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Abstract

This thesis project concerns on dimensionality reduction through

manifold learning with a focus on non linear techniques.

Dimension Reduction (DR) is the process of reducing high dimension

dataset with d feature (dimension) to one with a lower number of fea-

ture p (p≪ d) that preserves the information contained in the original

higher dimensional space. More in general, the concept of manifold

learning is introduced, a generalized approach that involves algorithm

for dimensionality reduction.

Manifold learning can be divided in two main categories: Linear and

Non Linear method. Although, linear method, such as Principal

Component Analysis (PCA) and Multidimensional Scaling (MDS) are

widely used and well known, there are plenty of non linear techniques

i.e. Isometric Feature Mapping (Isomap), Locally Linear Embedding

(LLE), Local Tangent Space Alignment (LTSA), which in recent years

have been subject of studies.

This project is inspired by the work done by [Bahadur et Al., 2017 ],

with the aim to estimate the US market dimensionality using Russell

3000 as a proxy of financial market.

Since financial markets are high dimensional and complex environment

an approach with non linear techniques among linear is proposed.

Keywords: Dimension Reduction, Manifold Learning, Non linear

techniques, Isomap, LLE.
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Chapter 1

Introduction

Nowadays, working with high dimensional data, in fields like data analysis, data

mining, data visualization and machine learning has become very common [Lee

and Verleysen, 2007]. Just imagine data taken in various topics such as images,

videos, text documents, signal analysis and financial data can only be represented

with high dimensional data. Very often, working and processing them is not al-

ways easy and can lead to non optimal outcome or some difficulty to interpret

results. At this point, the reduction of dimensionality becomes crucial [Cayton,

2005].

Dimension Reduction (DR) is the process of reducing a high dimension dataset,

X = {x1, · · · , xn} ∈ ❘
d, with n feature (dimension) to one with a lower number

of feature, Y = {y1, · · · , yn} ∈ ❘
p (p ≪ n), with p (p ≪ d), called Embedded

Space, that preserves some important information contained in the original higher

dimensional space [Wang, 2012]. This behavior can be related to manifold hy-

pothesis, i.e. data that are represented in high dimensional space lie on a low

dimensional space [Block et Al., 2021].

The embedded data can now be used both for processing system (data mining,

machine learning) and to have a better visualization and understanding of them.

In Figure 1.1 there is a schematic representation of the Dimension Reduction role.

1



2 Chapter 1. Introduction

Figure 1.1: Dimensional Reduction Process.

An important research area where we focused on dimensionality reduction tech-

niques is represented by manifold learning [Izenman, 2012]. Manifold can be

divided into linear or non linear depending on the type of surface they represent.

In linear techniques we find the well-known Principal Component Analysis (PCA,

[Pearson, 1901]), and Multidimensional Scaling (MDS [Young, 1985]). PCA, is

mainly implemented using the Singular Value Decomposition (SVD [Golub and

Reinsch, (1970)]) and it reduces the dimensionality preserving the correlation

structure data, conversely, MDS tries to preserve the Euclidean distance between

the points. Although they are very practical and widely used techniques, given

their linear nature, they cannot correctly capture complex data structures.

In 2000, two new and innovative articles published in the Science issue1, intro-

duce new techniques for mapping a high dimensional manifold into a low dimen-

sional one. Specifically,the techniques proposed were Isometric Feature Mapping

(Isomap) introduced by [Tenenbaum et Al., 2000] and Local Linear Embedding

(LLE) introduced by [Roweis and Saul, 2000]. Isomap method relies on unfold-

ing a manifold by keeping the geodesic metric on the original dataset applying a

global approach. LLE conversely, is based on treating each point in the data set

as a linearly embedding into a locally linear patch of the manifold, in a such a

way to preserve the locally linear relation.

Subsequently a number of methods were presented, to name a few we have Lo-

cal Tangent Space Alignment (LTSA [Zhang and Zha, 2004]), similar to LLE

method with the difference that the locally linear patch is constructed by apply-

1Science, vol. 290, no. 5500
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ing PCA on the neighbors, and Hessian Eigenmaps (know also as Hessian LLE

- HLLE [Donoho and Grimes, 2003]) which achieves linear embedding by mini-

mizing the curviness of high dimensional data by the Hessian minimization [Van

der Maaten et Al., 2009].

Contextualizing Dimensional Reduction to the world of financial markets, we can

see them as complex systems, expressed in a high dimensions dataset and in con-

tinuous change. Therefore, financial markets can be represented in a lower dimen-

sional manifold having the main characteristics of the starting manifold [Huang

et Al., 2016]. As an estimator of the US market the index Russell 3000 has been

used, in particular its constituents represent the starting dimensionality. The idea

of estimating the dimensionality of the Russell 3000 index is based on [Bahadur

et Al., 2017 ]. In addition to the implementation of both metrics, Euclidean

(MDS) and geodesic (Isomap), local methods such as LLE and LTSA, have also

been implemented. Furthermore, it is referred to the original work as a stressful

situation in the market therefore a drop in the index, is related to a drop in di-

mensionality. We will check whether this pattern has also been repeated in more

recent events, such as Covid-19.

In Figure 1.2 there is an representative, but not exhaustive list of Dimensional

Reduction Techniques. Covering all the techniques is almost impossible, so it was

decided to focus on the first and main techniques invented, in order to have a a

complete view at the first approach. For the techniques not exhibited, there is a

list of references to draw from in case of deepening.

This thesis is organized as follow. In Chapter 2 are introduced a series of general

concept of statistics, linear algebra,graph theory and topology. In chapter 3 and

4 linear and nonlinear reduction techniques respectively are exposed. For the

nonlinear ones, where foreseen, we have chosen to expose the basic technique,

followed by its kernel generalization and finally the landmark method.

The chapter 5 shows, after an introductory part useful to visually and practically

show the difference between linear and non-linear techniques, the work done in
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calculating the dimensionality of the US market.

Finally, 6 conclusions and some considerations are presented.

Figure 1.2: Representative, but not exhaustive list of Dimensional Reduction Techniques. The
techniques discussed in this document are highlighted.



Chapter 2

Background

In this preliminary chapter some concepts graph theory and topology will be

exposed and recalled in order to have a better understanding of the algorithms

and techniques subsequently explained. For a more detailed introduction to graph

theory, topology and differential geometry, we suggest [Wilson, 1996] and [Wang,

2012] respectively.

2.1 Graph Theory

Graphs are mathematical structure used to model relations between object, and

as suggest from the name, have a graphical representation too [Friesz Bernstein,

2016]. This section is dedicated to give some preliminary concept. As exposed

later, graph theory is an essential part for the discretization of the problem [Cheng

et Al., 2021]. A simple undirected graph G = (V,E) is formed by an non empty

set V (G) of elements called vertices and E(G) a finite set of distinct unordered

pairs of distinct elements of V (G) called edges [Kairanbay and Mat, 2013]. Each

edge e ∈ E is said to join two vertices, which are called end points. If e joins

u, v ∈ V then e = ⟨u, v⟩ 1 is said to be incident and vertex u and v to be

adjacent. [Wilson, 1996]

A graph that does not have loop or multiple edge is called simple, instead a graph

1e = ⟨v, u⟩ since the pairs are unordered

5



6 Chapter 2. Background

that admits them, in called non simple graph(general graph) [Bondy and Murty,

1982].

As shown in 2.1, there the example of a simple, nonsimple with multiple edges

and nonsimple with loops graph.

(a) Simple Graph
(b) Non Simple Graph with multiple

edges
(c) Non simple Graph with loops

Figure 2.1: Simple, Non simple and loops graphs

Is called weighted graph a graph G = (V,E) such that for each arc e there is a

weight associated, w : E → ❘|w(e) = we.

Can be introduced the concept of neighbor set as follows:

For any graph G(V,E) and vertex v ∈ V (G) the neighbor set N(v) of v is the set

of vertices adjacent to v, i.e.

N(v) = {w ∈ V (G)|v ̸= w, ∃ ∈ E(G) : e = ⟨u, v⟩} (2.1)

and we define the number of edges incident with a vertex v as degree of v, denoted

as δ(v) (to the count of the degree, loops are counted twice). Then, for all graphs

G, the sum of the vertex degree is twice the number of the edges [Wilson, 1996]

∑

c∈V (G)

δ(v) = 2|E(G)| (2.2)

As consequence, the number of vertices with an odd degree must be even.

A useful and appealing way to represent a graph is using the Adjacency matrix.

The adjacency matrix A of a graph G is the n × n matrix A(G) whose entries
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are given by [Wilson, 1996]

aij =







1 if vi and vj are adjacent

0 otherwise

(2.3)

It follows that an adjacency matrix has the following properties [Chung, 1996]:

❼ A(G) is symmetric, that means ∀i, j A [i, j] = A [j, i] due to fact that the

edges are represented as an unordered pair of vertices (e = ⟨vi, vj⟩ = ⟨vj, vi⟩)

❼ a graph G is simple if and only if ∀i, j A [i, j] ≤ 1 and A [i, i] = 0

❼ the degree of vertex vi is equal to the sum of value in row i, δ(vi) =
∑n

j=1 A [i, j]

In figure 2.2 is shown an example of complete graph with its adjacent matrix

Figure 2.2: A complete Graph with 5 vertices

A(G) =














0 1 1 1 1

1 0 1 1 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 0














(2.4)
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In relationship to the adjacent can be introduced the concept of Spectrum of

graph [Biggs, 1993]. Let λ0 > λ1 > · · · > λs−1 be the eigenvalues of A(G) and

let m(λ0) > m(λ1) > · · · > m(λs−1) be their multiplicities, then the spectrum of

A(G) is given by

Spec G =




λ0 λ1 λs−1

m(λ0) m(λ1) m(λs−1



 (2.5)

Thus, considering our example in Figure 2.2 our spectrum is given by

Spec G =




4 −1

1 4



 (2.6)

since λ0 = 4 with m(λ0) = 1 and λ1 = −1 with m(λ1) = 4.

2.1.1 Nearest Neighbor Methods

Nearest Neighbor algorithms, first developed by [Fix and Hodges, 1951], is a

non parametric2 and supervised machine learning widely used in classification,

outlier detection and feature extraction problem. During the classification stage

for a given testing example, the kNN algorithm directly searches through all

the examples in the set by calculating the distances between the testing example

and all of the training data to identify its nearest neighbors and produce the

classification output [Mitchell, 1997]. If k = 1, then the object is simply assigned

to the nearest class, this case is simply called nearest neighbors. The core of the

model relies on the definition of distance (weighted or not) and the numbers k of

the neighbors.

The process of the kNN can be summed up as follows:

1. Set the number k of neighbors and d type of metric distance

2. Add new data to classify

2There is no assumption of the functional form of kNN
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3. Calculate the distance

4. Finds neighbors and vote for labels

The distance function allows calculating the distance between point x and y in a

feature space. There are many types of distance that are used in the literature,

with the Euclidean one is widely used.

Let A = (x1, ..., xn) and B = (y1, ..., yn), then the most common distance metrics

are [Witten et Al., 2011]:

Euclidean d(A,B) =

√∑n
i=1(xi − yi)

2

n

Cosine Similarity d(A,B) =
A ·B

|A||B|

Minkowsky d(A,B) = (
n∑

i=1

|xi − yi|
r)1/r)

Correlation d(A,B) =

∑n
i=1(xi − µi)(yi − µi)

√∑n
i=1(xi − µi)2

∑n
i=1(yi − µi)2

(2.7)

Weighted k-nearest neighbors

The Weighted k-nearest neighbors (WkNN) gives weights wni for each neighbor

ni. There are several way to choose the weights function [Dudani, 1976], but one

of the most used is inversely proportional to the distance, that is:

wni =
1

d(x, ni)
d(x, ni) ̸= 0 (2.8)

This kind of weight function takes very large value for distances value close to zero,

and thus leads in many case to the simple nearest-neighbor rule (k = 1) [Bicego

ad Loog, 2016].

2.1.2 Shortest path problem

In many dimensional reduction algorithm (Isomap, MDS, LLE) the computation

of the graph distances between points is needed. Computationally cost speak-

ing, this process is time consuming, since we need to compute all possible path
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distances (in particular for those nodes that are not directly connected by an

edge). A well know iterative method develop by [Floyd, 1962] and presented in

Algorithm 2.1.4 is optimally to solve the shortest path problem for dense graphs

(graph with a dense adjacency matrix ). However, a lot of graph related to dimen-

sional reduction problem are constructed by neighborhood method (like kNN),

therefore their adjacency matrix are sparse. In this case, for sparse matrix, the

Dijkstra’s Algorithm ( [Dijkstra, 1959]) is proposed in Algorithm 2.1.3.

2.1.3 Dijkstra’s Algorithm

Let G = (V,E) a directed weighted graph and v0 ∈ V the initial vertex, then,

the shortest path (lowest effort) from v0 to all vertices can be found using the

Dijkstra’s Algorithm ( [Dijkstra, 1959]).

Let the weight of path p be the sum of the weights of its edges, that is

w(p) =
k∑

i=1

w(vi−1, vi) (2.9)

Now, we define the shortest path weight as

δ(u, v) =







min{w(p)} for a path pfromutov

∞ otherwise

(2.10)

and the shortest path from a vertex u to vertex v is any path p with weight

w(p) = δ(u, v)

The main steps of the algorithm can be summarized as follows [Wang, 2012]:

1. Initialize the algorithm by assigning to every node a distance value. The

starting node, namely Node 1 (v0) is set to have a distance zero,while the

distances of all other nodes are set to infinity

2. calculate all tentative distances from initial node to its neighbors and mark

out the starting node (is not required anymore)
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3. select the node with the shortest distance and update (add to the previous

one) the distance calculation from this node

4. once we have moved to the next node we compute and update all the dis-

tance of the neighbors node, storing them as tentative distance. Then,

select the node with the shortest distance and re-update all the distances

from this point. If the new tentative distance are smaller then the previous

one select the node, otherwise select the previous node with the shorter

distance.

5. iterate the process until to reach the desire node.

Algorithm 1 Dijkstra’s Algorithm

Input: G(V,E) graph, W weight matrix, v0 starting point
Output: S Shortest path
1: Initialize: for each v ∈ V : dist(v) := ∞ and precedent(v) := null
2: dist(s) := 0, Q := 0
3: for each v ∈ V insert v in Q setting dist(v) as key
4: while Q ̸= 0 do:

4.1 u := minv∈Qdist(v), Q := Q− {u}
4.2 for each neighboor v of u:
4.2.1 if dist(u) + w(u, v) < dist(v) then

1. dist(v) := dist(u) + w(u, v)

2. precedent(v) := u

3. Update Q by decreasing the key dist(v) of node v

The approximately computational cost is O(V 2 log V ).

2.1.4 Floyd’s algorithm

The Floyd algorithm ( [Floyd, 1962] also known as Floyd–Warshall algorithm)

is used to find out all pairs shortest path in a given directed weighted graph.

As the output result, we have a minimum distance matrix , which represent the

minimum distance from any node to all other nodes in the graph. In contrast to

Dijkstra’s Algorithm a starting point is not needed.

Floyd algorithm can be summarized as follows [Wang, 2012]:



12 Chapter 2. Background

1. Let d
(k)
ij be the weight of a shortest path from vertex i to vertex j for which

all intermediate vertices are in the set {1, 2, · · · , k}

2. Then

d
(k)
ij =







wij if k = 0

min

(

dk−1
ij , d

(k−1)+d
(k−1)
kj

ik

)

if k ≥ 0
(2.11)

Algorithm 2 Floyd Algorithm

Input: G(V,E) graph, W weight matrix

Output: D Shortest distances matrix

1: Initialize: for each v ∈ V and u ∈ V :

d [v, u] = w [v, u], precedent [v, u] := null

2: for k in V :

for v in V :

for u in V :

if d [u, v] > d [u, k] + d [k, v]:

d [u, v] = d [u, k] + d [k, v]

precedent [u, v] = k

3: return D

The computational cost for the Floyd’s algorithm is O(V 3).

2.2 Topology Concepts

Intuitively, a manifold M is a generalization of curves and surfaces to higher

dimensions. It is locally Euclidean in that every point has a neighborhood, called

a chart, homeomorphic to an open subset of ❘n [Robbin and Salamon, 2021].

The coordinates on a chart allow one to carry out computations as though in a

Euclidean space, so that many concepts from ❘
n, such as differentiability, point-

derivations, tangent spaces, and differential forms, carry over to a manifold [Tu,
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2010].

Figure 2.3: Various examples of manifolds [Deng et Al., 2020]

2.2.1 Linear Manifold

The simplest manifold is a linear manifold, often called a hyperplane. A linear

manifold is a local enlargement of a nonlinear manifold. Indeed, at each point of a

nonlinear manifold, there exists a tangent space TM, which locally approximates

the manifold.2.4. The Tangent Space is in reality a linear manifold.

Linear Dimensional Reduction methods are based on the assumption that the

Figure 2.4: Tangent Space TpM of manifold M on point p

observed data set resides on a linear manifold.

A briefly introduction and review of some notions and notations is presented.

The coordinates of a point x ∈ ❘D in the Euclidean space are denoted by X =

[x1, · · · , xD]
⊤. A finite set of point {x1, cdots,xn} ⊂ ❘

D is mainly expressed in
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its matrix form, that is X = [x1, ·,xn] = [xij]
D,n
i,j=1. X also spans a subspace of

❘
D denoted by S = span{x1, · · · ,xn}, a column space of the matrix X.

2.2.2 Differentiable Manifold

Differentiable manifold generalizes differentiable curves and surfaces to n dimen-

sional space. Let X ⊂ ❘
k and Y ⊂ ❘

l. We define a smooth map f : X → Y ,

if all partial derivatives ∂sf
∂xi1

···∂xis
s ∈ ❩ exists and they are continuous, f ∈ C∞

[Boothby, 1975].

Consequently, f is said to be a differentiable homeomorphism if both

f : X → Y and its inverse f−1 are smooth, and, X is said to be diffeomorphic to

T .

Now consider for M ⊂ ❘
m a non empty set e let’s consider that for each point

x ∈ M there is an open set W ⊂ M such that W is diffeomorphic to an open

set U ⊂ ❘
k. M is said to be a k-dimensional differentiable manifold and the

diffeomorphism g : U → W is called parameterization of W . The inverse of g

exist, denoted by h(g−1) : W → U , and i called coordinate mapping, W is called

coordinate neighborhood and the couple (W,h) is the local coordinate system or

chart onM (see Fig. 2.5) [Robbin and Salamon, 2021].

In a local coordinate system (W,h) a point x ∈ W is expressed as

h(X) =
[
h1(x) · · · , hm(x)

]

Finally, a differential structure or Atlas on a k-manifold can be seen as a ”glued”

collection of all coordinate systems {(Wi, hi)} onM and satisfying the following

condition [Wang, 2012]:

❼ The union of Wi coversM :M⊂ ∪iWi

❼ For each pair (i, j),hj ◦ h
−1
i is a smooth mapping on hi(Wi ∩Wj)
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Figure 2.5: Chart on a manifold

2.2.3 Tangent Spaces

LetM⊂ ❘
m be a differentiable smooth manifold. The best approximation ofM

in a neighborhood of a point p ∈M is given by the hyperplaneH [Boothby, 1975].

Recalling the derivative of a smooth mapping and identifying with gradient, i.e.

dfx = ∇fx =

[
∂f(x)

∂x1
, · · · ,

∂f(x)

∂xk

]

(2.12)

then the following properties holds [Tu, 2010]:

❼ If f : U → V and q : V → W are smooth mapping and f(x) = y then

d(q ◦ f)x = dqydfx

❼ If U ⊂ Ũ and i : U → Ũ is the inclusion map, then, dix is the identity

mapping on ❘k

❼ If L : ❘k → ❘
l is a linear transformation, represented by the matrix L, i.e.

L(x) = Lx, with x ∈ ❘k, then L : dLx = L is the derivative of L at each x

Now, considerM ⊂ ❘
m a k-manifold, U ⊂ ❘

k an open set and g : U →M the

neighborhood parameterization (g(U) ⊂ M). Assuming, p ∈ M, u ∈ U and

g(u) = p. Define the tangent space ofM at p as

TpM
def
= dgu(❘

k)
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where gu is the image of the linear transformation.

Then, the hyperplane Hp =
def p+Tp is exactly the tangent space ofM. A vector

in TpM is called a tangent vector.



Chapter 3

Linear Dimensionality Reduction

Techniques

3.1 Principal Component Analysis

Principal Component Analysis (PCA) is a feature extraction, dimensional reduc-

tion, noise filter linear techniques firstly developed by Pearson in 1901 [Pearson,

1901].

It is defined as an orthogonal linear transformation to find the direction of maxi-

mum variance in high dimensional data and projects data onto a new subspace of

fewer dimension. An example is shown in Figure 3.1, where data were projected

in a 2 dimensional space.

First of all we need to define the Centering Matrix, an important matrix trans-

formation used to center data, i.e. subtracting their mean. It’s defined as follow-

ing [Greene, 2012]:

✶(n,n)x̄ = ✶
1

n
✶
Tx̄ =








x̄
...

x̄







=

1

n
✶✶

Tx (3.1)

17
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where ✶ is a column vector of 1 and 1
n
✶✶

T is a n × n matrix with all elements

equal to 1
n
.

The values in deviation form from the mean can be expressed as follows:








x1 − x̄
...

x2 − x̄







=
[
x− ✶(n,n)x̄

]
=

[

x−
1

n
✶✶

Tx

]

(3.2)

Since x = ✶x

[

x−
1

n
✶✶

Tx

]

=

[

✶x−
1

n
✶✶

Tx

]

=

[

✶−
1

n
✶✶

T

]

x = Cnx (3.3)

where Cn is the centered matrix. Its diagonal elements are all (1− 1
n
) and its off

diagonal elements are − 1
n
. Cn is singular, Symmetric Positive Definite (SPD),

idempotent ( so that Ck
n = Cn for k = 1, 2, . . .) and can be summarized as follows:

Cn =







1− 1
n

if i = j

− 1
n

if i ̸= j

(3.4)

Figure 3.1: Data projection with PCA. The blue line represent the principal component (1st and
2nd component), i.e. the eigenvector of of the covariance matrix.

Let X be a n × p centered data matrix, where n is the number of samples
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and p is the number of variables, then we define the covariance matrix as follows:

[Granda, 2020]

Σx̃ := ❊
[
c(x̃)c(x̃T

]

=











Var [x̃1] Cov [x̃1, x̃2] · · · Cov [x̃1, x̃d]

Cov [x̃1, x̃2] Var [x̃2] · · · Cov [x̃2, x̃2]
...

... · · ·
...

Cov [x̃1, x̃d] Cov [x̃2, x̃d] · · · Var [x̃d]











(3.5)

The covariance matrix C of X is given by:

C =
1

(n− 1)
XTX (3.6)

where the term 1
n−1

is the proper term for un unbiased normalization.

A standard and widespread decomposition used in numerical analysis, for the

factorization of real or complex matrix is the Singular Value Decomposition (SVD

[Golub and Reinsch, (1970)]).

It generalize the canonical eigendecomposition (i.e. A = QΛQ−1 where Λ is the

diagonal matrix whose diagonal elements are the corresponding eigenvalue λi).

Let A ∈ ❘
m×n. Then the full singular value decomposition or simply SVD, of A

is given by:

A = UΣV T (3.7)

A =




















U1 U2 · · · Um







































σ1 0 · · · 0

0 σ2 · · · 0
...

. . . 0

0 · · · σn

0 · · · · · · 0
...

...

0 · · · · · · 0






























V T

1

V T

2

V T

3

V T

4











where U ∈ ❘
m×m is an orthogonal matrix (UUT = ■) whose column uj are
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called the left singular vectors, V ∈ ❘
n×n is orthogonal matrix (V V T = ■) whose

column vj are called the right singular vectors andΣ ∈ ❘
m×n rectangular diagonal

matrix. The non negative diagonal entries σi = Σii, (with σ1 ≥ σ2 ≥ · · · ≥ σn) of

Σ are uniquely determined by A (are the square roots of the non-zero eigenvalues

of both AAT and ATA) and are known as singular values of A.

Let perform a Singular Value Decomposition of X, so

X = USV T (3.8)

where U is the unitary matrix, S is the diagonal matrix of singular vales si. The

previous equation can be rearranged as

C =
V SUTUSV T

n − 1
= V

S2

n − 1
V T (3.9)

singular values are obtained from the eigenvalues of covariance matrix λi
s2i
n−1

.

Principal components are given by XV = USVTV = US.

The dimensionality reduction of data from dimension d to p < d, select first p

column of U and d × d upper left part of S. The product UpSp is the n × p

matrix containing first p principal components.

In conclusion we recall some imported assumptions [Shlens, 2003]:

❼ Linearity

❼ Mean and variance are sufficient statistics

❼ The principal components are orthogonal

The main steps can be summarized as follows [Picci, 2020]:

❼ Center the data

First step, centering data, can be obtained by subtracting the mean of the

data for each point i.e. centering matrix

❼ Normalize the data
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Data normalization are useful to avoid some scale dependent side effects,

especially when dimensions of data correspond to different metrics.

❼ Calculate the eigendecomposition

Compute the eigendecomposition via Singular Value Decomposition (SVD).

❼ Project the data

Dimension reduction can be obtained by projecting data onto the largest

eigenvectors. Let U be the matrix whose columns contain the largest eigen-

vectors and let X be the original data whose columns contain the different

observations. Then the projected data Y is obtained as UpSp. We can

either choose the number of remaining dimensions, i.e. the columns of X ,

directly, or we can define the amount of variance of the original data that

needs to kept while eliminating eigenvectors.

3.2 Multidimensional Scaling MDS

In this section a brief summary of the Multidimensional scaling techniques is

presented. Primarily, The Classical MDS is exposed then move towards the gen-

eralized method with the kernel or its non-metric version. Finally, the key idea

for the implementation (SMACOF) of the algorithm is presented.

Classic Multidimensional Scaling (MDS) [Young, 1985], first proposed by

[Torgerson, 1952], is one of the earliest proposed e developed manifold learn-

ing methods. It is a member of Multidimensional Scaling family which includes

classical MDS, metric MDS, and non-metric MDS. It can be used for data visual-

ization, data processing, data analysis and dimension reduction as well. The idea

of MDS is to preserve the similarity - dissimilarity distances of a set of points

in the low dimensional embedding space. The similarities between points in the

original space are assumed to be represented by the Euclidean Metric in the form

of a Euclidean distance. We will see, as in later approaches, as Sammon map-

ping [Sammon, 1969] is a special case of the MDS, with the aim of preserving a
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weighted Euclidean distance. If instead of applying and considering a Euclidean

distance we consider a geodesic one, we obtain the Isomap method [Tenenbaum

et Al., 2000].

The goal of classical MDS is to preserve the similarity of data points in the em-

bedding space as it was in the input space. Distance, dissimilarity and similarity

(or proximity) are defined for any pair of objects in any space. They have the

following properties:

❼ d(x, y) ≥ 0

❼ d(x, y) = 0 iff x = y

❼ d(x, y) = d(y, x)

❼ d(x, z) ≤ d(x, y) + d(y, z)

Then, one way to measure similarity is inner product. Hence, we can minimize

the difference of similarities in the input and embedding spaces [Ghojogh et Al.,

2020]:

minimize
{yi}ni=1

c1 :=
n∑

i=1

n∑

j=1

(xTi xj − y
T

i yj) (3.10)

or in matrix form:

minimize
Y

c1 := ∥X
TX − Y TY ∥2F (3.11)

where ∥ · ∥F denote the Frobenius norm, and XTX and Y TY are the Gram

matrices of the original data X and the embedded data Y, respectively. If we de-

compose the Gram matrices using a SVD the objective function can be simplified

as follows:

XTX = V ∆V T

Y TY = QΨQT
(3.12)
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∥XTX − Y TY ∥2F = tr
[
(XTX − Y TY )2

]

= tr
[
(∆− V TQΨQTV )2

]

= tr
[
(∆−MΨMT)2

]

(3.13)

where tr(·) denotes the trace of matrix, V and M := V TQ where Q the right

singular vectors, ∆ and Ψ. (for the proof remind to the annex).

Therefore the problem of minimization becomes:

minimize
Y

∥XTX − Y TY ∥2F

minimize
MΨ

tr
[
(∆−MΨMT)2

]
(3.14)

As the optimization problem is unconstrained and the objective function is the

trace of a quadratic function, then the minimum is non-negative. The derivative

with respect to variable M and Ψ are:

∂c1
∂M

= 2(MΨMT)MΨ− 2∆MΨ = 0

MΨMT = ∆

(3.15)

∂c1
∂Ψ

= 2MT(MΨMT)M − 2MT∆MT = 0

MΨMT = ∆

(3.16)

For the derivative with respect to Ψ some simplification has been done.

Both equations lead to the same result, that has one unique solution:

M = I

Ψ = ∆
(3.17)

which means that the minimum value of the non-negative objective function is

zero.



24 Chapter 3. Linear Dimensionality Reduction Techniques

According to Equation 3.12 we have:

Y TY = QΨQT = QΨ
1
2Ψ

1
2QT

=⇒ Y = Ψ
1
2QT

=⇒ Y = ∆
1
2V T

(3.18)

where the last passage can be done since V TQ = I =⇒ Q = V .

In summary, for embedding X using classical MDS, the eigenvalue decomposition

ofXTX is obtained. Then, using Equation 3.18, Y ∈ ❘n×n is obtained. Selecting

the first top p row to have Y ∈ ❘p×n that is the p-dimensional embedding of the

n points.

3.2.1 Kernel Classical MDS

We expand the concept of Classic MDS by generalizing it introducing Kernel

Method [Ghojogh et Al., 2020].

Let d2ij = ∥xi − xj∥
2
2 be the squared Euclidean distance between xi and xj, we

have:

d2ij = ∥xi − xj∥
2
2 = (xi − xj)

T(xi − xj)

= xTi xi − x
T

i xj − x
T

j xi + xTj xj

= xTi xi − 2xTi xj + xTj xj

= Gii − 2Gij +Gjj

(3.19)

whereG := XTX ∈ ❘n×n is the Grammatrix. If g := [g1, · · · , gn] = [G11, · · · , Gnn] =

diag(G), we have:

d2ij = gi − 2Gij + gj

D = g1T − 2G+ g1T
(3.20)

where 1 is the vector of one and D is the distance matrix with squared Euclidean

distance.
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Let H := ✶− 1
n
11T ∈ ❘n×n the centering matrix. We double center the matrix D

as follows [Oldford, 2018]:

HDH = (✶−
1

n
11T)D(✶−

1

n
11T)

= (✶−
1

n
11T)(g1T − 2G+ g1T)(✶−

1

n
11T)

=




(✶−

1

n
11T)1

︸ ︷︷ ︸

=0

gT − 2(✶−
1

n
11T)G+ (✶−

1

n
11T)g1T




 (✶−

1

n
11T)

= −2(✶−
1

n
11T)G(✶−

1

n
11T) + (✶−

1

n
11T)g 1T(✶−

1

n
11T)

︸ ︷︷ ︸

=0

= −2(✶−
1

n
11T)G(✶−

1

n
11T) = −2HGH

(3.21)

so

HGH = HXTXH = −
1

2
HDH (3.22)

Note that 1T(✶− 1
n
11T) = 0 and (✶− 1

n
11T)1 = 0 because removing the row mean

of 1 and the column mean of 1T results the zero vector.

Can be noticed that the classical Multidimensional scaling uses the Euclidean

distance as its metric. Because of using Euclidean distance the classical MDS

using Gram matrix is a linear subspace learning method.

Equation 3.22 can be rewritten as a general kernel matrix rather than the double-

centered Gram matrix, in order to have:

❘
n×n ∋K = −

1

2
HDH (3.23)

Note that the classical MDS is using a linear kernel XTX for its kernel. In

summary, for embedding X using classical MDS, the decomposition of the kernel

matrix K is obtained as follows:

K = V ∆V T (3.24)
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the, recalling eq 3.18, Y ∈ ❘n×n is obtained.

Replacing XTX with kernel K = Φ(X)TΦ(X), then we have:

K = Y TY (3.25)

Truncation of Y in order to obtain Y ∈ ❘p×n with the first (top) p rows, gives

us the p-dimensional embedding of the n points.

Classical MDS with Euclidean distance is equivalent to Principal Component

Analysis (PCA). Moreover, the generalized classical MDS is equivalent to ker-

nel PCA. [Ghojogh et Al., 2020]

3.3 Metric Multidimensional Scaling

The classical Multidimensional Scaling tries to preserve the similarities of points

in the embedding space. In later approaches, [Bunte et Al., 2012] the objective has

been changed to the preservation of distances rather than similarities, minimizing

the difference of distances o points in the input and embedding spaces. In the

Metric Multidimensional Scaling the cost function is usually named as stress

function.

In this case the optimization problem is:

minimize
{yi}ni=1

c2 :=

(∑n
i=1

∑n
j=1,j<iwi,j(dx(xi, xj)− dy(yi, yj))

2

∑n
i=1

∑n
j=1,j<i d

2
x(xi, xj)

) 1
2

(3.26)

or without the normalization factor:

minimize
{yi}ni=1

c2 :=

(
n∑

i=1

n∑

j=1,j<i

wi,j(dx(xi, xj)− dy(yi, yj)
2

) 1
2

(3.27)

where wi,j are the weights (in this case wi,j = 1), dx(. . . ) and dy(. . . ) are the

distance metrics in the input and the embedded spaces (usually dx is any valid

metric distance and dy = ∥yi − yj∥).

Despite the Classical MDS, the metric MDS is non linear methods but, in this
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case the optimization problem do not have a closed form solution. and should be

solved iteratively. One of the first inspiration to solve this problem is given by

Sammon [Sammon, 1969] where diagonal quasi Newton’s method is used.

Considering the component-wise vector, diagonal quasi Newton’s method updates

the solution as [Lee and Verleysen, 2007]:

y
(ν+1)
i,k := y

(ν)
i,k − η

∣
∣
∣
∣
∣

∂2c2
∂y2i,k

∣
∣
∣
∣
∣

−1
∂c2
∂yi,k

(3.28)

where η is the learning rate, yi,k is the k-th element of i-th embedded point. The

absolute value is needed in order to guarantee the minimum research.

Using the gradient descent, the updating process of the solution is:

y
(ν+1)
i,k := y

(ν)
i,k − η

∂c2
∂yi,k

(3.29)

3.3.1 Majorization Algorithm

An elegant algorithm for computing an MDS solution, more powerful than tradi-

tional techniques such as gradient descent, called Scaling by MAjorizing a COm-

plicated Function (SMACOF) is presented in this section. This optimization

strategy is based on the concept of stress majorization. This section is exhaus-

tive covered by [Leeuw and Mair,2009] and [Borg and Groenen, 2005].

Principle of Majorization

Optimization problem often required to find a minimum of a function f(x). In

the simplest case putting derivative f ′(x) = 0 and solving for x is enough. In

more complex case, a different approach is required. A useful method,called It-

erative Majorization (IM) consists of trying to get increasingly better estimates

of the minimum.

The main idea behind majorization is to replace iteratively the original function

f(x) by an auxiliary function g(x, z) where z is some fixed value. In order to

call g(x, z) a majorizing function of f(x) it must fulfill the following require-
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ments [Borg and Groenen, 2005]:

❼ the auxiliary function g(x, z) should be more simple to minimize than f(x).

For example, if g(x, z) is a quadratic function in x, then the minimum of

g(x, z) over x can be computed in one step;

❼ the original function must always be smaller than or at most equal to the

auxiliary function, i.e., f(x) ≤ g(x, z);

❼ the auxiliary function should touch the surface at the so called supporting

point z, i.e., f(z) = g(z, z).

Figure 3.2: Iterative Majorization process [Groenen and Nalbantov, 2008]

Let x⋆ be the minimum of g(x, z) over x. The last two requirements implies the

chain of inequalities:

f(x⋆) ≤ g(x⋆, z) ≤ g(z, z) = f(z) (3.30)

and its graphically represented in 3.2.

The steps of of the iterative algorithm is given by:

1. set z = z0 where z0 is the starting value
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2. find the update value xu for which g(xu, z) ≤ g(z, z)

3. check if f(z)− f(xu) ≤ ε then stop, ε > 0

4. set z = xu and go to step 2

sometimes a weaker condition1 for minimum is needed, so that g(xu, y) = f(y)

and xu = y.

Components of stress function

MDS inputs are usually a n × n matrix of dissimilarities of data. Recalling the

stress function 3.27, saying dx(xi, xj) = δij the dissimilarity (ideal distances) and

dy(yi, yj) = dij(X) the Euclidean distance (actual distance) we can rewrite it as:

σr(X) =
∑

i<j

wij(δij − dij(X))2

=
∑

i<j

wijδ
2
ij +

∑

i<j

wijd
2(Xij)− 2

∑

i<j

wijδijdij(X)

= η2δ + η2(X)− 2ρ(X)

(3.31)

The first part of the stress η2δ depends on fixed value (fixed weights and dissimi-

larities). The second part η2(X) is a weighted sum of the squared distances, and

thus a convex quadratic, and depend on X. The last part −2ρ(X), is a negative

weighted sum of the Euclidean distances, consequently concave.

Assuming, without loss of generality, that W is irreducible (da citare de Leeuw)

so the minimization problem does not need to be divide in separate problem in

order to be solved.

The squared term η2(X) can be write in a more compact way. Let define the

1weaker than imposing the zero derivative
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matrix Aij = (ei − ej)(ei − ej)
T whose element are:

Aij =







1 if aii = ajj

−1 if aij = aji

0 elsewhere

(3.32)

we define:

V =
∑

i<j

wijAij (3.33)

as the weighted sum of row and column centered matrices Aij (Aij✶ = 0 and

✶
TAij = 0T). We can rewrite the second term as:

η2(X) = trXTV X (3.34)

The third element, the minus weighted sum of distances, we start using the

Cauchy-Schwarz inequality in order to have a majorization of −dij(X). Let Z

and X be a n× n input matrices, then:

n∑

a=1

(xia − xja)(zia − zja) ≤

(
n∑

a=1

(xia − xja)
2

) 1
2
(

n∑

a=1

(zia − zja)
2

) 1
2

(3.35)

with equality if X = Z. Dividing both sides by dij(Z) and multiplying by −1 we

obtain:

−dij(X) ≤ −

∑n
a=1(xia − xja)(zia − zja)

dij(Z)
(3.36)

which is undefined if distance between point i and j is zero, but since dij(X) ≥ 0

then is true that −dij(X) ≤ 0.

Replicating the previous passages a simpler matrix expression can be obtained:

n∑

a=1

(xia − xja)(zia − zja) = trZTAijZ (3.37)
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Combining 3.36 and 3.37, multiplying for wijδij and summing over indices i < j

gives:

−ρX =
∑

i<j

(wijδij)dij(X)

≤ − trXT

(
wijδij
dijZ

Aij

)

Z

= − trXTB(Z)Z

(3.38)

where B(Z) is defined as follow:

bij =







− wijδij
dij(Z)

for i ̸= jand dij(Z) ̸= 0

0 for i ̸= jand dij(Z) = 0

bii = −
n∑

j=1,j ̸=i

bij

(3.39)

Since the equality holds true when Z = X, we have obtained a majorization

inequality

−ρ(X) = − trXTB(X)X ≤ − trXTB(Z)Z (3.40)

The SMACOF Algorithm for Majorizing Stress

The majorization inequality for the stress function is given by:

σr(X) = η2δ + trXTVX− 2 trXTB(X)X

≤ η2δ + trXTVX− 2 trXTB(Z)Z = τ(X,Z)
(3.41)

where τ(X,Z) is the majoring function, quadratic in X of the stress. The mini-

mum can be obtained setting the derivative equal 0, i.e.

∇τ(X,Z) = 2XV − 2B(Z)Z = 0 (3.42)

In order to solve the V X = B(Z)Z, the calculation of V −1 is needed, but,

since V is not full rank the inverse should be calculated using the Moore-Penrose
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inverse i.e.

V + = (V + ✶✶
T)−1 − n−2

✶✶
T (3.43)

that leads to the updating formula of the SMACOF algorithm:

Xu = V +B(Z)Z (3.44)

or, in a simplified way, if wij = 1

Xu = n−1B(Z)B (3.45)

called Guttam Transform ( [De Leeuw and Heiser, 1980]).



Chapter 4

Non Linear Dimensionality

Reduction Techniques

4.1 Isomap

Isomap is a special case of the generalized classical MDS, where the Euclidean

distance has been replaced with an approximation of the geodesic distance.

Following the method proposed by [Tenenbaum et Al., 2000], Isomap is based on

the following assumption:

1. Isometry The mapping ψ preserves the geodesic distances, namely

D(m,m′) = |θ − θ′| ∀m← θ,m′ ← θ′ (4.1)

2. Convexity The parameter space Θ is a convex subset of ❘d, that means that

if θ,θ′ are point in Θ, then, the entire line segment {(1−t)θ+tθ′ : t ∈ (0, 1)}

lies in Θ.

Geodesic Distance

The Geodesic Distance is the length of the shortest path between two points on

the manifold. Mathematically it is defined as follows:

Let γ be a differentiable map from an interval [a, b] of the real line into the surface

33
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M, and let γ̇ := d
dt
γ(t); we say that γ is arc-length parameterized if ∥γ̇(t)∥ = 1

for al t ∈ [a, b]. The length associated at any curve γ is:

L(γ) =

∫ b

a

∥γ̇(t)∥dt =

∫ b

a

√

gγ(t)(γ̇(t), γ̇(t))dt (4.2)

The Geodesic distance ϕ(p, q) , between two points p, q ∈ M is the infimum of

length over all curve γ(a) = p and γ(a) = q. To summarize a geodesic is a curve

that cannot be made shorter by adjusting any small piece of it [Wang, 2012].

Although the geodesic distance is the ideal metric to use, computationally speak-

ing it cost a lot. In order to overcome to this limit, Isomap approximate the

geodesic distance by piecewise Euclidean distances. Then, in order to find out the

shortest path, two algorithm can be used: Dijkstra algorithm or Floyd-Warshal

algorithm [Cormen et Al., 2009].

Following [Bengio et Al., 2006], the approximated geodesic distance can be de-

fined as:

D
(g)
ij := min

r

l∑

i=2

∥ri − ri+1∥2 (4.3)

where l ≥ 2 is the length of the sequence ri ∈ {xi}
n
i=1 and D(g) ∈ ❘

n×n is the

geodesic distance matrix.

Figure 4.1: Approximate Geodesic distance - Schematic representation
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Figure 4.2: Visual difference between Euclidean and Geodesic distance [Karam and Campbell, 2013]

Figure 4.3: Approximate Geodesic distance calculated as the shortest path along a graph [Karam
and Campbell, 2013]

Isomap Formulation

As previuosly announced, Isomap is a particular case of MDS, where the geodesic

distance is used. Recall the Equation 3.23 it becomes:

K = −
1

2
H D(g)H (4.4)
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it is a non linear method since the distance used in the kernel is non linear.

For the embedding we have:

K = V ∆V T (4.5)

Y = ∆
1
2V T (4.6)

The result is that we have embedded a set of data X = [x1, · · · , xn] ∈ ❘
d×n in

Y = [y1, · · · , yn] ∈ ❘
p×n. Kernel Isomap

Reproducing the approach of the MDS is possible to find out a generalize version

of Isomap: Kernel Isomap. Let K(D) to be as 4.4, thn we have:

❘
n×n ∋K(D2) = −

1

2
H D2H (4.7)

where D is the geodesic distance matrix 4.3.

Can be rewrite as [Cox and Cox, 2008]:

❘
n×n ∋K

′

:= K(D2) + 2cK(D) +
1

2
c2H (4.8)

K
′

is positive semi-definie if c ≥ c⋆, where c⋆ is the largest eigenvalue of the

following matrix [Cayton, 2005]:




0 2K(D2)

−I −4K(D)



 ∈ ❘2n×2n (4.9)

Then, in order to obtain embedded Y data Equation. 3.18 should be used.

Landmark MDS and Isomap

Landmark MDS and, consequently, landmark Isomap are techniques that relies

on Nystrom approximation [Wu and Chan, 2004] to allow the scalability to large

dataset of this techniques.

Nystrom approximation is used to approximate a positive semi-definite matrix
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using a subset of its column (or rows).

Consider ❘n×n ∋K ⪰ 0, positive semi-definite define as follow:

❘
n×n ∋K =




A B

BT C



 (4.10)

where A ∈ ❘m×m, B ∈ ❘m×(n−m), and C ∈ ❘(n−m)×(n−m) in which m≪ n.

The key idea behind Nystrom approximation is to approximate the matrix C and

then K, knowing A and B, since K is positive semi-definite, once we know the

similarity of points from each other in A and B( n −m respect to m), then we

don’t have much possibilities to set the similarities of n−m, so the matrix C since

K is positive semi-definite. The set of points, selected randomly from matrix A

rows or columns are called landmarks.

Since K is positive semi-definite,it admits a form such as K = OTO, where O =

can be rewritten as follow:

K = OTO =




RT

ST





[

R S

]

=




RTR RTS

STR STS



 =




A B

BT C



 (4.11)

Hence, A = RTR and its eigendecomposition is given by [Ghojogh and Karray,

2019]:

A = UΣUT

=⇒ RTR = UΣUT =⇒ R = Σ
1
2UT

(4.12)

and, since B = RTS and U orthogonal, we have:

B =
(

Σ
1
2UT

)T

S = UΣ
1
2S

=⇒ S = Σ−
1
2UTB

(4.13)
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In conclusion, C can be obtained as:

C =STS = BTΣ−
1
2Σ−

1
2UTB

=BTUΣ−
1
2Σ−1UTB = BTA−1B

(4.14)

and equation 4.10 becomes:

K ≈




A B

BT BTA−1B



 (4.15)

The approximation of K becomes more accurate by increasing m, and, if it is

at most m, the approximation is almost exact. The usual case implies m ≪ n,

then the Nystrom approximation works better with low-rank matrices [Kumar

ad Schneider, 2017].

The kernel approximation in the presence of big data can be obtained using 4.12,

decomposing it in a m×m kernel submatrix. Then, combining equation 4.11 and

3.25 the approximation of embedded data can be obtained:

❘
n×n ∋ Y = [R,S] =

[

Σ
1
2UT,Σ

1
2UTB

]

(4.16)

As for the previous cases, truncating the Y matrix with p top rows, the p dimen-

sional embedding of n points (Y ∈ ❘p×n) is obtained.

The Distance Matrix D in Landmark MDS and Isomap, can be partitioned (fol-

lowing the previous approach) as follow:

❘
n×n ∋D =




E F

F T G



 (4.17)

where E ∈ ❘m×m, F ∈ ❘m×(n−m), and G ∈ ❘(n−m)×(n−m) in which m≪ n. Since

the kernel matrix is related to distance matrix by the following relationship:

K = −
1

2

(
D2

ij − ✶jΣiciD
2
ij − ✶iΣjciD

2
ij +Σi,jcicjD

2
ij

)
(4.18)
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where Σici = 1. Indeed, the partition of the kernel matrix can be obtained from

the partitions of the distance matrix as [Platt, 2015]:

Aij = −
1

2
(E2

ij − ✶i
1

m

∑

p
E2

pj − ✶j
1

m

∑

q
E2

qj +
1

m2

∑

p,q
E2

pq) (4.19)

Bij = −
1

2
(F 2

ij − ✶i
1

m

∑

p
F 2

pj − ✶j
1

m

∑

q
E2

qj) (4.20)

and C is easily obtained using 4.14. Nystrom approximation result as a general

method for speed up and reduce the execution time in some manifold learning

techniques, but on the other hand it reduces the overall accuracy of the algorithm

The Isomap main steps are presented in Algorithm 6:

4.1.1 Sammon Mapping

A special case of metric MDS, introduced mainly for historical reasons, can be

found in Sammon mapping (originally known as Nonlinear Mapping [Sammon,

1969], but it is also known as Sammon mapping or Sammon’s nonlinear mapping

). It is a non linear method and the optimization problem is based on the weighted

version of equation 3.26

minimize
{yi}ni=1

:=
1

a

n∑

i=1

n∑

j=1,j<i

wij(dx(xi, xj)− dy(yi, yj))
2 (4.21)

where wij is the weight, a the normalization factor, and dx
1 and dy are usually

the Euclidean distances. The idea behind Sammon mapping is to penalize more

big distance and to give more credit to the smaller one (neighbors point) in order

to preserve the local structure of the manifold (to fit the manifold locally).

It can be achieved by set weight and normalization factor as follow:

wij =
1

dx(xi, xj)
(4.22)

1dx can be any metric, but a common choice is the Euclidean distance
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a =
n∑

i=1

n∑

j=1,j<i

dx(xi, xj) (4.23)

Now, substituting equations 4.22 and 4.23 in equation 4.21 we obtain:

minimize
Y

c4 :=
1

∑n
i=1

∑n
j=1,j<i dx(xi, xj)

×
n∑

i=1

n∑

j=1,j<i

(dx(xi, xj)− dy(yi, yj))
2

dx(xi, xj)

(4.24)

This optimization problem has been solved by Sammon [Sammon, 1969] using the

diagonal quasi-Newton’s method, i.e. equation 3.28 [Lee and Verleysen, 2007].

This technique involves gradient and the second derivative of the cost function.

The gradient is:

∂c4
∂yi,k

= −
2

a

n∑

i=1

n∑

j=1,j<i

dx(xi, xj)− dy(yi, yj)

dx(xi, xj)dy(yi, yj)
(yi,k − yj,k) (4.25)

Instead, the second derivative is given by:

∂2c4
∂y2i,k

= −
2

a

n∑

i=1

n∑

j=1,j<i

(
dx(xi, xj)− dy(yi, yj)

dx(xi, xj)dy(xi, xj)
−

(yi,k − yj,k)
2

d3y(yi, yj)

)

(4.26)

In order to optimize the time complexity of the Sammon Mapping, the k Nearest

Neighbors (kNN) can be used

minimize
{yi}ni=1

:=
1

a

n∑

i=1

n∑

j∈Ni

wij(dx(xi, xj)− dy(yi, yj))
2 (4.27)

where Ni denotes the i-th point of kNN.

To conclude, Sammon mapping can be particularly expensive from a computation

point of view since convergence is not always guaranteed and the number of

iterations must be determined experimentally.
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4.2 Local Linear Embedding (LLE)

Locally Linear Embedding (LLE) is another Non Linear techniques of dimen-

sional reduction. In contrast to Multidimensional Scaling (MDS) and Isomap,

where the aim is to preserve a global structure, LLE, as suggested by the name,

aims to preserve and fitting the local structure of manifold in the embedding

space [Ghojogh et Al., 2018]. Introduced by [Roweis and Saul, 2000], LLE relies

on the same concept of preservation of distances of points in the high dimensional

input space respect to the low dimensional embedded space. The process evolves

by unfolding the non linear manifold by a sequence of locally sub unfolds, a sim-

ilar idea of a piece-wise spline regression [Marsh and Cormier, 2001] (see Figure

4.4 for visual interpretation).

x−1

x

x1

y−1

y
y1

ML

M

Local Linear

Embedding Space

M Non Linear Manifold

ML Embedded space

Projection in a lower dimensional embedding space

Figure 4.4: Piece-wise local manifold unfolding

The core concept of this technique can be summarize, and subsequently explained
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in details, in the following three steps (see Figure 4.5):

1. Find k-nearest neighbors

2. linear reconstruction by the neighbors

3. linear embedding using the previously calculated weights.

Figure 4.5: Main steps of LLE: (1) find K nearest neighbors (cyan dots) of the point (blue), (2)
compute the weights (Wi) of the linear reconstruction by the neighbors, (3) linear
embedding in a low dimensional manifold using the Wi weights.

4.2.1 Linear Reconstruction using k-nearest neighbors

We use kNN for the linear reconstruction. The notation adopted is the following:

1. xij ∈ ❘
d denote the j-neighbor of xi

2. ❘d×k ∋Xi = [xi1, · · · , xik] is the matrix formed by the k neighbors of xi
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Then, the second step is to find out the weights of every points, for the linear

reconstruction using its kNN. The related optimization problem, associated to

cost function ε(W̃ ), is formulated as follow:

minimize
W̃

ε(W̃ ) :=
n∑

i=1

∥xi −
k∑

j=1

w̃ijxij∥
2
2

subject to
k∑

j=1

w̃ij = 1, ∀i ∈ {1, · · · , n}

(4.28)

where ❘n×k ∋ W̃ := [w̃1, · · · , w̃1]
T include the weights (❘k ∋ w̃ := [w̃i1, · · · , w̃ik]

T)

of linear reconstruction of i-th point using k-neighbors,then, xij ∈ ❘
d is the j-th

neighbors of the i-th point.

The weight matrix W̃ shows the local geometry of the embedded manifold, and

it is invariant to rotations, rescaling and translation of data point and its neigh-

bors point. The required constrain,
∑k

j=1 w̃ij = 1 assures the invariant to global

translation. For instance:

∥(xi + c)−
∑

j∈Xi

W̃ij(xj + c)∥ = ∥xi + c−
∑

j∈Xi

W̃ijxj −
∑

j∈Xi

W̃ijc∥

= ∥xi + c−
∑

j∈Xi

W̃ijxj − c∥

= ∥xi −
∑

j∈Xi

W̃ijxj∥

(4.29)

If T is the rotation operator we have:

∥T (xi)−
∑

j∈Xi

W̃ij(Txj)∥ = ∥T

(

xi −
∑

j∈Xi

W̃ijxj

)

∥

= ∥xi −
∑

j∈Xi

W̃ijxj∥

(4.30)
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where has the linearity and orthonormality of T been used.

Similarly, for the dilatation operator Dλx = λx we have:

∥λ(xi)−
∑

j∈Xi

W̃ij(λxj)∥ = ∥λ

(

xi −
∑

j∈Xi

W̃ijxj

)

∥

= |λ|∥xi −
∑

j∈Xi

W̃ijxj∥

(4.31)

In order to solve the minimization problem the equation 4.28 can be rewritten as

follow:

ε(W̃ ) : =
n∑

i=1

∥xi −Xiw̃i∥
2
2

=
n∑

i=1

∥xi✶
Tw̃i −Xiw̃i∥

2
2

=
n∑

i=1

∥(xi✶
T −Xi)w̃i∥

2
2

=
n∑

i=1

)w̃T

i (xi✶
T −Xi)

T(xi✶
T −Xi)w̃i

= w̃T

i Giw̃i

(4.32)

where Gi is the Gram matrix defined as:

❘
k×k ∋ Gi := (xi✶

T −Xi)
T(xi✶

T −Xi) (4.33)

Equation 4.28 becomes:

minimize
{w̃}ni=1

n∑

i=1

w̃T

i Giw̃i

subject to ✶
Tw̃i = 1 ∀ ∈ {1, · · · , n}

(4.34)

To solve the optimization problem expressed by equation 4.34 the Lagrangian

Multiplier method, as proposed in [Boyd et Al., 2004], is used.
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The Lagrangian of Equation 4.34 is:

L =
n∑

i=1

w̃T

i Giw̃i −
n∑

i=1

λi(1
Tw̃ − 1) (4.35)

Now, setting the derivatives to zero:

∂L

∂w̃i

= 2Giw̃i − λi1
set
= 0

=⇒ w̃i =
1

2
G−1

i λi1 =
λi
2
G−1

i 1

(4.36)

∂L

∂λ
= 1⊤w̃i

set
= 0

=⇒ 1⊤w̃i = 1

(4.37)

Equations 4.36 and 4.37 allow to obtain the multipliers:

λi
2
1⊤G−1

i 1 = 1 −→ λi =
2

1⊤G−1
i 1

(4.38)

Therefore, the weights of the linear reconstruction of high dimensional space are:

w̃i =
λi
2
G−1

i 1 =
G−1

i

1⊤G−1
i 1

(4.39)

Since the rank of the Gramiam matrixG is given bymin(k, d), a problem can arise

when the d dimensional data in input are lower then k numbers of neighbors. In

this case, Gi should be replaced by Gi + εI where ε is a small positive number.

This trick allow the computation of the G−1
i ,but generally speaking, k ≪ d

implying that Gi is full rank (k) and the inverse can be computed without any

problem.

The third step, consists to embed data in the low dimensional space preserving

the same weights as in the input space, originating the following linear embedding
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optimization problem:

minimize
Y

n∑

i=1

∥yi −
n∑

j=1

wijyj∥
2
2

subject to
1

n

n∑

i=1

yiy
⊤
i = I

n∑

i=1

yi = 0

(4.40)

where I is the identity matrix, the rows of Y ∈ ❘n×p are the [y1, · · · , yn]
⊤ embed-

ded data points and wi are the weights obtained from the linear reconstruction

as follows:

wij =







w̃ij if xj ∈ kNN(xi)

0 otherwise

(4.41)

The constrains in 4.40 assure the zero mean and the unit covariance of the em-

bedded points.

Now, let ❘n ∋ wi := [wi1, · · · , win] be n dimensional embedded weights vector

and ❘
n ∋ 1i := [0, · · · , 1, · · · , 0] be n dimensional vector whose i-th element is

one and 0 the others.

The cost function expressed in 4.40 can be rewritten as:

n∑

i=1

∥yi −
n∑

j=1

wijyj∥
2
2 =

n∑

i=1

∥Y ⊤1i − Y ⊤wi∥
2
2 (4.42)

and the corresponding matrix form is:

n∑

i=1

∥Y ⊤1i − Y ⊤wi∥
2
2 = ∥Y

⊤I − Y ⊤W ∥2F

= ∥Y ⊤(I −W )⊤∥2F

(4.43)

where the i-th row of ❘n×n ∋ W := [w1, · · · , wn]
⊤ are the weights of the i-th

point and ∥ · ∥F is the Frobenius norm.
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The 4.43 can be simplified as follows:

∥Y ⊤(I −W )⊤∥2F = tr
(
(I −W )Y Y ⊤(I −W )⊤

)

= tr
(
Y ⊤(I −W )⊤(I −W )Y

)

= tr(Y ⊤MY )

(4.44)

where

❘
n×n ∋M := (I −W )⊤(I −W ) (4.45)

Can be notice that (I −W ) is the Laplacian of the matrix W 2 (see paragraph

???), hence M is the Gram matrix over the Laplacian of weight matrix.

Finally, the optimization problem takes the following form:

minimize
Y

tr(Y ⊤MY )

subject to
1

n
Y ⊤Y = I

Y ⊤1 = 0

(4.46)

where 1 ∈ ❘n and 0 ∈ ❘p.

Now, if we ignore the second constrain, that will turn out to be implicitly satisfied,

the Lagrangian of eq. 4.46 is [Boyd et Al., 2004]:

L = tr(Y ⊤MY )− tr(Λ⊤(
1

n
Y ⊤Y − I)) (4.47)

whereΛ ∈ ❘n×n is the diagonal matrix of the Lagrange multipliers. Again, setting

the derivative of L = 0, we have:

∂L

∂Y
= 2MY −

2

n
Y Λ

set
= 0

−→MY = Y (
1

n
Λ)

(4.48)

where the columns of Y are the eigenvectors of M whose eigenvalue are the

diagonal elements of 1
n
Λ, therefore, this is the eigenvalue problem for M . Thus,

2The column of W add to one, hence the sum over the column of (I −W ) add to zero.
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the columns of Y should be sorted from the smallest to largest eigenvalues, but

since if a graph has k disjoint connected path, its Laplacian matrix ((I −W ))

has k zero eigenvalues, namely one zero eigenvalue whose eigenvector is 1 =

[1, 1, · · · , 1]⊤ ( [Marsden, 2013]).

Now, after sorting, the first eigenvector (having zero eigenvalue) can be ignore

and the p smallest eigenvector can be selected in order to obtain Y ∈ ❘n×p.
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4.3 Locally Tangent Space Alignment (LTSA)

In this section another local non linear dimensional reduction technique is pre-

sented, namely Local Tangent Space Alignment (LTSA). This method can be

considered part of the LLE class of method since it is relies on the idea that if

data is sampled from a smooth manifold, then the neighbors of each point remain

close and similarly co-located in the low dimensional embedded space. The key

idea in LTSA is to use PCA on the neighbors in order to create a locally linear

patch. This patch should be considered as an approximation of the tangent space

at that point. The coordinates on the tangent space provides a representation on

the low dimensional space. LTSA wa introduced by in [Zhang and Zha, 2004] and

exposure proposed follow the Section 11 of [Wang, 2012]. Preliminary concepts

of Tangent Coordinates and Manifold coordinates can be found in section 2.2.

4.3.1 Local Coordinate Representation

Assume that X = {x1, · · · , xn} ⊂ M ⊂ ❘
D a neighborhood well defined and

G = [X,A] a graph generated by the system. The neighborhood of xi is denoted

by O(i), and the non zero entries of A are defined by N(i) = {i1, · · · , ik}. Now,

let k = |N(i)| and define

x̂
def
=

1

k

∑

j∈(i)

xj (4.49)

the geometric center of the set O(i)3

Let Ti be the tangent space ofM at x̂, and Hi the tangent hyperplane Hi = x̂+Ti.

Now, let F : Oi → Hi be the orthogonal projection such that

F (xj) = x̂+ pj, j ∈ N(i), pj ∈ Ti (4.50)

3we assume that x̂ ∈ M,but x̂ may not be on the M, in this case the nearest point, the
project is used.
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and due to the properties of linear approximation of Ti

1

k

∑

j∈N(i)

pj =
1

k

∑

j∈N(i)

F (xj)− x̂ ≈ 0 (4.51)

hence the vector set {pj}j∈N(i) is centered, meaning that

Pi = PiC (4.52)

where C is the centering matrix (k × k) and Pi = [pi1 , · · · , pik ] , i ∈ N(i) can

be seen as the span of Ti for k > d.

The next step is to decompose, using SVD, the matrix Pi, which takes the fol-

lowing form:

Pi = UΣV ⊤ (4.53)

where the column vectors of U = [u1, · · · , ud] ∈ ❘
D×d form an orthonormal basis

of Ti. From eq. 4.53 we define the local coordinate matrix of Pi as

Θi
def
= ΣV = [τs,j]

d,k
s,j=1 (4.54)

this lead to te following representation of pj

pj =
d∑

s=1

τs,jus, j ∈ N(i) (4.55)

Now, in order to compute the local coordinates τs,j we replace pj by its approx-

imation retrieved by eq. 4.51, {xj − x̂}j∈N(i). The SVD decomposition of the

centered matrix XiC is:

XiC = UDΣDV
⊤
D (4.56)

where UD = [u1, · · · , uD] is an orthonormal matrix, ΣD = [σ1, · · · , σD] is a D×D

diagonal matrix of singular value of XiC. This equation can be reset as follows:

XiH = UΣV ⊤ = UΘ (4.57)
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4.3.2 Global Alignment

The main phase after the representation on the local coordinate is to have a

global alignment for each local tangent approximation. It consist to convert a

local relation into a global one. Some restrictions on the embedded matrix Y are

required:

1. Y has zero mean

2. Y Y ⊤ = I

The reasons of this constrains,namely centralization constraint and orthogonality

constraint on the output data Y , relies on the fact that often Y is obtained via

maximization of the variance with respect the input similarity matrix.

If we rewrite the local representation in relationship with the manifold we have

XiC = df(ŷ)YiH (4.58)

where df(ŷ) is the derivative at ŷ, and, since it is invertible (d(ŷ))−1 = dh(x̂)

leads to:

YiC = dh(x̂)XiH = LΣV ⊤, L
def
= dh(x̂)U (4.59)

which leads to express L as follows:

L = YiHV Σ−1 (4.60)

and, in general,

YiC(I − V V ) = LΣV ⊤ −LΣ⊤V V ⊤ = 0 (4.61)
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Now, consider a matrix Wi = C(I − V V )⊤ and by 4.61 we can say

YiWi = 0 (4.62)

It is possible to create an extended version of them, for Wi we have an n×n W i

matrix, which is defined by

W i(j, k) =







Wi(s, l) ifj = is, k = il ∈ N(i)

0 otherwise

(4.63)

and for Yi we have an k × n Y i matrix, which is defined by

Y i(j, k) =







Yi(s, l) ifj = is, k = il ∈ N(i)

0 otherwise

(4.64)

These extension yields

Y W i = 0 (4.65)

The kernel is obtained by

K =
n∑

i=1

W i (4.66)

Implementing eq.4.65we have

Y K =
n∑

i=1

Y W i = 0 (4.67)

and
1

n
1⊤K = 0 (4.68)

since 1⊤W i = 0 Thank to symmetry from eqs. 4.67 and 4.3.2 we have

K

[
1

n
1Y ⊤

]

= 0 (4.69)
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which indicates that we have an orthonormal basis of the null space of the kernel

K. Finally, we need to prove that K is positive semi definite. This, can easily

seen since K is a sum K =
∑n

i=1 W
i and this sum is positive semi definite if W i

is SPD. W i is SPD if and only if Wi is SPD, then

Wi = H(I − V V ⊤) = H −HV V ⊤H

= HIH −HV V ⊤H

= H(I − V V ⊤)H

(4.70)

where V V ⊤ is the projection matrix, therefore ∥V V ⊤∥ ≤ 1. This implies that

Wi is positive semi definite.

Finally, the embedded and dimensional reduced data set Y is obtained by the

solution of the following minimization problem

Y = argmin
Y ∈❘d×n

tr(Y KY ⊤) such thatε(Y ) = 0 (4.71)

Then,in order to obtain the reduced data set, select the 2nd -(d + 1) smallest

eigenvalue of K, that corresponding the columns of the matrix Y .

To summarize the steps LTSA algorithm we have

4.4 Hessian Local Linear Embedding (HLLE)

An interesting variant of Locally Linearly Embedding (LLE)4, Hessian locally

linear embedding (HLLE), introduced by [Donoho and Grimes, 2003], achieves

the linear embedding by minimization of the Hessian Functional on the manifold

of the input data (points). In HLLE, a similar approach to Laplacian eigenmaps

is used, where a quadratic form based on the Hessian, substitute the Laplacian.

The justification and motivation behind the use of the Hessian are based on the

concept of linearity, in fact: a linear function has everywhere vanishing Laplacian,

but the vice - versa does not hold true, in fact a function with everywhere vanish-

4In particular, is more closer to Laplacian eigenvalue techniques than LLE
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ing Laplacian is not assure to be linear [Wang, 2012]. Hessian approach overcome

to this problem since a function is linear if and only if Hessian is vanishing every-

where. The result from this method is a global embedding which is linear in the

local coordinates. The aforementioned property remarks the usability of HLLE

in not convex manifold (unlike Isomap).

4.4.1 Hessian on Manifold

Dimensional reduction using HLLE is obtained by setting Y the minimization of

the Hessian function onM.

Let f ∈ C2(M) : M −→ ❘ be a smooth function defined on M and h =
[
h1, · · · , hd

]
the Hessian coordinate of f onM.

The manifold Hessian matrix of f at x with respect to the manifold coordinate

is given by:

H iso
x (f) =

[
H iso

x (f)ij
]d

i,j=1
, H iso

x (f)ij =
def ∂

2(f ◦ g)

∂yi∂yj
(y) (4.72)

where the derivative is define as

∂f

∂yi
(y) = lim

t→0

f(y + tei)− f(y)

t
(4.73)

where {ei}
d
i=1 are the canonic coordinate basis of ❘d and y ∈ Rd.

The corresponding manifold Hessian functional on C2(M) is defined as:

Hiso(f) =

∫

M

∥H iso
x (f)∥2F (4.74)

where ∥ · ∥F is the Frobenius norm.

For each x ∈M we have:

H iso
x (hi) = 0 1 ≤ i ≤ d

H iso
x (e) = 0

(4.75)
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where e is constant function onM i.e. e(x) = 1.

The pair of pairwise relation expressed in 4.75 can be reformulated to the global

one, namely:

Hiso(f) = 0, f = e, h1, · · · , hd (4.76)

and, in order to have a global minimization problem, equation 4.76 can be mod-

ified as follows:

h = argmin
⟨F ,F ⟩

Hiso(h) F =
[
e, h1, · · · , hd

]
, hi ∈ C2(M) (4.77)

where ⟨F ,F ⟩ = I means that the function set
[
e, h1, · · · , hd

]
forms an orthogonal

system in the C2 space.

The dimensional reduction of the input space is obtain from the solution of 4.77.

Hessian on Tangent Space

Due to fact the the parameterization g in the manifold Hessian functional, cannot

be evaluated directly, since the underlying M is unknown, a computable alter-

native representation is needed.

Let TxM be the tangent space of M at x and Lx = x + TxM be the tangent

hyperplane on the vector x. LEt P = PX be the orthogonal projection from Ox

to Lx, where q = P (p) ∈ Lx is an approximation of p5.

Define an orthonormal basis of TxM:

B = {b1, · · · , bd}, bi ∈ ❘
d

which lead to have a tangent coordinate representation for each point t ∈ TxM

t =
d∑

i=1

tibi (4.78)

5Since Lx is close to Ox
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Now, the directional derivatives in the direction bi ∈ TxM is:

∂f

∂ti
(x) = lim

s→0

f(x+ sbi)− f(x)

s
(4.79)

for the function f ∈ C2.

The tangent Hessian functional of f ∈ C2 at x is defined by

H tan
x (f) =

[
H tan

x (f)ij
]

H tan
x (f)ij =

∂2f

∂ti∂tj
(x)

(4.80)

and the corresponding Hessian function in the tangent coordinates is defined by:

Htant(f) =

∫

M

∥H tan
x (f)∥2F (4.81)

We can assume the following equivalent relation6 [Wang, 2012]

Htan(f) = Hiso(f) (4.82)

Hence, the minimization problem 4.77 is updated as the following:

h = argmin
⟨F ,F ⟩

Htan(h) F =
[
e, h1, · · · , hd

]
, hi ∈ C2(M) (4.83)

since using the tangent functional Hessian, compare the tangent hyperplane Lx

which can ”learned” from the neighborhood of x, the Hessian function is now

computable (still in a approximated form).

4.4.2 Discrete form of Hessian functional

The Hessian functional H(f) can be represented as the quadratic form of f

H(f) = f ′Kf (4.84)

6The formal proof is quite technical and is not presented here, we remand the reader to
[Wang, 2012]
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where f = [f(x1), · · · , f(xn)]
′ is a vector representation of a function f and K is

an n× n positive semidefinite matrix, called Kernel (of HLLE).

An important characterization of the Hessian functional [Donoho and Grimes,

2003] is that if M is locally-isometric to an open connected subset of ❘d, then

H(f) has a (d+1) dimensional null space, consisting of the constant functions and

a d-dimensional space of functions spanned by the original isometric coordinates.

The process to obtain a discrete form of the Hessian require a neighborhood

structure onM. As usual, we assume also that the neighborhood system on X is

consistent with the neighborhood structure onM such that each Oi is a subset of

the manifold neighborhood Wi ⊂M with Oi = X ∩Wi and ∪
n
i=1Wi =M [Wang,

2012].

Let {ϕi}
m
i=1 be a partition of unity ofM with support ϕ ⊂ Wi. The integral over

M can be expressed in the discrete form as follows:

H(f) =

∫

M

∥H tan
x (f)∥2F =

m∑

i=1

∫

Wi

ϕi∥H
tan
x (f)∥2F (4.85)

Hence, the discrete form of the integral expressed by the quadratic form is:

H(f)|Wi
=

m∑

i=1

∫

Wi

ϕi∥H
tan
x (f)∥2F = (f ′

iWifi) (4.86)

where W is a k × k positive semidefinite matrix whose null space consists of

constant function and coordinate functions on the tangent space Txi
M

The tangent coordinates for Txi
M are obtained by computing te SVD decompo-

sition of the matrix M defined as follows:

M i = [xi1 − x̄, · · · , xik − x̄] (4.87)

where x̄ = 1
k

∑

j∈N(i) xj

The SVD decomposition is:

M i = UΣV ⊤ (4.88)
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where U in❘D×D,vin❘k×k σ ∈ ❘D×k having singular values on its diagonal.

Let U d = [u1, · · · , ud], V
d = [v1, · · · , vd] be the first d column extracted from

U and V respectively. By 4.87 M i is centered so that ⟨vj,1⟩ = 0 for j ∈ [0, d]

so the column of Li =
[
1,V d

]
form an orthonormal basis for the space of linear

function on Oi. Our aim is to obtain an orthonormal basis of the space of all

homogeneous quadratic functions.

The column of the matrix

Qi = [vl ⊠ vj]1≤l≤j≤d (4.89)

form a basis of all homogeneous quadratic functions on Oi, while a basis of all

quadratic functions on Oi is given by:

Bi =
[
Li Qi

]
(4.90)

If we orthonormalize Bi we obtain:

Bi
on =

[
Li Qi

on

]
(4.91)

we obtain an orthonormal basis of the space of quadratic function. The result

sought,an orthonormal basis of the space of all homogeneous quadratic functions,

is given precisely by the column of the Q matrix,

Qi
on = [q1, · · · , qr] , r =

d(d+ 1)

2
(4.92)

Finally, we can define:

H i = (Qi
on) (4.93)

this lead to the discrete local Hessian form, which is, Wi

Wi = (H i)⊤H i (4.94)
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matched with the following result:

1⊤Wi1 = 0

v⊤
j Wivj = 0, 1 ≤ j ≤ d

q⊤
j Wiql = δij, 1 ≤ j ≤ l ≤ d

(4.95)

The final step is to construct the Kernel previously defined 4.84.

Reproducing the trick used in LTSA we can define a n × n matrix W i with all

zero entries expect for

W i(N(i), N(i)) = Wi (4.96)

where W i(N(i)N(i)) denote a k×k submatrix of W i . Then, the kernel of HLLE

is

K =
n∑

i=1

W i (4.97)

Lastly, to obtain the embedded data Y =
[
Y 0, · · · , Y d

]
we pick up d + 1 eigen-

vectors corresponding to the d+ 1 smallest eigenvalue of K.

To summarize the algorithm of HLLE consist of the following step.
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Chapter 5

Application to Financial Data

5.1 Synthetic Data

In this section some examples of Dimensional Reduction on synthetic data set

are exposed. The idea to use some, well known, synthetic dataset is to give a

simple insight into the concept of dimensionality reduction and to point out the

difference between linear and non-linear techniques.

We define the following synthetic surfaces:

❼ Swiss Roll: the parametric formula presented here is from [Marsland,

2009]: 





x = −ϕcos(ϕ)

y = ψ

z = ϕcos(ϕ)

(5.1)

where ϕ is a random number sampled uniformally from [1.5π, 4.5π] and ψ is

a random number sampled uniformally from [0, n− samples].(Figure 5.1a)

1

❼ S Curve: another popular manifold learning artificial dataset is given by

1The exact formula is not stated in various papers [Tenenbaum et Al., 2000] that have
implemented it and a slightly modify version can be found in literature
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the S curve. It’s define as follow:







x = sin(ϕ)

y = 2 · ψ

z = |ϕ| · (cos(ϕ)− 1)

(5.2)

where ϕ is a random number sampled uniformally from [1.5π, 4.5π] and ψ

is a random number sampled uniformally from [0, n− samples] (Fig. 5.1b)

In addition to these dataset can be created their own variant version by adding

Gaussian noise, holes (in order to obtain a non convex surface) or with different

distribution of data on surface in order to obtain an irregular dataset.
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(a) Swiss Roll (b) S Curve

(c) Irregular S curve (d) Swiss Roll with hole

Figure 5.1: Synthetic Dataset

5.1.1 Dimensional Reduction

In this section are exposed results of dimensional reduction techniques on syn-

thetic data. More in detail, the surfaces from 3 dimensions have been projected

into 2 dimensional space. Methods and techniques that has been used for this

test are:

❼ Linear: PCA, MDS
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❼ Non Linear: Isomap,LLE,MLLE,HLLE,LTSA

with the number of neighbors k (for Isomap) fixed at 10. The plot of the start-

ing surface in displayed at the top while the reduced form on the bottom line.

Dataset were generated by using 3000 random point on selected surfaces.

Swiss Roll

(a) Swiss Roll

(b) PCA - 2d dimensional reduction (c) MDS - 2d dimensional reduction

(d) Isomap - 2d dimensional reduction
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(e) LLE - 2d dimensional reduction (f) MLLE - 2d dimensional reduction

(g) Hessian LLE - 2d dimensional reduction (h) LTSA- 2d dimensional reduction

Figure 5.2: 2 dimensional reduced swiss roll data set. Linear techniques such as PCA and MDS
are not able to correctly unfold the dataset. Global non linear method like Isomap are
able to unfold and give a correct representation of low embedding data. LLE, a classic
local non linear method suffers and has some issues to mapping correctly, issues that
are overcomes by the other non vanilla local methods.

Without loss in generality we can assume, since the surface is a convex set,

that techniques like PCA and MDS will not perform well as the other one. Con-

versely, techniques such as Isomap that are expected to work on convex set and

expandable surfaces, should work better.The results show that Isomap worked

very well and unfolded correctly the surface. Local method such as LLE suffers

to represent correctly the global surface,issues that are overcomes by the other

non vanilla local methods. Linear techniques, PCA and MDS, are not able to

correctly unfold the dataset.

In Figure 5.3 is shown how the reconstruction error of Isomap decreases as the

number of neighbors k increases. The reconstruction error is defined as follow:

E = ∥K(D)−K(Dfit)∥
2
2 (5.3)

where D is the distance matrix of the input data X, Dfit is the distance matrix
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of the embedding data Y and K is the Isomap Kernel.

Figure 5.3: Isomap Reconstruction Error in fuction of k nearest neighbors

In Figure 5.4 there is the graph based representation of the embedded surface

obtained using Isomap.

Figure 5.4: Isomap embedded surface connected with graph.
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Swiss Roll with Hole In this case the variant swiss roll with a hole is pre-

sented. This variant serves to highlight some limits of global methods (Isomap),

in the presence of a not well defined global structure.

(a) Swiss Roll with Hole

(b) PCA - 2d dimensional reduction (c) MDS - 2d dimensional reduction

(d) Isomap - 2d dimensional reduction (e) LLE - 2d dimensional reduction
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(f) MLLE - 2d dimensional reduction (g) Hessian LLE - 2d dimensional reduction

(h) LTSA- 2d dimensional reduction

Figure 5.5: 2 dimensional reduced Swiss roll with Hole data set. Linear techniques such as PCA
and MDS are not able to correctly unfold the dataset. Global non linear method like
Isomap are able to unfold and give a partially correct (the hole is correctly mapped)
representation of low embedding data. LLE, suffers and has some issues to mapping
correctly, the other local techniques give the best representation in 2 dimension

Figure 5.6: Isomap embedded surface connected with graph. Area near the hole is highlighted in
red
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In this case, Swiss Roll with Hole, one of the main assumption of Isomap,

the geodesically convexity of data set, is not guaranteed. In fact, as you can see

from the Figure 5.6, Isomap causes a distortion near the hole. Distortion that

does not occur in local techniques such as LTSA, Figure 5.7.

Figure 5.7: LTSA embedded surface connected with graph. Area near the hole is highlighted in red

Further examples regarding others synthetic datasets are presented in Annex

B.
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5.2 Application to Financial Data

This chapter implements and extends the intuition and the work proposed by

[Bahadur et Al., 2017 ] in A Study of Russell 3000 Dimensionality Using non-

linear Dimensionality Reduction Techniques.

The goal is to compute a dimension reduction of the US market using the Russell

30002 index as a proxy. The idea is that financial markets are a complex object

described on high-dimensional manifolds and it is possible to represent them in

low dimensional manifolds that preserves the characteristic of high dimensional

data [Huang et Al., 2016]. Starting from this assumption, combined with the

hypothesis that manifold where data lies is indeed not linear [Christofides et Al.,

2016], therefore an approach using nonlinear techniques among linear is presented.

In addition to find the expected results (consistent with the original work) we have

extended the temporal window, and we are going to investigate if in this temporal

extension leads to confirm of what has been achieved previously: in presence of

situations of market stress, the dimensionality drops. To decide a common metric

on how many dimensions retain we have followed what proposed in [Bahadur et

Al., 2017 ], that is to take the first p components that express 90% of the variance

(See Algorithm 9).

5.2.1 Description of Data

The dataset that has been used for this application are the daily Adjusted Close

prices Russell 3000 constituents. These data are collected from 5958 trading days3

from January 1st, 2000 to March 24, 2022. We denote the dataset as Xij ∈ ❘
n×d

where n are the samples and d the feature (i.e. the constituents).

Russell 3000 is a stock market index composed by the 3000 largest publicly held

companies based in USA. It represent, approximately 97% of the American public

equity market [FTSE Russell - An LSEG Business]. The motivation to use this

index is that it can be seen as benchmark of the US Stock Market.

2 [FTSE Russell - An LSEG Business]
3trading days are 5 days a week excluding some holidays.
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The collecting and data cleaning process involved the following step:

❼ Collect all the historical constituent (tickers) for both indices from January

2000 to March 2023. The constituent list is issued by [FTSE Russell - An

LSEG Business]

❼ collect and download all Adjusted Close price of tickers historical series. If

data were unavailable for a certain period, the column was dropped out.

The data provider is http://finance.yahoo.com/

❼ data quality controls: simple data quality checks have been implemented

to verify the consistency of the data. For example, it has been verified that

the data are not nan and that they are positive (Xij > 0)

❼ compute the log return:

Rj[i] =
log(Closeadj[i])

log[Closeadj[i− 1]]
(5.4)

where i is the ith row of dataset for a fixed j column.

❼ then, the final dataset denoted by Xij ∈ ❘
n×d, is composed by n samples

and d feature. In Table 5.1 there is an example of the final dataset.

Russell 3000 Adj Close from 01/01/2000 to 24/03/2022

Date A AA · · · ZY ZION

03/01/2000 -0.0711 -0.0251 · · · -0.0381 -0.06432

04/04/2000 -0.0794 0.0046 · · · -0.0145 -0.0496
... · · · · · · · · · · · · · · ·

22/03/2020 0.0082 -0.0089 · · · 0.02621 0.0340

23/03/2022 -0.0373 0.0471 · · · 0.0138 0.0441

Table 5.1: Russell 3000 dataset. Constituents are retrieved from [FTSE Russell - An LSEG Business]
and data from http://finance.yahoo.com/.

http://finance.yahoo.com/
http://finance.yahoo.com/
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5.2.2 Dimensionality Reduction

In this section is proposed a comparison with various techniques for dimension-

ality reduction, both linear and non linear. The proposed approach is similar

to [Bahadur et Al., 2017 ], and it can be summarize in the following steps:

❼ Dimensionality reduction is calculated over 60 days moving window (move

by 1 day) of daily log return. See Fig 5.8 for a schematic chart.

Figure 5.8: Dimension estimation of the time series using 60 days moving window (move by 1 day)
(Inspired by [Bahadur and Paffenroth, 2019]).

❼ Check if the input data is a non linear manifold. If the manifoldM is linear

then the Euclidean distances between each pair of points should be equal

to geodesic distance. If the manifold M is non linear then the Euclidean

distance should be always less then the geodesic one (Figure 5.9).

Figure 5.9: Difference Geodesic - Euclidean Distance. Can easily seen why Geodesic distance should
be greater than the Euclidean

In Figure 5.14 are exposed the Distance matrix Euclidean (Figure 5.10b)

and Geodesic (Figure 5.10c). Delta Matrix (Figure 5.10a), is obtained by
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the difference of G (the Geodesic Distance matrix) and E (Euclidean Dis-

tance Matrix). Since

∆ij = Gij − Eij > 0 (5.5)

thenM is indeed non linear [Falasca and Bracco, 2021].

(a) Difference Geodesic - Euclidean Matrix

(b) Euclidean Distance Matrix (c) Geodesic Distance Matrix

Figure 5.10: Distance Matrix of Russell 3000 dataset.

❼ Now, we run the dimensionality reduction techniques, namely: PCA, MDS,

Isomap, LLE, HLLE and LTSA to obtain a lower dimensional dataset. In

the next bullets the pseudo codes used for the implementation are shown.
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– PCA implementation: in Algorithm 3 is shown the PCA pseudo code

[Shlens, 2003]

Algorithm 3 PCA

Input: p number of feature of reduced space, Xn×d input data

Output: Y n×p reduced space

1: Compute the product X⊤X =
∑N

i=1(xi − µ)
⊤(xi − µ)

2: Eigen Analysis X⊤X = V ΛV ⊤

3: Compute eigenvector U = XV Λ
1
2

4: Select p numbers of component U d = [u1, · · · , ud]

5: Compute p feature Y = U dX

– SMACOF implementation: in Algorithm 4 is shown the SMACOF

pseudo code [Leeuw and Mair,2009]

Algorithm 4 SMACOF Algorithm

Input: X dissimilarity matrix

Output: σr(X
[k]) Stress minimization

1: Set Z = X [0], where X [0] is a random configuration.

2: Set k = 0

3: Compute σr(X
[0])

4: Compute Guttam Transform given by 3.44 or 3.45 depending on wij

5: If σr(X
[k−1]) − σr(X

[k]) < ε (ε small, positive, constant) or k = maximum

number of iterations, stop. If not set Z = X [k] and go to step 3.
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– MDS implementation: in Algorithm 5 is shown the MDS pseudo code

[Borg and Groenen, 2005]

Algorithm 5 Classic and generalized MDS

Input: p number of feature of reduced space, Xn×d input data

Output: Y n×p reduced space

1: Compute the dissimilarity matrix dij = ∥x
2
i − x

2
j∥

2
2

2: Calculate the matrix D = −1
2
d2ij and K = HDH where H is the centering

matrix

3: Compute the spectral decomposition of K = V ∆V ⊤ and U

4: Select p greatest eigenvalue from Σ

5: Construct the n× p dimensional embedding matrix Y = V ∆
1
2 or using the

SMACOF algorithm (4) Y = SMACOF (D)

– Isomap implementation: in Algorithm 6 is shown the Isomap pseudo

code [Ghojogh et Al., 2020]

Algorithm 6 Isomap algorithm

Input:

Input: p number of feature of reduced space,Xn×d input data, number of nearest

neighbors k

Output: Y n×p reduced space

1: Fore each point in X select the k nearest point as neighbors

2: Compute the Euclidean distance between all neighbor nodes, D =
[
d2ij
]

n×n

in order to convert the data set into a graph

3: For each pairs of nodes in the graph, finds the points G = {xi∥i = 1, · · · , k}

in the shortest paths using the Dijkstra or Floyd-Warshal algorithm, and,

assign to D distance matrix.

4: Convert matrix of distance into a Gram matrix by double centering

K = −1
2
HDH

5: Compute the spectral decomposition K = V ∆V T

6: Estimate ❘p×n ∋ Y = ∆
1
2V T
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– HLLE implementation: in Algorithm 7 is shown the HLLE pseudo

code [Donoho and Grimes, 2003]

Algorithm 7 HLLE

Input: p number of feature of reduced space, Xn×d input data

Output: Y n×p reduced space

1: Neighborhood and neighbors k definition. Constrain on K ≥ r where r =

(d+2)(d+1)
2

2: Compute local tangent coordinate functional using PCA to local data X

3: Local Hessian functional construction Wi = Qi(Qi)⊤

4: HLLE kernel construction by setting K = n timesn matrix and update by

K(N(i), N(i)) = K(N(i), N(i)) +Wi

5: Eigen decompositio of kernel. Select Y as the eigenvector matrix correspond-

ing to the d+ 1 smallest eigenvalue of K

– LTSA implementation: in Algorithm 8 is shown the LTSA pseudo

code [Zhang and Zha, 2004]

Algorithm 8 LTSA

Input: p number of feature of reduced space, Xn×d input data

Output: Y n×p reduced space

1: Neighborhood and neighbors k definition of the G = [X,A] data graph

2: Find local coordinate relation by applying PCA on X̂. Compute Wi =

I −GiG
⊤

3: LTSA kernel construction via global alignment. Set K = 0 and update it by

K(N(i), N(i)) = I −GiG
⊤
i for i = 1, 2, · · · , n

4: Eigen decomposition of kernel by the spectral decomposition K = UΛU⊤.

Select Y as the eigenvector matrix corresponding to the 2nd -(d+1) smallest

eigenvalue of K

❼ The selecting criteria to determine p dimension of the Y embedded dataset,

is the following: select all the component until reach the 90 % of variance
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[Bahadur et Al., 2017 ]. Dimensionality of the embedded dataset, using

this criteria should be interpret as the minimum number of instruments

that contribute to reach 90% of the index variance. (cumulative variance

threshold). A sketch of implementation and pseudocode can be found in

Algorithm 9.

Algorithm 9 Dimensionality using up to 90% variance

Input: (σ1, σ2, · · · , σn) - singular values

Output: p, the number of largest squared singular values that explains

90% of variance in (X).

Sort (σ1, σ2, · · · , σn) in descending order, where σi are singular values.

Calculate σsum = Σn
i=1σ

2
i

Calculate σi% =
σ2
i

σsum

Dimensionality p is the value of l where Σw
l=1σi% ≥ 90%

❼ Then, the reduced dataset Yij ∈ ❘
n×p, where p ≤ d is the number of the

lower embedded dimension, is obtained.

5.2.3 Dimensionality Reduction Results

The Figure 5.11 displays the time series dimensionality reduction of Russell 3000.

As can be seen and clearly understood from the chart 5.11, linear techniques such

as PCA (blue) and MDS (green) have a greater dimensionality than the nonlinear

technique such as Isomap (in orange). This means that with the same variance,

the result of the nonlinear techniques is to be preferred. The trend of the index

is plotted in red, and as we can see in the proximity of a drop of the index

corresponds to a decrease in dimensionality.
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Figure 5.11: Russel 3000 dimension reduction from 2000 to 23/03/2022. PCA in blue, MDS in
green, Isomap in orange, Russell3000 index in red.

In Table 5.2 are exposed the average, maximum and the minimum value of

the dimensionality reduction that we have obtained. As we can see the spread

PCA-Isomap is thinned in the minimums while it is greater in the maximum.

Techniques

Dimension PCA MDS ISOMAP

Average 43.2 35.4 25.6

Max 48 41 30

Min 21 19 14

Table 5.2: Average, Max and Min value of dimension over the time horizon.

Leaving aside the various drops, the dimensionality of the PCA fluctuates be-

tween 40-45, MDS between 30 and 35 and the Isomap between 22 and 27.

A landscape image in Figure 5.14 is proposed to capture more details.

Locally Linear family methods, such as LLE, HLLE and LTSA, has been im-

plemented and tested to estimate the dimensionality too. However, Figure 5.12
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Figure 5.12: Russel 3000 dimension reduction with Locally Linear method: LLE and LTSA. Local
method fails to unfold correctly the manifold and 90% variance dimensionality is stuck
at 54 for both techniques. Also HLLE has been tested producing the same result.

shows how local model fails, since the dimensionality is constant and fixed over

the time at 54. Recalling the toy example, local method acts well when hypothe-

sis of convexity fails and there is a well defined locally structure, but for complex

dataset, verifying which manifold assumptions have been respected is not easy.

In Figure 5.13 is shown the difference between PCA-Isomap and MDS-Isomap.

Figure 5.13: Russel 3000 dimension reduction. Difference between PCA-Isomap and MDS-Isomap.
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5.2.4 Crash Analysis

Financial and Banking Crisis - 2008

The Global financial crisis of 2008 , related to US housing bubbling, an exces-

sive risk-taking and a lack of risk management by global financial institutions

culminates with Lehman Brother collapse in September 15,2008. Russell 3000

index drops nearly 7.5% in a couple of days (15-17 Septmber 2008) as illustrated

in Figure 5.16. In this scenario, the change of dimensionality is less accentuate

in non linear (Isomap) rather than the linear (PCA - MDS). The ”slope” (rate

of change) of the Isomap dimensionality indicates that drops beforehand linear

dimensionality drops. In Table 5.3 are shown dimension reduction of Isomap,

MDS and PCA respectively over the period: 01/09/2008 - 31/12/2008.

Figure 5.15: Russel 3000 dimension reduction during 2008 crisis. Period from 01/07/2008 to
14/04/2009. PCA in blue, MDS in green, Isomap in orange

Figure 5.16: Russel 3000 intrinsic dimension estimation during 2008 crisis. Period from 01/07/2008
to 14/04/2009. PCA in blue, MDS in green, Isomap in orange,Russell 3000 in red
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Date Isomap MDS PCA

01/09/2008 24 35 43
02/09/2008 25 35 43
03/09/2008 25 35 42
04/09/2008 25 35 42
05/09/2008 26 35 42
08/09/2008 25 35 42
09/09/2008 25 35 42
10/09/2008 25 35 42
11/09/2008 25 35 42
12/09/2008 25 35 42
15/09/2008 25 34 42
16/09/2008 25 34 42
17/09/2008 25 35 42
18/09/2008 25 34 42
19/09/2008 24 33 41
22/09/2008 24 33 41
23/09/2008 23 33 40
24/09/2008 23 33 40
25/09/2008 23 33 40
26/09/2008 23 33 40
29/09/2008 24 33 40
30/09/2008 23 33 41
01/10/2008 23 32 40
02/10/2008 22 32 39
03/10/2008 23 32 40
06/10/2008 22 33 39
07/10/2008 23 32 39
08/10/2008 23 32 38
09/10/2008 22 32 38
10/10/2008 23 32 38
13/10/2008 22 31 37
14/10/2008 22 31 36
15/10/2008 21 29 35
16/10/2008 21 30 34
17/10/2008 21 29 33
20/10/2008 20 28 33
21/10/2008 21 29 33
22/10/2008 20 28 33
23/10/2008 21 29 33
24/10/2008 21 29 32
27/10/2008 21 28 32
28/10/2008 21 28 32
29/10/2008 21 29 32
30/10/2008 21 28 32

...
...

...
...

Date Isomap MDS PCA

...
...

...
...

31/10/2008 21 28 31
03/11/2008 21 28 31
04/11/2008 22 29 31
05/11/2008 22 29 31
06/11/2008 22 29 31
07/11/2008 22 29 31
10/11/2008 23 29 32
11/11/2008 23 29 32
12/11/2008 23 30 32
13/11/2008 23 30 33
14/11/2008 23 30 33
17/11/2008 22 30 33
18/11/2008 22 31 33
19/11/2008 23 31 34
20/11/2008 23 31 34
21/11/2008 23 31 35
24/11/2008 21 31 35
25/11/2008 21 31 35
26/11/2008 20 31 35
27/11/2008 21 31 36
28/11/2008 20 31 36
01/12/2008 20 31 35
02/12/2008 21 32 36
03/12/2008 20 31 35
04/12/2008 21 31 36
05/12/2008 21 32 36
08/12/2008 21 32 36
09/12/2008 21 32 36
10/12/2008 20 31 37
11/12/2008 20 32 37
12/12/2008 20 32 37
15/12/2008 20 32 37
16/12/2008 20 32 37
17/12/2008 21 32 37
18/12/2008 20 32 37
19/12/2008 20 33 37
22/12/2008 20 33 38
23/12/2008 21 33 38
24/12/2008 21 33 38
26/12/2008 20 33 38
29/12/2008 20 33 38
30/12/2008 20 33 38
31/12/2008 20 33 37

Table 5.3: Financial and Banking Crisis - 2008 dimension reduction. Dimensionality of Isomap,
MDS and PCA respectively. Period: 01/09/2008 - 31/12/2008
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European debt crisis - 2011

The European debt crisis, erupted when several eurozone state were unable to

pay their government debt. The climax occurs on 8 August 2011, when Athens

stock market crashed, in that day Russell3000 drops nearly 7%. The large drop,

illustrated in Figure 5.18 (red dashed line represent the Russell3000 index) is

accompanied by a decline in dimensionality. The blue line, which represents the

PCA, decrease with a similar rate to Isomap (but with different magnitude), more

tenuous instead MDS. In Table 5.4 are shown dimension reduction of Isomap,

MDS and PCA respectively over the period: 01/07/20011 - 31/10/2011.

Figure 5.17: Russel 3000 intrinsic dimension estimation during European debt crisis. Period from
19/03/2011 to 22/05/2012. PCA in blue, MDS in green, Isomap in orange

Figure 5.18: Russel 3000 intrinsic dimension estimation during European debt crisis. Period from
19/03/2011 to 22/05/2012. PCA in blue, MDS in green, Isomap in orange,Russell3000
index in red
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Date Isomap MDS PCA

01/07/2011 25 36 44
04/07/2011 26 36 44
05/07/2011 26 36 44
06/07/2011 26 35 43
07/07/2011 26 35 43
08/07/2011 26 35 43
11/07/2011 26 36 43
12/07/2011 26 36 43
13/07/2011 25 35 43
14/07/2011 25 36 43
15/07/2011 25 35 43
18/07/2011 25 34 43
19/07/2011 25 35 43
20/07/2011 25 35 43
21/07/2011 25 35 43
22/07/2011 25 35 43
25/07/2011 25 35 43
26/07/2011 24 35 43
27/07/2011 25 34 43
28/07/2011 25 34 43
29/07/2011 24 34 42
01/08/2011 25 35 42
02/08/2011 25 34 42
03/08/2011 25 35 42
04/08/2011 24 34 42
05/08/2011 24 34 42
08/08/2011 24 33 40
09/08/2011 24 34 40
10/08/2011 23 32 37
11/08/2011 21 31 35
12/08/2011 21 30 34
15/08/2011 21 29 33
16/08/2011 21 30 33
17/08/2011 21 29 33
18/08/2011 21 30 33
19/08/2011 21 30 33
22/08/2011 20 30 32
23/08/2011 19 30 32
24/08/2011 20 30 33
25/08/2011 19 30 33
26/08/2011 20 30 33
29/08/2011 20 30 33
30/08/2011 20 30 33
31/08/2011 20 29 32

...
...

...
...

Date Isomap MDS PCA

...
...

...
...

01/09/2011 20 29 32
02/09/2011 20 29 32
05/09/2011 20 29 32
06/09/2011 20 29 32
07/09/2011 20 28 32
08/09/2011 20 29 32
09/09/2011 19 28 32
12/09/2011 19 29 31
13/09/2011 19 28 31
14/09/2011 19 28 31
15/09/2011 19 28 32
16/09/2011 20 28 32
19/09/2011 20 28 32
20/09/2011 19 28 32
21/09/2011 20 28 32
22/09/2011 19 28 32
23/09/2011 19 28 32
26/09/2011 19 27 32
27/09/2011 19 28 32
28/09/2011 19 28 32
29/09/2011 19 28 32
30/09/2011 19 28 32
03/10/2011 19 28 33
04/10/2011 19 28 33
05/10/2011 18 28 32
06/10/2011 18 27 32
07/10/2011 18 28 32
10/10/2011 19 28 32
11/10/2011 19 27 32
12/10/2011 18 28 32
13/10/2011 18 27 32
14/10/2011 18 27 32
17/10/2011 18 28 32
18/10/2011 18 27 32
19/10/2011 17 27 32
20/10/2011 18 27 31
21/10/2011 18 27 31
24/10/2011 17 27 31
25/10/2011 18 27 31
26/10/2011 17 27 31
27/10/2011 17 27 31
28/10/2011 17 27 31
31/10/2011 17 27 31

Table 5.4: European debt crisis - 2011 dimension reduction. Dimensionality of Isomap, MDS and
PCA respectively. Period: 01/07/20011 - 31/10/2011
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Covid-19 Pandemic

Due to the increasing growing and instability of the spread of Covid-19 around

the world, on 20 February 2020 stock market crashed. Russell 3000 drops 12.5%

in 7 days as shown in Figure 5.20. Also in this situation, see Figure 5.19, can

be recognized the pattern in the change of dimensionality, with a more moderate

drop in the case of Isomap with respect the linear techniques. The difference in

dimensionality between these category becomes thinner in case of drops, but is

still notable. In Table 5.5 are shown dimension reduction of Isomap, MDS and

PCA respectively over the period: 01/02/2020 - 31/05/2020.

Figure 5.19: Russel 3000 intrinsic dimension estimation during the initial spread of Covid-19. Pe-
riod from 06/01/2020 to 07/07/2020. PCA in blue, MDS in green, Isomap in orange

Figure 5.20: Russel 3000 intrinsic dimension estimation during the initial spread of Covid-19. Pe-
riod from 06/01/2020 to 07/07/2020. PCA in blue, MDS in green, Isomap in or-
ange,Russell3000 index in red
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Date Isomap MDS PCA

01/02/2021 25 34 40
02/02/2021 25 33 40
03/02/2021 26 35 42
04/02/2021 26 35 42
05/02/2021 26 35 42
08/02/2021 26 35 42
09/02/2021 26 35 42
10/02/2021 27 35 42
11/02/2021 27 34 42
12/02/2021 27 35 42
15/02/2021 27 36 42
16/02/2021 28 36 41
17/02/2021 28 36 41
18/02/2021 28 36 42
19/02/2021 28 36 42
22/02/2021 27 37 42
23/02/2021 28 37 42
24/02/2021 27 37 43
25/02/2021 28 36 43
26/02/2021 28 36 42
01/03/2021 28 37 42
02/03/2021 28 36 42
03/03/2021 28 37 42
04/03/2021 28 36 42
05/03/2021 28 36 42
08/03/2021 28 36 42
09/03/2021 28 36 42
10/03/2021 27 36 41
11/03/2021 27 36 42
12/03/2021 27 36 41
15/03/2021 27 36 41
16/03/2021 27 35 42
17/03/2021 27 36 41
18/03/2021 27 35 41
19/03/2021 27 35 41
22/03/2021 26 35 42
23/03/2021 26 35 42
24/03/2021 25 35 41
25/03/2021 26 35 41
26/03/2021 25 35 42
29/03/2021 25 35 42
30/03/2021 24 35 42
31/03/2021 25 35 42

...
...

...
...

Date Isomap MDS PCA

...
...

...
...

01/04/2021 25 35 42
05/04/2021 25 35 42
06/04/2021 25 35 42
07/04/2021 25 36 42
08/04/2021 25 35 42
09/04/2021 25 35 41
12/04/2021 26 35 41
13/04/2021 26 35 41
14/04/2021 25 35 42
15/04/2021 25 34 41
16/04/2021 25 35 41
19/04/2021 26 35 41
20/04/2021 26 35 41
21/04/2021 26 34 41
22/04/2021 25 34 41
23/04/2021 25 35 41
26/04/2021 25 35 41
27/04/2021 25 35 41
28/04/2021 25 35 41
29/04/2021 24 34 41
30/04/2021 25 35 41
03/05/2021 24 35 42
04/05/2021 24 35 42
05/05/2021 24 35 42
06/05/2021 24 35 42
07/05/2021 24 35 42
10/05/2021 24 35 42
11/05/2021 24 34 42
12/05/2021 20 35 42
13/05/2021 20 35 42
14/05/2021 20 35 42
17/05/2021 20 35 42
18/05/2021 19 35 42
19/05/2021 19 35 42
20/05/2021 19 34 42
21/05/2021 18 35 42
24/05/2021 20 35 42
25/05/2021 20 35 42
26/05/2021 20 35 42
27/05/2021 20 35 42
28/05/2021 20 35 42
31/05/2021 20 35 42

Table 5.5: Covid-19 dimension reduction. Dimensionality of Isomap, MDS and PCA respectively.
Period: 01/02/2020 - 31/05/2020
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Russian invasion of Ukraine - 2022

After a long and prolonged tense atmosphere, Russia invaded Ukraine on 24

February 2022. Russell 3000 drops almost 6% in 6 days as shown in Figure 5.22.

Also in this situation, see Figure 5.21, can be recognized the pattern in the change

of dimensionality, with a more moderate drop in the case of MDS, almost im-

perceptible decline in PCA case. Isomap dimensionality drop is more accentuate

raging from 26 of 03/01/2022 to 21/03/2022, showing a greater sensitivity to

market stess. In Table 5.6 are shown dimension reduction of Isomap, MDS and

PCA respectively over the period: 01/01/2022 - 23/03/2022.

Figure 5.21: Russel 3000 intrinsic dimension estimation during the Russian invasion of Ukraine -
2022. Period from 01/01/2022 to 23/04/2022. PCA in blue, MDS in green, Isomap in
orange

Figure 5.22: Russel 3000 intrinsic dimension estimation during the Russian invasion of Ukraine -
2022. Period from 01/01/2022 to 23/04/2022. PCA in blue, MDS in green, Isomap in
orange, Russell3000 index in red
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Date Isomap MDS PCA

03/01/2022 26 35 41
04/01/2022 26 35 41
05/01/2022 26 34 41
06/01/2022 25 34 41
07/01/2022 25 35 41
10/01/2022 25 34 41
11/01/2022 25 34 41
12/01/2022 25 34 41
13/01/2022 25 35 41
14/01/2022 26 34 41
17/01/2022 26 34 40
18/01/2022 26 34 40
19/01/2022 25 33 39
20/01/2022 25 34 39
21/01/2022 25 34 40
24/01/2022 25 34 39
25/01/2022 25 34 39
26/01/2022 25 34 39
27/01/2022 25 33 40
28/01/2022 25 34 40
31/01/2022 25 34 40
01/02/2022 24 33 39
02/02/2022 24 33 39
03/02/2022 23 33 39
04/02/2022 23 33 39
07/02/2022 23 33 39
08/02/2022 23 33 39
09/02/2022 23 33 39
10/02/2022 23 33 39
11/02/2022 23 33 39
14/02/2022 23 32 39
15/02/2022 23 33 39
16/02/2022 22 32 39
17/02/2022 22 32 39
18/02/2022 21 33 39
21/02/2022 22 33 40
22/02/2022 22 32 39
23/02/2022 22 33 39
24/02/2022 22 33 39
25/02/2022 21 33 39
28/02/2022 22 32 39

...
...

...
...

Date Isomap MDS PCA

...
...

...
...

01/03/2022 22 32 39
02/03/2022 23 32 39
03/03/2022 22 32 39
04/03/2022 22 32 39
07/03/2022 22 33 39
08/03/2022 21 32 39
09/03/2022 22 32 38
10/03/2022 22 32 38
11/03/2022 21 32 38
14/03/2022 22 32 38
15/03/2022 22 32 39
16/03/2022 21 32 39
17/03/2022 20 32 39
18/03/2022 20 32 39
21/03/2022 20 32 40
22/03/2022 21 32 40
23/03/2022 22 32 40

Table 5.6: Russian invasion of Ukraine - 2022, dimension reduction. Dimensionality of Isomap,
MDS and PCA respectively. Period: 01/021/2022 - 23/03/2022



Chapter 6

Conclusion

In this thesis we have approached the problem of Dimensional Reduction high-

lighting the difference between linear and non-linear techniques, in particular,

introducing the concept of Manifold Learning.

After a first introductory part, designed to expose and present both the key

mathematical concepts and the Manifold Learning techniques, a series of visual

examples is presented, in order to get a better insight into the DR process and

to highlight the difference between these techniques.

Finally, an application of Dimensionality Reduction to financial data, in partic-

ular to the Russell 3000 index, is proposed. This last work can be seen as an

extension of [Bahadur et Al., 2017 ].

We estimate the temporal dimensionality of the Russell 3000 index, therefor of

US Market. Three techniques were implemented and used: Principal Component

Analysis, Multidimensional Scaling and Isomap. The number of dimension, i.e.

the constituent of the index, of reduced data set was selected by the criteria of

90% of variance.

In conclusion, we observed the benefit of using non-linear techniques com-

pared to linear ones, in our particular case Isomap, a global non-linear technique

that uses geodesic distance instead of the Euclidean one, proved to be the most

efficient. The results obtained, in addition to confirming what was obtained in

89
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the work of [Bahadur et Al., 2017 ], also confirmed what appears to be a well-

defined pattern, namely that a decreasing in dimensionality is associated with a

decreasing - stress condition of the market (then reflected to the index). We have

seen how both in the recent cases of Covid-19 and with the most recent event

of the Ukrainian invasion by Russia, they show the same characteristics in the

change of dimensionality.

Further solution can come from Statistical Manifold Learning, where an infor-

mation metric in a probabilistic space replace the geodesic metric. Since prices

of financial instruments are stochastic, Statistical Learning could grasp further

details and information from data.



Appendix A

Proofs

A.1 Multidimensional Scaling

Proof of relation 3.12 [Ghojogh et Al., 2020]:

Considering

XTX = V∆VT

YTY = QΨQT

M = VTQ

(A.1)

∥XTX−YTY∥2F = tr
[
(XTX−YTY)T(XTX−YTY)

]

= tr
[
(XTX−YTY)2

]

= tr
[
(V∆VT −QΨQT)2

]

= tr
[
(V∆VT −VVTQΨQTVVT)2

]

= tr
[
(V(∆−VTQΨQTV)2VT)2

]

= tr
[
(VT)2V2(∆−VTQΨQTV)2

]

= tr
[
(VTV)2(∆−VTQΨQTV)2

]

= tr
[
(∆−VTQΨQTV)2

]

= tr
[
(∆−MΨMT)2

]

(A.2)
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A.2 Sammon Mapping

Proof of 4.25, gradient of cost function of Sammon mapping [Lee and Verleysen,

2007].

According to chain rule, we have:

∂c4
∂yi,k

=
∂c4

∂dy(yi, yj)
×
∂dy(yi, yj)

∂c4
(A.3)

Then, the first and the second derivative are:

∂c4
∂dy(yi, yj)

= −
2

a

n∑

i=1

n∑

j=1,j<i

dx(xi, xj)− dy(yi, yj)

dx(xi, xj)
(A.4)

∂dy(yi, yj)

∂yi,k
=

∂dy(yi, yj)

∂2dy(yi, yj)
×
∂2dy(yi, yj)

∂yi,k
(A.5)

respectively.

Then we have

∂dy(yi, yj)

∂d2y(yi, yj)
= 1/

∂d2y(yi, yj)

∂dy(yi, yj)
= 1/(2dy(yi, yj)) (A.6)

and

d2y(yi, yj) = ∥yiyj∥
2
2 =

p
∑

k=1

(yi,k − yj,k)
2 (A.7)

That lead to:
∂d2y(yi, yj)

∂yi,k)
= 2(yi,k − yj,k) (A.8)

and
∂dy(yi, yj)

∂yi,k)
=
yi,k − yj,k
dy(yi, yj)

(A.9)

finally, the gradient is:

∂c4
∂yi,k

= −
2

a

n∑

i=1

n∑

j=1,j<i

dx(xi, xj)− dy(yi, yj)

dx(xi, xj)dy(yi, yj)
(yi,k − yj,k) (A.10)
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Proof of 4.23.

Let’s compute the second derivative now:

∂2c4
∂y2i,k

=
∂

∂yi,k

(
∂c4
∂yi,k

)

(A.11)

where the gradient is given by A.10.Therefore:

∂2c4
∂y2i,k

= −
2

a

n∑

i=1

n∑

j=1,j<i

∂

∂yi,k

(
dx(xi, xj)− dy(yi, yj)

dx(xi, xj)dy(yi, yj)
(yi,k − yj,k)

)

(A.12)

The partial derivative is:

∂

∂yi,k

(
dx(xi, xj)− dy(yi, yj)

dx(xi, xj)dy(yi, yj)
(yi,k − yj,k)

)

= (yi,k − yj,k)
∂

∂yi,k

(
dx(xi, xj)− dy(yi, yj)

dx(xi, xj)dy(yi, yj)

)

+
dx(xi, xj)− dy(yi, yj)

dx(xi, xj)dy(yi, yj)

∂

∂yi,k
(y − i, k − yj,k)

︸ ︷︷ ︸

=1

(A.13)

we note that:

∂

∂yi,k

(
dx(xi, xj)− dy(yi, yj)

dx(xi, xj)dy(yi, yj)

)

=
1

dx(xi, xj)

∂

∂yi,k

(
dx(xi, xj)− dy(yi, yj)

dx(xi, xj)

)

=
1

dx(xi, xj)

∂

∂yi,k

(
dx(xi, xj)

dy(yi, yj)
− 1

)

=
dx(xi, xj)

dx(xi, xj)
︸ ︷︷ ︸

=1

∂

∂yi,k

(
1

dy(yi, yj)

)

−
∂

∂yi,k
︸ ︷︷ ︸

=0

=
−1

d2y(yi, yj)

∂

∂yi,k
(dy(xi, xj))

=
1

d2(xi, xj)

yi,k − yj,k
dy(yi,j )

(A.14)
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Therefore:

∂

∂yi,k

(
dx(xi, xj)− dy(yi, yj)

dx(xi, xj)dy(yi, yj)
(yi,k − yj,k)

)

=
−(yi,k − yj,k)

2

d3y(yi, yj)
+
dx(xi, xj)− dy(yi, yj)

dx(xi, xj)dy(yi, yj)

(A.15)

∂2c4
∂y2i,k

= −
2

a

n∑

i=1

n∑

j=1,j<i

(
dx(xi, xj)− dy(yi, yj)

dx(xi, xj)dy(xi, xj)
− (yi,k − yj,k)

)

(A.16)



Appendix B

Synthetic Data

In this appendix we continue to present some application of dimensional reduction

on synthetic data.The material in this appendix can be used as a supplement of

Chapter 5.1.1.

B.1 S Curve

As in the previous case, S Curve is a convex ad expandable surface. The same

considerations and the result made previously hold
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(a) S Curve

(b) PCA - 2d dimensional reduction (c) MDS - 2d dimensional reduction

(d) Isomap - 2d dimensional reduction (e) LLE - 2d dimensional reduction
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(f) MLLE - 2d dimensional reduction (g) Hessian LLE - 2d dimensional reduction

(h) LTSA- 2d dimensional reduction

Figure B.1: 2 dimensional reduced S Curve data set. Linear techniques such as PCA and MDS
are not able to correctly unfold the dataset. Global non linear method like Isomap are
able to unfold and give a correct representation of low embedding data. LLE, a classic
local non linear method suffers and has some issues to mapping correctly, issues that
are overcomes by the other non vanilla local method.

B.2 Irregular S Curve

In this case the surface has an irregular distribution of the data over the curve.

As we can see from the Figure 3.1, the PCA is able to represent the dataset

almost well, instead method like LLE, fails to capture the geometric nature and

therefore fails to represent it. Although there are scattered data, a kind of small

holes, Isomap manages to represent embedding projection well, as well as LTSA,

MLLE, HLLE.
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(a) Irregular S Curve

(b) PCA - 2d dimensional reduction (c) MDS - 2d dimensional reduction

(d) Isomap - 2d dimensional reduction (e) LLE - 2d dimensional reduction
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(f) MLLE - 2d dimensional reduction (g) Hessian LLE - 2d dimensional reduction

(h) LTSA- 2d dimensional reduction

Figure B.2: 2 dimensional reduced Irregular S Curve data set. Linear techniques such as PCA and
MDS are not able to correctly unfold the dataset. Global non linear method like Isomap
are able to unfold and give a correct representation of low embedding data. LLE, a
classic local non linear method suffers and has some issues to mapping correctly, issues
that are overcomes by the other non vanilla local method.
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Appendix C

Code

1 ############## RETRIEVE DATA ##############

2 f = open("Russel_3000_list.txt",’r’)

3 russell = []

4 with open(’Russel_3000_list.txt’, ’r’) as filehandle:

5 for line in filehandle:

6 currentPlace = line [:-1]

7 russell.append(currentPlace)

8 start_1 = dt.datetime (2000 ,8 ,2)

9 end_1 = dt.datetime (2012 ,10 ,1)

10 start_2 = dt.datetime (2012 ,10 ,2)

11 end_2 = dt.datetime (2015 ,11 ,4)

12 start_3 = dt.datetime (2015 ,11 ,5)

13 end_3 = dt.datetime (2022 ,3 ,24)

14 ############### DATA CLEANING ##############

15 def data_cleaning(df):

16 new_df = np.log1p(df.pct_change ())

17 new_df = new_df.iloc [1:]

18 new_df = new_df.dropna( axis=’columns ’, how =’any’)

19 return new_df

20

21 ########### FUNCTION FOR EIGENDECOMPOSITION AND DIMENSIONALITY

############

22 def svd(emb):

23 u, s, vh = np.linalg.svd(emb , full_matrices=True)
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24 cum_var = np.sum(s**2)

25 sigma_perc = s**2/ cum_var

26 return sigma_perc

27

28 def dimensionality(sigma_perc):

29 i= 0

30 dimension = 0

31 while (dimension < 0.90):

32 dimension += sigma_perc[i]

33 i = i+1

34 return i,dimension

35

36 def dimensionality_1(sigma_perc):

37 i= 0

38 dimension = 0

39 for s in sigma_perc:

40 if sigma_perc[i] > 0.01:

41 dimension += 1

42 i = i+1

43 return i,dimension

44

45 ########### MOVING WINDOW PCA ,MDS ,ISOMAP ,LLE ,HLLE ############

46

47 def rolling(df ,window ,i):

48 frame = df.shift (-1*(len(df)-window))

49 frame = frame.dropna ()

50 frame = frame.shift (0)

51 frame = frame.dropna ()

52 return frame

53

54 def roll_pca(df ,window):

55 df = pd.DataFrame(df)

56 up_bound = int(df.shape [0])

57 shape = np.zeros(up_bound - window)

58 for i in range(0,up_bound - window):

59 temp_df = df.iloc[i:window +i]
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60 st = ss().fit_transform(temp_df)

61 pca = PCA (0.90)

62 pc = pca.fit_transform(st)

63 s = svd(pc)

64 p = dimensionality(s)

65 shape[i] = pc.shape [1]

66 return shape

67

68 def roll_iso(df ,window ,k):

69 df = pd.DataFrame(df)

70 up_bound = int(df.shape [0])

71 shape = np.zeros(up_bound - window)

72 for i in range(0,up_bound - window):

73 temp_df = df.iloc[i:window +i]

74 iso = Isomap(n_neighbors=k,n_components =60, n_jobs =-1)

75 X_transformed = iso.fit_transform(temp_df)

76 s = svd(X_transformed)

77 p = dimensionality(s)

78 shape[i] = p[0]

79

80 return shape

81

82

83 def roll_mds(df ,window):

84 df = pd.DataFrame(df)

85 up_bound = int(df.shape [0])

86 shape = np.zeros(up_bound - window)

87 for i in range(0,up_bound - window):

88 temp_df = df.iloc[i:window +i]

89 multids = MDS(metric =(True),n_components =60, n_jobs =-1)

90 X_transformed = multids.fit_transform(temp_df)

91 s = svd(X_transformed)

92 p = dimensionality(s)

93 shape[i] = p[0]

94 return shape

95
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96 #Change method for ’lle ’, ’ltsa ’, ’hlle ’, ’mlle’

97 def roll_hlle(df ,window ,method=’hlle’):

98 df = pd.DataFrame(df)

99 up_bound = int(df.shape [0])

100 shape = np.zeros(up_bound - window)

101 for i in range(0,up_bound - window):

102 temp_df = df.iloc[i:window +i]

103 embedding = manifold.LocallyLinearEmbedding(n_neighbors

=60, n_components =60, method=method)

104 X_transformed = embedding.fit_transform(temp_df)

105 s = svd(X_transformed)

106 p = dimensionality(s)

107 shape[i] = p[0]

108 return shape

109

110 ########### DISTANCE CHECK ############

111 dist_eucl = euclidean_distances ()

112 geo = iso.dist_matrix_

113 delta = geo - dist_eucl

114 plt.figure(figsize =(20 ,20))

115 plt.imshow(dist_eucl , cmap=’jet’, interpolation=’nearest ’)

116 plt.title(’Euclidean Distance Matrix ’, fontsize =28)

117 plt.show()

118 plt.figure(figsize =(20 ,20))

119 plt.imshow(geo , cmap=’jet’, interpolation=’nearest ’)

120 plt.title(’Geodesic Distance Matrix ’, fontsize =28)

121 plt.show()

122 plt.figure(figsize =(20 ,20))

123 shw = plt.imshow(delta , cmap=’jet’, interpolation=’nearest ’)

124 plt.colorbar(shw ,fraction =0.046 , pad =0.04)

125 plt.title(’Difference Geodesic - Euclidean Distance Matrix ’,

fontsize =28)

126 plt.show()

127

128 ########### DISTANCE CHECK ############

129 pca_dim_= roll_pca(df ,60)
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130 iso_dim = roll_iso(df ,60)

131 mds_dim = roll_mds(df ,60)

132 hlle_dim = roll_hlle(df ,60,’hlle’)

133 ltsa_dim = roll_hlle(df ,60,’ltsa’)

134 lle_dim = roll_hlle(df ,60,’lle’)

135 mlle_dim = roll_hlle(df ,60,’mlle’)

136

137 ########### PLOT ############

138 ##prendere le date

139 date_1 = (temp_df.index.get_level_values(’Date’))

140 data = date_1 [61::]

141 plt.plot(data_2["Close"])

142 import matplotlib.dates as mdates

143 plt.figure(figsize =(35 ,20)) #(35 ,20)

144 plt.gca().xaxis.set_major_formatter(mdates.DateFormatter(’%Y-%m-%

d’))

145 plt.gca().xaxis.set_major_locator(mdates.DayLocator(interval =300)

)

146 plt.plot(data ,sp_pca_dim , label = ’pca’)

147 plt.plot(data ,sp_iso_dim ,label = ’iso’)

148 PLT.plot(data ,sp_mds_dim ,label = ’mds’)

149

150 plt.legend(loc = ’best’)

151 plt.gcf().autofmt_xdate ()

152 plt.title(’######### ICE ######### ’ , fontsize =28)

153 plt.show()

154 ##################################################

155

156 plt.figure(figsize =(25 ,20)) #(35 ,20)

157 fig , ax1 = plt.subplots(figsize =(25 ,20))

158 color = ’tab:red’

159 ax1.set_xlabel(’Year/Month/Day’)

160 ax1.set_ylabel(’Russell 3000 Close’, color=color)

161 ax1.plot(data_ru [1990:2180] , label = ’russell3000 ’, color=’r’,

linestyle=’dashed ’)

162 ax1.tick_params(axis=’y’, labelcolor=color)
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163 ax1.legend(loc = ’lower right’)

164

165 ax2 = ax1.twinx() # instantiate a second axes that shares the

same x-axis

166

167 color = ’tab:blue’

168 ax2.set_ylabel(’Dimensionality ’, color=color)

169 plt.gca().xaxis.set_major_formatter(mdates.DateFormatter(’%Y-%m-%

d’))

170 plt.gca().xaxis.set_major_locator(mdates.DayLocator(interval =20))

# we already handled the x-label with ax1

171 plt.plot(data [1994:2200] , pca_dim [1994:2200] , label = ’pca’)

172 plt.plot(data [1994:2200] , iso_dim [1994:2200] , label = ’iso’)

173 plt.plot(data [1994:2200] , mds_dim [1994:2200] , label = ’mds’)

174 ax2.tick_params(axis=’y’, labelcolor=color)

175 ax2.legend(loc = ’best’)

176 plt.gcf().autofmt_xdate ()

177 plt.title(’Russell 3000 Intrinsic Dimension \n 2008 crisis: from

01 -07 -2008 to 17 -04 -2009’ , fontsize =28)

178 fig.tight_layout () # otherwise the right y-label is slightly

clipped

179 plt.show()

180

181 ##################################################

182 #TOY MODEL

183 ##################################################

184 #S - Normal

185 # Style_1

186 X, y = make_s_curve(n_samples =3000, noise =0)

187 plt.figure(figsize =(28, 16))

188 ax = plt.axes(projection=’3d’)

189 ax.scatter3D(X[:, 0], X[:, 1], X[:, 2], c=y)

190 ax.view_init (10, -60)

191 ax.set_title(’S Curve \n N Samples: 3000, Noise = 0.5’, size =30)

192 # Irregular Swiss

193 with open((’./ irregularS.npy’), ’rb’) as f:
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194 X = np.load(f)

195

196 with open((’./ irregularS_exact_parametrization.npy’),

197 ’rb’

198 ) as f:

199 y = np.load(f)

200 print(’Input pointset shape: ’, X.shape)

201 plt.figure(figsize =(28, 16))

202 ax = plt.axes(projection=’3d’)

203 ax.scatter3D(X[:, 0], X[:, 1], X[:, 2], c=y[:, 0],

204 cmap=’viridis ’, s=50, edgecolors=’k’)

205 ax.view_init (10, -60)

206 ax.set_title(’Irregular S Curve \n N Samples: 2000, Noise = 0’,

size =30)

207 a = "Irregular S Curve"

208 def residual_variance_pca(initial ,emb):

209 dist_eucl = euclidean_distances(initial)

210 dist_emb = euclidean_distances(emb)

211 residual = 1- np.corrcoef(dist_eucl ,dist_emb)**2

212 return residual

213

214 plt.figure(figsize =(15 ,10))

215 plt.plot(k,error)

216 plt.plot(k,)

217 res = residual_variance_pca(X,X_pca)

218 # Swiss Roll - scattered

219 X, y = make_swiss_roll(n_samples =3000, noise =0)

220 plt.figure(figsize =(28, 16))

221 ax = plt.axes(projection=’3d’)

222 ax.scatter3D(X[:, 0], X[:, 1], X[:, 2], c=y)

223 ax.view_init (10, -60)

224 ax.set_title(’Swiss Roll \n N Samples: 3000, Noise = 1’, size =30)

225 # PCA

226 t = time.time()

227 X_pca = PCA(n_components =2).fit_transform(X)

228 pca_time = round(time.time()-t, 4)



108 Chapter C. Code

229 plt.figure(figsize =(28, 16))

230 plt.scatter(X_pca[:, 0], X_pca[:, 1], c=y)

231 plt.title(’Projected data with PCA - {} \n time: {}s’.format(a,

232 pca_time), fontsize =28)

233 plt.figure(figsize =(28, 16))

234 plt.title(’Projected data with PCA - {} \n time: {}s’.format(a,

235 pca_time), fontsize =28)

236 plot_nearest_neighbors_graph(X_pca , y, 10)

237 plt.show()

238

239 # MDS

240 t = time.time()

241 multids = MDS(metric =(True), n_components =2, n_jobs =-1)

242 X_transformed = multids.fit_transform(X)

243 mds_time = round(time.time()-t, 2)

244 plt.figure(figsize =(28, 16))

245 plt.scatter(X_transformed [:, 0], X_transformed [:, 1],

246 c=y[:, 0], cmap=’viridis ’)

247 plt.title(’Projected data with MDS - {} \n time: {}s’.format(a,

248 mds_time), fontsize =28)

249 plt.figure(figsize =(28, 16))

250 plt.title(’Projected data with MDS - {} \n time: {}s’.format(a,

251 mds_time), fontsize =28)

252 plot_nearest_neighbors_graph(X_transformed , y, 10)

253 plt.show()

254 # ISOMAP

255 er =[]

256 for i in range (3 ,100):

257 iso = manifold.Isomap(n_neighbors=i, n_components =2,

258 neighbors_algorithm="auto", metric="

euclidean", n_jobs =-1)

259 X_iso = iso.fit_transform(X)

260 er.append(iso.reconstruction_error ())

261 #er[i]=iso.reconstruction_error ()

262

263 plt.figure(figsize =(15, 8))



109

264 plt.plot(er)

265 plt.title(’Reconstruction Error ISOMAP - Swiss Roll’, fontsize

=28)

266 plt.ylabel(’Reconstruction Error’, fontsize =15)

267 plt.xlabel(’k’, fontsize =15)

268 plt.figure(figsize =(28, 16))

269 t = time.time()

270 iso = manifold.Isomap(n_neighbors =14, n_components =2,

271 neighbors_algorithm="auto", metric="

euclidean", n_jobs =-1)

272 X_iso = iso.fit_transform(X)

273 er_14= iso.reconstruction_error ()

274 isomap_time = round(time.time()-t, 2)

275 plt.scatter(X_iso[:, 0], X_iso[:, 1], c=y, cmap=’viridis ’)

276 plt.title(’Projected data with ISOMAP - {} \n ✩k✩ = 10 \n time:

{}s’.format(a,

277 isomap_time), fontsize =28)

278 plt.figure(figsize =(28, 16))

279 plt.title(’Projected data with ISOMAP - {} \n ✩k✩ = 10 \n time:

{}s’.format(a,

280 isomap_time), fontsize =28)

281 plot_nearest_neighbors_graph(X_iso , y, 10)

282 plt.show()

283 ################ KNN - vs Reconstruction error ################

284 error = np.zeros (20)

285 k = []

286 def iso():

287 while i<10:

288 i = 6

289 iso = manifold.Isomap(n_neighbors=i, n_components =2,

neighbors_algorithm="auto", metric="euclidean", n_jobs =-1)

290 X_iso = iso.fit_transform(X)

291 error[i-6] = iso.reconstruction_error ()

292 i = i+1

293 return error

294
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295 # LLE

296 t = time.time()

297 embedding = manifold.LocallyLinearEmbedding(n_neighbors =10,

n_components =2)

298 X_transformed = embedding.fit_transform(X)

299 lle_time = round(time.time()-t, 2)

300 plt.figure(figsize =(28, 16))

301 plt.scatter(X_transformed [:, 0], X_transformed [:, 1],

302 c=y[:, 0], cmap=’viridis ’)

303 plt.title(’Projected data with LLE - {} \n ✩k✩ = 10 \n time: {}

s’.format(a,

304 lle_time), fontsize =28)

305 plt.figure(figsize =(28, 16))

306 plt.title(’Projected data with LEE - {} \n ✩k✩ = 10 \n time: {}

s’.format(a,

307 lle_time), fontsize =28)

308 plot_nearest_neighbors_graph(X_transformed , y, 10)

309 plt.show()

310 # HESSIAN

311 t = time.time()

312 embedding = manifold.LocallyLinearEmbedding(

313 n_neighbors =10, n_components =2, method=’hessian ’)

314 X_transformed = embedding.fit_transform(X)

315 hlle_time = round(time.time()-t, 2)

316 plt.figure(figsize =(28, 16))

317 plt.scatter(X_transformed [:, 0], X_transformed [:, 1],

318 c=y[:, 0], cmap=’viridis ’)

319 plt.title(’Projected data with Hessian LLE - {} \n ✩k✩ = 10 \n

time: {}s’.format(a,

320 hlle_time), fontsize =28)

321 plt.figure(figsize =(28, 16))

322 plt.title(’Projected data with Hessian LEE - {} \n ✩k✩ = 10 \n

time: {}s’.format(a,

323 hlle_time), fontsize =28)

324 plot_nearest_neighbors_graph(X_transformed , y, 10)

325 plt.show()
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326 # LTSA

327 t = time.time()

328 embedding = manifold.LocallyLinearEmbedding(

329 n_neighbors =10, n_components =2, method=’ltsa’)

330 X_transformed = embedding.fit_transform(X)

331 ltsa_time = round(time.time()-t, 2)

332 plt.figure(figsize =(28, 16))

333 plt.scatter(X_transformed [:, 0], X_transformed [:, 1],

334 c=y[:, 0], cmap=’viridis ’)

335 plt.title(’Projected data with LTSA - {} \n ✩k✩ = 10 \n time:

{}s’.format(a,

336 ltsa_time), fontsize =28)

337 plt.figure(figsize =(28, 16))

338 plt.title(’Projected data with LTSA - {} \n ✩k✩ = 10 \n time: {}

s’.format(a,

339 ltsa_time), fontsize =28)

340 plot_nearest_neighbors_graph(X_transformed , y, 10)

341 plt.show()

342 # Modified

343 t = time.time()

344 embedding = manifold.LocallyLinearEmbedding(

345 n_neighbors =10, n_components =2, method=’modified ’)

346 X_transformed = embedding.fit_transform(X)

347 mlle_time = round(time.time()-t, 2)

348 plt.figure(figsize =(28, 16))

349 plt.scatter(X_transformed [:, 0], X_transformed [:, 1],

350 c=y[:, 0], cmap=’viridis ’)

351 plt.title(’Projected data with Modified LLE - {} \n ✩k✩ = 10 \n

time: {}s’.format(a,

352 mlle_time), fontsize =28)

353 plt.figure(figsize =(28, 16))

354 plt.title(’Projected data with Modified LLE - {} \n ✩k✩ = 10 \n

time: {}s’.format(a,

355 mlle_time), fontsize =28)

356 plot_nearest_neighbors_graph(X_transformed , y, 10)

357 plt.show()
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358 ###############################################

359 plt.figure(figsize =(18, 10))

360 plot_nearest_neighbors_graph(X_iso , y, 10)

361 # Swiss Roll - Hole

362 X, y = make_swiss_roll_with_hole(n_samples =3000, noise =0)

363 plt.figure(figsize =(28, 16))

364 ax = plt.axes(projection=’3d’)

365 ax.scatter3D(X[:, 0], X[:, 1], X[:, 2], c=y)

366 ax.view_init (10, -60)

367 ax.set_title(’Swiss Roll’, size =30)

368 ax.set_title(’Swiss Roll with Hole \n N Samples: 3000, Noise = 1’

, size =30)

369

370 # Swiss Roll - Continuous

371

372 # Sphere

373 X, y = make_sphere_dataset(n_samples =3000, severed_poles=True)

374 plt.figure(figsize =(28, 16))

375 ax = plt.axes(projection=’3d’)

376 ax.scatter3D(X[:, 0], X[:, 1], X[:, 2], c=y)

377 ax.view_init (10, 20)

378 ax.set_title(’Sphere with Severed Poles \n N Samples: 3000, Noise

= 0’, size =30)

379 ########

380 X_pca = PCA(n_components =2).fit_transform(X)

381 plt.scatter(X_pca[:, 0], X_pca[:, 1], c=y)

382

383 iso = manifold.Isomap(n_neighbors =25, n_components =2,

384 neighbors_algorithm="auto", metric="

euclidean")

385 X_iso = iso.fit_transform(X)

386 iso_3 = manifold.Isomap(n_neighbors =15, n_components =2)

387 X_iso_3 = iso_3.fit_transform(X)

388 plt.figure(figsize =(25, 20))

389 plt.scatter(X_iso[:, 0], X_iso[:, 1], c=y)

390 plot_nearest_neighbors_graph(X_pca , y, 10)
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391

392 #PLOT THE NN ON EMBEDDING SURFACE

393 def plot_nearest_neighbors_graph(X_iso , y, k):

394 nbrs = NearestNeighbors(n_neighbors =10, algorithm=’ball_tree ’

).fit(X)

395 #e = nbrs.kneighbors_graph(X).toarray ()

396 e = kneighbors_graph(X_iso , k, mode=’distance ’, include_self=

False)

397 g = nx.Graph(e)

398 del e

399 pos = {n: location [:2] for n, location in enumerate(X_iso)}

400

401 nx.draw(g, pos=pos , node_size =60, alpha=.5, node_color=y,

402 width =0.8, with_labels=False)

403 ax.set_title(’Swiss Roll’, size =100)

404 plt.show()

Listing C.1: Python Code
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