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Abstract

Bike sharing systems have emerged as a cornerstone of urban mobility in smart cities,
offering numerous benefits including enhanced convenience, reduced traffic congestion,

lower emissions, and improved public health. These systems also present unique
opportunities for optimization through advanced data analytics, given the voluminous
data they generate. This thesis presents an innovative approach to predicting bike sharing
demand in London, a city with a substantial bike sharing infrastructure encompassing over
788 bike sharing stations, and over 10 million yearly bike trips. Leveraging sophisticated
machine learning architectures, such as XGBoost (eXtreme Gradient Boosting) models,
this research aims to accurately forecast demand patterns. By integrating comprehensive
weather data and historical usage patterns, the study develops a predictive framework with
a Mean Absolute Error of less than 2 that not only enhances the efficiency of bike sharing
services but also contributes to the broader goals of urban sustainability and mobility. The
methodologies and findings of this work hold significant implications for urban planners,
policy makers, and bike sharing operators, offering a data-driven foundation for optimizing
the deployment and management of bike sharing systems in London and other smart cities

globally.
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Summary

This thesis presents a comprehensive analysis of predictive modelling for bike-sharing
systems in London, using a wide range of data sources, such as trip data, weather

conditions, and urban infrastructure metrics. The study highlights the importance of
integrating diverse datasets to improve the accuracy of bike rental demand predictions. It
emphasizes the impact of weather conditions, time variables, and station characteristics, as

demonstrated by a thorough literature review.
The study uses advanced machine learning methods, specifically XGBoost, and a custom
version of XGBoost with an asymmetric loss function to create predictive models. These
models outperform basic linear regression, demonstrating their ability to effectively handle
complex non-linear relationships. The XGBoost model achieved impressive results with a
Root Mean Squared Error (RMSE) of 3.4596 and aMean Absolute Error (MAE) of

1.6043 on the test set, indicating strong predictive accuracy and reliability. These metrics,
calculated on the original linear scale of the data following exponential

back-transformation, reflect the actual differences in predicted bike demand. The findings
suggest that weather conditions have a significant impact on bike-sharing usage, with

higher temperatures increasing demand and rainfall decreasing it. Similarly for temporal
patterns and spatial distribution of stations.

These insights provide valuable implications for urban planners and policymakers, forming
a basis to improve the efficiency and satisfaction of bike-sharing systems. Strategies

resulting from this research could involve optimizing station placement, adjusting bike
allocations, and ensuring service reliability under varying conditions.

In essence, this thesis lays a robust groundwork for advancing the operational effectiveness
of bike-sharing systems and contributing to more sustainable urban transport solutions,
supported by quantitative metrics that underscore the models’ high level of performance.
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1
Introduction

During recent years, bike-sharing systems have ascended to become a pivotal component of
urban mobility strategies in cities worldwide [1]. London, with its expansive
infrastructure featuring over 800 bike-sharing stations and facilitating more than 10
million trips, exemplifies this global trend. These systems have been proven to reduce
traffic congestion and emissions, while promoting public health and providing a flexible,
eco-friendly transportation alternative [2]. However, the large scale of growth bike sharing
systems have experienced introduces complex operational challenges, especially concerning
the optimization of bike distribution over cities and bike availability to meet volatile and
inconsistent user demand.

The essence of these challenges lies in the inherently unpredictable nature of urban
mobility. Factors such as weather, traffic patterns, urban events, and even day-to-day
variability in human behavior contribute to fluctuations in bike-sharing demand across
different parts of the city and at different times [3]. The objective of ensuring that bikes are
available where and when they’re needed, without significant overstocking or shortages,
poses a significant operational hurdle for bike-sharing operators. Moreover, the inefficiency
in bike distribution not only degrades user experience but also undermines the broader
objectives of urban sustainability and mobility that bike-sharing systems play a pivotal part
in [4].

Traditional approaches to addressing these challenges have largely been reactive or based
on simplistic predictive models that fail to capture the complexity and multidimensionality
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of the factors influencing demand.
As operational needs grow dramatically with the growth of bike sharing systems, so

does the necessity for innovative approaches that correctly exploit the wealth of data
provided by the various bike sharing systems. With IoT systems becoming an integral part
in many of the world’s smart cities, a unique opportunity is presented to harness advanced
methods in data analytics for the prediction of demand on bike sharing systems.

Machine learning emerges as a powerful tool to make solid predictions in this context.
Among the plethora of machine learning methodologies, XGBoost (eXtreme Gradient
Boosting) has been chosen to make this prediction. XGBoost’s success in various
applications, such as chronic kidney disease diagnosis [5], Gene expression value prediction
[6], and in Bankruptcy prediction [7], suggest its potential to revolutionize demand
forecasting in bike-sharing systems by accurately modelling the complex relationships
between demand and its influencing factors. By carefully selecting adept features, and
including historical usage patterns and comprehensive weather data, a predictive
framework that is both accurate and actionable has been developed. The essence of
XGBoost lies in its ability to create a highly efficient, flexible, and portable model by
sequentially combining a set of decision trees to form a strong predictive model. Each new
tree is built to correct the residual errors made by the preceding sequence of trees, with the
aim of minimizing a loss function that measures the difference between the predicted and
actual values.

This thesis contends with the multifaceted problem of optimizing bike-sharing systems
in London’s urban landscape through a data-driven approach employing XGBoost models
[8]. It aims to transcend the limitations of current forecasting methodologies by
developing a model that not only predicts demand with high accuracy but also provides
insights into the dynamics of urban mobility. Such a model could serve as a cornerstone for
dynamic rebalancing strategies, ensuring an optimal distribution of bikes across the city to
meet real-time demand. Furthermore, by enhancing the efficiency of bike-sharing services,
this research contributes to the broader goals of urban sustainability, reducing
environmental impact, and fostering a more livable, mobile, and connected city [9].

In synthesizing a solution to these challenges, this thesis investigates the influence of
various factors on bike-sharing demand. The research also examines the scalability and
flexibility of the developed model, considering its applicability to other urban settings and
its integration into the operational frameworks of bike-sharing systems. By doing so, it
endeavors to offer urban planners, policymakers, and bike-sharing operators a robust and
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data-driven foundation for enhancing the deployment, management, and strategic
planning of bike-sharing systems, not just in London, but in smart cities globally [9].
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2
Literature Survey

In order to discuss predictive modelling for bike-sharing systems objectively, it is important
to consider the various factors that affect bike rental demand. These factors include envi-
ronmental conditions, temporal patterns, and urban infrastructure characteristics. Previ-
ous research has emphasised the importance of integrating diverse datasets, such as weather
conditions, time variables, and urban mobility metrics, to develop accurate predictive mod-
els. This statement introduces the examination of studies that explore the relationship
between bike-sharing demand and critical influencers.

A statistical model for predicting the quantity of bikes hired every hour has been cre-
ated for Lyon’s Vèlo’V bike sharing systems [10]. The model included some factors like the
quantity of subscribers, the time information during the week, strikes and holidays, as well
as rain and temperature data. The weather data associated with each bike trip, however,
was taken at a daily frequency. The average temperature over the day was used, instead
of the temperature data at the time of the start of the bike trip. A similar situation avails
regarding the precipitation data, as total rain volume for the entire day was utilized. The
event of rain typically lasts for a few hours, sometimes minutes, and it is not a feature that
would affect user behavior after the time of its termination, similarly to temperature which
seems to also fluctuate drastically frommorning to evening, especially throughout winter
and spring seasons [11]. This study did not evaluate the possible use of machine learning
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algorithms, and uses a rather miniature dataset, generated from 4000 bicycles and 334 sta-
tions.

The trip generation and trip attraction models from the city of Toronto revealed that
bike ridership was positively correlated with higher temperatures, lower humidity levels,
and lower amounts of ground snow. The thesis also emphasized the significance of station
capacity and station-to-station proximity in providing sufficient bicycles for trip generation
and docking spaces for trip attraction [12].

The investigation conducted in Daejeon also found similar results using clustering anal-
ysis to identify how weather affects groups of stations with similar properties. The study
concluded that high temperature and humidity have a negative correlation with the daily
demand for bicycles. A system-level examination was also conducted, which showed that
certain variables had significant impacts at various times of the day. Specifically, temper-
ature, rainfall, and whether it was a workday affected the rental bike demand at specific
times [13].

In the analysis carried out by Aalborg University, k-means clustering is introduced to
cluster stations based on the shape of their average daily traffic patterns. Stations were
found to have different types of traffic patterns, which were then related to external spatial
factors using a logistic regression model. The proposed model was able to predict demand
with a Mean Absolute Error of 36.4 for the city of London and anMAE of 17.7 for Wash-
ington D.C. instead [14]. The thesis however did not indulge into any further modelling
attempts.

The study by the University of Adana [15] highlights the significant role of environ-
mental conditions, urban infrastructure, and socio-demographic characteristics in shaping
the usage patterns of bike-sharing systems. The study integrates these variables to provide
a holistic view of the dynamics influencing bike-sharing systems, suggesting that a multi-
faceted approach is essential for optimizing these systems for increased urban mobility and
sustainability.

The survey carried out by Beijing University [16] explored the use of advanced machine
learning techniques, specifically neural networks, to predict bike sharing usage. XGBoost
is used as a baseline by many of the papers cited. The thesis also discusses the challenges
associated with predictive modelling in this domain, including the integration of tempo-
ral and spatial data variations and the need for real-time prediction capabilities to adapt to
rapid changes in user demand. Future directions highlighted in the thesis suggest a deeper
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exploration of hybrid models that combine XGBoost with other deep learning architec-
tures to improve predictive performance and adaptability in predicting bike sharing usage.

XGBoost was put to the test against a Deep Neural Network by the University of West
Attica [17]. In the thesis, XGBoost displayed better accuracy results compared to the
DNN, scoring better on both the learning rate and the prediction accuracy. Although
these results are case specific, they highlight the possibility of using XGBoost as a reliable
benchmark for forecasting models.

The selection of an XGBoost model over a deep learning approach for demand fore-
casting in bike-sharing services is advantageous for several reasons. Firstly, XGBoost is gen-
erally simpler to implement and can be faster to train compared to deep learning models.
This is due to the fact that deep learning models often require large amounts of data to
perform well and avoid overfitting. Secondly, XGBoost is more interpretable than deep
learning models, where the contribution of each feature given to the model can be param-
eterised. This is crucial for business decisions and understanding demand dynamics in
bike-sharing.

The decision trees, which constitute the base learners in XGBoost, provide a clear visu-
alisation of the manner in which decisions are made [18], thereby facilitating the commu-
nication of results to stakeholders or decision makers. XGBoost frequently performs excep-
tionally well on structured, tabular data [8], which is a common format for historical bike-
sharing usage data that includes features such as time of day, day of the week, weather con-
ditions, and location. In contrast, deep learning models are particularly adept at handling
data with complex, interrelated structures, such as image and speech recognition. XGBoost
is well-suited to handle sparse data [8], which is often encountered in bike-sharing systems,
where many time slots may have low or no demand. All while allowing for extensive cus-
tomization of the model training process, including the optimization objective and the
evaluation metric.

This approach differs frommany existing studies, which predominantly employ simpler
statistical models that are unable to comprehensively capture these complex interactions.
Unlike some of the existing literature, which often limits analysis to basic correlations and
linear regressions, this work integrates a wider range of predictive variables in a non-linear
modelling context, allowing for more accurate and actionable insights, which are crucial
for real-time decision-making in bike-sharing management and improvement.
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3
Data Pre-Processing

3.1 London: Data Selection and Integration

The city of London was selected based on both the size and maturity of its bike share sys-
tems and the availability of other data used in the analysis. The bike sharing data is pub-
lished on Transport For London (TfL) [19] cycling data portal [20]. The data has been
provided in chunks of 2 weeks each, starting from the 28th of December, 2016 till the 2nd
of January 2018. The excess data was dropped for homogeneity. The data, provided in
Comma Seperated Value - CSV format - was then combined into one large dataframe, us-
ing the python Pandas library for ease of manipulation and formatting. Some other dis-
crepancies were found in the data, specifically in the Trip Start Date data formatting for
the months of September and October.

In addition to bike share trip data, we have collected other types of data that are not
directly related to bike share systems. These types of data include geographic locations of
bike share stations across the city, as well as weather data provided by Open-Meteo [21]. As
these types of data are external to the bike share system.

In this project, we use data sets from 2017, as this is a recent year with normal opera-
tions prior to the COVID-19 pandemic, which also provides data completeness through-
out the year. Data from the year 2019 and onwards is largely affected by the effects of the
COVID-19 virus and various mobility restrictions imposed on the city. The datasets used
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Figure 3.1: Interactive Map of London Bike Sharing Stations: Opacity‐Coded Visualization Based on Bike Capacity

contain data on each individual journey made on the system, including journey duration,
time of departure from the start station, start station ID, start station name, time of arrival
at the end station, end station ID and end station name. The station locations were not
initially provided in the dataset, but were obtained from TFL [22], who have a live ”Cycle
Hire Updates” feed, which lists information for each cycle hire station, updated approxi-
mately every minute. The live data was not exploited - instead only the name, ID, latitude,
longitude and capacity for each cycle hire station was taken. We assume that the changes
to station location and capacity over this time frame were relatively small in terms of the
overall ridership of the bike share systems.

3.2 Bike-sharing Station Capacity andDemand Analysis

The locations of the stations were plotted using the Folium library in Python [23] and
opacity was coded based on station capacity, as shown in Figure 3.1. The plot is interactive,
showing the station name, district, and capacity when hovered over with the cursor. The
interactive version can be found in the GitHub repository for this project [24].

Each station in the system was then assigned a specific service area. These service areas
are determined using a Voronoi tessellation for each station location and within the de-
fined boundary to prevent Voronoi polygons from being unnecessarily large, especially for
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stations on the outer edges of the city centre [25]. Three different choropleth maps were
created to showcase 3 metrics: Daily Journey Count per Station Capacity, Median Journey
Duration, and Total Yearly Trips. For the sake of simplicity, the daily journey count was
calculated by taking the total yearly trips for each station, then taking the average over 365
days. This plot is also interactive, and displays the exact numbers for each metric. Table 3.1
summarizes the Minimum andMaximum values for each metric measured from the plots.

Metric
Minimum Maximum

Station Name Value Station Name Value

Yearly Journey Count Grant Road Central, Clapham Junction 878 Belgrove Street , King’s Cross 97362
Daily Journey Count Grant Road Central, Clapham Junction 2.41 Belgrove Street , King’s Cross 266.75

Median Duration [Minutes] Barons Court Station, West Kensington 6.0 Hyde Park Corner, Hyde Park 28.0
Journey Count per Capacity Castalia Square, Cubitt Town 0.1 Hyde Park Corner, Hyde Park 8.6

Table 3.1: Summary of Journey Metrics by Minimum and Maximum Values

The Hyde Park station seems to dominate in terms of total bike share volume, which
may indicate a need to expand its overall capacity or even introduce a new station in the
area. As this station is very close to Hyde Park, we can assume that the reason for this vol-
ume of trips is leisure. Although Hyde Park station also dominates the median duration
metric, we can clearly see a trend in the stations located on the outskirts of the city centre.
This suggests that people who cycle from the outskirts of the city are likely to end up com-
muting into the city center, hence the longer journey times. The metric Journeys per Sta-
tion Capacity gives a strong indication of where more bikes could be introduced into the
system. The southern part of the borough of Tower Hamlets clearly shows a lower number
of trips per capacity compared toWestminster.

In contrast to other similar projects, data from stations with low daily traffic were not
removed from the system. This was done to ensure that the model would still be robust to
different types of station.
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Figure 3.2: Distribution of Daily Bike Share Journeys Relative to Station Capacity Across London

Figure 3.3: Median Duration of Bike Share Journeys in London
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Figure 3.4: Annual Bike Share Usage: Total Yearly Trips by Station in London

3.3 Data Integration and Feature Engineering

The weather data used with the cycling trip data was obtained using the Open-Meteo API.
The data was provided as 8760 entries, each corresponding to every hour of the year 2017,
and included the parameters in table 3.2

As the data provided by TFL has each cycle trip recorded in the system as a separate
row, the data has been grouped by Start Station Id and Start Station Date. The dataset had
10379323 rows and 10 columns before grouping. The grouped dataset was then merged
with that of the weather data to form the complete dataset used to train the machine learn-
ing models. Some other parameters were then added to the model to further broaden the
content of the dataframe and allow the model to better learn the patterns of the many bike
share stations, resulting in a dataframe of shape: 3256360 rows and 24 columns. Such data
is listed in table 3.3
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Data Description
temperature_2m (°C) Air temperature at 2 meters above ground
relative_humidity_2m (%) Relative humidity at 2 meters above ground
apparent_temperature (°C) Perceived feels-like temperature combining various factors
precipitation (mm) Total precipitation (rain, showers, snow) sum of the preceding hour
rain (mm) Rain from large scale weather systems of the preceding hour
snowfall (cm) Snowfall amount of the preceding hour in centimeters
weather_code (WMO code) Numeric code representing weather condition (WMO code)
cloud_cover (%) Total cloud cover as an area fraction
wind_speed_100m (km/h) Wind speed at 100 meters above ground

Table 3.2: Summary of Weather Parameters

Table 3.3: Summary of Added Dataframe Columns

Column Description

count_log Logarithm of the count, used to normalize skewed data
is_holiday Indicator (0 or 1) for whether the day is a public holiday
is_weekend Indicator (0 or 1) for whether the day is part of the weekend
month Month of the year (1-12)
day Day of the month
hour Hour of the day (0-23)
hour_sin Sine transformation of the hour to capture cyclical nature in daily data
hour_cos Cosine transformation of the hour to capture cyclical nature in daily data
month_sin Sine transformation of the month to capture cyclical nature in annual data
month_cos Cosine transformation of the month to capture cyclical nature in annual data
is_night Indicator (0 or 1) for whether it is nighttime

3.4 Bike-Sharing Trends AcrossWorkdays, Weekends, andHolidays

One striking feature of figure 3.5 is the pronounced peak hours on weekdays, which are
likely to correspond to typical commuting times, possibly indicating a significant reliance
on bike sharing for transport to and from work. In contrast, the pattern on weekends and
holidays suggests a more leisurely use of the service, with a broader distribution of bike
shares throughout the day. Furthermore, there is a noticeable shift in the timing of peak
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usage during weekends and holidays, generally later in the day, which may reflect a more
relaxed pace of life on non-working days. In addition, the average number of cycle trips
on holidays tends to be slightly higher than on weekdays and weekends, suggesting a ten-
dency towards leisure activities on off days. Furthermore, the evening peak on weekdays
is quite pronounced compared to the relatively moderate increase during the same hours
on weekends and holidays. This observation may suggest that evening leisure use does not
compensate for the decrease in commuting on non-working days.

Figure 3.5: Comparative Analysis of Average Bike Shares by Hour on Workdays, Weekends, and Holidays

3.5 Dataset Variable Correlations

The main findings of figure 3.6 include the presence of strong positive correlations be-
tween the temperature variables (real_temp, feel_temp) and the number of bike trips (cnt),
indicating that warmer conditions are conducive to higher cycle use. There is a noticeable
negative correlation between rainfall variables (rain, precipitation) and the number of bike-
share users, highlighting the negative impact of rainfall on bike-share demand. Tempo-
ral factors such as time of day also show significant correlations, reflecting usage patterns
linked to daily human activities.

XGBoost is an excellent choice for this study as it is very effective at handling the non-
linear relationships and interactions shown in the figures 3.5 & 3.6 results. This machine
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learning algorithm excels in scenarios where both the strength and direction of variable re-
lationships are critical. XGBoost’s ability to handle model complexity and regularisation
helps prevent overfitting, which is critical given the varying influences of weather and tem-
poral factors on bike share demand. In addition, XGBoost’s feature importance scores can
provide deeper insight into which variables are most important in influencing bike share
usage, allowing the algorithm to be further refined based on empirical evidence. XGBoost
also implements tree-based learning algorithms, which are inherently good at capturing in-
teractions between features. This is particularly useful in this case where the model needs
to generalise well across different weather conditions, as well as a varying demand patterns
throughout different parts of the weeks.

Another notable advantage of XGBoost is its efficiency in terms of computational re-
sources [8]. Unlike more computationally intensive models such as deep neural networks,
XGBoost is relatively lightweight, requiring less processing power and memory. This char-
acteristic makes it especially suitable for scenarios where rapid model training and valida-
tion are beneficial. The speed of XGBoost does not compromise its performance, making
it an excellent choice for iterative testing and real-time data analysis. Furthermore, the sim-
plicity of deployment and the lesser need for high-performance hardware render XGBoost
particularly attractive for practical applications where budget or hardware capabilities are
constrained [26]. This ability to operate efficiently on limited resources, coupled with its
robust performance, underscores its applicability in dynamic and resource-sensitive envi-
ronments.
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Figure 3.6: Comprehensive Correlation Heatmap of Bike‐Sharing Variables
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4
XGBoost Modelling and Results

The choice of models was based on their ability to handle regression tasks. Linear regres-
sion was chosen for its simplicity and interpretability. XGBoost was chosen for its ro-
bustness and efficiency in dealing with large datasets and complex feature spaces [8]. The
Asymmetric XGBoost model was included specifically to investigate the effects of an asym-
metric loss function, where over- and under-predictions are penalized differently, reflecting
their different impacts on the business context of bike sharing schemes.

The evaluation of the models showed clear differences in performance. Linear regres-
sion served as a baseline, providing a benchmark while being rather fast and simple to im-
plement. XGBoost improved on this baseline by handling non-linear relationships more
effectively, with a Root Mean Squared Logarithmic Error (RMSLE) of 0.485 compared to
RMSLE of 0.5494 for the Linear Regression. The Asymmetric XGBoost, with its custom
loss function, scored a RMSLE of 0.7318. Although its RMSLE was worse than that of
the Linear Regression, it still provided a useful insight into how different penalties for over-
and under-prediction could affect model performance. The results from figure 4.1 show
that XGBoost is the dominant model for default settings.

In addition to training with the default settings, the models were then tuned and eval-
uated with the test set. The Grid Search Cross-Validation - GridSearchCV - function was
performed on these 3 algorithms. GridSearchCV is a method for tuning the parameters of
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Figure 4.1: Comparative Analysis of Machine Learning Model Accuracy by RMSLE

a model to find its best possible configuration. It tests all combinations of the given hyper-
parameters to find the combination that produces the best model performance, based on a
specific evaluation metric, which in this research is the Root Mean Squared Error - RMSE.

RMSE =

√∑N
i=1 ∥y(i)− ŷ(i)∥2

N
,

A custom scoring function is implemented - root mean squared logarithmic error - RM-
SLE. The Root Mean Squared Logarithmic Error (RMSLE) is defined by modifying Scikit-
Learn’s [27] mean_squared_log_error function, which is itself a modification of the famil-
iar Mean Squared Error (MSE) metric.

RMSLE =

√√√√ 1

n

n∑
i=1

(log(pi + 1)− log(ai + 1))2

Where:
n is the total number of observations in the dataset
pi is the prediction of the target
ai is the actual target for i.

20



The RMSLEmetric is chosen because the dataset contains both very large and very
small values. With this metric, any outliers will have a smaller effect on the scoring and the
predictions are evaluated with percentage error. Another effect of this metric is that it adds
an extra slight penalty to underestimates.

TimeSeriesSplit was used to split the data. TSS is a type of cross-validation specifically
designed for time series data. Unlike standard cross-validation methods, which randomly
shuffle the data, TimeSeriesSplit preserves the temporal order of the observations. This
is crucial for time series analysis because the prediction for a given time may depend on
previous times, making random shuffling and splitting inappropriate.

For each combination of parameters given to GridSearchCV, the model is trained and
validated five times, each time using a different segment of the data as described in the
TimeSeriesSplit approach. This ensures that the sequential nature of the data is respected,
which is crucial for time series forecasting to avoid lookahead bias. Lookahead bias in ma-
chine learning occurs when a model unintentionally incorporates information that would
not have been available at the time of prediction in a real-world scenario. [28]

To save time on future use of the algorithms, the best estimators are exported to indi-
vidual files using the Python Pickle package. The cross validation results were also saved to
CSV files.

4.1 Cross Validation Analysis

Table 4.1 shows the top 3 hyperparameter combinations, their RMSLE score and training
time of every algorithm. The analysis shows that Asymmetrical XGB exhibits slightly more
variation in performance than standard XGBoost, particularly as the number of estima-
tors decreases. This might indicate a higher sensitivity of Asymmetrical XGB to changes in
model complexity. The RMSLE values are consistently higher for Asymmetrical XGBoost,
which suggests that when errors occur, they are more significant. The table illustrates a
trade-off between achieving higher accuracy and maintaining consistency in performance
across different configurations. Asymmetrical XGBoost shows potential benefits in han-
dling specific data characteristics, but at the cost of increased error magnitudes when pre-
dictions are inaccurate.
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Figure 4.2: Comparison of Prediction Accuracy between XGBoost and AsymXGBoost Models Using RMSLE

Rank Learning Rate Max Depth N Estimators
Mean Fit Time Mean Test Score Std Test Score RMSLE

Asym XGB XGB AsymXGB XGB AsymXGB XGB AsymXGB XGB

1 0.1 10 1200 704.83 163.97 -0.6546 -0.4901 0.0466 0.0140 0.581 0.465
2 0.1 10 1000 589.87 190.09 -0.6569 -0.4911 0.0488 0.0134 0.632 0.485
3 0.1 10 700 416.69 133.24 -0.6634 -0.4915 0.0500 0.0143 0.648 0.505

Table 4.1: Cross‐validation Results for the top 3 Ranked Models

4.2 Comparative Analysis ofModel Generalization and Robustness

By analyzing the results from table 4.2 we immediately notice that for the XGBRegres-
sor model, the root mean square error (RMSE) decreased from 3.71 on the training set
to 3.45 on the testing set. Furthermore, for the Asymmetric XGBRegressor, the RMSE
decreased from 4.67 to 4.21. These results suggest that both models are capable of gener-
alizing beyond the training data. However, the reduction is more significant in the case of
XGBRegressor. This reinforces its effectiveness and robustness as a predictive tool. This
demonstrates that while Asymmetric XGBRegressor might be specialized for certain types
of datasets, XGBRegressor provides more stable and reliable predictions across different
datasets, making it a preferable choice in scenarios where robustness and reliability are criti-
cal.
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Figure 4.3: Comparison of Variable Importance for XGBRegressor vs Asymmetrical XGBRegressor

Metric
XGBRegressor Asymmetric XGBRegressor

Train Set Test Set Train Set Test Set

Root Mean Squared Error 3.7177 3.4596 4.6753 4.2119
Mean Absolute Error 1.7204 1.6043 2.1199 1.9128

R2 Coefficient of Determination 0.2662 0.2289 -0.1604 -0.1429
RMSLE 0.4618 0.4606 0.7056 0.6557

Table 4.2: Comprehensive Model Performance Evaluation for Training and Testing Sets

4.3 Predictive Performance Assessment

Both models show admirable predictive efficiency, particularly in areas where data points
are densely packed. This reflects a strong alignment with the underlying patterns for a sig-
nificant proportion of the dataset, which is a positive indication of the models’ effective-
ness in these regions. Although the predictions do not always match the true values, they
show an impressive range, suggesting that the models are robust to different scenarios.

Despite the seemingly lower accuracy of the Asymmetric XGBoost model in terms of
the metrics presented in Table 4.2, it may still be valuable in practical applications. For
example, a bike-sharing company may prefer a model that slightly overestimates demand to
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ensure sufficient supply, rather than underestimating it, which could result in a shortage of
bikes and lost revenue. The Asymmetric XGBoost model has a mean absolute error (MAE)
of 1.91, indicating that its overestimation falls within an acceptable range for this context.
Being off by approximately two bikes, it is likely a tolerable error margin for operational
planning. An evaluation of this nature is crucial in determining the appropriate model
for deployment in a real-world scenario. It highlights the significance of aligning model
selection with strategic objectives and operational tolerances.

By examining figures 4.4 & 4.5 we see a large discrepancy between the ground truth val-
ues and the predicted values by the models. Given that the test set comprises nearly one
million entries, such disparities raise concerns regarding the model’s accuracy. To further
investigate, a focused analysis on a smaller subset of 800 entries was conducted to deter-
mine whether the observed discrepancies were outliers or indicative of a broader issue. The
analysis of these additional plots reveals that the model generally predicts values accurately.
This is evidenced by the more aligned peaks and troughs between the true and predicted
values in the smaller subset. TheMean Absolute Error (MAE) of 1.6, observed across the
larger dataset, appears justified based on this targeted examination.

Furthermore, D’Agostino’s K2̂ Test was performed to check the nature of the distribu-
tion of residuals [29]. By observing plots in figure 4.8, the distribution of the residuals ap-
pears to be Gaussian. However, D’Agostino’s test fails and the hypothesis is rejected with a
p-value of 0.

The scatter plot of predicted values versus residuals shows a pattern where the residu-
als appear to fan out as the predicted values increase. This pattern could indicate that the
variance of the residuals is not constant, otherwise known as heteroscedasticity [30]. The
histogram of the residuals suggests a distribution with a slight right skew, as indicated by a
skewness of 0.4747. The peak is close to zero and most of the data seem to cluster around
the mean residual, which is zero. The kurtosis [31] is 0.47, indicating a distribution that is
slightly flatter than normal, but not extremely so. The Q-Q plot shows that the quantiles
of the residuals deviate from the theoretical normal distribution in the tails. Specifically,
the upper tail is heavier, indicating the presence of outliers that are higher than what a nor-
mal distribution would predict [32].

There appear to be more pronounced outliers for the asymmetric model. The his-
togram for these residuals has a more pronounced peak and a stronger right skew, with a
skewness value of 0.8821, and a higher kurtosis of 1.12, which indicates a more peaked dis-
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tribution with heavier tails when compared to the XGBoost.
In general, these plots show that while the model has an average residual close to zero

and a reasonable standard deviation, there are signs of non-normality in the residuals’ dis-
tribution, particularly with right skewness and heavy tails. These findings suggest that
while the model may predict the average trend well, as indicated by a lowMAE, there are
systematic patterns in the prediction errors that could potentially be improved upon.

Figure 4.4: True vs Predicted Values with XGBoost Model

Figure 4.5: True vs Predicted Values with Asymmetric XGBoost Model
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Figure 4.6: XGBoost Linear Prediction Error over 800 Samples

Figure 4.7: Asymmetric XGBoost Linear Prediction Error over 800 Samples
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Figure 4.8: Comparative Residual Analysis for XGBoost and AsymXGBoost Models
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5
Conclusion

This thesis has presented a comprehensive investigation into predictive modelling for bike-
sharing systems, with a particular focus on the bike-sharing infrastructure in London. The
research utilised a range of data sources, including trip data, weather conditions and urban
infrastructure metrics, to develop robust predictive models using advanced machine learn-
ing techniques such as XGBoost and custom XGBoost with an asymmetric loss function.

The literature review highlighted the importance of integrating different datasets to ac-
curately predict bike rental demand, highlighting factors such as weather conditions, time
variables and station characteristics. This was supported by the data pre-processing and
analysis phases, which showed that factors such as temperature and rainfall have a signifi-
cant impact on bike-sharing usage patterns.

The models developed during this research demonstrated that XGBoost provided su-
perior predictive accuracy over linear regression, effectively handling complex non-linear
relationships. The Asymmetric XGBoost model introduced a novel approach by incorpo-
rating an asymmetric loss function, which proved particularly insightful in understanding
the different effects of over- and under-prediction in a bike-sharing context.
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5.1 Key findings from the modelling efforts

1. Weather conditions play a critical role, with higher temperatures increasing bike
rental demand and rainfall decreasing it.

2. Temporal patterns, such as time of day and whether a day is a working day, weekend
or holiday, have a significant impact on demand.

3. The spatial distribution of stations and their capacity are critical to balancing supply
and demand across the network.

The practical implications of these findings are significant for urban planners and pol-
icy makers seeking to improve the efficiency and user satisfaction of bike sharing systems.
By understanding the key factors influencing demand, strategies can be developed to opti-
mize station placement, adjust bike allocation and improve overall service reliability under
different weather conditions and times of day.

5.2 Future research directions

Future studies could extend this work by exploring the integration of a larger quantity of
data, or even more granular weather data, allowing for dynamic adjustments in bike shar-
ing operations. Additionally, experimenting with other forms of asymmetric penalty func-
tions could yield improvements in model performance tailored to specific business needs.
Further research could examine the long-term effects of urban development and changes
in public transport infrastructure on bike-sharing patterns. Finally, exploring machine
learning models that incorporate predictions of user behaviour based on demographic and
psychographic data could provide deeper insights into demand fluctuations and user pref-
erences in bike-sharing systems.

In conclusion, this thesis provides valuable insights into the dynamics of bike-sharing
systems and lays a solid foundation for further research that could lead to more sustainable
and user-friendly urban transport solutions.
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