
UNIVERSITÀ DEGLI STUDI DI PADOVA

DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE

TESI DI LAUREA

PARIMULO: REENGINEERING

RELATORE: Ch.mo Prof. Enoch Peserico Stecchini Negri De Salvi

CORRELATORI: Ing. Michele Bonazza e Ing. Paolo Bertasi

LAUREANDA: Martina Muscarella

Padova, 24 Ottobre 2011

A.A. 2010/11

To myself,

because I deserve it.

Acknowledgements

In the first place I want to thank my advisor, Prof. Enoch Peserico, for his
support and encouragement, but also for giving me many opportunities, such as
to be the Mulo Team Leader, allowing me to grow up as an engineer. I’d also
like to thank my assistant supervisors, Michele Bonazza and Paolo Bertasi, who
lead and supported me during these three years of work on PariPari, teaching me
things that I could never have learnt at any university class (such as to ping and
to use a screwdriver).

Then I am grateful to all the other PariPari Team Leaders and the past and
present Mulo developers. In particular way Francesco Peruch for every Connec-
tivity integrations - hoping NIO will be the last one - and of course for the record
of 150 emails sent in a couple of midsummer nights. My gratitude also goes
to Mattia Samory, because Mulo now has what it deserves: a fresh, pretty and
green graphic interface. Obviously I must also cite Vincenzo Cappelleri who has
been really helpful me dealing with the candyman. Finally I want to thank my
best developers Francesco Mattia and Christian Piccolo for the memorable Kad
integration (I am so happy we are all still alive and still have both hands) and
the former Mulo Team Leader, Roberto Ampezzan, for every public variable in
the code and the hints about Acn and Rly.

My gratitude also goes to my friends of the Advanced Computing Group, who
are always happy to listen, tell and share all my crap. I especially thank Federica
Bogo and Marco Bressan who supervised me while I was trying not to break the
hardware components of the Eridano cluster.

I’d like to thank all my friends: Jari Gianesini, Ruggero Rappo, Alice Bordin,
Giulio Drusi and Alice Dal Maso for all the time spent together (I know you deep
down could not survive without me); especially my best friend Serena Crocetta,
because my life without her would be as M&M’s without colors and chocolate.
Obviously I have also to thank my university fellows and friends: Dario Turchetto,
Giacomo Portolan, Lorenzo De Stefani and Elisa Tosello (the order is deliberately
not alphabetical). Of course I really thank everyone who ever gave me a lift.

Finally but not less importantly, I am grateful to my parents for believing in
me and investing in my university career: I really hope they can be proud of me.
I’d also like to thank my dear little brother, who is not really dear and surely not
little, but I love him anyway.

iii

Contents

Abstract 1

Sommario 3

Overview 5

1 The PariPari project 7

1.1 The DHT structure . 7

1.2 Plug-ins architecture . 8

1.2.1 The Core . 9

1.2.2 Credits System . 10

1.2.3 Connectivity and NIO . 11

1.3 Mulo . 11

2 The eMule network 13

2.1 The protocols . 14

2.2 The eD2K network . 15

2.2.1 Peers identification . 16

2.2.2 Files identification . 16

2.2.3 Server login . 17

2.2.4 Callback . 17

2.2.5 Offer files . 18

2.2.6 Files search . 19

2.2.7 Sources search . 19

2.2.8 Peers handshake . 20

v

INDEX

2.2.9 File request . 20

2.2.10 Download . 21

2.3 The Kad network . 21

2.3.1 Distance function . 22

2.3.2 Routing table . 22

2.3.3 Bootstrap . 23

2.3.4 Firewall check . 23

2.3.5 Find buddy . 23

2.3.6 Lookup . 23

2.3.7 Publishing . 24

2.3.8 Search . 24

3 Features 27

3.1 Supported features . 28

3.1.1 Corruptions management 28

3.1.2 Secure identification . 29

3.1.3 Credits system . 29

3.1.4 Intelligent autologin . 30

3.1.5 Comments and file rating 31

3.1.6 Preview . 31

3.1.7 Compression . 32

3.1.8 Large files management . 32

3.1.9 Sources Exchange . 32

3.2 Unsupported features . 33

3.2.1 Obfuscation . 33

3.2.2 Filters . 33

3.2.3 Kad firewall, findbuddy and publishing 34

3.3 What Mulo does but eMule can’t 34

3.3.1 Proactive corruptions management 34

3.3.2 Parallel hashing . 35

3.3.3 Intelligent banning . 35

3.3.4 Super sources search . 35

3.3.5 Facebook: let the world know us! 36

3.3.6 Subtitles search . 37

3.3.7 Automatic management of dynamic server list 37

vi

INDEX

3.4 Experimental features and research 37
3.4.1 Super file sharing . 38
3.4.2 Assisted search . 38
3.4.3 Fake files identification . 39
3.4.4 Facebook and friends . 39
3.4.5 Mulo for embedded systems 39

4 Mulo reengineering 41

4.1 Mulo before . 41
4.2 Refactoring . 42
4.3 NIO integration . 45

4.3.1 Earlier design . 45
4.3.2 Threads . 51
4.3.3 Notifications . 56
4.3.4 States Pattern . 59
4.3.5 Performances . 66

4.4 GUI integration . 68

5 Programming and

team management 75

5.1 Tools . 75
5.1.1 Developing tools . 77
5.1.2 Testing tools . 78
5.1.3 Analyzing tools . 78
5.1.4 Other tools . 79

5.2 Repository organization . 79
5.3 Extreme Programming . 81
5.4 Recruitments . 82
5.5 Team organization . 82

5.5.1 The team leader . 83
5.5.2 The ideal Mulo developer 83

5.6 Lack of documentation . 85

Bibliography 87

List of figures 89

vii

Abstract

Nowadays broadband is very widespread around the world and computers with
a considerable amount of computing power are available to all, both computer
engineers and amateur users, at lower and lower prices. In this context an amazing
growth of software applications that offer a wide variety of useful services over
the Internet is taking place, such as distributed storage, peer-to-peer networks,
instant messaging, web services, file sharing, cloud computing and many more.

PariPari is the largest open source project of software engineering in the
University of Padova; it is currently being managed by many students of the
Department of Information Engineering, and its goal is to create a easy-to-use
peer-to-peer application exhibiting scalability, transparency, efficiency, security
and anonymity. It is moreover designed as a multi-functional application, whose
services range from file sharing and distributed storage to video communications
and conferences. Its plug-in architecture allows and eases the introduction of new
features of increasing variety and complexity at anytime.

Mulo is one of the modules that provides file sharing services: it is an eMule
client and it allows users to join the eDonkey and Kad networks by sharing
and downloading files. Mulo is at a mature stage of development, supporting
almost all of the main features needed for an eMule client to work considerably
well. Furthermore Mulo provides innovative yet-to-be-seen features that no other
existing client has.

This thesis illustrates how Mulo has been reengineered and optimized through
a first phase of refactoring and the following integration of two basic PariPari plug-
ins, Connectivity NIO and the GUI. The former allows asynchronous communi-
cations across the network and its adoption has reduced the amount of threads
needed for Mulo to run, thus improving its overall performance. The latter in-
troduces a new user-friendly graphic interface that replaced the old text-based
interface that’s been used until some months ago.

Sommario

Al giorno d’oggi le connessioni a banda larga sono considerevolmente diffuse
sia fra ingegneri che utenti amatoriali, grazie alla sempre maggiore accessibilità
del loro costo. In questo contesto ha avuto luogo uno straordinario sviluppo di ap-
plicazioni software che offrono un’ampia varietà di servizi Internet, come storage
distribuito, reti peer-to-peer, messaggistica istantanea, servizi web, condivisione
dei file, cloud computing e molto altro ancora.

PariPari è il più grande progetto open source di software engineering dell’Uni-
versità di Padova, attualmente gestito e sviluppato da un vasto gruppo di stu-
denti del Dipartimento di Ingegneria dell’Informazione; il suo obiettivo è creare
una applicazione pere-to-peer di facile utilizzo che richiede qualità come scala-
bilità, trasparenza, efficienza, sicurezza e anonimato. Essa è inoltre progettata
per essere un’applicazione multi-funzionale, i cui servizi spaziano da file sharing
e distributed storage fino a video comunicazioni e conferenze attraverso Internet,
e la sua architettura a plug-in permette e facilita in qualsiasi momento l’aggiunta
di nuove funzionalità di crescente varietà e complessità.

Mulo è uno dei moduli che forniscono servizi di file sharing: è un eMule client
che permette agli utenti di partecipare alle reti eDonkey e Kad condividendo
e scaricando file. Lo stato dell’arte di Mulo è ad un livello davvero avanzato:
supporta tutte le principali funzionalità necessarie ad un client eMule per oper-
are discretamente. Mulo dispone anche di funzionalità innovative, non ancora
presenti in altri client.

Questa tesi illustra come Mulo sia stato reingegnerizzato e ottimizzato at-
traverso una prima fase di refactoring e una successiva integrazione di due basi-
lari plug-in di PariPari, ossia Connectivity NIO e GUI. Il primo plug-in fornisce
connessioni asincrone e la sua integrazione ha ridotto lo spreco di thread, miglio-
rando quindi notevolmente le prestazioni di Mulo. L’altro invece ha introdotto
una nuova interfaccia grafica user-friendly, in sostituzione della vecchia console,
al fine di rendere l’intera applicazione di PariPari più appetibile agli occhi degli
utenti.

Overview

This thesis discusses the eMule plug-in of PariPari, Mulo, with a special focus
on its recent re-engineering. Technical details are thoroughly explained across
on-line documentation and other about Mulo, references to which are suggested
at the right time.

Chapter 1 provides a succinct presentation of the PariPari project and its
plug-ins, focusing on Mulo and the plug-ins to which it is directly linked.

In Chapter 2 the eMule networks are introduced and their several protocols
are accurately described, with special attention to all the mechanisms needed for
an eMule client to work.

Chapter 3 lists all of the features supported by Mulo and those not supported
yet. Moreover we describe all the new functionalities that have been introduced
by Mulo developers that other clients don’t have. In this chapter some important
research projects concerning Mulo and file sharing are also presented.

We explain in details the complete reengineering process in Chapter 4 by
focusing on the integration of two PariPari plug-ins - Connectivity NIO and the
GUI - that allowed asynchronous connections over the network and introduced a
new user-friendly graphic interface, respectively.

Finally Chapter 5 is about the project organization, describing the job the
author had as Team and Tester Leader and listing the rules adopted in Mulo team
to allow a peaceful teamwork. A full list of the tools that PariPari developers
learn to exploit is also presented.

5

Chapter 1

The PariPari project

PariPari is the largest software engineering project at DEI 1, currently having
more than sixty students work on it. A peculiarity of this project is that it
is totally managed and developed by students, both Bachelors and Masters in
Computer Science. It is written in Java, not only because it is by far the most
widespread programming language among students at DEI, but also because it
inherently supports multiple platforms. In fact PariPari is launched as a JWS 2

application that anybody can run just by clicking on a web page, requiring no
installation no matter what OS is installed.

The final goal is to create a multi-functional P2P3 network application. A P2P
network is a distributed architecture that partitions tasks or workloads between
nodes, said peers. Here peers are equally privileged and equipotent participants.
PariPari is a collection of all the most well-known and useful services available
on the Internet, so anyone will be able to use them by simply downloading the
application.

1.1 The DHT structure

The network layout is based on a DHT 4, providing a high degree of scalability,
decentralization and fault tolerance. In the classic mechanism each node is as-
signed a unique identification number nID in a d-bit address space. A resource is

1Department of Information Engineering of University of Padua
2JWS - Java Web Start is a framework developed by Oracle that allows users to start Java

application directly from the Internet using a web browser.
3P2P - Peer-to-Peer
4DHT - Distributed Hash Table

7

represented by a key-value (k, kID) pair, where k is the keyword associated with
the resource itself and it is mapped into a unique identification number kID. The
kID belongs to the same d-bit address space of the nodes ID and it is calculated
by using a well defined hash function h, in such a way that kID = h(k). Then the
notion of distance is defined among IDs by adopting the XOR metric, described
in section 2.3.1.

Resources are stored and retrieved by nodes thanks to the shared address space
and in particular two fundamental primitives are provided: store and search.
When a node stores a resource r, corresponding to the key-value (k, kID) pair, r
is assigned to the node of the network whose ID is the closest to kID. This node
is then contacted by everyone that searches for the resource r.

Thanks to the DHT structure, a node in the network can contact any other
node in O(logN) hops, where N is the number of active nodes. In order to achieve
this, each node n keeps contacts with a small number m of nodes in the other
half of the network (with respect to n’s nID), m nodes in the other quarter, m
in the other eighth and so on. The structure used to store the information about
those contacts is usually called routing table.

PariPari DHT adopts a value of d equal to 256 and of m equal to 20; although
usually m is equal to 1 a bigger value improves the robustness of the network.
Nowadays DHTs are used in many application fields and in section 2.3 another
well known DHT will be described in detail.

1.2 Plug-ins architecture

The project has a modular architecture and the Core is in a manner of speaking
its heart, as shown in figure 1.1; every team in PariPari develops its own plug-in
to offer some specific service.

There is a differentiation between inner-circle plug-ins and external ones: the
former class of plug-ins supplies resources to the latter. The most important inner
plug-ins are Connectivity and Storage, which manage network and disk storage
respectively. Finally the user interacts with the external plug-ins, which offers
all traditional P2P services (such as file sharing, VOIP5, distributed storage, etc.)

5VOIP - Voice Over Internet Protocol is a family of technologies, methodologies, commu-
nication protocols, and transmission techniques for the delivery of voice communications and

8

1.2. PLUG-INS ARCHITECTURE

and server-based ones (such as IM 6, e-mail hosting, NTP7, etc.).

Core

Connectivity

Local
Storage

DHT

Logger
GUI

Credits

Mulo

Torrent

VOIP

NTP

Distributed
Storage

IRC

IM

DBMS

Figure 1.1: The PariPari plug-ins architecture.

1.2.1 The Core

The Core is not a real plug-in: it instead is the kernel of PariPari. Its current
version is known as TALPA8 and it was born at the beginning of 2009. For more
details about the Core see reference [12].

Its main functions are managing plug-ins, routing their messages and pro-
tecting users and good plug-ins from malicious ones. In fact every request for a
resource supplied by an inner-circle plug-in must pass through the Core. This
means that malicious plug-ins are not allowed to write on disk or on a socket,
unless users explicitly gives their authorization.

multimedia sessions over IP networks
6IM - Instant Messaging is a form of real-time direct text-based communication between

two or more people using personal computers or other devices, along with shared clients.
7NTP - Network Time Protocol synchronizes the clock of computers in a network.
8TALPA - The Acronym for Lightweight Plug-ins Architecture

9

Figure 1.2: PariPari official logo.

Another service supplied by the Core is the logger, which lets log messages
to be written on file. It is useful especially for developers, that can debug their
plug-in behavior by logging error messages and using several levels of verbosity.

Lastly, the Core provides a basic and temporary GUI, written in Java Swing9,
but it is now being replaced by the official PariPari GUI plug-in and its integration
will be discussed in Chapter 4.

1.2.2 Credits System

A dedicated module handles the Credits System of PariPari, which can be divided
in two layers. The former deals with the communications between peers and it
is used to encourage participation rather than parasitic behaviors. However this
layer still in development pursues also the goal to create a scalable, transitive and
cohesive economy among peers [7]. The latter instead is managed by the Core
and it is achieved by the exchange of tokens. When a plug-in needs some kind
of resource from another plug-in, it must pay a certain amount of tokens. In this
way, plug-ins requiring the same resource compete and the system determines
the price of the resource itself. So, analyzing such prices, plug-ins can choose a
strategy that minimizes the expense of tokens.

9The primary Java GUI widget toolkit.

10

1.3. MULO

1.2.3 Connectivity and NIO

As written before Connectivity manages network activities, allowing plug-ins to
write and read data on TCP10 [11] and UDP11 [10] sockets also supplying HTTP12

connections. Here the recent migration to NIO13 APIs - introduced in the version
1.4 of Java - has led to an important step forward, providing new features and
improving performance in the areas of buffer management and network scaling.

The APIs defined by Connectivity are: TCPNonBlockingSocketAPI, UDP-

BlockingSocketAPI, TCPServerNonBlockingSocketAPI and URLConnectionAPI.
The first object initializes an outgoing TCP connection, the second is used to send
UDP datagrams, the third kind of socket instead is a server socket that accepts
incoming TCP connections, finally the last one sets up an HTTP connection.
The operations of non blocking sockets are executed asynchronously with a no-
tification being sent back upon completion. When an operation is requested, a
PluginNotification object that can be used to hold all the necessary references
to process the outcome of the operation must be provided. The notification are
put in a BlockingQueue and it is possible to also define different queues for read,
write or connect operations.

The integration of NIO will be discussed in Chapter 4, more detailed infor-
mation about NIO are referenced in [9].

1.3 Mulo

Mulo belongs to the external plug-ins class and in particular to the file sharing
module. In fact Mulo is an eMule client, whose main functions are to search,
find, download and share files. This thesis is focused on the reengineering and
refactoring of Mulo, also achieved by the NIO and GUI integration.

10TCP - Transmission Control Protocol provides reliable, ordered delivery of a stream of
bytes from a program on one computer to another program on another computer.

11UDP -User Datagram Protocol sends messages, in this case referred to as datagrams, to
other hosts without requiring prior communications to set up special transmission channels or
data paths.

12HTTP - HyperText Transfer Protocol is a networking protocol for distributed, collabora-
tive, hypermedia information systems and it is the foundation of data communication for the
web.

13NIO - New Input/Output

11

Mulo was born about four years ago, in 2007, and a lot of students have worked
on it. At the moment of greatest activity the team counted twelve students (both
Bachelors and Masters) and about 30.000 lines of source code have been written
to develop Mulo.

Figure 1.3: Mulo official logo.

Mulo does not support all the features of the other clients and it does not copy
eMule in every step. During its design students are always trying to improve the
eMule Protocol and this approach is leading to some important results. Moreover
some innovative functionalities, dealt in Chapter 3, are now matter of research,
in fact they are not yet supported by any other eMule client.

Thanks to Mulo a PariPari user can participate to two notable P2P networks,
described in the next chapter.

12

Chapter 2

The eMule network

eMule is the combination of two different networks and this chapter deals about
them and their protocols.

The older of them is the original eD2K 1 network developed by a company,
MetaMachine, which had possession of the servers managing the network and
kept the source code private.

Figure 2.1: eMule official logo.

A lot of new clients have been then developed, until the birth of the eMule [2]
project in 2002, an open-source software which aim was to improve the original
eD2K client. eMule team has also created an extension to the primary protocol
to add new features and functionalities.

In 2005 eDonkey was discontinued due to legal issues with RIAA2 , but the
eD2K network survived as servers were brought up all around the world. In
fact interconnections between servers and features added to eMule prevented the
network from splitting in a multitude of smaller networks.

1eD2K - electronic Donkey 2000
2RIAA - Recording Industry Association of America

13

Then eMule introduced a DHT as a second network, Kad, mainly to handle the
constant tear down of several servers. There actually is a huge gap between this
network and the original one: eD2K is a hybrid network, because some operations
are server-based, while Kad is completely decentralized.

Nowadays file sharing applications are very popular and eMule is not the
most used P2P application anymore. The BitTorrent [1] Protocol and its several
clients have encountered a huge success, also because it is DHT-based and does
not need servers. However eMule still works fine and in some cases it performs
better than BitTorrent: a problem of this new network is that shared files have
a short life and often a file is no longer available some weeks after it has been
shared. Although many people think that eMule is by now dead, the project is
still alive and the version (0.50a) is really recent, introducing some new features
as well as a new more user-friendly interface.

In the following sections we briefly describe the two eMule networks and their
protocols.

2.1 The protocols

All communications in eMule happen via TCP or UDP and a list of packets is
defined in order to exchange messages between the peer and the server and among
peers.

All these packets have the same header. In the TCP case the header is of 6
bytes and has three fields (see figure 2.2) to indicate protocol, packet length and
packet type. The UDP packets header has no length field, so it is only of 2 bytes
(as shown in figure 2.3). This means that in TCP transmissions the length field
can be used to frame packets, while in the UDP ones the header must be used
as a sentinel to frame the received packets through a stream. Once protocol and
packet type are known, we have all we need to decode the packets body.

protocol length type

1 byte

Figure 2.2: TCP packet header.

14

2.2. THE ED2K NETWORK

protocol type

1 byte

Figure 2.3: UDP packet header.

The eD2k Protocol, whose byte of identification is 0xE3, was the first to be
created and it has two classes of packets: one for the exchange of messages be-
tween the peer and the server and another one for messages among peers. As
stated before the eMule Extension Protocol (byte of identification 0xC5) was then
created to extend the original one, all its packets concern only the exchange of
information among peers. The most important packets are sent via TCP, but
there are also some UDP packets. UDP is instead essential for the Kad Protocol,
whose byte of identification is 0xE4, because all its packets are sent via UDP. The
reference to a detailed specification of all the packets of those protocols is [19].

Those are the fundamental protocols that an eMule client must implement,
even if not all the packets have to be supported to work fine. Beyond those there
are other three protocols useful to send compressed data, to obfuscate communi-
cations and to support large files, but they will be described in Chapter 3.

Another important element defined in these protocols is the tag. A tag is
useful to send additional information of different kinds, in fact it can contain a
number (short, integer or long), a hash and even a string. Tags are often sent as
a list that can change depending on the case.

2.2 The eD2K network

The eDonkey network is hybrid, containing two different entities: peers and
servers. Because of the server-based operations it is not totally decentralized
and every time a server is down a big portion of the network is lost. When a
server is closed all its stored information about files and peers are missing. So
the servers are fundamental to join the network, share and search for files and
finally ask for sources from which files can be downloaded.

Once we know the file we want to download and the peers sharing it, all the
following phases concern only the P2P structure and the server is not necessary
anymore (except for callbacks, see section 2.2.4). In the following sections all the

15

details about the eD2K network and its mechanisms will be presented.

2.2.1 Peers identification

Every peer has an identification number, the eD2K ID, which can be low or high.
A low ID means that the peer does not accept incoming connections and it is not
reachable from the outside. So while a peer with high ID can be contacted by
anyone in the network, it is not the same for a peer with low ID.

In the low case the ID is a casual number lower than 224, otherwise the high
ID is calculated from the IP3 address: given the IP in the form a.b.c.d, where
each letter stands for a byte, the ID will be computed using the following formula:

ID = a+ b · 28 + c · 216 + d · 224

2.2.2 Files identification

Obviously also files must be univocally identified in the network in order to let
peers share and search for them. Of course they can’t be identified with the
name, because the same file can be renamed in different ways by different users,
sometimes also in a misleading way.

The files identification is achieved thanks to a hash function4 and in the eD2K
Protocol the MD4 5 [20] algorithm serves this purpose.

0 ... N-2 N-1

file of N parts

...1 i
i complete part

last smaller part
th

Figure 2.4: File partitioning.
3IP - Internet Protocol
4A hash function is any well-defined procedure or mathematical function that converts a

large, possibly variable-sized amount of data into a small datum, usually a single integer that
may serve as an identification number

5MD4 - The Message Digest 4 algorithm takes as input a message of arbitrary length and
produces as output a 128-bit hash.

16

2.2. THE ED2K NETWORK

A file is split into parts of 9.28 MB each, as in figure 2.4, except for the last
one that could be smaller. Suppose the file has N parts: first of all the hashes of
all its N parts must be calculated, then these hashes are concatenated and the
MD4 function is applied again to the concatenation in order to compute the hash
of the whole file.

As we will see later in section 3.1.1, these hashes are also used to manage and
correct corruptions; this is not the only way to identify a file in the network, in
fact a more advanced system has been developed to this purpose.

2.2.3 Server login

A peer must connect to a server to join the network. Several server lists are
available on the web and they are kept updated. When a peer contacts a server
for login, it receives the eD2k ID. To understand if a peer is high or low, the
server, after the login request, acts as a peer and tries to perform an handshake
with it. If the peer accepts incoming connections, it will answer, otherwise after
a timeout the server assumes that the peer is not reachable from the outside.
In this way the server can decide what kind of ID should be given to the peer
through the login response.

The main difference between low and high ID is that each server maintains
its own list of connected peers, so in two different servers there may exist peers
with the same low ID, while, for obvious reasons, there can be just one peer with
a fixed high ID for all the servers.

A list of tags is exchanged through the login, allowing the peer to know what
features are supported or required by the server, such as compression.

2.2.4 Callback

Two peers with high ID can always connect to each other and a peer with low ID
can always contact a peer with high ID. Obviously two peers both with low ID
can’t communicate, because none of them accepts incoming connections.

The callback mechanism allows a peer H with high ID to connect to a peer
L with low ID (see figure 2.6), but with the restriction that the two peers must
be connected to the same server, which acts as a relay. To contact L, the peer
H sends to the server a callback request referred to L, then the server forwards

17

H H

HL

L L

Figure 2.5: Connections between peers with high and/or low IDs.

a callback notify to L and at this point it is up to peer L to open the connection
toward H.

H L

server

Figure 2.6: Callback mechanism.

2.2.5 Offer files

After the login, a peer must notify the server about its shared files, so that other
peers can download those files from it. The offer files process takes place and the
peer sends the list of its shared files in a packet with a list of tags for each one.
In this list of tags there are some required details, such as name, size and MD4
hash of the file and some optional information such as the format and the type
(video, audio, etc.).

18

2.2. THE ED2K NETWORK

The only restriction is that no more than 100 files can be shared in an offer
files operation; if the files to be shared are more, then the list will be split into
more offer files packets. Every time a peer updates its list of shared files, an offer
files operation is necessary in order to inform the server about the changes. In
fact the shared list does not contain only complete files, but also those still in
download.

2.2.6 Files search

In the eD2k network it is absolutely necessary to contact a server to search for a
file and there are two ways to do that: local and global search. Local search takes
place via TCP and a peer must be logged in a server, before performing it. Before
transmitting data on a TCP stream, a connection must be established and this is
achieved through the login to the server. Global search is instead performed via
UDP and it does not require a login, so a request can be sent to all the servers
known by a peer. A totally different way to search for files is provided by Kad
(see 2.3.8).

Usually a search request contains the keyword and the server response for that
contains a list of files whose name is related with that keyword. Moreover the
response contains a list of tags for each file with all the needed information.

An advanced mode also exists for sending more informations to the server
about the searched files through a list of tags (such as minimum or maximum
size, type, format, etc.), in this way the results list will be filtered by the server
itself.

2.2.7 Sources search

When a peer wants to download a file, it must know who is owning and sharing
this file, namely its sources. In the eD2k network the only way to learn these
information is to ask the servers for them one more time. Sources search can be
local or global as well and works exactly as the files search, only with a different
kind of information being exchanged. Through local sources search the peer
receives all the sources known by the server that is sharing the requested file,
both high and low. But when a global search for sources is performed only the
ones with high ID are communicated, because the low sources are not connected

19

to the same server as the one to which the peer who sent the request is, so the
callback mechanism can’t take place.

In a sources search response two basic fields are inserted for each peers in the
list: the eD2K ID and the TCP port. So if it is an high ID, the requesting peer
gets the IP from it and directly contacts the new source; otherwise, the requesting
peer sends a callback notify related to that ID to the common server.

Once the peer knows the list of sources who shared a file, it contacts them and
everything that follows concerns only the P2P structure of the eD2K network.

2.2.8 Peers handshake

An eD2K handshake occurs before a peer can download a file from another one. It
is achieved by exchanging a hello request and response. Through this handshake
several basic information about peers are sent in a list of tags. First of all the
details about what features they support and keep active are written in the two
miscellaneous options tags, which will influence all the future phases, so it is of
primary importance to decode them correctly. All those features will be described
in Chapter 3. Other information included in hello packets are the nickname, the
user hash6, the UDP port, etc.

After the handshake there is one more optional phase (see section 3.1.2), then
the file request takes place.

2.2.9 File request

The peer now asks for the file, first of all sending a file request to be sure that the
contacted source is still sharing the file. If not, the source answers with a file not
found response, otherwise the response contains some details, such as the name
that these sources has given to the file. If the source has the file, the process will
go on and a file status request is sent. The received response contains the parts
bitmap, which allows to understand what the complete parts owned by the source
are.

Some other phases occur depending on what features the two peers support.
But before proceeding with the final steps, the peer will ask for the MD4 hashset,
if it is not already known, that contains the MD4 hash of all parts. Knowing

6A casual MD4 hash that the peer automatically assigns to itself at the first run.

20

2.3. THE KAD NETWORK

these hashes, the peer will be able to check if the received data for some file are
correct.

At this point the peer sends the request to start the download: in the best
case the download starts right after, otherwise the peer is put in a queue. The
queue is managed by the source with a FIFO7 policy, but a peer can also gain
positions (see section 3.1.3). When the peer is put in queue, the connection is
closed and it repeats the handshake and all the previously described phases after
5 minutes, in order to know its new position in the queue or to start the download
if it is its turn. It may also send a queue ranking request via UDP, which does
not require a connection.

2.2.10 Download

Finally the download starts and at least 20 minutes of download are guaranteed
before the peer is put in queue again. Also, if the peer loses the connection, it
will be able to restart, the download, if it reconnects within the first 20 minutes.
The peer can request up to three different blocks of file at once. Data packets
contain also the offsets of the sent block, so the peer can correctly save on disk.

When the source stops the download a cancellation message is sent. But the
downloading peer can stop the data transfer as well, for example when it receives
uncorrected data and decides to ban the source.

2.3 The Kad network

The development of Kad in Mulo started about a year ago and it is not yet
completed, but all of its main functionalities work fine. For a full review about
Kad and its implementation in Mulo the reader is referred to [8], here its overview
will be brief.

As we said before, Kad is a DHT and it relies only on peers. Kad is based
on the Kademlia [18] algorithm, with the only difference that the Kad imple-
mentation uses 128-bit long IDs, also said Int128, as opposed to the 160-bit ones
used in the original Kademlia. This is due to the fact that to map resources -
the shared file in this case - in the network the file MD4 hash is used. Because
peers and resources must both be mapped on the same address space, an address

7FIFO - First In First Out

21

space of 128-bit is also used for the peer ID. The peer ID is usually called Kad ID
and it is chosen randomly by the peer itself at the first run. A 128-bit ID space
can allocate up to 2128 different objects, a very large number compared to the
number of peers in the network, so even choosing a random ID, the probability
of ID collision is negligible.

2.3.1 Distance function

Kademlia’s best intuition is to use a XOR metric to compute the distance function
between two identifiers in the ID space. The distance between two identifiers ID1

and ID2 is defined as δ(ID1, ID2) = ID2 ⊕ ID2. The interesting features of this
operation are:

• δ(ID, ID) = 0,

• symmetry: δ(ID1, ID2) = δ(ID2, ID1)

• triangular property: δ(ID1, ID2) + δ(ID2, ID3) ≥ δ(ID1, ID3).

2.3.2 Routing table

The routing table, stored by every peer, manages links between peers across the
network, thus defining the network topology. It contains the set of contacts that
the peer has knowledge of, maintaining it by adding contacts, deleting the stale
ones and keeping a structure - a tree - that makes it efficient when used to access
resources spread all over the network. Contacts are stored by their Kad ID and
their reliability is evaluated on how long they have been known.

The routing table is made of different routing zones, which correspond to
nodes in the tree; the tree leaves are also routing zones containing a routing bin
each. A routing bin corresponds to a bucket, where contacts are stored ordered
by the last time they were seen: older contacts are on the top, while newer ones or
recently contacted ones are on the bottom. Contacts on the top are periodically
contacted to determine if they are still active or they should be removed from the
list. Contacts are inserted in the routing table according to their XOR distance
from the node’s own Kad ID.

22

2.3. THE KAD NETWORK

2.3.3 Bootstrap

To join the network a peer has to retrieve in some way at least one another peer
connected to Kad, thus a bootstrap mechanism serves this purpose. Bootstrapping
implies to get a list of nodes from somewhere outside the Kad network (most
preferably from some trusted web site) and to use this list to populate the routing
table. A bootstrap file contains a list of approximately 500-1000 contacts, that
are not directly inserted in the routing table; in fact not all the nodes are chosen
for the bootstrap, but just the 50 closest to the peer’s Kad ID.

Contacts chosen from the most reliable in the routing table are saved at the
end of a session for later use in a local file.

2.3.4 Firewall check

Joining the network, a peer needs to find out if it’s able to accept incoming TCP
connections. In order to do that the peer sends to some known peers a firewall
request and waits for the response. Contacted peers try to establish a connection
with the requesting node: if the connection is successful, a firewall acknowledge-
ment is sent, and after receiving two of these responses, the requesting node sets
its state as not firewalled.

2.3.5 Find buddy

A firewalled peer is not able to accept incoming TCP connections and needs a
way to be contacted by other peers. As there is no server in Kad, the callback
mechanism relies on buddies, non-firewalled peers that act as relays, receiving the
callback request for the firewalled peer and forwarding the callback notify to it.
Obviously a firewalled peer must before find a buddy between its nearest peers
and open a connection toward it.

2.3.6 Lookup

Lookup is a procedure that iteratively locates nodes closer to a target Kad ID:
closer nodes have a better chance of being responsible for resources indexed by
the target ID. Thus through the lookup we should get a list of nodes close to the
resource we want to ask for, so that we may then perform search or publishing

23

actions on those nodes. We may also just want to locate some nodes somewhere
in the network, as done in routing table maintenance tasks: in that case only the
lookup phase is performed and nodes are added to the routing table.

2.3.7 Publishing

In order to index resources for later retrieval, peers that want to share files and
related resources must publish them. In Kad, as there is no server, the publishing
scheme is a bit more sophisticated.

A peer must publish the keywords for its own files and publish itself as a
source in two different processes. As if it was not enough, it should take care of
grouping references to the same keyword to avoid sending many messages to the
same contacts for the same keyword.

Publishing of resources does not last forever: contents need to be republished
because publishing expires. The expiration time for keywords and notes runs out
after 24 hours, while source publishing expires just after 5 hours. A client can
index and store up to 50.000 keywords and for each file published a maximum of
1000 sources and 150 notes.

In each kind of publishing a lookup is performed and then, once a list of
peers close to the target is known, requests will be sent. Peers receiving the
requests will first check if they are entitled to be responsible for such resources,
as only contacts in the tolerance zone can control a resource. If so, they check
other constraints and will eventually index the requested content, replying with
a message containing the load of the node for that kind of resource. The load is
a value between 0 (empty) and 100 (full, that means the request is rejected).

The publishing process terminates when enough nodes have successfully stored
the resource. The number of peers that must store the resource is 10; furthermore
if the process takes too long, it will end after 140 seconds for keyword and sources
publishing, after 100 seconds in the case of notes publishing.

2.3.8 Search

Thanks to Kad it is possible to locate different resources on the network using
keywords, sources and notes search.

A keyword search is more exactly a search for files published on the network.

24

2.3. THE KAD NETWORK

The longest word in the keyword is chosen as target by calculating its MD4 hash.
Then a lookup phase takes place in order to reach the peers nearest to this target.
When they are found, a search keyword request is sent and, if they are responsible
for some content published by a third party, they will look for the keyword in its
indexed contents and then reply with a list of contents. In keyword search a list
of tags that need to match and other restrictions are usually sent, for advanced
searches and results filtering.

In the sources search the target is the file ID, that is its MD4 hash. This kind
of search works as the previous one, except for the received response: this time
it contains the list of contacts sharing the requested file.

Finally as for sources search, notes search is targeted to a specific file, but this
time the response contains a list of comments and ratings for the file.

A search terminates when enough results are retrieved (300 for keyword and
files search, only 50 for notes one) or if it goes on for too long (the timeout is set
to 45 seconds for all kinds of search).

25

26

Chapter 3

Features

It is not necessary that an eMule client supports all the eMule features to work
fine, however quality and credibility of a client depend on how many more new
features are implemented and closely they are adhering to the protocols. The more
the functionalities that are supported, the easier the collaboration with other
clients; some features are actually mandatory, because without implementing
them the flow of messages dictated by the protocol could not proceed. Instead,
in some cases it’s up to the user to decide whether a feature should be used or
not.

Mulo’s stage of development is partway, but it is still uncompleted. Those
few unsupported features are not indispensable and we intend to add them in the
near future.

AICH

Unicode

UDP
Secure

Identification

Compression Sources
Exchange 1

Extended
Request

Comments
Multi
Packet

Preview

RESERVED

Callback

MOD

Multi Packet
Extension

Large File

Kad

Sources
Exchange 2

1.

2.

Figure 3.1: Structure of miscellaneous options tags.

27

A peer understands if another one supports a feature thanks to the miscella-
neous options tags (shown in figure 3.1), exchanged in the initial handshake (see
section 2.2.8).

3.1 Supported features

Here is a list of all features supported by Mulo. Although it is of vital importance
that a peer adheres to the protocols, we sometimes do not strictly follow every part
of it. That does not mean we change it, rather we use the exchanged information
in a more efficient way, as we will see later.

3.1.1 Corruptions management

During a download, it may happen that incorrect data is received, this could be
because of a transmission error on the channel or because the peer is malicious
and sends wrong data. There are two ways for a peer to understand if what it is
downloading is correct or not.

The first is ICH 1, a system that allows the peer to check if a complete down-
loaded part is correct by comparing the part’s MD4 hash retrieved from sources
with the one calculated from data saved on disk. Unfortunately this system is
not very efficient, because for every little error the peer must download the whole
part again.

So a second system was developed by the eMule team, AICH 2. Here every
part is split in chunks of 180 KB and for every one of them the SHA1 3 [17] hash
is calculated. These hashes are managed with a tree and put in the leaves. The
AICH root hash is the SHA1 hash contained in the root of the tree and recursively
calculated starting from the leaves. In fact the hash of an intermediate node is
calculated by applying the SHA1 function again to the concatenation of the hashes
of its two children. Thus using the AICH root hash is another way to index files
and probably this new system will replace the old one in a not so distant future.
It is not currently possible to use only AICH, because not all of the eMule clients

1ICH - Iintelligent Corruption Handling
2AICH - Advanced ICH
3SHA1 - Secure Hash Alogorithm 1 produces a 160-bit message digest based on principles

similar to those used in the design of the MD4 message digest algorithms.

28

3.1. SUPPORTED FEATURES

support it.

Before using AICH the peer must retrieve the root hash from sources during
the file request operations. A peer can then retrieve the recovery hashset of a
part, that allows to understand what are the corrupted chunks in a part. In this
way if the error is not severe, only few chunks will be downloaded again.

If interested in these algorithms, the reader can refer to [13], instead section
3.3.1 will illustrate how we have improved AICH in Mulo.

3.1.2 Secure identification

To ensure a proper identification on other clients the feature known as secure
identification is used. It uses a public-private key encryption algorithm, that is
RSA4 [21]. The secure identification takes place after the initial handshake and
it is optional, depending on whether peers support it and keep it active or not.
But a peer can also decide to accept only secured peers, so if someone does not
use secure identification, the connection will be closed.

Sending the request, peer A states whether it has the public key of peer B. If
not, A receives the public key of B, which is then stored in a local file for future
sessions, and a random value, usually called challenge. The challenge is not
stored, because a different one is created for every session. If A wants to identify
himself with B, it creates a digital signature and sends it to B. This signature
is from its private key, the public key of B and the random challenge. After
receiving the signature of A, B checks if it has been created from its public key
and the correct challenge. If it also fits client A’s public key, then it is correctly
identified.

To better understand how this mechanism works, refer to [23], in the next
section we will see the reason why it is so important.

3.1.3 Credits system

A huge problem in file sharing communities is the parasitic approach of some
users who only download and don’t share anything, so to scourge this behavior
eMule has introduced a credits system.

4RSA - Rivest Shamir and Adleman (the names of who first publicly described it).

29

When a peer is put in queue, its position is established by its rank, as the
queue is not managed with a simple FIFO policy. The rank is evaluated on the
number of credits owned by the peer, calculated with the following formula

credits = min

{
2 · downloaded_data

uploaded_data
,
√
uploaded_data + 2

}

In this way the more a peer uploads to us, the more it gets ahead and goes
up the queue. Obviously to use credits system peers must support secure identi-
fication, to store the amount of credits of other peers in a local file and retrieve
it in every new session, avoiding in this way the problem of other peers cheating
about their credits. Obviously a peer without secure identification is penalized:
in fact all peers are rewarded by the credit system, whether they’re supporting
and using the credits system or not. eMule’s credit system is described in [23]
along with many other systems.

3.1.4 Intelligent autologin

A server list usually contains a large group of servers, but some of them are often
unreachable or bad ones, thus eMule has implemented a system to automatically
perform the login. Mulo sports an intelligent autologin system to automatically
connect to the best possible server in the list and to prevent fake low IDs.

When a server list is downloaded from the web, usually it does not contain
only the server’s IP and TCP port, but also the number of users connected to the
specific server and the number of files on this server. They are two approxima-
tions, however at every new login the server updates and sends this information
to clients. So the rank of each server is based on these two values, rewarding good
servers or conversely penalizing those that are bad or unreachable. The server
list is sorted and Mulo automatically starts to perform login. Mulo attempts to
login to some server for at most 3 times, stopping as soon as some login gives it a
high ID. If the third login gives another low ID, Mulo assumes that the problem
is due to the peer’s network configuration and that it is not a fake low ID. More
details about how this system is implemented in Mulo are in [5].

30

3.1. SUPPORTED FEATURES

3.1.5 Comments and file rating

When users decide to download a file shared in the network, they are not sure of
what the file will be until its finalization. Initially only the file name is known,
but users can’t really rely on it, because everyone could change the name and
play the file off as something else.

Comments prevent the download of undesired contents. Every user that is
downloading or has shared a file can leave a comment to give more information
about it and its quality. For example comments on films often contain an eval-
uation to its video and audio quality; sometimes it is also useful to simply write
that the file is a fake. Moreover a peer can also rate files. These informations
are retrievable from both eD2k and Kad networks (in the last one comments are
called notes as we have seen in section 2.3.8).

However malicious peers could also leave fake comments or give a low rate to
a good file: comments and rating are not enough to ensure users about files and
they must pay attention in believing or not in what is reported.

3.1.6 Preview

Preview is a more reliable system to ensure the good quality of a file; unfor-
tunately it is not always applicable and surely not before a peer has already
downloaded some data.

Mulo supports the preview of several formats such as AVI 5, MP3 6, ZIP,
RAR7 and ISO8. When a long enough block of a MP3 or AVI file is downloaded,
a user can automatically start VLC 9 and play this portion of file: if it is a
film or a song, users will be able to understand whether they downloaded the
correct file by watching it and/or listening to it. In the case of archive files the
data is compressed and unusable until the download is complete. Archive files
also contain some additional information about the stored contents, so a user
can know what files are contained in the archive, after downloading the blocks

5AVI - Audio Video Interleave is a multimedia container format.
6MP3 - It refers to MPEG (Moving Picture Experts Group) and is a patented digital audio

encoding format using a form of lossy data compression.
7RAR - Roshal ARchive
8ISO - An International Organization for Standardization image is an archive file of an

optical disc.
9VLC - VideoLan Client is a free and open source media player and multimedia framework.

31

with these information. ZIP, RAR and ISO use different ways to store different
information inside the file and it was not easy to understand and implement their
algorithms. For more details see their official specifications.

3.1.7 Compression

The Compressed Protocol has been introduced to allow the exchange of com-
pressed data. Its byte of identification is 0xD3 for the compression of eD2K
packets and 0xE5 for Kad ones.

Compression can be used by servers, when they response to a search request
containing a long list of results. Some servers do not even allow the login of peers
that do not support compression. Moreover compression is used to send com-
pressed blocks of file during the download, if both the peers support it, reducing
the amount of transferred bytes. To see how compression is implemented in Mulo
refer to [24].

3.1.8 Large files management

Initially the file size was written as an integer field of 4 bytes: this means that
only files smaller than about 4 GB could be shared and downloaded. The limit
of 4 GB is too constraining, because nowadays files easily exceed that size. So
the eMule team has also introduced the 64-bit Protocol, in which packets have a
file size field of 8 bytes, allowing to share large files of size up to 256 GB.

When the file size is instead inserted in a tag as an optional information there
are two different solutions: to send a tag containing a long value of 8 bytes or
two integer tags, where one contains the initial 4 bytes of the size and the second
the last 4 bytes.

3.1.9 Sources Exchange

Sources exchange is another smart way to retrieve sources for a file in download,
asking peers for them. The eMule team has even developed two versions for it,
however supporting its first version is enough to know all we need.

32

3.2. UNSUPPORTED FEATURES

3.2 Unsupported features

Here the most important features that Mulo does not support are described.
Obviously it is also due to the fact we have not a good documentation about
them: this is why there will be not external references in the following sections.

3.2.1 Obfuscation

Illegal actions, such as to share and download files covered by copyright, can be
easily found out by simply analyzing the exchanged eD2K or Kad packets with
appropriate tools. The Obfuscation Protocol has been created in order to avoid
the discovery of what the user is downloading by a third party. It uses the RC4 10

algorithm to encrypt packets; in this way the transmitted data does not appear
as eD2K or Kad packets, but as a pseudorandom stream of bits decodable only
by the receiver. RSA is exploited one more time to exchange the keys used to
encrypt and decrypt the stream.

Its support is of primary importance, because some servers and peers do not
accept unobfuscated communications. Mulo can obfuscate only Kad packets,
instead obfuscation in eD2k is more sophisticated and its development is still an
open challenge.

3.2.2 Filters

Filters allow a client to check if a peer is malicious or not: peers are directly
banned, without performing the connection and spending time trying to download
from them. The most famous filter lists are supplied by Peer Guardian 2 [4],
which allows several levels of filtering. The Level 1 filter is the most used and it
should be set as the default option, the Level 2 filter is instead optional. There
also exist other filters but they are experimental or too restrictive, so the web
site advises users against their utilization.

Actually we have already developed a good algorithm to use these filter lists,
but it is in not integrated in Mulo yet.

10RC4 - Ron’s Code 4

33

3.2.3 Kad firewall, findbuddy and publishing

As we have said presenting Kad, it is not completed yet: not all of its function-
alities are developed or perfectly work.

Firewall is almost done and it will be hopefully soon integrated with find
buddy. The publishing system instead already exists and works fine, but it does
not respect the protocol. It simply stores resources in some appropriate nodes,
but it does not take into account the expiration of the publishing and other
specifications. So a complete review must be done: it is vital to have a very good
publishing system, because if we introduce a lot of bugged clients, the whole
network will lay on the line.

3.3 What Mulo does but eMule can’t

Developing and implementing eMule features, we pay attention to two fundamen-
tal aspects: are we using them in the right way and how can we improve them?
Our team has reached some important results using this approach: in some cases
Mulo works even better than eMule itself. Moreover we have introduced some
features that other clients haven’t.

3.3.1 Proactive corruptions management

As stated before, we have developed a new system to manage corruptions, PACH 11.
Here “proactive” means that it is used before the part’s download is completed. In
fact all the hashes of the chunks are requested during the initial phase of the file
request. More precisely we ask for just one recovery hashset to every contacted
peer. This lets check if the peer has a correct AICH hashset before starting the
download: the tree is reconstructed by using the recovery hashset and its AICH
root hash is compared with the one retrieved from the network. Moreover it
allows to collect all the SHA1 hashes spreading requests to several peers.

The requested blocks have the size of a chunk: every time the download of
a chunk is complete, its SHA1 hash is calculated from the data saved on the
disk and it is compared with the known one. The strong point of this system is
that a corrupted chunk is discovered in no time and it can be downloaded again

11PACH - Preactive Advanced Corruption Handling

34

3.3. WHAT MULO DOES BUT EMULE CAN’T

immediately. When the download is complete, the user does not wait for the
check and recovery of corruptions, as in eMule, but the file is ready to be utilized.

3.3.2 Parallel hashing

To hash a file can take a lot of time, particularly if it is a large one: we have
implemented a system to calculate hashes concurrently and in parallel. This
means that two threads are used to hash every file not to freeze the console and
other Mulo’s operations and that the MD4 and SHA1 hashes can be calculated
at the same time. One part at a time is loaded into memory and the two threads
concurrently calculate its MD4 hash and the SHA1 hashes of its chunks and of
the part itself.

In this way we cut by half the time spent hashing a file, furthermore we
manage and control the loaded data, reducing accesses to the disk.

3.3.3 Intelligent banning

Clients download corrupted data for two reasons: it could be an transmission
error due to the channel or data that is deliberately sent wrong by a malicious
peer. It is not possible to understand the cause a priori: in the case of a brief
error transmission due to the channel, the instantaneous ban of the peer is not
the best decision to take. Intelligent banning allows to ban peers after they have
sent the third corrupted chunk, ensuring not to confuse errors transmission with
malicious peers.

3.3.4 Super sources search

In section 2.2.7 we have said that there are two ways to retrieve sources for a
file. Obviously a local search gives more results than a global one: for this reason
we developed the super sources search. It gradually and slowly performs a local
search in all the servers in the list. Of course it must also login to every server
before asking them for sources, then the connection to the server is kept alive for
callback operations. Once Mulo has contacted all peers with low ID related to
that server, it disconnects.

Thus Mulo contacts a lot of peers for each file, even more of these retrieved
through Kad: it is not surprising that with few active downloads and after some

35

Figure 3.2: “I like!” button for Mulo’s Facebook page.

hours Mulo has contacted several thousands of peers.

3.3.5 Facebook: let the world know us!

Nowadays social networks are very popular and they are excellent way to adver-
tise something: Mulo has a page on Facebook, the most popular social network.
Thanks to its API [3] it is possible to write on the wall of users or ask them
to press the like button. All this can be easily done registering as a Facebook
developer on the web site and creating a Facebook application, whose assigned
ID is requested to use the API.

At the first run of Mulo users are redirected to a web page where they can
press the like button for the Facebook page of Mulo, as shown in figure 3.2. After
that Mulo asks them if they want to advertise it by posting a note on their wall
about them starting to use Mulo. Of course the user must perform the login and
give its authorization before Mulo does anything.

Listing 3.1: Source code to post something on Facebook wall.
1 static void postOnWall(String message , String link , String picture) {

2 String url = "/dialog/feed?app_id=" + APP_ID;

3 url =+ "&redirect_uri=" + FACEBOOK_PAGE;

4 if (message == null && link == null && picture == null) {

5 return;

6 }

7 if (message != null) {

8 url += "&message=" + message;

9 }

10 if (link != null) {

11 url += "&link=" + link;

12 }

36

3.4. EXPERIMENTAL FEATURES AND RESEARCH

13 if (picture != null) {

14 url += "&picture=" + picture;

15 }

16 openWebPage(FACEBOOK_SITE , url);

17 }

Users might post on their Facebook wall when a download starts for the first
time, but if the content is covered by copyright, it will be risky, especially if the
wall is public: we suggest users to publish something when its total download or
upload speed reaches some threshold.

3.3.6 Subtitles search

Recently an interesting feature has been added to Mulo that allows users to
easily search for subtitles. The user can find the subtitles for a specific movie by
searching for its title, while, in the case of TV series, it must also provide the
season and episode number, of course the user had always to chose the language.
Then Mulo searches in some databases available on the web and downloads the
requested subtitles or gives the link from which the user can chose between several
options.

3.3.7 Automatic management of dynamic server list

Several server lists are available on the web, but some are dynamic, that is their
link changes every 12 minutes. So it is not possible to insert their links in the
source code of Mulo, because they expire after few minutes. On the other hand
every time users want to update a dynamic list, they must open the web page
where they can find the actual link and manually download the list. To avoid all
these operations, Mulo has a parser for the web page with the dynamic links and
it automatically retrieves the related server lists.

3.4 Experimental features and research

We have introduced some innovative features to improve our application and to
make it more suitable than other well-known ones.

37

3.4.1 Super file sharing

Our main challenge is definitely super file sharing, that is a system to combine
several P2P networks. For now we are focusing on eMule and BitTorrent, but
this system should be adaptable to any other network, already existing or not.

The idea is that, when users search for something, super file sharing auto-
matically extends the search to all the known and available networks, then it
arranges and merge the results, before showing them. The real issue is that in
many different networks files are indexed in different ways. So it is not possible to
know a priori if a result found in a network matches the result given by another
one. However the problem can be simplified: results are grouped by file size and
format, then the user chooses the file to download and super file sharing tries
to retrieve blocks from all the networks by downloading blocks from all the files
in the matching group. The downloaded data are then verified with the corrup-
tions manager of the file really chosen by the user. If we retrieve corrupted data
downloading blocks of a different file in the matching group, then this file will be
discarded. Obviously the system must discover as soon as possible if a file in the
groups really matches the chosen one or not.

In a utopian feature the system will show every matching group as a unique
result, but for now only an experimental implementation of this system exists and
it is described in [24]. Moreover we intend to create our protocol, the PariPari
Protocol.

3.4.2 Assisted search

On the web there is a lot of information that can be exploited to develop an
assisted search. For example, by keeping a list of the favorite musical artists,
Mulo could automatically notify users when their new songs come out and suggest
the download. In the same way there are services on the web that allow to
make a adaptable calendar of TV series episodes. Knowing the users’ favorite
TV series, Mulo could notify them when a new episode comes out or it might
automatically start the download and notify them only when the download is
finalized. Otherwise Mulo could search the web for the name of old episodes and
the user should only decide what episodes to download.

38

3.4. EXPERIMENTAL FEATURES AND RESEARCH

3.4.3 Fake files identification

When users downloads a file, it not always is what they expect: fake prevention is
a delicate issue. Comment, ratings and previews are powerful tools, but they are
not always reliable or available. A good idea is to use the file’s magic number 12

to identify data it contains. This magic number is already detected and analyzed
in MP3 files, but a lot of work is still to be done.

3.4.4 Facebook and friends

eMule allows to favor users just by declaring them as friends, so we are thinking
about linking this feature to Facebook: knowing Facebook friends of the user,
they could be automatically recognized.

Moreover we could notify users when their friends are downloading something
(obviously not through the Facebook wall) and suggest those contents to them
as well.

3.4.5 Mulo for embedded systems

Nowadays a number of embedded systems provide SDK 13 to develop applications
for these platforms. Most notably, the Android platform can run software written
in the Java language. The Android operating system runs on many smartphones
and tablet computers with a wide variety of hardware specifications.

The point of export Mulo in such systems is that these devices are powerful
enough to run the client and most of the time they are not just connected to
the Internet through 3G14 networks, but also through more reliable 802.11 15

networks.
Running a P2P file sharing application can be effective to download small

files. Obviously also the rapid discharge of batteries issue must be taken into ac-
12It is a constant numerical or text value used to identify a file format or protocol. Detecting

such constants in files is a simple and effective way of distinguishing between many file formats
and can yield further run-time information.

13SDK - Software Development Kits
143G - 3rd Generation Mobile Telecommunications is a generation of standards for mobile en-

vironment and mobile telecommunication services, including wide-area wireless voice telephone,
mobile Internet access, video calls and mobile TV.

15The 802.11 family consists of a series of over-the-air modulation techniques that use the
same basic protocol to create wireless networks.

39

count when dealing with these devices. Thanks to the new PariPari GUI plug-in,
the interface should instead automatically adapt itself to the embedded system’s
hardware, so no more work will be necessary on it.

40

Chapter 4

Mulo reengineering

As we have seen in the previous chapter, after the first phase of reverse engi-
neering, Mulo has reached an advanced stage of development and it could easily
compete with other eMule clients but for two basic aspects: performances and ap-
pearances. We want Mulo to become the next best thing, so in this last period we
have focused our attention to NIO and GUI integration, completely reengineering
Mulo, as we will see in the course of this chapter.

4.1 Mulo before

Before reengineering, Mulo’s performances were good, but not enough: its main
issue was the waste of threads. As we can imagine a P2P application opens
a lot of connections and their execution must be independent, concurrent and
parallel: connections can’t block each other and of course their processes can’t be
executed serially. Threads allow to write on a socket and wait for something to
be read without freezeing what is happening in other connections or other active
processes.

For this reason Mulo creates a thread for every new connection. If the entity
to be contacted is a peer, its thread will last until the initial operations are
performed and it will be put in queue or the download will start: after that peers
are managed by their own download. Thus additional threads are requested that
take care to download files from sources, one for every active download. If it is
a server, the thread will instead stop only when the disconnection occurs. Then
some other threads are used to manage the upload, send and receive data on the
UDP socket and to accept incoming TCP connections. Finally a thread is started

41

for every new search: this avoids freezing the whole plugin while it is searching,
especially in Kad, in which searches may take several minutes. However for a full
overview of how Mulo used to work see [19].

Thus the major issue is due to peers, the client usually is connected to one
server at any given time, requiring only a thread. The worst case is when a
super sources search occurs: in these cases a login for every server in the list is
performed, however the server list is usually short. In the same way there is a
limited number of active downloads at the same time. During a download a lot
of peers are instead contacted many times; moreover, when a list of sources is
retrieved from a search, all these sources are contacted one after another in few
minutes. This means that a huge number of threads is needed and often a lot of
them start almost simultaneously.

The introduction of Connectivity NIO allows to considerably reduce the amount
of threads in use to a low and constant number as discussed in section 4.3.

The other problem that afflicts not only Mulo but the whole PariPari project
was the lack of a nice, comfortable and user-friendly graphic interface. In fact
before GUI plug-in’s development and its integration, discussed in section 4.4,
the only way to use Mulo was through a CLI 1.

4.2 Refactoring

A refactoring phase has preceded Mulo’s reengineering, because the source code
had some particular aspects. First of all there existed no subpackages, all the code
instead was included in the main package paripari.mulo. There were more than
one class in the same Java file, leading to files with more than 2000 lines of code.
In some cases even a class could reach such a length, because of the presence of
many long methods. All of that makes the code really complex in some points.
Then almost all the variables had a protected visibility: every class could access
and modify fields of other classes, also due to the fact that there was only one
package. This kind of approach is not really object-oriented and it should be
avoided. Finally there existed absolutely no interfaces, that would have allowed
to encode similarities which the classes of various types share. On the other

1CLI - A Command Line Interface is a mechanism for interacting with a computer operating
system or software by typing commands to perform specific tasks.

42

4.2. REFACTORING

hand the source code already had a high level of readability and its Javadoc was
complete and well written.

Package Description

connection Contains all the classes to create and manage connections over
UDP and TCP and include the classes for NIO threads and
the one that contacts the sources.

crypto Contains classes that allow to use MD4, MD5 and SHA1 al-
gorithms to calculate hashes, RC4 for obfuscation and RSA
for secure identification.

entities Its classes are used to create instances of peers and servers
and other related objects.

extra Contains classes to perform extra functionalities such as pre-
view and subtitle search.

files Its classes represent shared files and downloads.

flow Contains classes to manage the communications with peers
and servers in an asynchronous way by using a particular soft-
ware design pattern, described in section 4.3.4.

gui Here there are all the classes to interact with the old console
and with the new GUI.

kad Contains all the classes related to the Kad network.

manager Contains classes to set up the threads and objects that allow
to manage downloads and uploads.

protocol Here there are classes that implement all the eMule protocols,
defining a class for every type of packet and tag.

search Contains all classes needed to perform every kind of search,
including Kad ones.

Table 4.1: Mulo’s packages organization.

The first thing to be refactored was the visibility of the variables: now they
are all private, providing two methods to get and set a variable, that can have a
different level of visibility, depending on the circumstances. Sometimes we want
objects not to be modifiable, then the get method returns a clone. After that the
second step consists in splitting files composed of more than one class in order to

43

have a different file for every distinct class; the number of files is quadruplicated
and they are now more than two hundreds. Finally, after reorganizing files in sev-
eral package, the source code presents a more expressive and modular structure.
The main package paripari.mulo contains all the classes that make up Mulo’s
core and several subpackages, described in table 4.1.

Finally the last refactoring phase concerned packet management. A new inter-
face IPacket (shown in listing 4.1), must now be implemented by every packet.
The new and most important method is the one that processes specific packets:
when we must to process a packet, we simply have to insert a call to this method.
Before reengineering a long switch-case statement was instead used everywhere
received packets were managed. This solution also allows to write all the opera-
tions involving received packets only once and to remove a lot of duplicate code.
This method will be moreover essential to implement asynchronous connections
in a simple way. Since, when a packet is received, it is no longer necessary to
know what kind of packet it is and thus to decide how to handle it. The only
thing that remains is to choose what to do next, after receiving and processing a
packet. This way of processing packets is even more interesting when the packet
is a request: in this case the process ends sending the response to the other peer.

Listing 4.1: IPacket interface.
1 /** Interface that all packets must implement. */

2 public interface IPacket {

3

4 /**

5 * Packet protocol.

6 * @return The protocol as a <code >byte </code >.

7 */

8 byte getProtocol ();

9

10 /**

11 * Total packet size (in bytes), *excluding* header.

12 * @return The size.

13 */

14 int getSize ();

15

16 /**

17 * Packet type.

18 * @return The type as a <code >byte </code >.

19 */

20 byte getType ();

21

22 /**

23 * Transform this packet in a form that can be transmitted over the network.

44

4.3. NIO INTEGRATION

24 * @return Packet content bytes as a <code >ByteBuffer </code >.

25 */

26 ByteBuffer toBytes ();

27

28 /**

29 * Process the packet and the information that it contains.

30 * @param source The peer or server that sends us this packet.

31 * @param data Additional object such as the related <code >Download </code > or

32 * <code >Search </code > needed to process this packet.

33 * @return If the process is successful or not.

34 */

35 boolean process(Object source , Object data);

36

37 }

The initial refactoring was longer and more boring than hard. The only
thing we had pay attention to is to choose the most appropriate visibility of
methods, especially for set and get. Another important thing was to keep the right
references between classes, while we move, rename and change them. However
there are powerful tools that help developers useful not only to refactor the code,
as we will see in Chapter 5

4.3 NIO integration

The need for reengineering was due to the emergency of NIO integration: the
majority of changes in fact sources from the incompatibility between the structure
of Mulo and the new Connectivity NIO. Here the heart of the issue was to find
an efficient and non blocking way to use TCP sockets. Moreover we have paid
attention to choose a clean and elegant solution through the use of a well-known
design pattern.

4.3.1 Earlier design

Before we went through a phase of network communication analysis by studying
atomic message sending operations.

45

Figure 4.1: Login phase.

46

4.3. NIO INTEGRATION

Figure 4.2: Offer files and server list request phases.

47

Starting with the exchange of packets with a server, we first have the login
operations, shown in figure 4.1. A PacketTCPLoginRequest is sent and we wait
for the respective PacketTCPLoginResponse. The check for the ID occurs be-
tween the exchange of these two packets: the server acts as a peer, sending us
a PacketTCPHelloRequest: if we accept the incoming connection and thus we
respond with a PacketTCPHelloResponse, the server will assign us a high ID.

Then the offer files phase takes place, potentially being executed many times
depending on the lenght of list of shared files; every time some files are shared
with the server, a PacketTCPOfferFiles is sent. In the final phase we ask the
server for a list of other servers known by it, adding them in the server list. To do
that the peer sends a PacketTCPServersListRequest and the server replies with
a PacketTCPServersListResponse. Moreover, while connected to a server, peers
receive periodical status messages from it. After that, several independent and
random phases of search for files or sources can take place, until disconnection.

While we are connected to a server we can perform any kind of search. For a
local files search over TCP a PacketTCPSearchRequest is sent and the results are
contained in a number of PacketTCPSearchResponse. Instead for a local sources
search over TCP we send a PacketTCPSourcesRequest and we wait for a Pack-

etTCPSourcesResponse. If a global search via UDP is needed, the corresponding
UDP packets will be used.

The sequence of phases is a little different when the user wants to perform an
autologin. In this case there are several phases of login to different servers, until
the best server is found; then all the following phases after the login take place,
but only for this server. In the same way, when we ask for a super sources search,
several phases of login, one for every server in the list, are directly followed by a
local sources search, all the other phases are instead skipped.

The sequence of exchanged packets among peers is a bit more sophisticated,
but its study has been also more useful. As we have seen in the previous chapter,
there are a lot of features that are not always supported or required: thanks
to this analysis we now have a clear head on whether a phase must occur and,
depending on it, what to do next.

Starting from the handshake, which obviously always occurs, a PacketTCPHel-
loRequest is sent, waiting for a PacketTCPHelloResponse. Then a phase related
to secure identification take place, if both peers support it. Here a PacketTCPSe-

48

4.3. NIO INTEGRATION

cureIdentificationRequest is sent and the other peer must answer with a
PacketTCPPublicKey (if requested) and a PacketTCPSignature, see figure 5.1.
Of course this procedure must be performed by both peers, in order that they
can identify each other.

Figure 4.3: Handshake phase.

Then the file request can start and there are two ways to do that. One way is to
send the PacketTCPFileRequest and the PacketTCPFileStatusRequest, whose
responses are PacketTCPFileResponse and PacketTCPFileStatusResponse re-
spectively. But, if both peers support multiple packets, only a single PacketTCP-
MultiPacket will be sent that includes both the previous requests and some
others. The other requests regard the sources exchange and the AICH root hash:
this kind of information can be requested only through multiple packets and they
are inserted only if both peers support them. Moreover there is an extended
version of the multiple packet, that is the MultiPacketExt: before sending a
multiple packet, we must also check if peers support the extended version or not,
choosing the correct packet to send. The response is always a PacketTCPMulti-

PacketResponse, containing all the responses except for the one related to the
sources exchange, which is sent in a separate PacketTCPSourcesExchangeRe-

sponse, if and only if the peer knows other sources. Figures 4.5 and 4.6 show

49

Figure 4.4: Secure identification phase.

the file request phase. If the peer has not the file or does not share it anymore,
it will answer with a PacketTCPFileNotFound, closing the communication.

If both peers support multiple packets, allowing to exchange the AICH root
hash, and they also support AICH, we now ask for the AICH recovery hashset of
only one part through a PacketTCPAICHHashsetRequest, whose response is the
PacketTCPAICHHashsetResponse. Then the hashset containing the MD4 hashes
of all parts is requested: in this phase a PacketTCPHashsetRequest is sent and
we wait for a PacketTCPHashsetResponse to retrieve the MD4 hashes.

Finally the request to start the download takes place, here we send a Pack-

etTCPStartUploadRequest and the other peer can reply in two different ways:
sending us a PacketTCPQueueRanking, that means we are put in queue, or a
PacketTCPUploadAccept. In the latter case, we start to download asking blocks
of the file. Every phase of download starts by sending a PacketTCPFileDataRe-

quest, that could be also a PacketTCPFileDataRequest64 if the file is large, end-

50

4.3. NIO INTEGRATION

Figure 4.5: Simple file request phase.

ing when all the requested blocks. have been downloaded. Data is sent through
several PacketTCPFileData or PacketTCPFileDataCompressed, if compression
is supported, or their 64-bit version, namely PacketTCPFileData64 and Pack-

etTCPFileDataCompressed64.

4.3.2 Threads

While Mulo used to waste a lot of threads, they are now used very carefully,
reducing them to a very low and constant number (11). Thus reengineering has
produced a very notable improvement: all those threads will now be described in
details.

First of all there are five threads needed to put in operation NIO. TCP allows
four different kinds of action: connection, write, read and finally accept incom-

51

Figure 4.6: File request phase through multiple packet.

ing connection. When we ask Connectivity to perform one of those actions, we
must provide a notification, which Connectivity NIO inserts in a queue when
it executes the request. So we have a thread that removes notifications from
the queue and processes them. Obviously if there are no notifications in the
queue, the corresponding thread will wait for new ones: the take() method of
the BlockingQueue is blocking and if it does not find notifications in the queue,
it does not return until a notification arrives. Connectivity NIO allows us to
define a different queue for every kind of action, thus we have four threads, one
for each queue, that are AcceptListener, ConnectListener, ReadListener and
WriteListener. Finally the ServerListener thread listens on the server socket
for new incoming connections. Because the accept(...) method of TCPServer-
SocketNonBlokingAPI is non-blocking, a lock on the server socket causes this
thread to wait until we process an accept notification, avoiding an infinite loop.
The process of an AcceptNotification invokes a notify on the server socket, un-

52

4.3. NIO INTEGRATION

locking this thread, which calls another accept. ServerListener class is shown
in listing 4.2, the listing 4.3 instead shows the go() method of the other four
threads.

Listing 4.2: ServerListener class.
1 /**

2 * This class defines the thread that creates a server socket on the configured

3 * TCP port and starts a thread waiting on that port for connections.

4 * For each accepted connections another thread is started to serve the peer.

5 * Static methods to start and stop the listener are provided. The listener can

6 * be started multiple times , provided it was previously stopped.

7 */

8 public class ServerListener extends PariPariRunnable {

9

10 /** Unique TCP listener thread , or <code >null </code > if not running. */

11 private static PariPariThread thread = null;

12

13 /** The server socket. */

14 private static TCPServerNonBlockingSocketAPI serverSocket;

15

16 /** Private constructor so it’s not callable from outside. */

17 private ServerListener () {

18 // Nothing to do!

19 }

20

21 /**

22 * The name of this thread.

23 * @return The name.

24 */

25 private static String getListenerName () {

26 return Mulo.MULO + "-ServerListener";

27 }

28

29 /**

30 * Opens a server socket on <code >Config.tcpPort </code > port and starts

31 * the TCP listener thread , which waits for incoming connection requests from

32 * peers and opens new threads to serve each. Does nothing if the server

33 * socket is already open or cannot be opened for whatever reason.

34 * @return Whether the listener thread was started successfully.

35 * @throws IllegalStateException If the listener thread is already running.

36 */

37 public static synchronized boolean start() throws IllegalStateException {

38 if (thread != null) {

39 throw new IllegalStateException(getListenerName () + " is already

running");

40 }

41 try {

42 serverSocket = Mulo.getTCPServerNonBlocking ();

43 serverSocket.setDefaultQueues(ReadListener.getQueue (),

44 WriteListener.getQueue (), AcceptListener.getQueue ());

45 serverSocket.bind(new InetSocketAddress(Config.getTcpPort ()));

53

46 }

47 catch (IOException e) {

48 PPLog.printError("Exception trying to open TCP port", e);

49 return false;

50 }

51 thread = MuloThread.startThread(new ServerListener (), getListenerName ());

52 return true;

53 }

54

55 /**

56 * Stops the TCP listener thread , if it is running.

57 * Note that it may take a few seconds before the thread is actually shut.

58 */

59 public static void stop() {

60 if (thread != null) {

61 thread.interrupt ();

62 thread = null;

63 }

64 if (serverSocket != null) {

65 try {

66 serverSocket.close();

67 serverSocket = null;

68 }

69 catch (IOException e) {

70 PPLog.printError("Error closing " + getListenerName (), e);

71 }

72 }

73 }

74

75 /**

76 * Checks that the listener is up and running.

77 * @return Whether the thread is running and the TCP port is open.

78 */

79 public static boolean isRunning () {

80 return thread != null;

81 }

82

83 /**

84 * This is actually not a public method , because <code >TCPListener </code > has

85 * no public constructor. This method waits for new connection requests ,

86 * processes them and starts a new thread to serve each.

87 * Terminates when either the thread is interrupted or the server socket is

closed.

88 */

89 @Override

90 @Deprecated

91 public void go() {

92 try {

93 while (!this.mustStop ()) {

94 synchronized (serverSocket) {

95 if (serverSocket != null && !serverSocket.isClosed ()) {

96 serverSocket.accept(new AcceptNotification ());

54

4.3. NIO INTEGRATION

97 }

98 }

99 MuloThread.wait(serverSocket);

100 }

101 PPLog.printNotice(getListenerName () + " thread interrupted , quitting");

102 if (thread != null) {

103 thread.interrupt ();

104 thread = null;

105 }

106 MuloThread.endThread ();

107 }

108 catch (Exception e) {

109 PPLog.printError("Exception in " + getListenerName () + " thread ,

autorestarting it", e);

110 thread = MuloThread.startThread(new ServerListener (), Mulo.MULO + "-

TCPListener");

111 }

112 }

113

114 protected static void notifyServerSocket () {

115 MuloThread.notify(serverSocket);

116 }

117

118 }

Listing 4.3: Listeners’ go() method.
1 @Override

2 @Deprecated

3 public void go() {

4 try {

5 while (!this.mustStop ()) {

6 queue.take().process ();

7 }

8 PPLog.printNotice(getListenerName () + " thread interrupted , quitting");

9 if (thread != null) {

10 thread.interrupt ();

11 thread = null;

12 }

13 MuloThread.endThread ();

14 }

15 catch (InterruptedException e) {

16 PPLog.printError("Interruption in " + getListenerName () + " thread ,

autorestarting it", e);

17 thread = MuloThread.startThread(new ReadListener (), getListenerName ());

18 }

19 catch (Exception e) {

20 PPLog.printError("Exception in " + getListenerName () + " thread ,

autorestarting it", e);

21 thread = MuloThread.startThread(new ReadListener (), getListenerName ());

22 }

23 }

55

UDPListener is another thread used by Mulo to communicate, waiting for
data on the UDP socket and allowing to write datagrams on it. Finally there
is the HandshakeProcessor: it takes care of contacting sources through a direct
handshake, if they have a high ID, or otherwise requesting a callback to the
common server. The peers to which we had to connect are managed with three
HashMap. The former uses as keys the IP address, stored in an InetAddress

object; it contains the connected peers, the other two instead contain the peer to
which we are not yet connected. The not connected peers that have a high ID
are stored in a HashMap in which the eD2K IDs of the peers are keys. Peers with
low IDs are instead stored in a HashMap in which servers are the keys and every
server is associated with another HashMap that contains the related low peers. In
this way we can link a low peer with the relative server, allowing to perform the
callback.

Other two threads are needed: DownloadManager manages the active down-
loads, UploadManager handles peers that are in our queue or to which we are
uploading data. Then the TaskManager thread performs several periodic opera-
tions, such as to save the XML files of Mulo, to update speeds or to check the
system status. Finally, the Kad thread performs its maintenance tasks.

Obviously spawning search-related threads cannot be avoided, because oth-
erwise the whole plugin would be freezed every time a search takes place, as we
said. However these threads live at most for a few seconds (or minutes in Kad);
furthermore, users do not usually submit many search requests - not at the same
time, at least - and if they do, they do it over time, making it less of an issue.

4.3.3 Notifications

We have four different implementations of the Connectivity NIO API Plugin-
Notification, one for every different TCP action. The ConnectNotification

is processed by the ConnectListener thread every time a new connection is
opened. At the same way an AcceptNotification (processed by the AcceptLis-
tener thread) arrives when we accept an incoming connection. The incoming
connections are detected by the ServerListener thread, which listens on the
server socket for them. It creates an AcceptNotification to insert in the ac-

cept(PluginNotification notification) method every time it detects a new
incoming connection. ReadNotification and WriteNotification are received

56

4.3. NIO INTEGRATION

every time Connectivity NIO performs a read or write action on a socket, respec-
tively. All these objects implement the PluginNotification interface, allowing
us to define our own implementation of the process() method adding whatever
field we may need to the notification itself.

All the notifications (except for the accept one) need to know the related entity
- that could be a peer or a server - to be correctly processed. We have thus created
the Entity class, extended by Peer and Server. This class has a boolean variable
that allows to understand if we are waiting for a write notification or not. When
we ask for a write action, the canWrite variable of the entity is changed to false

and, when we receive the notification, it is turned to true. Every time a write
notification is received, we call the method canWrite() on the corresponding
entity. If we are not waiting for another write notification and we must send
some packets, they will be sent, otherwise they are stored in a list and they will
be sent as soon as possible. In fact every time we receive a write notification, we
call this method to send potentially waiting packets. The case of the read action
is easier: the only thing to do is to always wait for new data. So every time we
receive a read notification we ask to read again, calling the method canRead() of
Entity. Of course these two methods that allow to read and eventually write on
a socket are also called inside the process method of the AcceptNotification

and ConnectNotification to start the exchange of data.

To be able to decide how to implement the process() method is of primary
importance, allowing us to decode the received data as eMule packets and to
decide what to do after NIO has processed a request. In the following listing 4.4
it is shown an example of how we have implemented this method in ReadNoti-

fication.

Listing 4.4: ReadNotification’s process() method.
1 public boolean process(AsynchronousNotification <TCPNonBlockingSocketAPI >

parameters) {

2 if (parameters instanceof AsynchronousReadNotification){

3 AsynchronousReadNotification <TCPNonBlockingSocketAPI > readParameters =

4 ((AsynchronousReadNotification <TCPNonBlockingSocketAPI >) parameters);

5 if (readParameters.getException () != null) {

6 Exception e = readParameters.getException ();

7 PPLog.printError("Exception in " + this.entity.toString (), e);

8 this.entity.disconnect ();

9 return false;

10 }

11 if (readParameters.endOfStream () || !this.entity.isConnected ()) {

57

12 return false;

13 }

14 this.entity.canRead ();

15 byte[] data = readParameters.getData ();

16 ByteBuffer cloneBuffer = null;

17 ByteBuffer buffer = this.entity.getConnection ().getBuffer ();

18 if (buffer != null) { // this is a clone!

19 cloneBuffer = this.entity.getConnection ().getBuffer ().duplicate ();

20 }

21 if (cloneBuffer == null) {

22 cloneBuffer = ByteBuffer.allocate(data.length);

23 cloneBuffer.order(ByteOrder.LITTLE_ENDIAN);

24 cloneBuffer.put(data);

25 }

26 else {

27 byte[] oldData = cloneBuffer.array ();

28 cloneBuffer = ByteBuffer.allocate(oldData.length + data.length);

29 cloneBuffer.order(ByteOrder.LITTLE_ENDIAN);

30 cloneBuffer.put(oldData).put(data);

31 }

32 if (Packet.isObfuscated(cloneBuffer.get (0))) {

33 PPLog.printWarning("Mulo don’t support Obfuscation , disconnecting

34 from " + this.entity);

35 this.entity.disconnect ();

36 return false;

37 }

38 while (cloneBuffer.capacity () >= PacketTCP.HEADER_SIZE) {

39 int packetLength = PacketTCP.HEADER_SIZE -1 + cloneBuffer.getInt (1);

40 if (cloneBuffer.capacity () >= packetLength) {

41 byte[] bytesToDecode = Utils.arrayCopy(cloneBuffer.array(), 0,

42 packetLength);

43 Peer src = this.entity instanceof Peer? (Peer)this.entity:null;

44 PacketTCP packet = PacketTCP.decodePacket(bytesToDecode , src);

45 if (packet != null) {

46 PPLog.printIncoming("Received " +

47 packet.getClass ().getSimpleName () +

48 " (0x" + Utils.byteToHex(bytesToDecode [5]) + ")",

49 packet , bytesToDecode , this.entity.toString ());

50 this.entity.getConnection ().setInboundBytes(packetLength);

51 Mulo.setTcpBytesIn(packetLength);

52 Mulo.incrementTcpPacketsIn (1);

53 if (packet instanceof IPacket) {

54 this.entity.getContext ().proceed ((IPacket)packet);

55 }

56 }

57 int remainingBytes = cloneBuffer.capacity () - packetLength;

58 if (remainingBytes > 0) {

59 ByteBuffer tempBuffer = ByteBuffer.allocate(remainingBytes);

60 tempBuffer.order(ByteOrder.LITTLE_ENDIAN);

61 tempBuffer.put(cloneBuffer.array(), packetLength ,

62 remainingBytes);

63 cloneBuffer = tempBuffer;

58

4.3. NIO INTEGRATION

64 }

65 else {

66 cloneBuffer= null;

67 break;

68 }

69 }

70 else {

71 break;

72 }

73 }

74 this.entity.getConnection ().setBuffer(cloneBuffer);

75 return true;

76 }

77 PPLog.printError("Wrong read notification: " + this.entity);

78 this.entity.canRead ();

79 return false;

80 }

4.3.4 States Pattern

Now that Mulo has asynchronous TCP connections, we need to know in what
state an entity is when a packet is received. As we said, the only thing to do after
receiving and processing a packet is to decide the following step. A very elegant
way to do that is to use the State Pattern2, that is a behavioral3 software design
pattern. This pattern is used in computer programming to represent the state of
an object and it is a clean way for an object to change its state at runtime.

This pattern requires the definition of several different states linked among
them. Every new state must extend the State class which implements the IState
interface. When we have an IState object, we can call its method to process a
received packet and to decide the next thing to do, changing the related entity’s
state. In fact every entity has a StateContext object, whose code is in listing 4.5.
Its main variable, an IState object named exactly state, represents the current
state of the corresponding entity. The process(IPacket packet) method of the
StateContext object is called every time a packet is received, processing the
ReadNotification. This method calls in turn the process(IPacket packet)

method of sState. The class State has a general implementation of this method,
but every object that extends this class can override, changing how the received

2It is also known as the objects for states pattern.
3Behavioral design patterns are design patterns that identify common communication pat-

terns between objects and realize these patterns.

59

packets are managed, while the entity is in this particular condition. Listing 4.6
shows the implementation of this method. Every state stores the request to send
and a list of answers to receive. Until the packet is not sent and the list of the
corresponding answers is empty, the state cannot be changed. When the request
is sent, the variable is set to null, an answer is removed from the list when it is
received. Finally the state context keeps a list of packets to be sent, usually the
answers to the received requests.

Listing 4.5: StateContext class.
1 public class StateContext {

2

3 /** The actual state. */

4 private IState state;

5

6 /** List of answers to send. */

7 private final LinkedList <IPacket > answersToSend = new LinkedList <IPacket >();

8

9 /**

10 * Initialize the object , setting the state to <code >null </code >.

11 */

12 public StateContext () {

13 this.state = null;

14 }

15

16 /**

17 * When a packet is received , the state is processed.

18 * @param The received packet.

19 */

20 public void process(IPacket packet) {

21 this.getState ().proceed(packet);

22 }

23

24 /**

25 * Change the state.

26 * @param state The next state.

27 */

28 public void switchContext(IState state) {

29 this.state = state;

30 if (this.state != null) {

31 this.state.getEntity ().canWrite ();

32 }

33 }

34

35 ...

36

37 }

60

4.3. NIO INTEGRATION

Listing 4.6: State class.

1 public class State implements IState {

2

3 /**

4 * The corresponding entity (could be a <code >Peer </code >

5 * or a <code >Server </code >).

6 */

7 private Entity entity;

8

9 /** The request to send. */

10 private IPacket requestToSend;

11

12 /** The list of the expected responses. */

13 private final LinkedList <Class > expectedResponses = new LinkedList <Class >();

14

15 /** If the state can be processed or not. */

16 private boolean proceed = true;

17

18 /**

19 * Initialize the object.

20 * @param entity The corresponding entity.

21 */

22 public State(Entity entity) {

23 this.setEntity(entity);

24 }

25

26 /* (non -Javadoc)

27 * @see paripari.mulo.flow.IState#proceed(paripari.mulo.protocol.IPacket)

28 */

29 public void process(IPacket packet) {

30 boolean processed = false;

31 if (packet != null && !packet.isMalformed ()) {

32 if (this.isWaitingForResponses ()) {

33 if (this.expectedResponses.contains(packet.getClass ())) {

34 this.expectedResponses.remove(packet.getClass ());

35 this.process(packet);

36 processed = true;

37 }

38 }

39 if (! processed) {

40 packet.process(this.getEntity (), null);

41 }

42 }

43 if (this.proceed) {

44 if (!this.isWaitingForSend () && !this.isWaitingForResponses ()) {

45 this.setProceed(false);

46 this.entity.getContext ().switchContext(this.next());

47 }

48 }

49 }

50

51 /* (non -Javadoc)

61

52 * @see paripari.mulo.flow.IState#proceed(paripari.mulo.protocol.IPacket)

53 */

54 public IState next() {

55 return new IdleState(this.entity);

56 }

57

58 ...

59

60 }

Another important method of the State class is next(): it is also overridden
and redefined in every object that extends this class. This method contains all
the logic needed to decide what the next execution step will be or, in other words,
what next state will be set. It is called when the state is processed, that is if the
request has been sent and there are no more answers to wait for, allowing to easily
switch the context. Every time the context is switched and every time a request
is set or an answer is added to the list, the canWrite() method of Entitiy is
called to try to send them.

Once the main elements are ready, the last thing to do is to define what states
are needed and write code for them.: the earlier design phase gives us a clear idea
on what are the states and how to implement them.

The first class of states concerns servers. Starting at the login operation we
can define 3 different states. LoginState is the more simplest state, which per-
forms a login to the associated server. n case the login operation succeeded, the
workflow proceeds to an OfferFilesState or ServersListState, depending on
whether users are sharing files or not. When these operations are completed,
the context is switched to an IdleState, meaning that the connection is still
open and that the server is waiting for search request. So if we must perform a
files search, the context is switched to a FilesSearchState. After the search is
finished, the context is switched to an IdleState again. If we must perform an
autologin, we have the special AutoLoginState that performs an autologin: if its
server results to be the best the process will continue with the OfferFilesState,
otherwise there will be another AutoLoginState corresponding to the next best
server in the user list. Finally if we have to do a super sources search a Login-

ForSourcesState is initialized, that jumps directly to a SourcesSearchState.
The complete server’s flow of states is shown in figure 4.7.

The flow of states of a peer starts with the HelloState that performs the
handshake. The next step is to perform the secure identification, but if it is not

62

4.3. NIO INTEGRATION

supported, the SecureIdentificationState will be skipped. Here we have two
options: to send the file request and the file status request inside a multiple packet
through a FileInfoMPState or to send them in two distinct phases through the
FileInfo1State and FileInfo2State. If multiple packets are used, then the
flow passes through the AICHState, if it is supported, otherwise it directly jumps
to the ICHState to retrieve the MD4 hashes of all the parts. Finally we have the
StartUploadState: if we are put in queue, the connection is closed and the peer
will be contacted again some time later to get an update of our position in the
queue or to start the download. Finally, when the download starts, we have a
number of DownloadStates. The peer’s flow of states is depicted in figure 4.8.

There is one more state to manage incoming connections, that is Incoming-
HandshakeState. When Connectivity NIO notifies an accept and we process it,
we create a new entity whose context is set to this state. It has no request to
send, waiting for an hello request from the other peers. After receiveing the hello
request we have all the information, such as IP and eD2K ID, to understand if it is
the response to an our callback. In fact if we find this peer in our list of low peers
and we have a pending callback for it, after the SecureIdentificationState,
we can start to request the file with the usual process. If it is instead a high peer
or a peer with low ID that we are not trying to contact, then it is the one that
wants to download: after the SecureIdentificationState, this peer context is
set to an IdleState, allowing to wait for requests, to process them and to send
the corresponding answer. The UploadManager keeps the queue with these peers
and decides when to put a peer in queue and when to let it download.

63

LOGIN
LOGIN FOR
SOURCES

OFFER
FILES

SERVER
LIST

IDLE

AUTO
LOGIN

FILES
SEARCH

SOURCES
SEARCH

Is it the best server?

YES NO

DISCONNECT

perform autologinask for sources direct
login

Share more files?

YES

NO

CONNECT

Figure 4.7: Server’s flow of states.

64

4.3. NIO INTEGRATION

Secure Identification
is supported?

HELLO

CONNECT

SECURE
IDENTIFICATION

HELLO

FILE
INFO MP

FILE
INFO 1

YES

NO

Multiple packets
are supported?

YES NO

FILE
INFO 2

AICH ICH

YES NO

Is AICH
supported?

START
UPLOAD

DOWNLOAD

DISCONNECT

Is it put
in queue?

YES

NO

Figure 4.8: Peer’s states flow.

65

4.3.5 Performances

Many tests have been done to show the final result and to prove the great im-
provement we have obtained reengineering Mulo: in this section two of them will
be presented.

In the former we have downloaded a file of few MB: an MP3 audio file of
about 7 MB, that is the average size of a song. It took Mulo just three min-
utes to download the whole file, during which Mulo contacted about 150 sources
downloading from 15 of them. The average speed was about 40 MB/s, reaching
the peak of 160 MB/s. During all the downloads the number of used threads was
steady and the CPU usage, shown in figure 4.9, resulted absolutely negligible,
except when PariPari is loaded and when the download is finalized.

Figure 4.9: CPU usage in the first test.

The latter instead concerns the download a bigger file: an AVI video file,
whose size is about 750 MB. Of course this time the download took a bit more,
about 45 minutes, but during all this time Mulo has gone as far as retrieving and
contacting more than a thousand of sources, downloading from about 25 different
peers. The download of the whole file was very fast: the average speed was about
300 MB/s and, when all the 25 sources were active, it has reached a download
bandwidth just shy of 500 MB/s.

Running the same tests on the old Mulo, we can see in figure 4.10 the excessive
waste of threads. When Mulo is started the amount of alive threads is around
60. As the number of contacted peers increases, the alive threads grow up until
Mulo reaches the threshold imposed by the Core of a maximum of 100 threads.
At this point Mulo must wait that the number of threads decreases to start a

66

4.3. NIO INTEGRATION

new thread and try to connect to another peer. This means that now Mulo can
start the download sooner, contacting peers more quickly.

Figure 4.10: Waste of threads before reengineering.

Surely the CPU usage is also improved: before reengineering the average
percentage of CPU usage was around 10%, while now it is a bit lower, as we see
comparing figures 4.11 with 4.12. But in this test the Java heap memory usage
is also interesting, it is absolutely reasonable considering the file size and the
amount of peers, as we see in figure 4.13.

Figure 4.11: CPU usage before reengineering.

67

Figure 4.12: CPU usage in the second test.

Figure 4.13: Java heap memory usage in the second test.

4.4 GUI integration

The PariPari GUI is developed in Vaadin, that is a Java framework for RIA4, web
based applications with the same potential of the desktop ones. It features a ro-
bust server-side architecture: the largest part of the application logic runs securely
on the server. The code is written in Java, then GWT 5 automatically translates it
in AJAX 6 to create the web page. Moreover it is browser-independent, preserving
the portability of PariPari.

This plug-in is still a work in progress: Mulo is the first to adopt the new
official GUI, thus its integration is a testing ground for this new interface. The
GUI plug-in is dealt in [14] and [22], here only its integration will be described.

4RIA - Rich Internet Application
5GWT - Google Web Toolkit
6AJAX - Asynchronous JavaScript And XML)

68

4.4. GUI INTEGRATION

Listing 4.7: Method to request a GUIAPI object.
1 /**

2 * Requests and implementation of GUIAPI. The eventual retrieved GUIAPI

3 * implementation will be saved in <code >MuloGUI </code >.

4 * @return The GUI.

5 */

6 public static GUIAPI getGUI () {

7 try {

8 IFeatureValue [] features = new IFeatureValue [] {new FeatureValue("time",

9 Mulo.RESOURCE_TIMEOUT)};

10 IRequest request = new Request(GUIAPI.class ,

11 new ConstructorParameters(features));

12 IReply replay = Mulo.reference.askTheCore(request);

13 PPLog.printError(replay.status ().getClass ().getSimpleName ());

14 if (replay != null && replay.status () == IMessage.Status.OK) {

15 PPLog.printNotice("GUI started.");

16 return (GUIAPI)replay.getAPIs ()[0];

17 }

18 PPLog.printWarning("Could not obtain the GUI.");

19 return null;

20 }

21 catch (FeaturesTooRestrictiveException e) {

22 PPLog.printWarning("Could not obtain the GUI.", e);

23 return null;

24 }

25 catch (NotEnoughCreditsException e) {

26 PPLog.printWarning("Could not obtain the GUI.", e);

27 return null;

28 }

29 catch (CannotFindRecipientException e) {

30 PPLog.printWarning("Could not obtain the GUI.", e);

31 return null;

32 }

33 catch (UnsatisfiedRequestException e) {

34 PPLog.printWarning("Could not obtain the GUI.", e);

35 return null;

36 }

37 }

Mulo must ask the Core for an object GUIAPI to use the GUI , as shown in
listing 4.7: the GUI is an inner plug-in that offers a graphic interface as service.
Then we need a class, called MuloGUI, that implements some interfaces defined
inside the GUI code: they are FileManager, Searchable, Downloadable and
Uploadable. First of all we must subscribe Mulo for these actions, notifying
the GUI that Mulo can search, download and upload, as we see in the method
start(Plugin) of MuloGUI. The subscription of Mulo to the GUI is done using
a thread which dies just after: in this way Mulo does not let the plug-in loading
timeout expire while it is waiting for the GUI.

69

When users interact with PariPari GUI performing an action, such as a search
for example, the GUI will call the method that is implemented in MuloGUI. In
listing 4.8 the code to perform a search is also shown: as we see we must implement
the method search(String query) of Searchable. The query is the keyword
of the search: users cannot decide what kind of search to perform, thus the search
is always local over TCP in the connected server and through Kad. For the time
being it is not even possible to perform an advanced search.

Methods of GUIAPI accept objects that implements GUI’s interfaces, such
as IPGFileQuery and IPGFile, thus they are implemented by the pre-existing
Search and SearchResult classes of Mulo respectively. This allows us to use
objects of Mulo instead of copying their details in a new GUI object that im-
plements these interfaces. The GUI assigns to all these objects an UUID7 we
obviously must keep track of for later use. For example when a result have to be
shown in a search tab, the GUI needs to know the identifier of the corresponding
search. The method addResults(UUID searchID, List<IPGFile> results) is
used inside the method that processes the search response packets to add files to
the corresponding search tab in the GUI.

Listing 4.8: MuloGUI class.
1 public class MuloGUI extends PariPariRunnable implements

2 FileManager , Searchable , Downloadable , Uploadable {

3

4 /** The GUI. */

5 private static GUIAPI gui;

6

7 /** The references to Mulo’s <code >Plugin </code >. */

8 private static Plugin father;

9

10 /** If the GUI is active or not. */

11 private static boolean active = false;

12

13 /** Thread to request the GUI , it reads just after. */

14 private static PariPariThread thread;

15

16 /**

17 * Initializes the GUI for Mulo.

18 * @param mulo The references to Mulo plug -in.

19 */

20 private MuloGUI(Plugin mulo) throws IllegalArgumentException {

21 father = mulo;

22 }

23

7A class that represents an immutable universally unique identifier of 128-bit.

70

4.4. GUI INTEGRATION

24 /* (non -Javadoc)

25 * @see paripari.gui.API.GraphicalPlugin#getName ()

26 */

27 @Override

28 public String getName () {

29 return Mulo.MULO;

30 }

31

32 /* (non -Javadoc)

33 * @see paripari.gui.API.GraphicalPlugin#getFather ()

34 */

35 public Plugin getFather () {

36 return father;

37 }

38

39 /* (non -Javadoc)

40 * @see paripari.gui.API.GraphicalPlugin#getPublicKey ()

41 */

42 public String getPublicKey () {

43 return father.getPublicKey ();

44 }

45

46 ...

47

48 /* (non -Javadoc)

49 * @see paripari.gui.API.GraphicalPlugin.Searchable#search(java.lang.String)

50 */

51 public void search(String query) {

52 Search search = new Search(Search.Type.ADVANCED , query.trim());

53 UUID id = gui.addFileQuery(search);

54 search.setId(id);

55 search.start ();

56 }

57

58 /**

59 * Adds a list of results to a search in the GUI.

60 * @param searchID The corresponding search identifier.

61 * @param results The list of results.

62 */

63 public static void addResults(UUID searchID , List <IPGFile > results) {

64 List <UUID > uuids = gui.addFileQueryResultBlock(searchID , results);

65 for (IPGFile file : results) {

66 ((SearchResult)file).setId(uuids.remove (0));

67 }

68 }

69

70 /**

71 * Starts the thread to request the GUI.

72 * @param mulo Mulo plugi -in reference.

73 * @return If the thread is started or not.

74 */

75 public static boolean start(Plugin mulo) {

71

76 if (gui != null) {

77 return false;

78 }

79 thread = MuloThread.startThread(new MuloGUI(mulo), "GUIThread");

80 return true;

81 }

82

83 @Override

84 public void go() throws InterruptedException {

85 gui = Mulo.getGUI ();

86 if(gui.subscribe(this)) {

87 active = true;

88 }

89 else {

90 PPLog.printError("Can’t start PariPari GUI!");

91 }

92 }

93

94 /**

95 * Says if the GUI is active.

96 * @return If the GUI is active or not.

97 */

98 public boolean isActive () {

99 return active;

100 }

101

102 }

72

4.4. GUI INTEGRATION

Figure 4.14: Preview of Search & Share tab realized by S. Calgaro.

73

74

Chapter 5

Programming and

team management

PariPari is a modular project, whose plug-ins have dedicated teams of develop-
ment and testing; it is moreover completely managed and developed by students,
as we already said. Sometimes more plug-ins concerning the same field can be
joined in a confederation, such as the file sharing one, that is constituted by Mulo
and Torrent teams and it includes also the super file sharing project. Students
are hierarchically organized inside the project: at the top there is a PhD. student,
called the architect, that is the one in charge to manage the whole project and
all its students.

In this chapter the project management and organization is presented. Here
some development methodology and rules are also described, including the whole
list of tools used by our developers and testers.

5.1 Tools

Nowadays a lot of tools exist to help the work of developers. It is sometimes
not easy to use them, especially in the very beginning, but these tools have so
many useful features, that when developers learn their capabilities, it is hard to
do along without them. Working in PariPari, students get in touch with some
well-known softwares to develop and manage the teamwork. The knowledge of
these softwares will be useful in the near future, because they are also used by
seasoned professionals.

75

Figure 5.1: Official logos of some of the tools utilized in PariPari.

76

5.1. TOOLS

5.1.1 Developing tools

The absolutely most important software in use in PariPari is Eclipse. It is a
project focused on building an extensible development platform comprised of ex-
tensible frameworks, runtimes and application frameworks for building, deploying
and managing software across its entire lifecycle. It is an application that helps
computer programmers for software development. Eclipse includes a source code
editor, a compiler and interpreter, allowing advanced refactoring techniques, de-
bugging and code analysis. Eclipse is released under the EPL1 and its develop-
ment is in full swing: every year there is a simultaneous release, the last one was
Juno. One of its peculiarity is the extensible plug-ins mechanism to add extra
features. People know it mainly as a Java IDE 2, but plug-ins for a multitude of
other programming languages are available.

SVN 3 is another indispensable tool: it is a software versioning and a revision
control system. Developers use it to maintain current and historical versions of
files such as source code, web pages, and documentation and it semplifies a lot
the teamwork. Fortunately there is a plug-in providing support for Subversion
within the Eclipse IDE, that is Subclipse. It can also perform all the useful actions
allowed by Subversion, that will be described in section 5.2.

We use Apache Ant, an automating software build processes, to build jars for
every plugin. Ant exploits XML to describe the build process and its dependen-
cies. It allows to clean up and compile the source code, to create and sign the
jars, to write the Javadoc and finally to run the application with only one click.
An integrated component allows us to use Ant in Eclipse.

Students that work in Mulo had to look through the eMule code, above all
to do reverse engineering: it is the only real and reliable documentation, but this
will be discussed in section 5.6. In many occasions it is even necessary to compile
and run eMule in a debug modality. Fortunately eMule is an open source project
and source code is available on the official web site, but it is written in C++ and
it is set up to be compiled with Visual Studio. This is another powerful IDE: it
is not free software, but students at DEI can get a free license. Moreover while

1EPL - Eclipse Public License is a commercially friendly license that allows organizations
to include Eclipse software in their commercial products, while at the same time asking those
who create derivative works of EPL code to contribute back to the community.

2IDE - Integrated Development Environment
3SVN - It is the abbreviation of Apache Subversion, come form the command name svn.

77

Eclipse supports multiple platforms, Visual Studio requires a Windows OS.

5.1.2 Testing tools

In PariPari we give relevance to testing and debugging. When new students are
recruited, we even give some lessons about the testing suite. Source code for
every plug-in must be tested using JUnit, whose library is integrated in Eclipse.
It is a simple framework to write repeatable tests. Another useful library is
EasyMock which provides mock objects for interfaces (and objects through the
class extension) generating them on the fly.

There are Eclipse plug-ins that help the work of testers too, one of them is
EclEmma, that is a free Java code coverage tool. It is also used to collect statistics
about code, such as the number of tests, successful tests and failed ones: every
month the coverage of the whole project is calculated and the team whose code
has the highest coverage is symbolically rewarded with the Talpa d’Oro4.

Eclipse also has a built-in debugging tool, useful to find the portion of code
that is responsible for a bug. It allows to find the exact line of code that triggers
a malicious behavior. Once the relevant line of code has been found, it also allows
to know the context in which the error occurs and the associated values, variables,
and methods. When a bug is found, it must be immediately notified on Bugzilla,
a web-based general-purpose bugtracker.

All these tools combined with some clever software development methodology
make the testing experience very useful and interesting.

5.1.3 Analyzing tools

Before developing anything in Mulo, there is always a reverse engineering phase
due to the lack of documentation. There are two ways to achieve this: one is
to consult eMule code, but sometimes it is useful to try to sniff eMule commu-
nications. Wireshark results perfect for this purpose, it is the world’s foremost
network protocol analyzer and it lets capture and interactively browse the traffic
running on a computer network. Moreover it recognizes automatically the eMule
packets, correctly decoding them in the majority of cases.

4In En. “Gold Mole”, from the acronym TALPA.

78

5.2. REPOSITORY ORGANIZATION

Another useful tool is VisualVM, but it serves another purpose, that is to mon-
itor and troubleshoot Java applications by imposing minimal overhead. Mainly it
analyzes application performances, such as CPU usage, GC 5 activity, heap and
permanent generation memory, number of loaded classes and running threads.
It also allows to detect suspicious memory consumption and to invoke garbage
collection in the application or to take a heap dump, browsing the contents of
application heap.

5.1.4 Other tools

A lot of other tools are used by PariPari employees, many of which also in use
among non programmers, and some new pieces of technology we are always glad
to test as well. First of all we use a multitude of communication systems: Skype
is the preferred way to communicate directly, allowing us to chat but also to use
video calls and it is the best way to set up group conference calls. Then we also
make frequent use of Google Group as mailing list: there is the general group
of the PariPari project to which every PariPari student must subscribe and one
that is private for each plug-in. But we also use or have been using GTalk, Google
Wave and MSN Messenger ; we have even a page and a group on Facebook. We
also use tools that allow to share folders and files to concurrently work together
on the same resources, such as Google Docs and Dropbox. Finally tools such as
Doodle and Google Calendar are indispensable to organize meeting, especially
when dealing with recruitment sessions or Team Leader Meetings, that usually
have many participants.

5.2 Repository organization

The PariPari SVN repository is located on a server at DEI: it stores current and
historical data of files. Its structure is quite simple and organized; only atomic
operations are allowed on our server, to avoid ending in an incosistent state.

A check-out is the act of creating a local working copy from the repository.
The merge operation is probably the most problematic: it occurs when two sets
of changes are applied to a file or set of files. Commits allow to write and merge
the local changes made to the working copy back to the repository. A conflict

5GC - Garbage Collector

79

occurs when different parties make changes to the same document and the system
is unable to reconcile changes. They must be resolved combining changes or
selecting one change over the other. An update synchronizes and merges changes
made in the repository by others into the local working copy.

There are three principal directories in the repository: one contains several
branches, another one contains the tags and the trunks stay in the last one. The
underlying botanic metaphor hints that code in trunks should be the - solid -
base for unstable yet rapidly growing pieces of code added to implement some
new feature or to try and fix some bug or glitch that has been found in the trunk.
There is only one trunk for every plug-in storing code that is currently stable
(in the computer scientific sense). This means that only bug fixing operations
and minor changes can take place in the trunk. The number of branches for
every plug-in can vary depending on how many developers work in the team and
how many features they are developing. Every branch is a copy of the trunk
that allows developers to work in parallel on different features without having
one getting in the way of another. A new branch usually is created for every new
feature to be implemented and during its lifecycle it must always be synchronized
with the related trunk. When the development process is finalized and code is
stable, the branch will be merged into the trunk, after that it dies. Finally tags
store code for every release.

Every branch, trunk or tag is set up as a Java project in order to make the
import from SVN to the Eclipse workspace automatic through a simple check-
out. They also follow the same inner structure: source code, tests and libraries
are divided into dedicated directories. It is important not to insert references to
external files not stored in the project to avoid errors.

As we said, we use the Eclipse plug-in that provides support for Subversion,
unfortunately it is not really efficient. Operations of merge are quite complex:
every kind of conflicts is always notified, even useless ones. For example if space
characters or brackets are differently located in the two versions of code, unnum-
bered conflicts will be reported by Eclipse. For this reason we usually format
Mulo code in a pre-established manner, configuring the code template in Eclipse.
Moreover, the larger the lifecycle of an unsynchronized branch is, more its code
diverges from the trunk. Thus, when this branch will be merged with the trunk,
every added, deleted or changed piece of code will be notified as a conflict, making

80

5.3. EXTREME PROGRAMMING

the merge almost an impossible mission that requires and unnecessarily wastes a
lot of time, energy and resources. In some cases new code could also be incom-
patible with code in the trunk, thwarting all the efforts to develop it.

Eclipse is indeed unable to make a clever search for conflicts, omitting the
useless ones, or to recognize trivial ones, automatically resolving them. So Sub-
version is really useful and simplifies the teamwork, but if not properly used,
many issues will be introduced and sometimes their resolution can be hard to
achieve.

5.3 Extreme Programming

The XP6 [6] is a agile software development technique, whose goal is to organize
people to produce higher quality software more efficiently. XP also introduces a
number of basic values, principles and practices that combine together make this
methodology very successful.

In XP it is important to plan everything, releases should be small and frequent
and planning meetings take place to schedule tasks. In fact communications
among the entire team is crucial and even more between testers and developers.
It is then useful to get a concrete feedback from users.

Simplicity must be adopted in design, then refactoring should be done when-
ever and wherever possible to keep the design simple as the project goes on and
to avoid complexity. Integrations must also occur often, but one at the time.

A lot of effort is spent in testing, in fact all code must have unit tests and
must pass all unit tests before it can be released. XP includes also programming
in pairs, which means that two developers test their code each other. Another
adopted technique is TDD7 that relies on the repetition of a very short develop-
ment cycle. First the developer writes a failing automated test case that defines
a desired improvement or new function, then he produces code to pass that test
and finally refactors the new code to acceptable standards.

6XP - Eextreme Programming
7TDD - Test Driven Development

81

5.4 Recruitments

We usually do not expect that recruited students are prepared to work in Pari-
Pari: in the best case they know the basics of Java and something about data
algorithms, but we have also recruited some very good and experienced devel-
opers. In the very beginning it is not necessary that students have particular
knowledge of tools and methodologies used in PariPari, but they must show at
least good problem solving skills and an enthusiastic approach to learn, then in
about a month they must be ready to develop and test.

Initially there was a recruitment at the beginning of every academic year and it
didn’t plan any kind of examination: moreover students were randomly assigned
to plug-ins. This was not a very clever methodology and often results were not
so good, in fact many students proved not to be very productive. Now something
has changed and recruitments are handle in a more professional way: now an
entrance exam (that could be a test or an homework) takes place. We do also
interview both to understand the skill of students and to know their expectations
and interest. When we recruit students, we do not only care to fill vacancies, but
we also try to assign them to a plug-in they are interested in, in order to find the
right student for the right plug-in.

An important and in some way surprising thing we learn from recruitments is
that there is absolutely any correlation between the academic career of a student
and its contribution to the project or its code and design skills. On the contrary
we have good developers not only with a quite successful academic career but also
with a very low grade average. Motivation in PariPari is another crucial point,
in fact it is the main source of student productivity. We have often noticed that
motivated and uneducated students perform better than capable but unmotivated
ones. More statistical details about this phenomenon can be found in [16].

5.5 Team organization

All the teams follow the same internal organization: there are a team leader and
a tester leader, but in some occasions these two jobs are assigned to the same
person. Then every team has several students working on it, the amount of them
depending on the size of the plug-in, but usually ranging from three to eight,
although some trivial plug-in can be followed by only one person.

82

5.5. TEAM ORGANIZATION

5.5.1 The team leader

The team leader is the most important figure inside a team, having several as-
signments and duties. Leader usually are Master students and of course senior
developers, that have worked in PariPari for at least one year. They also are
students that have risen above the group and that have kept up with the job and
the concerning duties.

The leader must have a complete view and comprehension of the source code
and he must know at what stage of development his plug-in is. The leader also
has a full knowledge of the protocols. Obviously he is a good Java developer
and, when he is the tester leader too, he must also know testing libraries and
processes. The leader must be aware of what the plug-in issues are. He also
is the one that merges work of other developers, managing the trunk into the
SVN. Moreover the leader should know the plug-in checklist in order to plan the
roadmap with the architect. The communications between distinct teams occur
between theirs leaders and for this purpose there are frequent meetings to which
also the architect takes part.

The leader obviously is the one in charge to follow the students assigned to
his plug-in. He has in the first place the task to introduce new students inside the
team, teaching them about the methodology and the tools in use. Moreover he
decides what assignments to give, although the will of the student is also taken
into account to come to an agreement. After assigning a task, he must monitor
all the student activity during the whole development and testing process until
the degree, also ensuring that all the rules are followed, including deadlines. The
leader of course must motivate and give a boost to his team: sometimes rewarding
students that achieve important goals can be a clever strategy. But he also must
scourge and if possible prevent misbehaviors and inefficiency, taking appropriate
measures.

Thus this is not an easy job, especially because the leader not only must have
control over his students, but he also had to gain their respect.

5.5.2 The ideal Mulo developer

Since it was born, many students have worked on Mulo: its team can be consid-
ered among the most numerous and its activity is very sustained and dynamic.

83

Students had to observe some basic rules to allow everyone to hit it off.

First of all students had to cooperate and to keep others updated about any
kind of issues or improvements, the team leader above all. They must respect
the deadline, decided at the beginning of every assignment, reporting delay. It
is moreover useful when students join forces and help one another, even if, when
more students work together, it is hard to know if they all commit in the same
manner. So the team leader should beware of group assignments.

Another very important thing is that every developer must commit frequently
his work, to avoid lazy loss due to potential damage of local files. But also the
source code update matters and it should be performed at least in the beginning of
every new work session. Finally every branch must be always synchronized with
the trunk. All these precautions are needed to avoid conflicts, in fact working on
obsolete source code can compromise everything what has been done and even
worse it always make future commit, update and synchronize more complicated.

Source code should be written with good style, following software engineering
guideline and canons. Documentation is then vital in Mulo, so everyone have to
report everything is discovered about the eMule protocols and also how features
are developed. Javadoc of all code must also be maintained by everyone. In fact
a real issue not only in Mulo but in the whole PariPari project is the fast turn-
over of employees, that usually work on a plugin for few months until the degree,
unless, as it happens sometimes, they decide to continue as Master students. So
an up-to-date and accurate documentation make the work of others easier, when
something needs to be changed or improved in the future or to also introduce
new developers in the team.

Furthermore developers must be sure that the goal is reached and that Mulo
still works fine, thus a rigorous debugging takes place before integrating something
into the trunk or before releasing a new version of Mulo. Finally of course anyone
can avoid testing because it is sometimes boring: to avoid this behavior when a
bug is introduced and not caught by the tester, we usually blame the tester and
it will be the one which have to fix it. In fact it is impossible to write always
correct source code, instead it is easy to introduce a bug and often developers have
difficulty to judge their own code. Sometimes all these regulations seem extreme
or heavy, but it is mainly in this way that Mulo has reached very significant
results, becoming one of the most advanced and running plug-ins in PariPari.

84

5.6. LACK OF DOCUMENTATION

5.6 Lack of documentation

Unfortunately, at the best of author’s knowledge, an eMule official documentation
does not exist, thus it is not an easy challenge to develop an eMule client. The
only real information about eMule and its protocols can be found in [25] and
[15], but these are incomplete, obsolete and furthermore we have found not only
imprecisions but also some mistakes. Therefore in a manner of speaking the
only reliable documentation is the source code of eMule, that is open source and
can be downloaded from the eMule official web site. However it results often
hard to understand, both because it is written in C++, while the majority of
our students know only Java, with a low level of readability also caused by the
absence of comments. Sometimes we try to make up for this problem by reverse
engineering the protocol: exchanged packets with eMule clients are sniffed in
order to understand what and how packets are sent in every different occasion.
But in some cases this solution is also hard to use or even not applicable, so a lot
of patience and creativity are needed to develop any of the eMule features.

As a consequence of the lack of documentation, a lot of dialects are born: every
time developers are not able to understand and reproduce the eMule protocols,
there is the risk to introduce malformed packets, as for example the VeryCD Mod
does with the AICH packets. In other cases packets have some differences, but
they are still utilizable, instead the worst situation is when totally new packets
are created by other clients, changing the standard protocol. This means that
when an eMule feature is implemented in a client, it is not enough to understand
how eMule handles it, but we must also make out how other clients implement
it. Moreover we must act accordingly to the client we are connected to, sending
the correct packets that it expects to receive, otherwise the communication could
be closed.

So it is not hard to believe that at the present time the best eMule doc-
umentations are the theses written by PariPari students that have worked on
Mulo plug-in. This also explains why Mulo developers must carefully document
everything, mainly what is not reported elsewhere.

85

86

Bibliography

[1] BitTorrent web site. http://www.bittorrent.org.

[2] eMule Project web site. http://www.emule-project.net.

[3] Facebook web site for developers. http://developers.facebook.com.

[4] Peer Guardian 2 documentation. http://www.emuleitalia.net/fora/

index.php/topic,18915.0.html.

[5] Di Pieri A. PariMulo: Autologin e Annotazioni degli utenti. 2010.

[6] Wells D. The Rules of Extreme Programming. 1999.

[7] Peserico E. P2P Economies. 2006. In Proceedings of the ACM SIGCOMM.

[8] Mattia F. PariMulo: Kad. 2011.

[9] Peruch F. PariPari: Connectivity Optimization. 2011.

[10] Postel J. User Datagram Protocol. RFC 768 (Standard). 1980.

[11] Postel J. Transmission Control Protocol. RFC 793 (Standard). 1981.

[12] Bonazza M. PariCore. 2009.

[13] Muscarella M. PariPari - Mulo: AICH. 2009.

[14] Samory M. PariGUI 2010. 2010.

[15] Heckmann O. and Bock A. The eDonkey 2000 Protocol. 2002.

87

http://www.bittorrent.org
http://www.emule-project.net
http://developers.facebook.com
http://www.emuleitalia.net/fora/index.php/topic,18915.0.html
http://www.emuleitalia.net/fora/index.php/topic,18915.0.html

Bibliography

[16] Bertasi P. PariPari: design and implementation of a resilient multi-purpose
peer-to-peer network. 2010.

[17] Jones P. US Secure Hash Algorithm 1. RFC 3174 (Standard). 2001.

[18] Maymounkov P. and Mazíeres D. Kademlia: A Peer-to-peer Information
System Based on the XOR Metric. 2002.

[19] Ampezzan R. PariMulo 2009. 2009.

[20] Rivest R. The MD4 Message-Digest Algorithm. RFC 1320 (Standard). 1992.

[21] Shamir A. Rivest R. and Adleman L. A Method for Obtaining Digital Sig-
natures and Public-Key Cryptosystems. 1978. Communications of the ACM
21.

[22] Calgaro S. PariGUI - Progettazione e realizzazione dell’interfaccia grafica
per un software peer-to-peer. 2010.

[23] Daberdaku S. PariMulo: Credits. 2010.

[24] Pelizzaro S. PariMulo: Ottimizzazione del File Sharing. 2011.

[25] Kulbak Y. and Bickson D. The eMule Protocol Specification. 2005.

88

List of Figures

1.1 The PariPari plug-ins architecture. 9

1.2 PariPari official logo. 10

1.3 Mulo official logo. 12

2.1 eMule official logo. 13

2.2 TCP packet header. 14

2.3 UDP packet header. 15

2.4 File partitioning. 16

2.5 Connections between peers with high and/or low IDs. 18

2.6 Callback mechanism. 18

3.1 Structure of miscellaneous options tags. 27

3.2 “I like!” button for Mulo’s Facebook page. 36

4.1 Login phase. 46

4.2 Offer files and server list request phases. 47

4.3 Handshake phase. 49

4.4 Secure identification phase. 50

4.5 Simple file request phase. 51

4.6 File request phase through multiple packet. 52

4.7 Server’s flow of states. 64

4.8 Peer’s states flow. 65

4.9 CPU usage in the first test. 66

4.10 Waste of threads before reengineering. 67

4.11 CPU usage before reengineering. 67

4.12 CPU usage in the second test. 68

89

List of figures

4.13 Java heap memory usage in the second test. 68
4.14 Preview of Search & Share tab realized by S. Calgaro. 73

5.1 Official logos of some of the tools utilized in PariPari. 76

90

	Abstract
	Sommario
	Overview
	The PariPari project
	The DHT structure
	Plug-ins architecture
	The Core
	Credits System
	Connectivity and NIO

	Mulo

	The eMule network
	The protocols
	The eD2K network
	Peers identification
	Files identification
	Server login
	Callback
	Offer files
	Files search
	Sources search
	Peers handshake
	File request
	Download

	The Kad network
	Distance function
	Routing table
	Bootstrap
	Firewall check
	Find buddy
	Lookup
	Publishing
	Search

	Features
	Supported features
	Corruptions management
	Secure identification
	Credits system
	Intelligent autologin
	Comments and file rating
	Preview
	Compression
	Large files management
	Sources Exchange

	Unsupported features
	Obfuscation
	Filters
	Kad firewall, findbuddy and publishing

	What Mulo does but eMule can't
	Proactive corruptions management
	Parallel hashing
	Intelligent banning
	Super sources search
	Facebook: let the world know us!
	Subtitles search
	Automatic management of dynamic server list

	Experimental features and research
	Super file sharing
	Assisted search
	Fake files identification
	Facebook and friends
	Mulo for embedded systems

	Mulo reengineering
	Mulo before
	Refactoring
	NIO integration
	Earlier design
	Threads
	Notifications
	States Pattern
	Performances

	GUI integration

	Programming andteam management
	Tools
	Developing tools
	Testing tools
	Analyzing tools
	Other tools

	Repository organization
	Extreme Programming
	Recruitments
	Team organization
	The team leader
	The ideal Mulo developer

	Lack of documentation

	Bibliography
	List of figures

