
UNIVERSITÀ DEGLI STUDI DI PADOVA

Dipartimento di Fisica e Astronomia “Galileo Galilei”

Master Degree in Physics

Final Dissertation

Quantum droplets and bright solitons in mixtures of

Bose-Einstein condensates

Thesis supervisor Candidate

Prof. Francesco Ancilotto Elena Poli

Academic Year 2019/2020





Acknowledgements

I sincerely thank Prof. Ancilotto for his guidance, his constant support and the time he
spent helping me.

I would like to thank my parents and my brother for having always encouraged me to
follow my own path and for always believing in me.

Thanks to Michele for always being by my side.

iii



iv



Contents

Introduction 1

1 Self-bound states in binary mixtures of Bose-Einstein condensates 3

1.1 Bose-Einstein condensation . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Ultracold and ultradilute interacting bosons . . . . . . . . . . . . . . . . . . 6

1.3 Feshbach resonances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Bosonic binary mixture within the DFT formalism . . . . . . . . . . . . . . 10

1.5 Beyond mean field correction: the Lee-Huang-Yang term and the self-bound
droplet formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Bosonic binary mixture: the homogeneous system 17

2.1 The equation of state of a self-bound mixture . . . . . . . . . . . . . . . . . 17

2.2 Compressibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Surface properties of a self-bound droplet 23

3.1 Variational approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Numerical method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Ground state solution of the two coupled Gross-Pitaevskii equations . . . . 32

3.4 The critical number of particles for droplet stability . . . . . . . . . . . . . 36

4 The liquid-drop model 41

4.1 The total energy model for a liquid droplet . . . . . . . . . . . . . . . . . . 41

4.2 The Tolman length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 The surface tension correction . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 Bright solitons in mixtures of Bose-Einstein condensates 53

5.1 The bright soliton state in a BEC . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2 Variational study of the soliton-droplet transition in a 41K - 87Rb mixture
in an optical waveguide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.3 Real time evolution of the soliton state . . . . . . . . . . . . . . . . . . . . . 66

Conclusions 71

Appendices 73

A Derivation of the bright soliton’s analytical solution 75

v



B Total energy expression for a mixture of BECs in a quasi-1D configura-

tion 77

Bibliography 81

vi



Introduction

In nature, liquid droplets reveal the equilibrium between mutual attractive and repulsive
forces between atoms or molecules. The formation of such self-bound states is known
to belong to the liquid phase of conventional condensed matter, with typical densities of
the order of 1022 atoms/cm3. However, recently the realization of a stable, self-bound
quantum droplet has been achieved on an unexpected density regime. The prediction of
this state was made by D.S. Petrov [1]: the origin of the self-bound droplet comes from
the interplay of repulsive and attractive interaction between atoms in a mixture of Bose-
Einstein condensates (BEC).
The basic theory of Bose-Einstein condensation was predicted by Satyendra Nath Bose
and Albert Einstein in 1924 [2]. Basically, a BEC is a direct consequence of the quantum
statistics of indistinguishable particles with integer spin, called bosons. Einstein proposed
that cooling a gas system made of bosonic atoms at a very low temperatures would lead
to a new state of matter characterized by the macroscopic occupation of the ground state
[3]. In 1938, F. London had the intuition that the BEC was the mechanism at the basis of
the superfluidity phenomenon in liquid helium [4] and, since then, numerous theoretical
studies were developed to better understand the relationship between condensation and
superfluidity. Despite its prediction in the early 1920s, it took some decades before the
condensation of bosonic gases was eventually experimentally observed. Most of the the-
ories in Bose-Einstein condensation, in fact, implies the condition of weakly interacting
atoms and this can be satisfied only in ultradilute and ultracold systems. Only in 1980s
new techniques like laser cooling and magneto-optical trapping were developed to cool and
trap neutral atoms and, eventually, in 1995 the experimental group of Eric Cornell and
Carl Wieman at the University of Colorado at Boulder and the one of Wolfgang Ketterle
at MIT managed to reach the proper conditions and observe a BEC in atomic vapours
of 87Rb [5] and 23Na [6], respectively. For the experimental achievement of Bose-Einstein
condensation in dilute gases of alkali atoms and for early fundamental studies of the prop-
erties of the condensates Cornell, Ketterle and Wieman won the Nobel prize in 2001.
After this discovery, a new chapter in condensed matter physics began and the interest to-
wards ultracold atoms increased in the theoretical and experimental research community.
The purpose of this work is to study a system made of a binary mixture of Bose-Einstein
condensates, where the realization of the new liquid phase predicted by D.S. Petrov takes
place. A mixture can be composed of atoms of the same species in different spin states,
different isotopes or different atoms. In this kind of system, the high tunability of the
interparticle interaction among atoms of the same or different species and the beyond
mean field physics play a crucial role for the stability of a self-bound state, opening the
possibility to create liquid droplets in the contest of ultracold gases but with an extremely
low density compared to any other existing liquids.
Recently, the homonuclear mixture composed by a spin mixture of 39K were studied and
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observed in free space [7] and in presence of an external potential [8, 9]. In the latter case,
by using an optical waveguide, which leads to a dimensionality reduction of the system
into a quasi-1D configuration, the crossover between a self-bound quantum droplet and
the bright soliton state was studied, stressing the connection between these two localized
states of different nature [10]. However, 39K homonuclear mixtures lead to the formation
of short-lived droplets: they evaporate after few milliseconds (∼ 8 ms) because of the loss
due to the three-body recombination phenomenon [7].
In this work, we will study a binary heteronuclear Bose-Bose mixture made of 41K-87Rb:
the main motivation of this choice just comes from the longer droplet lifetime due to a
lower three-body recombination rate of the system, as proved experimentally by recent
works [11]. This mixture leads to the droplet formation in free space with a lifetime around
∼ 28 ms, about three times longer than the measured lifetime of 39K droplets. This crucial
difference between dissipation processes in the two mixtures is related to the density of the
two self-bound states: experimentally, 41K-87Rb droplets are more dilute than 39K ones
and, since the finite lifetime τlife depends on the total density ρ according to τlife ∼ ρ−2 [1],
the longer lifetime is explained. The main consequence is that this mixture could allow
for a deeper experimental investigation of this new phase transition.
The chapter organization is reported below.
In chapter 1, we review the main properties of the Bose-Einstein condensates of non-
interacting bosons and the description at mean-field level of a system of indistinguishable
interacting bosons at zero temperature, focusing on the experimental tools that allow to
tune the interaction strength. The bosonic binary mixture made of 41K-87Rb is presented
and a simple model to predict the self-bound droplet formation is discussed, highlighting
the fundamental role of quantum fluctuations embodied in the Lee-Huang-Yang energy
contribution.
In chapter 2, the properties of the homogeneous mixture of 41K-87Rb are studied in the
regime in which a self-bound state is expected: in particular, the equilibrium bulk densities
and the compressibility of the system are computed by means of numerical simulations.
In chapter 3, the surface properties of a 41K-87Rb self-bound quantum droplet are dis-
cussed: the density profile of the droplet along the radial direction and the surface tension
are studied with (i) a variational approach, (ii) a numerical method and (iii) by solving
numerically the two coupled Gross-Pitaevskii equations associated to the components of
the mixture. The critical number of particles for the droplet stability is also computed
with a variational method.
In chapter 4, the total energy of a droplet is computed as a function of the total number of
particles and the validity of the liquid-drop model for this kind of system is verified. From
the Tolman length calculation, the curvature correction is applied to the surface tension.
In chapter 5, the bright soliton state is first studied in a single species BEC of ultracold
and ultradilute atoms and then in the 41K-87Rb mixture in an optical waveguide.
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Chapter 1

Self-bound states in binary
mixtures of Bose-Einstein
condensates

In this chapter we present a general introduction to Bose-Einstein condensation for non-
interacting bosons and the mean-field description of a system made of identical interacting
bosons. In particular, the origin of the contact pseudopotential and its strength tunability
are explained. Then, a mean-field description of the 41K-87Rb bosonic mixture is provided
within the Density Functional Theory framework. Finally, the first beyond-mean-field
Lee-Huang-Yang correction due to quantum fluctuations will be introduced, showing how
it leads to the formation of a self-bound state in the mixture.

1.1 Bose-Einstein condensation

A Bose-Einstein condensate is a state of matter that involves ultracold bosons close to
zero temperature, as predicted by Satyendra Nath Bose and Albert Einstein in 1924. The
phase transition described by a macroscopic occupation of the ground state of the system
below a critical temperature Tc is linked to the quantum statistic of bosons.
The description of a non-interacting Bose gas provides the simplest example which predicts
correctly some significant properties of real Bose systems. Let’s consider a system with N
identical non-interacting bosons: the main property of the many body wavefunction Φ is
its symmetry with respect to the exchange of two coordinates ri and rj such that

Φ(r1, r2, ..., ri, ..., rj , ..., rN ) = Φ(r1, r2, ..., rj , ..., ri, ..., rN ). (1.1)

At zero temperature, all particles occupy the ground state and the many body wavefunc-
tion reads:

Φ(r1, r2, ..., rN ) =
∏︂
i

ϕ0(ri) (1.2)

and total macroscopic density of the system can be computed as:

ρ(r) = N |ϕ0(r)|2. (1.3)

At finite temperature, the population of excited states is allowed according to the Bose-
Einstein distribution. The natural description of a Bose gas at finite temperature is
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provided by the grand canonical ensemble and so, if ⟨N⟩ is the total average number of
particles, ⟨Nα⟩ is the average number of particle in the state α, β = kBT and µ is the
chemical potential, one has:

⟨N⟩ =
∑︂
α

⟨Nα⟩ =
∑︂
α

1

eβ(Eα−µ) − 1
(1.4)

Consequently, at finite temperature the total number of particles and so the total density
ρ = N/V can be split in two components, the fraction of atoms in the ground state and
the fraction of atoms in the excited states:

ρ =ρ0 + ρexc

=ρ0 +
1

V

∑︂
α ̸=0

1

eβ(Eα−µ) − 1
(1.5)

Taking into account the behaviour of the chemical potential µ of the system visible in
figure 1.1, it is clear that for a system at finite temperature T < Tc we can put µ = 0.
Since we are working with a free non-interacting system, the label α which distinguishes
different states can be identified as the momentum k of the particle. We can pass from
the discrete summation to a integral in the continuum space of momenta and compute it:

1

V

∑︂
k ̸=0

1

eβE(k) − 1
→ 1

(2π)3

∫︂
dk

1

eβE(k) − 1
= ρ

(︃
T

Tc

)︃3/2

(1.6)

where Tc =
2πℏ2
m

(︂
ρ

ξ(3/2)

)︂2/3
is the critical temperature under which the condensation phase

takes place [12].
Inserting this result in (1.5) we can compute the condensate fraction at temperature T :

N0

N
= 1−

(︃
T

Tc

)︃3/2

(1.7)

The behaviour of the condensate fraction in function of the reduced temperature is visible
in figure 1.2. Notice that, for T < Tc, the condensate fraction is finite and it corresponds
to a macroscopic occupation of the ground state.
Although it was predicted in 1920s, the condensation of bosonic gases was experimentally
observed for the first time in 1995. In fact, the advent of laser cooling and new trapping
techniques in the 1980s opened up a new approach to ultracold physics and the group of
Eric Cornell and Carl Wieman at the University of Colorado at Boulder and the one of
Wolfgang Ketterle at MIT succeeded to reach the proper conditions to observe the Bose-
Einstein condensation in dilute gases of alkali atoms of 87Rb [5] and 23Na [6], respectively.
For this experimental achievement and for early studies about condensates properties,
Cornell, Ketterle and Wieman won the Nobel prize in 2001. The figure 1.3 shows the
particles momentum distribution in the first observation of a Bose-Einstein condensate.
From the left to the right, the three density profiles correspond to decreasing temperatures:
the first one is still in the classical regime, where the density distribution is given by
the classical Boltzmann law, the last one corresponds to a quasi-pure condensate. The
BEC is observed with the appearance of a narrow peak in the momentum distribution,
corresponding to the macroscopic accumulation of atoms in the single particle ground
state of the system.
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Tc
0

T

µ

Figure 1.1: Chemical potential of an ideal Bose gas: for T ≥ Tc it is a negative quantity, for T < Tc
we have µ = 0.

0 Tc

1 1−
(︂
T
Tc

)︂3/2

T

N
0
/N

Figure 1.2: The condensate fraction N0/N vs. the normalized temperature T/Tc in a uniform 3D
system.

Figure 1.3: Momentum distribution data for a gas of rubidium atoms that experimentally confirms
the discovery of the Bose–Einstein condensation. The left plot shows the density profile just before
the appearance of a Bose–Einstein condensate, the central one is just after the appearance of the
condensate and the right plot, after further evaporation, corresponds to a quasi-pure condensate.
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1.2 Ultracold and ultradilute interacting bosons

So far we considered an ideal system of non-interacting bosons. However, experimentally
we always deal with interactions that affect the properties of the gas. The condensates we
are going to study are always very diluted, i.e. for a given number density ρ the range of
interparticle interaction r0 is much smaller than the average distance d between them:

r0 ≪ d ∼ 1/ρ1/3 (1.8)

This assumption allows to neglect interactions between three or more particles: in this
way, we can consider only a two-body short range interaction potential. Then, we are
dealing with an ultracold system at temperatures of the order of tens of nK for which the
de Broglie thermal wavelength λT is larger than the range of interparticle interaction r0:

λT =
h√

2πmkBT
≫ r0 (1.9)

In this regime collisional events are limited to the elastic scattering, i.e. the two final
states have the same relative kinetic energy E before and after the collision. In this case,
the interaction depends on a single parameter, the s-wave scattering length as. In fact,
the large values of λT make impossible the resolution of the scatterer, for this reason it is
not important what precise potential V(r) is responsible for the scattering, but only how
the potential behaves at large length scales. Formally, in scattering theory the outgoing
wave for r → ∞ is decomposed in the following way:

Φ(r) ∼ eik·r + f(k, θ)
eik·r

r
(1.10)

The first term is the incoming wave and the second one is the scattered wave, whose am-
plitude f(k, θ) depends on the interaction potential. The angle between the incoming and
outgoing direction is represented by θ.
Assuming a central potential, the amplitude factor can be decomposed in angular compo-
nents:

f(k, θ) =
∑︂
l

(2l + 1)fl(k)Pl(cos θ) (1.11)

where fl(k) is the partial wave scattering amplitude and Pl(cos θ) are the Legendre polyno-
mial basis in which f(k, θ) is decomposed. The physical quantity related to the scattering
amplitude is the total cross section σ defined as:

σ =

∫︂
|f(k, θ)|2dΩ (1.12)

Recalling that we are assuming low energy interactions between ultracold bosons, the s-
wave scattering with outgoing spherical waves dominates and the limit of the total cross
section is:

lim
k→0

σ = 4πa2s (1.13)

In particular, the radial spherical outgoing wave at long distance goes like ∼ sin k(r − as)
were as is the s-wave scattering length. It is positive for repulsive interaction and negative
otherwise and this parameter contains all the physical information about the ultracold
atoms interaction.
Under this assumptions, the unknown short range interaction potential can be replaced by
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a contact pseudopotential dependent only on the s-wave scattering length as parameter,
which is proportional to the interaction strength. So, the ultracold atom-atom interaction
can be written as:

V (r, r′) =
4πℏ2as
m

δ(r − r′) (1.14)

This expression for the interaction potential simplifies the discussion of interacting bosons
in the limit of large number N of particles: we can describe this system at a mean field
level using the Hartree equation for bosons.
Let’s consider the many body Hamiltonian

Ĥ =

N∑︂
i=1

(︃
− ℏ2

2m
∇2
i + U(ri)

)︃
+

1

2

N∑︂
i,j=1
i̸=j

V (ri, rj) =

=

N∑︂
i=1

ĥ(ri) +
1

2

N∑︂
i,j=1
i ̸=j

V (ri, rj)

(1.15)

where U(r) is the external potential and V (ri, rj) is the two body interaction potential.
Experimentally, external trapping potentials have a fundamental role in the realization of
a BEC with atomic gases. Usually, the harmonic confinement approximates very well the
shape of the trapping potential. For example, a confinement along the three dimensions
can be described by:

U(r) =
1

2
mω2

xx
2 +

1

2
mω2

yy
2 +

1

2
mω2

zz
2 (1.16)

where ωx, ωy and ωz are the characteristic frequencies along the three directions. The size
of the condensate is given by the harmonic oscillator length [13]:

aho =

√︃
ℏ

mωm
(1.17)

where ωm = 3
√
ωxωyωz is the geometrical average of the three characteristic frequencies.

The external trap allows to build also systems with quasi-1D or quasi-2D geometries:
this is a very important tool to investigate BEC properties conferred by the dimensional
reduction of the system.
The Hartree approximation of the many body wavefunction, under the assumption that
all the interacting particles are in the same single-particle ground state, is:

Φ(r1, r2, ..., rN ) = ϕ(r1)ϕ(r2) · · · ϕ(rN ) (1.18)

This is a mean field approximation, since Bogoliubov in 1947 proved that an interact-
ing bosonic system a fraction of system does not belong to the ground state because
of interaction: this phenomenon is called quantum depletion [14]. For a system of ul-
tracold and ultradilute bosonic gas the MF assumption is reliable, while in the case of
strongly-interacting bosonic system like the superfluid 4He it is not [15]. The many body
wavefunction is normalized:∫︂

dr1...drN |Φ(r1, r2, ..., rN )|2 = 1 (1.19)
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It is easy to demonstrate that, from this condition, also the single-particle wavefunction
ϕ(r) is normalized to 1. Thus, the total energy functional is:

E[Φ] = ⟨Φ|H |Φ⟩ =
∫︂
dr1...drN Φ(r1, r2, ..., rN )

∗ĤΦ(r1, r2, ..., rN ) (1.20)

Inserting (1.15) and (1.18) in the expression of the total energy we can get the Hartree
energy functional for bosons:

E [ϕ (r)] = N

∫︂
drϕ(r)∗ĥ(r)ϕ(r) +

1

2
N(N − 1)

∫︂
dr

∫︂
dr′|ϕ(r)|2V (r, r′)|ϕ(r′)|2 (1.21)

We can replace the general interaction potential V (r, r′) with the pseudopotential previ-
ously seen in formula (1.14).
For a conserved big number of particles N , such that N−1 ∼ N , we can minimize this en-
ergy functional with respect to the wavefunction imposing the stationarity condition and
the normalization constraint. This constraint is equivalent to using the grand canonical
energy:

E −→ E − µ

∫︂
dr|ϕ(r)|2 (1.22)

The result of this functional minimization is the so-called time independent Gross-Pitaevskii
equation (1961): (︃

− ℏ2

2m
∇2 + U(r) +

N4πℏ2as
m

|ϕ(r)|2
)︃
ϕ(r) = µϕ(r) (1.23)

If now we define the condensate wave-function Ψ =
√
Nϕ we obtain the final form of

the Gross-Pitaevskii equation for the condensate wave function:(︃
− ℏ2

2m
∇2 + U(r) +

4πℏ2as
m

|Ψ(r)|2
)︃
Ψ(r) = µΨ(r) (1.24)

From this equation, the condensate wavefunction Ψ(r) can be computed iteratively starting
from a trial wavefunction until the self-consistence is reached. The choice of the condensate
wave function is convenient because it is normalized to the total number of particles N
and we can make a link with the local numerical density of the system in the following
way:

ρ(r) = |Ψ(r)|2 (1.25)

In other words, for a weakly interacting Bose gas at very low temperature the density of
condensate coincides with the numerical density of the gas.
Notice also that, unlike the ideal Bose gas, the ground state energy of the interacting
system E0, in the absence of an external potential, is

E0 =
1

2
N

4πℏ2as
m

ρ (1.26)

and it is different from zero because of the interaction. In conclusion, this formalism allows
for a simple treatment of the weakly interacting and diluted bosonic system.
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Figure 1.4: Basic scheme of Feshbach resonance channel (taken from [16]).

1.3 Feshbach resonances

Another important property of the ultracold and ultradilute Bose gases is the experimen-
tal possibility of tuning the interaction strength. In particular, the so-called Feshbach
resonance is the most used tool for the tuning of scattering length by means of an external
uniform magnetic fields [16].
The physical origin and the properties of a Feshbach resonance can be seen in figure 1.4.
The two-body potential Vbg is the background potential that connects two free atoms of
the ultracold gas, it is the entrance channel for elastic collision processes at a very low
energies. The potential Vc is the closed channel and it can allow for bound states near the
zero threshold of the open channel. A Feshbach resonance occurs when the bound state
in the closed channel energetically approaches the scattering state in the open channel
and the energy difference can be controlled via an external uniform magnetic field. If we
define the background scattering length abg far from the resonant condition, the scattering
length as near the resonance condition follows the following law:

as(B) = abg

(︃
1− ∆B

B −B0

)︃
(1.27)

where B is the external magnetic field, B0 is the resonant magnetic field and ∆B is
the resonance width. This tool can be used not only for the scattering process involved
between two identical particles but also for atoms in different internal states (homonuclear
mixtures) and also atoms of different species (heteronuclear mixtures): it is very powerful
since it makes possible to investigate different regimes by simply changing the external
field.
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1.4 Bosonic binary mixture within the DFT formalism

In this thesis work, we will study a binary heteronuclear mixture of Bose-Einstein conden-
sates made of 41K and 87Rb atoms. In this kind of system it is possible to change at will
the intraspecies and interspecies interactions as explained in section (1.3): this opens the
possibility to investigate a new unconventional liquid phase regime at very low densities
as discussed in the following. We will study the system within the Density Functional
Theory (DFT) framework, which allows for a description of the total energy expression
in function of the spatially dependent density of the system, thanks to the relation seen
in formula (1.25).
In addition, it will be applied the Local Density Approximation (LDA). According to
this approximation, a component F [ρ]LDA of the total energy functional can be written in
the following way:

F [ρ]LDA =

∫︂
drρ(r)f(r)hom (1.28)

where ρ(r) is the spatial density of the system and f(r)hom is the energy density of the
component F in the homogeneous system. In other words, in the context of LDA we
consider the system homogeneous inside the infinitely small element of volume and we
integrate all over the volume.
Recalling that the density ρ is linked to the condensate wave function Ψ by the relation

ρ = |Ψ|2 (1.29)

the total energy functional for a Bose-Bose mixture (within the mean field approximation)
with two components of mass m1 and m2 in a volume V is:

E =

∫︂
dr

⎧⎨⎩∑︂
i=1,2

[︃
ℏ2

2mi
|∇√

ρi|2 +
1

2
giiρ

2
i

]︃
+ g12ρ1ρ2

⎫⎬⎭ (1.30)

In particular:

• The index i = 1 is referred to the first atom species, 41K, the index i = 2 is referred
to the second atom species, 87Rb.

• The kinetic term can be written in the above form thanks to the following relations:∫︂
dr∇(Ψ∗∇Ψ) = 0 =

∫︂
dr∇Ψ∗∇Ψ+

∫︂
drΨ∗∇2Ψ (1.31)

⇓∫︂
drΨ∗∇2Ψ = −

∫︂
dr|∇Ψ|2 = −

∫︂
dr|∇√

ρ|2 (1.32)

• For simplicity, interactions are written in terms of the coupling constants g defined
as:

g11 =
4πℏ2a11
m1

(1.33)

g22 =
4πℏ2a22
m2

(1.34)
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g12 =
2πℏ2a12
mr

(1.35)

The scattering length a11 describes the intraspecies interaction between 41K atoms,
a22 describes the intraspecies interaction between 87Rb atoms and a12 describes the
interspecies interaction between 41K and 87Rb atoms. Notice that, for this last case,
the coupling constant contains the reduced mass mr =

m1m2
m1+m2

.

• The external potential is not present: we will see that a self-bound state remains
stable without the need of any external confining potential provided by a magnetic
trap (even if, as discussed in section 1.2, experimentally it is necessary for the BEC
formation process).

The mean field energy density of a homogeneous mixture of bosons reads:

EMF =
1

2
g11ρ

2
1 +

1

2
g22ρ

2
2 + g12ρ1ρ2 (1.36)

We can define a useful parameter to characterize the different regimes of the system:

δg = g12 +
√
g11g22 (1.37)

For a fixed value of the intraspecies scattering length a11, a22 > 0 (and thus g11, g22 > 0),
we can express the mean field energy density in function of this parameter:

EMF =
1

2
(
√
g11ρ1 −

√
g22ρ2)

2 + δgρ1ρ2 (1.38)

According to the value of the parameter g12 we can identify different regimes:

• If all interactions are repulsive and if g12 >
√
g11g22, we have the so called immis-

cible region where the two species are not spatially overlapping.

• If −√
g11g22 < g12 <

√
g11g22 we are in the weakly interspecies interacting regime,

the two densities distribution are almost the same of a single species BEC and for
this reason it is called miscible region.

• If g12 < −√
g11g22, or equivalently δg < 0, we can see in which conditions energy is

minimum. First of all, the first term of equation (1.38) must be equal to zero: this
is equivalent to fix the ratio between densities such that

ρ1/ρ2 =
√︁
g22/g11. (1.39)

Thus, it is easy to note that the second term of equation (1.38), in the case of
δg < 0, is minimum for ρ1, ρ2 → ∞: this is the mean field collapse region where
the system is unstable and the condensate collapses.

The fixed and positive values of the parameters a11 and a22 that we will use for this thesis
work are those appropriate to a 41K-87Rb mixture, i.e.:

a11 65 a0

a22 100.4 a0
(1.40)

11



Figure 1.5: (a) Different regimes of the Bose-Bose mixtures in function of the tunable parameter a12
and the respective experimental external uniform magnetic field connected by means of Feshbach
resonances. (b) Absorption images of the dual-species BEC. First column: immiscible regime with
a12 = 255a0. Second column: miscible regime with a12 = 10a0. Figures taken from [11].

From this choice, the critical value of a12 (i.e. such that |g12| =
√
g11g22) is:

a12c = −
√
g11g22mr

2πℏ2
= −75.4 a0 (1.41)

and for values a12 < a12c the system is expected to undergo a collapse at a mean-field
level.
We are using, here and in the following, atomic units (a.u.), obtained by putting equal to
1 some fundamental constants: the Bohr radius a0, the Hartree energy Eh, the electron
mass me, the electron charge e and the reduced Planck constant ℏ.
The immiscible and miscible regions have been observed experimentally [11], thanks to the
high tunability of interaction by means of Feshbach resonances previously discussed. In
figure 1.5 some experimental results are reported [11]. In particular, in 1.5(a) the orange
line shows the one-to-one correspondence between the external field and the scattering
length and thus the corresponding regime of the system. In 1.5(b), the absorption images in
columns show the immiscible and miscible regimes: in the first one the density distributions
of the two species are not overlapped while in the second one they perfectly are and the
system behaves like a single species BEC.

1.5 Beyond mean field correction: the Lee-Huang-Yang term
and the self-bound droplet formation

The mean field prediction that the system will undergo a collapse when g12 < −√
g11g22

fails once quantum fluctuations are taken into consideration. This correction is contained
in the Lee-Huang-Yang term which represents the first beyond mean-field correcting term
to the MF equation of state of a uniform and weakly-interacting system of Bose particles
with hard-sphere interaction [17, 18].

12



We can write this term within the local density approximation [19]:

ELHY =

∫︂
drELHY(ρ1(r), ρ2(r)) (1.42)

where ELHY is the Lee-Huang-Yang energy density for the homogeneous system.
For a single-component weakly interacting Bose-Einstein condensate the expression of the
Lee-Huang-Yang energy density for an homogeneous system reads [18]:

ELHY =
64

15
√
π
ga3/2ρ5/2 (1.43)

where a is the scattering length, g = 4πℏ2a
m the corresponding coupling constant and ρ the

particle density. It was computed by observing that the energy per particle in the ground
state can be obtained as a power series expansion in the parameter ρa3.
However, in this work, we will use the expression of the Lee-Huang-Yang energy density
extended to the case of a binary mixture [20]:

ELHY(ρ1(r), ρ2(r)) =
8

15π2

(︂m1

ℏ2
)︂ 3

2
(g11ρ1(r))

5
2 f

(︃
m2

m1
,
g212
g11g22

,
g22ρ2(r)

g11ρ1(r)

)︃
(1.44)

To simplify the notation, we can define the following variables:

z =
m2

m1
u =

g212
g11g22

x =
g22ρ2
g11ρ1

(1.45)

For an homonuclear mixture with equal mass components (z = 1) the dimensionless
positive function f inside the Lee-Huang-Yang energy functional is analytically known [1]:

f(1, u, x) =

∑︁
±

(︃
1 + x±

√︂
(1− x)2 + 4ux

)︃5/2

4
√
2

(1.46)

Instead, the analytical expression of the function f for an heteronuclear mixture is not
known. In the region where u ∼ 1, close to the mean field collapse condition with δg < 0
and small compared to the value of constant gij ∀ i, j, the dimensionless function f is the
result of a rather complicated numerical integral in the variable k [21]:

f(z, 1, x) =
15

32

∫︂ ∞

0
k2F(k, z, x) dk (1.47)

with

F(k, z, x) =

{︄
1

2

[︃
k2

(︂
1 +

x

z

)︂
+

1

4
k4

(︃
1 +

1

z2

)︃]︃
+

[︃
1

4

[︃(︃
k2 +

1

4
k4

)︃
−

(︃
x

z
k2 +

1

4z2
k4

)︃]︃2
+
x

z
k4

]︃ 1
2

}︄ 1
2

+

{︄
1

2

[︃
k2

(︂
1 +

x

z

)︂
+

1

4
k4

(︃
1 +

1

z2

)︃]︃
−

[︃
1

4

[︃(︃
k2 +

1

4
k4

)︃
−

(︃
x

z
k2 +

1

4z2
k4

)︃]︃2
+
x

z
k4

]︃ 1
2

}︄ 1
2

−
1 + z

2z
k2 − 1− x+

1

1 + z

1

k2

[︂
(1 + xz)2 + z(1 + x)2

]︂
(1.48)
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Figure 1.6: Plot of the dimensionless function f (1.47) for z ∼ 2.1: comparison between numerical
results and polynomial fit with function f(x) = 1 + ax+ bx2 + cx3 + dx3/2.

In particular, the result of this numerical integral can be parametrized by a more man-
ageable analytical formula that reproduces very well the behaviour of the numerical curve
in the region we are interested to work with. For the case of 41K-87Rb mixture, we want
to approximate the function f(z, u, x) with z = 87

41 ∼ 2.1, u ∼ 1 and with x ∼ 0.85. This
last result is found keeping into account that, working close to the critical point, the ratio
between densities is similar to that one found from the mean field analysis seen in the

previous section, i.e. ρ2
ρ1

=
√︂

g11
g22

such that x ∼
√︂

g22
g11

∼ 0.85.

We made a fit with a polynomial function f(x) = 1 + ax + bx2 + cx3 + dx3/2 in order to
use a simple expression that predicts very well the trend of the function f in the desired
interval: results are visible in figure 1.6 and in table 1.1.

a 5.19± 0.03

b 7.53± 0.02

c 0.476± 0.001

d −4.08± 0.05

Table 1.1: Fit parameters from polynomial function f(x) = 1 + ax+ bx2 + cx3 + dx3/2.

At this point, for a fixed value of the density ratio between the two equilibrium densities
of the two species ρ1/ρ2 =

√︁
g22/g11, the function f becomes a constant factor denoted as

f̄ . In the region where δg < 0, the mean-field interaction term and the beyond-mean-field
correction have opposite sign. In fact, the effective single-component energy density func-
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tional of the homogeneous mixture, obtained by adding the LHY term to equation (1.36),
reads:

Ehom = βρ21 + γρ
5/2
1 (1.49)

with

β = g11 + g12

√︃
g11
g22

= δg

√︃
g11
g22

< 0 (1.50)

and

γ =
8

15π2

(︂m1

ℏ2
)︂3/2

g
5/2
11 f̄ > 0 (1.51)

Notice that:

• The mean field term is negative and it describes an attractive interaction propor-
tional to ρ2, it dominates at small densities.

• The repulsive LHY term is positive and proportional to ρ5/2, it dominates at large
densities.

This behaviour ensures the presence of an energy minimum for a finite value of ρ1 and ρ2
and so the stability of the system in this regime. Other conditions are necessary to predict
a stable isolated self-bound state [22]: the pressure P must be equal to zero, the chemical
potential µ must be negative to avoid evaporation and also the energy must be negative.
For the effective single-component mixture with total energy E and volume V , the first
condition

P = −E
V

=

(︃
−Ehom + ρ1

∂Ehom

∂ρ1

)︃ ⃓⃓⃓⃓
ρ1=ρ∗1

= 0 (1.52)

is satisfied by

ρ∗1 =

(︃
2β

3γ

)︃2

(1.53)

Inserting this solution in the chemical potential expression for the effective single-component
mixture with N1 particles of the species 1

µ =
∂E

∂N1
=
∂Ehom

∂ρ1
= 2βρ1 +

5

2
γρ

3/2
1 (1.54)

one has:

µ
⃓⃓
ρ1=ρ∗1

=
11

3
β (ρ∗1)

2 < 0 (1.55)

Also the energy density for ρ1 = ρ∗1 is negative

Ehom

⃓⃓
ρ1=ρ∗1

=
5

3
β (ρ∗1)

4 < 0 (1.56)

and thus it is also the total energy, since for an homogeneous system the total energy
E = V Ehom is simply the energy density multiplied by the volume V .
This simple toy model with an effective single-component homogeneous energy density
functional reveals that the mixture can exist as a self-bound state in equilibrium with
vacuum without any external trapping. Thus, the addition of the Lee-Huang-Yang correc-
tion has a crucial effect: the competition between the mean-field repulsion term and the
beyond-mean-field attraction term leads to the formation of a self bound state, whereas
absence of the LHY correction leads to the collapse of the system as predicted by the
mean-field approximation seen in the previous section.
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Chapter 2

Bosonic binary mixture: the
homogeneous system

In this chapter we discuss the properties of the homogeneous (“bulk”) mixture of 41K-87Rb
in the regime in which a self bound state is expected as a result of competitive effects of MF
and LHY contributions, as discussed in the previous chapter. A numerical computation
of the equation of state is provided by imposing thermodynamic and mechanical stability.
The equilibrium bulk densities of the two species and the compressibility of the system
are computed for different values of the interspecies interaction parameter a12.

2.1 The equation of state of a self-bound mixture

The equilibrium properties of the self-bound mixture of 41K-87Rb can be studied imposing
the thermodynamic and mechanical stability conditions, resulting from the competition
between MF attraction and LHY repulsion.
Recalling that the energy density of the homogeneous binary system is

E(ρ1, ρ2)hom =
1

2
g11ρ

2
1 +

1

2
g22ρ

2
2 + g12ρ1ρ2 + ELHY (2.1)

with ELHY given by equation (1.44), the realizability of a self bound state is possible only
if it is at equilibrium with vacuum and this condition is satisfied if the pressure P is equal
to zero. Assuming a temperature T = 0, a fixed total number of particles N and recalling
that for an homogeneous system the total energy is E = EV with V the volume occupied,
the pressure of the binary system can be computed as:

P (ρ1, ρ2) = −∂E
∂V

= −E+
∑︂
i

∂E

∂ρi
ρi

= −E+ µ1ρ1 + µ2ρ2

(2.2)

where µ1 = ∂E
∂N1

= ∂E
∂ρ1

and µ2 = ∂E
∂N2

= ∂E
∂ρ2

are chemical potentials of the two species by
definition. Explicitly:

µ1 =
∂E

∂ρ1
= g11ρ1 + g12ρ2 +

∂ELHY

∂ρ1
(2.3)

µ2 =
∂E

∂ρ2
= g22ρ2 + g12ρ1 +

∂ELHY

∂ρ2
(2.4)

17



−115 −110 −105 −100 −95 −90 −85 −80 −75 −70 −65
0

0.5

1

1.5

2

·10−9

a12 (unit of a0)

ρ
(u
n
it
o
fa

3 0
)

ρ1 (41K)

ρ2 (87Rb)

Figure 2.1: Densities ρ1 and ρ2 of the equilibrium configurations of the system in the self-bound
regime as a function of the value of the s-wave scattering length a12.

with [19]
∂ELHY

∂ρ1
=

8

15π2

(︂m1

ℏ2
)︂3/2

g
5/2
11 ρ

1/2
1

[︃
5

2
ρ1f − g22ρ2

g11

∂f

∂x

]︃
(2.5)

∂ELHY

∂ρ2
=

8

15π2

(︂m1

ℏ2
)︂3/2

g
3/2
11 g22ρ

3/2
1

∂f

∂x
(2.6)

The function f in the last expressions is the one defined in the previous chapter in section
5.2.
For a fixed value of the interparticle s-wave scattering length a12, it is possible to locate
the stable bulk configuration by using the following numerical procedure:

• Mechanical stability: find the curve P (ρ1, ρ2) = 0 in the plane (ρ1, ρ2) (using equa-
tion (2.2)).

• Thermodynamic stability: find the portion of plane in which both chemical potentials
µ1 and µ2 are negative (using equations (2.3) and (2.4)).

• Minimization of energy: select the point (ρ1,bulk, ρ2,bulk) which satisfies the previous
conditions and for which energy per particle E

N = EV
N = E

ρ is minimum.

The calculated densities ρ1 and ρ2 of the equilibrium configuration and bulk energies for
each value of the scattering length a12 are shown in figure 2.1 and figure 2.2, respectively.
Figures (2.3) and (2.4) illustrate the detailed procedure for the cases a12 = −85 a0 and
a12 = −96 a0.
The solid blue line marks the configurations (ρ1, ρ2) at zero pressure while the green region
contains the configurations for which both chemical potentials µ1 and µ2 are negative. The
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Figure 2.2: Energy per particle of the system in the self-bound regime in the equilibrium configu-
ration as a function of the value of the s-wave scattering length a12.

red point selects the minimum energy configurations among those which satisfy previous
conditions.
Notice that the order of magnitude of numerical densities are around 10−9−10−10 in units
of a30 (a.u.) which corresponds to 1014 − 1015 atoms/cm3 in real units: these states have
densities of eight or nine orders of magnitude smaller than the liquid phase of common
matter.
For a12 > a12c there are no stable equilibrium bulk densities for the system in considera-
tion: the energy functional of the homogeneous binary mixture has only the MF interaction
terms and the LHY term, hence, without any external trap, the system cannot remain
spatially confined out of the self-bound regime, where the interspecies interaction is still
attractive but not strong enough to compensate the LHY repulsion. For this reason, the
gas evaporates and the corresponding equilibrium densities ρ1 and ρ2 are zero. As a last
observation, the ratio between equilibrium densities ρ1 and ρ2 as a function of the inter-
species scattering length a12, shown in figure 2.5, converges quite linearly to the critical
ratio ρ1

ρ2
∼ 0.85, previously seen in formula (1.39).

2.2 Compressibility

Another interesting property that we can get from the bulk analysis is the compressibility,
which measures the relative change of volume as a consequence of a pressure variation at
constant temperature. The inverse of the compressibility is defined as:

κ = −V
(︃
∂P

∂V

)︃
N

(2.7)

19



Figure 2.3: Equation of state for a12 = −85 a0.

Figure 2.4: Equation of state for a12 = −96 a0.
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Figure 2.5: Ratio between equilibrium densities of the two species as a function of the value of the
interspecies s-wave scattering length a12.

and it must be greater than zero to assure the mechanical stability of the system.
The compressibility of a binary mixture in the MF approach with the addition of the
beyond-MF term of LHY can be expressed as [19]:

κ−1 =

(︃
g11ρ

2
1 + g22ρ

2
2 + 2g12ρ1ρ2 +

15

4
ELHY

)︃−1

(2.8)

where ρ1 and ρ2 are the equilibrium densities of the homogeneous system computed in the
previous section and ELHY is given by equation (1.44).
Results are reported in figure 2.6.
This bulk property will be a fundamental ingredient in the computation of the Tolman
length, a quantity connected to the surface curvature’s correction applied to the surface
tension [23], as we will see in chapter 4.
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Chapter 3

Surface properties of a self-bound
droplet

In this chapter we discuss the surface properties of a 41K-87Rb self-bound droplet. We
work with a slab geometry in order to focus the study along the direction to which the
liquid-vacuum interface of the droplet belongs. This amounts to neglect curvature effects
(which will be investigated in the following chapter), i.e. we consider here droplets with
a radius R ≫ ∆, with ∆ equal to the surface width. The density profile of the liquid-
vacuum interface and its thickness along the perpendicular direction is studied with (i) a
variational method, (ii) a numerical method and (iii) by directly finding the ground state
solution of the two coupled Gross-Pitaevskii equations associated to the two species of
the mixture, by means of the numerical imaginary time evolution technique. The critical
number of particles over which the droplet is stable is also computed as a function of the
interspecies scattering length a12.

3.1 Variational approach

The appearance of self-bound droplets in bosonic mixtures implies the existence of a
surface and a surface tension associated to it. For this kind of analysis it is convenient
to use a slab geometry: we assume an infinite homogeneous system along two of the
three directions and we study the density profile along the third axis (z axis), to which
the liquid-vacuum interface belongs.
The aim is to simulate the density profile in order to quantify its shape variation as a
function of the interspecies scattering length a12. In particular, we expect that the density
profile along the z direction of an homogeneous system along x and y has approximately
the shape illustrated in figure 3.1. The parameter ∆ measures the width between the point
at 90% of the bulk density and that one at the 10%, so it quantifies the surface width.
As a first approach to compute surface properties, we can use a variational method: it
consists of using a trial parametrization of the density profile depending on one or more
parameters and finding the values of these parameters for which the expectation value of
the total energy is minimum.
For each value of a12, we can make a parametrization of the density profile of each species
using the following analytical function:

ρ(z) =
ρbulk
2

(︂
1− tanh

z

d

)︂
(3.1)
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Figure 3.1: Density profile along z direction, ∆ is the 10%− 90% surface width.

where ρbulk is that one computed from the bulk analysis and d is the unique free parameter
which determine the profile’s shape. The interface shape according to this model is the one
shown in figure 3.1: ρbulk is the saturated value of the density inside the droplet and the
droplet’s surface width ∆ is proportional to the free parameter d. In fact, from equation
3.1 one has:

z = d tanh−1

(︃
2

ρ

ρbulk
− 1

)︃
(3.2)

from which
∆ = z

⃓⃓
ρ/ρbulk=0.9

− z
⃓⃓
ρ/ρbulk=0.1

= 2.2d (3.3)

This variational ansatz has to be inserted inside the total energy functional such that the
value of the parameter d that minimizes the energy, or equivalently the surface tension,
can be found. From thermodynamics, the total energy can be written as:

E = TS⏞⏟⏟⏞
T = 0

− PV⏞⏟⏟⏞
P = 0

+σA+ µ1N1 + µ2N2 (3.4)

The first and second term are equal to zero because of the low temperature and the
mechanical stability condition of the droplet, the third term is different from zero if we
have a liquid-vacuum interface of area A and the last two terms are the chemical potential
contributions of the two species of the mixture.
Since the density profile depends only on z, the total energy E for the slab model can be
written as:

E = A

∫︂
dz

{︃
ℏ2

2m1
|∇√

ρ1|2 +
ℏ2

2m2
|∇√

ρ2|2 +
1

2
g11ρ

2
1 +

1

2
g22ρ

2
2 + g12ρ1ρ2 + ELHY (ρ1, ρ2)

}︃
(3.5)

This is the energy functional (1.30) with the addition of the beyond mean field term
ELHY (ρ1, ρ2) given by (1.44). The prefactor A is the area of the interface in contact with
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the vacuum, m1 and m2 are the masses of 41K and 87Rb atoms and the quantities g11,
g22, g12 are those seen in equations (1.33), (1.34), (1.35). Notice that the dependence on
the variable z is inside the densities ρ1 and ρ2.
We can assume that the ratio between the two densities is constant everywhere:

ρ1
ρ2

= r (3.6)

As seen in figure 2.5, for each interspecies scattering length a12 the quantity r can be
computed exactly from the ratio of the bulk equilibrium densities: the correctness of this
assumption for each z of the slab model will be checked a posteriori.
For simplicity, let’s define the following variables:

α′ =
ℏ2

2m1
+

ℏ2

2m2

1

r
(3.7)

β =
1

2
g11 +

1

2
g22

1

r2
+ g12

1

r
(3.8)

γ =
8

15π2

(︂m1

ℏ2
)︂3/2

g
5/2
11 f

(︃
m2

m1
, 1,

g22
g11r

)︃
(3.9)

Expanding the kinetic energy derivative as follows

|∇√
ρ1|2 =

1

4

(∇ρ1)2

ρ1
(3.10)

if we call

α = α′/4 (3.11)

we can write the energy density of the mixture in function of ρ1 only:

E = α
(∇√

ρ1)
2

ρ1
+ βρ21 + γρ

5/2
1 (3.12)

From (3.4), we can compute the surface tension as:

σ =
E − µ1N1 − µ2N2

A
(3.13)

Since N1 and N2 are not independent because of the fixed ratio between densities, we can
write again σ in function of N1 only:

σ =
E − µ0N1

A
(3.14)

and µ0 can be interpreted as the chemical potential of a liquid system in equilibrium with
the vacuum.
We can find a proper expression for µ0 by the minimization of the energy functional
including the constraint of normalization

∫︁
drρ1(r) = N1. In this way, also the number of
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particle of the second species is fixed because N2 = N1/r.
The ground state density must satisfy the following condition:

δ

δρ1
[E − µN1] =0

→ δE

δρ1
− µ = 0

(3.15)

This last passage comes from the property of the integral functionals: the functional
derivative of N1 [ρ1] =

∫︁
drρ1(r) with respect to ρ1 coincides with the common derivative

of the integrand function with respect to ρ1.
For the same reason, the derivative of the total energy with respect to ρ1 is:

δE

δρ1
=

∂E

∂ρ1
− ∇⃗ ·

(︃
∂E

∂∇ρ1

)︃
(3.16)

with
∂E

∂ρ1
= −α

(︃
∇ρ1
ρ1

)︃2

+ 2βρ1 +
5

2
γρ

5/2
1 (3.17)

∇⃗ ·
(︃

∂E

∂∇ρ1

)︃
= −2α

∇2ρ1
ρ1

(3.18)

Inserting all these results in equation (3.15) and recalling that ρ1 depends only on z, we
find that the density profile along z satisfies the following differential equation:

α

(︄
1

ρ21

(︃
∂ρ1
∂z

)︃2

− 2
1

ρ1

∂2ρ1
∂z2

)︄
+

5

2
γρ

3/2
1 + 2βρ1 − µ = 0 (3.19)

We can integrate this expression by multiplying each member for ∂ρ1
∂z : this operation can

be done safely since we are interested in the surface profile along z and in this region
neither ρ1 nor ∂ρ1

∂z are equal to zero.
We find the following equation:

α

(︄
1

ρ21

(︃
∂ρ1
∂z

)︃2

− 2
1

ρ1

∂2ρ1
∂z2

)︄
∂ρ1
∂z

+
5

2
γρ

3/2
1

∂ρ1
∂z

+ 2βρ1
∂ρ1
∂z

− µ
∂ρ1
∂z

= 0 (3.20)

that is equivalent to

∂

∂z

(︄
−α 1

ρ1

(︃
∂ρ1
∂z

)︃2

+ βρ21 + γρ
5/2
1 − µρ1

)︄
= 0 (3.21)

Thus, the density profile along z satisfies:

− α
1

ρ1

(︃
∂ρ1
∂z

)︃2

+ βρ21 + γρ
5/2
1 − µρ1 = C (3.22)

where the constant C must be equal to zero because the equation must be true for ρ1(z)
which approaches to the vacuum region outside the droplet (where both ρ1(z) and its
derivative with respect to z are equal to zero). Finally, from this last equation (with
C = 0) we can obtain an expression for the chemical potential µ0 for a liquid system in
equilibrium with the vacuum. It must be constant everywhere and it can be computed by
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Figure 3.2: Surface width ∆ obtained from the variational study as a function of the interspecies
s-wave scattering length a12.

replacing the constant particular solution in the bulk region ρ1 = ρ1,bulk. The result is:

µ0 = βρ1,bulk + γρ
3/2
1,bulk (3.23)

Once we have all elements to compute the surface tension σ with the expression (3.14),
we can use the variational ansatz (3.1) for ρ1(z) and compute the stationary point of the
integral

σ =

∫︂ +∞

−∞
dz (E[ρ1(z)]− µ0ρ1(z)) (3.24)

finding the value of the unique free parameter d for which the surface tension is minimum.
This minimization cannot be done analytically but only numerically. The resulting surface
width ∆ and the resulting surface tension σ as a function of the interspecies scattering
length are shown in figure 3.2 and 3.3, respectively.
In particular, the surface width is fitted by the polynomial function:

∆(a12) = p(a12q + s)t (3.25)

The fitting parameters are:

p 4.20 · 105 (unit of a0)
q -0.50 (unit of 1/a0)
s -37.33
t -1.49

Table 3.1: Results of the fit of the surface width ∆ with the function ∆(a12) = p(a12q + s)t.
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Figure 3.3: Surface tension obtained from the variational study as a function of the interspecies
scattering length a12.

Hence, for a fixed value of a12, a complete parametrization of the density profile of the
first species of the mixture along the z direction is given by the following expression:

ρ1(z, a12) =
ρ1,bulk(a12)

2

(︃
1− tanh

2.2z

∆(a12)

)︃
(3.26)

with ρ1,bulk(a12) obtained from the bulk analysis and ∆(a12) obtained from equation (3.25).
Because of the fixed ratio (see (3.6)), the parametrization of the density profile for the
second species of the mixture is the same as in (3.26) but multiplied by a factor 1/r.

3.2 Numerical method

The results obtained from the variational approach are obviously affected by the choice of
the selected density profile parametrization.
However, the computations of the previous section has led to a differential equation that
must be satisfied by the density profile ρ1(z). For clarity, this differential equation is
written again here:

− α
1

ρ1

(︃
∂ρ1
∂z

)︃2

+ βρ21 + γρ
5/2
1 − µ0ρ1 = 0 (3.27)

Solving with respect to ∂ρ1
∂z :

∂ρ1
∂z

= ±
√︃(︂ρ1

α

)︂ [︂
βρ21 + γρ

5/2
1 − µ0ρ1

]︂
(3.28)
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Figure 3.4: Density profile along z direction, enhanced points are useful to solve the numerical
integral.

The density profile we are looking for is decreasing from bulk to vacuum (see figure 3.1),
so we can safely choose the minus sign in (3.28).
To simplify the notation we define the function h(ρ1):

∂ρ1
∂z

= −
√︃(︂ρ1

α

)︂ [︂
βρ21 + γρ

5/2
1 − µ0ρ1

]︂
≡ h(ρ1) (3.29)

From (3.29) one has:

dz =
dρ1
h(ρ1)

(3.30)

Let’s define some useful points along the density profile, as shown in figure 3.4:

• (z0, ρ0/2) is the central point of the density profile. For simplicity, we can choose
z0 = 0.

• (z, ρ1) is a generic point which belongs to the density profile, with ρ1 ∈ [0 : ρ0].

By integrating both members of (3.30) from (z0, ρ0/2) to (z, ρ1) we obtain:

z = z0 +

∫︂ ρ1

ρ0/2
dρ

1

h(ρ)
(3.31)

In practice, we have to scan all the density values in the interval [0 : ρ0] and by solving
numerically the integral we can find the corresponding z position. In this way, it is possible
to determine the profile ρ1(z) of the liquid-vacuum interface.
In figure 3.5 and 3.6 we show the results for a12 = −85 a0 and a12 = −96 a0: the points
are the numerical results while the dashed lines are the variational ones discussed in the
previous section. In both cases the agreement is very good, so the variational ansatz
provides a good parametrization of the density profile even if it is not an exact solution of
the differential equation (3.27).
Looking at the interfaces profiled computed for different values of the scattering length,
one sees that the droplet surface width becomes smaller as the absolute value of a12
increases. This sounds reasonable: the stronger interspecies attraction makes the droplet
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Figure 3.5: Density profiles ρ1 and ρ2 of the two species of the mixtures computed with the
variational and numerical method for a12 = −85a0.
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Figure 3.6: Density profiles ρ1 and ρ2 of the two species of the mixtures computed with the
variational and numerical method for a12 = −96a0.
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more compact. In figure 3.7 some density profiles and the corresponding value of a12 are
reported to highlight these differences.
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Figure 3.7: Density profiles ρ1(z) for different values of the scattering length a12.

We can also use equation (3.29) to compute directly the surface tension. In fact, recalling
that σ can be computed with the expression (3.24), we can make a change of variable in
the integral thanks to the relation (3.30) so that:

σ =

∫︂ ρ0

0

dρ1
h(ρ1)

(E[ρ1(z)]− µ0ρ1(z)) (3.32)

Recalling the expression of the energy density functional E[ρ1(z)] seen in (3.12) and the
expression of h(ρ1) seen in (3.29) we finally get the expression:

σ =

∫︂ ρ0

0
dρ1 2

√︃
α
(︂
βρ1 + γρ

3/2
1 − µ0

)︂
(3.33)

Notice that the above equation allows to compute σ without prior knowledge of the density
profile. Results of the surface tension from the integral (3.33) are illustrated in figure 3.8
and compared with those ones from variational methods.
The values of σ from the two methods are in agreement but it is important to stress the
fact that with the second method we obtained results without any initial hypothesis about
the shape of the density profile. The dashed line is a polynomial fit of the numerical results
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Figure 3.8: Surface tension as a function of the interspecies scattering length a12.

with the function
σ(a12) = p(a12q + s)t (3.34)

to have a complete parametrization of the surface tension. The fitting parameters are
reported in table 3.2.

p 1.39 · 10−25 (unit of a0)
q -2.99 (unit of 1/a0)
s -225.14
t 3.52

Table 3.2: Results of the fit of the surface tension with the function σ(a12) = p(a12q + s)t.

Notice that the surface tension spans several orders of magnitude and it is positive as
expected, since breaking a bulk system has an energy cost.

3.3 Ground state solution of the two coupled Gross-Pitaevskii
equations

Results from variational and numerical methods seems to be reasonable and they are
in agreement with each other. We can check the correctness of the previous results by
performing a simulation which solves directly the two coupled Gross-Pitaevskii equations
associate to the two species of the mixtures.
The imaginary time evolution technique allows to find the ground state condensate
wave function of the system and so the ground state density profile. Let’s suppose to know
the Hamiltonian of the system and let’s consider the time dependent Schrödinger equation
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associated to it:

− iℏ
∂

∂t
|ψ⟩ =

(︂
Ĥ − E0

)︂
|ψ⟩ (3.35)

The quantity E0 is simply an energy offset equal to the ground state energy, its use will
be clear in the next steps. By performing a Wick rotation from real time t to imaginary
time iτ , the time dependent Schrödinger equation becomes:

− ℏ
∂

∂τ
|ψ⟩ =

(︂
Ĥ − E0

)︂
|ψ⟩ (3.36)

and its solution is

|ψ⟩ = e−
(Ĥ−E0)

ℏ τ |ψ0⟩ (3.37)

with |ψ⟩ the state of the system at time τ and |ψ0⟩ the its initial state. The decomposition
of the initial state in the basis of eigenstates of the Hamiltonian is always possible, such
that:

|ψ0⟩ =
∑︂
i

ai |ϕi⟩ ai ∈ C (3.38)

If we insert this decomposition of |ψ0⟩ in equation (3.37) we obtain:

|ψ⟩ =
∑︂
i

aie
−Ei−E0

ℏ τ |ϕi⟩ (3.39)

where Ei is the eigenvalue of the Hamiltonian associated to the eigenstate |ϕi⟩. In the
limit of τ → +∞, only the term with i = 0 would contribute to the sum and so:

|ψ⟩ = lim
τ→+∞

e−
(Ĥ−E0)

ℏ τ |ψ0⟩ = a0 |ϕ0⟩ (3.40)

which is the exact ground state of the system, a part from a multiplicative factor.
In a numerical simulation the ground state wave function is computed iteratively perform-
ing the following steps:

• Choose an initial trial wave function |ψ0⟩ normalized to the total number of particles
N of the system and a time interval ∆τ to discretize the time evolution.

• Compute the initial ground state energy E0 as

E0 =
⟨ψ0| Ĥ |ψ0⟩
⟨ψ0|ψ0⟩

(3.41)

• For small values of ∆τ we can use the approximation e−
(Ĥ−E0)

ℏ ∆τ ∼
(︂
1− Ĥ−E0

ℏ ∆τ
)︂

and update the wave function as follows:

|ψn+1⟩ =

(︄
1− Ĥ − E0

ℏ
∆τ

)︄
|ψn⟩ n = 0, 1, 2, ... (3.42)

• Update the ground state energy value as follows:

E0 =
⟨ψn| Ĥ |ψn⟩
⟨ψn|ψn⟩

(3.43)
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• Normalize the temporary wave function |ψn⟩ to the total number of particles N .

• Repeat the last three steps until convergence is reached and stop the procedure when
E0 remains almost constant for many consecutive steps.
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Figure 3.9: Density profiles ρ1 and ρ2 of the two species of the mixtures: dots represent the
density profile obtained from the numerical method of section 3.2 and dashed lines represent
results computed by solving numerically the GPE equation a12 = −85a0.
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Figure 3.10: Density profiles ρ1 and ρ2 of the two species of the mixtures: dots represent the
density profile obtained from the numerical method of section 3.2 and dashed lines represent
results computed by solving numerically the GPE equation a12 = −96a0.
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Applying the imaginary time evolution technique to our system, we want to find the
ground state solutions of the two coupled stationary Gross-Pitaevskii equations with the
LHY corrections [19]: ⎧⎪⎨⎪⎩

(︂
− ℏ2

2m1
∇2 + V1 (ρ1, ρ2)

)︂
ψ1 = µ1ψ1(︂

− ℏ2
2m2

∇2 + V2 (ρ1, ρ2)
)︂
ψ2 = µ2ψ2

(3.44)

where µi is the chemical potential of the i species and

V1 = g11ρ1 + g12ρ2 +
δELHY

δρ1
(3.45)

V2 = g22ρ2 + g12ρ1 +
δELHY

δρ2
(3.46)

that are the effective potentials felt by each species of the mixture. Since δELHY
δρi

= ∂ELHY
∂ρi

for the property of the integral functionals, an explicit expression for the derivatives of the
LHY correction with respect to the densities of the two species was already given in the
previous chapter with equations (2.5) and (2.6). Recall that the density profile is linked to
the wave function by relation 1.25 but, unlike the numerical method seen in the previous
section, the ratio between the two densities here are not fixed a priori.
Notice that in the two GPE equations the chemical potentials µ1 and µ2 play the role of
E0 in the general description of the method explained above.
Simulations are performed by choosing a proper mesh in the real space and periodic
boundary conditions (PBC) are selected. This is possible because, due to our use of a slab
geometry, the system is periodic in space. The use of PBC is also convenient because it
allows to easily switch from real to momentum space and viceversa, a useful trick that
allows to save computational cost especially when the system has long-range interaction
terms (for example in presence of dipolar interaction). In that case, the Fourier transform
and its inverse are computed by means of Fast Fourier Transform algorithms (FFT). In
any case, the simulation cell size must be big enough to assure that each repetition of the
system does not interact with the periodic replicas.
In figure 3.9 and 3.10 the resulting density profiles for a12 = −85a0 and a12 = −96a0 are
reported and compared to results obtained with the numerical method seen in section 3.2.
The agreement is again very good: stressing the fact that by performing the numerical
simulation to solve the GPE equation we obtain a discretized but exact ground state
density of the system, we can conclude that the numerical method seen in section 3.2 is
the simplest one, it does not require any prior knowledge about the density profile and it
provides results in perfect agreement with the correct solution from the GPE equation.
The unique assumption made in section 3.2 for the numerical method is that, for a fixed
value of a12, the ratio between ρ1 and ρ2 along the density profile is constant everywhere
and equal to the one between the two corresponding bulk equilibrium densities. We can
check the validity of this assumptions in the figures 3.11 and 3.12: the ratio between ρ1(z)
and ρ2(z) (blue points) is indeed constant and equal to the bulk ratio nearly everywhere
in the range of the system extension. Only in the very outer portion of the surface (red
points) it deviates from the expected value but this small variation is negligible as proved
by the nearly perfect agreement between the two methods.
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Figure 3.11: Blue points represent the ratio between ρ1 and ρ2 as a function of z along the complete
density profile, red points represent the density profile ρ1 normalized to the bulk density ρ1,bulk
and the orange dashed line is the expected ratio between bulk densities for a12 = −96 a0.
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Figure 3.12: Blue points represent the ratio between ρ1 and ρ2 as a function of z along the complete
density profile, red points represent the density profile ρ1 normalized to the bulk density ρ1,bulk
and the orange dashed line is the expected ratio between bulk densities for a12 = −85 a0.

3.4 The critical number of particles for droplet stability

It is useful to collect all the informations about surface properties obtained so far and,
in particular, to understand how the shape of the droplet’s radial density profile changes
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with the interspecies scattering length a12 and the total number of particles N. According
to the shape of its radial density profile, a droplet can be loosely classified as:

• A “true” droplet composed of a central region of fairly uniform density (“bulk”) and
an external surface region where the density drops more or less rapidly to zero with
distance. If we define the radius of the droplet as

R = 3

√︄
3N

4πρbulk
(3.47)

that comes from the relation 4
3πR

3ρbulk = N , a “true” droplet is such that the ratio
between the surface width ∆ and the radius R is very small:

∆

R
≪ 1 (3.48)

An example of this kind of density profile is schematically illustrated in the following.

r

ρ

Figure 3.13: Density profile of a droplet with a central bulk region and a thin surface region.

• An “all surface” droplet, where the central bulk portion is almost absent, the density
profile is gaussian-like and the surface width ∆ is comparable to the radius R of the
droplet:

∆

R
∼ 1 (3.49)

An example of this kind of density profile is illustrated schematically in the following.

r

ρ

Figure 3.14: Density profile of an “all surface” droplet without a central bulk region.

We will study in the following how the ratio ∆
R changes as a function of N and a12. We

must notice, however, that not all values of N are allowed for a droplet formation. In fact,
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small droplets with a number of particle N under a critical value Nc are unstable: this is
due to the dominating kinetic term over interaction energy that leads to the evaporation
process.
An easy way to see this and have an estimate of the critical number of atoms for a given
value of a12 is to perform a variational study. Let’s assume that in the critical region the
droplet has a gaussian-like density profile: this is reasonable since near the evaporation
droplets would not have a compact central bulk (this assumption will be confirmed a
posteriori).
The density profile of the first species of the mixture is:

ρ1(r) =
N1

π3/2σ3
e−

r2

σ2 (3.50)

where N1 is the total number of particles of the selected species, the prefactor N1

π3/2σ3 comes
from normalization and σ is the variance of the gaussian. Again, the ratio ρ1/ρ2 = r is
assumed to be fixed everywhere. The total energy functional is thus a functional of ρ1
only:

E =

∫︂
dr

{︃
ℏ2

2m1
|∇√

ρ1|2 +
ℏ2

2m2
|∇√

ρ2|2 +
1

2
g11ρ

2
1 +

1

2
g22ρ

2
2 + g12ρ1ρ2 + ELHY

}︃
=

=

∫︂
dr

{︄
4α

(︃
∂
√
ρ1

∂r

)︃2

+ βρ21 + γρ
5/2
1

}︄
(3.51)

where the term ELHY is given by (1.44) and, in the last passage, coefficients α, β and γ
are those ones defined in equations (3.11), (3.8), (3.9) respectively.
Inserting ρ1(r) as given in (3.50) in the total energy functional, the three contributions to
the integral are:

• The kinetic term Ekin

Ekin =

∫︂
dr 4α

(︄
∂
√︁
ρ1(r)

∂r

)︄2

=

=

∫︂ +∞

0
dr 4πr24α

(︄
∂
√︁
ρ1(r)

∂r

)︄2

=

=
6αN1

σ2

(3.52)

• The MF interaction term

Eint =

∫︂
drβρ1(r)

2 =

=

∫︂ +∞

0
dr 4πr2βρ1(r)

2 =

=
βN2

1

(2π)3/2σ3

(3.53)
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• The LHY term

ELHY =

∫︂
drβρ1(r)

5/2 =

=

∫︂ +∞

0
dr 4πr2βρ1(r)

5/2 =

=
4γN

5/2
1

5
√
10π9/4σ9/2

(3.54)

To simplify the notation, let’s call:

a = 6α > 0 (3.55)

b =
β

(2π)3/2
< 0 (3.56)

c =
4γ

5
√
10π9/4

> 0 (3.57)

such that the effective single-component energy per particle reads:

E

N1
=

a

σ2
+
bN1

σ3
+
cN

3/2
1

σ9/2
(3.58)

For a fixed value of a12, we are interested in the pair of parameters (σ0, N1,c) for which
energy per particle is minimum and equal to zero, hence the point which separates stable
droplets with negative total energy from unstable ones with positive energy. Solving the
system ⎧⎪⎨⎪⎩

∂(E/N1)
∂σ = 0

E
N1

= 0

(3.59)

with respect to σ, we find that

σ0 = − 3b

5a
N1 (3.60)

Notice that σ0 is a variance and it is a positive quantity (b < 0) as it must be. Inserting
this solution in the second equation of the system we found that

N1,c = − c

δ9/2
(︁
a
δ2

+ b
δ3

)︁ (3.61)

where δ = − 3b
5a .

This is the critical threshold for the number of atoms of the first component (41K) of the
mixture, under which the energy of the droplet is no longer negative and the evaporation
process occurs.
Since the ratio between the densities of the two species is fixed ρ1/ρ2 = r, also the ratio
between the number of particles N1 and N2 is. Thus, the critical total number of atoms
Nc is:

Nc = N1,c +N2,c =

= N1,c

(︃
1 +

1

r

)︃
(3.62)
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Figure 3.15: Summarizing the results about droplets’ surface: the color scales like the ratio between
the surface width ∆ and the radius R of the droplet. The red region identifies gaussian-like radial
density profiles (see figure 3.14) while the green and blue region identifies droplets with a central
bulk region (see figure 3.13). The black solid line marks the total critical number of particles Nc

below which the droplet evaporates.

At this point, we can collect all the information about the shape of the droplet in figure
3.15: in the plane (N, |a12|) with N = N1 + N2 equal to the total number of particles,
the color scales like the ratio ∆

R and the solid black line delimits the critical number of
particles Nc under which the droplet is unstable, for each value of |a12|. The red region
identifies gaussian-like radial density profiles (see figure 3.14) while the green and blue
region identifies “true” droplets with a central bulk region (see figure 3.13). Notice that
the assumption of gaussian density profile in the critical region made at the beginning of
the computation is true since the black line belongs to the red region for each |a12|.
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Chapter 4

The liquid-drop model

In this chapter we solve numerically the two coupled Gross-Pitaevskii equations associated
to the two species 41K and 87Rb of the Bose-Bose mixture, for a fixed number of particles,
in the regime where formation of self-bound droplets is expected. The total energy is
computed as a function of the total number of particles and the validity of the liquid
drop model for this kind of system is verified. From the parameters of this model the
Tolman length is computed, which allow us to calculate a curvature correction to the
surface tension.

4.1 The total energy model for a liquid droplet

After the analysis of the surface properties, the microscopic characterization of a 41K-87Rb
droplet is not complete without the knowledge of the total energy. From past computations
on liquid 4He droplets [24–26] we know that the liquid-drop model (LDM) accurately
predicts the behaviour of the energy as a function of the total number of particles. Accord-
ing to this model the total energy E of a droplet made of N particles is well represented
by the following semi-empirical formula [27]:

E(N) = EvN + EsN
2/3 + EcN

1/3 (4.1)

• The first term is the volume energy: the coefficient Ev describes the bulk energy
per particle of the droplet.

• The second term is the surface energy: the coefficient Es is linked to the surface
tension σ by the following relation

σ =
Es
4πr20

(4.2)

where r0 is the unit radius of the droplet computed from

4πr30ρbulk
3

= 1 (4.3)

A detailed explanation of relation (4.2) will be given in section 4.2.

• The third term is the curvature energy: the coefficient Ec is linked to the Tolman
length, which describes curvature effects on the surface tension [23].
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Figure 4.1: Total energy of a droplet as a function of 1/N1/3 for a set of four different a12 values.
Square points are ground state energies per particle obtained from the imaginary time evolution
of a droplet with a fixed number of particles N , solid lines are the fitting curves according to
the semi-empirical liquid-drop model and red points at zero x-axis are energies per particle of an
infinitely large drop (bulk energies).

With the same technique explained in section 3.3, we perform a numerical imaginary time
evolution in a three dimensional mesh to find the ground state structure of a droplet and
compute its total energy. In figure 4.1 we report total energies as a function of 1/N1/3

for a set of four different values of a12 while in figures 4.2 and 4.3 the densities of the
droplet in the x− y plane are illustrated for a12 = −85a0 and a12 = −96a0, respectively.
By decreasing the scattering length, i.e. by making the system more attractive, we can
observe that the central bulk density increases, the size of the drop squeezes and the
surface width becomes visibly smaller.
The ground state energies per particle of the droplet obtained from the imaginary time

evolution (square points) are fitted with the semi-empirical formula (4.1) of the liquid-drop
model (solid lines) written in the following way:

E(N)

N
= Ev + Esx+ Ecx

2 (4.4)

with x = N−1/3. The bulk energies per particle computed in chapter 2.2 (see figure 2.2)
are the red points at zero x-axis to enhance at first sight their compatibility with the
constant parameters Ev of the fitting curves. In table 4.1 fitting parameters are reported.
As a proof of the accuracy of the fit, in table 4.2 some comparisons are reported:

• The correspondence between the fitting parameter Ev and the bulk energy per parti-
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Figure 4.2: Density in atomic units in the x − y plane passing through the droplet center for a
droplet in free space with a12 = −85 a0.
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Figure 4.3: Density in atomic units in the x − y plane passing through the droplet center for a
droplet in free space with a12 = −96 a0.
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Figure 4.4: Zoom of the total energy of a droplet in a 3D mesh as a function of 1/N1/3 for a set
of a12 values in the region of big N , to focus on the deviations from the LDM.

a12 (units of a0) Ev (Ha) Es (Ha) Ec (Ha)

-85 −1.50 · 10−14 3.26 · 10−13 3.17 · 10−12

-96 −1.50 · 10−13 1.76 · 10−12 9.39 · 10−12

-100 −2.55 · 10−13 2.52 · 10−12 1.32 · 10−11

-110 −7.09 · 10−13 5.24 · 10−12 2.15 · 10−11

Table 4.1: Fitting parameters of the energy per particle with the liquid-drop model.

a12 (units of a0) Ev (Ha) Ebulk (Ha) σfit (Ha/a
2
0) σbulk (Ha/a20)

-85 −1.50 · 10−14 −1.53 · 10−14 1.95 · 10−20 1.97 · 10−20

-96 −1.50 · 10−13 −1.51 · 10−13 2.91 · 10−19 2.86 · 10−19

-100 −2.55 · 10−13 −2.57 · 10−13 5.29 · 10−19 5.32 · 10−19

-110 −7.08 · 10−13 −7.18 · 10−13 1.74 · 10−18 1.76 · 10−18

Table 4.2: Comparison between Ev and the bulk energy per particle and comparison between the
surface tension σfit obtained from Es and σnum obtained from the numerical method discussed in
the previous chapter (see figure 3.8).
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cle of an infinitely large drop in the equilibrium configuration, computed numerically
in chapter 2.

• The correspondence between the surface tension σfit obtained from the fitting pa-
rameter according to relation (4.2) and the one σnum obtained by the numerical
method as seen in section 3.2.

The evident agreement is a test of validity of the liquid-drop model on a BECs mixture
system in the self-bound regime.
By the way, focusing on the region of small N we observed some deviations from the model
(see figure 4.4): this can lead back to the fact that under a certain value of N the bulk por-
tion of the droplet vanishes and so energy contributions are no more distributed according
to the liquid-drop model. Explicitly, for a12 = −96a0 and a12 = −100a0 deviations around
1/N1/3 ∼ 0.045 correspond to droplets with N ∼ 10000 particles. For these cases, the
absence of the bulk region is confirmed by the map in figure 3.15: the points (96, 10000)
and (100, 10000) belong to the red region which marks droplets with gaussian-like radial
density profile.
Assuming the reliability of this model, the third fitting parameter Ec connected to the
curvature of the liquid-vacuum interface allows to make a correction of the surface tension
σ computed before, as discussed in the following sections.

4.2 The Tolman length

In 1949, Tolman studied the dependence of the surface tension on the size of a droplet
[28]. The so-called Tolman length δ, a small quantity, independent on the droplet size,
conveniently defined in terms of an expansion in 1/R of the pressure difference across the
droplets surface, where R is the radius of the droplet:

∆P =
2σ0
R

(︃
1− δ

R

)︃
(4.5)

with ∆P the difference between the bulk pressure inside the liquid and the one of the
vapor outside and σ0 the surface tension of a planar interface. The Tolman length is also
useful to define the size-dependent surface tension σ(R) [23, 29, 30]:

σ(R) = σ0

(︃
1− 2δ

R

)︃
(4.6)

obtained from an expansion at first order on 1/R.
So far, the surface tension computed in chapter 3 for a 41K - 87Rb droplet was that one
of a planar interface (that from now we call σ0 to distinguish it from the size-dependent
one), though in real droplets an interfacial curvature of the surface in contact with the
vacuum is present (see figure 4.5).
As illustrated in figures 4.6 and 4.7, the Tolman length δ is negative for interfaces that
tend to curve towards the liquid and positive for those that tend to curve towards the
vacuum. For this reason, we expect a negative Tolman length for 41K - 87Rb droplets and,
as a consequence, the corrected surface tension would be greater than the planar one and
it would approach to it for R→ +∞.
The Tolman length can be computed from the third fitting parameter of the liquid-drop
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Figure 4.5: On the left: planar liquid-vapor interface with surface tension σ0. On the right:
droplet’s liquid-vapor interface with surface tension σ(R) affected by the interfacial curvature.
Images taken from [31].
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Vacuum

δ < 0

Figure 4.6: The Tolman length δ is negative for interfaces that tend to curve towards the liquid.

Vacuum

Liquid

δ > 0

Figure 4.7: The Tolman length δ is positive for interfaces that tend to curve towards the vacuum.
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model Ec. In fact, for a free droplet:

Etot =Ebulk + Esc (4.7)

where Esc is the energy contribution given by a curved surface. This last term can be
written as:

Esc = 4πR2σ (4.8)

with σ given by equation (4.6).
Since the liquid-drop model and equation (4.7) describe the same system, we can write:

Ebulk + 4πr2σ = EvN + EsN
2/3 + EcN

1/3 (4.9)

The one to one correspondence between Ebulk/N and Ev was already discussed, we can
conclude that the surface and curvature terms of the liquid-drop model are both contained
in Esc = 4πR2σ. The explicit form of Esc is:

Esc = 4πR2σ0

(︃
1− 2δ

R

)︃
=

= 4πR2σ0 − 4πR2σ0
2δ

R

(4.10)

Recalling that from the relation 4
3πR

3ρbluk = N , the radius R of the droplet can be written
as:

R =

(︃
3N

4πρbulk

)︃1/3

= r0N
1/3 (4.11)

where r0 is the unit radius previously defined in (4.3). Using this relation, we find:

Esc =4πr20σ0⏞ ⏟⏟ ⏞
Es

N2/3− 8πr20σ0δ⏞ ⏟⏟ ⏞
Ec

N1/3

(4.12)

where the association with the liquid-drop model coefficients is immediate according to
the powers of N . In this way, we demonstrated the connection between Es and σ0 given by
equation (4.2) and we found a direct relation between the coefficient Ec and the Tolman
length δ:

Ec = 8πr20σ0δ (4.13)

More recently, by a thermodynamic treatment Bartell derived an approximated expression
for the Tolman length in terms of the isothermal compressibility κ−1 [32], in particular:

δ ≈ −κ−1σ0 (4.14)

where σ0 is the surface tension of the planar interface. Previously, some studies have
noticed that the product κ−1σ0 is a fundamental characteristic length in liquid droplets
[33–37] though the connection with the Tolman δ was never explicitly made. It is quite
interesting to observe how the Tolman length, a physical quantity linked to the curvature
of an interface, can be computed as a product of a purely bulk property with a purely
surface one. This approximation reflects a the origin of the interfacial curvature, that can
be seen as the mutual combination of a self-bound state’s bulk region and an interrupting
surface region of finite size.
Figure 4.8 shows δ values computed with the two methods: the approximated expression
connected to the isothermal compressibility predicts correctly the sign and the order of
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Figure 4.8: Tolman length δ as a function of the interspecies scattering length a12.

magnitude of δ and, near the critical point, it is in good agreement with the Tolman
length obtained from the liquid-drop model. This is reasonable: the approximated expres-
sion was obtained in the limit of large droplet radius R [32], that is a valid hypothesis if
we approach to the critical point of the 41K - 87Rb droplet.

4.3 The surface tension correction

Once the Tolman length for a given a12 in the self-bound regime has been calculated, the
magnitude of the size-dependent surface tension affected by the finite size R of the droplet
and its interfacial curvature can be computed by the equation (4.6):

σ(R) = σ0

(︃
1− 2δ

R

)︃
In figure 4.9 we show the dependence of the corrected surface tension σ as a function of
the droplet’s total number of particles N .
As a consequence of the negative sign of the Tolman length, the corrected size-dependent
σ is greater than the planar surface tension and it decreases monotonically with increas-
ing droplet size. With this last correction the analysis of the surface tension is complete
and, from an experimental point of view, this quantity can be helpful to study collisions
between self-bound droplets. In fact, when two drops approach each other with a certain
relative velocity, after the collision they can merge in a single final drop or divide in two or
more drops, depending on whether or not the surface tension is sufficient to resist against
the kinetic energy of the colliding pair [38–41]. Collisions between self-bound quantum
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droplets formed by a mixture of 39K atoms were studied experimentally at LENS: firstly,
two separated quantum droplets are created using a repulsive barrier, then, by releasing
it, they acquire a certain tunable velocity towards the center of the system. According
to the value of the relative velocity v, there are two different outcomes of the collision:
if the colliding velocity is smaller than a critical value vc, the droplets merge in a single
final one, while for velocities larger than vc they remain separate and they keep moving
in opposite directions after the collisional event, as shown in figure 4.10.

Figure 4.10: Examples of two collisional events resulting in merging (a) and separation (d) of the
droplets. In b) and e) there are the time evolution of the distance d in µm between the two droplets
and in c) and f) of the total atom number N .

The possibility to have single merged droplet after the collision is related to the capability
to absorb the excess kinetic energy Ekin ∝ v2N . For a big number of particles N , the rele-
vant energy contribution which can host excitations to absorb the collision kinetic energy,
is the surface energy provided by the second term of the liquid-drop model proportional
to N2/3: in fact, the bulk term is conserved during the collision and the curvature energy
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term is negligible for large values of N [38]. Thus, in analogy to the Weber criterion for
classical liquid droplets [42], the condition for merging is given by Ekin ≲ EsN

2/3.
Instead, in the case of a small number of particles N (the region where deviations from
the liquid drop model have been observed) there is no longer distinction between bulk and
surface regions and one would expect the whole binding energy of the droplet to be the
relevant energy scale.
In conclusion, it is clear that surface tension plays a crucial role in probing the dynamical
properties droplets made of a bosonic binary mixture with a large number of particles (the
so-called “true” droplets) and, in particular, the study of collisions with the 41K-87Rb mix-
ture could be interesting to better investigate this dynamics since these mixture droplets
have the advantage of a longer lifetime, due to a lower three-body recombination rate, as
explained in the introduction.
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Chapter 5

Bright solitons in mixtures of
Bose-Einstein condensates

In this chapter we study Bose-condensed bright soliton states of a system in a quasi-1D
configuration. The origin of this localized and non-dispersive wave packet is first inves-
tigated in a single-species BEC made of ultracold and ultradilute atoms with attractive
interaction. Then, the study is extended to the heteronuclear 41K - 87Rb mixture in an
optical waveguide: we develop a variational model to show the transition between solitons
and droplets, according to the atom number and interspecies interaction strength, and the
presence of a bistable region in which both states coexist. Finally, we perform a numerical
simulation to show the soliton evaporation when releasing the external trap.

5.1 The bright soliton state in a BEC

In a Bose-Einstein condensate, solitons are localized wave packets that can propagate
without distortion as a result of the balance between non-linearity and dispersion [43].
In a BEC of ultracold and dilute atoms, the non-linearity originates from the atomic in-
teractions, as manifested by the nonlinear term in the Gross-Pitaevskii equation which
describes the system at a mean field level. Depending on attractive and repulsive inter-
atomic interactions, these localized solutions of the GPE are called bright or dark solitons,
respectively, and in the last year they have been studied extensively both theoretically [44–
46] and experimentally [47–49].
The simplest way to see the origin of a localized state for a Bose gas with attractive inter-
action between atoms in an external trapping potential, is to consider the expression of
the total energy E for a D-dimensional BEC (characterized by a contact interaction and
treated at the mean-field level) with a fixed total number of atoms N :

E =

∫︂
dDr

(︃
ℏ2

2m
|∇Ψ(r)|2 + U |Ψ(r)|2 + g

2
|Ψ(r)|4

)︃
(5.1)

N =

∫︂
dDr |Ψ(r)|2 (5.2)

with U external harmonic trap (U ∼ r2), g = 4πℏ2as
m < 0 the coupling constant of the

interatomic interaction and Ψ(r) is the normalized condensate wave function.
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Assuming that L is the typical system size, from the normalization condition:

[Ψ] ∼
√
N

LD/2
(5.3)

For example, using a Gaussian ansatz the condensate wave function reads:

Ψ(r) ∝
√
N

σD/2
e−

r2

2σ2 (5.4)

where the variance σ has the role of characteristic size of the state.
From the dimensional analysis of each term of the total energy expression (the kinetic, the
external potential and the interaction term, respectively) one gets:

Ekin ∼ N

L2
Epot ∼ NL2 Eint ∼

N2

LD
(5.5)

Thus, the total energy reads:

E ∼ aN

L2
+ bNL2 − cN2

LD
(5.6)

with a, b, c > 0 constants related to the physical quantities of the system.
We can distinguish the three cases:

• If D = 1, the total energy

E ∼ aN

L2
+ bNL2 − cN2

L
(5.7)

has always a minimum for a finite value of L and without any restriction for N , i.e.
a localized, stable state exists and the collapse of the system is avoided (see figure
5.1).

• If D = 2 the total energy

E ∼ aN

L2
+ bNL2 − cN2

L2
=
N(a− cN)

L2
+ bNL2 (5.8)

has a minimum for a finite value of L only if (a − cN) > 0, or equivalently only if
the total number of particles N is under a certain threshold Nc = a/c (see figure
5.2). This restriction on the number of particles N is limited to BEC with short-
range attractive potential, in the case of long-range interaction (for example dipolar
interaction) stable 2D bright solitons can exist [50].

• If D = 3 the total energy is

E ∼ aN

L2
+ bNL2 − cN2

L3
(5.9)

and a metastable state, result of the balance between the kinetic energy, the trap
potential energy and the interaction energy, can exist in a 3D BEC with trapping
potential if the number of atoms is below a critical one Nc (see figure 5.3). In this
case, the critical number of atoms must be computed numerically.
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Figure 5.1: Total energy E as a function of the typical system size L for a 1D BEC (numerical
constants a, b and c are put equal to 1).
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Figure 5.2: Total energy E as a function of the typical system size L for a 2D BEC (numerical
constants a, b and c are put equal to 1, so also Nc = 1). Solid line represent the case in which the
soliton state is stable (N = 0.2 < Nc), the dashed line represents the case for which a self-bound
state does not exist (N = 2 > Nc) .
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Figure 5.3: Total energy E as a function of the typical system size L for a 3D BEC (numerical
constants a, b and c are put equal to 1). In this case, the critical number of particles is computed
graphically Nc ∼ 0.35 (see image 5.4), solid line represent a case in which the soliton state is stable
(N = 0.1 < Nc), the dashed line represents a case for which a self-bound state does not exist
(N = 1.5 > Nc).
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Figure 5.4: Graphic solution of ∂E
∂L = 0 to find approximately the critical number of atoms for

which the confined state exists for this simple toy model in 3D with a, b, c = 1: the green surface is
the derivative of the total energy with respect to L as a function of L and N , the orange surface is
the plane ∂E

∂L = 0. These two surfaces intersect (so the the total energy has a metastable minimum
for a finite value of L) only if N is less then Nc ∼ 0.35.

This simple model predicts the existence of a stable, localized state state for each value of
N for a system in a 1D configuration, but a more detailed description allows to find the
exactly solution of the bright soliton state.
Static and dynamical properties of a pure Bose-Einstein condensate made of dilute and
ultracold atoms are very well described by the time-dependent Gross-Pitaevskii equation:

iℏ
∂

∂t
Ψ(r, t) =

[︃
ℏ2

2m
∇2 + U(r) +

4πℏ2as
m

|Ψ(r, t)|2
]︃
Ψ(r, t) (5.10)

where Ψ(r, t) is the condensate wavefunction defined in chapter 1, m is the mass of the
species of atoms that composes the BEC and as is the s-wave scattering length. It is
the time-dependent version of the GPE seen in equation (1.24), obtained starting from
the time-dependent many-particle Schrödinger equation in the mean field approximation.
We are interested in a dimensional reduced system in a quasi-1D configuration, so let us
consider a very strong harmonic confinement only along x and y axis such that the total
external trap is:

U (r) =
1

2
mω2

⊥(x
2 + y2) (5.11)

From this choice, we can guess the following ansatz for the condensate wave function
Ψ(r, t) [51]:

Ψ(r, t) = f(z, t)

√
N

π1/2a⊥
exp

(︃
x2 + y2

2a2⊥

)︃
(5.12)

The quantity a⊥ =
√︂

ℏ
mω⊥

is the characteristic length of the harmonic confinement along

x and y axis while the function f(z, t) is the condensate wave function along the free
z axis. In other words, one can decouple the total wave function in a general function
along z (longitudinal direction) and a gaussian wave packet along the directions with the
harmonic confinement (transverse direction).
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Figure 5.5: Density profile of the bright soliton state along z in the moving frame of reference with
velocity v three values of the effective one-dimensional interaction strength γ (for semplicity, m
and ℏ are set to 1).

By inserting this ansatz in equation (5.10) and integrating along the confined directions,
the effective dimensional reduced time-dependent GPE along the free direction z is:

iℏ
∂

∂t
f(z, t) =

[︃
ℏ2

2m

∂2

∂z2
+ γ|f(z, t)|2

]︃
f(z, t) (5.13)

where γ = 2ℏ2as
ma2⊥

is the effective one-dimensional interaction strength.

Equation (5.13) is a time-dependent 1D non-linear Schrödinger equation and in 1972 it
was demonstrated that, for attractive interatomic interaction (γ < 0), an exact solution
is the bright soliton wave packet of the form [15, 51, 52]

f(z, t) =

√︃
m|γ|
8ℏ2

sech

[︃
m|γ|
4ℏ2

(z − vt)

]︃
eiv(z−vt)e

(︃
i
mv2/2−µ

ℏ t

)︃
(5.14)

where v is the velocity of propagation, µ = −mγ2

16ℏ2 and sech[x] = 2
ex+e−x is the hyperbolic

secant function. A detailed derivation of the analytical form of this solution is in Appendix
A.
The shape invariant density profile along z is:

n(z, t) = |f(z, t)|2 =
⃓⃓⃓⃓√︃

m|γ|
8ℏ2

sech

[︃
m|γ|
4ℏ2

(z − vt)

]︃⃓⃓⃓⃓2
(5.15)

Setting the new variable ξ = z − vt, so operating in the moving frame of reference, the
density profile along ξ is illustrated in figure 5.5 for some values of the parameter γ.
Even if in the following sections we are interested in the attractive interatomic interaction
case, for completeness, we report here also the case of repulsive interaction (γ > 0). In
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Figure 5.6: Root mean square size σ of the BEC state width along the longitudinal direction vs
propagation time t for different values of the s-wave scattering length as. The solid line represents
the numerical solution of the time-dependent GPE, the dashed line is the ideal gas solution of the
GPE and black points are experimental data from [48]. Figures taken from [51].

this regard, an exact solution is the dark soliton wave packet [13, 15]:

f(z, t) =

√︄
γϕ2∞ −mv2

γ

(︄
tanh

[︂
(z − vt)

√︁
γϕ2∞ − v2

]︂
+ i

√︄
mv2

γϕ2∞ −mv2

)︄
e−iµt/ℏ (5.16)

where ϕ∞ is the asymptotic constant value of |f(z, t)|, v is again the velocity of propagation
and µ = γϕ2∞. At variance with the bright soliton solution (5.14), where the density reaches
a maximum at the center of the soliton, the dark soliton solution is instead characterized
by a central region which is void of atoms.
In 2002 two relevant studies about bright solitons in Bose-Einstein condensates with 7Li
[47, 48] atoms were made. In their experiment, Khaykovich et al. [48] measured the root
mean square size σ of the longitudinal width of the self-bound state at different time for
three values of the scattering length as, tuned by means of Feshbach resonances technique:
as = 0 nm, as = 0.11 nm, and as = 0.21 nm. In figure 5.6 there are experimental data
compared to the numerical solution of the 1D time dependent GPE: the MF interaction
term (thus the non-linear term in the GPE) makes the soliton move without dispersion, as
highlighted by the constant variance σ, while an ideal Bose gas without interaction moves
spreading along the longitudinal axis.
Strecker et al. [47], instead, reported the experimental formation of a train of bright
solitons in a quasi-1D BEC system of 7Li atoms by a sudden change in the sign of the
scattering length from positive to negative. As shown in figure 5.7, the condensate spreads
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Figure 5.7: On the left: experimental observation of a spreading condensate for a > 0. On the
right: experimental observation of a soliton train for a < 0. In both cases, the condensate state
is set in motion by offsetting the optical potential and it is observed to propagate in the potential
for many oscillatory cycles. Figures taken from [51].

for positive scattering length a > 0, while for a < 0 the solitonic non-dispersive and
localized structures are formed. In the second case, once the scattering length have changed
from positive to negative at t = 0, the number of solitons produced is the result of
modulational instability of the time-dependent macroscopic wave function of the Bose
condensate and it depends on the absolute value of the final negative scattering length
|a|, on the characteristic length of transverse harmonic confinement a⊥ and on the initial
longitudinal length of the quasi-1D BEC L (see [53] for more details).
The experimental study of bright solitons in ultracold atoms is an hot topic in this field and
it is interesting the application on bosonic binary mixtures, as discussed in the following.

5.2 Variational study of the soliton-droplet transition in a
41K - 87Rb mixture in an optical waveguide

In this section we study a system which can host both bright solitons and quantum
droplets, two different localized states that exist in different regimes. We consider a
system made of a bosonic 41K - 87Rb mixture with attractive interspecies interaction in
an optical waveguide: this system can host quantum droplets as discussed in previous
chapters but the optical waveguide confers a quasi-1D configuration which favours the
soliton appearance. A variational approach allows to study the nature of the localized
state in this kind of system, focusing on the transition from soliton to quantum droplet
upon increasing the atom number.
The system is exactly the same described in the previous chapters but it is confined along
x-axis and y-axis by an harmonic trap (transverse directions) while it is free along the
z-axis (longitudinal direction).
We can perform a variational study using a gaussian ansatz for the wavefunction of 41K,
the first component of the mixture:

ϕ1 = A e
− R2

2σ2
R e

− z2

2σ2
z (5.17)
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where σz is the typical longitudinal extension of the system, σR is the typical extension of
the system along the transverse confined direction and R =

√︁
x2 + y2 is the modulus of a

vector that belongs to the transverse radial direction. The factor A is the normalization
constant that can be found by imposing the normalization to the fix number of particles
of the first component N1:

N1 =

∫︂
d3r |ϕ1(r)|2 = A2 2π

∫︂ +∞

0
dRR

∫︂ +∞

−∞
dz e

−R2

σ2
R e

− z2

σ2
z = A2 π3/2σzσ

2
R (5.18)

from which

A =

(︃
N1

π3/2σzσ2R

)︃1/2

(5.19)

Hence, the wave functions of the two components of the mixture are:

ϕ1(z,R) =

(︃
N1

π3/2σzσ2R

)︃1/2

e
− R2

2σ2
R e

− z2

2σ2
z (5.20)

ϕ2(z,R) =

(︃
N1

π3/2σzσ2R

√︃
g11
g22

)︃1/2

e
− R2

2σ2
R e

− z2

2σ2
z (5.21)

where, recalling the computations in chapter 3, we used again the assumption that the
ratio between densities (and thus between the number of particles) is fixed everywhere
and equal to:

ρ1
ρ2

=
|ϕ1|2

|ϕ2|2
=

√︃
g22
g11

(5.22)

Assuming an external transverse harmonic potential with characteristic frequency ω1 for
the 41K component and ω2 for the 87Rb component, the total energy expression for this
heteronuclear mixture is:

E =

∫︂
dr

[︃
ℏ2

2m1
|∇ϕ1|2 +

ℏ2

2m2
|∇ϕ2|2 +

1

2
g11|ϕ1|4 +

1

2
g22|ϕ2|4 + g12|ϕ1|2|ϕ2|2+

+
1

2
m1ω1R

2|ϕ1|2 ++
1

2
m2ω2R

2|ϕ2|2 + ELHY

(︁
|ϕ1|2, |ϕ2|2

)︁ ]︃ (5.23)

It is the same energy functional for a bosonic mixture seen in chapter 3, with the addition
of the harmonic potential terms for the two species, that are the fundamental tool for the
dimensional reduction of the system.
By inserting ϕ1(z,R) and ϕ2(z,R) given by equations (B.1) and (B.2), we compute all the
energy contributions as a function of the free parameters of the wave functions σz and σR
(for a detailed description of all computations see Appendix B). To simplify the notation
we define the following coefficients:

a =
ℏ2

2

N1

2

(︃
1

m1
+

1

m2

√︃
g11
g22

)︃
(5.24)

b =
1

25/2
N2

1

π3/2
(2g11 + 2g12

√
g11g22) =

1

23/2
N2

1

π3/2

√︃
g11
g22

δg (5.25)

c =
N1

2

(︃
m1ω

2
1 +m2ω

2
2

√︃
g11
g22

)︃
(5.26)
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d =
16

15
√
π
f̄
√
2

(︃
g11N1

π3/2

)︃5/2 (︂m1

5ℏ2
)︂3/2

(5.27)

where δg is the parameter defined in equation (1.37) and f̄ is the constant value of the
function f defined in section for a fixed ratio between densities.
With this notation, the total energy for the bosonic mixture under a transverse harmonic
confinement as a function of the free variational parameters σR and σz reads:

E = a

(︃
2σ2z + σ2R
σ2zσ

2
R

)︃
+ b

(︃
1

σzσ2R

)︃
+ c σ2R + d

(︃
1

σzσ2R

)︃3/2

(5.28)

A numerical simulation is performed to find the values of parameters σz and σR that
minimize the total energy for a fixed value of particles N and for a given interspecies
scattering length a12.
In particular, simulation are performed using the following parameters:

ω1 = 100Hz (5.29)

ω2 = 80Hz (5.30)

ωm =
√
ω1ω2 ≈ 90Hz (5.31)

aho =

√︃
ℏ

mrωm
≈ 9.5 · 105 a0 (5.32)

where ωm is the geometrical average of the two frequencies, aho the characteristic size
along the transverse directions and mr the reduced mass. Notice that in the total energy
expression we are taking into account quantum fluctuations embodied in the Lee-Huang-
Yang term so the droplets formation is possible above a critical number of atoms. We
expect that for small values of N the energy has a single minimum corresponding to a
dilute and elongated bright soliton state and that for large values ofN the energy minimum
corresponds to a dense solution with a spatial extension σz ∼ σR ≪ aho, that is a quantum
self-bound droplet [8].
Figures 5.8, 5.9 and 5.10 show some results:

• For the given scattering length a12 = −90 a0, the nature of the self-bound state
changes from soliton-like to droplet-like by increasing the number of particles N , as
expected. The soliton state has a longitudinal size σz larger then the transverse size
σR, instead for the droplet they are comparable and smaller than the characteristic
harmonic length (σz ∼ σR ≪ aho), as expected. The crossover between soliton and
droplet state is continuous, as proved by the fact that the total energy (computed
for variational parameters selected by the minimization) is a continuous function of
the total number of particles N (see figure 5.10(a)). Figures 5.8 show the energy as a
function of the radial σR and longitudinal σz size for N = 2000 (soliton), N = 4000
(crossover region) and N = 6000 (droplet).

• For the given scattering length a12 = −98 a0, again the nature of the self-bound state
changes from soliton-like to droplet-like by increasing the number of particlesN but a
bistable region exists. For a certain number of particle range, both solutions coexist
as proved by the fact that the total energy computed for variational parameters
selected by the minimization can have two minima (see figure 5.10(b)). Figures 5.9
show the energy as a function of the radial σR and longitudinal σz size for N = 1500
(soliton), N = 1900 (bistable region) and N = 3000 (droplet).
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(a) N = 2000, soliton state.

(b) N = 4000, crossover region.

(c) N = 6000, quantum droplet.

Figure 5.8: The maps show the energy of the self-bound state for a12 = −90 a0 as a function of
the radial σR and longitudinal σz size for N = 2000 (soliton), N = 4000 (crossover region) ans
N = 4000 (droplet).
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(a) N = 1500, soliton state.

(b) N = 1900, bistable region.

(c) N = 3000, quantum droplet.

Figure 5.9: The maps show the energy of the self-bound state for a12 = −98 a0 as a function of
the radial σR and longitudinal σz size for N = 1500 (soliton), N = 1900 (bistable region) ans
N = 3000 (droplet).
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Figure 5.10: Total energy computed for the variational parameters selected by the minimization
as function of the total number of particles N : (a) for a12 = −90 a0 the continuous trend confirms
the absence of a bistable region in which both bright soliton states and droplets coexist while (b)
for a12 = −98 a0 in the range 1800 ≲ N ≲ 2050 both bright soliton states and droplets coexist.

(a) a12 = −90 a0, soliton. (b) a12 = −96 a0, soliton.

(c) a12 = −97 a0, bistable region. (d) a12 = −98 a0, droplet.

Figure 5.11: By keeping constant the total number of particles to N = 2000, the self-bound state
moves from soliton-like to droplet-like when as decreases from as = −90 a0 to as = −98 a0 passing
through the bistable region.
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Figure 5.12: Soliton-to-droplet diagram: ground state peak density as a function of the total
number of particles N and the scattering length a12. The red region (top left) identifies the
droplet regime, the orange region (bottom right) identifies the bright solitons solutions, the the
black area (bottom left) is the bistable region where both the bright soliton state and the quantum
droplet can exist.

Figure 5.11 shows how the self-bound ground state moves from soliton-like to droplet-like
when as decreases from as = −90 a0 to as = −98 a0 passing through the bistable region,
this time for a fixed number of particles N = 2000.
All these information can be summed in the final soliton-to-droplet diagram in figure
5.12, obtained by computing the ground state peak density of the the mixture in a quasi-
1D system from the numerical solution of the two coupled Gross-Pitaevskii equations.
The two condensate wave functions ψ1 and ψ2 associated to the mixture components are
again connected to the numerical density as ρi = |ψi|2 for i = 1, 2. The imaginary time
technique is used again to solve:⎧⎪⎨⎪⎩

(︂
− ℏ2

2m1
∇2 + V1 (ρ1, ρ2)

)︂
ψ1 = µ1ψ1(︂

− ℏ2
2m2

∇2 + V2 (ρ1, ρ2)
)︂
ψ2 = µ2ψ2

(5.33)

where µi is the chemical potential of the i species and

V1 = g11ρ1 + g12ρ2 +
1

2
m1ω

2
1 (x

2 + y2) +
δELHY

δρ1
(5.34)

V2 = g22ρ2 + g12ρ1 +
1

2
m2ω

2
2 (x

2 + y2) +
δELHY

δρ2
(5.35)

that are the effective potentials felt by each species of the mixture in presence of an
external harmonic confinement along x-axis and y-axis. In figure 5.12, the color scales like
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the ground state peak density represented in function of the interspecies scattering length
a12 and the total number of particles N . The black area is the bistable region computed
from the variational method by selecting the range in which energy has two minima, for
a given a12: it becomes smoothly connected in the crossover region around a12 ∼ −94 a0.
The red region (top left) identifies the droplet regime, where the solution of the GPE is a
dense and isotropic self-bound state with σR ∼ σz ≪ aho, while the orange region (bottom
right) identifies the bright solitons solutions of the GPE, more diluted and elongated along
the longitudinal axis.

5.3 Real time evolution of the soliton state

One of the fundamental features of the bright soliton state is that it is linked to the
quasi-1D configuration of the system, i.e., once the trap is released, it evaporates, while a
quantum droplet remains stable also in free-space, as discussed in the previous chapters.
Starting from the solitonic ground state of the 41K-87Rb bosonic mixture affected by the
harmonic confinement along y and z, a numerical simulation is performed to study the real-
time evolution of the system. At time t = 0 the external trap is released and the evolution
is made by solving numerically the two coupled time-dependent Gross-Pitaevskii equation
in free-space: ⎧⎪⎨⎪⎩

(︂
− ℏ2

2m1
∇2 + V1 (ρ1, ρ2)

)︂
ψ1 = iℏ∂ψ1

∂t(︂
− ℏ2

2m2
∇2 + V2 (ρ1, ρ2)

)︂
ψ2 = iℏ∂ψ2

∂t

(5.36)

where

V1 = g11ρ1 + g12ρ2 +
δELHY

δρ1
(5.37)

V2 = g22ρ2 + g12ρ1 +
δELHY

δρ2
(5.38)

The initial condition of the system is given by the ground state density of the trapped
system, computed by an imaginary time evolution. In figure 5.13 some ground states are
represented in the plane x − y with N ≈ 33000, ωz,1 = ωy,1 = 120Hz and ωz,2 = ωy,2 =
80Hz for a set of a12 values. For a12 = −80 a0 the system has an elongated and dilute
solitonic state, by increasing the absolute value of a12 it approaches more and more to
a dense localized droplet. Since we want to study a soliton evaporation, the real-time
evolution will be done for a system with a12 = −80 a0 with the initial condition given by
the ground state density shown in figure 5.13(a).
The numerical method used to solve these GP equations is the Predictor-Modifier-
Corrector method that is a variation of the predictor-corrector method for the solution
of ordinary differential equations [54]. In general, given a differential equation

dy

dx
= f(x, y) y

′
i =

dy

dx

⃓⃓
x=xi

(5.39)

a predictor-corrector algorithm performs the following steps:

• Predict the value of y at x = xn+1, called ȳn+1 (prediction).

• Using the differential equation, calculate ȳ
′
n+1 = f(xn+1, ȳn+1).

• Calculate again a new yn+1, using an iterative formula (correction).

• Repeat these two last steps until yn+1 reaches convergence.
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(a) a12 = −80 a0. (b) a12 = −82 a0.

(c) a12 = −84 a0. (d) a12 = −86 a0.

Figure 5.13: Ground state densities of 41K-87Rb bosonic mixture in a quasi-1D configuration in
the plane x− y for a set of four values of the scattering length a12.
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The advantage of the iterative integration formula is the high accuracy they achieve at
each step, however the successive recalculations of f(x, y) at each step until convergence
is reached could be a disadvantage for the large computational cost. One way of avoiding
the iteration is to accept the first value of the corrector as yn+1 or, a more sophisticated
non-iterative variation is the Predictor-Modifier-Corrector method given by the following
set of equations:

• The value of yn+1 is predicted with pn+1:

pn+1 = yn−3 +
4h

3
(2y

′
n − y

′
n−1 + 2y

′
n−2) (5.40)

where h = xi+1 − xi is the space step.

• The predictor is modified by mn+1:

mn+1 = pn+1 −
28

29
(pn − cn) (5.41)

with
m

′
n+1 = f(xn+1,mn+1) (5.42)

• The corrector cn+1 is computed:

cn+1 = yn−1 +
h

3

(︂
m

′
n+1 + 4y

′
n + y

′
n−1

)︂
(5.43)

• The final value of yn+1 is:

yn+1 = cn+1 +
1

29
(pn+1 − cn+1) (5.44)

Due to the absence of iteration, since only two values of f(x, y) are computed at each step,
this method is optimized for this kind of time evolution and it is also stable.
In figure 5.14 there is the real time evolution of the solitonic state in the x− y plane with
the corresponding time evolution of the density along the transverse direction y integrated
along x and z. The density range in the figures is kept constant and, as expected, the
soliton evaporates in a few milliseconds and, in particular, it expands isotropically along
the directions where it was previously confined.
In conclusion, the optical waveguide plays a crucial role for a bosonic binary mixture,
which can host both bright solitons and quantum droplets in this configuration. The
releasing of the external trap clearly reveals the nature of the two self-bound state: while
a droplet is stable in free-space, the soliton evaporates and the absence of the trapping
potential leads to a complete dissipation of the localised wave packet. Another interesting
experimental possibility for the future could be the study of collisions between bright
solitons in mixture of Bose-Einstein condensates in comparison to droplets collisions, for
a deeper investigation of dynamical properties of the localized quantum states in BECs
[55, 56].

68



(a) t = 0.35ms.

	0

	0.1

	0.2

	0.3

	0.4

	0.5

-200000 -150000 -100000 -50000 	0 	50000 	100000 	150000 	200000

D
en
si
ty
	(i
nt
eg
ra
te
d	
al
on
g	
x	
an
d	
z)

y	(unit	of	a0)

41K	(1°	component)
87Rb	(2°	component)

(b) t = 0.35ms.

(c) t = 1.78ms.
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(d) t = 1.78ms.

(e) t = 3.55ms.
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(f) t = 3.55ms.

(g) t = 7.12ms.
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Figure 5.14: Left column: real time evolution of the soliton state in the x−y plane. Right column:
real time evolution of the density along y integrated along x and z.69
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Conclusions

In this thesis we studied a bosonic 41K-87Rb mixture of Bose–Einstein condensates with
tunable interspecies interaction in the self-bound regime by means of numerical simu-
lations based on the Density Functional Theory. The competition between the mean-
field interspecies attraction and the Lee-Huang-Yang beyond mean-field repulsion leads
to the droplet formation with numerical densities of an order of magnitude of 1014 − 1015

atoms/cm3, an extremely low density compared to any other existing liquids. Among the
three methods used to study surface properties of the self-bound droplets in free space,
the numerical method reveals to be the simplest, it allows to compute the radial density
profile and the surface tension of the droplet easily and all the results are in agreement
with the correct solution obtained by directly solving the two coupled Gross-Pitaevskii
equation associated to the two components of the 41K-87Rb mixture. The energy of the
droplets is well accounted for by the liquid-drop model and the Tolman length, obtained
from the fitting coefficients of this model, allows to apply a curvature correction to the
surface tension. By confining the bosonic binary mixture in a quasi-1D configuration
with an optical waveguide, the transition between bright solitons and self-bound droplets
is studied, highlighting the presence of a bistable region in which both localized states
coexist.

71



72



Appendices

73





Appendix A

Derivation of the bright soliton’s
analytical solution

Here we derive the analytical formula of the bright soliton state, an exact solution of the
dimensional reduced 1D time-dependent Gross-Pitaevskii equation along the non-confined
direction z seen in chapter 5:

iℏ
∂

∂t
f(z, t) =

[︃
ℏ2

2m

∂2

∂z2
+ γ|f(z, t)|2

]︃
f(z, t) (A.1)

The solution of the GP equation reads [51]

f(z, t) = ϕ (z − vt) eiv(z−vt)e

(︃
i
mv2/2−µ

ℏ t

)︃
(A.2)

with µ = −mγ2

16ℏ2 < 0 and γ the effective one-dimensional interaction strength defined in
section 5.1. The aim is to find the correct form for the function ϕ (z − vt). We can work in
the moving reference frame by changing variable z → z − vt = ξ (in this way the function
ϕ is time-independent and centred in ξ = 0). Inserting the function f(ξ) in equation (A.1)
one finds the 1D stationary GP equation for ϕ (ξ):[︃

ℏ2

2m

∂2

∂ξ2
+ γ|ϕ (ξ) |2

]︃
ϕ (ξ) = µϕ (ξ) (A.3)

Assuming that ϕ (ξ) is real and defining the function

W (ϕ) =
1

2

m|γ|
ℏ2

ϕ4 +
mµ

ℏ2
ϕ2 (A.4)

equation (A.3) can be rewritten as

∂2ϕ

∂ξ2
= −∂W (ϕ)

∂ϕ
(A.5)

Written in this form, the GPE is the equation of motion of the quantity ϕ in function
of the variable ξ. In analogy to the unidimensional Newton equation and the consequent
conservation of total energy [57], the correspondent conserved quantity for this dynamical
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system is:

E =
1

2

∂ϕ

∂ξ
+W (ϕ) (A.6)

from which
∂ϕ

∂ξ
=
√︁
2 (E −W (ϕ)) (A.7)

Recalling that |ϕ| is the modulus of the condensate wave function of the system along z in
the moving reference frame along z direction, we can impose that ϕ (ξ) → 0 and ∂ϕ

∂ξ → 0
as |ξ| = |z − vt| → ∞. This is reasonable since the system is finite and at a finite time at
long distance the wave function must approach asymptotically to zero.
Computing equation (A.6) in these limiting conditions, it is clear that the conserved
quantity must be zero E = 0.
As direct a consequence, one gets:

dξ =
dϕ√︁

−2W (ϕ)
(A.8)

Integrating both members from ξ = 0 to a general ξ = ξ
′
one finds:∫︂ ξ

′

0
dξ =

∫︂ ϕ(ξ
′
)

ϕ(0)

dϕ√︂
−m|γ|

ℏ2 ϕ4 − 2mµ
ℏ2 ϕ

2

=

=

∫︂ ϕ(ξ
′
)

ϕ(0)

dϕ√︂
−m|γ|

ℏ2 ϕ4 + 2m|µ|
ℏ2 ϕ2

(A.9)

We can set ∂ϕ∂ξ
⃓⃓
ξ=0

= 0: the wave function we are looking for is centered in ξ = 0 (we moved

to the new reference frame for this reason) and it is symmetric so it is quite reasonable to
assume the presence of a maximum in the central point. Hence, from the computation of
equation (A.6) for ξ = 0 one finds the result:

ϕ(0) =

√︄
2|µ|
γ

(A.10)

Performing the integration of equation (A.9), making a final substitution ξ
′ → ξ and by

reversing the function, the result is:

ϕ (ξ) =

√︄
2|µ|
|γ|

sech

[︄√︃
m|µ|
ℏ2

ξ

]︄
(A.11)

Taking into account that µ = −mγ2

16ℏ2 , one gets the final form seen in (5.14). This is a
solitonic solution: in the moving reference frame the profile does not spread in time and
it remain always the same. This observation concludes the complete derivation of the
analytical bright soliton solution of the 1D GP equation, obtained from a dimensional
reduction of the 3D GP equation of a system in a transverse confinement.
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Appendix B

Total energy expression for a
mixture of BECs in a quasi-1D
configuration

Here we derive the total energy expression of a binary bosonic mixture, assuming a fixed
ratio between the densities of the two components. The normalized wave functions of the
two components of the mixture are:

ϕ1(z,R) =

(︃
N1

π3/2σzσ2R

)︃1/2

e
− R2

2σ2
R e

− z2

2σ2
z (B.1)

ϕ2(z,R) =

(︃
N1

π3/2σzσ2R

√︃
g11
g22

)︃1/2

e
− R2

2σ2
R e

− z2

2σ2
z (B.2)

The total energy expression to be computed is:

E =

∫︂
dr

[︃
ℏ2

2m1
|∇ϕ1|2 +

ℏ2

2m2
|∇ϕ2|2 +

1

2
g11|ϕ1|4 +

1

2
g22|ϕ2|4 + g12|ϕ1|2|ϕ2|2+

+
1

2
m1ω1R

2|ϕ1|2 ++
1

2
m2ω2R

2|ϕ2|2 + ELHY

(︁
|ϕ1|2, |ϕ2|2

)︁ ]︃ (B.3)

The two wave functions are decomposed in two directions:

• The radial direction R⃗ in the x−y plane, where the harmonic confinement is present.

• The z⃗ direction in absence of any confinement.

For this reason, cylindrical coordinates are a convenient choice to solve the integral (see
figure B.1). Since the wave functions do not depend on θ, one has∫︂

dr = 2π

∫︂ +∞

0
dRR

∫︂ +∞

−∞
dz (B.4)

We can compute the total energy term by term:
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Figure B.1: A generic cylindrical coordinate system: R is the distance of the projection of the
green generic point in the x− y plane from the origin, θ is the angle between the x-axis and that
same projection of the green point in the x− y plane and z is the height of the green point.

• The kinetic term for the first mixture component Ekin,1:

Ekin,1 =

∫︂
dr
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2m1
|∇ϕ1|2 =
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(B.5)

• The kinetic term for the second mixture component Ekin,2:

Ekin,2 =

∫︂
dr

ℏ2

2m2
|∇ϕ2|2 =

= 2π
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dz
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(B.6)
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• The MF intraspecies interaction term for the first mixture component EMF,1:

EMF,1 =

∫︂
dr

1

2
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=
1

2
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• The MF intraspecies interaction term for the second mixture component EMF,2:

EMF,2 =

∫︂
dr
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• The MF interspecies interaction term EMF,12:

EMF,12 =

∫︂
dr g12|ϕ1|2|ϕ2|2

= g12 2π
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• The external energy for the first mixture component Eext,1:

Eext,1 =

∫︂
dr
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• The external energy for the second mixture component Eext,2:

Eext,2 =

∫︂
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• The LHY term ELHY:

ELHY =

∫︂
drELHY
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where f̄ is the constant value of the function f for a fixed ratio between densities
(as seen in section 5.2).

Thus, the total energy expression for mixture of BECs in a quasi-1D configuration is:
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