
University of Padova

Department of Physics “Galileo Galilei”

Master Thesis in Physics of Data

Biological Networks as Defense against

Adversarial Attacks

Supervisor Master Candidate
Prof. Marco Baiesi Andrea Zanola
University of Padova

Student ID
2027588

Academic Year
2021-2022

ii

Quand’ero piccolo, mia madre mi diceva:
”Se farai il soldato, sarai generale; se diventerai monaco, sarai papa”.
Ho voluto fare il pittore, e sono diventato Picasso!
—Pablo Picasso

iv

Abstract

In recent years, more and more importance is given to interpretability in the machine learning field. The best
known andmost famous area in which the interpretability of a neural network is needed is that of cyber-security.
The first paper to expose the potential issue is by Szegedy et al. (2014), in ”Intriguing properties of neural net-
works”, inwhich it is shown how an image, if altered in the right way, can be completelymisclassified by a network
trained to classify images.

In this thesis I proposed a newmethod based on a hybrid network, i.e. half biological and half artificial, in order
to develop a neural network that shows adversarial robustness, capable of resisting to many different adversarial
attacks. The biological part will be based on the hebbian and anti-hebbian neural dynamics, while the artificial
one will be based on specialized neurons and probability.

v

vi

Contents

Abstract v

List of figures ix

List of tables xi

Listing of acronyms xiii

1 Introduction 1

2 Human-based Concepts ofML 3
2.1 Transparency . 3
2.2 Trust . 4
2.3 Interpretability . 5
2.4 Explainability . 6
2.5 Final Remarks . 7

3 Theories of Adversarial Attacks 9
3.1 Low-probability “pockets” in the manifold . 10

3.1.1 Gaussian Noise Attack . 11
3.2 Linearity of the model . 12
3.3 Non robust features . 12
3.4 Separation ofRn by hyperplanes. 14
3.5 Final Remarks . 15

4 Adversarial Attacks 17
4.1 White-Box attacks . 19

4.1.1 L-BFGS Attack . 20
4.1.2 FGSMAttack . 21
4.1.3 IFGSMAttack (or BIMAttack) . 22
4.1.4 PGDAttack . 23
4.1.5 RFGSMAttack . 23

5 Biological Neural Networks 25
5.1 Neurobiology . 25
5.2 Firing Rate Model . 27
5.3 Plasticity . 29
5.4 Back-Propagation . 30
5.5 Krotov and Hopfield’s algorithm . 31

5.5.1 AlgorithmDescription . 31
5.5.2 Results . 34

vii

6 Proposed Algorithm 35
6.1 Implementation of Krotov and Hopfield’s algorithm . 35

6.1.1 Understanding the Parameters . 42
6.1.2 Adversarial Vulnerability . 43

6.2 Probabilistic Layer . 44
6.2.1 Tuning of the Network . 50
6.2.2 Adversarial Vulnerability . 52

7 Conclusion 55

References 57

Acknowledgments 59

viii

Listing of figures

2.1 The European requirements for trustworthy AI, related available documentation, and related
explanatory methods or analyses. Table 1 and caption, taken from [1]. 6

3.1 Adversarial examples generated forAlexNet. (Left) There are correctly predicted samples, (cen-
ter) difference between correct images and images predicted incorrectly magnified by 10x (val-
ues shifted by 128 and clamped), (right) adversarial examples. All images in the right column
are predicted to be an “ostrich, Struthio camelus”. Image 5a and caption taken from [2]. . . . 10

3.2 Separation ofRn by hyperplanes arrangement. Image 3 and caption taken from [3]. 15

4.1 A model’s prediction landscape for each classification. Image 5-2 and caption taken from [4]. 18
4.2 Input spaces outrageously simplified in twodimensions (obviously not in scale). Image 5-1 and

caption taken from [4]. 18
4.3 Untargeted attack-moving outside the “Coat” classification area of the input space. Image 5-8

and caption taken from [4]. 19

5.1 Schematic representation of a neuron. 25
5.2 Action potential diagram of a neuron. 26
5.3 (A)An example of spike train, (B) discrete time firing rate obtained by binning time and count-

ing spikes, while (E) approximate firing rate using a window function. Image taken from [5]. 27
5.4 McCulloch-Pitts’ neuron schematic representation. 27
5.5 Example of a 3-layers ANN. 32
5.6 Inputs vi are converted to a set of input currents I

μ
s . These currents define the dynamics that

lead to the steady-state activation of the hidden units. Image 2 and caption taken from [6]. . 33
5.7 (Left) The weights learned by the biological network. Twenty randomly chosen feature detec-

tors of 2,000 are shown. (Center) Theweights learned by the network trained end-to-endwith
BP. Twenty randomly chosen feature detectors of 2,000 are shown. (Right) Error rate on the
training and test sets as training progresses for both networks. Image 3 and caption taken from
[6]. 34

6.1 (Left) Steady state activation h∞ of the hidden neurons. The dashed orange is the value h∞ =
0, while in red the value h∞ = h∗, the free parameter of the activation function. (Right) The
presentation dynamic for three random neurons; the absolute time t was normalized w.r.t the
characteristic time scale of the presentation dynamic τr. 37

6.2 Convergence of the weights to a unit sphere for three random neurons, each one in a different
learning regime. The absolute time t was normalized w.r.t the characteristic time scale of the
learning dynamic τw. 39

6.3 Featuremaps learned during the bio-training. These featuremaps, as anticipated before, can be
understood by humans because are digit prototypes. Red pixels means positive weights, while
blue pixels means negative ones. 41

6.4 Confusion matrix, obtained from the evaluation of the network to the test set. 41
6.5 Some feature maps obtained setting different winh keeping Δ = −0.01 and h∗ = 3. Left,

winh = 0.9, center winh = 1, right winh = 1.3. 42

ix

6.6 Some feature maps obtained setting different Δ keeping winh = 1 and h∗ = 3. Left, Δ =
−0.01, center Δ = −0.05, right Δ = −0.1. 43

6.7 Some feature maps obtained setting different h∗ keeping winh = 0.9 and Δ = −0.01. Left,
h∗ = 1, center h∗ = 3, right h∗ = 5. 43

6.8 (Left) Test accuracy under attack, varying ε, the strength of the attack. (Right) Examples of
adversarial attacks, for different ε. In each image’s title, there is the original label, then an arrow
and then the (wrong) label given by the network. 44

6.9 (Left) Original image taken from the MNIST dataset. (Center) The adversarial perturbation
generated from the FGSM attack. (Right) Result of an additive attack, i.e. summing the origi-
nal image and the mask attack together. Remember that black pixels have value 0, while white
pixels have value 255. 44

6.10 Example of digit 0 sampled from the test set and given in input to the network. 45
6.11 Hidden neurons activation. In red the baseline equal to the value 0, while the green dashed line

corresponds to the 95% of the maximum value. 45
6.12 Feature maps of the five most active hidden neurons given the input digit shown in Fig. 6.10.

These five neurons are those with an activation grater then 95% the maximum value. 45
6.13 Another example where the feature map of the most active neuron is not equal to the input

image; however these two digits share many pixels locations. The colors used are just for visu-
alization purposes. 46

6.14 An illustrated example of the learning algorithm. In the networks shown here, with reference
to Fig. 5.5, hidden neurons are colored in blue, while output neurons in green. In a)-b)-c)
there are three examples of ”super-active” neurons, in d) there is the set of counts for each
connections and finally in e) there is the set of weights obtained from the normalization of the
previous counts. 47

6.15 Confusion matrix, obtained from the evaluation of the network to the test set using the pro-
posed learning algorithm. 48

6.16 (Left) Visualization of the counts for neuron number 300. (Right) Feature map embedded in
the first layer for this neuron. 49

6.17 Featuremaps of the second layer obtained from anANN trained with the proposed algorithm.
Each output neuron ”sees” its corresponding digit through the weights of the network. . . . 49

6.18 Feature maps of the second layer of an ANN trained only with BP. 50
6.19 (Left) Test accuracy under attack for the proposed algorithm, varying ε, the strength of the

attack, compared with other architectures. In blue the performances of the architecture pro-
posed by K-H, in green the performances of an ANN trained only with BPwhile in orange the
performances of the proposed algorithm. (Right) Examples of adversarial attacks, for different
ε for the proposed algorithm. In each image’s title, there is the original label, then an arrow and
then the (wrong) label given by the network. 53

6.20 (Left) Test accuracy under attack for the proposed algorithm, varying ε, the strength of the
attack, for a larger range of ε. (Right) Examples of adversarial attacks, for different ε. In each
image’s title, there is the original label, then an arrow and then the (wrong) label given by the
network. 53

x

Listing of tables

6.1 (Top) Values tried during the fine-tuning phase of the architecture. (Bottom) The correspond-
ing test accuracy for each value above; every time a parameter changes all the other are fixed to
default values described before. Div. means that the algorithm displays numeric divergence. . 51

6.2 (Left) Training time vs. the number of images presented in input (the number of hidden neu-
rons is fixed to Nh = 484). (Right) Training time vs the number of hidden neurons (the
number of input images is fixed toNimages = 600). 51

6.3 Test accuracy, for 6 random seed, for both random and uniform pdf. 52
6.4 Benchmark of the network trained with the proposed algorithm, respect many different adver-

sarial attacks. 54

xi

xii

Listing of acronyms

AI Artificial Intelligence

XAI eXplainable Artificial Intelligence

ML Machine Learning

DL Deep Learning

ANN Artificial Neural Network

DNN Deep Neural Network

BNN Biological Neural Network

K-H Krotov and Hopfield

BP Back-Propagation

pdf Probability Density Function

xiii

xiv

1
Introduction

Nowadays in developing and implementing new artificial intelligence algorithms, more and more importance is
given by the scientific community to characteristics like robustness and interpretability. Sometimes words like
understandability or explainability are used as synonymous, but it will be shown that is not always the case. In-
deed the acronym XAI (explainable artificial intelligence) expresses the evidence that standard (not explainable)
AI solutions are not perceived as reliable by the users. The main hypothesis is that by building more transpar-
ent, interpretable or explainable systems, users will understand better the solution and therefore trust the intel-
ligent agent [7]. However, it is important to notice that the solution to explainable AI is not just ”more AI”; it
is a human-agent interaction problem and in particular XAI is just one problem inside the bigger framework of
human-agent interaction [7]. The lack of interpretability for predictive models can have (and has already had)
critical consequences: there have been cases of people incorrectly denied parole, bad decisions were made leading
to the release of dangerous criminals, machine learning based pollutionmodels stating that highly polluted air was
safe to breathe (see [8] for more).

In this thesis, the main goal is to understand as much as possible what an artificial neural network is learning
during training and why such networks are weak in terms of adversarial vulnerability, a concept that will be dis-
cussed later. In some sense, the biggest effort is to analyze an algorithm not from the machine point of view, but
from the human point of view. Indeed, recognising digits is a task that a child with little or no-effort can do; so
why complicated algorithms, trained many hours using GPUs, can be easily fooled by a slightly perturbation of
the input, called adversarial example? It is very annoying that humans can do complex tasks so easily, while coding
efficiently a neural network can be extremely hard. So there is the hope that developing algorithms based on some
human intuitions, couldmake themmore resilient to adversarial attacks. Moreover, even if adversarial vulnerabil-
ity is only mentioned during the master courses of ML and DL, it is a shame that these powerful algorithms that
are able potentially to do crazy things, can be easily fooled as I will show in the next chapters. Finally, a unifying
theory of adversarial attack does not exist, meaning that the ML community has not understood yet why ML
algorithms are so vulnerable even though they work greatly for many real problems.

1

In some sense it is like quantum mechanics: many fundamental questions have been not explained, yet the
modern technology is based on it and works incredibly well.

2

2
Human-based Concepts of ML

In this chapter I discuss four of the most frequently used words in the word of XAI: transparency, trust, inter-
pretability and explainability.

2.1 Transparency
As property of a system, transparency addresses how a model works or functions internally, i.e. it is about how
much it is possible to understand about a system’s inner workings in theory. Transparency is further divided
into simulatability (an understanding of the functioning of the model), decomposability (understanding of the
individual components) and algorithmic transparency (visibility of the algorithms).

• Simulatability: roughly speaking, a model might be called transparent if a person can contemplate the
entire model at once. This definition suggests that themodel should be a simple one. In order to consider
a model fully understood, a human should be able to take the input data together with the parameters
of the model and in a reasonable amount of time go through every calculation required and produce a
prediction [9].

• Decomposability: another notionof transparencymight be that, eachpart of themodel i.e. input, param-
eters and calculations admits an intuitive explanation. This notion of transparency requires that inputs
themselves must be individually interpretable [9].

• Algorithmic transparency: a final notion of transparency might be applied at the level of the learning
algorithm itself. In the case of linear models, one may understand the shape of the error surface and
can prove that training will converge to a unique solution, even for new data sets. On the other hand,
modernDL-methods lack this sort of algorithmic transparency. While optimizationprocedures for neural
networks are incredibly powerful, it is not clear yet why and how they work [9].

In general, understandablemodels are sometimes called transparent, while incomprehensible models are called
black-boxes.

3

Definition 2.1.1. (Black-box algorithms)
With the term black-boxAI, is identified any artificial intelligence systemwhose inputs and operations are not

visible to the user or another interested party.

In ML, black-box models are created directly from data by an algorithm, meaning that humans, even those
who design them, cannot understand how variables are being combined to make predictions. Even if one has a
list of the input variables, black-box predictive models can be such complicated functions of the variables that no
human can understand how the variables are jointly related to each other to reach a final prediction [10]. What
makes a system a “black-box”?

• Complexity: in particular this is the case for non-parametric models, i.e. those models in which the num-
ber of parameters is huge. An example of these are ANN, where each connection weight is a learnable
parameter of the model; typically the system learns their values during the training phase. Because the
operation of the neural network depends on the complicated interactions between these values, it is prac-
tically impossible, even for small networks, tounderstandhow thenetworkworks even if all theparameters
are known. This means that even though the algorithm is based on some arbitrary complicated equations
written by the user, for example back-propagation, this does not imply that the user is able to understand
the final solution.

• Difficulty of developing explainable solutions: even if the usedAImodel supports some level of explain-
ability, it may be difficult to create a user experience for careful yet easily understandable explanations for
the users.

• Risk concerns: many AI algorithms can be fooled if an attacker carefully designs an input that causes the
system tomalfunction. In a transparent system,where the attacker knows everything about the algorithm,
it is easier to fool the system and come up with strange or unwanted results. Thus, sometimes systems are
intentionally designed as black-boxes, in order to decrease the so called adversarial vulnerability.

Definition 2.1.2. (White-box algorithms)
With the term white-box AI, is identified any artificial intelligence system whose inner logic, workings and

programming steps are transparent and therefore its decision making process is interpretable.

The most common examples of white-box models are linear regression models, Bayesian networks and decision
trees.

2.2 Trust
With the rise of poorly-understoodmachine learningmodels in the field ofAI, trust is often cited as a key desirable
property of the interaction between any user and the AI agent. Citing a sentence taken from [1]:

”By designing AI that users can and will trust to interact with, AI can be safely implemented in society.”
To understand human trust in AI (called Human-AI trust), it is useful to examine how people trust each other.

Definition 2.2.1. (Interpersonal Trust)
If A believes that B will act in A’s best interest, and accepts vulnerability to B’s actions, then A trusts B.

4

In particular, interpersonal trust exists to reduce the uncertainty and risk of collaboration by enabling the
trustor’s ability to anticipate the trustee, where ”anticipating” refers to a belief that the trustee will act in the
trustor’s best interests. Following Hoffman [11]:

”trust is an attempt to anticipate the impact of behavior under risk.”
This means that risk is a prerequisite to the existence of human-AI trust. Ideally, the existence of trust can only
be verified after verifying the existence of risk. However the ability to anticipate the AI behaviour is a goal, but
not necessarily a symptom, of human-AI trust. Indeed anticipating the intended behavior is the user’s goal in
developing trust, but not necessarily the AI developer’s goal.

Another important definition is the concept of contract and contractual trust.

Definition 2.2.2. (Contractual Trust)
Contractual trust is when a trustor has a belief that the trustee will stick to a specific contract.

Generally speaking, a contract refers to any functionality that could be useful, even if it does not imply an
increasing of the mere performances. Therefore, model correctness, or commonly called test accuracy, is only
one instance of contractual trust. What are other useful contracts? The European Commission has outlined
detailed guidelines [12] on what should be required from AI models for them to be trustworthy; each of these
requirements canbe used to specify a useful contract (see Fig. 2.1). Note thatwide trust is built onmany contracts,
each involving many factors and requiring different evaluation methods.

Definition 2.2.3. (Trustworthy AI)
An AI model is trustworthy to contract C if it is capable of maintaining the contract.

Definition 2.2.4. (Human-AI trust)
If H (human) perceives that M (AI model) is trustworthy to contract C, and accepts vulnerability to M’s ac-

tions, then H trusts M contractually to C. The objective of H in trusting M is to anticipate that M will maintain
C in the presence of uncertainty and consequently, trust does not exist if H does not perceive risk.

In conclusion, all these definitions are not here just for mathematical fun, but because human-AI trust gives
a fundamental lesson, that many students forget when they build ML algorithms: humans can trust AI models
only when the risk of failing is perceived. Consequently it is pointless the desire of having an algorithm that never
fail, as described by the No-Free Lunch (NFL) theorem.

2.3 Interpretability
In general it is difficult to mathematically define interpretability and moreover there is no agreement within the
ML community on the definition of interpretability and the task of interpretation. Here below it is reported two
definitions, the first one given byMiller [7] and the second given by Kim et al. [13].

Definition 2.3.1. (Miller)
Interpretability is the degree to which a human can understand the cause of a model’s decision.

5

Figure 2.1: The European requirements for trustworthy AI, related available documentation, and related explanatory meth‐
ods or analyses. Table 1 and caption, taken from [1].

Definition 2.3.2. (Kim)
Interpretability is the degree to which a human can consistently predict the model’s result.

Even if these two are definitions, they are not in a mathematical sense. So despite the lack of a rigorous defi-
nition, a growing body of literature proposes purportedly interpretable algorithms, consequently one could con-
clude that:

• either the definition of interpretability is universally agreed upon, but no one has bothered to set it in
writing [9],

• or the term interpretability is ill-defined [9].

Indeed in the european guidelines reported above, interpretability is not present on the list of key requirements;
however exists a long list of desiderata as transparency, robustness, trustworthiness so on and so forth.

2.4 Explainability
Rather than trying to create models that are completely interpretable, there has been a recent explosion of work
on explainable AI, where a second separate model, called posthoc, is created to explain the first black-box model.

6

Most of the misunderstandings about explanation come from the term “explanation” itself, which is often used
in a misleading way. Indeed, explanatory models do not always attempt to mimic the calculations made by the
original one. Even a posthoc model that performs almost identically to a black-box model might use completely
different features and thus is not faithful to the computation of the black-box.

A practical example is shown in [8] and here briefly reported. Consider a black-box model for criminal recidi-
vism prediction where the goal is to predict whether someone will be arrested within a certain time after being
released from jail. Most recidivism prediction models depend explicitly on age and criminal history, but do not
explicitly depend on race. Since criminal history and age are correlated with race in all datasets, a legitimately ac-
curate explanation model could construct a rule such as “This person will be arrested because he is black.” This
might be an accurate explanation model since it correctly mimics the predictions of the original model, but it
would not be faithful to what the original model actually does internally and moreover not ethic at all.

2.5 Final Remarks
Here I want briefly resume the main take-home message of the first chapter. Many definitions have been intro-
duced, like trust, transparency, interpretability and explainability; other words are just used as synonymous, for
example understandability. Although all these words are used with the same meaning in the colloquial language
when describing neural networks, it has been shown that while trust and transparency have a particular and spe-
cific meaning, the other two are more heuristics. In particular, interpretability is an ill-defined property and the
AI community has not yet found a mathematical and unique definition of it. At the same time interpretability
is not equal to explainability, that instead is used to explain a black-box algorithm with another approximated
model.

7

8

3
Theories of Adversarial Attacks

One of the key requirements shown in Fig. 2.1 was technical robustness and the suggested analyses was about
adversarial attacks and defenses. This thesis indeed has, as main goal, the study and the development of a ML
algorithm that will be adversarial robust, i.e. that cannot be easily fooled by an imperceptible perturbation of
the input. Let’s start saying that a unified theory of adversarial attacks does not exist, but rather there exist many
possible ways to show that a neural network is fragile with respect to adversarial attacks. In particular in this
chapter will be presented and quickly described, the main four theories taken in consideration by Li et al. [14] in
their paper just to grasp the main ideas behind.

Before starting, let’s remember the definition of Lp norm of a vector xxx ∈ Rn.

||xxx||p =
(
|x1|p + |x2|p + · · ·+ |xn|p

) 1
p

The most famous norms are:

• L0 (Hammingnorm), is notmathematically speaking anormandcanbeobtained as ||xxx||0 = limp→0 ||xxx||p.
It corresponds to the number of non-zero elements of a vector.

• L1 (Manhattan norm): ||xxx||1 = |x1|+ · · ·+ |xn|

• L2 (Euclidean norm): ||xxx||2 =
√
x21 + · · ·+ x2n

• L∞ (maximum norm): ||xxx||∞ = max{x1, . . . , xn}

9

3.1 Low-probability “pockets” in the manifold
At the time of discovery of adversarial attacks, Szegedy et al. [2] interpreted adversarial examples as “blind spots”
which belong to low-probability “pockets” in the data manifold. Consider a state-of-the-art deep neural network
that performs greatly in the object recognition task; it is expected that such network is robust to small pertur-
bations of its input, because small perturbation cannot change the object category of the image. However, the
authors found that applying an imperceptible non-random perturbation to a test image, it is possible to arbitrar-
ily change the network’s prediction (see for example Fig. 3.1). These perturbations are found by optimizing the
input to maximize the prediction error; the authors called these perturbed examples adversarial examples.

Figure 3.1: Adversarial examples generated for AlexNet. (Left) There are correctly predicted samples, (center) difference
between correct images and images predicted incorrectly magnified by 10x (values shifted by 128 and clamped), (right) ad‐
versarial examples. All images in the right column are predicted to be an “ostrich, Struthio camelus”. Image 5a and caption
taken from [2].

What is the reason behind this unexpected behaviour? Generally speaking, the result in output from a neural
network is a highly non-linear function of its input. When it is trained with the cross-entropy loss (using the soft-
max activation function), it represents a conditional distribution of the label given the input (and the training set
presented so far). It has been argued [15] that the deep stack of non-linear layers in between the input and the out-
put unit of a neural network is a way for themodel to encode a non-local generalization prior over the input space.
Yoshua Bengio explained very well the concept of non-local generalization in a Quora post [16]. With this term it
is indicated an algorithm that is able to give good generalizations even for inputs that are far from those it has seen
during training. It should be able to generalize to new combinations of the underlying concepts that explain the
data. Nearest-neighbor methods, like decision trees or SVM, can only generalize in some neighborhood around
the training examples, in a way that is simple, typically linear interpolation or extrapolation. Because the number
of possible configurations of the underlying concepts that explain the data is exponentially large, this kind of gen-
eralization is good but not sufficient. Non-local generalization refers to the ability to generalize to a huge space
of possible configurations of the underlying causes of the data, potentially very far from the observed data, going
beyond linear combinations of training examples that have been seen in the neighborhood of the given input. In

10

other words, it is assumed that is possible for the output unit to assign presumably non infinitesimal probabili-
ties to regions of the input space that contain no training examples in their vicinity. Such regions (i.e. images)
can represent, for instance, the same objects from different viewpoints, which are relatively far in pixel space, but
which share both the label and the statistical structure of the original inputs. Obviously local-generalization near
training examples works as expected, because it was argued that DNN has the most general ability of non-local
generalization.

This imply that for a small enough radius η = ||ηηη|| < ε, where ε > 0 in the vicinity of a given input xxx, an
example xxx+ηηηwill get assigned a high probability of the correct class by themodel. Note thatηηη is a signal with the
same structure of xxx (e.g. an image) whose norm η, under some norm Lp, is less then ε. This kind of smoothness
prior is typically valid for computer vision problems. With the term ”smoothness” the authors refer to the fact
that, thinking about the space of all the possible realizable images, starting from an arbitrary image classified with
label l, one can continuously and slightly perturb the original image and yet the classifier assigns to the new image
again the label l. The main result obtained by the authors is that for DNN, the smoothness assumption that
underlies many kernel methods does not hold. In some sense, what the authors describe is a way to traverse the
manifold represented by the network in an efficient way (by optimization) and finding adversarial examples in the
input space. The adversarial examples represent then low-probability regions in the input space, which are hard to
efficiently find by simply randomly sampling the input around a given example. Consequently this means that if
one change randompixels in an image, probably hewould not get an adversarial example and the image is correctly
classified.

3.1.1 GaussianNoise Attack
How to mathematically prove, that random noise is not effective in creating adversarial attacks? Suppose to per-
turb an input image xxxwith i.i.d Gaussian noise, then the adversarial perturbation will be

x̃x̃x̃ = xxx+ σ rrr rrr ∼ N (000, III). (3.1)

where σ is the standard deviation of the gaussian pdf. Now suppose to give in input to the network an imagexxxnear
a linear boundary between two regions, classified with two different labels. As mentioned above, an adversarial
perturbation can be written as x̃x̃x̃ = xxx + ηηη. Now let’s call ηηη the direction perpendicular to the decision boundary
such that, if onemovexxx according to it, then x̃x̃x̃will bemisclassified. Following this reasoning, there is a probability
of 1

2 to be misclassified, given a random perturbation rrr. So the mathematical formulation can be written as

ηηηT · rrr > 0 (3.2)

i.e. the angle between these two vectors should be acute, in order to cause a misclassification. The problem of
such argument is that in a high-dimensional space, the probability of ηηηT · rrr > 0 is diminishing very quickly as the
dimensionality of rrr grows; this is a well-known phenomenon called curse of dimensionality. One can easily find
the probability that Eq. (3.2) happens, that is described by the following equation.

P
[
ηηηT · rrr ≥ δ

]
≤ ||ηηη||

δ
√
2π

e−d2 δ2
2||ηηη2|| (3.3)

11

Therefore, as d → ∞ it becomes increasingly more difficult for i.i.d. Gaussian noise to succeed in attacking. For
an image with dimensions 28× 28 pixels, d is equal to 784.

3.2 Linearity of the model

One of the most widely accepted reasons for the origin of adversarial examples, is the linearity of the model in
high-dimensional spaces, described by Goodfellow et al. in [17]. Note that the paper claims that linearity of the
model in high-dimensional spaces seems to be a sufficient condition to develop adversarial attacks. How the
authors explained the existence of adversarial examples for linear models? In many problems, the precision of the
input is limited: for example, digital images often use only 8 bits per pixel so they discard all information below

1
28−1 = 1

255 of the dynamic range. Because the precision of input data is limited, the classifier will not respond
differently to an input xxx compared to an adversarial input x̃x̃x̃ = xxx + ηηη, if every element of the perturbation ηηη is
smaller than the value of the less-significant bit. Formally, for problems with well-separated classes, it is expected
that the classifier assigns the same class to xxx and x̃x̃x̃ so long as ||ηηη||∞ < ε, where ε is small enough to be discarded
by the sensor or data storage apparatus associated with the problem. Consider now the dot-product between a
weight vectorwww and an adversarial example x̃x̃x̃.

wwwT · x̃x̃x̃ = wwwT · xxx+wwwT · ηηη (3.4)

The adversarial perturbation causes the activation to grow bywwwT · ηηη. So one can maximize this increase subject to
themax norm constraint onηηη (i.e. ||ηηη||∞ < ε) by assigningηηη = ε · sign(www). Ifwww has n dimensions and the average
magnitude of an element of the weight vector ism, then the activation will grow by εmn. Since ||ηηη||∞ does not
grow with the dimensionality of the problem but the change in activation caused by perturbation by ηηη can grow
linearly with n, then for high-dimensional problems, one can make many infinitesimal changes to the input that
add up to one large change to the output. In theMNIST example indeed, where the images are 28×28 the input
space is [0, 255]784.

3.3 Non robust features

In a recent work, Ilyas et al. in [18] shown how adversarial examples carry non-robust features, that indeed turns
out to be a new perspective on the phenomenon of adversarial attacks. In contrast to the previous works, the
authors interpreted adversarial vulnerability as a fundamental consequence of the dominant supervised learning
paradigm. Recall that usually, one train a classifier to solely maximize the distributional accuracy. Consequently,
classifiers tend to use any available information to do so, even those that look incomprehensible to humans. After
all, the presence of “a tail” or “ears”, that are features relevant for us as humans, is no more natural to a classifier
than any other equally predictive feature. Finally, this perspective establishes adversarial vulnerability as a human-
centric phenomenon since, from the standard supervised learning point of view, non-robust features can be as
important as robust ones. This point of view also suggests that approaches aiming to enhance the interpretabil-
ity of a given model forcing the use of ”human-like” features for its explanation, actually hide features that are

12

meaningful and predictive to standard models. What the authors mean with robust features?

Definition 3.3.1. (Feature)
A featureF is a function mapping the input space χ to the real numbers.

F : χ → R (3.5)

Note that in non-mathematical terms, theword feature is also used to indicates some particular details in an image,
useful for the task taken in consideration. As an example, in recognising cats from dogs, an example of useful
features in the image are the dimensions of the animal, the texture of the skin and the relative dimension between
the eyes and the skull etc.

Definition 3.3.2. (ρ-useful features)
For a given training setD, a featureF is ρ-useful (ρ > 0), if it is correlated with the true label in expectation,

that is if
E(xxx,l)∼D

[
lF(xxx)

]
≥ ρ (3.6)

where (xxx, l) indicates a training example, defined byxxx (e.g. an image) and its label l. For simplicity assume a binary
classification task, i.e. l = ±1.

Crucially, a linear classifier trained on ρ-useful features can attain non-trivial performance.

Definition 3.3.3. (γ-robustly useful feature)
Suppose F to be a ρ-useful feature, then F is called robust feature, if under an adversarial perturbation (for

some specified set of valid perturbations Bxxx),F remains γ-useful. Formally, if

E(xxx,l)∼D

[
inf
ηηη∈Bxxx

lF(xxx+ ηηη)
]
≥ γ. (3.7)

Definition 3.3.4. (Useful, non robust feature)
A useful, non-robust feature is a feature which is ρ-useful for some ρ bounded away from zero, but is not a

γ-robust feature for any γ ≥ 0. These features help with classification in the standard setting, but may hinder
accuracy in the adversarial setting.with the label can be flipped.

Within this theoretical framework, a binary classifier C is composed by a set of features F = {F}, a weight
vectorwwwf and a scalar bias b. For a given input xxx, the simplest binary classifier predicts the label as follow

C(xxx) = sgn
(
b+

∑
F∈F

wwwf · F(xxx)
)
.

So in this case, there is one single neuron connected to all other neurons in a previous layer throughwwwf ; but
what there is in input to these neurons? These hidden neurons, received a highly non-linear function of the input,
in particular they receive the input image convolutedwith all the featuremaps of the previous layers. In this terms,
one can explain Eq. (3.6) in the following way: assuming that the network has all positive weights and neglecting
the bias, the classifier C will give a label +1 only if the features F(xxx) are positive. So if in expectation the target

13

label has the same sign of the feature, then the classifier is working correctly; consequently the feature is useful for
the classification task.

The central premise of this proposed framework is that there exist both robust and non-robust features; how
to provide evidence in support of this hypothesis? On one hand, the authors built a “robustified” dataset, con-
sisting of samples that primarily contain robust features. Concretely, they created a training set (semantically
similar to the original) on which standard training yields good robust accuracy on the original, unmodified test
set. Moreover they were are also able to construct a training dataset for which the inputs are nearly identical to
the originals, but all appear incorrectly labeled (adversarial attacks); for more please see [18]. This demonstrates
that robustness can arise by removing certain features from the dataset (as, overall, the new dataset contains less
information about the original training set). Moreover, it provides evidence that adversarial vulnerability is caused
by non-robust features and is not inherently tied to the standard training framework. This indicates that natural
models use non-robust features to make predictions, even in the presence of robust features.

3.4 Separation ofRn by hyperplanes.

Adi Shamir et al. in their work [3] proposed a quite intuitive possible explanation for the origin of adversarial
attacks, based on geometric arguments. The analysis starts by considering the simplest case in which themapping
from inputs to outputs is determined by a sumof hyperplanes. Note that this setting differs from linear separators
formulticlass classification,where themaximumover several linear classifiers is used todetermine the classification.
Instead, here there arem given hyperplanes of the form

n∑
j=1

aijxj + bi for i = {1, . . . ,m}

which split Rn into many cells; in general one can assume that the hyperplanes are in general positions. If one
denotes byA them× nmatrix whose entries are the aij coefficients and by B the column vector whose entries are
the constants bi, then each cell in the partition is defined by a particular vector S ofm ”±” signs, and consists of
all the points xxx ∈ Rn for which Axxx + B is a column vector ofm numbers whose signs are as specified in S. The
maximal possible number of cells has been shown to be

∑n
i=0

(m
i
)
[3]. The predictor associates labels y (which

are typically object classes such as ”horse” or ”car”) to some of the cells. The union of the cells labeled by y can be
arbitrarily shaped (in particular it need not be connected, convex or hole-free). The predictor classifies any inputxxx
by using the label of the cell in which it is located. Note that even a small number of hyperplanes (e.g. 20) suffices
to split Rn into a huge number of cells and thus can be potentially used to recognize a large number of object
classes (up to 220). A pictorial representation of this separation of the space is given in Fig. 3.2.

The goal of the authorswas to study theneighborhood structure of such apartitionofRn under theL0 distance
function (the case withL2 distance is still an open problem). The authorsmoreover were able to shown that given
any two cells and a particular pointxxxwhich is located in the first cell, the smallest possible number k of coordinates
inxxx that one have to change in order to reach some point zzzwhich is located in the second cell, formoderately sized
m is surprisingly small. Based on this theory, the authors developed an algorithm able to create adversarial attacks
and then they applied it to the MNIST dataset. They were able also to find them = 11 pixels having the largest

14

Figure 3.2: Separation ofRn by hyperplanes arrangement. Image 3 and caption taken from [3].

standard deviation among the images in the training set and perturbing the same 11 pixels, with different intensity,
they were able to change the prediction of a digit labeled as 7 to that of any other digit.

3.5 Final Remarks
Here I want briefly resume the main take-home message from the second chapter, that will be useful later. From
the original work done by Szegedy et al. (2014), an increasing number of publications have beenmade in the field
of adversarial attacks, making it one of the currently most active fields of research. The original and fundamental
observation, that was named as ”adversarial perturbation”, is that one can cleverly change the input by applying an
imperceptible modification and a state-of-the-art DL architecture will be easily fooled. The first explanation for
this phenomenon is based on the idea that adversarial examples represent low-probability regions in the manifold,
left unexplored by the training. One year later, Goodfellow et al. give a simple demonstration of how a linear
model can develop adversarial vulnerability if the input has a sufficient high-dimensionality, that in the case of
images is easy to have. It is worth to remark that these two theories are not in contradiction with each other, but
by the fact that both gives a meaningful explanation, surely we cannot talk of a unifying theory. Even though
these two are themain accepted theories, many other theories and observations have beenmade through the years.
One of the most famous is based on the concept of robust features; even though one can define the concept of
robust features, it is important to remark that in this framework adversarial vulnerability is seen as a human-centric
phenomenon. Features that for a human are naturally the most obvious to catch, could be different respect those
that a neural network will learn during the training; this will be an important point later.

15

16

4
Adversarial Attacks

Although a unifying theory of adversarial attacks does not exist, computer scientists and machine learning engi-
neers during the years have developed a full zoology of algorithms and techniques in order to create adversarial
attacks. On the other hand researchers are also interested on adversarial defenses, namely techniques in order to
improve the robustness of the AI algorithms. In this chapter I will describe themost famous and important adver-
sarial attacks on themarket, while adversarial defences are not here discussed since the final goal of the thesis. Let’s
start with some general definitions; very broadly speaking, adversarial attacks can be divided into two categories.

Definition 4.0.1. (Untargeted Attack)
An untargeted (or indiscriminate) attack aims to cause the DNN to return an incorrect result, such as a mis-

classification.

An example of this would be to avoid facial detection; so long as an image is not positively identified as a specific
person, the actual DNN output is not important.

Definition 4.0.2. (Targeted Attack)
A targeted attack aims to generate a specific output from the DNN processing.

For example, to cause a digit to be classified as an other one. From now on, in order to explain the algorithms
behind the construction of the adversarial attacks, one has to keep in mind that the reference theories kept in
consideration are, generally speaking, the original ones i.e. [2] and [17].

One way of visualizing all the possible images that could be given in input to the DNN, would be to place
each one at its own position in this high-dimensional input space. In such space, one dimension represents one
pixel, meaning that forMNIST images there are 784 dimensions, with a total number of possible different images
equal to 256784 ≈ 101888, that ismuch larger compared to theAvogadro’s number. A pictorial and over-simplified
representationof the landscapeof suchhigh-dimensional space, in relationwith themulti-classification task, could

17

Figure 4.1: A model’s prediction landscape for each classification. Image 5‐2 and caption taken from [4].

be that one shown in Fig. 4.1. Although it should be clear that this high-dimensional space is the space of all
possible images, maybe it is not visually clear which images this space could contain. In Fig. 4.2 are reported
images from both ImageNet and Fashion-MNIST.

Figure 4.2: Input spaces outrageously simplified in two dimensions (obviously not in scale). Image 5‐1 and caption taken
from [4].

Let’s begin by considering the challenge of changing many pixels very slightly to a Fashion-MNIST image, to
result in a misclassification. Changing a selection of pixels in the image will shift it through the input space to
another location, moving it across the landscapes depicted in Fig. 4.1. The image must be changed sufficiently
so that its position within the input space is no longer within the “Coat” classification area. If this is a targeted
attack, there is the additional constraint that the image has to be moved into an area of the input space defined
by the corresponding target label. A possible useful representation is given in Fig. 4.3. So now should start to
be clear that generation of adversarial perturbation comes down to the challenge of which pixels will cause the
most change away from the correct classification, and possibly toward a target classification. This is not strange
at all, indeed it is what has been done by Shamir et al. in [3], i.e. they were able to find the 11 pixels with highest

18

Figure 4.3: Untargeted attack‐moving outside the “Coat” classification area of the input space. Image 5‐8 and caption
taken from [4].

variance. Remember that any perturbation required must be minimized so that it is insignificant to the human
eye. In other words, ideally the perturbation is likely to be the minimum change to the image required to move it
just outside the “Coat” classification boundary or just inside the target classification boundary. There are several
approaches that one may take to create an adversarial attack, each assuming a different level of knowledge of the
DNN architecture. These methods can be categorized based on the attacker level of access to the model.

Definition 4.0.3. (White-box attack)
Awhite-box attack exploits complete knowledge of theDNNmodel to create adversarial input, i.e. the attacker

knows the entire set of weights and biases of the DNN.

Definition 4.0.4. (Limited Black-box attack)
A limited black-box attack refines adversarial input based on an output generated from the model or from the

system in which it resides. For example, the output might be simply the label of a final classification.

Definition 4.0.5. (Score-based Black-box attack)
These methods refine adversarial input based on the raw predictions (scores) returned from the DNN. They

require access to more detailed responses than a limited black-box attack, but do not require access to the model
algorithm as a white-box attack.

Based on these definition, it is obvious how white-box attacks are more powerful respect black-box ones; so
let’s now focus on white-box attacks.

4.1 White-Box attacks

Let’s denote with L
(
f(xxx,Θ); l

)
, the loss function associated to a DNN, indicated by f, with a set of weights and

biases known and fixed, denoted as Θ. Let’s denote a given input image xxx ∈ Rm and the corresponding target
label l, where (xxx, l) ∼ D are extracted from the training setD.
The notation B(xxx,ε), indicates an ε-ball around an example xxx defined respect some specified norm Lp.

Up to now the word adversarial attack was used many times, but what is its rigorous definition?

19

Definition 4.1.1. (Targeted Adversarial Attack)
Let xxx be a data point belonging to class Cl (associated with the label l) and define a target class Cl̃ (associated

to l̃). A (targeted) adversarial attack is a mappingA : Rm → Rm such that the perturbed data is misclassified as
Cl̃.

x̃x̃x̃ = A(xxx) (4.1)

Amongmany types of adversarial attacks, themost commonly used is the additive one, i.e. A is a linear operator
that adds a perturbation to the original sample. Note that these are also the types of attacks mentioned by the
theories [2], [17] described before.

Definition 4.1.2. (Additive Targeted Adversarial Attack)
Let xxx be a data point belong to class Cl and define a target class Cl̃. An additive (targeted) adversarial attack is

an addition of a perturbation ηηη such that the perturbed data is misclassified as Cl̃.

x̃x̃x̃ = xxx+ ηηη (4.2)

Finally, two other definitions useful for describing how adversarial attack are created, are reported below.

Definition 4.1.3. (Minimum Norm Attack)
The minimum norm attack finds a perturbed data x̃x̃x̃ by solving the optimization

min
x̃x̃x̃

||x̃x̃x̃− xxx|| : f(xxx,Θ) = l ̸= l̃ = f(x̃x̃x̃,Θ) (4.3)

An alternative to the minimum norm attack is the maximum allowable attack.

Definition 4.1.4. (Maximum Allowable Attack)
The maximum allowable attack finds a perturbed data x̃x̃x̃ by solving the optimization

min
ηηη∈B(xxx,ε)

L
(
f(xxx+ ηηη,Θ); l̃

)
(4.4)

where ε > 0 denotes the magnitude of the attack.

Now let’s describe some of the most famous algorithms used for the construction of adversarial attacks.

4.1.1 L-BFGS Attack
The first algorithm created to generate adversarial attacks was developed in the paper written by Szegedy et al. [2].
The main idea behind is try to solve the box-constrained optimization problem, formulated in Alg. 4.1. Note
that the last requirement in Alg. 4.1, implies that every pixel of the image has been previously normalized in the
interval [0, 1]; informally,xxx+ηηη is the closest image toxxx classified as l̃by f. Theminimizerηηηmight not be unique (i.e.
there could be different perturbations that one can apply), so the considered one is arbitrarily chosen byD(xxx, l̃)
also called “minimum distortion” function. Obviously this task is non-trivial only if f(xxx) = l ̸= l̃, indeed one
can choose the minimum perturbation ηηη = 0 and the task in Eq. (4.5) is trivially solved. In general, the exact

20

Algorithm 4.1 Box-constrained optimization
Minimize the perturbation ||ηηη||2, subject to the following requirements:{

f(xxx+ ηηη) = l̃
xxx+ ηηη ∈ [0, 1]m

(4.5)

Algorithm 4.2 Box-constrained L-BFGS optimization
Find an approximation of D(xxx, l̃) by performing line-search to find the minimum c > 0 for
which the minimizer ηηη of the following problem satisfies the two requirements shown in Alg.
4.1. In particular the minimization is not anymore over ||ηηη||2 but over

c||ηηη||2 + L
(
f(xxx+ ηηη,Θ); l̃

)
(4.6)

computation ofD(xxx, l̃) is a hard problem, so the authors approximate it by using a modified version of Alg. 4.1,
called box-constrained L-BFGS (Limited-memory Broyden–Fletcher–Goldfarb–Shanno), described in Alg. 4.2.

This penalty function method would yield the exact solution forD(xxx, l̃) in the case of convex losses, however
neural networks are non-convex in general, so one end up with an approximation [2]. Note that the linear search
is performed to find the constant c > 0 that yields an adversarial example of minimum distance [19].

4.1.2 FGSMAttack
In 2015, Goodfellow et al. in [17] proved a simple algorithm, the Fast Gradient Sign Method (FGSM), to be
effective in generating adversarial examples. The FGSMhas two key differences respect the L-BFGSmethod: first,
it is optimized for theL∞ norm (and notL2) and second, it was designed primarily to be fast instead of producing
very accurate adversarial examples [19]. The FGSM algorithm calculates the direction in the input space which,
at the location of the image, appears to be the fastest route to amisclassification. This direction is calculated using
gradient descent and a cost function similar to that for training a network. A concrete explanation is to simply
think of the direction calculation as being an indirect measure of the steepness of the contours in the prediction
landscape at the location of the image. The adversarial direction is roughly estimated, so each input value (i.e.
pixel value) is assigned to be:

• +1: indicating that this input value would be best being increased to cause a misclassification.

• −1: indicating that this input value would be best being decreased to cause a misclassification.

With the direction established, FGSM then applies a small perturbation, denoted as ε, to every pixel, adding
the perturbation if the adversarial direction is positive or subtracting the perturbation otherwise. The reason of
the success of FGSM is all behind the assumption that the steepness of the slope in a particular direction will be
maintained; mathematically, the function that the model represents exhibits linear behavior. Previous to FGSM,

21

it was assumed that DNN algorithms comprised more complex nonlinear gradients, which one could imagine
as a rough landscapes composed by hills and valleys. This linearity occurs because the optimization step during
training will always favor the simplest model, i.e. the simplest gradients.

Let’s now give a mathematical formulation of the FGSM attack. In order to calculate the direction, let’s ap-
ply first the gradient of the loss function L and secondly the sign operation, i.e. sign

(
∇xxxL

(
f(xxx,Θ); y

))
; finally

multiplying it by a small value ε, one obtain the adversarial perturbation.

Algorithm 4.3 FGSM
The adversarial attack x̃x̃x̃ generated by the FGSM algorithm is:

x̃x̃x̃ = xxx+ ε× sign
[
∇xxxL

(
f(xxx,Θ); l

)]
(4.7)

Note that as mentioned before, the typical resolution of an image is 8 bit, so εmust be grater then 1/255, in
order to have x̃x̃x̃ ̸= xxx.

4.1.3 IFGSMAttack (or BIMAttack)
In 2017, Kurakin et al. in [20] suggest a very simple improvement to FGSM. The idea is to apply FGSMmultiple
times with a small step size α and clip pixel values of intermediate results after each step to ensure that they are in
an ε-neighbourhood of the original image.

Algorithm 4.4 IFGSM
The adversarial attack x̃x̃x̃ generated by the Iterative-FGSM algorithm is

x̃x̃x̃0 = xxx
...
x̃x̃x̃N+1 = Clipxxx,ε

{
x̃x̃x̃N + α · sign

(
∇xxxL

(
f(xxx,Θ); l

))} (4.8)

where the function Clipxxx,ε{xxx
′} performs per-pixel clipping of the image xxx′ , so the result will

be in L∞ ε-neighbourhood of the source image xxx. The exact Clip function, for a general RGB
image is:

Clipxxx,ε(x̃x̃x̃)(x, y, z) = min
{
255,xxx(x, y, z) + ε,max{0,xxx(x, y, z)− ε, x̃x̃x̃(x, y, z)}

}
(4.9)

The number of iterations was chosen heuristically by the authors to bemin(ε+4, 1.25ε); indeed it is sufficient
for the adversarial example to reach the edge of the εmax-norm ball but restricted enough to keep the computa-
tional cost of experiments low.

22

4.1.4 PGDAttack
The Projected Gradient Descent (PGD) attack is essentially the same as IFGSM attack, where the only difference
is that PGD initializes the example to a random point in the ball of interest (decided by the L∞ norm) and does
random restarts, while IFGSM initializes to the original point xxx.

Algorithm 4.5 PGD
The adversarial attack x̃x̃x̃ generated by the PGD algorithm is

x̃x̃x̃0 = xxx+ U(−ε,+ε)
...
x̃x̃x̃N+1 = Clipxxx,ε

{
x̃x̃x̃N + α · sign

(
∇x̃x̃x̃NL

(
f(x̃x̃x̃N,Θ); l

))} (4.10)

where U is a uniform distribution, acting in d dimensions.

4.1.5 RFGSMAttack
This method developed by Tramèr et al. in [21] is a slightly modified version of the original FGSM, indeed the
acronym stays for Random-step FGSM. This algorithm can be seen as a single-step variant of the general PGD
algorithm.

Algorithm 4.6 RFGSM
The adversarial attack x̃x̃x̃ generated by the Random-FGSM algorithm is

x̃x̃x̃ = xxx+ α · sign
(
N (0d, 1d)

)
+(ε− α) · sign

(
∇xxxL

(
f(xxx+ α · sign

(
N (0d, 1d)

)
,Θ); l

))
(4.11)

where N represents the noise, i.e. the small random perturbation. Note that α must be less
then ε.

23

24

5
Biological Neural Networks

Let’s stop for a moment the discussion about the artificial neural networks in order to introduce the concept of
biological neural networks. The main properties of a BNN will be useful later on in developing the proposed
algorithm that will be adversarial robust. In this chapter it is given a quick overview of biological neural network,
focusing on the most important aspects relevant for the purposes of this thesis.

5.1 Neurobiology
Even though a complete comprehension of the human’s brain is not achieved yet, lot of studies have been done
since the pioneering work of Hodgkin andHuxley. Let’s focus on one single neuron, trying to understand better
which approximations are needed to make its modelling efficient, nevertheless keeping it as simple as possible. A
simple schema of a neuron is shown in Fig. 5.1.

Figure 5.1: Schematic representation of a neuron.

25

It essentially consists of a single cell, whose body is named soma, which contains a nucleus. The ramifications
near the soma are called dendrites, allowing for receiving signals from other neurons and propagating them to
the soma; axons instead are the ramifications that transmits the signal towards other neurons. Finally, synapses
are either chemical or physical junctions placed in the axon terminal and allow for signal transmission to other
neurons’ dendrites. Every neuron has many dendrites, but a single axon. Note that the propagation of signals is
usually asymmetric, i.e. directional; indeed, it does not occur that receptors send neurotransmitters back to the
axon, through the synapse. This is an important point that will be discussed later. The electric propagation of
the signal through the axon is accomplished through channels on the cell membrane, that can pump in/out ions,
generating an electric potential difference. A signal begins by depolarizing the first part of the axon (closest to the
soma), by openingNa+ channels. Initially, membrane potential is at rest, with a voltage ofVi = −70mV. Shortly
after, also theK+ channels open, and counterbalance the potential difference, thus decreasing back themembrane
potential. For small voltages increases, the K+ current exceeds the Na+ current and voltage returns to its resting
value, hence stopping the signal propagation. However, if the critical threshold is surpassed (Vth = −55mV), the
Na+ ions dominate, and the process explodes triggering the propagation: the Na+ influx spreads to the closest
regions, while regions that have already “fired” close, allowing the K+mechanism to re-balance, thus coming back
to the initial resting potentialVf = −70mV.

Figure 5.2: Action potential diagram of a neuron.

In order to make the description more quantitative let’s define some quantities of interest.

Definition 5.1.1. (Neural response function)
The neural response function of a neuron after a stimulus St is defined as

ρ(t) =
n∑

i=1

δ(t− ti) (5.1)

where ti is the time of the i-th spike; ρ(t) is then the sum of a neuron’ spike train.

Themost naturalway to define a firing rate is counting the number of spikes in a specified interval of time, however
this definition is very sensitive to the chosen Δt.

26

Definition 5.1.2. (Spike-time dependent firing rate)
The spike-time dependent firing rate is defined as

r(t) =
1
Δt

∫ t+Δt

t
⟨ρ(τ)⟩dτ (5.2)

where the average ⟨·⟩ is over different trials.

Note that the choice of Δt is crucial for a good definition of r(t) because if Δt ≫ 1 one will always find a spike
arriving from the neuron, while if Δt ≪ 1 one will never find a neuron spiking. So in general ρ(t) is a noisy
quantitative, that is why the average is done over different trials.

Figure 5.3: (A) An example of spike train, (B) discrete time firing rate obtained by binning time and counting spikes, while
(E) approximate firing rate using a window function. Image taken from [5].

5.2 Firing RateModel
Based on this descriptionMcCulloch and Pitts in [22] proposed a model of a neuron years later calledMcCulloc-
Pitts neuron; its schematic representation is shown in Fig. 5.4.

Figure 5.4: McCulloch‐Pitts’ neuron schematic representation.

27

One can see that exists a precise and natural correspondence between a biological neuron and this artificial/-
computational model of it. The input signals are called presynaptic inputs and correspond to the signals taken
in input by the dendrites of the neuron. The summing junction corresponds to the soma of the neuronwhere the
information is processed, while the activation function mimics the activation threshold in the action-potential
mechanism. Finally the set of weightswwwk, mimics the fact that different synapses have different ”strength”; in par-
ticular if wki > 0 the synapse is called excitatory, while if wki < 0 the synapse is called inhibitory. Functionally,
synaptic strength is defined as the average amount of current or voltage excursion produced in the postsynaptic
neuron by an action potential in the presynaptic neuron [5]. Thanks to the heuristic Dale’s law, if a neuron is
excitatory, then all its synapses are excitatory and vice-versa.

Suppose now to haveN inputs and let’s denote the input as vvv(t) = {v1(t), . . . , vN(t)}; let’s denote also Is(t)
the total presynaptic current and ib(t) the input current coming from one specific neuron b. In general one can
state that

ib(t) = wbkb(t) where
∫ ∞

0
kb(t)dt = 1 (5.3)

where kb(t) is called synaptic kernel and describes the synaptic conductance of the link. The total current Is(t) is
then defined as

Is(t) =
N∑
b=1

ib =
N∑
b=1

wb

∫ t

−∞
ks(t− τ)ρb(τ)dτ︸ ︷︷ ︸

=kb(t)

=

N∑
b=1

wb

∫ t

−∞
ks(t− τ)vb(τ)dτ (5.4)

where ρb(t) is the neural response of the presynaptic neuron b, that under some conditions is equivalent to the
firing rate of the neuron vb(t) (that is actually what we mean with the word input). ks instead is a kernel function
supposed to be

ks(t) =
1
τr
e−

t
τr

where τr is a time constant of the neuron; it describes the time course of the synaptic current in response to
a presynaptic spike arriving at time t = 0. Then, after some calculations, one can obtain from Eq. (5.4) the
following result

τr
dIs
dt

= www · vvv(t)− Is(t). (5.5)

At stationarity then I∗s = www · vvv∗. Let’s call ψψψ the activation function mimicking the action-potential threshold,
then the postsynaptic firing-rate of the neuron at stationarity is h∞ = ψ(I∗s). Finally, if one take in consideration
the capacitance effect of the neuron, the final equations of the firing rate model areτr dIsdt = www · vvv(t)− Is(t)

τh dhdt = ψ(Is(t))− h(t).
(5.6)

From the biological point of view, this model is a kind of resource-consumer model, very well known in ecology,
where the output h is the specie abundance, while the inputsvvv are the resources. So in the quasi-stationary approx-
imation, one have τh ≫ τr,meaning that the resources have a faster dynamic then the consumer. This inequality
will be also found later.

28

5.3 Plasticity

TheMcCulloch-Pitts’ model is a very useful computational model that is very well suited for a simple description
of a biological neuron. However up to now, the weights associated to the synapses of the neuron are supposed
to be fixed, quenched. The real brain however is plastic, a human indeed can ”rewire” it with habits and new
experiences. The simplest form of plasticity is that neural pathways that are used a lot strengthen; this is inspired
by the famous Hebb’s principle [23].

Principle 5.3.1. (Hebb’s Principle)
When an axon of cell A is near enough to excite a cell B and repeatedly or persistently takes part in firing it,

some growth process or metabolic change takes place in one or both cells such that A’s efficiency, as one of the
cells firing B, is increased.

From this principle comes out the so calledHebb’s conjecture, that is a mathematical formulation of the previous
statement.

τw
dwww
dt

= hvvv = ψ(www · vvv)vvv (5.7)

This means that if a neuron has an output h > 0 and there is a input vb > 0 then the connection wb should be
increased; notice also that Hebb’s rule has introduced a feedback loop overwww. Although this is the most famous
form of plasticity, there are several problems associated to this formulation, for examplewb in such a way can grow
unbounded. There are indeed two missing ingredients in this naive formulation.

• Competition: there is a finite amount of resources to grow the synapses. This imply that some connec-
tions have to be cut, while other can grow.

• Synapses weakening: known also as anti-Hebbian rule, if a synapse is not useful, its strength should be
decreased and eventually removed through competition.

Since the Hebb’s rule, many other plasticity rules have been formulated; one indeed can introduce a threshold
θh determining the level of postsynaptic activity needed in order to increase the synaptic connection.

τw
dwww
dt

= (h− θh)vvv (5.8)

Typically θh = ⟨h⟩ is taken as the averagepostsynaptic activity; ifh−θh > 0 there is long termpotentiation (LTP)
where the value of www increase, otherwise there is long term depression (LTD). Another version of plasticity rule
is that one introducing competition between the presynapses, through the so called subtractive normalization
rule.

τw
dwww
dt

= hvvv− 1 ·www
N

1 (5.9)

Note the presence of the term 1 · www =
∑

b wb = const, meaning that resources available for the strengthening of
the synapses are limited.

29

5.4 Back-Propagation
Oncemore artificial neurons are linked together, one can create the so called artificial neural networks. The reason
behind the effectiveness of these architectures in solving every day problems is all about the learning rule used to
train them, i.e. the back-propagation algorithm. Since the pioneering work of Hinton et al. in [24], BP was
lately implemented in TensorFlow and PyTorch in order to train DNN effectively. The reason behind why this
algorithm is so effective in training DNN, is because the only objective is the minimization of the loss function.
The minimization is indeed done exclusively, by changing the weights of the network initialized at random at the
beginning. Even though the BP algorithm is the most known and used in training ANN, one question could
arise: if an ANN is biologically inspired by the brain, is back-propagation biologically inspired by some learning
processes happening in the brain? The answer that many neuroscientists support is no and moreover they argue
that BP cannot happen in the brain. There are several reasons behind this claim and here below there are themost
commonly ones.

• As described in the previous section, neuronal plasticity, i.e. the ability of changing the strength of the
synapses, happens always between two neurons. This means that changing the strength of the synapses
is a local procedure. BP instead is not a local algorithm, because is based on the chain rule, meaning that
in order to change a connection wij it requires the knowledge of all the previous connections up to the
output layer. A complete description of the BP algorithm can be found everywhere on the literature; here
instead it is briefly reported a justification of the previous statement. The starting idea of BP is indeed the
chain rule; let’s enumerate the layers of an ANNwith the index k, where k = 0 is in the input layer, while
k = Nlayers is the output layer.

∂L
∂wk

ij
=

∂L
∂akj︸︷︷︸
(∗)

∂akj
∂wk

ij︸︷︷︸
(#)

where aki =
rk−1∑
j=0

wk
jio

k−1
j =

rk−1∑
j=0

wk
jiψ(a

k−1
j)

Note that with reference to a layer k, ok−1
j is the output of neuron j in the k− 1 layer, that is the input for

a neuron in layer k. aki instead is the dot product between input and matrix of weights of layer k; let’s call
ψ a general activation function that changes based on the layer. The second term can be written as

(#)
∂akj
∂wk

ij
=

∂

∂wk
ij

(rk−1∑
l=0

wk
ljo

k−1
l

)
= ok−1

i

while the first, after some calculations, can be written as

(∗) δkj ≡
∂L
∂akj

= ψ
′
(akj)

rk+1∑
l=1

wk+1
jl δk+1

l .

In conclusion one can easily see that, if one want to calculate the error derivative respect wij in layer k, he
needs the knowledge of all the weights wjl in layer k+ 1.

• Another observationmoved against supervised learning in general, is that it is not how humans learn. For
example, animals require lot of sensory experience to tune the early visual system into an adult system.
This experience is believed to be predominantly observational, with few or no labels, so that there is no
explicit task to solve [6]. This type of learning is said to be unsupervised. So if in the brain there is no

30

obvious source of labels, why the learning paradigm should use labels in its loss function? This is an
observation against the learning paradigm but indirectly against BP, because BP can be used only if one
know the target values (also called as ground-truth).

• Moreover, since BP is based on the propagation of the errors, these errors eij ∈ R are real values. However
as seen in the neurobiology section, neurons propagate all-or-none spikes and indeed the neural response,
described by Eq. (5.1), is given by a sum of δ-train. This suggest that brain does not propagate real value
signals but spike-train. It is important to not confuse the neural spikes with the voltage of the action-
potential, that instead could be a continuous variable.

• Artificial neurons moreover send two different types of signals: in the forward pass the activity, in the
backward pass the error derivative. This is indeed anomalous from the biological point of view.

• Another interesting point is that in BP artificial neurons allow forward and backward pass. In reality
neurons do not have a symmetrical reciprocal connections. As studied before, the signal moves from the
soma to the axon but not vice-versa, excluded some particular cases (e.g. endocannabinoids).

The problem is that, BP works extremely well for really tough practical problems, as one can see training large
DNN. In conclusion, up to now, a sure answer to the question ”Is BP implemented in brain?”, is not yet found,
even though there is a strong evidence ofwhyBPcouldnot beperformed in thebrain. Consequently, the literature
and the current research is looking toward algorithms that are in some waymore biologically plausible. In general
it is quite difficult to create algorithms that have a solution for every point mentioned above, this is why scientists
are focused in developing algorithms that takes in consideration at least some of them.

5.5 Krotov andHopfield’s algorithm
A fundamental starting point of this thesis is the work done by Krotov andHopfield in [6]. This paper published
in PNAS 2019, is an example of how the current research is focused in finding and developing algorithms, a little
bit more biological w.r.t standard algorithms trained with BP. Their observation is quite simple: suppose to have
a 3-layers ANN as shown in Fig. 5.5, here BP is not a local algorithm, because changing the connections blue-
yellow requires knowing the connections blue-green. So they decided to split the network in two parts: the first
yellow-bluewill be trained in a biological-way, while the second one, blue-green, using BP. In this way, BP is a local
algorithm, because applied only between two consequent layers.

The first part, as I just said, is trained in a biological way, meaning that the learning dynamics of the weights
of the network, is a neuronal dynamics inspired by neurobiology principles. This means that the authors have
engineered a specificplasticity rule in order to train thenetwork. Moreover, since the learningdynamics is basedon
the firing-ratemodel and on plasticity, there is no loss function; consequently there is no space for labels, meaning
that the first matrix of weight is trained in an unsupervised way.

5.5.1 AlgorithmDescription
It has been known, since the pioneering work of Hubel and Wiesel, that many neurons in the visual cortex are
tuned to detect certain elementary patterns of activity in the visual stimulus. A relevant part of the neurobiology

31

Figure 5.5: Example of a 3‐layers ANN.

literature is dedicated to the study of biologically plausible mechanisms for development of orientation selectiv-
ity in the visual cortex; in particular the work of Bienenstock, Cooper and Munro (BCM) [25] is particularly
important. The idea of BCM theory is that for a random sequence of input patterns a synapse is learning to dif-
ferentiate between those stimuli that excite the postsynaptic neuron strongly and those stimuli that excite that
neuron weakly. Learned BCM feature detectors cannot, however, be simply used as the first layer of an ANN
so that the entire network is competitive to a network of the same size trained with BP end-to-end [6]. In other
words, BCM is a theory of the development of the pattern selectivity of a single cell, i.e. there is a temporal com-
petition between patterns seeking to drive a single neuron. This competition is controlled by the dynamics of an
adjustable threshold parameter.

In the algorithmproposed byK-H instead, the neurons competewith each other for patterns: the competition
is betweenneurons, notbetweenpatterns. Whenoneneuronbecomes tuned to somepatternof inputs, thewithin-
layer lateral inhibition keeps other neurons far from becoming selective to that same pattern. As first equation,
let’s describe the example-presentation dynamic, i.e. how the postsynaptic activation change based on the input
given to the network; this, by the way, looks similar to the h-equation of the firing rate model described in Eq.
(5.6).

τr
dhμ
dt

= ψ(Iμs (t))− hμ(t) = Iμs (t)− winh
∑
ν ̸=μ

φ(hν)− hμ(t) (5.10)

Here φ is an activation function, generally chosen as φ(h) = ReLU(h) = max{0, h}, while ψ in this case is a
linear function of Iμs plus a subtracting term. The parameter winh is describing the strength of the within-layer
lateral inhibition between output neurons and its value is set so that in the final state, only a small fraction of
hidden units have positive activity. Finally notice that lateral inhibition between neurons within a layer makes the
network not strictly feedforward. A schematic representation of what done so far is shown in Fig. 5.6.

Once the hidden neurons reach a steady state solution hμ(t) = h∗μ , then the learning phase can start. So in the
first phase an input image (here a MNIST image) is shown to the network, while in the second phase the weights
connections of the network are modified. The equation describing the engineered plasticity rule found by the

32

Figure 5.6: Inputs vi are converted to a set of input currents Iμs . These currents define the dynamics that lead to the
steady‐state activation of the hidden units. Image 2 and caption taken from [6].

authors is the following,

τw
dwμi

dt
= Φ(hμ)

[
Rpvi −

(N∑
k=1

wμkvk
)
wμi

]
= Φ(hμ)Rpvi︸ ︷︷ ︸

(∗)

−Φ(hμ)
(N∑

k=1

wμkvk
)
wμi︸ ︷︷ ︸

(#)

(5.11)

where Φ(h) is a non differentiable activation function defined as

Φ(h) =


0 if h < 0

−Δ if 0 ≤ h < h∗
1 otherwise.

(5.12)

The first term (∗) of the plasticity rule is the product between a function of the postsynaptic activity Φ(hμ)
and the presynaptic activity of neuron vi; thus, it is an example of Hebbian-like plasticity (remember Eq. (5.7)).
In particular this function Φ has both positive and negative values, resulting in both Hebbian and anti-Hebbian
learning (i.e. synapses weakening). The second term (#) instead ensures that the vector of weights between
an hidden neuron and the input neurons, converges to a vector of norm equal to R (usually set equal to 1), i.e.
it describes a homeostatic constraint. This plasticity rule is an extension of the famous Oja’s rule [26], here
reported for one neuron (the second index μ is missing)

Δwi = γη(t)
[
vi(t)− η(t)wi(t)

]
= γ

(N∑
k=1

wkvk
)[

vi −
(N∑

k=1

wkvk
)
wi

]
(5.13)

where γ is called plasticity coefficient. Taking the inverse of γ and going to the continuum limit one retrieve Eq.
(5.11); notice that in the Oja’s equation the activation functions are linear.

Φ(h) = Φ
(
ψ(www · vvv)

)
= www · vvv

Once the first matrix of weights have been learned, one can fix these values and learn the secondmatrix of weights
using back-propagation.

33

5.5.2 Results
The MNIST data set, that contains 70000 images, was randomly split by the authors into a 50000 examples
training set, 10000 examples validation set, thatwas used for tuning the hyper-parameters and 10000 examples test
set. The performance of this biologically trained network was compared with the performance of a feedforward
network of the same size (784− 2000− 10) trained end-to-end using the Adam optimizer starting from random
weights. The results are shown in Fig. 5.7.

Figure 5.7: (Left) The weights learned by the biological network. Twenty randomly chosen feature detectors of 2,000
are shown. (Center) The weights learned by the network trained end‐to‐end with BP. Twenty randomly chosen feature
detectors of 2,000 are shown. (Right) Error rate on the training and test sets as training progresses for both networks.
Image 3 and caption taken from [6].

Let’s give a brief discussion about the results.

• First of all, it is impressive how the feature maps obtained from the BNN are meaningful, encoding digits
in each of them. The feature maps obtained from BP instead are more noisy and not meaningful at all for
a human-being.

• However, even if the feature maps are quite different, the test accuracy in both the networks are quite the
same. This is not a coincidence at all, remember one of the theories behind adversarial attacks: neural
networks can learn both robust and non-robust features and yet, the classifier can correctly pursue the
classification task.

• Note also howBP training ismuch faster w.r.t the bio-trainingwith a final training accuracyworse respect
the BP counter-part; yet the test accuracy is similar as said before, with a similar convergence time.

34

6
Proposed Algorithm

Now that all the ingredients have been introduced, it is time to build an algorithm that exhibits adversarial defence.
The fundamental idea is given by looking at the feature maps obtained from the bio-learning in Fig. 5.7. If a net-
work learns what for a human are the correct things to learn, how is it possible that this architecture is vulnerable
to adversarial attacks? Indeed humans are not vulnerable to adversarial attacks. In some sense if the first layer
of the ANN, that by the way is the most important for the classification task, has feature maps that humans can
understand, then this first layer is transparent in the sense of decomposability. This means that each feature map
of the model admits an intuitive explanation, in this case each feature map represents a digit prototype. Note also
that in this way humans develop trust with respect to the AI algorithm, where the contractual trust is based on
the transparency contract. In order to investigate about the adversarial robustness of the Krotov and Hopfield’s
algorithm, let’s implement it first and then check how it behaves. This by the way will help the user to stipulate
another contract, in particular technical robustness and safety, based on the study of adversarial robustness. As
said before, a broader trust on the AI algorithm is based on more then one contract.

6.1 Implementation of Krotov and Hopfield’s algo-
rithm

In this section it will be shown the implementation of the bio-algorithm proposed by K-H. In the paper they
discussed two versions of it: one naive and slow and anothermore advanced and faster. Herewill be discussed only
the naive version, for the other please see [6]. Remember that the algorithm proposed by the authors is divided in
two phases since the chosen ANN has two matrices of weights. In the first phase the matrix of weights between
input and hidden layers (called hereW 1) is learnedwith a biological inspired algorithm, while in the second phase
the second matrix of weights (W 2) between hidden and output layers is learned with back-propagation. The

35

structure of the ANN is composed byNi = 784 input neurons,Nh = 361 hidden neurons andNo = 10 output
neurons. The first phase is constituted by an iteration of two steps: presentation dynamics and learning dynamics.
For the first step of the first phase, the code is implementing Eq. (5.10). A simple Euler method was used in order
to solve the ODE. Since solving the ODE for every image is computational demanding, using a fast ODE-solver is
fundamental; note that no other existingmethod is faster compared to the Euler’s one. In the following equations,
it is shown how to adapt Eq. (5.10) in order to implement it in python.

hμ(t+ 1) = hμ(t) +
dhμ
dt

dt = hμ(t) +
[
Is,μ(t)− winh

∑
ν ̸=μ

φ(hν)− hμ(t)
]
dt
τr

hhh(t+ 1) = hhh(t)
(
1− dt

τr

)
+

[
IIIs(t)− winh Im ·max{hhh, 0}︸ ︷︷ ︸

≡S

]
dt
τr

Im is a useful matrix that implements the operation
∑

ν ̸=μ.

S =


0 1 . . . 1

1 0 1
...

... 1
. . . 1

1 . . . 1 0


︸ ︷︷ ︸

=Im


φ(h1)
...

φ(hn)

 =


φ(h2) + φ(h3) + . . .+ φ(hn)
φ(h1) + φ(h3) + . . .+ φ(hn)

...
φ(h1) + . . .+ φ(hn−1)



The code solving the ODE of the first part is reported below.

t a u _ r = 0 . 0 1
winh = 0 . 9
n eu r on s _h i dd en = 361
n eu r on s _ i n pu t = 748

tmax1 , tmax2 = 0 . 0 5 , 0 . 3
dt1 , d t2 = 0 . 0 0 0 1 , 0 . 0 0 1
t 1 = np . a r a n g e (0 , tmax1 , d t1) / t a u _ r
t 2 = np . a r a n g e (tmax1 , tmax2 , d t2) / t a u _ r
l t 1 , l t 2 = l e n (t 1) , l e n (t 2)
t t = np . c o n c a t e n a t e ([t1 , t 2])
l t = l e n (t t)
Im = np . on e s (n eu r on s _h i dd en) − np . i d e n t i t y (n eu r on s _h i dd en)

de f h s t e a d y (h_ s t e a d y , I s) :
h = np . z e r o s ((n eu ron s_h i dd en , l t))
h [: , 0] = h _ s t e a d y
d t _ t a u 1 = d t1 / t a u _ r
d t _ t a u 2 = d t2 / t a u _ r

36

f o r i in range (1 , l t 1) :
S = np . matmul (Im , np . maximum (h [: , i − 1] , 0))
h [: , i] = h [: , i −1]* (1 − d t _ t a u 1) + (I s − winh * S) * d t _ t a u 1

f o r i in range (l t 1 , l t 2 + l t 1) :
S = np . matmul (Im , np . maximum (h [: , i − 1] , 0))
h [: , i] = h [: , i −1]* (1 − d t _ t a u 2) + (I s − winh * S) * d t _ t a u 2

r e t u rn h [: , − 1] , h

Note that here the real physical parameter is winh, all the other parameters like tmax and dt are important in order
to obtain a good solution in a reasonable amount of computational time. In particular the authors state thatwinh

should be chosen such that at stationarity only a small fraction of neurons have a positive activation value; for
example withwinh = 0.9, there is 1.94% of active neurons. Also the value of τr is not important, the only require-
ment is that τr ≪ τw, i.e. the input dynamic is much faster compared to the learning dynamic. Surprisingly this
inequality is similar to that mentionedwhen the firing rate model was introduced. The input image is normalized
between [0, 1] and the weights between input and hidden neurons are extracted at random from a gaussian pdf
N (0, 1). Note also there are two dt because at the beginning the simulation-steps have to be done carefully in
order to avoid strange simulation artifacts, while in reaching stationarity the time-steps could be longer; this helps
speeding up the computation. Indeed the price to pay in using the Euler method, that is very fast and simple, is
to use a small dt since the precision of the method goes asO

(
dt2

)
. The dynamic of the postsynaptic neurons and

their steady-state activation are shown in Fig. 6.1.

Figure 6.1: (Left) Steady state activation h∞ of the hidden neurons. The dashed orange is the value h∞ = 0, while in red
the value h∞ = h∗, the free parameter of the activation function. (Right) The presentation dynamic for three random
neurons; the absolute time t was normalized w.r.t the characteristic time scale of the presentation dynamic τr.

Summing up, in the first step one give in input to the network an image and wait until the hidden neurons
reach a steady state h∞; this is what the authors mean with input presentation dynamics. Let’s now move on to

37

the second step; the activation function in equ. 5.12 is implemented as follow.

de f g (h_ s t e a d y , h _ s t a r , d e l t a) :
gh = np . on e s ((l e n (h _ s t e a d y) , 1)) * d e l t a
gh [h _ s t e a d y >= h _ s t a r] = 1
gh [h _ s t e a d y < 0] = 0
r e t u rn gh

d e l t a = −0.01

Again a simple Euler method is used to solve the ODE, where notice that here the physical parameters are Δ,
h∗ and τw. Again, the code is implementing EQ. (5.11), so some arrangements are needed in order to implement
it in python.

W 1(t+ 1) = W 1(t) +
dW 1

dt
dt = W 1(t) + Φ(hhh)vvvT

dt
τw

− Φ(hhh)
[(N∑

k=1

w 1
μkvk

)
w1
μi

]
dt
τw

= W 1(t) + Φ(hhh)vvvT
dt
τw

− Φ(hhh)
[
W 1vvv︸︷︷︸
≡ IIIw

∗w 1
μi

]
dt
τw

= W 1(t) + Φ(hhh)vvvT
dt
τw

− [Φ(hhh)⊙ IIIw]IIIT︸ ︷︷ ︸
≡ T

⊙W 1 dt
τw

In the equation aboveW 1 is the matrix of weights whose elements are w 1
μi, while⊙ indicates per-element multi-

plication. All the steps above are done because the ODE in Eq. (5.11) is formulated by the authors in terms of
single weight wμi, but from the coding point of view is good practice using vectorial calculus. Note that i is an
index running over the input neurons, while μ over the hidden ones; consequently T is a n× nmatrix, whileW 1

is a n×mmatrix, where n = 361 andm = 784, i.e. respectively the number of hidden and input neurons. The
use of⊙ is a useful mathematical notation since the use of per-element multiplication is naturally implemented
in python (and in particular in NumPy) with the keyboard symbol (∗).

T⊙W 1 = [Φ(hhh)⊙ IIIw]IIIT ⊙W 1 =



Φ(h1)
Φ(h2)

...
Φ(hμ)

...
Φ(hn)


⊙



Iw,1
Iw,2
...

Iw,k
...

Iw,n


IIIT ⊙W 1 =



Φ(h1)Iw,1
Φ(h2)Iw,2

...
Φ(hμ)Iw,k

...
Φ(hn)Iw,n


[
1 . . . 1

]
⊙W 1

=



Φ(h2)Iw,2 . . . Φ(h2)Iw,2
... . . .

...
Φ(hμ)Iw,k . . . Φ(hμ)

... . . .
...

Φ(hn)Iw,n . . . Φ(hn)Iw,n


︸ ︷︷ ︸

n×n

⊙


w 1
11 . . . w 1

1m
... . . .

...
w 1
n1 . . . w 1

nm

 =


Φ(h1)Iw,1w 1

11 . . . Φ(h1)Iw,1w 1
1m

... . . .
...

Φ(hn)Iw,nw 1
n1 . . . Φ(hn)Iw,nw 1

nm



38

The code solving the ODE of the second step is reported below.

tau_w = 5
tmax3 = 2 . 5
d t3 = 0 . 0 2
t 3 = np . a r a n g e (0 , tmax3 , d t3) / tau_w
l t 3 = l e n (t 3)

de f W_update_quick (ghp , vp ,Wp) :
Wnew = np . z e r o s ((n eu ron s_h idd en , n e u r on s _ i n pu t))
d t _ t a u 3 = d t3 / tau_w
ghv = (ghp * vp .T) * d t _ t a u 3

f o r j in range (1 , l t 3) :
Iw = np . matmul (Wp, vp)
T = np . matmul (ghp * Iw , np . on e s ((1 , n e u r on s _ i n pu t)))
Wp = Wp + ghv − T*Wp* d t _ t a u 3

r e t u rn Wp

The result of the learning dynamics is shown in Fig. 6.2.

Figure 6.2: Convergence of the weights to a unit sphere for three random neurons, each one in a different learning regime.
The absolute time t was normalized w.r.t the characteristic time scale of the learning dynamic τw.

In Fig. 6.2 three random hidden neurons are taken and all their connections to the input neurons are squared
and then summed; again, μ is an index running over the hidden neurons, while i is running over the input neurons.
So one can see that if a hidden neuron has a steady state activation h∞ > h∗ (so Φ(h∞) = 1) there is Hebbian

39

learning (blue line) and the weights converged to a sphere of radius 1 (remember the radius Rp in Eq. (5.11) set
to 1). If there is no learning (green line) the weights will stay constant and this happens in the case h∞ < 0 (so
Φ(h∞) = 0). Finally, in the anti-Hebbian regime the sum of weights-squared tends to diverge. The divergence
in the anti-Hebbian regime is not a bug and it is something expected by the authors themselves (for all the details
see pp. 7725 of [6]). The only thing tomention is that this divergence is not a problem, because the probability to
be in the anti-Hebbian regime is low. So this divergence does not grow toomuch and in the next step the weights
or will stay constant or they will converge to the unit sphere. The stability depends also by the simulation time:
as one can see from Fig. 6.2, the weights converge faster then divergence and tmax is set such that the convergence
is reached for the blue line. In this way, the weights in the Hebbian regime converge, while those in the anti-
Hebbian regime are not able to grow in an unbounded way. However setting a too high Δ or lowering too much
the competition winh could make the algorithm fail.

Now the first and the second steps can iteratively applied for many samples. For a quick implementation let’s
start giving in input to the network 600 images, i.e. 1% of the entire test set (test plus validation set). Every digit
class has 60 images inside the set of images presented to the network; in such a way the network should learn an
equal representation for each digit, i.e. it is expected an equal number of feature maps. The code implementing
the full training is reported below.

h _ s t e a d y = np . z e r o s (n eu r on s _ou t pu t)
np . random . s e e d (2 3 4 7)
s i gma = 0 . 2
W_ f i r s t = s i gma *np . random . r and (n eu ron s_ou tpu t , n e u r on s _ i n pu t)
W = W_ f i r s t

max_ s amp l e s = 600
np . random . s e e d (2 3 4 7)
s amp l e _ i n d e x s = np . random . r a n d i n t (0 , d a t a s e t _ s i z e −1 , max_ s amp l e s)

t = t ime . t ime ()
f o r s amp l e _ i n d e x in tqdm (s amp l e _ i n d e x s) :

imag e = t r a i n _ d a t a s e t [s amp l e _ i n d e x] [0]
v = t o r c h . f l a t t e n (image) . u n s qu e e z e (dim = 1) . numpy ()
I = np . matmul (W, v) . s q u e e z e ()
h _ s t e a d y = h s t e a d y _ q u i c k (h _ s t e a d y , I)

gh = g (h_ s t e a d y , h _ s t a r , d e l t a)
W = W_update_quick (gh , v ,W)

The featuremaps learnedduring this short training are shown inFig. 6.3. Since 361 hiddenneurons are considered
in this architecture, there are 361 feature maps, each of them composed by 784 input neurons. Graphically these
feature maps are arranged in pictures of 28 × 28 (784) pixels, in a grid of 19 × 19 (361) squares, for a better
visualization.

40

Figure 6.3: Feature maps learned during the bio‐training. These feature maps, as anticipated before, can be understood by
humans because are digit prototypes. Red pixels means positive weights, while blue pixels means negative ones.

From now on, all the ideas and results shown in the next pages come from personal work and cannot be found
in the paper [6]. After the biological training, the unsupervised phase is finished, so freezing the first set of weights
just found, one can build a PyTorch ANN with two layers and training the second one with the full MNIST
dataset using BP. Using the library skorch [27], with a k-fold technique (5 folds) for a maximum of 15 epochs,
using Adam as optimizer with a learning rate of 0.005, one can obtain without fine-tuning the parameters, a final
test accuracy of 88.18%. The activation function is linear in the input layer, ReLU in the hidden layer, while for
the last layer the soft-max function was used. The resulting confusion matrix is shown in Fig. 6.4.

Figure 6.4: Confusion matrix, obtained from the evaluation of the network to the test set.

41

6.1.1 Understanding the Parameters

Let’s see now what happen if the hyper-parameters of the bio-algorithm change, starting from winh. This part is
not mentioned in the paper, but it is necessary in order to fully grasp the logic behind.

Remember that winh regulates the strength of the lateral competition between hidden neurons. Neurons in-
deed are competing with each other for being active to a given input pattern, so if winh is large, the competition is
so strong that if one neuron becomes more active respect other, than all the other neurons are suppressed. This
means that their steady state activation h∞ will be less then zero.

Figure 6.5: Some feature maps obtained setting different winh keeping Δ = −0.01 and h∗ = 3. Left, winh = 0.9, center
winh = 1, right winh = 1.3.

One can see in Fig. 6.5 that even though the digits presented, the order of the images and the random initial-
ization of the weights are the same in all the three cases, the feature maps embedded are different. This means that
the value of winh in relation with the random initialization can change the order of the feature maps embedded.
Note also that if one increase winh the negative weights (colored in blue) start to disappear. Moreover some of the
feature maps shown above has some red and white random pixels behind the digit; obviously this is a unwanted
situation, because they contribute to the activation of the neuron. These pixels are randomweights that have been
initialized at the beginning and that the learning dynamics was not able to change. A simple solution is just to give
a smaller random initialization, with variance less then one (e.g. σ = 0.2) and give more time to the learning and
presentation dynamics.

Let’s now see the impact of the Δ parameter; Δ and h∗ are both important in determining the impact of the
anti-Hebbian regime. Remember that Δ is the value of the activation functionΦ of the hidden neuron in the anti-
Hebbian regime. So if an input and hidden neurons are not both active, then grater is Δ more their connection
will be decreased. Indeed as one can see in Fig. 6.6 increasing Δ gives broader regions with a darker blue (for a
comparison between red and blues weights see 5.7). Increasing h∗ instead means increasing the region where the
anti-Hebbian regime is active, meaning a major presence of negative weights. Indeed anti-Hebbian regimemeans
negative value of the activation function, so even though anti-Hebbian regime does not imply negative weights,
the presence of blue pixels surely implies the presence of neurons in anti-Hebbian regime. However it is not easy
to understand the role of h∗ and indeed for h∗ = 5 there are less negative weights compared to the case h∗ = 3.
The results are shown in Fig. 6.7.

42

Figure 6.6: Some feature maps obtained setting differentΔ keeping winh = 1 and h∗ = 3. Left, Δ = −0.01, center
Δ = −0.05, right Δ = −0.1.

Figure 6.7: Some feature maps obtained setting different h∗ keeping winh = 0.9 and Δ = −0.01. Left, h∗ = 1, center
h∗ = 3, right h∗ = 5.

6.1.2 Adversarial Vulnerability

From the previous section it turns out that using this bizarre type of training, one can achieve easily 88% of accu-
racy on the test set, without spending too much time on fine-tuning the biological and the PyTorch’s parameters.
Now it is time to test the adversarial vulnerability of this architecture. The FGSM attack seen in chapter 4 can be
easily implemented using PyTorch, where the code can be found in the section ”Tutorials” in their web page [28].
If one test the proposed architecture against adversarial attacks, what turns out is that the network can be easily
fooled by FGSM, as can be seen in Fig. 6.8. The test accuracy under attack drops linearly up to ε = 0.15 and then
reaches some few percent (≈ 3%) with ε = 0.3. The adversarial attacks can also be visualized respect the various
ε; more in detailed, an example with ε = 0.15 can be seen in Fig. 6.9 .

Unfortunately, even though theANN is embedding ”human-level” features, i.e. digits prototypes in its feature
maps, it is still vulnerable to adversarial attacks like the FGSMones. If one look at the adversarial examples shown
in Fig. 6.8 however, it could see that these new images are just the original one, plus some gray-noise around the
digit. So it is quite annoying that such perturbations fool the network, because from a human point of view, these
images are clearly digits that can be easily classified.

43

Figure 6.8: (Left) Test accuracy under attack, varying ε, the strength of the attack. (Right) Examples of adversarial attacks,
for different ε. In each image’s title, there is the original label, then an arrow and then the (wrong) label given by the net‐
work.

Figure 6.9: (Left) Original image taken from the MNIST dataset. (Center) The adversarial perturbation generated from the
FGSM attack. (Right) Result of an additive attack, i.e. summing the original image and the mask attack together. Remember
that black pixels have value 0, while white pixels have value 255.

6.2 Probabilistic Layer
As described above, an ANN built and trained in such a way does not displays adversarial vulnerability. Since the
first layer has learned the right things, i.e. feature maps equal to digit prototypes, let’s now focus on the second
layer. Now the matrix of weights of the first layer is fixed and an image is given in input: what will happen to the
activation of the hidden neurons? Let’s start giving in input the digit 0; the input image is shown in Fig. 6.10. The
image is then convoluted with all the feature maps and the result summed in order to give a single scalar number
for each hidden neuron. Doing this one can evaluate the activation profile; the result is shown in Fig. 6.11.

44

Figure 6.10: Example of digit 0 sampled from the test set and given in input to the network.

Figure 6.11: Hidden neurons activation. In red the baseline equal to the value 0, while the green dashed line corresponds
to the 95% of the maximum value.

One can see that some neurons are more active then other, so is a natural question asking which feature maps
these neurons are embedding in the first layer; the answer is shown in Fig. 6.12.

Figure 6.12: Feature maps of the five most active hidden neurons given the input digit shown in Fig. 6.10. These five
neurons are those with an activation grater then 95% the maximum value.

As expected these neurons, which during training learned the digit prototype 0, will be more active when
a 0 is presented in input. Looking at the feature maps, one can see that is present also a digit prototype of 3,
obviously different from 0, meaning that this hidden neuron is very active to the input 0, even if it is a different
digit compared to its feature map. This could happen when a particular input image has many pixels in common
with the feature map; this fact is shown in Fig. 6.13 with a different example.

As underlinedwith the green line in Fig. 6.11, there exists an elite of fewneurons super-active for that particular
0 presented in input. This elite of few neurons is chosen setting a very strict threshold in the activation value,
keeping only the top 5%most active neurons. In some sense these neurons are ”super-specialized” in recognising
this type of digit; this threshold will be denoted as λ = 0.95. From this observation, it is obvious that the final
layer, used for the classification, should be based on this concept of ”super-active” neurons. The idea is formulated
as follow: the first layer learns digit prototypes, the second layer assigns labels based on the plausibility of themost

45

Figure 6.13: Another example where the feature map of the most active neuron is not equal to the input image; however
these two digits share many pixels locations. The colors used are just for visualization purposes.

active hidden neurons. Let’s assume for amoment, that each neuron is sensitive to only one type of digit, then one
could just group together these neurons and they will be useful to detect the corresponding digit. The problem
is that hand-written digits are very different one from the other, because of the calligraphy, so one neuron could
not be sensitive to every picture of the same digit. Moreover as seen above with two examples, it is clear why this
assumption does not hold.

Note that the learning algorithm of the second layer was BP in the original work by Krotov andHopfield, but
here substituted with the proposed algorithm i.e. the objective of this thesis. Therefore the learning algorithm
proposed in this thesis for the second layer is constructed as follow:

1. Give in input to the network an image.

2. The first matrix of weightsW 1 is fixed and learned using the bio-algorithm of K-H.

3. Performmatrix multiplication between input and matrix weight. Doing this one can calculate the activa-
tion values of the hidden neurons.

4. Check for the most active hidden neurons, let’s say the top 5%.

5. The result of the activation functions of the hidden neurons, will give 1 for the most active ones 0 oth-
erwise. This could be achieved using a steep sigmoid activation function in the hidden layer. Note that
ideally one should use a Heaviside function that however is not differentiable.

6. The connections from these super-active neurons to the one corresponding to the label of the image, are
increased by one while all the other are left the same. The connections are all initialized to zero at the
beginning.

7. Repeat iteratively the steps above for all the images in the training set. In this phase the second matrix of
weightsW 2 is learned.

8. Once all images have been presented, the connections are normalized respect the number of times the
hidden neurons were active. These weights are then interpretable as probabilities that a particular output
neuron is active when a given hidden neuron is active. Obviously the probability that a hidden neuron is
assigned to any label has to be one.

46

For clarity, let’s give an illustrated example of the aforementioned algorithm (see Fig. 6.14).

Figure 6.14: An illustrated example of the learning algorithm. In the networks shown here, with reference to Fig. 5.5,
hidden neurons are colored in blue, while output neurons in green. In a)‐b)‐c) there are three examples of ”super‐active”
neurons, in d) there is the set of counts for each connections and finally in e) there is the set of weights obtained from the
normalization of the previous counts.

Let’s call the three hidden neurons (A,B,C) and the output ones (D,E); at the beginning the weights connec-
tions are all initialized to zero. Then an image of a 0 is presented in input (a); here only neuron A is very active,
so its connection shared with neuron D should be increased. A new image of a 3 is presented in input, so new
neurons are super-active, in this case theA andC (b). Now one can use the entire training-set in order to train the
second layer (c). At the end (d) one have the matrix of counts obtained from the previous steps. Once the matrix
of counts is known it can be normalized such that the sum of the weights of the out-coming links of a hidden
neuron is equal to one (e).

From amathematical point of view, the strength connection between a hidden neuronA and a output neuron
D is determined as follow

wAD =
times A andD are active

times A is active
. (6.1)

This is one of the most important idea of the thesis: indeed one, after some manipulations, can show that this
definition of weights has a probabilistic interpretation.

wAD =
times A andD are active
images presented in input

· # images presented in input
times A is active

≡ P(A ∩D)

P(A)
= P(D|A)

In point a) of Fig. 6.14 when A is active, the reference label is 0, i.e. should be active neuron D. Increasing the
counter between A andDmeans increasing the joint probability of having A andD active i.e. P(A ∩ D). Since
the real interest is in estimating P(D) one can calculate it using the rules of probability as

P(D) =
∑
i
P(D|i)P(i) where i ∈ {A,B, . . . } hidden neurons.

47

The network then gives in output the probability for each label, meaning that no soft-max activation is needed
in principle. Finally looking for the maximum of the various probabilities one can choose the final label. So the
overall training of the network is done in the following way:

• Only 600 images from the 50000 images of the test set are presented to the first layer of the network. Here
digit prototypes are learned via bio-learning, with the algorithm proposed by Krotov and Hopfield.

• Then all the 50000 images are presented in input, with thematrix of the first layer fixed. Here the connec-
tion weights of the second layer are learned with the algorithm proposed in this thesis.

• Finally the test set is presented in input to the network and the test accuracy of the network is evaluated.
In particular there is no need of soft-max activation function, since the algorithm is able to calculate the
probability of the resulting label. However the use of soft-max can enlarge small differences between
probabilities and so it can increase few percent the test accuracy.

Finally, evaluating the test accuracy, one can easily achieve 86.38%; remember that with BP a similar accuracy
was achieved (88.18%). The confusion matrix obtained is shown in Fig. 6.15.

Figure 6.15: Confusion matrix, obtained from the evaluation of the network to the test set using the proposed learning
algorithm.

So after the full training of the second layer, one can interpret the results and make a consistency check. Let’s
consider the neuron number 300; one can easily see that the vector of counts between that neuron and the output
neurons has a huge spike in the label 2. Indeed if one check the feature map of that neuron, the digit prototype is
2 as expected (see Fig. 6.16).

Moreover one can inspect the feature maps of the trained network; for the first layer is quite simple evaluating
the feature maps since they are just a reshape version of the rows of the first matrix of weights. But how evaluate
the feature maps of the second layer, or in other words, what the output neurons see respect the input? It is well
known in ML literature how to do it; let’s call againW 1 the matrix of weights of the first layer, whileW 2 the
matrix of the second one. The network will have 10 feature maps seen from the output neurons, each of them

48

composed by 784 weights.

Fik =
Nh=361∑
j=1

W 2
ij ∗W 1

jk where k ∈ {1, . . . , 784}, i ∈ {1, . . . , 10} (6.2)

Figure 6.16: (Left) Visualization of the counts for neuron number 300. (Right) Feature map embedded in the first layer for
this neuron.

The resulting feature maps for the second layer are shown in Fig. 6.17.

Figure 6.17: Feature maps of the second layer obtained from an ANN trained with the proposed algorithm. Each output
neuron ”sees” its corresponding digit through the weights of the network.

Even though this result seems obvious, let’s check what feature maps an ANN, trained end-to-end with BP,
are embedding in its second layer (see Fig. 6.18).

49

Figure 6.18: Feature maps of the second layer of an ANN trained only with BP.

The difference between Fig. 6.17 and 6.18 is enormous, so now should start to be clear why transparency is
a fundamental requirement. It has no-sense stating that the neural network ”has learned” these chaotic feature
maps, no human ever will give trust to such architecture and so no one will use it for important and potentially
critical and/or dangerous decisions. However the network has learned something since the test accuracy of such
network is incredibly high, about 97%. Again, the ANNhas learned non-robust features that are not understand-
able by humans.

6.2.1 Tuning of the Network
The training procedure proposed in this thesis gives a final result of 86.38% in the test accuracy. As said many
times, no hyper-parameters were fine tuned, the values are chosen based on some suggestions that could be found
in the original paper [6] and some heuristics. The hyper-parameters and their values used up to now are the
following:

• Δ = −0.05: the strength of the anti-Hebbian learning.

• winh = 1.1: the strength of the within lateral competition between hidden neurons.

• h∗ = 5: a parameter describing the extension of the anti-Hebbian regime.

• σ = 0.2: standard deviation of the gaussian pdf used for the weights initialization in the first layer.

• τw = 5: once τr and t1max + t2max are chosen such that the hidden neurons reach a steady state solution, τw
with t3max are the only left parameters. But t3max is set in order to avoid the divergence discussed above.

• λ = 0.95: the threshold used in the hidden layer to establish the ”super-active” neurons.

• Nh = 361: the number of hidden neurons.

• rseed = 2347: the random seed determining both the weight initialization andwhich images are presented
to the bio-algorithm.

• Even if it is not a parameter, the composition of theNimages could be important. Up to now, every digit
has the same number of images inside the small dataset composed by Nimages presented during the first
phase.

50

The number of images presented to the bio-algorithm (Nimages = 600) is changed w.r.t the number of hidden
neurons, such that the ratio is kept near 2 : 3, i.e. every 2 hidden neurons, 3 images are presented in input. Since
there are 7 parameters, considering 4 possible values for each of them and considering that each training requires
≈ 8 minutes, one need 47 × 8min ≈ 91 days to perform the grid search exactly; obviously this is infeasible.
Starting from the default values, one can keep all the values except one and see what happen to the test accuracy:
obviously this is a compromise, a better solution could be random search. The results are reported in Table 6.1.

Δ winh σ h∗ λ τw Nh -Nimages

-0.01 0.9 0.1 1 0.91 1 169 - 280
-0.03 0.95 0.2 5 0.93 3 361 - 600
-0.05 1.1 0.3 7 0.95 5 484 - 800
-0.07 1.3 0.4 10 0.97 10 625 - 1030

Test accuracy %
88.01 82.36 73.61 86.14 87.93 Div. 84.11
87.58 84.69 88.76 88.23 88.27 88.46 88.23
88.23 88.23 88.24 88.36 88.23 88.23 89.96
87.64 88.76 88.14 88.08 87.70 89.12 89.98

Table 6.1: (Top) Values tried during the fine‐tuning phase of the architecture. (Bottom) The corresponding test accuracy for
each value above; every time a parameter changes all the other are fixed to default values described before. Div. means
that the algorithm displays numeric divergence.

Moreover one can also study how the training time scales with the number of hidden neurons and the number of
images presented (see Table 6.2).

Nimages|Nh = 484 Training time [s] Nh|Nimages = 600 Training time [s]
280 199.8 169 136.9
600 424.9 361 304.8
800 568.2 484 424.9
1030 732.2 625 584.3

Table 6.2: (Left) Training time vs. the number of images presented in input (the number of hidden neurons is fixed toNh =
484). (Right) Training time vs the number of hidden neurons (the number of input images is fixed toNimages = 600).

While the ratio between training time vsNimages is approximately constant (≈ 0.71) suggesting a linear relation,
the ratio between training time andNh seems to increase. This is enough to show (at least for the studies made)
that the computational time scales linearly with the training examples; however no other studies will be done in
this direction.

Finally, let’s check if the test accuracy could increase if the images in input are not equally-partitioned into the
10 digit classes. Looking to the confusion matrix shown in Fig. 6.15, the idea is to give in input more images
of those digits that are more misclassified, for example 3 − 5 and4 − 9. The reason behind why these digits are
confused is because they shear many pixels positions, as shown in Fig. 6.13. In order to find a statistical evidence,

51

let’s try to train the network with 5 different random seeds for two pdf of number of digit samples (see Table 6.3).
These twoproposed pdf are the uniform (i.e. what done up to now) defined by a set ofweights [0.1, . . . , 0.1] and a
custom pdf, composed by the following set weights [0.05, 0.05, 0.075, 0.15, 0.15, 0.15, 0.05, 0.05, 0.125, 0.15].
In a such away the digit 0will have less images (600×0.05 = 30) compared to the uniformcase (600×0.1 = 60).

rseed Test accuracy %, custom pdf Test accuracy %, random pdf
2347 90.16 90.02
43782 89.65 90.04
7653 89.59 89.56
57829 89.75 89.97
9267 89.94 89.36
24738 89.60 89.56

Table 6.3: Test accuracy, for 6 random seed, for both random and uniform pdf.

So one can calculate the mean and the standard deviation of the mean using the t-student distribution for the
custom and uniform pdfs, obtaining 89.9± 0.1% and 89.7± 0.1% respectively. The z-test gives a result of 0.56,
so the two test accuracy are statistically equal; no other studies will be done in this direction.

With the tuned parameters, I can finally say that the test accuracy of the trained architecture is 89.9 ± 0.1%,
showing an increase of+3.5% respect the non fine-tuned version.

6.2.2 Adversarial Vulnerability
Uptonow, improvements have beendone in increasing the test accuracy, butwhat about adversarial vulnerability?
It turns out that using again the FGSM attack, now the network is totally resilient (up to a certain point) to these
attacks; in particular the test accuracy under attack decrease in a very slightly way (see Fig. 6.19).

Even if the evaluation of the test accuracy of a neural network is usually done with an ε that is a small fraction,
typically fromaminimumof 1/255up to0.3, one can surely increase ε. Obviously thenetworkwill performworse,
but the point is that the perturbation applied to the image is so strong that is not anymore an adversarial attack
(see Fig. 6.20). Remember, from the theory of adversarial attacks, that a perturbation is considered as an attack if
it is imperceptible to human-eye. Note also that in Fig. 6.8 the minimum value of the test accuracy under attack
was ≈ 3%, i.e. the attacker is always able to create a perturbation that leads the classifier to a misclassification.
Here instead the minimum value for ε ≥ 1 is equal to 50.3%, i.e. the success of the attack is random, sometimes
the attacker achieves its goal some other not. Even if the value of test accuracy is low, this is an incredibly powerful
form of defense, because the network is able to reduce the attacker to a random attacker.

Moreover, using the library torchattacks [29], one can import and implement all the other possible types of
adversarial attacks. The adversarial vulnerability of themodel was tested using all the adversarial attacks described
in chapter 4 and some variants of them, in particular: FGSM, BIM, RFGSM, PGD, PGDL2, FFGSM e TPGD.
Of course there are many other, but these are the main attacks usually implemented in bench-marking platforms.
In Table 6.4 it is reported the benchmark performed; the values used in the algorithms are mainly the default set
from the library.

52

Figure 6.19: (Left) Test accuracy under attack for the proposed algorithm, varying ε, the strength of the attack, compared
with other architectures. In blue the performances of the architecture proposed by K‐H, in green the performances of an
ANN trained only with BP while in orange the performances of the proposed algorithm. (Right) Examples of adversarial
attacks, for different ε for the proposed algorithm. In each image’s title, there is the original label, then an arrow and then
the (wrong) label given by the network.

Figure 6.20: (Left) Test accuracy under attack for the proposed algorithm, varying ε, the strength of the attack, for a larger
range of ε. (Right) Examples of adversarial attacks, for different ε. In each image’s title, there is the original label, then an
arrow and then the (wrong) label given by the network.

53

Adv. Attack ε α Steps Metric Notes Robust Accuracy
FGSM 8/255 / / L∞ / 86.23%
BIM 8/255 2/255 10 L∞ / 84.52%

RFGSM 8/255 2/255 10 L∞ / 84.48%
PGD 8/255 2/255 10 L∞ Random restart 84.40%

FFGSM 8/255 10/255 / L∞ / 86.32%
TPGD 8/255 2/255 10 L∞ / 88.52%
PGDL2 1 0.2 40 L2 Random restart 77.13%

Table 6.4: Benchmark of the network trained with the proposed algorithm, respect many different adversarial attacks.

In conclusion considering a trained network that displays a test accuracy of 90.96%, the test accuracy under an
FGSM attack with strength ε = 0.1 is 86.60%, while for an ε = 0.3 is 84.22%.

There exist groups of research that benchmark systematically the various algorithm for adversarial defense pub-
lished through the years; an example is shown in the following web page [30]. Here are published the results of
many authors, that usemuchmore complicated algorithm thanmine and consequently they achieve better results.
However if onemeasure the difference between the test accuracy and the test accuracy under attack, my algorithm
performs equally or better in the MNIST data set.

54

7
Conclusion

I will briefly resume the thesis, highlighting the principal concepts described in it. First of all it has been discussed
about the meaning of words like, trustiness, robustness, transparency etc. They are not fancy words used in the
colloquial language, but they are indeed key requirements decided by the european guidelines for trustworthy AI.
If one is able to built an AI algorithm keeping in mind these properties, he is increasing the human-AI trust on
it. In the thesis has been also described what are adversarial attacks: they are signals, typically images, constructed
in order to fool the network. The way in which these attacks are built reflects the main theory taken in consider-
ation; as said many times, a fundamental theory of adversarial attacks does not exist, yet there are many possible
explanation for them.

Then, in order to understand how an artificial neuronbehaves, it has beenquickly described the functioning of
a real neuron and the concept of plasticity. Since the Hebb’s original formulation, many other plasticity rules has
been proposed, yet they shear the common idea that synapses strengthen happens between two near-by neurons.
So if artificial neural networks are inspired by the brain, is back-propagation inspired by some learning paradigm
happening in the brain? The answer, for the moment, is no, because for example BP is not a local algorithm, so
let’s try to avoid back-propagation.

The starting point for developing an algorithm that is robust, transparent and does not use BP, is the work
done by Krotov and Hopfield. Their algorithm is effective in learning digit-prototypes in the first layer of the
ANN. Doing so, the feature maps embedded in the matrix of weights are transparent to the user; moreover they
are learned in an unsupervised way, that is amuchmore difficult task compared to supervised learning. Even if the
intuition of using a BNN in the first layer is right, their algorithmdoes not show adversarial robustness; the second
layer then is trained with the algorithm proposed by me. The main idea is to establish a matrix of weights, where
its elements can be interpreted as transitional probabilities; this allow to calculate the output probabilities of the
corresponding labels. For calculating this matrix of weights the concept of ”super-active” neurons was created.

There are several pros and cons about the proposed training algorithm. The pros are related for sure to the
transparency of the network, the simplicity of the training algorithm and the fact that is adversarial robust against

55

many different types of adversarial attacks. The first layer not only is trained in an unsupervisedway, but is trained
with only 800 images. The cons are the training time, typically 10 minutes and the test accuracy that is roughly
90%. However also in the results of K-H it is shown how BP requires 6 times less epochs compared to their
algorithm.

In conclusion, why this thesis should be of interest for the scientific community? So first of all, up to my
knowledge no papers has been publicized about K-H’s algorithm since the original one of 2019. Moreover up to
my knowledge no one in the literature tried to test the adversarial robustness of the network proposed byK-H and
no one has tried to solve the problem of adversarial defence using biological neural networks. Moreover, I think
that this thesis can be of potential interest for future works. There are many things that could be improved: first
of all, try to build deep biological neural networks. It could turns out that hierarchical stack of biological layers is
beneficial both for robustness and accuracy. Surely, try to implement the fast version of the algorithmproposed by
Krotov and Hopfield giving in input the whole MNIST training set; doing so there is the hope that the network
becomes competitive respect networks trained only with BP. Third aspect, try to modify the neuronal dynamic,
hoping to achieve better transparency in the algorithm sense or better accuracy.

As final conclusion, I would say that this thesis could be taken as an example of how an effective algorithm
could be developed, starting from the human point of view. Indeed, in developing this algorithm, my north star
was the question:

”Why I am capable to recognise digit and my network not?”
I believe that robust and transparent algorithms are the future ofmachine learning, in order to effectively use them
for high-dangerous roles in society.

56

References

[1] A. Jacovi, A. Marasović, T. Miller, and Y. Goldberg, “Formalizing trust in artificial intelligence: Prereq-
uisites, causes and goals of human trust in ai,” FAccT ’21: Proceedings of the 2021 ACM Conference on
Fairness, Accountability, and Transparency, p. 624–635, 2021.

[2] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus, “Intriguing prop-
erties of neural networks,” arXiv, 2014.

[3] A. Shamir, I. Safran, E. Ronen, and O. Dunkelman, “A simple explanation for the existence of adversarial
examples with small hamming distance,” arXiv, 2019.

[4] K. Warr, Strengthening Deep Neural Networks: Making AI Less Susceptible to Adversarial Trickery.
O’Reilly, 2019.

[5] L. Abbott and P. Dayan,Theoretical Neuroscience: Computational andMathematicalModeling of Neural
Systems, 2005.

[6] D. Krotov and J. Hopfield, “Unsupervised learning by competing hidden units,” PNAS, vol. 116, pp.
7723–7731, 2019.

[7] T. Miller, “Explanation in artificial intelligence: Insights from the social sciences,” Artificial Intelligence,
vol. 167, pp. 1–38, 2019.

[8] C. Rudin, “Stop explaining black box machine learning models for high stakes decisions and use inter-
pretable models instead,”NatureMachine Intelligence, vol. 1, pp. 206–215, 2019.

[9] Z. C. Lipton, “Mythos the of model interpretability: In machine learning, the concept of interpretability
is both important and slippery.”Queue, vol. 16, pp. 31–57, 2018.

[10] C. R. J. Radin, “Why are we using black boxmodels in ai whenwe don’t need to? a lesson from an explain-
able ai competition,”Harvard Data Science Review, 2019.

[11] R. R. Hoffman, “A taxonomy of emergent trusting in the human–machine relationship,” 2017.

[12] Guidelines. [Online]. Available: https : / / digital-strategy . ec . europa . eu / en / library /
ethics-guidelines-trustworthy-ai

[13] K. Been, R. Khanna, and O. O. Koyejo, “Examples are not enough, learn to criticize! criticism for inter-
pretability.” Proceedings of the 30th International Conference on Neural Information Processing Systems,
pp. 2288–2296, 2016.

[14] H. Li, Y. Fan, F. Ganz, A. Yezzi, and P. Barnaghi, “Verifying the causes of adversarial examples,” 25th In-
ternational Conference on Pattern Recognition (ICPR), 2020.

57

https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai
https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai

[15] Y. Bengio, “Learning deep architectures for ai.” Foundations and Trends® inMachine Learning, vol. 2, pp.
1–127, 2009.

[16] quora. [Online]. Available: https : / / www . quora . com /
What-does-it-mean-for-an-algorithm-say-deep-learning-algorithms-to-generalize-non-locally

[17] I. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial examples,” arXiv, 2015.

[18] A. Ilyas, S. Santurkar, D. Tsipras, L. Engstrom, B. Tran, and A.Madry, “Adversarial examples are not bugs,
they are features,” 33rd Conference on Neural Information Processing Systems, vol. 32, 2019.

[19] N. Carlini and D.Wagner, “Towards evaluating the robustness of neural networks,” arXiv, 2016.

[20] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples in the physical word,” arXiv, 2017.

[21] F. Tramèr, A. Kurakin, N. Papernot, I. Goodfellow, D. Boneh, and P. McDaniel, “Ensemble adversarial
training: Attacks and defenses,” arXiv, 2017.

[22] W.McCulloch andW.Pitts, “A logical calculus of the ideas immanent in nervous activity,” The bulletin of
mathematical biophysics, vol. 5, pp. 115–133, 1943.

[23] D. Hebb, The organization of behavior; a neuropsychological theory, 1949.

[24] D. Rumelhart, G. Hinton, and R. Williams, “Learning representations by back-propagating errors,”Na-
ture, vol. 323, pp. 533–536, 1986.

[25] E. Bienenstock, L. Cooper, and P.Munro, “Theory for the development of neuron selectivity: orientation
specificity and binocular interaction in visual cortex.” Journal of Neuroscience, vol. 2, pp. 32–48, 1982.

[26] E. Oja, “A simplified neuron model as a principal component analyzer,” Journal ofMathematical Biology,
vol. 15, pp. 267–273, 1982.

[27] skorch. [Online]. Available: https://skorch.readthedocs.io/en/stable/

[28] PyTorch. [Online]. Available: https://pytorch.org/tutorials/beginner/fgsm_tutorial.html

[29] torchattacks. [Online]. Available: https://adversarial-attacks-pytorch.readthedocs.io/en/latest/attacks.
html

[30] robustml. [Online]. Available: https://www.robust-ml.org/defenses/

58

https://www.quora.com/What-does-it-mean-for-an-algorithm-say-deep-learning-algorithms-to-generalize-non-locally
https://www.quora.com/What-does-it-mean-for-an-algorithm-say-deep-learning-algorithms-to-generalize-non-locally
https://skorch.readthedocs.io/en/stable/
https://pytorch.org/tutorials/beginner/fgsm_tutorial.html
https://adversarial-attacks-pytorch.readthedocs.io/en/latest/attacks.html
https://adversarial-attacks-pytorch.readthedocs.io/en/latest/attacks.html
https://www.robust-ml.org/defenses/

Acknowledgments

Vorrei ringraziare il mio relatore, prof. Marco Baiesi che, oltre ad essere stato un ottimo professore, ha sempre
ammirato le mie intuizioni da fisico e le ha sempre supportate nel loro sviluppo. Lo ringrazio per tutto il tempo
dedicatomi e tutte le gentilezze avute nei miei confronti. Lo ringrazio infine per avermi incoraggiato a partecipare
al dottorato di ricerca facendo sì di non avere rimorsi in futuro.

Anche se indirettamente, vorrei ringraziare il prof. Samir Simon Suweis che attraverso il progetto per l’esame
di Quantiative Life Science, mi ha permesso di venire a conoscenza del lavoro svolto da Krotov e Hopfield e avere
quindi il punto di partenza per questa tesi.

Finally, I would like to thank prof. Byers Jefferson MC Culloch, not only for an illuminating discussion on
adversarial attacks in Venice, but also for a sentence said during the course of Information Theory, whose concept
can be summarized as follow:
”If from your machine learning algorithm could depend the life of a person, you really should be careful in what you
are doing.”

59

	Abstract
	List of figures
	List of tables
	Listing of acronyms
	Introduction
	Human-based Concepts of ML
	Transparency
	Trust
	Interpretability
	Explainability
	Final Remarks

	Theories of Adversarial Attacks
	Low-probability “pockets” in the manifold
	Gaussian Noise Attack

	Linearity of the model
	Non robust features
	Separation of Rn by hyperplanes.
	Final Remarks

	Adversarial Attacks
	White-Box attacks
	L-BFGS Attack
	FGSM Attack
	IFGSM Attack (or BIM Attack)
	PGD Attack
	RFGSM Attack

	Biological Neural Networks
	Neurobiology
	Firing Rate Model
	Plasticity
	Back-Propagation
	Krotov and Hopfield's algorithm
	Algorithm Description
	Results

	Proposed Algorithm
	Implementation of Krotov and Hopfield's algorithm
	Understanding the Parameters
	Adversarial Vulnerability

	Probabilistic Layer
	Tuning of the Network
	Adversarial Vulnerability

	Conclusion
	References
	Acknowledgments

