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Abstract

The optic disc (OD) is a key anatomical structure in the retina for monitoring the progression
of glaucoma and plays a fundamental role as a landmark in automatic screening systems.
Most of the work for the automatic detection and segmentation of the OD has been focusing
on fundus camera images. In this work, we present a deep learning approach for OD detection
and segmentation in scanning laser ophthalmoscope (SLO) images. The core of the method
consists of a convolutional neural network (CNN) inspired by the U-net architecture which
has been largely applied in the field of semantic segmentation of biomedical images. To
tackle the limited availability of ground truth images for training the network we divided
the learning process into two phases: a first phase where the net is trained on a data set of
SLO images labeled by an automatic algorithm and a second training phase on a data set
where medical annotations for ground truth were provided. We evaluate the performances
of our method by comparing the automatic results with medical annotations on a test set
of 20 SLO images. The algorithm reaches an accuracy, in terms of Dice-Søresen coefficient,
of 0.91, achieving comparable results with the other methods proposed for solving the same
task. Furthermore, we compare the resulting contours with those obtained by a validated
OD algorithm on registered fundus camera images, and we discuss the ophthalmologists’
consensus in indicating the OD contour both in SLO and fundus images.
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Sommario

Il disco ottico è una struttura retinica chiave per il monitoraggio del glaucoma e svolge
un ruolo fondamentale come punto di riferimento nei sistemi di screening automatico. La
maggior parte della ricerca sulla locazione e segmentazione automatica del disco ottico si
è concentrata su immagini retiniche acquisite con fundus camera. In questo lavoro, pre-
sentiamo un nuovo approccio, basato sul deep learning, per la locazione e segmentazione
automatica del disco ottico in immagini del fondo oculare SLO (Scanning Laser Ophthal-
moscope). Il nucleo del metodo consiste in una rete neurale convoluzionale (CNN) ispirata
all’architettura U-net la quale è diffusamente usata nell’ambito di segmentazione automatica
di immagini biomediche. Per ovviare alla limitata disponibilità di immagini di ground truth
necessarie per allenare la rete neurale abbiamo diviso il processo di apprendimento in due
fasi: una prima fase in cui la rete è allenata su un insieme di immagini SLO dove il disco
ottico è indicato da un algoritmo automatico e una seconda fase di allenamento della rete
effettuata utilizzando un insieme di immagini provviste di annotazioni mediche del disco
ottico. La qualità dell’algoritmo viene valutata tramite il computo del coefficiente di Dice-
Søresen medio tra risultati automatici e le annotazioni mediche, tale coefficiente calcolato
su 20 immagini di test risulta uguale a 0.91; risultato comparabile con quelli ottenuti da
altri metodi proposti per risolvere lo stesso compito. Inoltre, in questo lavoro, conduciamo
un’analisi del consenso degli oftalmologi nell’indicare il contorno del disco ottico compara-
ndo le annotazioni mediche di immagini SLO e fundus. Infine, tramite la registrazione di
immagini fundus rendiamo possibile il confronto tra immagini della stessa retina acquisite
con le due diverse strumentazioni.
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Chapter 1

Retinal Imaging

1.1 About this chapter

In this chapter, we will introduce the basic anatomical notions of the eye, particularly, we
will focus on the retina and the structures that are possible to investigate with the modern
imaging techniques. We will briefly describe such techniques and provide to the readers the
motivations that have led to the developing of the method presented in this thesis.

1.2 Retina

The retina is the inner surface of the human eye, in an adult, it is approximately a sphere of
22mm diameter (Figure 1.1) which mainly consists of a series of tissue layers composed of
neurons and supporting cells. In the retina, we can isolate different anatomical structures,
such as the macula, the fovea, and the optic disc. The macula is a region with a diameter
around 0.5cm which peculiarity is to host most of the photoreceptors, at its centre we find
a small, approximately circular, depression (≈1,5mm) known as the fovea. The fovea is
responsible for our sharpest vision and is where the density of the receptors reach its peak.
All the receptors in the retina are connected to the innermost layer, the retinal nerve fibre
layer (RNFL), which is linked to the optic nerve, the latter leaves the eye at the level of the
optic disc (OD). Finally, all the retinal surface, except for the macula, is supplied by a rich
vasculature system of venules and arterioles.

1.3 Retinal imaging techniques

Nowadays three principal non-invasive techniques allow to investigate the retina and its
structures, namely: fundus camera imaging, scanning laser ophthalmoscopy (SLO) and
Optical coherence tomography (OCT).
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Figure 1.1: Left, anatomy of the adult human eye, sagittal view showing the main structures
(image taken from [20]). Right, fundus camera image centered on the optic disc.

1.3.1 Fundus camera

Fundus imaging generates an RGB image of the retina through a system that consists of
a specialized low-power microscope and an attached camera. The image is acquired while
the patient sits with his/her chin in rest and forehead placed against a bar. The operator
set the focus, align the camera and presses the shutter, then the fundus is illuminated by
a flash and the image acquired. This image is a magnified picture of the retina with an
angle of view that varies between 30°, 45° or 60°. A larger field of view (FOV) can be
achieved by composing multiple images acquired at different fixation points. Also, images
of higher quality can often be achieved by dilating the pupils with mydriatic eye drops to
enlarge the FOV of the fundus. Current image resolutions are around 3000x3000 pixels. It is
possible to enhance the contrast of the vessels or highlights damaged regions via fluorescein
angiography (FA) or indocyanine green angiography. The receives an intravenous injection
of a fluorescent dye while the retina is illuminated with light at a certain frequency that
fluoresces light of another colour where the dye is present. Using this method is also possible
to study the fluid dynamics of the blood in the vessels by looking to the dynamics of the
dye in the vasculature. In Figure 1.2.a, an example of a retinal image acquired with this
technique.

1.3.2 Scanning laser ophthalmoscopy (SLO)

SLO [28] exploits infra-red light for acquiring the image of the retinal fundus. SLO is a
confocal imaging technique, a laser beam scans slice by slice the target area of the retina,
the reflected light is collected by a confocal pinhole. The main advantage of SLO technique
is that the FOV can vary between 15° to 200° degree (ultra wide field of view UWFOV).
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Figure 1.2: a) Detail of a fundus
camera image, where is possible to
see the optic disc (bright circular
shape in the centre), the vasculature
and the fovea (dark smoothed spot on
the right. b) Details of a SLO image.
It is possible to see the OD (dark cir-
cular spot), the vasculature and part
of the fovea, on the right. c) Detail
of an OCT image, cross-section of
the retinal fundus. OCT image taken
from [26].

SLO works well with fluorescein angiography, because of the narrow band of wavelength
used by the laser beam the contrast of the acquired images is higher w.r.t. fundus images.
The typical resolution of the acquisition is 3000x2800. This techniques is more expensive
and often confined to the research field or ophthalmology clinics. SLO is easy to use less
invasive for the patient due to the lower cost in time required for the acquisition (compared
to the fundus camera technique) and the fact that the there is no need of the use of the
flash. In addition, SLO can be used in combination with OCT to reduce the noise in the
images acquired from the latter. In Figure 1.2.b, an example of a SLO image of the retina.

1.3.3 Optical coherence tomography (OCT)

Optical Coherence Tomography [30] generates cross-sectional images by analyzing the time
delay and magnitude change of low coherence light as it is reflected by ocular tissues. With-
out entering the details this technique allows to acquire several cross-sectional images of
the retinal tissues that combined together can result in a volumetric image. Cross-sectional
visualization is an extremely powerful tool in the identification and assessment of retinal
abnormalities. In Figure 1.2, an example of an image acquired with this technique.

1.4 Retinal biomarkers

The eye is the only part of the human body in which, thank to the aforementioned tech-
nologies, we can directly asses to and see a rich part of the circulatory system. With OCT
we can investigate the retinal nerve fibre layer and the head of the optic nerve which is
directly connected to the central nervous system. For this reason, the retina or parts of it
can represents an important biomarker for many, both retinal and systemic, diseases. Some
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links between retinal features and pathologies are well known. For example, systemic hyper-
tension and hypertensive retinopathy are recognizable in fundus images, where are usually
associated with visible retinal damage, increasing of the tortuosity in the vasculature and
narrowing of the arteriole [20]. Moreover, associations between retinals quantitative mea-
surements and strokes risk, cardiovascular diseases, diabetic retinopathy and many others
have been reported [20],[21]. The work presented in this thesis has been conducted in the
context of the VAMPIRE (Vascular Assessment and Measurement Platform for Images of
the REtina) project which aim is to develop a software application for efficient automatic
or semi-automatic quantification of retinal vessels properties in order to provide efficient
and reliable detection of retinal landmarks (optic disc, retinal zones, main vasculature), and
quantify key parameters used frequently in investigative studies.

1.4.1 Optic disc

The appearance of the optic disc (OD) is important for evaluating and monitoring the pro-
gression of glaucoma [22],[23]. In fact, in a healthy retina, the optic disc can be flat or can
present slight cupping. In a retina affected by glaucoma, in most cases, the intra-ocular
pressure increases producing a further cupping of the optic disc, for this reason, is useful
to measure and monitoring the cup-to-disc-ratio that is the ratio between the optic cup
and the optic disc diameters, in Figure 1.3.a an example. Another important biomarker for
glaucoma is the Peripapillary atrophy (PPA), a form of outer retinal atrophy that abuts the
optic disc and it is usually divided into two regions, (α) and beta (β). In fundus, it appears
as a blurred region surrounding the OD boundaries while in SLO images appears as a white
halo. in Figure 1.3.b an example of PPA in the fundus image.

These are some of the reasons why a reliable automatic detection and identification of the
OD contour is useful. In fact, as will be shown in the chapter "Medical annotations" the
inter-observer consensus in defining the OD contour can be very low leading to identifica-
tions of different contours between different ophthalmologists. Furthermore, is useful to get
a reliable localization of the optic disc to have a landmark for many other image analysis
tasks such as vessel zones identification, multi-modal images registration, vessels tracking or
fovea localization.
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Figure 1.3: a) Images from [27], on the right: Cup/Disc ratio; on the left: Glaucomatous
cupping, change of colour and contour. b) Example of optic disc with presence of PPA, alpha
and beta zones underlined.

1.5 Summary

Retinal imaging offers a non-invasive and inexpensive way to access a rich part of the mi-
crovasculature and to optic nerve which is directly wired to the central nervous system. For
this reason, the retina assures an important source of biomarkers for many systemic diseases.
There are three main techniques for acquiring image retinal images: fundus camera, SLO
and OCT. Among the structures that we can observe in retinal images we find the optic
disc (OD), which features and quantitative measurements represent important indicators for
evaluating the progression or the risk of glaucoma. OD automatic detection and segmenta-
tion can be very useful for extracting reliable measurements of the latter and for detection,
localization and measurement of the other retinal structures.
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Chapter 2

Theoretical tools

2.1 About this chapter

In this chapter, all the theoretical notions required to understand the presented method
will be explored. We will start introducing the basic concepts of machine learning that are
necessary for understanding the fundamentals of deep learning which is in turn what our
method is based on.
About deep learning, we will introduce the neural networks (NNs) and then move to the
description of the convolutional neural networks (CNNs) mainly focusing on the details
directly related to our work. We will proceed and present the idea of transfer learning and
the different criteria used in this thesis for evaluating algorithms performances. We end
the chapter introducing image registration and briefly illustrating two methods used for this
thesis.

2.2 Machine learning

As the words suggest, we can speak of "machine learning" every time a machine learn some-
thing, but first we have to agree on what "to learn" means. For the goal of this work we
will state that "to learn", in a general context, means to experience something and be able
to use this experience to drive a judgment or a prediction. For example, if we see a dancing
red fire and we touch it, we discover that fire is hot and to touch it wasn’t really a good
idea. Then, if, after the bad experience, we see Santa Claus dancing at the mall we will
think that, because he is red and is dancing, probably it is hot. In this case, we would have
learned something wrong, but we have learned something: do not touch red and dancing
things.
When we move the context to the machines, things don’t change very much. In fact, what
is experience if not a collection of data?
And what is a judgment if not a function of the experience?

The aim of machine learning techniques then, is to emulate the learning process. Which
means: starting from a set of data (the experience), build functions able to return valuable
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judgments on it or on new data. Formally, we can talk about learning for a "computer
program" if:

Definition 2.2.1. A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure L, if its performance at tasks in T, as
measured by L, improves with experience E. [1]

Machine learning tasks are usually separated in (at least) two main branches:

• Supervised learning: Given a labeled data set we want to find a function that
maps the data into the corresponding labels, and we want this function to be useful
to predict the label of novel unlabeled data.

• Unsupervised learning: the input given is not labeled and the goal of the algorithm
is to infer a function to describe hidden structure or pattern in the input.

The tools utilized in this work are related to the only field of supervised learning, then, to
better understand what a labeled data set is, what kind of functions we are looking for and
how to evaluate whether those functions are useful or not we think that is worth to introduce
some formalism1.

2.2.1 Supervised learning, a formal model

We are in the context of supervised learning; we, our machine or our algorithm is the learner
and the learner has access to:

• The domain set X. The set of all possible learnable/predictable objects. An instance
x ∈ X is usually represented by a vector of features.

• The label set Y . The set of all possible labels y that can be associated with an instance
x.

• The training data S = {(x1, y1), (x2, y2), ..., (xm, ym)}. That is a labeled set of in-
stances. It is also called: training set.

The output of the learner is represented by:

• The predictor h : X −→ Y . A function that maps each element of X in Y . It can be
also called: hypothesis or classifier. h = A(S), the predictor is learned by a learning
algorithm A when the training set S is given as input to A.

What is unknown to the learner is the data generation model, composed of:

• The distribution D over X. The distribution of probability according to which in-
stances x are generated.

• The true labeling function f : X −→ Y .
1The formalism used in this work has been borrowed by [2]
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Moreover, we need a measure of success in order to evaluate the performances of a predictor.
This measure should corresponds to the probability that the label predicted by h for an in-
stance x is equal to f(x), in other words, the probability of h(x) = f(x). Usually, instead of
measuring the success of a predictor we measure the probability of its failure (1-probability
of success). The function that assign an error (a value in R+) to a prediction is called: loss
function l(h, z), where z is an instance/label pair. The value Ez∼D[l(h, z)] is called true
error2 and represents the expected error that the predictor makes. When we compute the
mean of loss function on the training set w.r.t. a predictor/hypothesis h we talk of empirical
risk or training loss and we indicate it as LS(h)

Summarizing and simplifying, the goal of the learner is to find a predictor h which is as
similar as possible to the hidden labeling function f , knowing that each element of the
training set S is a pair (xi, yi), where xi has been drawn according to D and yi is equal to
f(xi).

2.2.2 Supervised learning framework

The general protocol that lead to the deployment of the final learned predictor is the fol-
lowing:

1. Data splitting. All the available labeled data are split in three different sets: training
(S), validation (V ) and test (T ) set. Those three sets must be as independent as
possible; to guarantee this independence usually the splitting rule is the outcome of a
random process.

2. Choice of the model. Once the three data sets are settled, usually a class of
hypothesis H is chosen. A class of hypothesis Ĥ could be represented by a model
dependent on a set of parameters, in that case, to all the possible combinations of
parameters corresponds all the possible hypothesis that one could pick within the
class Ĥ.

3. Choice of the algorithm. At this point we need an algorithm and a criterion to
produce hypothesis candidates for our final predictor. There are many criteria that
one can use to pick an hypothesis h∗ within a class H, one of such criteria is called
empirical risk minimization (ERM) and consists on choosing the h that minimize the
value of the empirical risk LS(D). In other words, with ERM one try to minimizes
the error of the predictor on the training set. Using this criterion, the higher is the
complexity3 of H the more it is likely to overfits the training data S. It means that, it
is easy to find a predictor that works very well on S and very bad on novel data. Other
criteria that allow to prevent overfitting exist, such as Structural Risk Minimization
(SRM) and Regularized Loss Minimization (RLM). Without entering the details, the

2In this case we consider D as a joint distribution over X and Y , for example the conditional distribution
D((x, y)|x).

3We will not discuss about hypothesis class complexity in this work, to give an idea we suggest that the
complexity of a class of function is related to its ability to divide a space following a complex pattern.
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aim of these criteria is to find an hypothesis that represents a good trade-off between
minimizing the training loss and find a hypothesis that works well in general.

4. Training. Run the algorithm or the algorithms on S to find h1, h2, ..., hn hypothesis
candidates to be the final sought predictor.

5. Validation. Test the performances (computing LV (h)) of the hypothesis candidate
set h1, h2, ..., hn on the validation set in order to chose h∗, the best candidate among
all. Eventually go back to point 4 and generate new hypothesis candidates. Practically,
in this step what usually happen is the tuning of the parameters on which a chosen
model depends on.

6. Testing. Test the performances of h∗ on the testing set T . To test the performances
we compute LT (h∗) which represents an estimation of the the true error for h∗. The
larger is the test set the more reliable will be the estimation and the more we will be
sure of the quality of the performances of our predictor.

2.3 Learning tasks

Depending on the nature of the label set Y , in the context of supervised learning, we can
distinguish two different learning tasks: classification and regression. We are trying to
solve a classification problem when the set of labels is discrete, a regression one when Y is
continuous. In the previous section we have shown a simple binary classification problem,
in fact the label set Y was yellow/purple, that is referable to a binary set {−1, 1}.

2.3.1 Computer vision tasks

In computer vision, machine learning find its place in numerous tasks, some of which are
listed below:

• Image Classification: standard classification task where the instances of the Domain
set are images. The algorithm has to return a classifier able to assign the right class
to the input image.

• Object classification and localization: the task of not only correctly classify what the
image is about but also to locate the element/object of the image that is the major
responsible for the classification. It is usually set as a regression problem, in which
the object centre coordinates (real numbers) are sought.

• Multiple objects detection and localization: when happen that the label to assign to an
image is not unique. In other words, more than one object can be detected/localized
in the image.

• Semantic segmentation: it is a classification task, where a label has to be assigned to
every pixel of an image. It will later be referred also as pixel-wise classification.
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2.3.2 Semantic segmentation

The method presented in this work is designed to solve a semantic segmentation problem
where each pixel of the input image has to be classified as optic disc or not optic disc. Hence,
for each pixel, we have to solve a binary classification problem. We chose to assign label 1
to pixels belonging to the OD and 0 to the others. The classifier’s overall output will result
in a binary image. We will later use as synonyms: binary map or segmentation map. In
Figure 2.1 some visualization examples.

Figure 2.1: a) input image. b) output binary map. c) A segmentation map and its corre-
sponding image overlap. In cyan, OD pixels. In purple, not OD pixels. Visualization for
details inspection. d) segmentation map and its corresponding image overlap. In pink, OD
pixels. In green, not OD pixels. Visualization for a rough inspection.

2.4 Deep learning

Deep learning is the branch of machine learning including all the techniques that, for solving
a learning task, exploit a deep representation of the instance features. The concept of "deep"
used in this context will become clear going through the next pages where Neural Networks
(the leading actor in the field of deep learning) will be illustrated in details.
Before describing Neural Networks (NN) we will explain the Perceptron algorithm, that is
the fundamental unit of which NN are composed of.
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2.4.1 Perceptron

Assuming to be in the context in which we have a labeled data set of instances in Rd and
we want to solve a binary classification problem. Moreover, we want to build a classifier
represented by a hyperplane. In other words, we would like to get the best classifier h∗, for
solving our classification problem, picking among the hypothesis class Hsd of the halfspaces
in Rd. Where the Hsd is defined as follow:

Hsd = sign ◦ Ld = {x→ sign(hx,b(x)) : h(v,b) ∈ Ld}

Ld here represents the class of the affine functions in Rd. It is to say:

Ld = {hv,b : v ∈ Rd, b ∈ R}

hv,b : x ∈ Rd −→ R

hv,b(x) = v · x+ b

In fact, Ld represents the class of functions in which each element hv,b4 depends on the two
parameters v and b. Where v is a d-dimensional vector and b, usually referred as "bias", a
real number.
We need an algorithm able to return h∗ (best classifier) or at least an hypothesis as close as
possible (in terms of true error) to h∗.
In this context, Perceptron is an algorithm for finding a classifier hp that minimizes the
empirical risk5.
At this point we slightly change the notation merging the bias b and vector v in a unique
vector w and adding the value 1 as first features of each instance x of our data set. We then
define: w = (b, v1, v2, ..., vd) and we substitute the meaning of x with x = (1, x1, x2, ..., xd),
resulting in x ∈ Rd+1.
According to the new notation, we want to find an hypothesis w ∈ Hsd.

Perceptron pseudo-code

Perceptron algorithm consists in a initialization (usually random or filled with zeros) of the
classifier w, followed by an iterative update of the latter that lead step by step w to correctly
classify the input data.

4the symbol · it is used to indicates the scalar product.
5we remind that using ERM rule for picking a classifier could lead to overfitting in case of data poor.
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Data: training set: (x1, y1), ..., (xm, ym), initialized w(1)

Result: final predictor w(f);
for t = 1, 2, ... do

if ∃i s.t. yi(w(t) · xi) ≤ 0 then
w(t+1) ← w(t) + yixi

else
return w(t)

end
end

Algorithm 1: Perceptron’s pseudo-code

Interpretation

As we have described in the previous sections, Perceptron is an algorithm for finding, within
the class of the halfspaces Hsd, a good classifier (according to ERM).
In fact, to give a geometrical idea we remind the reader that a vector, such as w, uniquely
determines a perpendicular hyperplane passing through the origin. Every hyperplane divides
the space into two sub-spaces (halfspaces) in which we would like to have instances with
label 1 in the "upper" space and labels −1 in the "lower". In Figure 2.2 these concepts are
clearly illustrated.
To check whether w is correctly classifying a labeled data xi we simply compute c = yi(w·xi).
In fact, the scalar product w · xi return a positive value for a point "over" the plane and
negative one otherwise. If this value and yi are concordant, then c is≥ 0 and the classification
is correct.
Another cue, the updating rule in Perceptron, derives from the derivative of c. Every update
is made to make the hyperplane tweaking in order to let a misclassified point becomes well-
classified.

2.4.2 Neural Networks

A Neural Network (NN), also called Multi-layer Perceptron is a powerful model for learning
and the core of deep learning. Informally, NN is a way to combine many Perceptron units
(hyperplanes) to form complex functions for solving learning tasks. Formally6, NN can be
defined as a directed acyclic graph G = (V,E) organized in layers. Where V is the set of
nodes and E of edges. To each edge e corresponds a weight w(e) specified by w : E −→ R.
The first layer V0 is the input layer, the last VT is the output layer, layers in the middle are
called hidden layers. An edge e ∈ E can connect only nodes from a previous layer to nodes
belonging to a subsequent layer. Network shown in Figure 2.3 is a fully-connected neural
network because exists an edge linking each nodes from a previous layer to each nodes in
the subsequent layer, other configurations are possible.
From the point of view of a generic node vt+1,j :

- The input, when x is fed to the net, is at+1,j(x). It consists in a linear combination,
dependent on w, of the nodes output from the previous layers. Hence: at+1,j(x) ∈ R.

6The formalism used in this work has been borrowed by [2]
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Figure 2.2: Example of vector w, defining a hyperplane in R2 (a line).

- The output is vt+1,j(x). The output of each node is a function of its input σ : R −→ R.
It is called activation function.

In this work, as activation function we will use only Rectified linear unit [4] σReLU (z):

σReLU (z) =

{
0 for z < 0

z for z ≥ 0

Many other functions can be used, the most common in literature are: binary step, identity
function, tanh and leaky ReLU.

The architecture A of a NN is then defined by A = (V,E, σ). The architecture defines
the hypothesis class HA of the all possible predictors that can be "built" with that architec-
ture. Each predictor hA,w is defined in the moment we fix w (mapping between edges and
weights):

hA,w : R|V0|−1 −→ R|VT |

2.4.3 Learning process

The general process that allow a NN to fit the input data, using a stochastic gradient
descent (SGD) strategy is the following. An instance x = (x1, ..., xd) is randomly drawn
from the training set, the network compute the output y (prediction) by propagating linear
combinations/activation functions through the layers of the net. The overall process is
named forward propagation.
The output y is compared with the true label yt and a loss function return the error. The
error is then back-propagated (from the output layers to the input) and the weights in the
net are tweaked in a way to reduce the error in case of re-computing the output y′ (back-
propagation algorithm). Another instance is randomly drawn and the process is repeated.
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Figure 2.3: Example of NN architecture, with an input layer of 4 features of which one is a
constant. V1 is an example of hidden layer with two nodes plus a node representing the bias.
The number of nodes in the output layer depends on the dimension of the labels we want to
learn.

2.4.4 Matrix notation

The overall input to the layer Vt is a(t), given by:

a(t) = (w(t))T v(t−1)

where w(t) represents the set of weights of the edges linking layers Vt−1 and Vt. Assuming
d(t) to be the number of nodes at layer t, the output of such layer would be the array of size
d(t) + 1:

v(t) =

 1

σ(a(t))
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We can then write the matrix w as:

w(t) =


w

(t)
01 w

(t)
02 w

(t)
03 . . . w

(t)

0d(t)

w
(t)
11 w

(t)
12 w

(t)
13 . . . w

(t)

1d(t)

...
...

...
. . .

...

w
(t)

d(t−1)1
w

(t)

d(t−1)2
w

(t)

d(t−1)3
. . . w

(t)

d(t−1)d(t)



2.4.5 Forward propagation

As we mentioned before, we call "forward propagation" the overall computation process
that leads the network to produce the output y when the instance x is given as input. As
foolows, the pseudo-code of such algorithm:

Data: x = (x1, x2, ..., xd)T

Result: label predicted y
v0 ← (1, xT )T ;
for t← 1 to T do

a(t) ← (w(t))T v(t−1);
vt ← (1, σ(a(t))T ;
y ← v(T );

end
Algorithm 2: Forward propagation’s pseudo-code

2.4.6 Back propagation

Back-propagation algorithm is the method used for updating the weights of the net in order
to fit the data. Before showing the algorithm in a pseudo-code form, some definitions and
preliminaries are needed.
We would like to find the weights that minimize the empirical error which depends on the
loss function L. To achieve this goal we are interested in knowing how the error depends on
the weights for knowing how to tune such weights. Using a gradient descent as minimizer
means that we need an update rule such that:

w(t) ← w(t)η∆LS(w(t))

Where ∆LS(w(t))is the gradient of L and η is a scalar, called learning parameter. To
compute the gradient we need to compute for each layer t, the derivative of LS w.r.t. w(t).
It is convenient at this point to define the sensitivity vector for layer t.

δ(t) = dL/da(t) =


dL/dat,1

...

dL/dat,d(t)
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Sensitivity vector represents how the input to layer t influences the changing of the error.
We now jump directly to the conclusion, remanding the full algebraic illustrations to [2] and
showing the equation:

δ
(t)
j = σ′(at,j)

d(t+1)∑
k=1

w
(t+1)
j,k δ

(t+1)
k

It is interesting to notice in this equation that the sensitivity for t must be computed starting
from the sensitivity of layer t+ 1. Hence, first we need δ(T ).
We separately show the pseudo-code of the backward propagation routine and then the
pseudo-code for the entire back-propagation algorithm.

Data: instance x = (xi, yi)
Result: sensitivity δ(t) for each t;
forward propagation to compute a(t), v(t) for each t;
δ(T ) ← dL/da(T );
for t = T − 1 to 1 do

δ
(t)
j = σ′(at,j)

∑d(t+1)

k=1 w
(t+1)
j,k δ

(t+1)
k for all j = 1, 2, ..., d(t)

end
Algorithm 3: Backward propagation routine pseudo-code

Data: training set S, NN with initialized weights w(t)
i,j for all i, j, t

Result: NN with updated weights
for t = 0, 1, 2, ... until convergence do

choose a random data point (xk, yk);
forward routine;
backward routine;
w

(t)
ij ← w

(t)
ij ηδj(t)v

t−1
i for all i,j;

end
Algorithm 4: Back-propagation routine pseudo-code

Using this algorithm we update the weights in order to try to minimize the empirical
error. We are using a SGD strategy, in fact, at each iteration a single data point is randomly
picked from the training data giving in this way randomicity to the update directions for w.
A common variant is to, at each iteration, instead of picking a single data point, to pick a
mini-batch of two or more data points, then compute the mean error among all the mini-
batch and consequently update the weights.
During the training phase, the back-propagation algorithm runs for many epochs. An epoch
ends when all the data points/mini-batches have been fed to the net. At the beginning of
each epoch, the data points are (usually) shuffled and, in case, divided in mini-batches. The
training ends when the training error or the improvement in accuracy per iteration are low.
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2.4.7 Meaning of deep

We use the adjective "deep" when we have a NN with at least one hidden layer. In fact, let’s
take as an example the net NNs composed of three layers: V0, V1, VT , where V0 is the input
layer and V1, VT have respectively 2 and 1 nodes. In addition, all the activation functions in
NNs are the identity function. In such a network, an input instance x is fed to the network
in layer V0, then given to V1. In V1 two hyperplanes, h1 and h2 ( two nodes in V1), project x
into x′, a two dimensional representation of x (the activation function is the identity, then no
ulterior transformation is applied to x′). The two features of x′ are related to the distances
from the two hyperplanes. We call x′ a "deep representation of x", that can be seen in this
case as the representation of x in the space defined by h1 and h2.
The higher is the number of layer of a NN the deeper is the network.

2.4.8 Convolutional Neural Networks

Convolutional Neural Networks (CNN) are not-fully-connected networks. In other words,
CNNs are NNs in which it is not required that for each node in a previous layer, exists an
edge linking to each node in the subsequent layer. This property let CNN be useful in the
field of image analysis and elaboration. In fact, in images, the information is usually highly
correlated only within small regions compare to the entire image. In CNN, nodes are usually
called "filters". Filters are frequently squared shaped and can be seen as masks of weights.
We remind that when a one-channel image is filtered with linear filters, the output is another
one-channel image, in which each pixel value is the results of the scalar product between the
filter and the input image’s patch that is centred on that pixel. If the input image has more
than one channel, the input of the filter would be the volume defined by the pixels belonging
to the same patch among all the channels; the output would results again in a single channel
image. If we want the output image to have the same size of the input we must apply an
adequate padding to the input image and compute the filtering for every possible patch of
the input image. When a CNN is fed with an image x, the output y is given by the forward
propagation algorithm, the intermediate images resulting from each step (after each layer)
are called features maps. It is common to use CNN architectures in which, as the network
goes deeper the size of the features maps gradually decreases. To achieve such reduction in
size, two method are commonly used: via pooling layers (lately discuss) or, when filtering
in a certain layer, do not apply the filter to every single patch, but skipping some by setting
a stride factor. Among the advantages of decreasing the size of the features we find: to
gradually relate the information coming from different regions of the input image and to
decrease the computational cost when training the network.

Like for NN also for CNN is possible to use specialized layers to perform different kinds of op-
erations. In the networks developed for this work, the following specialized layers have been
used: max-pooling, batch-normalization, softmax, concatenation, transposed-convolutional
and ReLU. Moreover, one can use different types of output layers, that is to say, layers in
which the final output function is computed and, while training, the error assigned.
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2.5 Specialized layers

In this Section we briefly describe the layers used in the architectures presented in this
thesis. Each of the following layers is used to insert particular functions at different levels
of the networks. The layers have to be adequate built for being able to work both during
the forward and backward propagation phases.

Max-pooling layer

Max-pooling layer is a non-linear filter that takes in input a patch of an image/feature map
and return as output the value of the pixel within the patch with maximum value. For
example, networks implemented in this work utilize max-pooling layers with filter size of
2x2, no padding and stride equal to 2. The output image of such filters has half of the
dimension of the input. In fact, the image is divided in a grid of 2x2 pixels squares, for each
square only the maximum value is kept as output.

Batch-normalization layer

Batch-normalization layers are used to make feature maps having values varying in a re-
strained range. The main benefits, according to [5] of using batch-normalization layers are:
to speed-up training, to make the learning more stable and to produce some sort of regular-
ization effect. Practically, the layer computes mean value and variance of a feature among
the mini-batch and normalizes according to such values ( by subtracting the mean and di-
viding for the variance). Afterwards, the layer multiplies each feature in the mini-batch for
a scale factor γ and add an offset β. Where γ and β are learnable parameters.

ReLU and Softmax layer

ReLU layer is a layer that computes the ReLU activation function for each pixel of a feature
map.

The softmax layer, differently from the previous layers, takes in input one or more fea-
tures maps ({f (1), f (2), ..., f (k)}) of the same size. The layer computes the softmax function
with respect to each sequence of corresponding pixels among the input maps; pixels belong-
ing to different maps, at the same coordinates: zi,j = (z

(1)
i,j , . . . , z

(k)
i,j ) ). Softmax function

σ : Rk → Rk is defined by the formula:

σ(zi,j) =



ez
(1)
i,j∑k

f=1 e
z
(f)
i,j

...

ez
(k)
i,j∑k

f=1 e
z
(f)
i,j
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The softmax layer is usually used before the output layer to give to the latter batches of
features maps normalized between 0 and 1, according to the softmax function.

Transposed convolutional layer

Also called "deconvolution layer", this layer has been proposed first in [6]. Without entering
the details, this layer allows the network to increase the resolution of the features maps,
learning a sort of optimum up-sampling of the input image. The input-output relation is
given by the formula: O = (I − 1)s + k Where O is the output size, I the input size, s he
stride and k the kernel size.

Concatenation layer

Concatenation layer allows to stack feature maps coming from different path in a CNN. The
stacking is performed channel-wise, the output of the concatenation layer can be given as
input to following convolutional or specialized layers.

2.6 Output layers

In this section we briefly describe the output layers used in the architectures presented in
this thesis. Output layers are layers in which the error to be back-propagated is computed
(loss function).

2.6.1 Pixel-wise classification layer with cross-entropy loss function

Pixel-wise classification layer, with cross-entropy loss function, is a type of output layer.In
a binary classification framework, given a training set S of m images, given an image X in
S the cross-entropy loss function is defined as follows:

L(hA,w) = −(β
∑
j∈Y1

logP (yj = 1| X; hA,w) + (1− β)
∑
j∈Y0

logP (yj = 0| X; hA,w)).

Where:

• the function assigns an error to the hypothesis hA,w defined by the network architecture
and the weights w.

• The value yj is the label that can be assigned to pixel j of X.

• β is a parameter for taking into account eventually class unbalances. It is settled to
be equal to the ratio of "zero labeled pixels" and "one labeled pixels" in S.

• Y1 and Y0 represent the set of pixels having respectively label 1 and 0 in the ground
truth.
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2.6.2 Pixel-wise classification layer with generalized Dice loss function

The Dice loss is based on the Sørensen-Dice similarity coefficient for measuring overlap
between two segmented images (see Section 1.7.1). The generalized Dice loss ([10], [9]), L,
for between one image X and the corresponding ground truth Y is given by:

L = 1
2
∑K

k=1wk
∑M

m=1Xk,mYk,m∑K
k=1wk

∑M
m=1X

2
k,m + Y 2

k,m

whereK is the number of classes,M is the number of elements along the first two dimensions
of X, and wk is a class specific weighting factor that controls the contribution each class
makes to the loss. wk is typically the inverse area of the expected region:

wk =
1

(
∑M

m=1 Tk,m)2

This weighting helps counter the influence of larger regions on the Dice score making it
easier for the network to learn how to segment smaller regions.

2.7 Transfer Learning

In machine learning, transfer learning is when the knowledge gained while solving a particular
problem it is used to solve another problem related to the first. To give an example we
illustrate, how this concept has been applied in our work.
We wanted to find a good classifier, using a CNN, for solving the semantic segmentation
problem explained in Section 2.3.2. Our data set was composed of an overall of 120 SLO
images of which 50 annotated by ophthalmologists and 70 with annotations produced by
ALG1, an automatic algorithm (less accurate than doctors). We decided to split the training
into two phases, a first phase where our CNN is trained on the 70 images batch and the
second phase of training using the "doctor’s" batch. We applied the transfer learning concept
in the sense of learning the optimum weights from the first "roughly annotated" batch and
use the resulting network as initialization for the second learning phase on the "fine" batch.

2.8 Performances evaluation criteria

There are many criteria that one can choose for evaluating the performances of an algorithm
for image segmentation. In this work, we used the following coefficients/metrics: Dice-
coefficient, Jaccard, contour distance and accuracy.
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2.8.1 Sørensen-Dice and Jaccard coefficients

The Sørensen-Dice coefficient (frequently addressed simply as Dice coefficient or F1 score)
is defined as follow:

Dice(X,Y ) =
2|X ∩ Y |
|X| ∪ |Y |

=
2TP

2TP + FP + FN

Where for the first expression, X, Y are sets of elements and |.| indicates the cardinality of
a set. The second definition, instead, explicits the coefficient as function of true positive
(TP), false positive (FP) and false negative (FN) values. Jaccard coefficient is very similar
to the Dice coefficient, in fact is defined by the formula:

Jaccard(X,Y ) =
|X ∩ Y |
|X ∪ Y |

=
TP

TP + FP + FN

We use these coefficients for comparing two binary maps, for example the map returned by
our algorithm and the map deriving from the doctor’s annotation. In such context, we can
compute the two indexes by applying to the binary maps, pixel-wise, the logical definitions.

2.8.2 Contour distance metrics

The information returned by Dice and Jaccard coefficients is related to area of the two
binary maps overlap region, the shape of the contour of the segmented object is not taken
into account. For evaluate the contour matching between two contours we used the Hausdorff
distance, and the mean contour distance, these indexes will be lately indicated respectively
as δmax and δmean.
We can define these indexes as follows; given two sets of contour points C1, C2, for each
point pi ∈ C1 we find the point qj ∈ C2 that has, among all the points in set C2, the lowest
Euclidean distance form pi, we name this distance di.

di = min
j
{ ||pi − qj || : pi ∈ C1, qj ∈ C2}

Hence, we define the contour distance δmax(C1, C2) as the highest distance among all the
distances di (i = 1, ..., |C1|) and δmean(C1, C2) as the mean.

2.9 Registration

In the context of computer vision, image registration is the task of bringing data from dif-
ferent spaces, in particular, images represented in different systems of coordinates, to data
represented in the same space. Image registration very useful in the field of medical imag-
ing, for example, for comparing images of the same organ or tissue acquired in different
periods or by diverse instrumentations. In this work, image registration have been used for
comparing retinal images of the same eye, acquired with different cameras (SLO and fundus).
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Usually, for solving the registration problem between two images, one is taken as refer-
ence (fixed image) and its coordinates are taken as the coordinates of the final common
space. The other image is called the moving image and is the image that have to be mod-
ified and represented in the new coordinates (the fixed image coordinates). In order to do
so, we have to find a transformation function able to map each point of the moving image
to the corresponding point of the fixed image. Many approaches for finding such function
have been proposed, in this work, we used the method proposed in [7] and [8], respectively
named: piece-wise linear mapping function and local weighted mean.

2.9.1 Piece-wise linear mapping function

The idea behind this method is to find the global transformation function by merging lo-
cal transformation function defined on small regions of the two images (piece-wise). The
procedure can be summarized as follows:

1. Sample n control points in two images, points (Xi, Yi) in the fixed image corresponding
to points (xi, yi) in the moving image.

2. Find, among the moving image control points, the optimal triangulation, that is the
triangulation formed by the triangles such that any point in a triangle is closer to
the three vertices that make the triangle than to vertices of any other triangles. Such
triangulation is used to divide the images in regions where is possible to define the
sub-transformation functions.

3. To each moving control point (xi, yi) the x-coordinate of the corresponding fixed con-
trol point (Xi, Yi) is associated, the results is a 3-dimensional point (xi, yi, X). At this
point, the sub-transformation functions are found by interpolating with a plane the
three vertices of each triangle (vertices are 3-D points).

4. Because the optimal triangulation led to the definition of a convex region in the mov-
ing image, some part of the image will remain outside the triangulation, to menage
those excluded regions the method assigns to points belonging to such regions the
transformation functions defined on the closest triangle.

5. Now we have a function X = f(x, y) defined for all the pixels in the moving image that
has been obtained by merging the linear interpolations of several triangular regions. In
order to get Y = f(x, y) we can redo the procedure starting from point 2, by forming
the triplets (xi, yi, Y ).

2.9.2 Local weighted mean

As in the previous method, n pairs of control points are taken from the two images. For
each of the control points, the set of n-1 nearest neighbours is defined and a polynomial7

over the point and its neighbourhood set is fitted by a weighted fitting algorithm. In this
way, we obtain n polynomials and each polynomial will fit the most the point used as a

7The method works independently on the polynomial degree.
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reference.
The method defines the transformation function X = f(x, y), where (x, y) is a general point
in the moving image, as the function resulting by a weighted sum of the n polynomials. The
weighting functionW (x, y) used for the summation gives a higher weight to the polynomials
fitted using as reference points closer to (x, y). It can be proven that the registration function
resulting from this process is smooth everywhere.

2.10 Summary

The method presented in this thesis is based on deep learning, a branch of machine learning
(Section 2.2). It is a supervised learning approach for solving a pixel classification problem.
Examples of input data and corresponding outputs are shown to a system which tries to
learn the hidden input-output linking function. The "system" in our case is represented by
a CNN, in Section 2.4.2 we explained how the learning process for NN works. In Sections
2.8, we illustrated the metrics that we used for evaluating the performances of our system.
Finally, we reported the two methods that we exploited for multi-modal image registration
of same retina.
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Chapter 3

Literature methods for OD detection
and segmentation

3.1 About this chapter

In this chapter, we are going through a brief overview of a small sample of methods proposed
for the automatic segmentation of the optic disc in fundus camera images. We will see an
example of an algorithm based on the optic disc appearance (non-learning technique) and
others based on machine learning/deep learning. Moreover, we will describe ALG1, an
algorithm for OD segmentation in SLO images developed in the context of the same project
of this thesis.

3.2 Optic disc segmentation in fundus images

Most of the work for OD automatic detection and segmentation have been focusing on fundus
images. In recent years the research moved from non-learning techniques to the development
of algorithms based on machine learning and in particular deep learning. Belonging to the
first category (non-learning) we will show the method proposed in [11], this method is
currently implemented in the tool released by the VAMPIRE project (link at [29]). As a
representative of the second category (deep learning), we will show the method proposed in
[14].

3.2.1 A non-learning approach, Giachetti et al.

The idea of the method presented in [11] is based on the following observations regarding
the general OD appearance in fundus images:

• "Its shape is approximately elliptic. It is not always the brightest part of the retina, but,
even in many anomalous cases, it is the bright part with the highest radial (circular)
symmetry."
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• "There is a high vessel density inside its contour.The structure of the vasculature may
not be easy to model, but vessels can always be seen near/inside the OD and a rough
segmentation of them can be used to estimate a local density."

According to the original paper, these OD features appear to be stable among different data
sets.

The pipeline of this method is subdivided between detection and subsequent segmenta-
tion of the OD. For the detection (finding of the centre coordinates) the algorithm uses a
combination of two weak detectors: one seeks for bright regions with high radial symmetry,
one seeks for high-density vessels regions. The final output of these two detectors are two
probability maps that combined by a pixel-wise multiplication (with some adjustments) pro-
vide a probability map for the OD location (the region with the highest probability/score is
chosen as location).

Once the centre has been located, the method proceeds to seek for the contour by a coarse-
to-fine strategy in which both the resolution 1 of the input image and the complexity of the
model used for fitting the contour are gradually increased.
At low resolution the OD contour is fitted with a circle (circular sampling of points) by find-
ing the circle that maximizes its inner/outer contrast through an optimization procedure.
Hence, for two times the resolution increases and the contour is fitted with an elliptical
shape. At this point, the original resolution is reached and a snake technique is used for
finding a free form contour. The final result is an elliptical fitting of the previous points
determined by the snake. In Figure 3.1 example of results obtained at the different stages
by the algorithm.

Figure 3.1: Example of contours detected at multiple scales. Blue line: initial circular
shape. Green line: intermediate elliptic contour. Yellow: final ellipse fitting result. Red:
free-form contour computed with the snake-based refinement algorithm. Image taken from
[11].

1The segmentation pipeline starts from downsized images and end with images at the original resolution
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3.3 Deep learning approaches on fundus camera images

In recent years, deep learning has outperformed other techniques in many computer vision
tasks. Deep learning has been successfully applied in the field of retinal image understanding
and many algorithms for vessels and optic disc segmentation/detection have been proposed.

In general, solving a segmentation problem via deep learning, means, to find the right
CNN architecture, the one that achieves the best results among a testing set. Many of the
proposed architectures exploit or take inspiration from the architectures VGG and U-net
presented respectively in [12], [13]. The system developed in [14] takes advantage of VGG
architecture for both vessels and OD segmentation while in [16] a modified version of U-net
architecture is used for optic cup and disc segmentation. In the following sections, we are
going to illustrate such architectures and we will enter the details of the method proposed
in [14].

3.3.1 VGG architecture

VGG architecture has been proposed in [12] after winning the ImageNet competition in 2014
([24]). The network has been designed for solving a multi-class (1000 classes) classification
problem taking as input 224x224 RGB images2. The architecture consists of a stack of
convolutional layers with kernels size of 3x3, stride 1 and zero-padding 1. Five max-pooling
layers (2 × 2 pixels window, with stride 2 each) reduces the size of the features maps as the
net goes deeper (resolutions: 224, 112, 56, 28, 14). At the end of the stack of convolutional
layers, 3 fully-connected layers: the first two have 4096 channels each, the third contains
1000 channels (one for each of the 1000 classes). The nal layer is the soft-max layer. All
hidden layers are followed by ReLU layers.

3.3.2 U-net architecture

The network architecture is illustrated in Figure 3.2. It consists of an encoding path (left
side) and a decoding path (right side). The encoder consists of the repetition of the pattern:
convolutional layers (filter size 3x3, stride 1, no-padding), ReLU layer, max pooling (2 × 2
pixels window, with stride 2 each). After each pooling number of feature maps are doubled.
Every step in the decoding path consists of an up-sampling of the feature maps followed by a
2x2 convolution (transposed-convolutional layer) that halves the number of feature channels,
a concatenation with the correspondingly cropped feature maps from the encoding path, and
two 3x3 convolutions, each followed by a ReLU. The cropping is necessary due to the loss
of border pixels in every convolution. At the final layer, a 1x1 convolution is used to map
each 64 component feature vector to the desired number of classes. In total the network has
23 convolutional layers.

2Images centred by subtracting the mean RGB value for each pixel
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Figure 3.2: U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue
box corresponds to a multi-channel feature map. The number of channels is denoted on top
of the box. The x-y-size is provided at the lower left edge of the box. White boxes represent
copied feature maps. The arrows denote the dierent operations. Figure and description from
the original paper [13].

3.3.3 Deep learning approach, Maninis et al.

The approach presented in [14] relies on the concept of transfer learning. In fact, a pre-
trained model of the network VGG described in Section 3.3.1 is used as a starting point for
both vessels and optic disc segmentation in retinal fundus images. VGG has been designed to
be trained on millions of natural images and for solving a multi-classification problem, that
is why it can’t be directly used and applied for a segmentation task. The system (DRIU) has
been developed to exploit the "knowledge" learned by VGG. DRIU consists of a CNN that
is the assembling between a base network and some specialized layers. The base network is
a pre-trained net VGG where the last fully-connected layers have been removed (used for
classification). The specialized layers, in this context, are newly initialized convolutional
layers that take as input a stack of base network’s features maps taken from different levels
of depth. The output layer is placed at the end of such specialized layers and the loss utilized
is pixel-wise cross-entropy loss function (Section 2.5.2). The scheme in Figure 3.3 is clearly
illustrating the final result. It is worth to add to the description the following:

• the paths leading to vessels segmentation and OD segmentation are separately trained.

• To merge the features maps coming from different parts of the base network, those
have to be resized to the same resolution.
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Figure 3.3: Given a base CNN, we extract side feature maps and design specialized layers
to perform blood vessel segmentation (left) and optic disc segmentation (right). Figure and
description from the original paper [14].

3.4 Optic disc segmentation in SLO images, ALG1

AlG1 is an algorithm for OD segmentation in SLO images developed in the context of the
same project of this thesis, it will be presented in [15]. It consists in a non-learning approach
partially inspired by the algorithm described in Section 3.2.1, like the latter, it is based on
the optic disc appearance. The main characteristic of the OD in SLO images are:

1. the OD is usually dark but it might have a lighter spot inside.

2. The contrast between vessels and OD is usually low.

3. The contrast between OD and background is usually high.

4. The shape is approximately elliptical.

The pipeline can be divided in the following steps: detection, circle fitting and sampling,
features extraction, contour selection, refinement.

Detection

For localizing the OD, the method takes advantage of the previous observations and via
morphological operations obtains a reliable detection of the OD. Summarizing, when an SLO
retinal image is given to the algorithm, the procedure for the localization is the following:

1. run of an iterative routine of adaptive thresholding that stops when a certain ratio
between foreground/background3 pixels is reached. The result is a binary map, that
represents an initial segmentation of both vessels and OD.

2. An opening operation performed over the segmentation map helps to separate vessels
from OD. The result is a binary map with several connected components.

3Are considered foreground the dark pixels.
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3. Only the largest connected component is kept, such component it is very likely to
include the OD. In fact, not only the OD is usually large and dark but also the vessels
within the OD, and close to, are the darkest and the thickest among the ones appearing
in a general SLO image.

4. Closing of the resulting binary image to fill holes generated during phase 2 and com-
putation of the center.

Circle fitting and sampling

The computed centre is used as the starting point for a circle fitting of the OD contour. The
circle fitting is obtained using the same optimization procedure of [11]. Hence the result is a
circle, sampled in N points, that maximize its outer/ inner contrast. Those N circle points
are used as a landmark for building a radial sampling grid; for each circle point, a set of n
points are sampled along the radial direction. The overall sampling grid can be represented
as the matrix S of nxN intensity values. The bottom row of S represents points sampled
near the centre of the OD, points in the central row correspond to the N circle points, points
in the first row correspond to points sampled in the periphery.

features extraction

Hand-crafted features are extracted over each sampled point by filtering S with a set of
selected filters. The results after this phase, are m features maps (each obtained by applying
a different operation on S) that can be organized as a volume of size nxNxm or as a set X
of nxN m-dimensional points.

Contour selection

Over the set X the method seeks for the points that better match the typical appearance
of an OD contour by choosing the sequence of points C that minimizes an ad-hoc built cost
function.

Refinement

The sequence C is smoothed to obtain a more regular contour candidate, hence C is used
as a landmark for building a new and finer sampling grid where extract new feature and
compute again the contour selection phase. In Figure 3.4 a concise representation of the
pipeline of this method.
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Figure 3.4: Pipeline of ALG1. Figure from the conference poster presented in [15].

3.5 Performances assessment

Comparing the results obtained by methods such as the ones described in the previous chap-
ters is not always an easy task due to differences in the evaluation criteria used in different
works or due to the fact that the data sets used for the evaluation are not the same. In the
recent work of Qin et al. [19] a comparison in terms of mean Dice and Jaccard coefficients is
conducted between their proposed method (deep learning) and some of the aforementioned
systems. The data sets used for comparing the methods are two glaucoma screening data
sets. The first one is the REFUGE data set, which consists of 400 images with 40 glaucoma
cases. The second one is the data set from the Second Affiliated Hospital of Zhejiang Uni-
versity School of Medicine, which contains 697 fundus images with manual ground truth of
optic disc segmentation, including 230 glaucoma cases and 467 normal cases. The results
are summarized in table 3.1.

The results achieved by the method described in Section 3.2.1 and 3.4 will be evaluated
in Chapter 6 and directly compared with the method proposed in this work.
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Methods Dice Jaccard Ref.

Maninis et al. 0.96 0.89 [14]

Qin et al. 0.95 0.92 [19]

Sevastopolsky 0.94 0.91 [16]

Zilly et al. 0.94 0.89 [18]

Table 3.1: Results as reported in [19].

3.6 Summary

In recent years, methods based on deep learning have outperformed the other approaches
in many fields of computer vision. This is true also for retinal imaging. Deep learning has
been used for the automatic segmentation of the optic disc in fundus images achieving the
ophthalmologists’ accuracy in solving the same task. Most of these methods exploits CNNs
inspired by the architectures U-net and VGG.
To the best of our knowledge, until today, no other method has been proposed for OD
segmentation in SLO images except for ALG1 that is based on a non-learning approach.
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Chapter 4

Medical annotations

4.1 About this chapter

In this chapter, we are going to discuss the protocol that has been established for acquiring
the medical annotations of the optic disc in SLO and fundus images. In fact, such anno-
tations have been necessary for both the development of the core method described in this
thesis and the evaluation of the latter. Furthermore, in the chapter, a statistical analysis of
the collected annotations is conducted for defining parameters, such as the annotators intra
and inter-agreement, that are fundamental for assessing the quality of the results proposed
by an automatic algorithm.

4.2 Ophtalmologists

Four ophthalmologists have partecipated to the project, giving their availability for produc-
ing the annotations. The doctors have different grades of experience: one consultant eye
surgeon, two ophthalmology registrars and ophthalmic Specialist (Trainee, year 2).
In the following sections/chapters we will use the abbreviations: A1, A2, A3, A4 for referring
both to the four annotators and to the related set of annotations.

4.3 Images

The overall set of images to be annotated consists of 50 pairs of SLO (1536x1536) and fundus
camera images (2048x3072). The images were obtained in the context of the PREVENT
Dementia study [25] from Edinburgh Imaging and the Edinburgh Clinical Research Facility.
The SLO images were acquired with a Heildelberg SPECTRALIS SLO camera, the fundus
images with a Canon non-mydriatic camera.
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4.4 Annotation protocol

In this section, we report the SOP (standard operation procedure) that has been given to
the ophthalmologists for standardizing the annotation procedure. The SOP was divided
into 6 Sections: purpose and context (1), methods (2), loading of the images (3), annotation
protocol (4), images for repeatability (5), returning the annotated images (6). As follows,
we directly report Sections: 2, 4, and 5.

4.4.1 Methods

For simplicity, we recommended to use Microsoft Paint (Our guidelines refer to Microsoft
Paint for Windows 10, version 1803). We suggested to annotate two contours per OD: one
showing the most likely contour in your opinion, and a second, where needed, showing a
plausible alternative for possible, uncertain parts of the contour. In case of visible peri-
papillary atrophy (PPA) in the image, we asked to the doctors to annotate it with a third
contour. A contour is annotated by placing (clicking) points along it. For guidance, e.g.
frequency of points, we provided a few examples of annotated contours. For placing the
points, we allowed the use of the zoom.

4.4.2 Annotation protocol

We provided the doctors with the instructions and recommendations to follow for the anno-
tating procedure which are reported below:

a. Before starting look at the examples.

b. Try to annotate the whole set of images consistently, e.g. in similar conditions, and
dedicating comparable amounts of time and attention to each image.

c. It is required to annotate the SLO and fundus images independently.

1. Open the image in Paint.
2. Place red dots along your first choice of contour. To do this, select ‘brush’ and

‘size’ as shown in Figure 4.1. For number / frequency, please follow the examples.
3. If you are uncertain about some parts of the contour, place yellow dots along

your second choice of contour.
4. If PPA is visible, place green dots along the contour.
5. Save the annotated image as <name>ann.tif; for instance, the annotated version

of image 05.tif would be 05ann.tif.

4.4.3 Images for intra-observer agreement

Once the doctor completed the annotations, we asked him to produce a second annotation
for a batch of 30 images (15 SLO, 15 fundus) randomly chosen. We will use In Figure 4.3
an example of annotations made by the same annotator on images fundus and SLO of the
same retina.
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Figure 4.1: Paint menus. Left: please select the brush indicated by the arrow in the Brushes
menu. Right: please select the thickness indicated by the arrow in the Size menu. Colour
(red for first-choice contour, yellow for second-choice one) can be selected using the adjacent
boxes.

4.5 From annotated images to ground truth binary images

On each annotated image from one to three contours have been indicated by doctors: the
red (more likely the OD contour), the yellow (second choice) and the PPA. For the red and
yellow contours, we needed the corresponding segmentation maps. The procedure used for
extrapolating the segmentation map from the red contours consists of the extraction of the
red dots followed by linear interpolation of such dots. The result is a black image with a
white polygon representing the approximation of the area covered by the OD in the original
image. The procedure for the yellow contour is very similar. The yellow dots can define
alone totally different contour w.r.t. the red one or can represent only a variation in a limited
part of the OD contour (more frequently).
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Figure 4.2: a) Details of an annotated (according to the SOP) fundus image.
b) Details of an annotated (according to the SOP) SLO image.

Figure 4.3: Top, annotated SLO. Bottom, binary map used as ground truth.
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4.6 Statistical analysis

In this section, we are going to analyze the data provided by the ophthalmologists. The
overall information consists of annotations of the optic disc in fundus and in SLO images,
moreover for each image we have from one to three indications. We have to use this infor-
mation to extract a statistical description of our annotators, in particular, it is interesting
to study the doctors’ agreement on both types of images and the "cross-agreement" be-
tween annotations on fundus and on SLO. In addition, we will make some, more qualitative,
observations about the agreement regarding the PPA annotations.

4.6.1 Data description

The overall dataset consists of 50 pairs of annotated images for each of the 4 doctors
(A1, A2, A3, A4) plus 15 SLO and 15 fundus for repeatability (per doctor). For future co-
modity we define the following:

• S : set of all the annotated SLO images.

- SR : Set of all binary maps related to the red contour.

– SY : Set of all binary maps related to the red contour.

– SP : Set of all annotated SLO images where PPA has been indicated.

• F : set of all the annotated fundus images.

– FR : Set of all binary maps related to the red contour.

– FY : Set of all binary maps related to the red contour.

– FP : Set of all annotated SLO images where PPA has been indicated.

• A1SR : indicates the set of binary maps deriving from the red annotations by A1,
on SLO images. With the same rationale, A1FY indicates the set of binary maps
deriving from the yellow annotations by A1, on fundus images. And so on.

• A1SP : indicates the set of annotated SLO where A1 has indicated a PPA contour.

In Figure 4.4 a chart showing the number of the different contours indicated by the anno-
tators. From the chart we can notice that both in SLO and fundus in the large majority of
the images the doctors have annotated a second contour (the yellow one) suggesting that
there is an high intrinsic uncertainty in the definition of the OD border.
Another possible first inference is that doctors are more likely to mark a PPA contour in
SLO images (in average ≈ 22 PPAs marked) rather than in fundus (≈ 16).
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Figure 4.4: Histogram representing the cardinality of the sets described above. Cardinalities
of sets S and F are omitted, in fact, |S| = |F | = |SR| = |FR| = 50.

4.6.2 Annotators’ agreement

We would like to have a measure of the annotator’s agreement; among the multiple choices
available we chose to use the following metrics: Dice coefficient, Jaccard coefficient and
mean contour distance (illustrated in Section 2.8). In particular, we will use the Dice
coefficient for most of the evaluations and the others as a complement when necessary. In
Figure 4.5 an example comparisons between pairs of annotations, we notice that: to two
annotations indicating contours substantially different (comparison on the left) corresponds
a dice coefficient equals to 0.68; while, to annotations indicating substantially the same
contours corresponds a dice coefficient of 0.96. For the interpretation of the Dice coefficient,
when comparing two OD segmentation, we can use as a reference the following qualitative
grid of grades (from D to A+):

• D [0− 0.5] : Error, likely different locations.

• C [0.5− 0.85] : Different contours.

• B [0.85− 0.90] : Partially matching contours.

• A [0.90− 0.95] : Slightly mismatching contours.

• A+ [0.95− 1] : Same contours.
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Figure 4.5: Visualization of the overlap between pairs of annotation, corresponding dice
coefficient and grade. The grades are: D for OD with different locations. C for different
contours. B for OD with partially matching contours. A for slightly mismatching contours.
A+ for same contours.

4.6.3 Agreement in SLO

In Figure 4.6, the count of the comparisons between annotations (red contours) divided by
grades. More in details, for all the possibles coupling of annotators 50 dice coefficients, one
per image, have been computed. From the chart, we can make the following observations.
Picking randomly two annotations the most likely outcome would result in a grade of A+.
In fact, P (A+) = 0.56. The probability of having two annotators indicating as OD contours
two contours totally different (C) is not negligible, P (C) = 0.05. In particular, if we look
at comparisons between A1 and A2 the probability increases to P (C|A1/A2) = 0.12. The
probability of having a good matching (A ∪ A+) is: P (A ∪ A+) = 0.86. The probability of
having a mismatch (D ∪ C) is: P (D ∪ C) = 0.05. Annotator A1 is the one which produces
the annotations that differs the most from the others (interestingly, A1 is also the annotator
with the highest degree of expertise). Results reported in the table below, 4.1. In Section
4.7 we will report the mean values and related standard deviations.

Event Probability Description

A+ 0.56 perfect match

A ∪A+ 0.86 good match

D ∪ C = C 0.05 mismatch

C | A1/A2 0.12 mismatch between A1 and A2

Table 4.1: Agreement in SlO.
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Figure 4.6: Comparison between couple of annotators, organized by grades (SLO).

Figure 4.7: Comparison between couple of annotators, organized by grades (fundus).

Figure 4.8: Comparison between couple of annotators, organized by grades (registered fun-
dus/SLO).
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4.6.4 Agreement in fundus

In Figure 4.7, as done for SLO, the counts of comparisons of pairs of fundus annotations
divided by grades. Comparing Charts 4.7 and 4.6 we notice that in fundus the probability
of getting a perfect matching between two annotations is significantly lower than in SLO.
It is also worth to underline the surprisingly high values in the counts related to the events
C | A1/A3 and (B ∪ C) | A1/A3 that suggests a systematic difference in the definition of
the OD contour followed by the two annotators. Results reported in the table below, 4.2.

Event Probability Description

A+ 0.40 perfect match

A ∪A+ 0.73 good match

D ∪ C = C 0.09 mismatch

C | A1/A3 0.32 mismatch between A1 and A3

(C ∪B) | A1/A3 0.66 bad matching between A1 and A3

Table 4.2: Agreement in fundus.

4.6.5 Cross-agreement fundus-SLO

We set up a framework for comparing the annotations made on fundus and the ones on SLO.
The framework consists of a multi-modal registration through which we lead the fundus im-
ages to match the corresponding SLO. The registration follow a semi-automatic procedure
based on methods reported in 2.9.1 and 2.9.2. The set of control points required by such
methods are chosen manually. Once the control points are set, using both the methods we
compute the transformations functions and by visual inspection (using a checkerboard) we
establish which gave the best result. In case none of the results is sufficiently accurate, we
choose a different set of control points from which compute the new transformations func-
tions (and so on until the desired accuracy is reached).

From Figure 4.8 we notice, w.r.t. the previous charts, how the counts "shift" to the left. The
probability of having a perfect match drop to 0.27, while the probability of a good matching
remains on the same level obtained on fundus images ( P (A ∪A+) = 0.73).

4.6.6 Intra-annotator agreement

We will refer as "intra-annotator agreement on SLO" to the similarity between the anno-
tations taken by one annotator on the same SLO images (among the set of 15 images for
repeatability, Section 4.4.3). While we will consider as intra-annotator-cross-agreement the
similarity computed when comparing the SLO and registered fundus annotations of one
doctor.
The quantitative results for the intra-annotator agreement will be illustrated in the next
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Event Probability Description

A+ 0.27 perfect match

A ∪A+ 0.73 good match

D ∪ C = C 0.11 mismatch

(C ∪B) 0.27 bad matching

Table 4.3: Cross-agreement.

section. Qualitatively we can say that the intra-annotator agreement in SLO and fundus is
very high, in general, better than the agreement between different annotators. For as con-
cern the cross-intra-annotator agreement, instead, we can notice that the similarity between
annotations produced by the same doctor on the two types of images is not significantly
higher than the one measured between annotations from different annotators.

4.7 Agreement: summary

Summarizing the data exposed in the previous sections, we can state that:

1. the definition of OD borders is a difficult task with an intrinsic uncertainty that has
to be taken into account. In most of the images, the doctors proposed two different
solutions for indicating the contour (red and yellow contours).

2. In SLO images, w.r.t. fundus images, it is more likely for two doctors to annotate the
same OD contour (PSLO(A+) = 0.56, Pfundus(A

+) = 0.40).

3. The intra-annotator agreement in both fundus and SLO is very good.

4. The similarity between annotations on fundus and SLO related to the same retina is
relatively low, even between annotations from the same doctor.

In the next page, in Figure 1.9 the agreements and cross-agreement values, in terms of mean
Dice coefficient (and related standard deviation), computed between each possible pair of
annotators. In Figure 1.10 the corresponding grades. As finally aggregate indexes we report
in Table 1.4 the mean agreements coefficients (calculated among all the possible pairs of
annotations).

Images Mean Dice Std. dev. Grade

SLO 0.93 0.06 A

fundus 0.92 0.06 A

SLO/fundus 0.89 0.07 B

Table 4.4: Mean agreement in SLO, fundus and fundus/SLO.
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Figure 4.9: In each element ei,j of
the table the mean dice coefficient
and its std.
In the table is possible to distin-
guish 3 quadrants:
the quadrant related to the agree-
ment in SLO (top-left), in fun-
dus (bottom-right) and the cross-
agreement (bottom-left).
In the diagonals of each quadrant
the annotators’ intra-annotator
agreements.
We do not have the data for com-
puting the missing value indicated
with the symbol tilde.

Figure 4.10: In each element ei,j of
the table the mean dice coefficient
and its std.
In the table is possible to distin-
guish 3 quadrants:
the quadrant related to the agree-
ment in SLO (top-left), in fun-
dus (bottom-right) and the cross-
agreement (bottom-left).
In the diagonals of each quadrant
the annotators’ intra-annotator
agreements.
We do not have the data for com-
puting the missing value indicated
with the symbol tilde.
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4.8 PPA analysis

In this section, we analyze and compare the medical annotations of PPA we have collected.
We want to have a measure for the doctors’ consensus in indicating the PPA contour (green
contour) in both fundus and SLO. As we discussed in the first chapter, the PPA is an impor-
tant biomarker for glaucoma, it can be used for assessing the risk of glaucoma or monitoring
the progression of the disease. Hence it is important to know which is the intra and inter-
observer agreement in indicating it.

Only by looking at the counts in Figure 4.4 we can notice that in SLO images is more
likely for an annotator to indicate the presence of PPA; in fact, |SP | = 87 while |FP | = 61.
Moreover, the variability is higher in SLO, A2 indicated 28 PPAs, A4 only 13. In fundus
the counts range is from 13 to 18.

A further analysis as been conducted among the sets of annotations A1, A2, A3 provided
by the three ophthalmologists1. We counted the times in which doctors indicated the pres-
ence of the PPA, and we compared2 the contours they indicated. From such counts we
estimated that, given a retinal image, with probability 0.55 one of the doctors will not agree
with the others about the presence or absence of the PPA if the image is SLO, with proba-
bility 0.43 if the image is a fundus. When the three doctors agree on the presence of PPA in
SLO it is likely (prob. equals to 0.83) that they will indicate the same PPA, while in fundus
they will disagree annotating the contour with probability 0.83.
From another point of view, given an SLO image where a doctor indicates the contour of a
PPA, with probability 0.56 the same contour will be indicated by (at least) another of two
doctors as OD contour. Similar result in fundus.

Furthermore, using the registered fundus images, we compared, annotator by annotator,
their consensus in indicating the presence of a PPA in SLO and in the corresponding fundus
images. When A1 indicates the presence of a PPA in a SLO image, with probability 0.73 he
will be consistent in indicating the presence of the PPA in the corresponding fundus image.
For A2 and A3 this value decreases respectively to 0.59 and 0.55.

1At the time the set of annotations A4 wasn’t available.
2Qualitative comparisons, by visual inspection.
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4.9 Summary

The doctors’ agreement in annotating the OD border corresponds, according to the scale
introduced in this chapter, to the grade A (both in fundus and SLO). The intra-observer
agreement instead achieves, in average, the grade A+, that is assigned to annotations indi-
cating exactly the same contours. When comparing the annotations made independently on
the two types of images of the same retina, the consensus decreases significantly reaching
in average the grade B. Moreover, in most of the images the doctors indicated two possible
contours. The agreement in indicating the PPA, but only looking at one type of image at
the time, is very low, hardly three doctors will agree on the only presence or absence of the
PPA in one image. In fundus, even when they agree on the presence of PPA it is likely that
they will indicate different PPA borders. Finally, in both images it is very common (more
than 50% of the times) that the contour indicated as PPA by a doctor will be indicated as
OD contour by one of the others.
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Chapter 5

A deep learning approach to OD
segmentation

5.1 About this chapter

The following method exploits deep learning techniques for locating and segmenting the OD
in SLO images. The idea of trying a deep learning approach comes by the fact that, as seen
in Chapter 3, most of the best results obtained in similar tasks, such as OD segmentation in
fundus images, were obtained via CNNs. Although this observation, the choice of this path
wasn’t an obvious one due to at least two factors:

1. the data set we had access to is relatively small and this can easily lead to overfitting
when the model used for learning is very complex.

2. the hardware available was limited in terms of computational power and parallelization
possibilities.

To tackle the limitation explicit in point 2 we chose to split the method into two main steps
characterized by the use of the images at different levels of resolution. In fact, setting the
problem in a straight-forward shape for learning, it is to say to learn a model from the
original annotated images, would have been unaffordable in terms computational cost and
possibly would have led to a less accurate solution. As said before, we decided to split the
procedure into two phases where for each phase a classifier has been built, one for locating
the OD and one for segmenting. This is also the choice of other related works ([16],[18])
and it is intuitively guided by the idea that the "amount of information" required for the
only localization of the OD is less than the amount needed for an accurate segmentation.
According to this idea we notice that 64x64 is a reasonable resolution for properly locate the
OD and 512x512 is enough for distinguish clearly the finest features along the OD contour.
The entire pipeline followed by the algorithm during the prediction is shown in 5.1 and
below described.
Given an SLO image in input, the algorithm resizes the image to 64x64 pixels, then a classifier
produces a rough segmentation map of the optic disc. This map is used to locate the OD
computing the coordinates of the centre. At this point, the original image (1536x1536)
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Figure 5.1: The image shows the pipeline used for the prediction in four key points.
a) Downsize of the input image to 64x64.
b) Location phase: a classifier produce a binary map which is used to locate the OD.
c) Resize of the original image and cutting of the ROI.
d) A second classifier trained on ROI images computes a new segmentation map. Upsampling
to he original resolution, end.

is resized to a resolution of 512x512 and a squared ROI of dimension 256x256 is cropped
around the centre coordinates which are accessible from the previous step. The ROI is then
given as input to a second classifier that computes a finer segmentation map that, after
being resized to the original resolution, represents the final prediction of the algorithm.

5.2 Location/detection

The goal is to build a robust classifier, using CNNs, for locating the OD in low-resolution
images (64x64). The location, represented by the OD centre is obtained simply computing
the barycentre of the binary map forwarded by the classifier. At this stage there is no need
to have a predicted centre perfectly matching the real one, what is really fundamental is
that the ROI extracted starting from the predicted centre includes within all the optic disc.
In fact, a slight mismatch will make no difference at the next step while an OD not included
in the ROI will lead to a failure in the final segmentation.
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Figure 5.2: Sample of five pairs of images and related ground truth. The pixels in ground
truth images have value 1 where the

5.2.1 Data set

The data set used for designing the classifier is composed of 120 SLO retinal images. For
each image a binary map, representing the ground truth, is generated using ALG1

1

We split the data set in: 95 images for the training set, 10 for the validation and 15 for
testing. In order to enhance the data, we used standard data augmentation methods such
as X/Y-wise reflections, rotation (in a range of [-10, 10] rotation degree) and scaling (in a
range of [0.8, 1.2] scaling factors). In Figure 5.2 a sample of five images and corresponding
annotations (produced by ALG1).

5.2.2 Classifier for location (description)

The classifier consists of four different CNNs (A, B, C, D) that are combined for obtaining
a single binary map as output. In particular, at training time the four networks are trained
independently while at the testing time the output map of each network is merged with the
others to get the final result. The merging consists of the AND (pixel-wise) function applied
to the four binary maps.
Following, the main features of the networks are listed:

1. A, B, C are designed for a pixel-wise classification task where the size of the output is
equal to the input size.

2. A, B, and C share the same architecture and the same training set. The three networks
only differ in initialization the weights.

3. D is designed for region-wise classification and the size of the output is 4x4. To set
the problem as a region-wise classification problem the ground truth images have been

1At this stage, we are looking for the only location of the optic disc. For this reason we consider legit to
use annotations/ground truth images that are not provided by doctors (in order to use images that otherwise
would not have ground truth).
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generated as written in the note2.

4. The parameters of all the networks have been initialized by independently sampling
from a normal distribution with zero mean and standard deviation 0.01.

5. The loss function used to train the networks is class balanced cross-entropy (the average
ratio between OD pixels and not OD is: 0.004).

In Figure 5.3 and 5.4 the two architectures used are shown in details, it is interesting to
observe that the models are very "light" as the number of nodes per network is relatively
small and the overall amount of learnable parameters is: 3.135.

Figure 5.3: Networks A, B, C. In all the convolutional layers the input has been zero-padded
in order to keep the output at size of 64x64. The stride is set to 1.

The networks have been trained with stochastic gradient descend as solver and the
following set of parameters: mini-batch size equals to 3, 30 epochs, momentum set to 0.7,
L2 regularization to 0.005 and learning rate equals to 10−3.

It is worth noticing that, despite A, B, and C share the same architecture, the outputs
are different because of the two stochastic processes that take place during the training: the
initialization of the weights and the generation of the mini-batches (the seed for random
number generation has been changed before each training).

2For each ground truth image at 64x64 resolution (i64) The ground truth images (i4) used for training
network D has been derived as follows: i64 is divided with a grid 4x4, each square of the grid corresponds
to a pixel of i4. Each pixel of i4 is set to 1 if at least one of the pixels in the related grid-square is equal to
1, to 0 otherwise.
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Figure 5.4: Network D.

5.2.3 Classifier design and motivation

The original idea was to build a single CNN for locating the OD. To find the right model
we tried very different architectures following a simple-to-complex strategy, we started from
basic networks of one layer and we proceeded gradually adding complexity to the network.
Moreover, we tried many architectures inspired by the U-net, VGG and Inception models.
After many attempts, we found out very hard to obtain a satisfiable solution to this particular
problem using a single network. Despite the fact that it is easy to train a network that works
very well on the average-looking SLO image, it is difficult to get one that provides a useful
result for locating the OD in all the validation images. Hence we chose to move to the
described set up of four CNNs. The rationale behind this choice is clear when looking at
the results of network A illustrated in Figure 5.5.

As it is possible to infer from Figure 5.5, the false negative rate of A is equal to zero.
In other words, net A is always (at least in our experiments) able to find all the pixels
belonging to the optic disc. This observation led us to the idea that the intersection of the
output maps of different networks, presenting this characteristic (OD accuracy = 100%),
would be more accurate than the single output maps of each network. In particular, the
higher the number of such networks the better would be the final results. We empirically
proved this hypothesis, in Figure 5.6 it is shown the output of A, B, C and the resulting
intersection on a subset of testing images.
As explained in the previous Section we added a fourth network, net D, to the pool. Net

D is a region-wise classifier that, given an image as input returns as output a 4x4 binary
matrix in which each element represents the prediction of the optic disc absence/presence
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Figure 5.5: Subset of 8 testing images; In pink, pixels of the input image classified by A as
OD, in green the pixels classified as not OD.

Figure 5.6: Subset of 4 testing images; In each row the results obtained with nets A, B, C
and their intersection. In pink, pixels of the input image classified by A as OD, in green the
pixels classified as not OD.
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within the corresponding 16x16 pixels square in the input image. The main characteristic
of D is the sequence of convolutional and max-pooling layers that gradually decrease the
number of features in the net. The addition of this network do not improve substantially
the results in our data set, nevertheless we consider adding this network useful in the sense
of improving the robustness of the system in case of hard-looking images. In fact, due to the
intrinsic nature3 of this net and the peculiar task for which has been designed we consider it
more capable, w.r.t. to nets A, B, and C, to identify the correct ROI in challenging images.
In Figure 5.7 predictions of D among a subset of testing images.

Figure 5.7: Subset of 8 testing images; In pink, pixels of the input image classified by A as
OD, in green the pixels classified as not OD.

5.3 ROI extraction

The final classifier for locating the optic disc return a segmentation map that is the com-
bination of the maps returned by the four sub-classifiers. We use this map to estimate the
centre of the optic disc by computing the barycentre of the point classified as OD. With
the centre is possible to extract the ROI from the original images. For the next step that
consists of building a CNN to get the final segmentation of the optic disc we extract the
ROI from the original SLO images downsized to the resolution of 512x512. The chosen ROI
shape is a square of 256x256 centered in the predicted optic disc centre.

5.4 Segmentation

The goal is to build a classifier capable to get an accurate segmentation of the optic disc.
To achieve that, we made some preliminary choice and observation in order to simplify the
problem to our best.

3In fact, thank to the sequence of pooling layers the final classification of net D (for each region) strongly
depends on all the regions of the input image.
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1. We noticed that wasn’t really necessary to use the images at the original resolution
(1536x1536) and we decided to downsize to 512x512, resolution that still allows to
clearly discriminate the OD edges and borders from the background.

2. We chose to work only on the extracted ROIs (256x256) to decrease the computational
cost of the training process.

3. We chose to use transfer learning to exploit as much information as possible.

The idea of using transfer learning (point 3) derives by the fact that we had available 120
SLO images, of which only 50 annotated by doctors. In order to try to not waste available
data, we decided to split the training process in two phases. In the first phase we train
a network on the 70 images with no annotation using as ground truth the segmentation
maps produced by ALG1 (described in Chapter 3). ALG1, as we will lately discuss, is very
accurate but it is not a doctor and the quality of the features learned by the network at this
phase is somehow dependent on the reliability of ALG1. Hence, in the second phase the
trained network is re-trained on the annotated images.

5.4.1 Data set

As explained in the previous Section the the data set is composed of two subsets of SLO
ROI images (resolution: 256x256): annotated by annotators (DAnn) and by ALG1 (Dalg1).

- DAlg1: We split this data set in 65 images for training and 5 for validation.

- DAnn: each of the 50 images has been independently annotated by three doctors, we
chose to split into 25 images for training, 5 for validation and 20 for testing. More
in details, we decided to train the classifier using as ground truth all the annotators.
Practically, for each SLO image, two copies have been added to the data set and then
each triplet of the same image has been associated with three different annotations.
Different choices were considered such as training with only one annotator, the most
"similar" to the others or the one with the highest repeatability score. We took this
decision to try to not fit any annotator but a sort of intersection of them.

In order to enhance the data at each training phase we used standard data augmentation
methods such as X/Y-wise reflections, rotation (in a range of [-10, 10] rotation degree) and
scaling (in a range of [0.8, 1.2] scaling factors). In Figure 5.8 and 5.9 a sample of images
from the two data sets with the corresponding ground truth images.
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Figure 5.8: A image from Dann with the corresponding 3 ground truth images, one per
annotator (A1, A2, A3).

Figure 5.9: sample of images from Dalg1 with the corresponding ground truth images.
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5.4.2 Classifier architecture

In Figure 5.10 the architecture of the network that, among several experiments works better
on the validation set (Dalg1). The model is inspired by the U-net architecture, it is to say
a net featured by a first encoder stage and a consequent decoder phase. The main features
of the net are:

• The network is composed of 52 layers, and the total amount of learnable parameters
is: 40.523.

• The output layer is the "dice-pixel-classification" layer, in fact we noticed a relevant
improvement of the results using the dice-loss function instead of cross-entropy for
training.

• The encoder stage consists of a repetition of the layers pattern: convolutional, batch-
normalization, convolutional, batch-normalization, max-pooling.

• The up-sampling in the decoding phase is obtained via transposed-convolutional layers.

Figure 5.10: Network architecture, in table A of the appendix all the details regarding number
and size of the filters for each layer.
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5.5 Training

During the first phase (on Dalg1), the network has been trained using stochastic gradient
descend with momentum as solver, mini-batch size 5, L2 regularization weight equals to
0.005, learning rate 10−3 for 40 epochs and 10−4 for other 10 epochs. In Figure 5.11 a
sample of the output maps produced by the classifier obtained at this stage.

Figure 5.11: Output of the network after the training on Dalg1. In the first row, the output
maps are shown overlapped to the input SLO image; in purple, pixels classified as "not OD"
in cyan as "OD". In the second row the ground truth images (obtained with Alg1).

The trained network is then re-trained on Dann using: stochastic gradient descend with
momentum as solver, mini-batch size 5, L2 regularization weight equals to 0.005, learning
rate 10−2 for 10 epochs and then dropping the learning rate of a factor of 0.5 every 5 epochs
until reaching 35 epochs.
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5.6 Summary

The presented method consists of a deep learning approach for the automatic segmentation
of the OD in fundus images. The method exploits two classifiers, the first classifier is com-
posed of four CNNs and provides a reliable localization of the OD in downsized SLO images,
the second classifier is a single CNN which produces the finer and final segmentation. The
second classifier has been trained in two phases; at first, on a dataset of 65 images using
as ground truth the segmentation maps obtained by ALG1, secondly on a smaller data set
where medical annotations for ground truth were provided.
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Chapter 6

Experimental results

6.1 About this chapter

In this chapter, we will discuss the quality of the optic disc segmentations produced by
the presented method by comparing with medical annotations. Moreover we will make a
comparisons with the algorithm for OD segmentation in SLO images ALG1, presented in
[15] and the VAMPIRE algorithm [11], designed for fundus images. Furthermore, we will
investigate the effectiveness of the key choices that have led the pipeline of the algorithm to
be the one presented. As done in Chapter "Medical annotations", most of the comparisons
will consist of a measure of similarity through Dice-Søresen coefficient between segmentations
maps from different sources and the assignment of the corresponding grades: D, B, A, A+.

6.2 Method and annotators’ agreement

Because we have used 301 annotated images for training the core classifier of the method
M , we have 20 images left for testing it. We can assess the agreement between M and the
annotators As = {As,1, As,2, As,3, As,4} by counting the number of comparisons resulting
in a good/bad matching. In Figure 6.1 the comparisons of the method and the annotators
while in Figure 6.2, comparison between the annotators (on the 20 testing images). From the
charts, we can infer the probabilities in Table 6.1. We notice, how in general it is more likely
to have a perfect matching between two manual annotations PAs/As

(A+) = 0.56 w.r.t. one
automatic and one manual (PM/As

(A+) = 0.21). However, the gap significantly decreases
when we take into account the probabilities of having a good matching (A ∪ A+); in fact
PAs/As

(A ∪ A+) = 0.85 and PM/As
(A ∪ A+) = 0.75. From Table 6.1 we can also observe

that the agreement between the method and some of the annotators can be better than the
agreement between two annotators (for example comparing M/As,4 with As,3/As,4). The
comparison As,2/As,4 is the one that achieves the highest number of comparisons resulting
in grade A+.

125 for training, 5 for validation.
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Event As/As M/As M/As,4 As,3/As,4 As,2/As,4 Description

A+ 0.56 0.21 0.25 0.25 0.65 perfect match

A ∪A+ 0.85 0.75 0.90 0.75 0.95 good match

C ∪B 0.15 0.25 0.10 0.25 0.05 bad match

C 0.07 0.05 0.05 0.05 0.05 mismatch

Table 6.1: Estimation of the significant probabilities in SLO.

Figure 6.1: Counts of comparisons between M and each annotator, organized by grades.

Figure 6.2: Counts of comparisons between each possible pairs of annotators Ai/Aj, organized
by grades. Data set of 20 SLO images.
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6.3 Comparisons with ALG1 and VAMPIRE

ALG1 and the VAMPIRE algorithm V are both non-learning methods, then we can test
the performances among all the data Set, in particular, the binary maps obtained with V
are related to the fundus images and then have to be compared with the corresponding
medical annotations. We summarize the results in Table 6.2. From Table 6.2 we can make
the following observations:

1. The presented method M seems to work generally better than ALG1, in fact, it is
more likely for M to produce OD segmentations that achieve a good matching score
with the ground truth.

2. M seems to work similarly to V when comparing with the corresponding ground truths.
Differently from V , M is less likely to get a mismatch.

3. The pairs of typeM/As,i that produce the higher agreements are comparable with the
pairs of the type As,i/As,j the produce the lower (6.1).

Event As/As Af/Af
V/Af ALG1/As ALG1/As M/As Description

A+ 0.56 0.40 0.18 0.20 0.14 0.21 perfect match

A ∪A+ 0.85 0.73 0.63 0.65 0.64 0.75 good match

C ∪B 0.15 0.27 0.37 0.35 0.36 0.25 bad match

C 0.07 0.09 0.20 0.16 0.12 0.05 mismatch

N. images 50 50 50 50 20 20 -

Table 6.2: Estimation of significant probabilities for: annotations in SLO and fundus
(As/As, Af/Af ), the method presented in [15] (ALG1), the method presented (M) and VAM-
PIRE (V ).

In Figure 6.3 a further comparison between the annotations and the algorithms is illustrated.
For each set of segmentation maps (produced manually or automatically) and for each of the
20 testing images we computed the mean Dice coefficient. Hence, we order (ascending) those
results obtaining a crescent curve for each method or set of annotations. Ideally, we would
like to have as a result a line constantly equals to 1. The comparisons are made between:
annotators in SLO (As), the presented method M and As, ALG1 and As, annotators in
fundus Af , V and Af

2. From this comparison we can observe that M do not reach the
performances achieved by the annotators, but, between the automatic methods compared
is the one which produces results with highest similarity with the corresponding medical
annotation.

2The annotations Af are made on the corresponding set, of 20 fundus images, to the SLO testing set.
The difficulty and the appearance of the OD in this is not necessarily correlated to the SLO set. Nevertheless,
it is interesting to compare Af with V .
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Figure 6.3: The curve As is obtained by computing the mean agreement, between annotators
in SLO, per image and ordering from the lowest to the highest. The other curves are the
result of the same procedure. It is important to notice that because each curve has been order
independently, the order of the related images on x-axes is not necessarily the same.

6.4 Performances summary

In Table 6.4 we report the aggregate indexes for representing the agreement between the
automatic algorithms and the annotators. It is worth noticing that in [11] where V has
been presented it is claimed a Jaccard index, between V and the reference annotations3 of
0.88. Moreover this value results to be higher than the same index computed between the
annotators. In our experiments the mean Jaccard index is 0.82 and, more important, is
significantly lower than the index computed for the annotators (0.88 for As) outlining how
the assessment of the performance is strongly dependent on the testing data.

Segmentations Dice Jaccard δmean Description Test images

As 0.93 (0.06) 0.88 (0.09) 15 (12.98) manual 50 SLO

Af 0.92 (0.06) 0.88 (0.09) 20 (14.96) manual 50 fundus

M 0.91 (0.05) 0.84 (0.08) 21 (11.00) automatic 20 SLO

ALG1 0.90 (0.07) 0.82 (0.10) 24 (16.00) automatic 50 SLO

V 0.89 (0.08) 0.82 (0.08) 28 (20.81) automatic 50 fundus

Table 6.3: Numeric values indicated as mean value and standard deviation in brackets.

3The algorithm was tested on the MESSIDOR data set, a public set of annotated fundus camera images,
link at http://www.adcis.net/en/third-party/messidor/.
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Conclusions

We presented a novel method, based on deep learning, for the automatic localization and
segmentation of the optic disc (OD) in scanning laser ophthalmoscope (SLO) images.
The algorithm has been tested on 20 SLO images, where, compared with the reference med-
ical annotations of the OD, achieves the mean similarity index (Dice-Søresen coefficient) of
0.91. The method performs slightly better than ALG1 (the only other method that has
been proposed so far for solving the same task). The performances of our approach are
comparable with the performances of V (algorithm designed for OD segmentation in fundus
images). Although the encouraging results, the similarity index computed by testing each
ophthalmologist against the others is higher and equals to 0.93 suggesting that there is still
margin for further improvements. In fact, we would like to have the solutions provided by
the automatic method to be indistinguishable from the solutions provided by specialized
doctors. Because the proposed method is based on a learning approach we can state that
the quality of the results is strongly dependent on the richness of the training data. We
believe that by increasing the number of training examples this method it is very likely to
reach the target accuracy.

A relevant finding of this work comes by the analysis of the collected medical annotations
from which we can outline that, despite the mean annotators’ agreement is relatively high,
it is not negligible the probability of having doctors indicating contours that are substan-
tially different. In particular, this is true for 5% of the comparisons between pairs of SLO
annotations, 9% in fundus images and 11% when comparing SLO and corresponding fundus
annotations. We believe that further research, from a medical perspective, on the definition
of the OD border and its features related to the different imaging techniques is needed.
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