulli trial

Let consider the experiment of tossing a biased coin with sample
space Ω = {H,T}. Let p and q = 1 − p be the probabilities of
getting Head and Tail, respectively.

Definition 3.4.1. A random variable X, where

X (ω) =

{
1, ω = H

0, ω = T
(3.37)

and
P (X = H) = p, P (X = T ) = q = 1− p (3.38)

is called Bernoulli trial.

Remark 3.4.2. A Bernoulli process consists of repeatedly performing
independent but identical Bernoulli trials (n coin tosses).

3.4.2 The binomial distribution

Definition 3.4.3. The binomial distribution represents the number of
successes in a sequence of n Bernoulli trials, each of which occurs
with probability p, 0 < p < 1.
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A discrete random variable X follows the binomial distribution if
the probability is given by

pX (k) = P (X = k) =

(
n

k

)
· pk (1− p)n−k , k = 0, 1, . . . n (3.39)

and we write X ∼ B (n, p).

By the binomial theorem (2.4) we can prove that probabilities (3.39)
sum to 1.

Proof. Indeed
∞∑
k=0

pX (k) =

∞∑
k=0

(
n

k

)
· pk (1− p)n−k = [p+ (1− p)]n = 1.

The expected value of X is

E (X) = np (3.40)

and the variance is

V ar (X) = np (1− p) . (3.41)

Remark 3.4.4. When n = 1 the binomial distribution becomes a
Bernoulli trial.

3.4.3 The geometric distribution

Definition 3.4.5. The geometric distribution represents the number
of Bernoulli trials needed to get one success, each of which occurs
with probability p.
A random variable X follows the geometric distribution if the prob-
ability is given by

pX (k) = P (X = k) = qk−1p, k = 1, 2, . . . , (3.42)
where q = 1− p, 0 < p < 1.

The expected value of X is

E (X) =
1

p
(3.43)

and the variance is
V ar (X) =

1− p
p2

. (3.44)



30 CHAPTER 3. RANDOM VARIABLES

3.4.4 The hypergeometric distribution

Consider an urn containing N balls, where N1 are white and N2 are
black. A group of r balls is chosen at random.

Definition 3.4.6. The hypergeometric distribution represents the prob-
ability that the group so chosen contains exactly k white balls.

A random variable X follows the hypergeometric distribution with
parameters (N1, N, n) if the probability is given by

pX (k) = P (X = k) =

(
N1

k

)(
N2

n−k

)(
N
n

) , k = 0 ≤ k ≤ min (N1, n) . (3.45)

Hence pX (k) is the probability that the group so chosen contains
exactly k white balls.

The expected value of X is

E (X) =
n ·N1

N
(3.46)

and the variance is

V ar (X) =
n ·N1

N

[
(n− 1) (N1 − 1)

N − 1
+ 1− n ·N1

N

]
. (3.47)

Remark 3.4.7. Let X be a random variable who follows the hypergeo-
metric distribution with parameters (N1, N, n) and p = N1

N
. If n = 1

then X is a Bernoulli trial with parameter p.
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Markov chains

4.1 Historical background

Andrey Andreevich Markov (June 14, 1856 – July 20, 1922) was
born in Ryazan as the son of the secretary of the public forest man-
agement of Ryazan, Andrey Grigorevich Markov, and his first wife
Nadezhda Petrovna Markova.

In 1874 he finished the school and began his studies at the physical-
mathematical faculty of St Petersburg University. He was appointed
extraordinary professor in 1886 and in the same year he was elected
adjunct to the Academy of Sciences.

In 1890 Markov became extraordinary member of the academy. His
promotion to an ordinary professor of St Petersburg University fol-
lowed in autumn 1894. In 1896, he was elected ordinary member of
the academy. In 1905 he was appointed emeritus professor and got
the right to retire which he immediately used.

In connection with student riots in 1908 he eventually decided to
retire from the university. Markov then resumed his teaching activ-
ities and lectured probability theory and differential calculus until
his death.

When Markov introduced his famous model in 1906, he was not
preoccupied with applications. He just wanted to show that inde-
pendence is not necessary for the law of large numbers. For example
he described the alternation of consonants and vowels in Pushkin’s
Eugene Onegin as a two-state chain. Poincarè applied Markov theo-
ries to card shuffling. In 1907 Paul and Tatiana Ehrenfest proposed
a Markov chain model to clarify thermodynamic irreversibility. Sir

31
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Francis Galton, interested in the survival of English peerage, in-
vented the branching process, another markov model. But the fun-
dation of a general theory was provided during the 1930s by Andrei
Kolmogorov.

Recently Markov chain theory has received an additional impetus
from the advent of Monte Carlo Markov chain simulation. Generally
the list of application of Markov chains is virtually infinite. Indeed
today they find application to biology, genetic and population the-
ory, social science and mobility, psychology, physics and electrical
engineering.

Because of the relative simplicty of its theory and the possibility
to represent extremely varied and complex behaviours the role of
Markov chains may well be compared to that of ordinary differential
equations.

4.2 Definitions

We want to focus on a class of discrete-time stochastic processes.

Definition 4.2.1. Let (Ω,F , P ) be a probability space. A discrete-
time stochastic process is a sequence of random variables

X = {X (n) : n ∈ I} (4.1)

defined on Ω, where I is a discrete index set.

Unless otherwise stated, from now on, we take the index set I to be
a set of integers I = {0, 1, 2, . . .} and the state space X is assumed
to be discrete.

Definition 4.2.2. A discrete-time, discrete state space stochastic pro-
cess X is said to be a Markov Chain if it satisfies the property

P (X (n+ 1) = xn+1 | X (n) = xn, · · · , X (1) = x1, X (0) = x0)

= P (X (n+ 1) = xn+1 | X (n) = xn)

∀n ≥ 0 ∀ (xn+1, xn, . . . , x1, x0) ∈ X . (4.2)

Remark 4.2.3. Namely, the distribution of X (n+ 1) depends on the
past only through the present. In other words, givenX (n),X (n+ 1)
is conditionally independent of X (n− 1) , . . . , X (0).

The set X is either finite or denumerably infinite. Hence, we can
identify xi with i, namely the state space X is represented by a
subset of Z+

0 {0, 1, . . . r − 1} or Z itself.
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We introduce the transition probabilities as

pij (n) := P (X (n+ 1) = j | X (n) = i) . (4.3)

They do not always depend on n, that is to say, on time and in this
case the chain is said to be time-homogeneous. Unless the oppo-
site is explicitly stated, we always consider Markov chains with this
property.

Moreover we consider them-step transition probabilities , namely the
probabilities of a chain moving from a state i to state j in exactly
m steps

p
(m)
ij := P (X (n+m) = j | X (n) = i) . (4.4)

When m = 1 they become the 1-step transition probabilities pij, we
dealt with before.

Assuming n = 0, the m-step transition probability can be obtained
as

p
(m)
ij = P (X (m) = j | X (0) = i) =

=
∑
x1

· · ·
∑
xm−1

P (X (m) = j,X (m− 1) = im−1, . . . , X (1) = i1 | X (0) = i)

=
∑

x1

· · ·
∑

xm−1

P (X (m) = j,X (m− 1) = im−1) . . . P (X (1) = i1 | X (0) = i)

=
∑
x1

· · ·
∑

xm−1

pii1pi1i2 . . . pim−1j ∀m ≥ 2 ,

where the second equality is due to the Markovian property of the
process.

It is also useful when dealing with discrete state space to identify
the matrix of transition probabilities. Let the marginal distribution
of X (n) be

πi (n) = P (X (n) = i) . (4.5)

By the law of total probability (1.10), we get the recursion

πj (n+ 1) =
∑
i

pijπi (n) (4.6)

that can also be expressed in a matrix form as

π (n+ 1) = P ∗π (n) , (4.7)

where π (n)∗ = (π0 (n) , π1 (n) , . . .) and the matrix operation ∗ has
the significance of matrix transposition.
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We define the matrix chain

P =


p00 p01 p02 . .
p10 p11 p12 . .
. . . . .
. . . . .
. . . . .

 (4.8)

The (i, j) entry of P is the transition probability pij. By the three
axioms of probability and the way we built it, we have

1. pij ≥ 0, ∀i, j;

2.
∑
j

pij =
∑
j

P (X (n+ 1) = j | X (n) = i) = 1, ∀i.

That means all rows of this kind of matrix sum to one. Such matrices
are called stochastic and have a few interesting properties:

1. At least one eigenvalue equals one.

2. The product of stochastic matrices always leads to a stochastic
matrix.

Proof. To prove the latter property we use the former one; define
1l = (1, 1, . . . , 1)∗ and given two stochastic matrices P and Q we get

P1l = 1l
Q1l = 1l

PQ1l = 1l. (4.9)

Remark 4.2.4. All other eigenvalues λ of P are in the open unit disc.
The essential spectral radius of P or slem, namely second largest
eigenvalue modulus , is defined by

µ (P ) = max {|λ|;λ ∈ σ (P ) \ 1} , (4.10)

it is namely the absolute value of the eigenvalue different from 1
closest to the unit circle1.

1− log µ is called the mixing rate of the chain. The quantity 1 − µ (P ) is called spectral
gap.
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Generally we have

p
(n+m)
ij :=

∑
k

P (X (n+m) = j | X (n) = k,X (0) = i) ·

·P (X (n) = k | X (0) = i) =
∑
k

p
(m)
kj p

(n)
ik

which is called Chapman-Kolmogorov equation. In simple words, it
means that the probability of going from i to j in m+n steps is the
sum over all k of the probability of going from i to k in m steps,
then from k to j in n steps.

In particular, from it we can derive the forward equation

p
(n+1)
ij :=

∑
k

p
(n)
ik pkj (4.11)

and the backward equation

p
(n+1)
ij :=

∑
k

pikp
(n)
kj . (4.12)

Let P (n) =
(
p

(n)
ij

)
be the matrix of n-step transition probabilities.

By (4.12) P (n) = P n, namely the (row times colums) product of P
with itself n times (this product makes sense also when the state
space is infinite).

Iterating (4.7) we get the marginal distribution of the n-th stage

π (n+ 1) = (P ∗)n+1 π (0) , (4.13)

where π (0) is the initial distribution.
Remark 4.2.5. It is now clear that this distribution π (0) and the chain
transition matrix P completely determine the Markov chain.

Definition 4.2.6. A distribution π is called stationary for the Markov
chain X with chain transition matrix P if if satisfies

π = P ∗π. (4.14)

Hence (4.10) regulates how fast P n tends to the rank one matrix
with all rows equal to π as we defined in (4.14) (it may be seen that
the distribution π (n) converges to π as µn).

Example 4.2.7. Let the state space be X = {0, 1}. The chain tran-
sition matrix is necessarily of the form

P =

[
1− p p
q 1− q

]
,
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where p and q are supposed to be 0 ≤ p, q ≤ 1. Its stationary
distribution is π (n) = (π0 (n) , π1 (n))∗ where π0 (n) = q

q+p
and

π1 (n) = p
q+p

. Indeed multiplying π0 (n) by p and π1 (n) by q we get
both pq

q+p
, which means the probability to change state is the same.

Definition 4.2.8. A chain matrix P is called doubly stochastic if also
all of its colums sum to one, namely both P1l and P ∗1l are equal to
1l.
Corollary 4.2.9. A doubly stochastic n × n chain matrix has the
uniform distribution

(
1
n

)
1l as stationary.

Example 4.2.10. Let P be the matrix of Example 4.2.7 where p =
q. P is clearly doubly stochastic. Then we get π0 (n) = p

p+p
and

π1 (n) = p
q+p

. Hence

π =

(
1

2
,
1

2

)∗
.

Consider the “past” event

F = {X (0) = x0, X (1) = x1, . . . , X (n− 1) = xn−1}
and the “future” event

E = {X (n+ 1) = xn+1, X (n+ 2) = xn+2, . . .} .
By the Markov property (4.2),

P (E | F,X (n) = xn) = P (E | X (n) = xn)

which implies

P (E ∩ F | X (n) = xn) = P (F | X (n) = xn) · P (E | X (n) = xn) ,
(4.15)

namely, at each time n, past and future of the process are condition-
ally independent given the present X (n). Property (4.15) in turn
gives

P (F | E,X (n) = xn) = P (F | X (n) = xn) ,

which is the Markov property for the chain with time reversed.
We can introduce the reverse-time transition probabilities by using
the Bayes’ rule (1.13)

qij (n, π (0)) = P (X (n) = j | X (n+ 1) = i) =

=
P (X (n) = j,X (n+ 1) = i)

P (X (n+ 1) = i)
=

=
P (X (n) = j) · P (X (n+ 1) = i | X (n) = j)

P (X (n+ 1) = i)
=

πj (n) pji
πi (n+ 1)

(4.16)
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stressing that they depend on both the initial distribution π (0) and
time, even when the pij don’t.

Definition 4.2.11. A Markov chain is called reversible if there is a π
such that

qij (n, π) = pij, ∀i, j ∈ X , (4.17)
which is equivalent to

πjpji = πipij, ∀i, j ∈ X , (4.18)

where the latter property is called detailed balance.

Remark 4.2.12. If a distribution π satisfies (4.18), such a distribution
π is stationary.

Proof. By summing (4.18) on both side with respect to i we obtain∑
i

πipij =
∑
i

πjpji = πj
∑
i

pji = πj. (4.19)

Theorem 4.2.13. Let π be any distribution satisfying (4.18). Then
π is stationary for the chain with transition probabilities P = (pij).

However, by the definition we just gave of reversible Markov chain
and from (4.18) we get that

qij (n, π) = qij (π) (4.20)

do not depend on time and

qji = pji, ∀i, j ∈ X . (4.21)

Remark 4.2.14. If we start from π (0) = π, then

Pπ (X (n+ 1) = i | X (n) = j) = Pπ (X (n) = i | X (n+ 1) = j)

which means that the transition probabilities between two states are
the same and independent of the direction of time.

4.3 Examples of Markov chains with finite state
space

To each transition matrix P we can associate a transition graph G.
This directed graph has the states of X as nodes and an arc from i
to j if and only if pij > 0. The latter probability is then displayed
next to the arc.
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4.3.1 Random walk with absorbing barriers

Let us consider a gambler in a casino. At any turn the player wins
a chip fish with probability p and loses it with probability q = 1−p.
Moreover, it is supposed that the player stops gambling when he
reaches r − 1 or 0 chip fishes.

Take X = {0, 1, . . . , r − 1}, so that X (n) = k is the number of
chip fishes the gambler has at time n. Given a X (n), it is easy
to understand that the past has no influence on the future, i.e.
X (n+ 1) , X (n+ 2) , . . . , forms a Markov chain. In particular the
matrix chain P a is

Pa =


1 0 0 0 . . . 0
q 0 p 0 . . . 0
0 q 0 p . . . 0
. . . . . . . .
. . . . . . . .
0 0 0 0 . . . 1

 . (4.22)

States 0 and r− 1 are said to be absorbing because when the system
reaches them, it stays there forever. They represent the situation in
which the player has 0 and r − 1 chip fishes respectively.

Figure 4.1: Random walk with absorbing barriers

4.3.2 Random walk with reflecting barriers

This model is similar to the previous one, indeed let the state space
be X = {0, 1, . . . , r − 1}. The matrix chain Pr
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Pr =


r0 p0 0 0 · · · 0
q 0 p · · · · · · 0
0 q 0 p · · · 0
· · · · · · · · · · · · · · · · · ·
0 · · · 0 q 0 p
0 0 0 · · · pr−1 rr−1

 (4.23)

is a generalization of the previous matrix chain Pa.

According to our definition of probability r0, p0, rr−1, pr−1 ≥ 0 :
r0 + p0 = 1, rr−1 + pr−1 = 1 and p, q > 0 : p + q = 1. When p0 = 1
and pr−1 = 1, this is a random walk with reflecting barriers, while
when p0 > 0 and pr−1 > 0, the barriers are called partially reflecting.
Remark 4.3.1. When r0 = 1 and rr−1 = 1, this is the random walk
with absorbing barriers described in 4.3.1.

Figure 4.2: Random walk with reflecting barriers

4.3.3 Cyclical random walk

Again let X = {0, 1, . . . , r− 1}. In this case each state k can reach
the next state k + 1 with probability p and the previous one, k− 1,
with probability q.

In addition we order the states cyclically so that the next state of
r−1 is 0 and with the same meaning the previous state of 0 is r−1.
This can be represented by the chain matrix Pc which is a circulant
matrix

Pc =


0 p 0 0 · · · q
q 0 p · · · · · · 0
0 q 0 p · · · 0
· · · · · · · · · · · · · · · · · ·
0 · · · 0 q 0 p
p 0 0 · · · q 0

 . (4.24)
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Notice that Pa, Pr and Pc only differ in the first and last row.

Figure 4.3: Cyclical random walk

4.3.4 The Ehrenfest model of diffusion

Given X = {0, 1, . . . , r − 1}, this model is a random walk, except
that in this case we set

pk,k+1 = 1− k

r − 1

pk,k−1 =
k

r − 1
0 < k < r − 1 (4.25)

which leads to the chain matrix Pe so made

Pe =



0 1 0 0 · · · 0
1

r−1 0 1− 1
r−1 · · · · · · 0

0 2
r−1 0 1− 2

r−1 · · · 0

· · · · · · · · · · · · · · · · · ·
· · · · · · · · · 1− 2

r−1 0 2
r−1

0 0 0 · · · 1 0

 . (4.26)

It represents a conceptual experiment that P. and T. Ehrenfest de-
scribed in 1907.

There are two containers A e B where r−1 molecules are distributed
at random and at each trial a molecule is picked at random and
moved from its container to the other.
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In this way, if we consider X (n) = k as the number of molecules in
A at time n, the probabilities of X (n+ 1) to be k − 1 or k + 1 are
respectively (r−1−k)

r−1
and k

r−1
, according to whether the molecule is

chosen from B or A.

As we just said, this model seems a random walk with reflecting
barriers. However it has a particularity: it can be interpreted as a
diffusion with central force. It is namely a random walk where the
transition probabilities change with the position. From state k the
chain moves to k − 1 with higher probability if k > r−1

2
, while it

is more likely to move to k + 1 if k < r−1
2
. That is to say, that the

system behaves as if it were subject to an attractive elastic force set
in r−1

2
.

Figure 4.4: The Ehrenfest model of diffusion

4.3.5 The Bernoulli-Laplace model of diffusion

Another similar model was proposed by D. Bernoulli, who wanted
to represent the flow of two incompressible liquids between two con-
tainers A and B.

In this case we deal with 2r − 2 molecules, where r − 1 are black
and r − 1 white. Because of the incompressibility of these liquids
the number r − 1 of molecules in each containers is constant.

Let X (n) = k the number of white molecules in A at time n, so that
there are r−1−k black molecules in A, r−1−k white molecules and
k black molecules in B. According to this the transition probabilities
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are

pk,k−1 =

(
k

r − 1

)2

pk,k+1 =

(
r − 1− k
r − 1

)2

pk,k = 2 · k · (r − 1− k)

(r − 1)2

0 ≤ k ≤ r − 1 (4.27)

The state space is X = {0, 1, . . . r − 1} and the matrix chain Pb has
the form

Pb =



0 1 0 0 · · · 0

1
(r−1)2 2 · r−2

(r−1)2

(
r−2
r−1

)2
0 · · · 0

0
(

2
r−1

)2
2 · 2(r−3)r−1

(
r−3
r−1

)2
· · · 0

· · · · · · · · · · · · · · · · · ·

0 0 · · ·
(

r−2
r−1

)2
2 · r−2

(r−1)2
1

(r−1)2

0 0 0 · · · 1 0


(4.28)

Figure 4.5: The Bernoulli-Laplace model of diffusion

4.3.6 Random placements of balls

Consider a sequence of independent trials. At any turn, we place an
indistinguishable ball in one of r − 1 containers and let X (n) = k
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be the number of containers containing at least one ball at time n.
Therefore, the transition probabilities are

pk,k =
k

r − 1

pk,k+1 =
r − 1− k
r − 1

0 ≤ k ≤ r − 1 (4.29)

so the matrix chain Pp is

Pp =



0 1 0 · · · · · · 0
0 1

r−1 1− 1
r−1 0 · · · 0

0 0 2
r−1 1− 2

r−1 · · · 0

· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · 1− 1

r−1
1

r−1
0 · · · · · · · · · 0 1

 . (4.30)

State 0 represents the situation in which 0 urns contain at least one
ball, so that we have a total probability to put a ball in an empty
urn. State r − 1 means that all urns have at least one ball so the
system can’t evolve and stays there forever.

Figure 4.6: Random placements of balls

4.3.7 Wright-Fisher model

Given a fixed population of r − 1 genes that can be of type a or A,
called alleles, each gene has 2r − 2 representatives. If in the n-th
generation A occurs k times and a, 2r − 2 − k times, we say the
population is in state X (n) = k, where X = {0, 1, . . . , 2r − 2}.



44 CHAPTER 4. MARKOV CHAINS

Assuming random mating, A-gene has probability k
2r−2

to be in the
next generation, so that the probability of transiting by k to j with
A-type genes is

pk,j =

(
2r − 2

j

)
·
(

k

2r − 2

)j
·
(

1− k

2r − 2

)2r−2−j

. (4.31)

That is to say it is determined by the binomial distribution for 2r−2
independent trials with success probability k

2r−2
.

It is important to stress that states 0 and 2r − 2 are absorbing
because all genes are of the same type, so it is not possible to exit
from them.

For istance, if r = 3 the chain matrix Pw has the form

Pw =


1 0 0 0 0

0, 3164 0, 4219 0, 2109 0, 0469 0, 0039
0, 0625 0, 2500 0, 3750 0, 2500 0, 0625
0.0039 0, 0469 0, 2109 0, 4219 0, 3164

0 0 0 0 1

 .

Figure 4.7: Wright-Fisher model with one gene

4.4 Examples of Markov chains with countable
state space

4.4.1 Success runs

Let deal with a sequence of Bernoulli trials for a biased coin X (n),
namely a Bernoulli process. We also considerX (n) = 1 andX (n) =
0 a success and a failure, respectively.
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We define a sequence of random variables Y (n) with state space
Y = Z+

0 which represent the number of consecutive successes.

It is apparent that the only nonzero transition probabilities are

pk,0 = q

pk,k+1 = p

k ≥ 0 (4.32)

so the infinite chain matrix Ps is

Ps =


q p 0 0 0 . . .
q 0 p 0 0 . . .
q 0 0 p 0 . . .
. . . . . . . .

 (4.33)

Figure 4.8: Success runs

4.4.2 Random walk on Z

Let again X be a Bernoulli trial which takes values on X = {1,−1}
instead of {0, 1}. We consider a sequence of random variables Y (n)
defined by

Y (n) =
n∑
k=0

X (k) , (4.34)

with state space Y = Z, which represents the financial status of a
gambler.
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The infinite chain matrix Prw is

Prw =


. . . . . . . . . . . .
. 0 q 0 p 0 0 . . .
. 0 0 q 0 p 0 . . .
. 0 0 0 q 0 p . . .
. . . . . . . . . .

 (4.35)

Figure 4.9: Random walk on Z

4.4.3 Random walk on Z+
0

Consider a particular case on the random walk of Example 4.4.2
with state space Y = Z+

0 . The chain matrix Prw+ is

Prw+ =


0 1 0 0 0 . . .
q 0 p 0 0 . . .
0 q 0 p 0 . . .
. . . . . . . .

 . (4.36)

State 0 is called reflecting because when the system reaches it, it
moves to state 1 with probability p01 = 1.

Figure 4.10: Random walk on Z+
0



Chapter 5

Classification of states and
asymptotic analysis

5.1 Communication classes and closed sets

Let us first deal with all the topological properties of a Markov chain,
namely those that only concern the transition graph G.

Definition 5.1.1. We define a state j accessible from state i and write
i  j, if from state i there is a strictly positive probability to
eventually reach state j. It must exist namely a time m ≥ 0 such
that

p
(m)
ij = P (X (n+m) = j | X (n) = i) , (5.1)

where we set
p

(0)
ij = 1. (5.2)

Remark 5.1.2. The fact that j is accessible from state i does not imply
the converse.

Example 5.1.3. In Example 4.3.1 states 0 and r − 1 are accessible
from all the other states but not viceversa.

Definition 5.1.4. We say that states i and j communicate and write
i! j if they are accessible from each other.

We define F (i) and B (i) as the forward and backward sets of a state
i, namely the set of states that i communicates with and the set of
states that communicate with i.

Each state i communicates with itself since p0
ii is defined to be 1. In

addition if state i communicates with state j which communicates
with state k, it is apparent that i! k.

47
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This relationship of communication helps us giving a first classifica-
tion of states. It is an equivalence relation that induces a partition
of the states of X into equivalence classes called communication
classes.

Example 5.1.5. In Example 4.3.1 states i, 0 < i < r−1 communicate
with all the others. There are three communication classes E1 =
{0}, E2 = {1, 2, . . . , r − 2}, E3 = {r − 1}.

Definition 5.1.6. If the state space is only one equivalence class the
Markov chain is called irreducible.

Example 5.1.7. Example 4.3.2 is irreducible.

Definition 5.1.8. A state i has period d (i) if these properties are
satisfied:

1. p(m)
ii > 0 =⇒ d (i) divides m;

2. d (i) is the largest integer such that 1. holds.

If p(m)
ii = 0 ∀n ≥ 1, we set d (i) = 0, while if d (i) = 1 state i is called

aperiodic.

Example 5.1.9. In Example 4.3.2, we see all states have period 2,
while in Example 4.3.1 the interior states have period 2, but the
absorbing ones are aperiodic.

It is not difficult to show that if i! j, states i and j have the same
period.

Example 5.1.10. Example 4.3.4 yields an irreducible chain of period
2.

Definition 5.1.11. A set C ⊆ X of states is called closed if no state
outside of C can be reached from any state of C. It is clear that
C is closed if pij = 0 whenever state i belongs to C and state j
doesn’t. In particular it is called absorbing if C contains a single
state i, namely pii = 1.

Remark 5.1.12. Each closed set C corresponds to a sub-chain in the
following sense. If we delete all rows and columns corresponding to
states outside C from transition matrix P we get another stochastic
matrix. In particular when state i is absorbing, the matrix P is
reduced to a single element.

Definition 5.1.13. Given a set C of states, the smallest closed set
containing C is called closure of C.
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Remark 5.1.14. Notice that communication classes are not necessarily
closed. For instance C2 = {1, 2, . . . , r − 2} in Example 4.3.1 is not
closed. It is indeed possible from one communication class to enter
another but then it is not possible to come back. Conversely, states
in a closed set need not communicate, see Example 5.2.7 below.

If (5.1) is positive ∀i, j, we can say that a Markov chain is irreducible,
namely there exists no closed set except of the set of all states.

Example 5.1.15. Consider a chain matrix

P =



0 0 0 ∗ 0 0 0 0 ∗
0 ∗ ∗ 0 ∗ 0 0 0 ∗
0 0 0 0 0 0 0 ∗ 0
∗ 0 0 0 0 0 0 0 0
0 0 0 0 ∗ 0 0 0 0
0 ∗ 0 0 0 0 0 0 0
0 ∗ 0 0 0 ∗ ∗ 0 0
0 0 ∗ 0 0 0 0 0 0
0 0 0 ∗ 0 0 0 0 ∗


(5.3)

with state space X = {0, 1, . . . 8}, whose pij denoted by ∗ are positive
elements.

We notice that:

1. in the fifth row there’s only a ∗ at the fifth place: therefore
p44 = 1 and state 4 is absorbing;

2. the third and the eighth row contain only one positive element
each at the eighth and third place respectively, so that state 2
and 7 form a closed set;

3. states 0, 3 and 8 form another closed set because from state 0
passages are possible into state 3 and 8, and from there only
to state 0, 3 and 8;

4. from state 1 direct transitions are possible to itself and to states
2, 4 and 7. According to that the closure of state 1 consists of
the set {1, 2, 4, 7};

5. the closures of states 5 and 6 consist of all nine states;

5.2 Classification of states

In addition to classifying the relationships between the pair of states,
we can classify each state into other categories.
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For any Markov chain X with state space X = N we introduce

f
(n)
ij := P (X (n) = j,X (k) 6= j, k = 1, 2, . . . , n− 1 | X (0) = i)

(5.4)
as the probability that in a process starting from i the first entry to
j occurs at the n-th step. Recalling (5.2) we put f (0)

ij = 0 .

We observe

f
(n)
ij = p

(n)
ij −

n−1∑
k=1

f
(k)
ij f

(n−k)
jj (5.5)

and get

p
(n)
ij =

n∑
k=1

f
(k)
ij f

(n−k)
jj . (5.6)

Now we can define

fij =
∞∑
n=1

f
(n)
ij (5.7)

the probability that, starting from i, the system will ever reach state
j, and

fii =
∞∑
n=1

f
(n)
ii (5.8)

the probability, starting from i, of ever returning to i. It is apparent
that if two states communicate, i! j, fij = fji = 1.

Definition 5.2.1. A state i is called

1. recurrent if

(a) fii = 1;
(b) F (i) ⊆ B (i);

2. transient if

(a) fii < 1;
(b) F (i) * B (i).

Remark 5.2.2. If state i is transient, then states in B (i) are all tran-
sient. If state i is recurrent, on the other hand, states in F (i) are
all recurrent. In the latter case set F (i) is a recurrent class, and set
B (i)−F (i), if not empty, contains only transient states.

We can also express these conditions in terms of the transition prob-
abilities p(n)

ii .
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Theorem 5.2.3. State i is recurrent if and only if

∞∑
n=1

p
(n)
ii =∞ (5.9)

and if i is recurrent and i! j, then j is recurrent.

Corollary 5.2.4. State i is transient if
∞∑
n=1

p
(n)
ij <∞, ∀i. (5.10)

The latter in turn implies

lim
n→∞

p
(n)
ij = 0, ∀i. (5.11)

Definition 5.2.5. When a state i is recurrent it makes sense the in-
troduction of

µi =
∞∑
n=1

nf
(n)
ii ≤ ∞, (5.12)

which is called the mean recurrence time for i.

In particular a recurrent state is called null if µi = ∞, positive
otherwise. A positive recurrent aperiodic state is called ergodic.

Theorem 5.2.6. Let j be recurrent aperiodic (d (j) = 1). Then

lim
n→∞

p
(n)
ij =

fij
µj
. (5.13)

In particular, if i! j, so that

lim
n→∞

p
(n)
ij → (µj)

−1 , (5.14)

where, in the case of a null recurrent state, (µj)
−1 is set equal to

zero. The latter result includes the important particular case

lim
n→∞

p
(n)
jj → (µj)

−1 , (5.15)

On the other hand if j has period k = d (j) > 1 the limit becomes

lim
n→∞

p
(nk)
jj =

k

µi
. (5.16)
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Example 5.2.7. Now let

P =



∗ 0 0 0 0 0 0 0 0
0 0 ∗ 0 0 0 0 0 0
0 ∗ 0 0 0 0 0 0 0
0 0 0 0 ∗ ∗ 0 0 0
0 0 0 0 ∗ ∗ 0 0 0
0 0 0 ∗ 0 0 0 0 0
∗ ∗ 0 0 ∗ 0 ∗ 0 0
0 0 0 0 0 0 ∗ ∗ ∗
0 0 0 0 0 0 ∗ 0 0


be a transition matrix with X = {0, 1, . . . 8}, where ∗ has the same
meaning of (5.3) and transition graph

Figure 5.1: Transition graph

.

Let

First of all, we observe that there are three closed sets E1 = {0},
E2 = {1, 2}, E3 = {3, 4, 5} corresponding to the three stochastic
submatrices

[∗] ,
[

0 ∗
∗ 0

]
,

 0 ∗ ∗
0 ∗ ∗
∗ 0 0

 .
Then by computing

• F (i) ,B (i) i = 1, 2, 3
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• B (i)−F (i) i = 1, 2, 3.

we can state:

1. state 0 is recurrent and aperiodic;

2. states 1 and 2 are recurrent and periodic of period 2 with mean
recurrence time equal to 2;

3. states 3, 4, 5 are ergodic;

4. states 6, 7, 8 are transient.

Theorem 5.2.8. In an irreducible Markov chain, all states belong to
the same class. They are either all transient, or all null recurrent, or
all positive recurrent, but in any case the all have the same period.

Remark 5.2.9. In a irreducible chain pjj > 0 for some j implies that
the chain is not periodic.

Theorem 5.2.10. (Ergodic theorem for Markov chains) Consider a
Markov chain X with state space X . Then

1. There exists a stationary distribution if and only if there exists
at least one positive recurrent class. In this case all stationary
distributions π are such π (j) = 0 for all j transient or null
recurrent;

2. There exists a unique stationary distribution if and only if there
exists a unique positive recurrent class C. In this case, for j ∈ C
we have

π (j) =
1

µj
. (5.17)

Moreover, if
f : X → R (5.18)

satisfies ∑
i∈χ

|f (i) |πi <∞, (5.19)

then

lim
N→∞

1

N

N−1∑
k=0

f (X (k)) =
∑
i∈X

f (i)πi; (5.20)
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3. If there are more recurrent classes Cα, let πa be the distribution
on Ca given by

πα (j) =
1

µj
. (5.21)

Then all stationary distributions are given by “mixtures” of the
πa.

4. The limit
lim
n→∞

(P ∗)n π (0) (5.22)

exists independent from π (0) if and only if there is a unique
positive recurrent, aperiodic class. In this case the sequence
π (n) = P ∗π (n− 1) = (P ∗)n π (0) converges in total variation1

to π. In detail we get

lim
n→∞

P n = P∞, (5.23)

where

P∞ =


π1 π2 · · · πn
π1 π2 · · · π2

· · · · · · · · · · · ·
π1 π2 · · · πn

 (5.24)

and π = {π1, π2, . . . πn} is its stationary distribution.

Proof. Indeed

P∞P =
(
lim
n→∞

P n
)
P

= lim
n→∞

P n+1

= P∞. (5.25)

1In probability theory, the total variation distance between two probability measures P and
Q on a σ-algebra F is sup {|P (A)−Q (A) | : A ∈ F}. Informally, this is the largest possible
difference between the probabilities that the two probability distributions can assign to the
same event. For a finite alphabet we can write δ (P,Q) = 1

2

∑
x
|P (x)−Q (x) |. Sometimes the

statistical distance between two probability distributions is also defined without the division
by two.



Chapter 6

Finite Markov chains

6.1 Conclusions

In this chapter we examine Markov chains in the case of finite state
space X = {0, 1, . . . r − 1}.

Proposition 6.1.1. In a finite Markov chain:

1. there are no null recurrent class;

2. A class is recurrent if and only if has no way to leave it, then
all states cannot be transient;

3. there is at least one positive recurrence class.

Proof. First of all, observe that is suffices to prove the result for
irreducible Markov chain. Suppose the states are all null recurrent.
Then, by (5.14), p(n)

ij → 0, ∀i, j. By (5.11) the same happens if all
states are transient, namely p(n)

ij → 0, ∀i. The rows of P n, however,
sum to one. Hence, its elements cannot all tend to zero.

Thus, after a possible re-enumeration of the states, the transition
matrix of a finite Markov chain has necessarily this structure

P =


P1 0 . . . 0
0 P2 0 . . 0
. . . . . .
0 . . 0 Pm 0
A1 . . . . Am+1

 . (6.1)
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While Pk and Am+1 are square, A1, . . . Am need not be. The struc-
ture of P n is similar

P n =


P n

1 0 . . . 0
0 P n

2 0 . . 0
. . . . . .
0 . . 0 P n

m 0
∗ . . . . Anm+1

 . (6.2)

Example 6.1.2. Consider Example 5.2.7. According to (6.1) we get:

1. P1 =
[
∗
]
;

2. P2 =

[
0 ∗
∗ 0

]
;

3. P3 =

 0 ∗ ∗
0 ∗ ∗
∗ 0 0

;
4. A1 =

 ∗ ∗ 0
0 0 0
0 0 0

;
5. A2 =

 0 ∗ 0
0 0 0
0 0 0

;
6. A4 =

 ∗ 0 0
∗ ∗ ∗
∗ 0 0

.
We recall that:

1. there are three closed sets E1 = {0}, E2 = {1, 2}, E3 = {3, 4, 5}

2. state 0 is recurrent and aperiodic;

3. states 1 and 2 are recurrent and periodic of period 2 with mean
recurrence time equal to 2;

4. states 3, 4, 5 are ergodic;

5. states 6, 7, 8 are transient.

Corollary 6.1.3. As a consequence of Proposition 6.1.1 and the Er-
godic theorem 5.2.10, a finite Markov chain always has at least one
stationary distribution.

A complement of the Ergodic theorem 5.2.10 is the following:
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Theorem 6.1.4. (Perron-Frobenius) Consider a finite Markov chain
X with transition matrix P and state space X = {0, 1, . . . r − 1}.
Suppose there exists an integer m ≥ 1 such that all elements of Pm

are strictly positive. Such a chain is called ergodic. Then the limit

lim
m→∞

p
(m)
jk = πk : (6.3)

1. exists ∀j, k;

2. is independent from j;

3. πk > 0 ∀k = 0, 1, . . . , r − 1;

4. π = P ∗π;

5.
r−1∑
k=0

πk = 1;

6.2 Analysis of examples

Let us now apply the results of Chapter 5 to the examples of section
4.3.

6.2.1 Random walk with absorbing barriers

Consider Pa as defined by (4.22). There are three communication
classes C1 = {0}, C2 {1, 2, . . . , r − 2}, C3 = {r − 1}.
State 0 is the only state which forms C1 so it is absorbing and
aperiodic

(
p

(1)
11 > 0⇒ d (0) = 1

)
. By (5.9) we get it is recurrent

and by (5.12) that it is positive (µ1 = 1). Hence it is ergodic. With
a similar analysis we get state r − 1 is ergodic too (µr−1 = 1).

States which belong to C2 are periodic of period 2. Indeed p
(2)
ii >

0⇒ d (i) = 2, ∀i : 1 ≤ i ≤ r−2. Moreover they are transient indeed
p

(n)
ij → 0, ∀i : 0 ≤ i ≤ r − 1, ∀j : 1 ≤ j ≤ r − 2.

Hence there are two positive recurrent classes C1 and C3. Let
π1 (1) = 1

µ1
= 1 and π3 (r − 1) = 1

µr−1
= 1 the distribution on C1 and

C3 respectively. By the Ergodic theorem 5.2.10 we get a family of
stationary distributions π where π1 = λ, πr−1 = 1−λ, ∀λ : 0 ≤ λ ≤ 1
and πj = 0, ∀j ∈ C2, namely

π∗ = (λ, 0, . . . , 0, 1− λ) . (6.4)
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6.2.2 Random walk with totally reflecting barriers

Consider Pr as defined by (4.23) where p0 = pr−1 = 1 and by con-
sequence r0 = rr−1 = 0. There is only one communication class
C1 = {0, 1, . . . r − 1} hence the chain is irreducible. Thus it has a
unique positive recurrent class C1.

The chain is periodic of period 2, indeed p(2)
ii > 0, ∀i : 0 ≤ i ≤ r− 1.

Hence by the Ergodic theorem 5.2.10 there exists a unique stationary
distribution π∗ = {π0, . . . , πr−1}.
We consider now the system of equations originating from equation
(4.14). We get

q · π (1) = π (0) ;

π (0) + q · π (2) = π (1) ;

p · π (1) + q · π (3) = π (2) ;

. . .

p · π (r − 4) + q · π (r − 2) = π (r − 3) ;

p · π (r − 3) + π (r − 1) = π (r − 2) ;

p · π (r − 2) = π (r − 1) . (6.5)

Working our way from the top to the bottom we get

π (1) =
1

q
· π (0) ;

π (2) =
p

q2
π (0) ;

. . .

π (r − 2) =
pr−3

qr−2
· π (0) ;

π (r − 1) =

(
p

q

)r−2

π (0) . (6.6)

By the condition
r−1∑
k=0

π (k) = 1 (6.7)

we get

π (0)

[
1 +

pr−2

qr−2
+

1

q

r−3∑
k=0

(
p

q

)k]
= 1. (6.8)

The latter yields the following results:



6.2. ANALYSIS OF EXAMPLES 59

1. if p = q the random walk is symmetric and π (0) = π (1) =
. . . = π (r − 1) implies π (0) = 1

r
, namely π is the uniform

distribution.

2. If p 6= q we get

π (0) =
1− 2p

2
·

(
p
q

) 2−r
2(

q
(
p
q

) 2−r
2 − p

(
p
q

) r−2
2

) . (6.9)

and π (j) , j = 1, . . . r − 1 follows (6.5).

6.2.3 Random walk with partially reflecting barriers

Consider Pr as defined by (4.23) where p0 = rr−1 = p and by con-
sequence r0 = pr−1 = q. There is only one communication class
C1 = {0, 1, . . . r − 1} hence the chain is irreducible.

The chain is aperiodic, indeed p(1)
ii > 0, ∀i : 0 ≤ i ≤ r − 1. Thus it

has a unique positive recurrent aperiodic class C1.

Hence by the Ergodic theorem 5.2.10 there exists a unique stationary
distribution π∗ = (π0, . . . , πr−1). Moreover every row of P∞ tends
in total variation to π∗.

We consider now the system of equations originating from equation
(4.14). We get

q · π (0) + q · π (1) = π (0) ;

p · π (0) + q · π (2) = π (1) ;

p · π (1) + q · π (3) = π (2) ;

. . .

q · π (r − 2) + q · π (r − 1) = π (r − 1) . (6.10)

Working our way from the top to the bottom we get

π (1) =
p

q
· π (0) ;

π (2) =

(
p

q

)2

π (0) ;

. . .

π (r − 1) =

(
p

q

)r−1

π (0) . (6.11)
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By the condition
r−1∑
k=0

π (k) = 1 (6.12)

we get

π (0)

[
1 +

p

q
+

(
p

q

)2

+ . . .+

(
p

q

)r−1
]

= 1. (6.13)

The latter yields the following results:

1. if p = q the random walk is symmetric and π (0) = π (1) =
. . . = π (r − 1) implies π (0) = 1

r
, namely π is the uniform

distribution.

2. If p 6= q we get

π (0) =
1− p

q

1−
(
p
q

)r
π (j) =

(
p

q

)j
· π (0) , ∀j : 1 ≤ j ≤ r − 1. (6.14)

6.2.4 Cyclical random walk

Consider Pc as defined by (4.24). There is only one communication
class C1 = {0, 1, . . . r − 1} hence the chain is irreducible.

By Proposition 6.1.1 and theorem 5.2.8 we get the chain is positive
recurrent and periodic of period 2, indeed p(2)

ii > 0, ∀i : 0 ≤ i ≤ r−1
thus it has a unique positive recurrent class C1.

Hence by the Ergodic theorem 5.2.10 there exists a unique station-
ary distribution. Since Pc is doubly stochastic it has the uniform
distribution

π∗ =

(
1

r
, . . . ,

1

r

)
(6.15)

as stationary.

6.2.5 The Ehrenfest model of diffusion

Consider Pe as defined by (4.26). There is only one communication
class C1 = X = {0, 1, . . . , r − 1} so the chain is irreducible.
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By Proposition 6.1.1 and theorem 5.2.8 we get the chain is positive
recurrent and periodic of period 2, indeed p(2)

ii > 0, ∀i : 0 ≤ i ≤ r−1
thus it has a unique positive recurrent class C1.

Hence by the Ergodic theorem5.2.10 there exists a unique stationary
distribution π∗ = (π0, . . . , πr−1). It is the binomial (2.4) where a =
b = 1,

πi =

(
r − 1

i

)
· 2−(r−1), ∀r : 0 ≤ i ≤ r − 1. (6.16)

Remark 6.2.1. The binomial distribution is invariant with p = 1
2
.

This result can be interpreted as follows: whatever the initial num-
ber of molecules in the first container A, after a long time the prob-
ability of finding k molecules it is nearly the same as if the r − 1
molecules had been distributed at random, each molecule having
probability 1

2
to be in the first container A.

6.2.6 The Bernoulli-Laplace model of diffusion

Consider Pb as defined by (4.28). This chain is very similar to
the Ehrenfest model. There is only one communication class C1 =
{0, 1, . . . , r − 1} so the chain is irreducible.

The chain is aperiodic, indeed pii > 0, ∀i : 1 ≤ i ≤ r− 2 thus it has
a unique positive recurrent aperiodic class C1.

Hence by the Ergodic theorem 5.2.10 there exists a unique stationary
distribution π∗ = (π0, . . . , πr−1). Moreover every row of P∞ tends
in total variation to π.

It is the hypergeometric distribution with parameters (r − 1, 2r −
2, r − 1).

πi =

(
r−1
i

)2(
2r−2
r−1

) , ∀i : 0 ≤ i ≤ r − 1. (6.17)

Remark 6.2.2. This means that in the state of equilibrium the distri-
bution of liquids is the same as if the r− 1 molecules in it had been
chosen at random from a collection of r − 1 black and r − 1 white
molecules.

6.2.7 Random placements of balls

Consider Pp as defined by (4.30). There are r communication classes
Ci = {i− 1} , ∀i : 1 ≤ i ≤ r.
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State 0 has period 0 (p(n)
00 = 0, ∀n ≥ 1 ⇒ d (0) = 0) while all the

other states are aperiodic (p(1)
ii > 0, ∀i : 1 ≤ i ≤ r − 1).

State r − 1 is absorbing (⇒ recurrent), positive (µr−1 = 1) and
aperiodic d (r − 1) = 1, namely ergodic. All the other states are
transient (p(n)

ij → 0, ∀i : 0 ≤ i ≤ r − 1, ∀j : 0 ≤ j ≤ r − 2).

Hence by the Ergodic theorem 5.2.10 there exists a stationary distri-
bution π such that π (r − 1) = 1

µr−1
= 1, π(i) = 0, ∀i : 0 ≤ i ≤ r−2,

namely
π∗ (0, . . . , 0, 1) . (6.18)

6.2.8 Wright-Fisher model

Consider Pw with transition probabilities pij of the form (4.31).
There are three communication classes C1 = {0}, C2 {1, 2, . . . r − 2}
and C3 = {r − 1}.

All states are aperiodic (p(1)
ii > 0, ∀i : 0 ≤ i ≤ r − 1).

States 0 and r − 1 are absorbing (⇒ recurrent), positive (µ0 =
µr−1 = 1) and aperiodic, namely ergodic. All the other states are
transient (p(n)

ij → 0, ∀i : 0 ≤ i ≤ r − 1, ∀j : 1 ≤ j ≤ r − 2).
Hence by the Ergodic theorem 5.2.10 we get a family of stationary
distributions π where π1 = λ, πr−1 = 1 − λ, ∀λ : 0 < λ < 1 and
πj = 0, ∀j ∈ C2, namely

π∗ = (λ, 0, . . . , 0, 1− λ) . (6.19)



Chapter 7

Analysis of examples with
countable state space

Let us now apply the results of Chapter 5 to the examples of Section
4.4.

7.1 Success runs

Consider Ps as defined by (4.33). There is only one communication
class C1 = {0, 1, . . .} since all states can be reached through the zero
state. Hence the chain is clearly irreducible.

By theorem 5.2.8 all states belong to the same class: they are either
all transient or all recurrent. By Remark 5.2.9 we can also state
that the chain is aperiodic (p1

00 = 1⇒ d (0) = 1).

Hence it suffices to analyze the nature of one state to classify the
chain. Let us compute f (n)

00 , namely the probability of reaching state
0, starting from state 0 in exactly n steps.

We get the geometric distribution

f
(n)
00 = (1− q)n−1 · q, n ≥ 1 (7.1)

where p = 1− q by definition. Hence by (5.8) state 0 is transient if
f00 < 1, if f00 = 1 recurrent. In our case

f00 =
∞∑
n=1

(1− q)n−1 · q = 1 (7.2)

where 0 < q < 1.

63
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Moreover state 0 is positive recurrent. The mean recurrence time
µ0 get by (5.12) coincides with the expected value of the geometric
distribution, namely 1

q
.

Hence by the Ergodic theorem 5.2.10 there exists a unique stationary
distribution π∗ = {π0, π1, . . .} and every row of P∞ tends in total
variation to π∗.

Let us describe the structure of π. In general

πk = p · πk−1, k = 1, 2, . . . (7.3)

π0 = q · π0 + q · π1 + . . . . (7.4)

From (7.3) we get
πk = pk · π0 (7.5)

that is useful to prove the existence of the stationary distribution.

Proof. It is seen that the first k terms on the right in (7.4) add to
π0 − πk. Thus by (7.3) is automatically satisfied whenever πk → 0,
which is our case because

∞∑
k=1

pk =
p

(1− p)
<∞, (7.6)

where 0 < p < 1.

7.2 Random walk on Z

Consider Prw as defined by (4.35). There is only one communication
class, thus the chain is irreducible. p

(2)
ii > 0, ∀i ∈ Z implies the

chain is periodic of period 2. By theorem 5.2.8 all states belong to
the same class: they are either all transitive or all recurrent.

Hence let us compute fij, namely the probability, starting from i, of
reaching j. We have

fij = q · f(i−1)j + p · f(i+1)j, ∀i, j ∈ Z. (7.7)

Since

q

(
q

p

)i−2

+ p

(
q

p

)i
=

(
q

p

)i−1

, (7.8)

we get
(
q
p

)i−1

satisfies (7.7).
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We notice that if p > q,
(
q
p

)i−1

= 1 i ≤ 1

0 <
(
q
p

)i−1

< 1 otherwise
. (7.9)

On the other hand if p < q
(
q
p

)i−1

= 1 i ≥ 1

0 <
(
q
p

)i−1

< 1 otherwise
, (7.10)

while if p = q,
(
q
p

)i−1

= 1, ∀i ∈ Z.

Hence the chain is recurrent if p = q, transient otherwise.

We consider now the system of equations originating from equation
(4.14), where p = q. We get

. . .

1

2
· π (−1) +

1

2
· π (0) = π (0) ;

1

2
· π (0) +

1

2
· π (2) = π (1) ;

· · · (7.11)

In general

π (j) =
1

2
· π (j − 1) +

1

2
· π (j + 1) , ∀j ∈ Z. (7.12)

All states are null recurrent, thus there is no stationary distribution.

7.3 Random walk on Z+
0

Consider Prw as defined by (4.36). There is only one communication
class, thus the chain is irreducible. p

(2)
00 > 0, namely the chain is

periodic of period 2. By theorem 5.2.8 all states belong to the same
class: they are either all transitive or all recurrent.

Hence let us compute fi1, namely the probability, starting from i,
of reaching 1. We have

fi1 = q · f(i−1)1 + p · f(i+1)1, ∀i > 1. (7.13)
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Since

q

(
q

p

)i−2

+ p

(
q

p

)i
=

(
q

p

)i−1

, (7.14)

we get
(
q
p

)i−1

satisfies (7.7).

Let us now distinguish two cases:

1. if p > q, fi1 < 1 hence all states are transient and there is no
stationary distribution;

2. If p ≤ q, fi1 = 1, ∀i ≥ 1 hence all states are recurrent.

We consider now the system of equations originating from equation
(4.14). We get

q · π (1) = π (0) ;

π (0) + q · π (2) = π (1) ;

p · π (1) + q · π (3) = π (2) ;

p · π (2) + q · π (4) = π (3) ;

· · · (7.15)

Working our way from the top to the bottom we get

π (1) =
p

q
· π (2) ;

π (2) =
p

q
· π (3) ;

. . . (7.16)

Hence
π (j) =

p

q
π (j − 1) , j = 2, 3, . . . (7.17)

If p = q, we get π (1) = π (2) = . . . and there is no stationary
distribution. In this case there is no stationary distribution.

If p < q, all states are positive recurrent and the following π is the
unique stationary distribution.

By the condition
∞∑
k=0

π (k) = 1 (7.18)

we get

π (0)

[
q + 1 +

p

q
+

(
p

q

)2

+ . . .

]
= 1. (7.19)
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The latter gives
π (1) =

q − p
2q2

. (7.20)

In conclusion

π (0) =
q − p
2q2

π (j) =
q − p
2q2

(
p

q

)j−1

, j = 1, 2, . . . . (7.21)
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Chapter 8

Maximum entropy problems

8.1 Entropy

Consider a function of a real variable h (x) = −x · lnx on x > 0.
Notice that

lim
x↘0

h (x) = 0. (8.1)

Hence, we can extend the domain of h to all x ≥ 0. Let p the
probability distribution on the sample space Ω = {ω1, . . . ωn}. Then,
the (Shannon) entropy of p is defined by

H (p) :=
n∑
i=1

h (p (ωi)) . (8.2)

The base of the logarithm is not important. Entropy represents the
degree of indeterminacy of p, our ignorance of the state of a system.

8.2 Convex functions

Let V be a vector space andK ⊆ V . The setK is convex if whenever
x, y ∈ K, then [x, y] ⊆ K, where

[x, y] = {z : z = λx+ (1− λ) y, 0 ≤ λ ≤ 1} . (8.3)

Remark 8.2.1. The intersection of convex subsets of V is convex.

Let K ⊆ V be convex, f : K → R. The function f is said to be
convex it satisfies

f (λx+ (1− λ) y) ≤ λf (x) + (1− λ) f (y) , ∀x, y ∈ K, ∀λ ∈ [0, 1] .
(8.4)
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The function f is strictly convex on K if it satisfies (8.4) with strict
inequality ∀x, y : x 6= y, λ ∈ (0, 1). The function f is called (strictly)
concave if −f is (strictly) convex.

Theorem 8.2.2. (Jensen 1906) Let K be a convex set of the vector
space V , and let f : K → R. The following properties are equivalent:

1. f is convex;

2. epif := {(x, α) ∈ K × R|f (x) ≤ α} is a convex subset of V×R;

3. For all n ∈ N, for all (x1, . . . , xn) ∈ Kn and for all (λ1, . . . λn) ∈
[0, 1]n such that

n∑
i=1

λi = 1 we have the Jensen inequality

f

(
n∑
i=1

λixi

)
≤

n∑
i=1

λif (xi) (8.5)

Remark 8.2.3. Along the same lines as theorem 8.2.2, one can show
that f is strictly convex if and only if (8.5) holds with strict inequal-

ity whenever
n∑
i=1

λixi 6= xj, ∀j.

Corollary 8.2.4. Let K be a convex subset of the vector space V and
let fα : K → (−∞,+∞) , α ∈ I, be a collection of convex functions.
The upper hull of the collection is defined by

g (x) = sup {fα (x) |α ∈ I} , x ∈ K. (8.6)

Then g is convex.

Proof. Observe that
epi g = ∩αepi fα.

Since each epi fα is convex, so is their intersection.

Let V be a vector space, and let A ⊆ X. Then convex hull of A,
written conA, is the intersection of all convex subsets of V containing
A. The convex hull of n affinely independent1 points of a Euclidean
space is called an (n− 1)-simplex.

1The points x1, . . . xn are called affinely independent if every point x in their convex hull
admits a unique representation as convex combination of the points.
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8.3 The simplex of probability distributions

Let D (Ω) denote the family of all probability distributions on the
sample space Ω = {ω1, . . . , ωn}. Then D (Ω) is a (n− 1)-simplex
whose vertices are the singular distributions pi (ωj) = δij, where
δij is the Kronecker delta. The latter distributions correspond to
situations where no randomness is present.

Theorem 8.3.1. The entropy function H is strictly concave on D (Ω).
Moreover, it satisfies

0 ≤ H (p) ≤ lnn. (8.7)

In particular, H (p) = 0 if and only if p is a vertex of the simplex
and H (p) = n if and only if p = pu is the center of the simplex,
where pu (ωi) ≡ 1

n
.

8.4 Examples

8.4.1 A finite Gibbs variational principle

Consider a physical system completely described by the discrete
state space X = {1, 2 . . . , n}. We can think of this mesoscopic
description as originating from a microscopic description where the
phase space Γ has undergone a “coarse graining” through subdivision
into small cells.

Each of the cells represents a mesoscopic state. For each state i we
consider its energy Ei. The function H : i → Ei is called Hamil-
tonian. The thermodynamic states of the system are given by the
simplex of probability distributions on X , namely S := D (X ).

On S, we define the internal energy as the expected value of the
Energy observable in state p

U (E, p) =
∑
i

Eipi, (8.8)

where E denotes the n-dimensional vector with components Ei. By
(8.2) let us also introduce the Gibbs entropy

S (p) = kH (p) = −k
∑
i

pi ln pi, (8.9)

where k is Boltzmann’s constant.
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By theorem 8.3.1, S is nonnegative and strictly concave on S. Let
E be a constant satisfying

Em = min
i
Ei ≤ E ≤ 1

n

∑
i

Ei. (8.10)

We can think of E as the energy of the underlying conservative
microscopic system. Hence we want to study the followingMaximum
Entropy problem:

maximize {S (p) ; p ∈ S} (8.11)

subject to U (E, p) = E. (8.12)

This is an important instance of a class of maximum entropy prob-
lems where entropy is maximized over probability distributions which
give the correct expectation of certain observables in accordance
with known macroscopic quantities.

In order to solve problem (8.11)-(8.12) we resort to a fundamental,
although elementary, result.

Let Y be a nonempty set and let R = R ∪ {+∞} ∪ {−∞} denote
the extended reals. Consider the maximization of J : Y → R over
the nonempty subset M of Y .

Definition 8.4.1. The map Λ : Y → R is called a Lagrange functional
for the optimization problem if it is finite and constant over M .

Lemma 8.4.2. (Lagrange Lemma) Let Λ : Y → R be a Lagrange
Functional and let y0 ∈ M maximize L = J + Λ over Y . Then y0

maximize J over M .

Proof. For any y ∈ M , we have J (y0) + Λ (y0) ≥ J (y) + Λ (y) =
J (y) + Λ (y0). Hence J (y0) ≥ J (y).

This is an incredible result. Indeed it does not require any algebraic
nor topological structure on Y and the hypotheses on Λ are also
minimal. Now we can attack problem (8.11)-(8.12).

Let us introduce the positive orthant Rn
+ = {p = (p1, p2 . . . , pn) |pi ≥ 0, i = 1, 2, . . . , n}.

In our setting, Rn
+ = Y , S = Y and

M =

{
p = (p1, p2 . . . , pn) |pi ≥ 0, i = 1, 2, . . . , n,

∑
i

pi = 1, U (E, p) = E

}
.

(8.13)
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We take

Λ (p) = λ
(
E − U (E, p)

)
+ µ

(∑
i

pi − 1

)
, (8.14)

where λ, µ ∈ R, λ ≥ 0, are called Lagrange multipliers. Since Λ (p) ≡
0 onM , it is a Lagrange functional for our problem. The Lagrangian
function is given by

L (p, λ, µ) := S (p) + λ
(
E − U (E, p)

)
+ µ

(∑
i

pi − 1

)
. (8.15)

By Lemma 8.4.2, we consider the unconstrained maximization of
L (·, λ, µ) over Rn

+. Observing that λE and µ are constants, we can
equivalently maximize over Rn

+ the functional

I (p) = −k
∑
i

pi ln pi − λ
∑
i

Eipi + µ
∑
i

pi. (8.16)

Observe that

I (p) =
∑
i

fi (pi) , fi (pi) = (−k ln pi − λEi + µ) pi. (8.17)

Hence, the problem is equivalent to maximize each fi (pi) over R+.
Observe that fi (pi) is strictly concave on R+. Hence the vanishing
of f ′i is a sufficient condition for a maximum point. Setting f ′i (pi) =
0, ∀i we get

− k ln pi − k − λEi + µ = 0. (8.18)

It yields

p∗i = exp

(
−1 +

µ

k
− λ

k
Ei

)
. (8.19)

Since each p∗i ≥ 0, p∗ = (p∗1, p
∗
2, . . . , p

∗
n) is the maximum point of

I (p). In order for p∗ to solve the original constrained problem, it
must lie in M .

First of all we worry about condition
∑
i

p∗i = 1. We can choose µ

such that

exp
(

1− µ

k

)
=
∑
i

exp

(
−λ
k
Ei

)
:= Z

(
λ

k

)
. (8.20)

Z is called partition function in Statistical Mechanics.
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Define the absolute temperature T := 1
λ
, λ > 0 and T = +∞, λ = 0.

Define also the so-called inverse temperature β as

β :=
λ

k
=

1

kT
. (8.21)

We can then rewrite (8.19)-(8.20) as

p∗i = Z (β)−1 exp (−βEi) , Z (β) =
∑
i

exp (−βEi) , (8.22)

which is called Gibbs distribution and corresponds to the equilibrium
thermodynamical state at the temperature T .

Then we impose that (8.22) satisfies (8.12). Hence we get∑
i

Eip
∗
i (β) =

∑
i

EiZ (β)−1 exp (−βEi) := G (β) = E. (8.23)

Observe that if Ei are all equal, then Ei = E, ∀i and (8.23) is
satisfied for any β. Let us now consider the case when the Ei are
not all equal.

Theorem 8.4.3. Assume that H is not constant. Then the function
G : β → G (β) in (8.23) is strictly decreasing on β ≥ 0, bijectively
mapping [0,+∞] onto (Em,

1
N

∑
i

Ei]. Hence there does exists a con-

tinuously differentiable inverse function β = G−1
(
E
)
.

Remark 8.4.4. The above result shows that, given the value of the
internal energy

E ∈

[
Em,

1

n

∑
i

Ei

]
, (8.24)

there exists one and only one value of the absolute temperature T
which solves problem (8.11)-(8.12).

8.4.2 Maximum entropy problems with a given expecta-
tion

Let X = N and let D (X ) be the simplex of probability distributions
on X . Suppose now we wish to solve

maximize {H (p) ; p ∈ D (X )} (8.25)

subject to

∞∑
i=1

i · pi = c. (8.26)
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It is namely the problem of finding the maximum entropy distribu-
tion among those with a given expectation.
Arguing as for the Gibbs distribution in 8.4.1, we get Y = H, Rn

+ =
{p = (p0, p1, . . .) |pi ≥ 0, i = 0, 1, . . .} and

M =

{
p = (p0, p1, ) |pi ≥ 0, i = 0, 1, . . .

∑
i

pi = 1,
∑
i

ipi = c

}
.

(8.27)
Hence we take

Λ (p) = λ

(
c−

∑
i

ipi

)
+ µ

(∑
i

pi − 1

)
, (8.28)

as Lagrangian functional, where Λ (p) ≡ 0 onM and λ, µ ∈ R, λ ≥ 0.
The Lagrangian function is given by

L (p, λ, µ) := H (p) + λ

(
c−

∑
i

ipi

)
+ µ

(∑
i

pi − 1

)
. (8.29)

By Lemma 8.4.2, we consider the unconstrained maximization of
L (·, λ, µ) over Rn

+.
We again observe that λc and µ are constants. Thus we maximize
over Rn

+ each fi (pi) of the functional

I (p) =
∑
i

fi (pi) , fi (pi) = (− ln pi − λi+ µ) pi. (8.30)

Because fi (pi) is strictly concave on R+, by setting f ′i (pi) = 0 we
get

p∗i = exp (−1 + µ) exp (−λi) . (8.31)
We deal with condition

∑
i

p∗i = 1. We can choose µ such that

∞∑
i=0

(exp (−λ))i = exp (1− µ) . (8.32)

Let λ > 0 then we deal with a convergent geometric series, namely
∞∑
i=0

(exp (−λ))i =
1

1− exp (−λ)
, λ > 0. (8.33)

On the other hand, concerning condition
∞∑
i=0

ipi = c we get

∞∑
i=0

i · exp (−λi) (1− exp (−λ)) = c. (8.34)
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We recall that
∞∑
i=0

i · pi =
p

(1− p)2 , |p| < 1. (8.35)

Hence with λ > 0, (8.34) becomes

(1− exp (−λ))
∞∑
i=0

i · exp (−λi) = c

exp (−λ)

1− exp (−λ)
= c, (8.36)

that is to say

λ = ln
c+ 1

c
. (8.37)

By (8.32) we get
µ = 1− ln (c+ 1) . (8.38)

This time consider problem (8.25)-(8.26) where X is a subset on
N, namely X = {1, 2, . . . 6}. Moreover D (X ) is still the simplex of
probability distributions on X but (8.26) becomes

6∑
i=1

i · pi = α, (8.39)

where α > 0. This is namely the case of tossing a die.

Under the same assumption made for the previous problem we get
Y = H, Rn

+ = {p = (p1, p2, . . . , p6) |pi ≥ 0, i = 1, 2, . . . , 6} and

M =

{
p = (p1, p2, . . . p6) |pi ≥ 0, i = 1, 2, . . . , 6

∑
i

pi = 1,
6∑
i=1

ipi = α

}
.

(8.40)
Hence we can maximize

I (p) =
6∑
i=1

fi (pi) , fi (pi) = (− ln pi − λi+ µ) pi. (8.41)

which leads to (8.31) again. However we now deal with a finite
summation.

Then from constraint
∑
i

p∗i = 1 we get the following relations:

exp (1− µ) =
exp (−λ)− exp (−7λ)

1− exp (−λ)
(8.42)
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p∗i = exp (−λ · i) 1− exp (−λ)

exp (−λ)− exp (−7λ)
. (8.43)

In order to lie in M we must choose λ to satisfy constraint (8.39).
Hence we get

6∑
i=1

i · exp (−λ · i) exp (λ)− 1

1− exp (−6λ)
= α (8.44)

or equivalently

(6− α) exp (−7λ) + (α− 7) exp (−6λ) + α exp (−λ) + 1− α = 0.
(8.45)

Suppose α = 4.5. The numerical results are

{p∗1, . . . , p∗6} = {0.0543, 0.0788, 0.1142, 0.1654, 0.2398, 0.3475} ,
(8.46)

where λ = −0.37105 and µ = −2.28330. Hence Hmax = 1.61358.

Remark 8.4.5. When α = 7
2
, namely the dice is fair, we get {p∗1, . . . , p∗6} ={

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6

}
, λ = 0 and µ = −0.7918.
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Chapter 9

Schrödinger bridges

9.1 Martingales

9.1.1 Martingales and submartingales

Definition 9.1.1. Consider a discrete time stochastic process X =
{X (n) : n ≥ 0} with finite or denumerable state space X . The pro-
cess Y = {Y (n) : n ≥ 0} is called a martingale with respect to X
if

1. E (|Y (n) |) <∞, n ≥ 0;

2. Y (n) is a function of {X (k) : 0 ≤ k ≤ n} , ∀n ≥ 0;

3. E (Y (n+ 1) |X (0) , X (1) , . . . , X (n)) = Y (n).

It is called a supermartingale with respect to X when it satisfies
1., 2. and

E (Y (n+ 1) |X (0) , X (1) , . . . , X (n)) ≥ Y (n) . (9.1)

We can say that a martingale is conditionally constant and a sub-
martingale is conditionally increasing . The process is called super-
martingale when −Y (n) is a martingale. Moreover we notice that
the case Y (n) = X (n) is also included.

Proposition 9.1.2. Let Y a martingale with respect to X. Let ϕ a
convex function and define

Z (n) := ϕ (Y (n)) , n ≥ 0. (9.2)

If
E (|Z (n) |) <∞, ∀n ≥ 0, (9.3)

then Z is a submartingale with respect to X.
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9.1.2 Space-time harmonic functions

Consider now a discrete time Markov chain X with state space
X and chain transition matrix P . There exists a large class of
X-martingales that are constructed as instantaneous functions of
X (n).

Definition 9.1.3. A function

h : N×X → R (9.4)

is called space-time harmonic if it satisfies the backward equation

h (n, i) =
∑
j

pijh (n+ 1, j) , ∀n ≥ 0, ∀i, j ∈ X . (9.5)

Proposition 9.1.4. Let h be space-time harmonic for the Markov
chain X. Define the stochastic process

Y = {Y (n) = h (n,X (n)) , n ≥ 0} . (9.6)

If
E (|Y (n) |) <∞, ∀n, (9.7)

then Y is a martingale with respect to X.

9.2 Information divergence

Definition 9.2.1. Let p and q belong to the simplex of probability
distributions on a finite or countably infinte X . We say that the
support of p is contained in the support of q if qi = 0 ⇒ pi = 0
and write Supp (p) ⊆ Supp (q). The (Information) Divergence or
Kullback-Leibler Index or Relative Entropy of q from p is defined to
be

D (p||q) =


∑
i

p (i) log p(i)
q(i)
, Supp (p) ⊆ Supp (q) ,

+∞ Supp (p) * Supp (q) .
(9.8)

where, by definition, 0 · log 0 = 0.

It enjoys the following properties:

1. D (p||q) ≥ 0;

2. D (p||q) = 0 if and only if p = q.
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9.3 Schrödinger bridges

Consider a Markov chainX with finite state space X = {0, 1, . . . , r − 1},
transition probabilities (πij (n)) and marginal probabilities πi (n).
We denote byΠT

0 the joint distribution of {X (0) , X (1) , . . . , X (N)}
on XN+1. Suppose we can estimate the marginal distribution at
time N , but we find a distribution p1 which differs from π (N) =

(Π∗)N+1 π (0).
Let D (0, N ; p1) be the family of Markovian distributions PN

0 on
XN+1 that have marginal p1 at time N and have support contained
in the support of ΠN

0 , namely Supp
(
PN

0

)
⊆ Supp

(
ΠN

0

)
.

We want to find another Markovian distribution PN
0 on X T+1 which

has the observed marginal p1 at time N and is “as close as possible”
to “the prior” distribution ΠN

0 . We consider namely the following
Maximum Entropy Problem (MEP1):

minimize
{
D
(
PN

0 ||ΠN
0

)
; PN

0 ∈ D
(
0, N ; p1

)}
. (9.9)

Remark 9.3.1. The constraint on the final marginal in Problem 9.9,
may be expressed as a linear constraint on PN

0 as∑
i0

∑
i1

· · ·
∑
iT−1

PN
0 (i0, i1, . . . , iN) = p1 (iN) . (9.10)

In order to facilitate the solution of Problem 9.9, we introduce the
reverse time transition probabilities qij (n) (4.16) corrisponding to
PN

0 and qπji (n) corrisponding to ΠN
0 . Hence we get

P (i0, i1, . . . iN) = qi1i0 (0) · qi2i1 (1) · · · qiN iN−1
(N − 1) · p1

iN
, (9.11)

Π (i0, i1, . . . iN) = qπi1i0 (0) · qπi2i1 (1) · · · qπiN iN−1
(N − 1) · π1

iT
(N) .

(9.12)

Lemma 9.3.2. Let pi (n) denote the marginals of P at time n. Then

D
(
PN

0 ||ΠN
0

)
=

N∑
k=1

∑
ik

D
(
qikik−1

(k − 1) ||qπikik−1
(k − 1)

)
pik (k)+D

(
p1||π (N)

)
.

(9.13)

Theorem 9.3.3. A solution to Problem 9.21 is given by the distribu-
tion P̂N

0 corresponding to the Markov chain with marginal distribu-
tion p1 at time N and reverse time transition mechanism equal to
that of ΠN

0 , namely

q̂ikik−1
(k − 1) = qπikik−1

(k − 1) , k = 1, 2, . . . N. (9.14)
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Proof. Since both terms in (9.13) are nonnegative, and D (p1||π (N))
is invariant over D (0, N ; p1), the best we can hope for, when mini-
mizing D

(
PN

0 ||ΠN
0

)
, is to make the first term equal to zero. This is

the case if (9.14) holds true.

Let us compute the forward transition probabilities of P̂N
0 . Let p̂i (n)

and p̂ij (n) denote the marginal at time n and the forward transition
probabilities of P̂N

0 , respectively. By (4.16), we get

p̂i (n) p̂ij = p̂j (n+ 1) q̂ji (n) , πi (n) πij (n) = πj (n+ 1) qπji (n) .
(9.15)

Assume now that πi (n) > 0, p̂i (n) > 0, ∀i, n : 0 ≤ n ≤ N . Then
(??) and (9.14) yield

p̂ij =
ϕ (n+ 1, j)

ϕ (n, i)
πij, ϕ (t, i) :=

p̂i (n)

πi (n)
. (9.16)

Observe, moreover that ϕ is space-time harmonic with respect to
the transition mechanism of Π since, by (9.16),∑

j

πijϕ (n+ 1, j) =
∑
j

p̂ijϕ (n, i) = ϕ (t, i) . (9.17)

Hence, we can say that the optimal solution to Problem 9.9 is ob-
tained from the a priori Markov chain ΠT

0 through a “multiplicative
functional” transformation.

Consider now the case where p0, the marginal at time 0 is fixed.

Let pij denote the transition probabilities corrisponding of PN
0 . This

time using

P (i0, i1, . . . iN) = p0
i0
·pi0i1 (0) ·pi1i2 (1) · · · piN−2iN−1

(N − 1) , (9.18)

Π (i0, i1, . . . iN) = πi0 (0) · πi0i1 (0) · · · πiN−1iN (N − 1) , (9.19)

similarly to Lemma 9.3.2 we get the following representation of
D
(
PN

0 ||ΠN
0

)
:

D
(
PN

0 ||ΠN
0

)
= D

(
p0||π (N)

)
+
N−1∑
k=0

∑
ik

D
(
pikik+1

(k) ||πikik+1
(k)
)
pik (k) .

(9.20)
Consider now the

Maximum Entropy Problem (MEP2):
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maximize
{
D
(
PN

0 ||ΠN
0

)
; PN

0 ∈ D
(
0, N ; p0

)}
. (9.21)

We get the following result.

Theorem 9.3.4. A solution to Problem 9.21 is given by the distribu-
tion P̂N

0 corresponding to the Markov chain with marginal distribu-
tion p0 at time 0 and forward transition mechanism equal to that of
ΠN

0 , namely
p̂ij (n) = πij (n) , n = 0, 1, . . . N. (9.22)

Let us compute the reverse-time transition probabilities of P̂N
0 . Let

p̂i (n) and q̂ji (n) denote the marginal at time n and the reverse-time
transition probabilities of P̂N

0 , respectively. By (4.16), we get

p̂j (n+ 1) q̂ji (n) = p̂i (n) πij (n) , πi (n) πij = πj (n+ 1) qπji (n) .
(9.23)

Assume now that πi (n) > 0, p̂i (n) > 0, ∀i, n : 0 ≤ n ≤ N . Then
(??) and (9.22) yield

q̂ji =
θ (n, i)

θ (n+ 1, j)
qπji (n) , θ (n, i) :=

p̂i (n)

πi (n)
. (9.24)

Observe, moreover that θ is space-time harmonic with respect to the
reverse-time transition mechanism of Π since, by (9.24),∑

i

qπji (n) θ (n, i) =
∑
i

πi (n)

πj (n+ 1)
πij (n)

p̂i (n)

πi (n)
= θ (n+ 1, j) .

(9.25)
Again the optimal solution to Problem 9.21 is obtained from the a
priori Markov chain ΠT

0 through a “multiplicative functional” trans-
formation.

We now attack the initial-final marginal problem. LetD (0, N ; p0, p1)
denote the family of Markovian distribution PN

0 on XN+1 that have
marginals p0 at time 0 and p1 at time N , respectively, and have
support contained in the support of ΠN

0 , namely Supp
(
PN

0

)
⊆

Supp
(
ΠN

0

)
.

We consider the following

Maximum Entropy Problem (MEP3):

minimize
{
D
(
PN
0 ||ΠN

0

)
;PN

0 ∈ D
(
0, N ; p0, p1

)}
. (9.26)
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Consider (9.20). Since D (p0||π (0)) is invariant over D (0, N ; p0, p1),
D
(
PN
0 ||ΠN

0

)
is now

D
(
PN

0 ||ΠN
0

)
=

N−1∑
k=0

∑
ik

D
(
pikik+1

(k) ||πikik+1
(k)
)
pik (k) . (9.27)

Moreover consider a space-time harmonic function ϕ for the refer-
ence stochastic evolution ΠN

0 , namely

ϕ (n, i) =
∑
j

πijϕ (n+ 1, j) , 0 ≤ n ≤ (N − 1) (9.28)

Assuming that ϕ (n, i) > 0, ∀n : 0 ≤ n ≤ N , ∀i ∈ X . Problem
(9.26) is equivalent to

minimize
{
J
(
PN

0

)
;PN

0 ∈ D
(
0, N ; p0, p1

)}
, (9.29)

where

J
(
PN

0

)
=

N−1∑
k=0

∑
ik

D
(
pikik+1

(k) ||πikik+1
(k)
)
pik (k) +

+
∑
i0

logϕ (0, i0) p0
i0
−
∑
iN

logϕ (N, iN) p1
iN
, (9.30)

since the last two terms are invariant over D (0, N ; p0, p1).

It is possible to dimostrate that J
(
PN

0

)
may be rewritten as

J
(
PN

0

)
=

N−1∑
k=0

∑
ik

D
(
pikik+1

(k) ||πikik+1
(k)

ϕ (k + 1, ik+1)

ϕ (k, i)

)
pik (k) .

(9.31)
Define

p̂ij (k) = πij (k)
ϕ (k + 1, j)

ϕ (k, i)
. (9.32)

Notice that p̂ij ≥ 0 and, by (9.28),∑
j

p̂ij (k) =
∑
j

πij (k)
ϕ (k + 1, j)

ϕ (k, i)
=
ϕ (k, i)

ϕ (k, i)
= 1. (9.33)

Consider the probabilities p̂ (n) defined by the ricursion

p̂j (n+ 1) =
∑
i

p̂ij (n) p̂i (n) , p̂i (0) = p0
i . (9.34)
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Define

ϕ̂ (n, i) :=
p̂i (n)

ϕ (n, i)
, (9.35)

by (9.32) and (9.34) we get

ϕ̂ (n+ 1, j) =
p̂j (n+ 1)

ϕ (n+ 1, j)
=
∑
i

πij (n) ϕ̂ (n, i) , (9.36)

namely ϕ̂ (n, i) is space-time co-harmonic. Thus we establish the
following theorem:

Theorem 9.3.5. Suppose there exists a pair of nonnegative functions
(ϕ, ϕ̂) defined on [0, N ]×X and satisfying the system

ϕ (n, i) =
∑
j

πij (n)ϕ (n+ 1, j) , 0 ≤ n ≤ (N − 1) , (9.37)

ϕ̂ (n+ 1, j) =
∑
i

πij (n) ϕ̂ (n, i) , 0 ≤ n ≤ (N − 1) , (9.38)

as well as the boundary conditions

ϕ (0, i) · ϕ̂ (0, i) := p0
i , ϕ (N, i) · ϕ̂ (N, i) := pNi , ∀i ∈ X . (9.39)

Suppose moreover that ϕ (n, i) > 0, ∀n : 0 ≤ n ≤ N , ∀i ∈ X .
Then, the Markov distribution P̂ in D (0, N ; p0, p1) having transition
probabilities

p̂ij = πij
ϕ (n+ 1, j)

ϕ (n, i)
(9.40)

solves Problem 9.26. From (9.40) we get

P̂ (n) =


π00

ϕ(n+1,0)
ϕ(n,0)

π01
ϕ(n+1,1)
ϕ(n,0)

. . . π0(r−1)
ϕ(n+1,r−1)
ϕ(n,0)

π10
ϕ(n+1,0)
ϕ(n,1)

π11
ϕ(n+1,1)
ϕ(n,1)

. . . π1(r−1)
ϕ(n+1,r−1)
ϕ(n,1)

. . . . . .

π(r−1)0
ϕ(n+1,0)
ϕ(n,r−1)

. . . . . . π(r−1)(r−1)
ϕ(n+1,r−1)
ϕ(n,r−1)

 .
(9.41)

Notice that if (ϕ, ϕ̂) satisfy (9.37)-(9.38)-(9.39), so does the pair(
cϕ, 1

c
ϕ
)
for all c > 0. Hence, uniqueness for the Schrödinger sys-

tem is always intended up to such multiplications. As in the diffu-
sion case, the problem is now reduced to establish, under suitable
assumption, existence and uniqueness for the Schrödinger system
(9.37)-(9.38)-(9.39).
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Corollary 9.3.6. Given an initial distribution π (0) and Πn =
(

Π
(n)
ij

)
,

namely the prior matrix of n-step transition probabilities, in view
of the cancellations that occur, p̂ (N) is given by

p̂ (N) =
N−1

Π
n=0

P̂ (n) π (0) = diag (ϕ (N, 0) , ϕ (N, 1) , . . . , ϕ (N, r − 1)) (Π∗)N ·

· diag (ϕ (0, 0) , ϕ (0, 1) , . . . , ϕ (0, r − 1))−1 π (0) . (9.42)

Example 9.3.7. Consider the following chain matrix

Π =


0 0.3893 0 0 0.6107

0.6107 0 0.3893 0 0
0 0.6107 0 0.3893 0
0 0 0.6107 0 0.3893

0.3893 0 0 0.6107 0

 ,
and the initial distribution

π (0) =


0.2834
0.1592
0.1422
0.2147
0.2005

 .
The chain matrix has the form of (4.24) and represents a cyclical
random walk. Notice that Π is doubly stochastic hence the Markov
chain has

π =


0.2000
0.2000
0.2000
0.2000
0.2000


as unique stationary distribution.

Since the slem is µ (Π) = 0.8194, that is very close to one, the
chain converges to π slowly. Indeed, starting from π (0), the system
effectively reaches π only after T = 34 steps, namely

(Π∗)T π (0) = π.

Notice moreover that with N = 4 we get ΠN > 0. Hence, we solve
the Schrödinger system (9.37)-(9.38)-(9.39) with p0 = π (0), pN = π
and N = 4.
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We get

ϕ (0) =


0.3977
0.4334
0.4225
0.4043
0.4445


and

ϕ (4) =


0.3931
0.4126
0.4544
0.3683
0.4740

 .

Then we compute
3

Π
n=0

P̂ (n) according to (9.42), verifying that

P̂ (0) · P̂ (1) · P̂ (2) · P̂ (3) · π (0) =


0.2000
0.2000
0.2000
0.2000
0.2000

 ,
the invariant distribution which considerably differs from

(Π∗)4 π (0) =


0.2090
0.2017
0.1872
0.2207
0.1813

 .
Remark 9.3.8. The solution of problems 9.9 and 9.21 may be viewed
as a special cases of the solution of problem 9.26 where the role of
the space-time co-harmonic function ρ̂ (n, i) is played by the prior
probabilities πi (n).

Indeed, let us compute the reverse-time transition probabilities q̂ji (n)

of P̂N
0 . By (4.16) and using p̂i (n) = ϕ (n, i) · ϕ̂i (n), we get

q̂ji (n) = qπji (n)
ξ (n, i)

ξ (n+ 1, j)
, ξ (n, i) :=

ϕ̂ (n, i)

πi (n)
. (9.43)

Moreover∑
i

qπji (n) ξ (n, i) =
∑
i

πi (n)

πj (n+ 1)
πij (n)

ϕ̂i (n)

πi (n)
= ξ (n+ 1, j) ,

(9.44)
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namely, ξ is space-time harmonic with respect to the reverse-time
transition mechanism of ΠN

0 .

We then get the suggestive formula

p̂i (n) = ϕ (n, i) · ξ (n, i) · πi (n) , (9.45)

showing that the “a posterior” marginals are obtained from the “a
priori” marginals through multiplication by a space-time harmonic
function for the forward transition mechanism and by a space-time
harmonic function for the reverse time transition mechanism.

In detail, in Problems 9.9 and 9.21, we have ξ (n, i) ≡ 1 and ξ (n, i) ≡
1, respectively. Namely the solutions to (9.9) and (9.21) appear as
particular cases of the solution to Problem 9.26, where only the for-
ward or only the backward transition mechanism undegoes a mul-
tiplicative functional transformation induced by a space-time har-
monic function, whereas in (9.26) both transition mechanism are
subject to such a transfomation.

Finally, notice that if we exchange p0 and p1, the solution will simply
be to be time reversal of P̂N

0 .

9.4 Existence and uniqueness for the Schrödinger
system

As argued in [1, , pp. 13-14] we can prove the existence and unique-
ness of a Schrödinger system. In particular we mark the following
theorem.

Theorem 9.4.1. Let X = {X (0) , X (1) , . . .} be a Markov chain
with state space X chain matrix P = (pij) and let p (k, x,m, y) :=
P (X (m) = y|P (k) = x). The Schrödinger system (9.37)-(9.38)-
(9.39) has a unique solution with ϕ (n, x) > 0, ∀0 ≤ n ≤ N, ∀x ∈ X
assuming that:

1. p1 is a distribution on X with p1
x > 0, ∀x ∈ X ;

2. p (0, x,N, y) > 0, ∀x, y ∈ X .

In many important applications, the prior transition probabilities do
not depend on time. We get the following result for finite, irreducible
and aperiodic Markov chains.
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Corollary 9.4.2. Let X = {X (0) , X (1) , . . .} be a Markov chain
with finite state space X and transition matrix P = (pij). The
Schrödinger system (9.37)-(9.38)-(9.39) has a unique solution with
ϕ (n, x) > 0, ∀0 ≤ n ≤ N, ∀x ∈ X assuming that:

1. p1 is a distribution on X with p1
x > 0, ∀x ∈ X ;

2. The matrix PN has all positive elements.
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Chapter 10

Mixing Markov chain

10.1 The average consensus problem

Animal aggregation, such as school of fish, flocks of birds, groups
of bees, etc. are believed to use local coordination rules that result
in complex intelligent behaviour at the group level. These can be
associated with problems of multi-agent systems consensus , flocking
and synchronization such as mobile robots coordination, estimation
with distributed sensors and load balancing in computer networking.

However, the position of the agents and/or technological and cost
limitations make the exchanging of information very limited. We
suppose to have N agents whose state at time k is represented by a
vector x (k) ∈ RN. In such a way their dynamics is simply given by

x (k + 1) = x (k) + u (k) . (10.1)

where u (k) ∈ RN represents the control inputs.

The goal is to design a feedback control law u = Kx such that, for
any initial condition x0 ∈ RN, the closed loop system x (k + 1) =
(I +K)x (k) satisfies

lim
k→∞

x (k) = α (x0) 1l, (10.2)

where 1l = (1, 1, . . . , 1)∗.

If (10.2) is satisfied we reach the consensus because all the agents
are in the same position.

Definition 10.1.1. Let GK = (V,E) , |V | = N the communication
graph associated to K, whose arcs kij differs from 0 if and only if
agent j has to communicate xj to agent i to compute its feedback
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control. Moreover it is always assumed that each agent has access
to its own state, namely kii 6= 0. Let P = I +K.

If we want that (10.2) holds, we need to impose P1l = 1l and if we add
the requirement that the elements pij ≥ 0, P becomes stochastic.

Definition 10.1.2. Given a directed graph G = (V,E) , |V | = N that
represents the communication network, we say K is compatible with
G if GK ⊆ G.

The consensus problem is said to be solvable on G if there exists a
feedback matrix K compatible with G and (10.2) holds. If GK is
strongly connected, the chain is irreducible.

It is often required that consensus is attained as the average of the
initial states

x̄ (0) =
1

N

∑
i

xi (0) . (10.3)

This is the case if K1l = 1l and K is symmetric, namely P is doubly
stochastic.

Since of the speed of convergence is essential in these applications
it is important to choose K so that the slem (4.10) is as small as
possible. In particular consider a strongly connected graph G =
(V,E) , |V | = N such that{

(j, j) ∈ G ∀j
(i, j) ∈ G ⇔ (j, i) ∈ G ∀i, j

. (10.4)

We should find a stochastic matrix P = (pij) such that (i, j) /∈ G ⇒
pij = 0 that has minimum slem. This is always the case if the
stochastic matrix is symmetric

10.2 Fastest mixing Markov chain problem

Consider a Markov chain X = {X (0) , X (1) , . . .} with finite state
space X = {0, 1, . . . , r − 1}. Let G = (V,E) be its transition graph
with nodes set V = X and edges set E ⊆ V × V , with (i, j) ∈ E ⇔
(j, i) ∈ E. We also assume that each node has a self-loop.

Suppose we deal with Markov chains whose chain matrix P is doubly
stochastic. By Definition 4.2.8 we get

π =

(
1

r

)
1l
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as a stationary distribution for the chain. In addition, if the chain
is aperiodic and irreducible, by the Perron-Frobenius theorem 6.1.4
we get:

1. π is the unique stationary distribution;

2. the chain converges in total variation to π, as n increases, in-
dependently of the initial distribution.

We also know that the smaller the slem µ (4.10), the faster the
Markov chain converges to its stationary distribution. The quantity
− log µ is called the mixing rate of the chain and 1− µ (P ) is called
spectral gap.

It is possible to consider the following problem:

Fastest mixing Markov chain (FMMC) problem:

minimize µ (P ) (10.5)

subject to P ≥ 0, P1l = 1l, P = P ∗, (i, j) /∈ E ⇒ pij = 0 (10.6)

Here P is the optimization variable and the graph G is the problem
data, where (10.6) summarizes all the above properties of P .
Remark 10.2.1. Since µ is continuous and the set of possible transition
matrices is compact, there is at least one optimal transition matrix
P such that µ

(
P
)

= µ the optimal slem.

As shown in [2, pp. 669-670], there are several methods to obtain
transition probabilities that give fast mixing.

We propose the one which applies the Metropolis-Hastings algorithm
(see B.2.1.12).

Definition 10.2.2. Let di be the degree of node i, not counting the
self-loop. It is namely the number of neighbor nodes of node i not
counting i itself.

This algorithm modifies the transition probabilities pij in the fol-
lowing way

Pmh
ij =


1

max(di,dj)
if (i, j) ∈ E, i 6= j∑

(i,k)∈E
max

(
0, 1

di
− 1

dk

)
if i = j

0 if (i, j) /∈ E

, (10.7)

which we call the Metropolis-Hastings chain matrix .
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Namely the transition probability between two distinct, connected
edges is the reciprocal of the larger degree, and the self loop proba-
bilities are chosen to ensure Pmh to be stochastic.
Remark 10.2.3. It is interesting to notice that in Pmh the transition
probability of an edge only depends on local information, i.e. the
degrees of its adjacent nodes.

Determining or bounding the slem of Markov chains is very im-
portant in Markov chain Monte Carlo simulation (see A.3). The
efficiency of such simulation depends on how fast the constructed
Markov chain converges to its stationary distribution.
As numerically shown in [2], the fastest mixing Markov chain on a
given graph can be computed exactly by a polynomial time opti-
mization algorithm. In practice, this is feasible at least for graphs
with a modest number of edges, such as 1000.
Example 10.2.4. Let G1 be the graph of figure 10.1. Its optimal
transition matrix is

P =


6
11

5
11

0 0
5
11

0 3
11

3
11

0 3
11

4
11

4
11

0 3
11

4
11

4
11


and the slem of this matrix is µ = 7

11
. Notice that it is really close

to µmh = 2
3
, namely the slem of the matrix

Pmh =


2
3

1
3

0 0
1
3

0 1
3

1
3

0 1
3

1
6

1
2

0 1
3

1
2

1
6

 ,
obtained by Metropolis-Hastings algorithm.

Figure 10.1: Fast mixing
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10.3 A class of slow mixing Markov chain: Ran-
dom geometric graph

First of all let us introduce and discuss a particular type of graph
called random geometric graph.

In graph theory, a random geometric graph is an undirected graph
drawn on a bounded region, i.e. the unit torus [0, 1)× [0, 1).

It is generated by

1. Placing n nodes at random uniformly and independently on the
chosen region;

2. Connecting two nodes, u, v if and only if the distance between
them is at most a threshold r, namely d (u, v) ≤ r.

Remark 10.3.1. Such graphs can be represented by the adjacency ma-
trix

Eij =

{
1 d (i, j) ≤ r

0 d (i, j) > r
, (10.8)

where d (i, j) = d (j, i) by definition and we assume the absence of
self-loops.

However the way of constructing a random geometric graph does not
ensure to generate a connected graph. Thus a Markov chain associ-
ated to such a graph may not be irreducible, which is an important
condition we require.

So we must find an easy way to control if an undirected graph is
connected.

Definition 10.3.2. Given a graph G = (V,E) , |V | = N , the Laplacian
matrix L = (lij) is defined by

lij :=


di i = j

−1 i 6= j and vi is adiacent to vj
0 otherwise

(10.9)

for every i, j ∈ {0, 1, . . . n− 1}, where di is the degree of node i, see
Definition 10.2.2.
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Moreover L is always positive-semidefinite, namely its eigenvalues
are such that λi ≥ 0, 0 ≤ i ≤ n− 1, and by

L1l = 01l, (10.10)

we get λ0 = 0.

Remark 10.3.3. The number of times λi = 0 is the number of connected
components in the graph.

Corollary 10.3.4. The algebraic connectivity λ1 of a graph G is the
second-smallest eigenvalue of the Laplacian matrix of G. This eigen-
value is greater than zero if and only if G is connected.

Example 10.3.5. Consider the following graph.

Figure 10.2: Undirected graph

We get the adjacency matrix

E =


0 1 0 0 1 0
1 0 1 0 1 0
0 1 0 1 0 0
0 0 1 0 1 1
1 1 0 1 0 0
0 0 0 1 0 0

 , (10.11)

which is obviously symmetric, and the Laplacian matrix

L =


2 −1 0 0 −1 0
−1 3 −1 0 −1 0
0 −1 2 −1 0 0
0 0 −1 3 −1 −1
−1 −1 0 −1 3 0
0 0 0 −1 0 1

 .
The former has the following eigenvalues {0, 0.7216, 1.6826, 3, 3.7046, 4.8912}.
The algebraic connectivity is λ1 = 0, 7216 > 0. Hence by Corollary
10.3.4 the graph is connected as figure 10.2 has previously shown.
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This is an important result which gives us the possibility of dealing
only with connected graphs.
Remark 10.3.6. The distance r may be choosen at random, but in
order to avoid the problem of generating a huge number of graphs
it is generally a function of n, namely r ∝ 1√

n
.

Now suppose to assign random probabilities to the edges of a random
geometric graph such that it becomes a transition graph. The ad-
jacency matrix E changes into a stochastic chain matrix P . Notice
that even if E is symmetric, P is not necessarily doubly stochastic.
Remark 10.3.7. Stochastic matrices generated on a random geometric
graph have the slem really close to one.

This fact is very important because it makes us deal with irreducible
finite Markov chains whose convergence to their stationary distri-
bution is very slow.

Example 10.3.8. Consider Example 10.3.5. A stochastic chain matrix
related to (10.11) is

P =


0 0.4740 0 0 0.5260 0

0.0769 0 0.5444 0 0.3787 0
0 0.2632 0 0.7368 0 0
0 0 0.2218 0 0.3871 0.3911

0.0762 0.4667 0 0.4571 0 0
0 0 0 1 0 0

 ,

whose slem is µ (P ) = 0.9747.



98 CHAPTER 10. MIXING MARKOV CHAIN



Chapter 11

Simulation for Schrödinger
bridges

11.1 Simulation for Schrödinger bridges

Hereafter we concentrate on the simulations for Schrödinger bridges.

Using matlab (see Appendix B), we simulated some Markov chain
models described so far.

Remark 11.1.1. Our interest is on irreducilble finite Markov chains
whose chain matrix P is such that PN > 0 for an integer N > 1.
In this way, by the Perron-Frobenius Theorem 6.1.4, we know that
there exists a unique stationary distribution π, which can be found
on the rows on P∞.

First we focus on some examples that we described in Section 4.3,
in particular:

1. random walks with partially reflecting barriers (see B.2.2.5);

2. cyclical random walks (see B.2.2.4);

3. the Bernoulli-Laplace model of diffusion (see B.2.2.3).

Then we choose to represent a particular case of success runs (see
B.2.2.1) described in Section 4.4.

Because of the constraints in Remark11.1.1, the chain matrix rep-
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resenting a success runs (4.33) is now

Ps =


q p 0 0 0 . . . 0
q 0 p 0 0 . . . 0
q 0 0 p 0 . . . 0
. . . . . . . . 0
1 0 . . . . . . . . . . . . 0

 ,
which is evidently irreducible and finite.

After that “classic” models, we want to create Markov chains whose
properties satisfy our requirements and try to represent complex
networks.

These networks are graphs with a huge number of nodes. An impor-
tant class of complex networks is small-world networks . They are
graphs in which most nodes are not neighbors of one another, but
most nodes can be reached from every other by a small number of
steps.

Posterior to the implementation of the random geometric graphs
described above (see B.2.2.6), we choose to represent a Markov chain
with a completely random stochastic chain matrix (see B.2.2.7).
Remark 11.1.2. This way of constructing stochastic matrices does not
ensure a matrix to be irreducibile and very sparse. Hence we need
to test that before starting a simulation (see B.2.2.2).

Given m irreducible random stochastic matrices P0, P1, . . . , Pm−1,
whose transition graphs are G0, G2, . . . ,Gm−1, let us connect at least
one state of Gi with another one of Gj, j = imod (m− 1). We get a
new connected transition graph G and thus a new stochastic matrix
P of the following form

P =


P0 1∗0 0 . . . 0
0 P1 1∗1 0 .

. 0
. . . . . . 0

. . .
. . . 1∗m−2

1∗m−1 0 . . . 0 Pm−1

 , (11.1)

where 1∗i , ∀i : 0 ≤ i ≤ m−1 is a square matrix of the same dimension
of Pi with at least one element different from zero (see B.2.2.8).
Remark 11.1.3. This important method that permits us to construct
matrices of huge dimensions which are surely irreducible and very
sparse.
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At this point it is interesting to explain our simulation algorithm
(see B.2.3). Hence using the implemented functions of B.2.1 we can
generalize the following:

Algorithm 11.1 Simulation
Generate a stochastic matrix Π;

Find the slem S;

Compute the number of steps N such that ΠN > 0;

Generate a random marginal distribution π (0);

Compute the stationary distribution π the system reaches in T 6= N steps

starting at π (0);

Notice that (Π∗)
N
π (0) 6= π and it is not a stationary distribution;

Solve the Schrödinger bridge with parameters π, π (0) , N , getting the stochastic

matrices P ∗ (n) , n = 0, . . . N − 1;

Verify that
(

N−1∏
0
P ∗ (n)

)
π (0) = π.

Example 11.1.4. Consider the following three random stochastic ma-
trices

P0 =

 0 1
2

1
2

0 0 1
1 0 0

 ,

P1 =

 1
2

0 1
2

1
2

1
2

0
0 1 0

 ,

P2 =

 1
2

1
2

0
0 0 1
1 0 0


and their transition graphs.
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Figure 11.1: Transition graphs G0, G1, G2

By connecting them each other we get

P =



0 1
2

1
2

0 0 0 0 0 0
0 0 1 0 1 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 1

2
0 1

2
0 0 1

0 0 0 1
2

1
2

0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1

2
1
2

0
1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0


,

and the transition graph G.
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Figure 11.2: Transition graph G

Notice that G is connected and P is irreducible. The slem is µ =

0.9462 and the matrix P 7
> 0.

Example 11.1.5. Following Algorithm 11.1, we generate a random ge-
ometric graph. By weighting its edges at random so that it becomes
a transition graph, we get the following chain matrix

Π =



0.2479 0.2080 0 0.2821 0 0 0 0 0 0.2621
0.2705 0.3816 0 0 0 0 0.2512 0 0 0.0966

0 0 0.4615 0 0.4154 0 0 0.1231 0 0
0.2568 0 0 0.3716 0 0 0 0 0.3716 0

0 0 0.2000 0 0.1459 0 0.5135 0.1405 0 0
0 0 0 0 0 0.6533 0 0 03467 0
0 0.1881 0 0 0.4356 0 0.3564 0 0 0.0198
0 0 0.6167 0 0.583 0 0 0.3250 0 0
0 0 0 0.6711 0 0.2148 0 0 0.1141 0

0.1519 0.6329 0 0 0 0 0.1835 0 0 0.0316


.

Then, we find its slem µ (Π) = 0.9356, which is very close to neo
circle and compute T = 7, namely the number of steps which guar-
antees ΠT > 0.
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Now we generate at random the initial distribution

π (0) =



0.1199
0.0414
0.1383
0.1325
0.0656
0.1421
0.0576
0.2033
0.0916
0.0077


.

Starting from π (0), only after N = 55 6= T steps the system effec-
tively reaches its unique stationary distribution

π =



0.0902
0.1324
0.1274
0.0998
0.1655
0.0345
0.1956
0.0576
0.0554
0.0416


which considerably differs from the marginal distribution

(Π∗)7 π (0) =



0.0924
0.1122
0.1168
0.1363
0.1425
0.0623
0.1625
0.0521
0.0848
0.0382


.

Hence, we set up and solve the Schrödinger system (9.37)-(9.38)-
(9.39) with p0 = π (0), pN = π and N = 7.
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We get

ϕ (0) =



0.6142
0.6988
0.8469
0.4928
0.8238
0.3897
0.7917
0.8578
0.4483
0.7026


and

ϕ (7) =



0.5142
0.7244
0.8887
0.3454
0.9018
0.2447
0.8744
0.8961
0.2993
0.6122


.

Then, we compute
6

Π
n=0

P̂ (n) according to (9.42), verifying that

P̂ (0) · · · P̂ (6)π (0) =



0.0902
0.1324
0.1274
0.0998
0.1655
0.0345
0.1956
0.0576
0.0554
0.0416


= π.

11.2 Time analysis

We test all the implemented algorithms (see B.2.1) with larger ma-
trix dimension.

In particular, we focus on the random geometric graph algorithm
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(see B.2.2.6). It is interesting to make a time analysis of this algo-
rithm, since it features a large slem (see Remark 4.2.4).

In this way, according to Algorithm 11.1, we can get an idea of how
much time it basically takes to:

1. create a random but connected geometric graph;

2. associate a stochastic matrix to this graph;

3. generate an initial and a final distribution for the Schrödinger
system;

4. solve the Schrödinger system, with special attention to step 4.

The graph in Figure 11.3 shows the time needed to compute all four
steps,

Figure 11.3: Time analysis

where we have limited our simulations to matrices with dimension
between 50×50 and 200×200. Notice that computing time obviously
increases with matrix dimensions.
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Figure 11.3 shows that, on the average, Algorithm11.1 takes about
30 seconds with matrices of dimensions 200× 200.

Let N × N be the matrix dimensions of Π and T the number of
steps such that ΠT > 0. We recall that solving Schrödinger bridges
means solving a [0, T ]×N systems.

The complexity of solving Schrödinger bridges is the principal reason
why the following figure,

Figure 11.4: Step four time analysis

that is the time analysis of the only step 4 of Algorithm 11.1, does
not differ so much from Figure 11.3 just described.
Remark 11.2.1. Our simulations are made on a pc with:

1. matlab version 7.8.0 (r2009a);

2. linux fedora 11;

3. amd Athlon(tm) 64 x2 dual core processor 5200+;

4. ddr2 ram 1.9 gb.
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11.3 Conclusions

It is interesting to notice that Schrödinger bridges are a great tool
to drive in finite time Markov chains to a desired distribution.

Moreover, differently from the Hastings-Metropolis algorithm, they
do not change the graph topological properties. They represent
therefore some kind of “cheap” control action.

Schrödinger bridges, however, depend on the initial distribution
π (0), a fact that apparently makes them insuitable to solve the
average consensus problem.
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Appendix A

Some modern application of
Markov chains

A.1 Identifying genes in genomic DNA

Markov chains play a central role also in recent attempts to find
genes through statistical modeling. For example in prokaryotes
(bacteria and archaea), genes appear as stretches in an enormously
long sequence of four symbols A := {A,C,G, T} which represent
the initials of the basis contained in nucleotides: Adenine, Cyto-
sine, Guanine and Thymine. This model can be viewed as a k-step
Markov chains, whose values belong to Ak. In general k = 5, in
which case the state space χ has cardinality 45.

A.2 The Google Page Rank algorithm

During the period 1995-1998 Larry Page and Sergey Brin developed
at Stanford University an algorithm design to weight the pages of the
World Wide Web which has since been known as Google’s PageRank.
Let N be the number of current pages. Ideally, the algorithm should
mimic the actual navigation of web users. Define a N × N matrix
P as

p = (pij)
N
i,j=1 , pij=p

gij∑
j

gij
+ (1− p) 1

N
, 0 < p < 1, (A.1)

where p = 0.85 in the PageRank algorithm. P is stochastic and
the chain is clearly irreducible. Hence there is a unique station-
ary distribution π with πj > 0, ∀j. Moreover P is nearly sparse.
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The stationary distribution, which is also calculated as asymptotic
distribution of the chain once a month, provides the ranking.

A.3 Markov chain Monte Carlo

Suppose we like to compute the area of a planar figure contained
in the square [0, 1] × [0, 1], We know that points in [0, 1] are in
one to one correspondence with infinite binary sequences. Hence,
if we toss two coins a large number of times we get a minuscule
square in [0, 1] × [0, 1] that we can consider as a point which may
or not be contained in our figure. If we can repeat the experiment
many times, we can approximate the area by the fraction of points
that fall in the figure. This is the essence of integration by simula-
tion which becomes extremely effective in higher dimension, namely
Rp, p ≥ 2. Monte Carlo methods are computational algorithms that
rely on repeated random sampling. Monte Carlo simulation treats
deterministic problems by first finding a probabilistic analog. On
the other hand previous methods of simulation and statistical sam-
pling generally did the opposite, namely they used simulation to
test a previously understood deterministic problem. Monte Carlo
algorithms are the most prominent class of Randomized algorithms.
They make random choises during their execution. It is possible that
they may give different answers for the same input at difference runs
and the result may be incorrect.

The Markov chain Monte Carlo (MCMC) methods seeks to con-
struct a finite irreducible, aperiodic Markov chain whose unique sta-
tionary distribution is the distribution π we like to sample from. Ap-
plications of MCMC include simulating noisy images, textures, pro-
tein structures, approximate counting for polymer models, Bayesian
statistics and scientific computing.

A.4 Distribution of epithelial cells

A simple epithelium is a tissue composed of a single layer of cells. It
has been observed that cells are organized in monolayer epithelia as
an array of irregular polygonal forms, with a majority of hexagonal
shapes. The pattern in proliferating epithelia is, however, much
more irregular. The fact that the average number of cells sides
exponentially six had been known for some time to be a consequence
of the following fact: each cell division produces two new nodes and
three new edges. The model is provided by a simple Markov chain,
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where a cell’s state is its number of sides. The transition matrix of
the chain is

P =


0 1 0 0 0 0 · · ·
0 1

2
1
2

0 0 0 · · ·
0 1

4
1
2

1
4

0 0 · · ·
0 1

8
3
8

3
8

1
8

0 · · ·
0 1

16
4
16

6
16

4
16

1
16
· · ·

· · · · · · · · · · · · · · · · · · · · ·

 ,

where i, j = 4, 5, 6, . . . and the state space is X = {4, 5, 6, . . .}. The
state 4 is transient, all the other states are recurrent. The stationary
distribution π of cell shape has π4 = 0, π5 ∼ 0.289, π6 ∼ 0.464,
π7 ∼ 0.208, π8 ∼ 0.0359, π9 ∼ 0.0028 and other states having
equilibrium probabilities less than 10−4.

Figure A.1: Distribution of epithelial cells
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Appendix B

Matlab

Let us list all the used Matlab functions.

B.1 Package functions

B.1.1 size

Algorithm B.1 size

1 SIZE S i z e o f array .
2 D = SIZE(X) , for M−by−N matrix X, r e tu rn s the two−element
3 row vecto r . D = [M,N] conta in ing the number o f rows and
4 columns in the matrix .

B.1.2 disp

Algorithm B.2 disp

1 DISP Display array .
2 DISP(X) d i s p l a y s the array , without p r i n t i n g the array
3 name . I f X i s a s t r i ng , the text i s d i sp l ayed .
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B.1.3 fsolve

Algorithm B.3 fsolve

1 FSOLVE so l v e s systems o f non l in ea r equat ions o f s e v e r a l
2 v a r i a b l e s .
3 FSOLVE attempts to s o l v e equat ions o f the form :
4 F(X) = 0 where F and X may be vec to r s or matr i ce s .
5 X = FSOLVE(FUN,X0) s t a r t s at the matrix X0 and t r i e s to
6 s o l v e the equat ions in FUN. FUN accept s input X and re tu rn s
7 a vec to r ( matrix ) o f equat ion va lue s F eva luated at X.

B.1.4 rand

Algorithm B.4 rand

1 RAND Uniformly d i s t r i b u t e d pseudorandom numbers .
2 R = RAND(N) re tu rn s an N−by−N matrix conta in ing
3 pseudorandom va lue s drawn from the standard uniform
4 d i s t r i b u t i o n on the open i n t e r v a l ( 0 , 1 ) . RAND re tu rn s a
5 s c a l a r . RAND(SIZE(A) ) r e tu rn s an array thesame s ize as A.

B.1.5 randi

Algorithm B.5 randi

1 RANDI Pseudorandom i n t e g e r s from a uniform d i s c r e t e
2 d i s t r i b u t i o n .
3 R = RANDI(IMAX,N) r e tu rn s an N−by−N matrix conta in ing
4 pseudorandom in t e g e r va lue s drawn from the d i s c r e t e
5 uniform d i s t r i b u t i o n on 1 :IMAX. RANDI(IMAX) re tu rn s a s c a l a r .
6 RANDI(IMAX, SIZE(A) ) r e tu rn s an array the same s ize as A.
7 R = RANDI( [ IMIN ,IMAX ] , . . . ) r e tu rn s an array conta in ing
8 i n t e g e r va lue s drawn from the d i s c r e t e uniform
9 d i s t r i b u t i o n on IMIN :IMAX.
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B.1.6 diag

Algorithm B.6 diag

1 DIAG Diagonal matr i ce s and d iagona l s o f a matrix .
2 DIAG(V,K) when V i s a vec to r with N components i s a square
3 matrix o f order N+ABS(K) with the e lements o f V on the
4 K−th d iagona l . K = 0 i s the main diagonal , K > 0 i s above
5 the main d iagona l and K < 0 i s below the main d iagona l .
6 DIAG(V) i s the same as DIAG(V, 0 ) and puts V on the main
7 d iagona l . DIAG(X,K) when X i s a matrix i s a column vecto r
8 formed from the e lements o f the K−th d iagona l o f X. DIAG(X)
9 i s the main d iagona l o f X. DIAG(DIAG(X) ) i s a d iagona l matrix .

B.1.7 sum

Algorithm B.7 sum

1 SUM Sum of e lements .
2 S = SUM(X) i s the sum o f the e lements o f the vec to r X.
3 I f X i s a matrix , S i s a row vecto r with the sum over
4 each column . S = SUM(X,DIM) sums along the dimension DIM.

B.1.8 zeros

Algorithm B.8 zeros

1 ZEROS Zeros array .
2 ZEROS(N) i s an N−by−N matrix o f zeros . ZEROS(SIZE(A) ) i s
3 the same s ize as A and a l l zeros . ZEROS with no arguments
4 i s the s c a l a r 0

B.1.9 ones

Algorithm B.9 ones

1 ONES Ones array .
2 ONES(N) i s an N−by−N matrix o f ones . ONES(SIZE(A) ) i s
3 the same s ize as A and a l l ones . ONES with no arguments
4 i s the s c a l a r 1 .
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B.1.10 eye

Algorithm B.10 eye

1 EYE Iden t i t y matrix .
2 EYE(N) i s the N−by−N id en t i t y matrix . EYE(SIZE(A) ) i s the
3 same s ize as A. EYE with no arguments i s the s c a l a r 1 .

B.1.11 abs

Algorithm B.11 abs

1 ABS Absolute value .
2 ABS(X) i s the abso lu t e va lue o f the e lements o f X. When X
3 i s complex , ABS(X) i s the complex modulus (magnitude ) o f
4 the e lements o f X.

B.1.12 eig

Algorithm B.12 eig

1 EIG Eigenva lues and e i g env e c t o r s .
2 E = EIG(X) i s a vec to r conta in ing the e i g enva lu e s o f a
3 square matrix X. [V,D] = EIG(X) produces a d iagona l
4 matrix D o f e i g enva lu e s and a f u l l matrix V whose columns
5 are the corre spond ing e i g env e c t o r s so that X∗V = V∗D.

B.1.13 sort

Algorithm B.13 sort

1 SORT Sort in ascending or descending order .
2 For vectors , SORT(X) s o r t s the e lements o f X in
3 ascending order . For matr ices , SORT(X) s o r t s each
4 column o f X in ascending order . For N−D arrays , SORT(X)
5 s o r t s the along the f i r s t non−s i n g l e t on dimension o f X.
6 Y = SORT(X,DIM,MODE) has two op t i ona l parameters .
7 DIM s e l e c t s a dimension along which to sort .
8 MODE s e l e c t s the d i r e c t i o n o f the sort
9 ’ ascend ’ r e s u l t s in ascending order
10 ’ descend ’ r e s u l t s in descending order
11 The r e s u l t i s in Y which has the same shape and type as X.
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B.1.14 rank

Algorithm B.14 rank

1 RANK Matrix rank .
2 RANK(A) prov ide s an es t imate o f the number o f l i n e a r l y
3 independent rows or columns o f a matrix A. RANK(A, t o l ) i s
4 the number o f s i n gu l a r va lue s o f A that are l a r g e r than t o l .
5 RANK(A) uses the d e f au l t t o l = max( s ize (A) ) ∗ eps (norm(A) ) .

B.1.15 all

Algorithm B.15 all

1 ALL True i f a l l e lements o f a vec to r are nonzero .
2 For vectors , ALL(V) r e tu rn s l o g i c a l 1 (TRUE) i f none o f
3 the e lements o f the vec to r are zero .

Otherwise i t r e tu rn s
4 l o g i c a l 0 (FALSE) . For matr ices , ALL(X) ope ra te s on the
5 columns o f X, r e tu rn ing a row vector o f l o g i c a l 1 ’ s and
6 0 ’ s . ALL(X,DIM) works down the dimension DIM.

B.1.16 find

Algorithm B.16 find

FIND Find i n d i c e s o f nonzero e lements .
I = FIND(X) r e tu rn s the l i n e a r i n d i c e s cor re spond ing to
the nonzero e n t r i e s o f the array X. X may be a l o g i c a l
exp r e s s i on . I = FIND(X,K) r e tu rn s at most the f i r s t K
i nd i c e s cor re spond ing to the nonzero e n t r i e s o f the array
X. K must be a p o s i t i v e in t ege r , but can be o f any numeric
type .
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B.2 Implemented functions

B.2.1 System

B.2.1.1 isfull

Algorithm B.17 isfull

1 function fu l l = i s f u l l (A)
2 % ISFULL con t r o l s i f A i s a s t r i c k l y f u l l matrix / vec to r .
3 % ISFULL(A) re turns 1 i f A i s s t r i c k l y f u l l , 0
4 % otherw i se .
5 f u l l=1;
6 for r=1: s ize (A, 1 ) ,
7 for c=1: s ize (A, 2 )
8 i f A( r , c)==0
9 f u l l=0;
10 break ;
11 end
12 end
13 i f f u l l==0
14 break ;
15 end
16 end
17 end

B.2.1.2 pit

Algorithm B.18 pit

1 function p i t r e s=p i t (P, pi0 ,T)
2 %PIT c a l c u l a t e s the marginal p i a t time T.
3 % PIT(P, PI0 ,T) c a l c u l a t e s the marginal p i a t time T
4 % using P as s t o c h a s t i c matrix and PI0 as i n i t i a l marginal
5 % d i s t r i b u t i o n .
6 p i t r e s =((P’ )^T)∗ pi0 ;
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B.2.1.3 pi0

Algorithm B.19 pi0

1 function pi0 = pi0 (dim)
2 %PI0 c r ea t e s a random s t o c h a s t i c v e c t o r .
3 % PIO(DIM) c r ea t e s a DIMX1 vec to r whose column sums
4 % to 1 .
5 pi0=zeros (dim , 1 ) ;
6 for a=1:dim ,
7 pi0 ( a ,1)= randi ( 1000 , 1 , 1 ) ;
8 end
9 p lus=sum( p i0 ) ;
10 pi0=pi0 / p lus ;
11 end

B.2.1.4 periodt

Algorithm B.20 periodt

1 function T = per i od t (A)
2 %PERIODT f i n d s the per iod T (= the number o f s t e p s ) in
3 %which a square matrix becomes f u l l .
4 % PERIODT(A) re turns a va lue T between 0 and 7 i f
5 % matrix A i s square , d i s p l a y s ’ not square matrix ’
6 % otherw i se . I f T=0 i t means t ha t matrix A becomes
7 % s t r i c t l y f u l l in 8 s t e p s at l e a s t .
8 maxT=7;
9 i f s ize (A,1)~= s ize (A, 2 )
10 disp ( ’ not␣ square ␣matrix ’ ) ;
11 return ;
12 end
13 A1 = A;
14 T=0;
15 for t = 1 :maxT
16 i f i s f u l l (A1)==0
17 A1 = A1∗A;
18 else
19 T = t ;
20 break ;
21 end
22 end
23 end
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B.2.1.5 slem

Algorithm B.21 slem

1 function s = slem (P)
2 %SLEM f i nd s the slem ( second l a r g e s t e i g enva l u e magnitude )
3 %of a g iven matrix .
4 % SLEM(P) re turns the slem of the g iven matrix P which
5 % must be square because o f the e i g enva l u e s c a l c u l u s .
6 % I t re turns 0 and d i s p l a y s ’ not square matrix ’ i f P
7 % isn ’ t square , wh i l e i t d i s p l a y s ’ s c a l a r matrix ’ and
8 % re turns 1 i f P i s s c a l a r .
9 i f s ize (P,1)~= s ize (P, 2 )
10 disp ( ’ not␣ square ␣matrix ’ ) ;
11 s=0;
12 e l s e i f
13 s ize (P,1)==1 && s ize (P,2)==1
14 disp ( ’ s c a l a r ␣matrix ’ ) ;
15 s=P( 1 ) ;
16 else
17 E=eig (P) ;
18 A=abs (E) ;
19 Asorted=sort (A, ’ descend ’ ) ;
20 s=Asorted ( 2 ) ;
21 end

B.2.1.6 schsys

Algorithm B.22 schsys

1 function F = schsys (P, pi0 , pibar , phi ,T)
2 %SCHSYS bu i l d s a Schrodinger system .
3 % SCHSYS(P, PI0 ,PIBAR,PHI ,T) b u i l d s a Schrodinger
4 % system with P as s t o c h a s t i c matrix , PI0 and PIBAR as
5 % the i n i t a l and f i n a l marginal d i s t r i b u t i o n s ,T as the
6 % per iod in which P becomes s t r i c k l y f u l l and PHI as
7 % the vec to r made up o f the harmonic func t i on at time T
8 % ( phi (T)) and the coharmonic func t i on at time 0
9 % ( ph iha t ( 0 ) ) .
10 pi=[ pi0 ; p ibar ] ;
11 c=s ize (P , 2 ) ;
12 r=2∗c ;
13 Pb=zeros ( r , c ) ;
14 Pb ( 1 : c , 1 : c)=P^T;
15 Pb( c+1: r , 1 : c )=(P’ )^T;
16 F=[((Pb ( 1 : c , 1 : c )∗ phi ( 1 : c ) ) . ∗ phi ( c+1: r ))−pi ( 1 : c ) ;
17 ( (Pb( c+1: r , 1 : c )∗ phi ( c+1: r ) ) . ∗ phi ( 1 : c ))−pi ( c+1: r ) ] ;
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B.2.1.7 pibar

Algorithm B.23 pibar

1 function [ p ,T] = pibar (P, p i0 )
2 %PIBAR ca l c u l a t e s the number o f s t e p s to reach a
3 %s ta t i ona r y d i s t r i b u t i o n
4 % PIBAR(P, PI0 ) c a l c u l a t e s the number o f s t e p s in which
5 % matrix P reaches i t s s t a t i ona r y d i s t r i b u t i o n s t a r t i n g
6 % at PI0 . I t a l s o re turns the reached d i s t r i b u t i o n .
7 Pt=P ’ ;
8 f lag=1;
9 p=pi0 ;
10 T=0;
11 while f lag==1
12 pn=Pt∗p ;
13 e r r=abs (pn−p ) ;
14 i f a l l ( err <(1/10000))==1
15 f lag=0;
16 p=pn ;
17 else
18 T=T+1;
19 p=pn ;
20 end
21 end
22 end

B.2.1.8 pibart

Algorithm B.24 pibart

1 function p iba r t=p ibar t (P, phi , p i0 )
2 % PIBART ca l c u l a t e s the f i n a l marginal d i s t r i b u t i o n .
3 % PIBART(P,PHI , PI0 ) c a l c u l a t e s the f i n a l marginal
4 % d i s t r i b u t i o n g iven a s t o c h a s t i c matrix P, an i n i t i a l
5 % marginal d i s t r i b u t i o n PI0 and a matrix PHI t ha t i s
6 % made up o f the harmonic and coharmonic f unc t i on s as
7 % the s o l u t i o n o f the Schrodinger system
8 % ’ s o l v e s c h s y s (P, PI0 ) ’ .
9 dim=s ize (P , 1 ) ;
10 T=per i od t (P) ;
11 Pt=P ’ ;
12 p iba r t=diag ( phi ( 1 : dim , 1 ) ) ∗ ( ( Pt)^T)∗ ( inv (diag ( phi ( 1 : dim , 2 ) ) ) ) ∗ pi0 ;
13 end
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B.2.1.9 lpibar

Algorithm B.25 lpibar

1 function [ ps ,T] = l p i b a r (n , p i0 )
2 %LPIBAR ca l c u l a t e s the s t a t i ona r y d i s t r i b u t i o n
3 %of a Laplace model o f d i f f u s i o n .
4 % LPIBAR(N, PI0 ) c a l c u l a t e the s t a t i ona r y
5 % d i s t r i b u t i o n o f a Laplace model o f d i f f u s i o n
6 % with 2∗N molecu les s t a r t i n g at PI0 . I f N=0 i t
7 % d i s p l a y s ’Too few molecu les ’ .
8 i f n<=1
9 disp ( ’Too␣ few␣molecu le s ’ ) ;
10 end
11 ps=zeros (n+1 ,1) ;
12 for r=0:n
13 ps ( r+1)=( f a c t o r i a l (n )^4)/( f a c t o r i a l ( r )^2∗
14 ∗ f a c t o r i a l (2∗n )∗ ( f a c t o r i a l (n−r )^2 ) ) ;
15 end
16 P=l ap l a c e (n ) ;
17 Pt=P ’ ;
18 dim=s ize (P , 1 ) ;
19 f lag=0;
20 T=0;
21 p=pi0 ;
22 i f sum(abs ( ps−p)<(1/10000))==dim
23 return ;
24 end
25 while f lag==0
26 pn=Pt∗p ;
27 i f dim==sum(abs (pn−ps ) <(1/10000))
28 f lag=1;
29 p=pn ;
30 else
31 T=T+1;
32 p=pn ;
33 end
34 end
35 end
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B.2.1.10 schsyssolve

Algorithm B.26 schsyssolve

1 function [ s chres , schres2 , s ch r e s0 ] = s ch sy s s o l v e (P, pi0 , p ibar )
2 %SOLVESCHSYS s o l v e s a Schrodinger system
3 % SOLVESCHSYS(P, PI0 ) s o l v e s a Schrodinger system ,
4 % where P must be a s t o c h a s t i c matrix , PI0 an
5 % i n i t i a l marginal d i s t r i b u t i o n and PIBAR i t s
6 % s ta t i ona r y d i s t r i b u t i o n . I t r e tu rns as output
7 % parameter the harmonic and coharmonic func t i on
8 T=per i od t (P) ;
9 dim=s ize (P , 1 ) ;
10 s ch r e s=zeros (2∗dim , 2 ) ;
11 guess=sqrt ( [ p ibar ; p ibar ] ) ;
12 s ch r e s ( : , 1 )= f s o l v e (@( phi ) s chsys (P, pi0 , pibar , phi ,T) , guess ) ;
13 s ch r e s ( : , 2 )= [ (P^T)∗ s ch r e s ( 1 : dim , 1 ) ;
14 ( (P’ )^T)∗ s ch r e s (dim+1:2∗dim , 1 ) ] ;
15 s ch r e s2=sch r e s ( 1 : dim , 1 ) ;
16 s ch r e s0=sch r e s ( 1 : dim , 2 ) ;
17 end

B.2.1.11 binomial

Algorithm B.27 binomial

1 function bc = binomial (n ,m)
2 %BINOMIAL computes the b inomia l c o e f f i c i e n t n choose m.
3 % BINOMIAL(N,M) c a l c u l a t e s the b inomia l c o e f f i c i e n t n
4 % choose m i f m<=n , o therw i s e d i s p l a y s ’m must be > n ’ .
5 i f m>n
6 disp ( ’m␣must␣be␣>␣n ’ ) ;
7 end
8 i f 2∗m<=n
9 m1=m;
10 else
11 m1=n−m;
12 end
13 i f n <= 100
14 s ize=abs (n−m1)+1;
15 ps=pascal ( s ize ) ;
16 bc=ps ( size ,m1+1);
17 else
18 bc=exp(gammaln(n+1)−gammaln(n−m+1)−gammaln(m+1)) ;
19 end
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B.2.1.12 metropolis

Algorithm B.28 metropolis

f unc t i on P = metropo l i s (E)
%METROPOLIS app l i e s Metropol i s−Hast ings a lgor i thm
% METROPOLIS(E) r e tu rn s a s t o c h a s t i c chain matrix P
% get by apply ing Metropol i s−Hast ings a lgor i thm to
% the adjacency matrix E.
N=length (E) ;
P=ze ro s (N,N) ;
deg=sum(E , 2 ) ;
f o r r=1:N

f o r c=1:N
i f E( r , c)==1 && r~=c

P( r , c )=1/(max( deg ( r ) , deg ( c ) ) ) ;
end

end
plus=sum(P( r , : ) , 2 ) ;
P( r , r)=1−plus ;
end
end
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B.2.2 Models

B.2.2.1 Success runs

Algorithm B.29 Success runs

1 function R = succe s s runs (dim)
2 %SUCCESS RUNS cr ea t e s a s t o c h a s t i c matrix which
3 %repr e s en t s a succe s s runs model .
4 % SUCCESSRUNS(DIM) re turns a DIMxDIM s t o c h a s t i c matrix
5 % which r ep r e s en t s a succe s s runs .
6 R=zeros (dim , dim ) ;
7 R( 1 : dim ,1)= randi (10000 ,dim , 1 ) ;
8 upperdia=randi (10000 , dim−1 ,1) ;
9 R=R+diag ( upperdia , 1 ) ;
10 p lus=sum(R, 2 ) ;
11 for r=1:dim
12 R( r , 1 : dim)=R( r , 1 : dim)/ p lus ( r ) ;
13 end
14 end

B.2.2.2 Rsparse

Algorithm B.30 Rsparse

1 function P = rspa r s e (dim)
2 %RSPARSE cr ea t e s an i r r e d u c i b l e s t o c h a s t i c matrix .
3 % RSPARSE(N) cont inues c r ea t i n g a new random NxN
4 % s t o c h a s t i c matrix by us ing func t i on randomsparse u n t i l
5 % i t i s not i r r e d u c i b l e .
6 T=0;
7 while T==0
8 P=randomsparse (dim ) ;
9 f lag=0;
10 while f lag==0
11 i f rank (P)==dim
12 f lag=1;
13 else
14 P=randomsparse (dim ) ;
15 end
16 end
17 T=per i od t (P) ;
18 end
19 end
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B.2.2.3 Laplace

Algorithm B.31 Laplace

1 function L = l ap l a c e (n)
2 %LAPLACE crea t e s a s t o c h a s t i c matrix which r ep r e s en t s
3 %a Bernou l l i−Laplace model o f d i f f u s i o n .
4 % LAPLACE(N) re turns a (N+1)x (N+1) s t o c h a s t i c matrix
5 % which r ep r e s en t s a Bernou l l i−Laplace model o f
6 % d i f f u s i o n wi th 2∗N molecu les (N whi te and N b l a c k ) .
7 maindiag=zeros (n+1 ,1) ;
8 upperdiag=zeros (n , 1 ) ;
9 for r=0:n
10 maindiag ( r+1)=((2∗ r )∗ ( n−r ) ) / ( n^2) ;
11 end
12 for r=0:n−1
13 upperdiag ( r+1)=((n−r )^2)/(n^2) ;
14 end
15 lowerd iag=fl ipud ( upperdiag ) ;
16 L=diag ( maindiag)+diag ( upperdiag ,1)+diag ( lowerdiag ,−1) ;
17 end

B.2.2.4 Cyclical random walk

Algorithm B.32 Cyclical random walk

func t i on c = cy c l i c a l rw (dim)
%CYCLICALRW cr e a t e s a s t o c h a s t i c matrix which
%rep r e s en t s a c y c l i c a l random walk .
% CYCLICAL(DIM) re tu rn s a DIMXDIM s t o c h a s t i c
% matrix which r ep r e s en t s a c y c l i c a l random
% walk where p r o b a b i l i t i e s p and q chosen at
% random .
p=randi ( 10000 , 1 , 1 ) ;
q=randi ( 10000 , 1 , 1 ) ;
maindiag=ze ro s (dim , 1 ) ;
upperdiag=p∗ ones (dim−1 ,1) ;
l owerd iag=q∗ ones (dim−1 ,1) ;
c=diag ( maindiag)+diag ( upperdiag ,1)+ diag ( lowerdiag ,−1) ;
c (1 , dim)=q ; c (dim ,1)=p ;
f o r row=1:dim

plus=sum( c ( row , 1 : dim ) ) ;
c ( row , 1 : dim)=c ( row , 1 : dim)/ p lus ;
end

end
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B.2.2.5 Random walk

Algorithm B.33 Random walk

1 function r = randomwalk (dim)
2 %RANDOMWALK crea t e s a s t o c h a s t i c matrix which r ep r e s en t s
3 %a random walk .
4 % RANDOMWALK(DIM) re turns a DIMXDIM s t o c h a s t i c
5 % matrix which r ep r e s en t s a random walk where
6 % p r o b a b i l i t i e s p and q are chosen at random .
7 maindiag=zeros (dim , 1 ) ;
8 upperdiag=zeros (dim−1 ,1) ;
9 lowerd iag=zeros (dim−1 ,1) ;
10 maindiag (1)= randi ( 10000 , 1 , 1 ) ;
11 maindiag (dim)=randi ( 10000 , 1 , 1 ) ;
12 lowerd iag (dim−1)=randi ( 10000 , 1 , 1 ) ;
13 upperdiag (1)= randi ( 10000 , 1 , 1 ) ;
14 p=randi ( 10000 , 1 , 1 ) ;
15 q=randi ( 10000 , 1 , 1 ) ;
16 for row=1:dim−1
17 lowerd iag ( row)=q ;
18 end
19 for row=2:dim−1
20 upperdiag ( row)=p ;
21 end
22 r=diag ( maindiag)+diag ( upperdiag ,1)+diag ( lowerdiag ,−1) ;
23 for row=1:dim
24 p lus=sum( r ( row , 1 : dim ) ) ;
25 r ( row , 1 : dim)=r ( row , 1 : dim)/ p lus ;
26 end
27 end
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B.2.2.6 Random geometric graph

Algorithm B.34 Random geometric graph

1 function P = randgeomgraph (N, r )
2 %RANDGEOMGRAPH crea t e s a random geometr ic graph .
3 % RANDGEOMGRAPH(N,R) c r ea t e s a random geometr ic
4 % graph by p l a c in g N nodes at random uni formly
5 % and independen t l y on [0 , 1 ) x [ 0 , 1 ) and connect ing
6 % a l l node whose d i s t ance i s a t most R.
7 P=zeros (N,N) ;
8 e r r =(1/1000000)∗ ones (N, 1 ) ;
9 while e r r (2) <(1/100000)
10 x=rand (N, 1 ) ;
11 y=rand (N, 1 ) ;
12 E=(x∗ ones (1 ,N)−ones (N, 1 ) ∗ ( x ’ ) ) . ^ 2 ;
13 E=sqrt (E+((y∗ ones (1 ,N)−ones (N, 1 ) ∗ ( y ’ ) ) . ^ 2 ) ) ;
14 E=E<(r ∗ ones (N,N) ) ;
15 deg=sum(E , 2 ) ;
16 L=diag ( deg)−E;
17 e i g v a l=sort ( eig (L) , ’ ascend ’ ) ;
18 e r r=abs ( e i g v a l ) ;
19 end
20 for r=1:N
21 for c=1:N
22 i f E( r , c)==1 && r~=c
23 P( r , c )=1/(max( deg ( r ) , deg ( c ) ) ) ;
24 end
25 end
26 p lus=sum(P( r , : ) , 2 ) ;
27 P( r , r)=1−plus ;
28 end
29 end
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B.2.2.7 Randomsparse

Algorithm B.35 Randomsparse

1 function S = randomsparse (dim)
2 %RANDOMSPARSE cr ea t e s a random s t o c h a s t i c matrix .
3 % RANDOMSPARSE(N) re turns a NxN s t o c h a s t i c matrix
4 % not s t r i c t l y f u l l .
5 S=zeros (dim , dim ) ;
6 for r=1:dim
7 in t=randi (round(dim /2 ) , 1 ) ;
8 for a=1: i n t
9 f lag=0;
10 ind=randi (dim , 1 ) ;
11 i f i n t==1
12 while ind==r
13 ind=randi (dim , 1 , 1 ) ;
14 end
15 e l s e i f ind==r && f lag==0
16 f lag=1;
17 e l s e i f ind==r && f lag==1
18 while ind==r
19 ind=randi (dim , 1 , 1 ) ;
20 end
21 end
22 S( r , ind)=randi ( 10000 , 1 , 1 ) ;
23 end
24 end
25 for r=1:dim
26 p lus=sum(S( r , 1 : dim ) ) ;
27 S( r , 1 : dim)=S( r , 1 : dim)/ p lus ;
28 end
29 end
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B.2.2.8 Blocksparse

Algorithm B.36 Blocksparse part I

1 function M = block r spa r s e ( d e t a i l s )
2 %BLOCKSPARSE cr ea t e s a random s t o c h a s t i c matrix made up
3 %of sma l l e r ma t r i c i e s .
4 % BLOCKSPARSE(DETAILS) re turns a random s t o c h a s t i c
5 % diagona l b l o c k s matrix , composed by N sma l l e r
6 % matr ic i e s , where N i s the number o f e lements o f
7 % vec to r DETAILS, whose i−th e lement i s the dimension
8 % of the i−th matrix . Then the i−th matrix o f the
9 % diagona l i s l i n k e d wi th the i+1−th matrix wh i l e the
10 % l a s t matrix i s l i n k e d wi th the f i r s t one . I t r e tu rns
11 % 0 and d i s p l a y s ’Too few b lock s ’ i f DETAILS=0.
12 % I f d e t a i l s has at most N−1 zero elements , DETAILS
13 % becomes DETAILS wi thout any zero element . I f DETAILS
14 % isn ’ t a column or a row vec to r i t r e tu rns 0 and
15 % d i s p l a y s ’ Vector expected ’ .
16 rows=s ize ( d e t a i l s , 1 ) ;
17 columns=s ize ( d e t a i l s , 2 ) ;
18 i f rows>1 && columns>1
19 disp ( ’ Vector ␣ expected ’ ) ;
20 M=0;
21 else
22 i f columns>1
23 d e t a i l s=d e t a i l s ’ ;
24 end
25 zero=zeros ( rows , 1 ) ;
26 i f d e t a i l s==zero
27 disp ( ’Too␣ few␣ b locks ’ ) ;
28 M=0;
29 else
30 i f a l l ( d e t a i l s )==0
31 disp ( ’ d e t a i l s ’ ) ;
32 disp ( ’ ␣ ’ ) ;
33 disp ( d e t a i l s ) ;
34 disp ( ’ becomes ’ ) ;
35 disp ( ’ ␣ ’ ) ;
36 i n o t z e r o s=find ( d e t a i l s >0);
37 dim=s ize ( i no t z e ro s , 1 ) ;
38 temp=zeros (dim , 1 ) ;
39 for r=1:dim
40 temp( r)= d e t a i l s ( i n o t z e r o s ( r ) ) ;
41 end
42 d e t a i l s=temp ;
43 disp ( d e t a i l s ) ;
44 end
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Algorithm B.37 Blocksparse part II

1 T=0;
2 while T==0
3 numblocks=s ize ( d e t a i l s , 1 ) ;
4 M=rspa r s e ( d e t a i l s ( 1 ) ) ;
5 for r=2:numblocks
6 M=blkd iag (M, randomsparse ( d e t a i l s ( r ) ) ) ;
7 end
8 dim=s ize (M, 1 ) ;
9 row=1;
10 for s =1:( numblocks−1)
11 M( row , row+d e t a i l s ( s ))=rand ( 1 ) ;
12 p lus=sum(M( row , 1 : dim ) ) ;
13 M( row , 1 : dim)=M(row , 1 : dim)/ p lus ;
14 row=row+d e t a i l s ( s ) ;
15 end
16 M(dim ,1)=rand ( 1 ) ;
17 p lus=sum(M(dim , 1 : dim ) ) ;
18 M(dim , 1 : dim)=M(dim , 1 : dim)/ p lus ;
19 T=per i od t (M) ;
20 end
21 end
22 end
23 end



136 APPENDIX B. MATLAB

B.2.3 Simulations

B.2.3.1 Wsimul

Algorithm B.38 Wsimul

1 function sim = wsimul (dim)
2 i f dim>8
3 sim=’Too␣many␣ s t ep s ’ ;
4 else
5 P=randomwalk (dim ) ;
6 S=slem (P) ;
7 T=per i od t (P) ;
8 p i 0 r e s=pi0 (dim ) ;
9 p i t r e s=p i t (P, p i0 r e s ,T) ;
10 [ p ibar r e s , Ts]=pibar (P, p i 0 r e s ) ;
11 [ phi , phi2 , phi0 ]= s ch sy s s o l v e (P, p i0 r e s , p i ba r r e s ) ;
12 p i b a r t r e s=p ibar t (P, phi , p i 0 r e s ) ;
13 disp ( ’A␣ ’ ’Random␣walk ’ ’ ␣ s t o c h a s t i c ␣matrix ␣P␣ i s ’ )
14 disp ( ’ ␣ ’ ) , disp (P)
15 disp ( ’The␣SLEM␣ i s ’ ) , disp ( ’ ␣ ’ ) , disp (S)
16 disp ( ’ Per iod ␣T␣ i s ’ ) , disp ( ’ ␣ ’ ) , disp (T)
17 disp ( ’A␣random␣ i n i t i a l ␣marginal ␣ d i s t r i b u t i o n ␣ pi0 ␣ i s ’ )
18 disp ( ’ ␣ ’ ) , disp ( p i 0 r e s )
19 disp ( ’ I t s ␣ s t a t i ona ry ␣ d i s t r i b u t i o n ␣ s t a r t i n g ␣ at ␣ pi0 ␣ i s ’ )
20 disp ( ’ ␣ ’ ) , disp ( p i ba r r e s )
21 disp ( ’ which␣ reaches ␣ in ␣Ts␣ s t ep s ’ ) , disp ( ’ ␣ ’ ) , disp (Ts )
22 disp ( ’The␣ d i s t r i b u t i o n ␣ at ␣ time␣T␣ pi (T) ␣ i s ’ ) , disp ( ’ ␣ ’ )
23 disp ( p i t r e s )
24 disp ( ’The␣harmonic␣ func t i on ␣ at ␣ time␣0␣phi (0 ) ␣ i s ’ )
25 disp ( ’ ␣ ’ ) , disp ( phi0 )
26 disp ( ’The␣harmonic␣ func t i on ␣ at ␣ time␣T␣phi (T) ’ ) , disp ( ’ ␣ ’ )
27 disp ( phi2 )
28 disp ( ’The␣ d i s t r i b u t i o n ␣ at ␣ time␣T␣ pibar (T) ␣ i s ’ ) , disp ( ’ ␣ ’ )
29 disp ( p i b a r t r e s )
30 disp ( ’ ␣ ’ )
31 sim=’ s imu la t i on ␣ complete ’ ;
32 end
33 end
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B.2.3.2 Csimul

Algorithm B.39 Csimul

1 function sim = cs imul (dim)
2 i f dim>15
3 sim=’Too␣many␣ s t ep s ’ ;
4 else
5 P=cy c l i c a l rw (dim ) ;
6 S=slem (P) ;
7 T=per i od t (P) ;
8 p i 0 r e s=pi0 (dim ) ;
9 p i t r e s=p i t (P, p i0 r e s ,T) ;
10 [ p ibar r e s , Ts]=pibar (P, p i 0 r e s ) ;
11 [ phi , phi2 , phi0 ]= s ch sy s s o l v e (P, p i0 r e s , p i ba r r e s ) ;
12 p i b a r t r e s=p ibar t (P, phi , p i 0 r e s ) ;
13 disp ( ’A␣ ’ ’ c y c l i c a l ␣random␣walk ’ ’ ␣ s t o c h a s t i c ␣matrix ␣P␣ i s ’ )
14 disp ( ’ ␣ ’ ) , disp (P)
15 disp ( ’The␣SLEM␣ i s ’ ) , disp ( ’ ␣ ’ ) , disp (S)
16 disp ( ’ Per iod ␣T␣ in ␣which␣P␣becomes␣ f u l l ␣ i s ’ ) , disp ( ’ ␣ ’ )
17 disp (T)
18 disp ( ’A␣random␣ i n i t i a l ␣marginal ␣ d i s t r i b u t i o n ␣ pi0 ␣ i s ’ )
19 disp ( ’ ␣ ’ ) , disp ( p i 0 r e s )
20 disp ( ’ I t s ␣ s t a t i ona ry ␣ d i s t r i b u t i o n ␣ s t a r t i n g ␣ at ␣ pi0 ␣ i s ’ )
21 disp ( ’ ␣ ’ ) , disp ( p i ba r r e s )
22 disp ( ’ which␣ reaches ␣ in ␣Ts␣ s t ep s ’ ) , disp ( ’ ␣ ’ ) , disp (Ts )
23 disp ( ’The␣ d i s t r i b u t i o n ␣ at ␣ time␣T␣ pi (T) ␣ i s ’ ) , disp ( ’ ␣ ’ )
24 disp ( p i t r e s )
25 disp ( ’The␣harmonic␣ func t i on ␣ at ␣ time␣0␣phi (0 ) ␣ i s ’ )
26 disp ( ’ ␣ ’ ) , disp ( phi0 )
27 disp ( ’The␣harmonic␣ func t i on ␣ at ␣ time␣T␣phi (T) ’ )
28 disp ( ’ ␣ ’ ) , disp ( phi2 )
29 disp ( ’The␣ d i s t r i b u t i o n ␣ at ␣ time␣T␣ pibar (T) ␣ i s ’ )
30 disp ( ’ ␣ ’ ) , disp ( p i b a r t r e s )
31 disp ( ’ ␣ ’ )
32 sim=’ Simulat ion ␣ complete ’ ;
33 end
34 end
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B.2.3.3 Ssimul

Algorithm B.40 Ssimul

1 function sim = ss imul (dim)
2 i f dim>7
3 sim=’Too␣many␣ s t ep s ’ ;
4 else
5 P=succe s s runs (dim ) ;
6 S=slem (P) ;
7 T=dim ;
8 p i 0 r e s=pi0 (dim ) ;
9 p i t r e s=p i t (P, p i0 r e s ,T) ;
10 [ p ibar r e s , Ts]=pibar (P, p i 0 r e s ) ;
11 [ phi , phi2 , phi0 ]= s ch sy s s o l v e (P, p i0 r e s , p i ba r r e s ) ;
12 p i b a r t r e s=p ibar t (P, phi , p i 0 r e s ) ;
13 disp ( ’A␣random␣ ’ ’ Success ␣ runs ’ ’ ␣ s t o c h a s t i c ␣matrix ␣P␣ i s ’ )
14 disp ( ’ ␣ ’ ) , disp (P)
15 disp ( ’The␣SLEM␣ i s ’ ) , disp ( ’ ␣ ’ ) , disp (S)
16 disp ( ’ Per iod ␣T␣ in ␣which␣P␣becomes␣ f u l l ␣ i s ’ ) , disp ( ’ ␣ ’ )
17 disp (T)
18 disp ( ’A␣random␣ i n i t i a l ␣marginal ␣ d i s t r i b u t i o n ␣ pi0 ␣ i s ’ )
19 disp ( ’ ␣ ’ ) , disp ( p i 0 r e s )
20 disp ( ’ I t s ␣ s t a t i ona ry ␣ d i s t r i b u t i o n ␣ s t a r t i n g ␣ at ␣ pi0 ␣ i s ’ )
21 disp ( ’ ␣ ’ ) , disp ( p i ba r r e s )
22 disp ( ’ which␣ reaches ␣ in ␣Ts␣ s t ep s ’ ) , disp ( ’ ␣ ’ ) , disp (Ts )
23 disp ( ’The␣ d i s t r i b u t i o n ␣ at ␣ time␣T␣ pi (T) ␣ i s ’ ) , disp ( ’ ␣ ’ )
24 disp ( p i t r e s )
25 disp ( ’The␣harmonic␣ func t i on ␣ at ␣ time␣0␣phi (0 ) ␣ i s ’ )
26 disp ( ’ ␣ ’ ) , disp ( phi0 )
27 disp ( ’The␣harmonic␣ func t i on ␣ at ␣ time␣T␣phi (T) ’ )
28 disp ( ’ ␣ ’ ) , disp ( phi2 )
29 disp ( ’The␣ d i s t r i b u t i o n ␣ at ␣ time␣T␣ pibar (T) ␣ i s ’ ) , disp ( ’ ␣ ’ )
30 disp ( p i b a r t r e s )
31 disp ( ’ ␣ ’ )
32 sim=’ Simulat ion ␣ complete ’ ;
33 end
34 end
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B.2.3.4 Rsimul

Algorithm B.41 Rsimul

1 function sim = rs imul (dim)
2 i f dim<2
3 sim=’Too␣many␣ s t ep s ’ ;
4 else
5 P=r spa r s e (dim ) ;
6 S=slem (P) ;
7 T=per i od t (P) ;
8 p i 0 r e s=pi0 (dim ) ;
9 [ p ibar r e s , Ts]=pibar (P, p i 0 r e s ) ;
10 p i t r e s=p i t (P, p i0 r e s ,T) ;
11 [ phi , phi2 , phi0 ]= s ch sy s s o l v e (P, p i0 r e s , p i ba r r e s ) ;
12 p i b a r t r e s=p ibar t (P, phi , p i 0 r e s ) ;
13 disp ( ’A␣random␣ s t o c h a s t i c ␣matrix ␣P␣ i s ’ ) , disp ( ’ ␣ ’ )
14 disp (P) disp ( ’The␣SLEM␣ i s ’ ) , disp ( ’ ␣ ’ ) , disp (S)
15 disp ( ’ Per iod ␣T␣ in ␣which␣P␣becomes␣ f u l l ␣ i s ’ )
16 disp ( ’ ␣ ’ ) , disp (T)
17 disp ( ’A␣random␣ i n i t i a l ␣marginal ␣ d i s t r i b u t i o n ␣ pi0 ␣ i s ’ )
18 disp ( ’ ␣ ’ ) , disp ( p i 0 r e s )
19 disp ( ’ I t s ␣ s t a t i ona ry ␣ d i s t r i b u t i o n ␣␣ s t a r t i n g ␣ at ␣ pi0 ␣ i s ’ )
20 disp ( ’ ␣ ’ ) , disp ( p i ba r r e s )
21 disp ( ’ which␣ reaches ␣ in ␣Ts␣ s t ep s ’ ) , disp ( ’ ␣ ’ ) , disp (Ts )
22 disp ( ’The␣ d i s t r i b u t i o n ␣ at ␣ time␣T␣ pi (T) ␣ i s ’ ) , disp ( ’ ␣ ’ )
23 disp ( p i t r e s )
24 disp ( ’The␣harmonic␣ func t i on ␣ at ␣ time␣0␣phi (0 ) ␣ i s ’ )
25 disp ( ’ ␣ ’ ) , disp ( phi0 )
26 disp ( ’The␣harmonic␣ func t i on ␣ at ␣ time␣T␣phi (T) ’ )
27 disp ( ’ ␣ ’ ) , disp ( phi2 )
28 disp ( ’The␣ d i s t r i b u t i o n ␣ at ␣ time␣T␣ pibar (T) ␣ i s ’ ) , disp ( ’ ␣ ’ )
29 disp ( p i b a r t r e s )
30 disp ( ’ ␣ ’ )
31 sim=’ Simulat ion ␣ complete ’ ;
32 end
33 end
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B.2.3.5 Lsimul

Algorithm B.42 Lsimul

1 function sim = l s imu l (n)
2 i f n<2
3 sim=’Too␣ few␣molecu le s ’ ;
4 else
5 P=l ap l a c e (n ) ;
6 i f P==0
7 return ;
8 end
9 dim=n+1;
10 S=slem (P) ;
11 T=per i od t (P) ;
12 p i 0 r e s=pi0 (dim ) ;
13 p i t r e s=p i t (P, p i0 r e s ,T) ;
14 [ p ibar r e s , Ts]= l p i b a r (n , p i 0 r e s ) ;
15 [ phi , phi2 , phi0 ]= s ch sy s s o l v e (P, p i0 r e s , p i ba r r e s ) ;
16 p i b a r t r e s=p ibar t (P, phi , p i 0 r e s ) ;
17 disp ( ’A␣ ’ ’ Laplace ’ ’ ␣matrix ␣P␣with ’ ) , disp ( ’ ␣ ’ ) , disp (n)
18 disp ( ’ ␣ ’ ) , disp ( ’ white ␣ b a l l s ␣and ’ ) , disp ( ’ ␣ ’ ) , disp (n)
19 disp ( ’ ␣ ’ ) , disp ( ’ b lack ␣ b a l l s ’ ) , disp ( ’ ␣ ’ ) , disp ( ’ i s ’ )
20 disp (P)
21 disp ( ’The␣SLEM␣ i s ’ ) , disp ( ’ ␣ ’ ) , disp (S)
22 disp ( ’ Per iod ␣T␣ in ␣which␣P␣becomes␣ f u l l ␣ i s ’ )
23 disp ( ’ ␣ ’ ) , disp (T)
24 disp ( ’A␣random␣ i n i t i a l ␣marginal ␣ d i s t r i b u t i o n ␣ pi0 ␣ i s ’ )
25 disp ( ’ ␣ ’ ) , disp ( p i 0 r e s )
26 disp ( ’ I t s ␣ s t a t i ona ry ␣ d i s t r i b u t i o n ␣ s t a r t i n g ␣ at ␣ pi0 ␣ i s ’ )
27 disp ( ’ ␣ ’ ) , disp ( p i ba r r e s )
28 disp ( ’ which␣ reaches ␣ in ␣Ts␣ s t ep s ␣ s t a r t i n g ␣ at ␣ pi0 ’ )
29 disp ( ’ ␣ ’ ) , disp (Ts )
30 disp ( ’The␣ d i s t r i b u t i o n ␣ at ␣ time␣T␣ pi (T) ␣ i s ’ ) , disp ( ’ ␣ ’ )
31 disp ( p i t r e s )
32 disp ( ’The␣harmonic␣ func t i on ␣ at ␣ time␣0␣phi (0 ) ␣ i s ’ )
33 disp ( ’ ␣ ’ ) , disp ( phi0 )
34 disp ( ’The␣harmonic␣ func t i on ␣ at ␣ time␣T␣phi (T) ’ )
35 disp ( ’ ␣ ’ ) , disp ( phi2 )
36 disp ( ’The␣ d i s t r i b u t i o n ␣ at ␣ time␣T␣ pibar (T) ␣ i s ’ ) , disp ( ’ ␣ ’ )
37 disp ( p i b a r t r e s )
38 disp ( ’ ␣ ’ )
39 sim=’ Simulat ion ␣ complete ’ ;
40 end
41 end
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B.2.3.6 Rggsimul

Algorithm B.43 Rggsimul

1 function sim = rggs imul (n , r )
2 i f n<2
3 sim=’Too␣ few␣ po in t s ’ ;
4 else
5 P=randgeomgraphr (n , r ) ;
6 S=slem (P) ;
7 T=per i od t (P) ;
8 dim=s ize (P , 1 ) ;
9 p i 0 r e s=pi0 (dim ) ;
10 p i t r e s=p i t (P, p i0 r e s ,T) ;
11 [ p ibar r e s , Ts]=pibar (P, p i 0 r e s ) ;
12 [ phi , phi2 , phi0 ]= s ch sy s s o l v e (P, p i0 r e s , p i ba r r e s ) ;
13 p i b a r t r e s=p ibar t (P, phi , p i 0 r e s ) ;
14 disp ( ’A␣random␣ s t o c h a s t i c ␣matrix ␣P␣ i s ’ ) , disp ( ’ ␣ ’ )
15 disp (P)
16 disp ( ’The␣SLEM␣ i s ’ ) , disp ( ’ ␣ ’ ) , disp (S)
17 disp ( ’ Per iod ␣T␣ in ␣which␣P␣becomes␣ f u l l ␣ i s ’ )
18 disp ( ’ ␣ ’ ) , disp (T)
19 disp ( ’A␣random␣ i n i t i a l ␣marginal ␣ d i s t r i b u t i o n ␣ pi0 ␣ i s ’ )
20 disp ( ’ ␣ ’ ) , disp ( p i 0 r e s )
21 disp ( ’ I t s ␣ s t a t i ona ry ␣ d i s t r i b u t i o n ␣ s t a r t i n g ␣ at ␣ pi0 ␣ i s ’ )
22 disp ( ’ ␣ ’ ) , disp ( p i ba r r e s )
23 disp ( ’ which␣ reaches ␣ in ␣Ts␣ s t ep s ’ ) , disp ( ’ ␣ ’ ) , disp (Ts )
24 disp ( ’The␣ d i s t r i b u t i o n ␣ at ␣ time␣T␣ pi (T) ␣ i s ’ )
25 disp ( ’ ␣ ’ ) , disp ( p i t r e s )
26 disp ( ’The␣harmonic␣ func t i on ␣ at ␣ time␣0␣phi (0 ) ␣ i s ’ )
27 disp ( ’ ␣ ’ ) , disp ( phi0 )
28 disp ( ’The␣harmonic␣ func t i on ␣ at ␣ time␣T␣phi (T) ’ )
29 disp ( ’ ␣ ’ ) , disp ( phi2 )
30 disp ( ’The␣ d i s t r i b u t i o n ␣ at ␣ time␣T␣ pibar (T) ␣ i s ’ )
31 disp ( ’ ␣ ’ ) , disp ( p i b a r t r e s )
32 disp ( ’ ␣ ’ )
33 sim=’ Simulat ion ␣ complete ’ ;
34 end
35 end
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B.2.3.7 Bsimul

Algorithm B.44 Bsimul

1 function sim = bsimul ( a )
2 i f l enght ( a)<1
3 sim=’Too␣ few␣ b locks ’ ;
4 else
5 P=b lo ck r spa r s e ( a ) ;
6 S=slem (P) ;
7 T=per i od t (P) ;
8 dim=s ize (P , 1 ) ;
9 p i 0 r e s=pi0 (dim ) ;
10 p i t r e s=p i t (P, p i0 r e s ,T) ;
11 [ p ibar r e s , Ts]=pibar (P, p i 0 r e s ) ;
12 [ phi , phi2 , phi0 ]= s ch sy s s o l v e (P, p i0 r e s , p i ba r r e s ) ;
13 p i b a r t r e s=p ibar t (P, phi , p i 0 r e s ) ;
14 disp ( ’A␣random␣ ’ ’ b locks ␣ d iagona l ’ ’ ␣ s t o c h a s t i c ␣matrix ␣P␣ i s ’ )
15 disp ( ’ ␣ ’ ) , disp (P)
16 disp ( ’The␣SLEM␣ i s ’ ) , disp ( ’ ␣ ’ ) , disp (S)
17 disp ( ’ Per iod ␣T␣ in ␣which␣P␣becomes␣ f u l l ␣ i s ’ ) , disp ( ’ ␣ ’ )
18 disp (T)
19 disp ( ’A␣random␣ i n i t i a l ␣marginal ␣ d i s t r i b u t i o n ␣ pi0 ␣ i s ’ )
20 disp ( ’ ␣ ’ ) , disp ( p i 0 r e s )
21 disp ( ’ I t s ␣ s t a t i ona ry ␣ d i s t r i b u t i o n ␣ s t a r t i n g ␣ at ␣ pi0 ␣ i s ’ )
22 disp ( ’ ␣ ’ ) , disp ( p i ba r r e s )
23 disp ( ’ which␣ reaches ␣ in ␣Ts␣ s t ep s ’ ) , disp ( ’ ␣ ’ ) , disp (Ts )
24 disp ( ’The␣ d i s t r i b u t i o n ␣ at ␣ time␣T␣ pi (T) ␣ i s ’ ) , disp ( ’ ␣ ’ )
25 disp ( p i t r e s )
26 disp ( ’The␣harmonic␣ func t i on ␣ at ␣ time␣0␣phi (0 ) ␣ i s ’ )
27 disp ( ’ ␣ ’ ) , disp ( phi0 )
28 disp ( ’The␣harmonic␣ func t i on ␣ at ␣ time␣T␣phi (T) ’ )
29 disp ( ’ ␣ ’ ) , disp ( phi2 )
30 disp ( ’The␣ d i s t r i b u t i o n ␣ at ␣ time␣T␣ pibar (T) ␣ i s ’ ) , disp ( ’ ␣ ’ )
31 disp ( p i b a r t r e s )
32 disp ( ’ ␣ ’ )
33 sim=’ Simulat ion ␣ complete ’ ;
34 end
35 end



Appendix C

Matrix properties

Let us remind something of matrix theory.

C.1 Definitions

A set of numbers put by rows and columns is called matrix. Con-
sidering A a matrix with r rows and c columns, we denote it as a
r × c matrix and it is represented by such a form

A =


a11 a12 · · · a1c

a21 a22 · · · a2c

· · · · · · · · · · · ·
ar1 ar2 · · · · · · arc

 , (C.1)

where aij are its elements. If r = c A is called square matrix,
otherwise rectangular. On the other hand if r = 1 or c = 1 matrix
A, sometimes indicated as A = [aij], is respectively reduced to a row
vector or a column vector. A sub matrix of A is matrix A without
any rows or columns.

C.2 Operations

If A and B are matrix with the same dimension, their summation
can be defined as

C = A+B, (C.2)

where
cij = aij + bij. (C.3)
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This operation is commutative and associative, so that

A+B = B + A (C.4)

(A+B) + C = A+ (B + C) (C.5)

Two matrix can also be multiplied if they are compatible, that is,
given a matrix A = m′ × n′ and B = n”×m” they are compatible
if m′ = m” or n′ = n”. In this last case product matrix

C = AB (C.6)

has dimension m′ ×m”, where

cij =
m′∑
k=1

aikbkj. (C.7)

Multiplication of matrices satisfies associative property but in gen-
eral not the commutative one.

A (BC) = (AB)C (C.8)

AB = BA (C.9)

In addition a r × c matrix can be transposed by switching its rows
and columns. We write A∗ as the transposed of A,

A∗ =


a11 a21 · · · ar1
a12 a22 · · · ar2
· · · · · · · · · · · ·
a1c a2c · · · arc

 (C.10)

with c× r. A matrix is called symmetric if

A∗ = A (C.11)

and satisfies these properties:

(AB)∗ = B∗A∗; (C.12)

(ABC)∗ = C∗B∗A∗; (C.13)

(A+B)∗ = A∗ +B∗. (C.14)
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C.3 Determinant and inverse matrix

We define as determinant of a n× n square matrix

det (A) =
n∑
k=1

aijγij

i = 1, 2, . . . n, (C.15)

where γij is called co-factor and

γij = (−1)i+j det (Mij) , (C.16)

where det (Mij) is called minor and coincides with matrix A except
its i-th row and j-th column. We notice thatMij is always a (n− 1)×
(n− 1) and minors differ from co-factors at most by sign. The
adjoint of a matrix A is the transposition of its co-factors matrix:

adj (A) = [γij]
∗ . (C.17)

It can be shown that

A adj (A) = (det (A)) I (C.18)

where I is the identity matrix, that is an element aij is 1 if i = j,
namely if belongs to the diagonal, 0 otherwise. If det (A) 6= 0 we
say the inverse of a matrix A, called singular, is

A−1 =
adj (A)

det (A)
(C.19)

with the property that

AA−1 = A−1A = I. (C.20)

In addiction the inverse matrix of a product is the product of the
singular inverse matrices:

(ABC)−1 = C−1B−1A−1. (C.21)

C.4 Rank

The number of rows or columns linearly independent is called rank
of a matrix. If A has rank r all the (r + 1)× (r + 1) submatrices of
A are singular, while at least one submatrix r × r isn’t. It is true
that

row rank (A) = column rank (A) (C.22)
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C.5 Eigenvalues and eigenvectors

Every scalar λ and every vector not null vector v which satisfies

Av = λv (C.23)

are respectively called eigenvalue and right eigenvector associated
with A. By (B.23) we gain

(λI − A) v = 0 (C.24)

and considering that v is not null we have

det (λI − A) = 0. (C.25)

Let v be the eigenvector associated with λ, hence αv is an eigen-
vector. Eigenvectors are generally normalized to have unity length,
that is ‖ v ‖2= v∗v = 1. If w∗ is a row vector not null so that

w∗A = λw∗, (C.26)

w is called left eigenvector of A or with the same meaning w is a
right eigenvector of A∗

A∗w = λw. (C.27)
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