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Abstract

Human trajectory prediction aims to analyze human future movements given
their past positions and is an important topic in several application domains
such as socially-aware robots, intelligent tracking systems and self-driving cars.
The goal of the current work is to learn representations from already seen scenes
and use transfer learning to transfer this knowledge from the training dataset to
a new test set. In order to do this, we create a module that, for each human in the
scene, extracts local features from a patch around the agents current position.
To test its predictive capability, the proposed module was embedded into two
model architectures, namely SAR and GoalSAR. Specifically, the resulting fea-
ture descriptors coming from our approach are concatenated to the lightweight
attention-based recurrent backbone that acts solely on past observed positions
for both the aforementioned architectures. We conducted extensive experiments
using different features extractors and training approaches, such as training on
the SDD dataset and test on the ETH/UCY dataset.





Sommario

La previsione delle traiettorie umane mira ad analizzare i movimenti futuri degli
esseri umani in base alle loro posizioni passate ed è un argomento importante
in diversi domini applicativi, come i robot sociali, i sistemi di tracciamento in-
telligenti e le auto a guida autonoma.
L’obiettivo di questa tesi è quello di apprendere rappresentazioni semantiche da
scene già viste e di utilizzare la tecnica di transfer-learning per trasferire questa
conoscenza dal training set al test set.
A tal fine, abbiamo creato un modulo che, per ogni essere umano presente
nella scena, estrae le caratteristiche semantiche locali da un patch attorno alla
posizione corrente dell’agente. Per testare la sua capacità predittiva, il mod-
ulo proposto, è stato incorporato in due architetture chiamate SAR e GoalSAR.
In particolare, i features descriptors risultanti dal nostro approccio sono con-
catenati all’attention-based recurrent backbone, che agisce esclusivamente sulle
posizioni osservate in passato per entrambe le architetture citate. Abbiamo con-
dotto esperimenti approfonditi utilizzando diversi features extractors e diversi
approcci di addestramento, come l’addestramento sul dataset SDD e il test sul
dataset ETH/UCY.
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1
Introduction

Modeling human motion is essential for autonomous systems that operate
in public spaces.
For example autonomous vehicles need to foresee future positions to avoid
collisions, social robots require to move naturally alongside humans and it can
also be used for video surveillance tasks to support human operators in order
to intervene promptly.
Human trajectory forecasting is an extremely difficult problem, due to physical,
social and mental factors that collectively influence peoples trajectories.

1.1 Problem Formulation

The goal of pedestrian trajectory prediction is to predict the future positions
of a pedestrian given its previous position.
Concretely, given a scene where pedestrians are present, their coordinates are
observed for a certain amount of time, called 𝑇𝑜𝑏𝑠 , and the task is to predict the
future coordinates of each pedestrian from 𝑇𝑜𝑏𝑠 to 𝑇𝑝𝑟𝑒𝑑.
There are two different types of trajectory prediction: the short-term and the
long-term one. In the short term case we are dealing with 3-5 seconds while
on long-term case with 5-30 seconds, all the experiments done for this thesis
considered the short-term trajectory prediction problem. The position of each
pedestrian is characterized by its (𝑥, 𝑦) coordinates with respect to a fixed point.
Moreover, thanks to a discretization of time, the difference between time 𝑡 and
time 𝑡 + 1 is the same as the difference between time 𝑡 + 1 and time 𝑡 + 2.
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1.2 Applications

Modelling how people move in their environment and in the presence of
other people can benefit different areas:

• Crowd surveillance: systems able to predict pedestrian behaviour are also
capable of detecting anomalies and unexpected behaviours to support
human operators in order to intervene promptly.

• Social and autonomous robots: robots that operate in public environments
need to move naturally alongside with humans and to avoid accidentally
hitting them.

• Autonomous driving: self-driving vehicles have to understand the inten-
tions of pedestrians and predict their future trajectories to safely operate.

1.3 Purpose

The literature on pedestrian trajectory prediction is extensive, however, there
are still some topics that can be investigated further. One of these topics is
Knowledge Transfer. There are numerous datasets for trajectory prediction, as
described in Section 3.1, nonetheless, the total quantity of data is still limited.
Thus, to address this issue would help being able to transfer knowledge from
the training to the test set meaning to take advantage of the interplay between
the functional properties of the scene and the prior knowledge of moving agents
to forecast plausible paths from a new video scene (test set). The purpose of this
thesis is to find a technique in order to obtain knowledge transfer that could be
applied to get better results when dealing with transfer learning.

1.4 Methodology

To correctly analyze the results from different experiments the metrics used
must be adequate and must be the same on all the experiments.
The metrics chosen are the Average Displacement Error (ADE) and the Final
Displacement Error (FDE) explained in detail in Section 3.2. The chosen dataset
are the SDD [24], the ETH and UCY [23, 18], datasets which are described in
detail in section 3.1. We follow the well-established experimental protocol used

2



CHAPTER 1. INTRODUCTION

Figure 1.1: Example of trajectories on deathcircle scene of SDD dataset
Blue: observed agent positions.

Red: predicted future agent positions.
Green: real future agent positions.

in human trajectory prediction [1, 13], that is to observe 3.2 s and to predict the
next 4.8 s.
This means that we consider 𝑇𝑜𝑏𝑠 = 8 and 𝑇𝑝𝑟𝑒𝑑 = 12 time steps, respectively. The
results reported will be related to the models presented trained and tested on
SDD and ETH/UCY datsets and then trained on SDD and tested on ETH/UCY
(applying transfer learning). The baseline architectures used for this research
are the SAR and the Goal-SAR [7] presented in detail in Chapter 4.1.

• SAR: recurrent backbone based on a multi-head attention mechanism.
• Goal-SAR: SAR with a scene-aware goal-estimation module.

An example of trajectories is reported in figure 1.1.:

– Blue: observed agent positions 𝑇𝑜𝑏𝑠 = 8.

– Red: predicted future agent positions 𝑇𝑝𝑟𝑒𝑑 = 12.

– Green: real future agent positions.
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2
Related Works

This chapter is divided into two sections.
In the first section we reported the state of the art techniques over years used to
solve the general trajectory prediction problem.
In the second section we focus more on the papers related to knowledge transfer
applied for trajectory prediction problem in order to make an overview of the
ideas from which we take inspiration from.

2.1 Trajectory Prediction

There have been different methods to solve the human agents trajectory
prediction problem over time.
They evolved starting from physics-based models to data-driven models that
use deep learning.
In this section I will analyze some state of the art architectures used to solve
trajectory prediction problem over the years.

2.1.1 Social Forces

Helbing and Molnar in 1995 in [14] proposed a method that represents one
of the most historically influential works.
The architecture considers each pedestrian as a particle and assumes that the
motion of these particles can be described with three forces representing:

1. The acceleration towards the preferred velocity for each pedestrian;

5



2.1. TRAJECTORY PREDICTION

2. The sum of all the repulsion forces: these forces simulate the desire to
keep a certain distance from other people and obstacles;

3. The sum of all the attractive forces: these forces simulate the desire of
pedestrians to stay close to other people (friends and couples walk closely
together).

The sum of all the forces affecting a pedestrian will represent its final accel-
eration.
The social forces model takes a physics-based approach to trajectory prediction,
it has a clear formalization but needs precise information on the obstacles and
positions of other pedestrians, therefore can be applied only in scenarios where
this data is available.

2.1.2 Social LSTM

Alahi et al. [1] uses a model called Social LSTM (Fig 2.1) which can account
for the behavior of other people within a large neighborhood, while predicting
a persons path.
They use a separate LSTM network for each trajectory in a scene.
The LSTMs are then connected to each other through a Social pooling (S-pooling)
layer. Unlike the traditional LSTM, this pooling layer allows spatially proximal
LSTMs to share information with each other. The hidden-states of all LSTMs
within a certain radius are pooled together and used as an input at the next
time-step.

2.1.3 MUSE-VAE

Mihee Lee at al. [17] proposed an architecture composed by 2 stages:

1. Macro-stage (Coarse Prediction Stage): this macro stage is composed by
2 different models

• LG-CVAE: this is the long-term goal prediction model.
The input consists of concatenated local semantic map and past tra-
jectory heatmap while the output is a one long-term goal heatmap.

• SG-net: this is the short-term goal prediction model.
The input consists of concatenated local semantic map, past trajectory
heatmap and long-term goal heatmap while in output it gives𝑁𝑆𝐺+1
heatmaps, where 𝑁𝑆𝐺 is the number of short-term goals.

6
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Figure 2.1: Overview of Social-LSTM method

2. Micro-stage (Fine Prediction Stage): they use this final stage to predict
complete future trajectories at the micro level.
To deal with uncertainty they leverage CVAE in this step as well.
While decoding future steps, their model use the long-term and short-term
goal information from SG-net in the form of LSTM-encoded feature and
they apply the Teacher Forcing technique to correct the prediction by feed-
ing the GT/predicted long-term and short-term goals during training/test
time respectively.
They also feed the U-net features from LG-CVAE to the prior network of
micro-stage so that the Micro-stage also recognizes the environment.

The MUSE-VAE architecture is represented in the figure 2.2

2.1.4 GAN

A generative adversarial network (GAN), designed by Ian Goodfellow and
his colleagues in [12], consists of two adversarially trained models:

• Generative model G: captures the data distribution.
It takes a latent variable 𝑧 as input, and outputs sample 𝐺(𝑧).

• Discriminative model D: estimates the probability that a sample came
from the training data rather than G.
It takes a sample x as input and outputs D(x) which represents the proba-
bility that it is real.

The training procedure is similar to a two-player min-max game with the

7



2.1. TRAJECTORY PREDICTION

Figure 2.2: Overview of MUSE-VAE architecture

following objective function:

min
𝐺

max
𝐷

𝑉(𝐺, 𝐷) = E𝑥∼𝑝𝑑𝑎𝑡𝑎(𝑥)[log(𝐷(𝑥))] + E𝑧∼𝑝(𝑧)[log(1 − 𝐷(𝐺(𝑧)))]

Goal GAN

Patrick Dendorfer et al. [10] proposed an architecture composed of three key
components

– Motion Encoder (ME): extracts the pedestrians dynamic features recur-
sively with a long short-term memory (LSTM) unit capturing the speed
and direction of motion of the past trajectory.

– Goal Module (GM): combines visual scene information and dynamic pedes-
trian features to predict the goal position for a given pedestrian. This
module estimates the probability distribution over possible goal (target)
positions, which is in turn used to sample goal positions.

– Routing Module (RM): generates the trajectory to the goal position sampled
from the GM. While the goal position of the prediction is determined by
the GM, the RM generates feasible paths to the predetermined goal and
reacts to obstacles along the way by using visual attention.

The Goal-GAN architecture is represented in the figure 2.3
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Figure 2.3: Overview of Goal GAN architecture

Social GAN

Agrim Gupta et. al [13] proposed a Socially-Aware GAN leveraging on the
fact that generative models can be used with time series data to simulate possible
futures.
Their model (Fig 2.4) is composed by three components:

• Generator G: Starting from the positions of the people inside the scene
they create their fixed size embeddings 𝑒 𝑡𝑖 using a single layer MLP. Then
they feed this embeddings to the LSTM cell of the encoder at time t:

𝑒 𝑡𝑖 = 𝜙(𝑥𝑡𝑖 , 𝑦𝑡𝑖 ;𝑊𝑒𝑒)
ℎ𝑡𝑒 𝑖 = 𝐿𝑆𝑇𝑀(ℎ𝑡−1

𝑒𝑖 , 𝑒
𝑡
𝑖 ;𝑊𝑒𝑛𝑐𝑜𝑑𝑒𝑟)

where 𝜙(·) is an embedding function, 𝑊𝑒𝑒 is the embedding weight and
𝑊𝑒𝑛𝑐𝑜𝑑𝑒𝑟 are LSTM wights which are shared between people in a scene.
Encoder learns the state of a person and stores their history of motion and
they model the human-human interaction via a Pooling Module (PM).
After 𝑡𝑜𝑏𝑠 they pool hidden states of all the people present in the scene
to get a pooled tensor 𝑃𝑖 for each person. To get a future scenario that is
consistent with the past they condition the generation of output trajectories
by initializing the hidden state of the decoder such as:

𝑐𝑡𝑖 = 𝛾(𝑃𝑖 , ℎ𝑡𝑒 𝑖 ;𝑊𝑐)
ℎ𝑡𝑑𝑖 = [𝑐𝑡𝑖 , 𝑧]

where 𝛾(·) is an MLP and𝑊𝑐 the embedding weight.

• Pooling Module PM: They passed the input coordinates through a MLP
followed by a symmetric function using max pooling. The resulting vec-
tor 𝑃𝑖 needs to summarize all the information a person needs to make a
decision.

9
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Figure 2.4: Overview of Social GAN architecture

• Discriminator D: It’s a separate encoder that takes as input 𝑇𝑟𝑒𝑎𝑙 = [𝑋𝑖 , 𝑌𝑖]
or 𝑇𝑓 𝑎𝑘𝑒 = [𝑋𝑖 , �̂� 𝑖] and classifies them as real or fake. Moreover they used
an MLP at the end of the encoder result to get a classification score.
The goal of the discriminator is to learn social interaction rules and find
which trajectories are fake (meaning not socially acceptable).

MG-GAN

Patrick Dendorfer et. al. [9] proposed a multi-generator framework (shown
in Fig 2.5) for pedestrian trajectory prediction.
The model learns a discontinuous function as a mixture of distributions modeled
by multiple generators.
Main parts of the model are:

• Trajectory and Visual Encoders: feature encoders extract visual and dy-
namic features 𝑑𝑖 from the input sequences 𝑋𝑖 and scene image patches 𝐼𝑖
of each pedestrian 𝑖.
The attention modules compute the physical attention [27] features 𝑣𝑖 and
social attention [2] features 𝑠𝑖 .
Then they concatenate the features obtained in 𝑐𝑖 = [𝑑𝑖 , 𝑣𝑖 , 𝑠𝑖].

• Multi-generator Model: they used 𝑛𝐺 different generators 𝐺𝑔 which are
LSTM decoders initialized with the features 𝑐 and a random noise vector
𝑧 ∼ 𝑁(0, 1) as the initial hidden state ℎ0. Each generator specializes in
learning a different trajectory distribution conditioned on the input 𝑐. The
final trajectory �̂� is then predicted recurrently as:

Δ�̂�
𝑡
= 𝐿𝑆𝑇𝑀𝑔(Δ𝑋 𝑡−1, ℎ𝑡−1)

They train a module that adapts to the scene by activating specific gener-
ators, conditioned on the observations and interactions 𝑐.

10
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Figure 2.5: Overview of MG-GAN architecture

2.1.5 PECNet

Karttikeya Mangalam et. al. in [22] proposed a Predicted Endpoint Condi-
tioned Network for flexible human trajectory prediction (Fig 2.6).
The network is composed by different modules:

• Past Trajectory Encoder: for all pedestrian 𝑝𝑘 in the scene they extract
the previous history 𝑇 𝑘𝑖 and the ground truth endpoint 𝐺𝑘 . They use an
encoder 𝐸𝑝𝑎𝑠𝑡 to encode past trajectory 𝑇 𝑘𝑖 for all 𝑝𝑘 independently.

• Endpoint Encoder: future endpoint 𝐺𝑘 is encoded with and Endpoint
encoder 𝐸𝑒𝑛𝑑 to produce 𝐸𝑒𝑛𝑑(𝐺𝑘) independently for all 𝑘.

• Latent Encoder: both past and future destination representations coming
from the aforementioned encoders are concatenated together and passed
into the latent encoder 𝐸𝑙𝑎𝑡𝑒𝑛𝑡 which produces parameters (𝜇, 𝜎) for the
encoding latent variable 𝑧 = 𝑁(𝜇, 𝜎) of the VAE.

• Endpoint VAE: using the Endpoint VAE they infer a distribution on 𝐺
(sub-goal endpoint) based on the previous location history 𝑇𝑖 of 𝑝𝑘 .

2.1.6 Y-net

Karttikeya Mangalam et. al. in [21] proposed an architecture called Y-net
(Fig 2.7).
The RGB image 𝐼 is processed with U-net [25] in order to produce a semantic
segmentation map 𝑆with 𝑁𝑐 classes. In parallel the past motion history {𝑢𝑛}𝑛−𝑝𝑛=1
of an agent 𝑝 is converted to a trajectory heatmap 𝐻 of spatial sizes of 𝐼 and 𝑛𝑝

11



2.1. TRAJECTORY PREDICTION

Figure 2.6: Overview of PECNet architecture

channels corresponding to the past 𝑡𝑝 seconds.

𝐻(𝑛, 𝑖, 𝑗) = 2
| |(𝑖 , 𝑗) − 𝑢𝑛 | |

max(𝑥,𝑦)∈𝐼 | |(𝑥, 𝑦) − 𝑢𝑛 | |

Then they concatenate the trajectory representation with the semantic map 𝑆

producing the heatmap tensor 𝐻𝑆.
𝐻𝑠 is then processed by the 𝑈𝑒 encoder (designed as a U-net encoder [25]) in
order to obtain a compact and deep representation 𝐻𝑈𝑒 that is passed onto the
𝑈𝑔 goal decoder and the𝑈𝑡 trajectory decoder.
The 𝑈𝑔 goal and waypoint heatmap decoder uses bilinear up-sampling and
convolution to expand the feature map, moreover intermediate representations
from𝑈𝑒 are merged after every deconvolution to not limit the final resolution of
the goal heatmap.
The estimated goal and waypoint distributions are sampled and the obtained
samples are converted to a heatmap representation. The obtained conditioning
tensor 𝐻𝑈𝑔 is spatially downsampled to match the corresponding blocks size
and they are passed along with the past motion and scene representation 𝐻𝑈𝑒

to the trajectory heatmap decoder network𝑈𝑡 .
They achieved multimodality in paths through estimated probability distribu-
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Figure 2.7: Overview of Y-net architecture

tions obtained by 𝑈𝑡 conditioned on samples from 𝑈𝑔 for predicting diverse
multimodal scene-compliant futures.

2.1.7 Trajectron++

Tim Salzmann et. al. designed in [28] the Trajectron++, a modular, graph-
structured recurrent model that forecasts the trajectories of diverse agents (Fig
2.8).
To understand the proposed framework idea we have to highlight different
concepts:

• Scene Representation: starting from the scene they abstracted a spatio-
temporal graph 𝐺 = (𝑉, 𝐸) where:

– Nodes: represent agents and they have also a semantic class repre-
senting the type of the agent (e.g. Pedestrian, bus, car)

– Edges: represent interactions between agents meaning that an edge
(𝐴𝑖 , 𝐴 𝑗) is present in 𝐸 if 𝐴𝑖 influences 𝐴 𝑗 .

• Modeling Agent History: once the Scene representation phase is done
the model needs to encode a node’s current state, its history and how it is
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influenced by its neighboring nodes.
To encode the observed history of the modeled agent: they fed current and
previous D-dimensional states 𝑥 = 𝑠𝑡−𝐻,𝑡1,...,𝑁(𝑡) ∈ <(𝐻+1)×𝑁(𝑡)×𝐷 into a Long
Short-Term Memory (LSTM) network [15] with 32 hidden dimensions.

• Encoding Agent Interactions: to model neighboring agents influence the
proposed network encodes graph edges in two steps:

1. Edge information is aggregated using element-wise sum from neigh-
boring agents of the same semantic class.

2. Fed the previous computed aggregated states into an LSTM with 8
hidden dimension whose weights are shared across all edge instances
of the same type.

Then the encodings from all edge types that connect to the modeled node
are aggregated to obtain one influence representation vector, representing
the effect that all neighboring nodes have. For this, an additive attention
module is used [3]. Finally, the node history and edge influence encodings
are concatenated to produce a single node representation vector, 𝑒𝑥 .

• Incorporating Heterogeneous Data: It also possible to include further
additional information (e.g., raw LIDAR data, camera images, pedestrian
skeleton or gaze direction estimates) in the proposed framework by en-
coding it as a vector and adding it to this backbone of representation
vectors, 𝑒𝑥 . In order to do that Trajectron++ encodes a local map, rotated
to match the agents heading, with a Convolutional Neural Network (CNN)
which output is concatenated with the node history and edge influence
representation vectors.

• Encoding Future Ego-Agent Motion Plans: Trajectron++ produce predic-
tions which take into account future ego-agent motion in order to evaluate
a set of motion primitives with respect to possible responses from other
agents.
In order to do that the proposed framework is able to encode the future
T timesteps of the ego-agents motion plan 𝑦𝑅 using a bi-directional LSTM
due to its strong performance on other sequence summarization tasks
[6]. The final hidden states are then concatenated into the backbone of
representation vectors, 𝑒𝑥 .

• Explicitly Accounting for Multimodality: Trajectron++ explicitly handles
multimodality by leveraging the CVAE latent variable framework [29].
It produces the target 𝑝(𝑦 |𝑥) distribution by introducing a discrete Cate-
gorical latent variable 𝑧 ∈ 𝑍 which encodes high-level latent behavior and
allows for 𝑝(𝑦 |𝑥) to be expressed as 𝑝(𝑦 |𝑥) = ∑

𝑧∈𝑍 𝑝𝜓(𝑦 |𝑥, 𝑧)𝑝𝜃(𝑧 |𝑥) where
|𝑍 | = 25 and 𝜓, 𝜃 are deep neural network weights that parameterize their
respective distribution.

• Producing Dynamically-Feasible Trajectories: After obtaining a latent
variable 𝑧, it and the backbone representation vector 𝑒𝑥 are fed into the de-
coder, a 128-dimensional Gated Recurrent Unit (GRU) [8]. Each GRU cell
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Figure 2.8: Overview of Trajectron++ architecture

outputs the parameters of a bivariate Gaussian distribution over control
actions 𝑢(𝑡) (e.g., acceleration and steering rate). The agents system dy-
namics are then integrated with the produced control actions 𝑢(𝑡) to obtain
trajectories in position space [5]. Their approach is uniquely able to guar-
antee that its trajectory samples are dynamically feasible by integrating an
agents dynamics with the predicted controls.

• Training the Model: they adopt the InfoVAE [32] objective function, and
modify it to use discrete latent states in a conditional formulation (since
the model uses a CVAE).

2.1.8 NSP-SFM

Jiangbei Yue et. al. in [31] proposed a new model called Neural Social Physics
or NSP which is a deep neural network within which they use an explicit physics
model with learnable parameters.
This architecture is the first one in the global rank for trajectory prediction results
(ADE world and FDE world) on ETH/UCY with an ADE world of 0,17 and an
FDE of 0,24.
The architecture proposed is the Neural Social Physics - Social Force Models
(NSP-SFM) shown in figure 2.9
They design the NSP-SFM by assuming each person acts as a particle in a particle
system and each particle is governed by Newtons second law of motion.
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Figure 2.9: Overview of NPS-SFM architecture

Considering discrete observation up to time𝑇 (𝑡 ∈ {0, 1, ..., 𝑇}) the rate of change
of linear momentum of a body 𝑝¥(𝑡) is designed to be dependent on three forces:

• Fgoal goal attraction

• Fcol inter-agent repulsion

• Fenv environment repulsion

obtaining the equation:

𝑝¥(𝑡) = 𝐹𝑔𝑜𝑎𝑙(𝑡 , 𝑞𝑇 , 𝑞𝑡) + 𝐹𝑐𝑜𝑙(𝑡 , 𝑞𝑡 , 𝜔𝑡) + 𝐹𝑒𝑛𝑣(𝑡 , 𝑞𝑡 , 𝐸)

where:

– 𝐸: environment and it will be explained later.

– 𝑝 : position

– 𝑝¤ : velocity

– 𝑞𝑡 : state of a person at time t [𝑝𝑡 , 𝑝¤ 𝑡]𝑇

– 𝜔𝑡 : neighborhood pedestrians states at time t.

Unlike social force model [14], the three forces are partially realized by neural
networks, turning the equation into a neural differential equation.
They employ:

• Goal Sampling Network (GSN): network to sample 𝑝𝑇 during prediction.
It’s similar to a part of Y-net [21]
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Figure 2.10: Overview of Goal-Network (Left) and Collision-Network (Right).

• Goal Network (𝑁𝑁𝜙1): given the current state and the goal it computes
𝐹𝑔𝑜𝑎𝑙 .
This network encodes 𝑞𝑡 and then feeds it into a Long Short Term Memory
(LSTM) network to capture dynamics.
After a linear transformation, the 𝐿𝑆𝑇𝑀 output is concatenated with the
embedded 𝑝𝑇 and finally the output is computed by an MLP (multi-layer
perceptron). An overview of the model is reported in figure 2.10 (model
on the left).

• Collision Network (𝑁𝑁𝜙2): given the current state and the neighborhood
pedestrians states it computes 𝐹𝑐𝑜𝑙 .
The network is similar to the Goal Network explained above: it encodes
the agent state 𝑞𝑡𝑛 and concatenate it to the encodes of every agent state
in the neighborhood 𝑞𝑡𝑗 ∈ 𝜔𝑡

𝑛 . An overview of the model is reported in
figure 2.10 (model on the right).

• Environment Repulsion: they modeled 𝐹𝑒𝑛𝑣 , that represents the repulsion
from the environment given the current state, using the formula:

𝐹𝑒𝑛𝑣 =
𝑘𝑒𝑛𝑣

| |𝑝𝑡𝑛 − 𝑝𝑜𝑏𝑠 | |
(
𝑝𝑡𝑛 − 𝑝𝑜𝑏𝑠

| |𝑝𝑡𝑛 − 𝑝𝑜𝑏𝑠 | |
)

where 𝑝𝑜𝑏𝑠 is the position of the obstacle and 𝑘𝑒𝑛𝑣 is a learnable parameter
that NSP-SFM learns via back-propagation and stochastic gradient descent.

• Conditional Variational Autoencoder (CVAE): in order implement the dy-
namics stochasticity concept they use a CVAE [29].
An overview of the model is reported in figure 2.11.
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Figure 2.11: Overview CVAE architecture of NSP-SFM
�̃�𝑡+1 is the intermediate prediction out of our force model and 𝛼𝑡+1 = 𝑝𝑡+1 − �̃�𝑡+1.

Encoders 𝐸𝑏𝑖𝑎𝑠 𝐸𝑝𝑎𝑠𝑡 𝐸𝑙𝑎𝑡𝑒𝑛𝑡 and decoder 𝐷𝑙𝑎𝑡𝑒𝑛𝑡 are MLP networks.

2.2 Knowledge Transfer

Let’s now focus on transfer learning concept and in this section we are going
to describe different ideas formulated over time in order to be able to transfer
knowledge when we are dealing with trajectory prediction problems.

2.2.1 Synthetic Dataset

This idea comes from the Patrick Dendorfer et al. [10], the same paper in
which the aforementioned Goal-GAN architecture has been proposed.
They create a small synthetic dataset by generating trajectories using the Social
Force Model [14] in the hyang 4 scene of the SDD dataset.
To ensure the feasibility of the generated trajectories, they use a two-class man-
ually labeled semantic map, that distinguishes between feasible (eg. walking
paths) from unfeasible (eg. grass) areas.
They simulate 250 trajectories approaching and passing the two crossroads in
the scene.

2.2.2 Local Descriptor

Lamberto Ballan et al. [4] proposed a Knowledge Transfer technique applied
for human trajectory prediction.
The main idea is that the elements of the scene define a semantic context, and
they might determine similar behaviours in scenes characterized by a similar
context. For the aforementioned reason they compute three steps:
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1. Scene Parsing: they labeled the scene taking inspiration from the scene
parsing method proposed in [30]. For each image they extract several local
and global features (SIFT + LLC encoding, GIST and color histograms).
The algorithm first retrieves a set of image neighbors from the training set,
then they used superpixel classification and MRF inference to refine the
labeling.

2. Semantic context descriptors: The final patch descriptor 𝑝𝑖 is a weighted
concatenation of the global (𝑔𝑖) and local (𝑙𝑖) semantic context: pi = 𝑤gi +
(1𝑤)li where:

• Global context descriptor 𝑔𝑖 : is a𝐶-dimensional vector, where𝐶 is the
number of labels in the ground-truth. This is obtained by computing
the Euclidean distance between the centroid of the patch and the
closest point in the full image labeled as 𝑐, for each 𝑐 ∈ 𝐶 (e.g., 𝑐
can be the class road). The role of the global context descriptor is to
account for the relative distance between each patch, and all the other
semantic elements of the scene.

• Local context descriptor 𝑙𝑖 : they partitioned the space surrounding
the current patch 𝑖 into concentric shells, considering patches at dis-
tance 0, 1 and 2, in the grid.
For each patch, the local histograms are formed by counting the num-
ber of pixels labeled as 𝑐 in that shell. These histograms are then
averaged, providing the final 𝑙𝑖 .

3. Descriptor matching: For each patch descriptor pi in the query image,
they rank all patches from training images using 𝐿2 distance and keep the
set 𝑁𝑖 of 𝐾 nearest-neighbors.
Then they compute the average of previously collected information (eg.
popularity scores) among the neighbors in 𝑁𝑖 for each patch 𝑖 and they
transfer this information to that particular patch 𝑖.
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3
Datasets and Evaluation Metrics

3.1 Datasets

More specifically, in pedestrian trajectory prediction the data available can
be in two different formats: in image coordinates or real-world coordinates.
Image coordinates means that each pedestrian is represented with the pixels
it occupies in the camera image, while real-world coordinates means that each
pedestrian is represented by its position in meters with origin in an arbitrary
point of the world. The datasets used in this thesis are the ETH/UCY and SDD
because they are widely used in literature and publicly available.

3.1.1 SDD

The Stanford Aerial Pedestrian Dataset [24]: Consists of annotated videos of
pedestrians, bikers, skateboarders, cars, buses, and golf carts navigating eight
unique scenes on the Stanford University campus.
The eight main scenes are divided in a total of 47 scenes:

• bookstore: 4 scenes
• coupa: 3 scenes

• deathCircle: 5 scenes
• gates: 9 scenes

• hyang: 10 scenes

• little: 4 scenes
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• nexus: 10 scenes
• quad: 4 scenes

Each video for each scene in the videos directory has an associated annota-
tion file (annotation.txt) and exemplary frame (reference.jpg) in the annotations
directory.

Annotation file format

Each line in the annotations.txt file corresponds to an annotation. Each line
contains 10+ columns, separated by spaces. The definition of these columns are:

1. Track ID. All rows with the same ID belong to the same path.

2. xmin. The top left x-coordinate of the bounding box.

3. ymin. The top left y-coordinate of the bounding box.

4. xmax. The bottom right x-coordinate of the bounding box.

5. ymax. The bottom right y-coordinate of the bounding box.

6. frame. The frame that this annotation represents.

7. lost. If 1, the annotation is outside of the view screen.

8. occluded. If 1, the annotation is occluded.

9. generated. If 1, the annotation was automatically interpolated.

10. label. The label for this annotation, enclosed in quotation marks.

For our experiments we split SDD dataset into 60 recordings where complex
human dynamics show strong interactions with the surrounding environment.
We use the same split proposed in Kothari et al. [16] and used by most recent
works [22, 26], where 30 scenes are used as train and 17 as test data, and only
pedestrian are retained. Moreover data is down-sampled at 2.5 FPS.

3.1.2 ETH and UCY

The ETH (name taken from the ETH Zurich University) dataset [23] con-
tains two scenes (named Eth and Hotel) taken from a birds eye view. In total it
comprises of 750 different pedestrians trajectories. One frame is annotated with
pedestrian positions every 0.4 seconds. The UCY (name taken from the Uni-
versity of Cyprus) dataset [18] contains three scenes (Zara1, Zara2 and Univ),
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taken from a birds eye view. In total it comprises of more than 900 different
pedestrians trajectories. One frame is annotated with pedestrian positions every
0.4 seconds.
The two datasets are usually used together and they are sampled at 2.5 FPS and
contain five different scenes (ETH, HOTEL, UNIV, ZARA1 and ZARA2) moni-
toring entrances of buildings and sidewalks from RGB cameras typically used
in video surveillance applications.
In total we considered 1536 pedestrians mainly showing human-human inter-
actions. The training and testing are done with the leave-one-out approach [13]:
the model is trained on four scenes and tested on the fifth, and this procedure
is repeated five times, one for each scene. Since these two datasets are mainly
used in combinations with each other from now on the two datasets together
will be referred to as the ETH/UCY dataset.

3.2 Metrics

In data-driven approaches, there is the need to standardize test settings and
commonly used metrics to have quantitative results.
These quantitative results permit scientists to understand how different models
compare with each other, and what are their strength and their weaknesses.
for the aforementioned reasons the metrics used in this thesis are ADE and FDE.

3.2.1 Average Displacement Error (ADE)

The Average Displacement Error (ADE), which was introduced in [23], rep-
resents the error over all the predicted points and the ground truth points from
𝑇𝑜𝑏𝑠+1 to𝑇𝑝𝑟𝑒𝑑 averaged over all pedestrians. This error is calculated using the Eu-
clidean distance between the predicted position and the real pedestrian position
for each time steps. The formula of the ADE is:

𝐴𝐷𝐸 =

∑𝑛
𝑖=1

∑𝑇𝑝𝑟𝑒𝑑−1
𝑡=𝑇𝑜𝑏𝑠

| |�̂� 𝑖𝑡 − 𝑌 𝑖𝑡 | |
𝑛(𝑇𝑝𝑟𝑒𝑑 − 𝑇𝑜𝑏𝑠)

where 𝑛 represent the number of pedestrians, �̂� 𝑖𝑡 are the predicted coordi-
nates for pedestrian 𝑖 at time 𝑡, 𝑌 𝑖𝑡 is the real future positions and | | represents
the Euclidean distance. The ADE for ETH/UCY dataset is a measure in meters

23



3.2. METRICS

Figure 3.1: Average Displacement Error (ADE) Representation.
Its value is the length of the red line on average.

since it has real-world coordinates, while for SDD is a measure in pixels since it
has pixels coordinates.
To resume, the ADE (Fig 3.1) is the average distance from every position of the
prediction to every corresponding position of the real trajectory.

3.2.2 Final Displacement Error (FDE)

The second metric that is used in pedestrian trajectory prediction is the
Final Displacement Error (FDE), which was also introduced in [23]. The Final
Displacement Error is the error between the final predicted position at 𝑇𝑝𝑟𝑒𝑑 and
the real position at 𝑇𝑝𝑟𝑒𝑑. The formula of the FDE is:
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Figure 3.2: Final Displacement Error (FDE) Representation.
Its value is the length of the red line

𝐹𝐷𝐸 =

∑𝑛
𝑖=1 | |�̂�

𝑖
𝑇𝑝𝑟𝑒𝑑−1 − 𝑌 𝑖𝑇𝑝𝑟𝑒𝑑−1

| |
𝑛

where 𝑛 represent the number of pedestrians, �̂� 𝑖𝑡 are the predicted coordi-
nates for pedestrian 𝑖 at time 𝑡,𝑌 𝑖𝑡 is the real future positions and | | represents the
Euclidean distance. The FDE for ETH/UCY dataset is a measure in meters since
it has real-world coordinates, while for SDD is a measure in pixels. In essence,
the FDE (Fig 3.2) is how big is the distance error between the last predicted
position and the last real position.

On our experiments since we frame our analysis in a stochastic setting, we
report min20 𝐴𝐷𝐸 and min20 𝐹𝐷𝐸 metrics, which are obtained by generating 20
predicted samples for each input trajectory and retaining the one that provides
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the smallest errors.
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4
Experiments

4.1 Idea

Taking inspiration from [4] the elements of the scene define a semantic con-
text, and scenes characterized by a similar context could determine similar
behaviors of the trajectories of human agents. The idea of this thesis is to im-
plement a parallel module to add to the baseline architecture (Goal-SAR 4.1)
in order to extract a local descriptor looking at a semantic patch around each
position of each agent.

4.1.1 Baseline

As baselines two recurrent networks have been used: SAR and Goal-SAR
presented in [7].

SAR

The self-attentive recurrent backbone (module number 1 in Fig. 4.1) is
only based on temporal information and processes sequences of 2D locations
𝑝𝑡𝑖 = (𝑥𝑡𝑖 , 𝑦𝑡𝑖 ) for the agent 𝑖𝑡ℎ at time 𝑡. Sequences span from 𝑡 = 0 to 𝑡 =

𝑇𝑜𝑏𝑠 + 𝑇𝑝𝑟𝑒𝑑 = 𝑇𝑠𝑒𝑞 , where:

– 𝑇𝑜𝑏𝑠 : the observation time window.

– 𝑇𝑝𝑟𝑒𝑑: the prediction time window.

– 𝑇𝑠𝑒𝑞 : the total sequence length.
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The model is composed of three different parts:

• Trajectory Embedding: every agent is considered independently from
others and input coordinates 𝑃0:𝑡𝑛

𝑖 = (𝑝0
𝑖 , ..., 𝑝

𝑡𝑛
𝑖 ) from 𝑡 = 0 to 𝑡𝑛 are

encoded in a feature space as follows:

𝑒 𝑡𝑖 = 𝜙(𝑝𝑡𝑖 ;𝑊𝑒)
where 𝜙() is a linear embedding function with ReLU nonlinearity and𝑊𝑒
are embedding weights.

• Temporal Attention: they leverage on the encoding part of a transformer
with the aim to predict future positions given variable length input se-
quences in a recurrent fashion.
Temporal dependencies across subsequent time steps are taken into ac-
count by linearly projecting embedded positions (𝑒0

𝑖 , ..., 𝑒
𝑡𝑛
𝑖 ) into three dif-

ferent vectors:

– 𝑞𝑡𝑖 : query.

– 𝑘𝑡𝑖 : key.

– 𝑣𝑡𝑖 : value.

A dot product between queries and values is performed to compute the
attention coefficients used to weight the values 𝑣 and provide the corre-
sponding output as follows:

𝐴𝑇𝑇(𝑄𝑖 , 𝐾𝑖 , 𝑉𝑖) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥

(
𝑄𝑖𝐾𝑇𝑖√
𝑑𝑘

)
𝑉𝑖

where 𝑑𝑘 represents a normalization factor.
This operation is performed 𝑁ℎ𝑒𝑎𝑑 times using different linear projections
of 𝑄𝑖 , 𝐾𝑖 and𝑉𝑖 , yielding a vector of new embedded positions (ℎ0

𝑖 , ..., ℎ
𝑡𝑛
𝑖 ),

which incorporate temporal dependencies.

• Trajectory decoder: The last encoded feature vector ℎ𝑡𝑛𝑖 is then fed to a
decoder defined by a linear layer 𝜓() with 𝑅𝑒𝐿𝑈 nonlinearity and weights
𝑊𝑑, to extract the decoded positions in time 𝑡𝑛+1. To increase the variance
of the generated sequences, they concatenate a Gaussian random vector
𝑧𝑖 ∼ 𝑁(0, 𝐼𝑧) into this hidden state.

�̂�𝑡𝑛+1
𝑖 = 𝜓(𝑐𝑜𝑛𝑐𝑎𝑡(ℎ𝑡𝑛𝑖 , 𝑧𝑖);𝑊𝑑)

Instead of using a hidden state, they recursively concatenate estimated
locations into the previous input sequence.
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Goal-SAR

Goal-SAR architecture (Fig 4.1) is composed by the aforementioned Self-
Attentive Recurrent backbone plus a Goal Module.
The goal module purpose is to model the multimodality of human motion,
and this is achieved by predicting a probability distribution of plausible final
positions (i.e. goals) for each input trajectory.
They used the same goal module proposed in Mangalam et al. [21], modifying
its preprocessing steps and output format.
This module concatenates both observed positions and visual scene information,
which are then fed to a U-Net [25] model that directly outputs a probability map
of future final locations. This module is characterized by different aspects:

• Scene semantic: obstacles may influence human dynamics or sidewalks
may be the natural choice for pedestrians rather than roads for these rea-
sons the context of the scene is an important aspect that needs to be taken
into consideration to estimate more realistic paths. To this end, semantic
information is extracted from birds eye view RGB images using a pre-
trained semantic segmentation network taken from Mangalam et al. [21].
For the semantic scene, they used six classes denoted as C = pavement,
terrain, structure, tree, road, not defined so the result is a semantic tensor
𝑆 ∈ <𝑊×𝐻×𝐶 where W and H represent input image sizes.

• Goal Encoder-Decoder: The semantic tensor 𝑆 is concatenated to 𝑁𝑜𝑏𝑠
distribution maps depicting past motion history. More precisely, for each
observed position we consider a heat-map of spatial sizes 𝑊 and 𝐻, and
create a 2𝐷 Gaussian probability distribution map with mean 𝑝𝑡𝑖 and vari-
ance 𝜎2

𝑆𝐼2. They denote with 𝑀 the projection from 2𝐷 (𝑥, 𝑦) coordinates
to 𝑊 × 𝐻 heat-map representations. After concatenation, we obtain a
𝑊 ×𝐻 ×(𝐶 +𝑁𝑜𝑏𝑠) trajectory-on-scene input tensor 𝐻𝑆. This tensor is then
fed into a U-Net architecture consisting of L blocks that reduce the input
spatial dimension 𝐻 ×𝑊 using double convolutional layers with ReLU
non-linearity and max-pooling operations.
Each intermediate output 𝐻𝑙 (1 ≤ 𝑙 ≤ 𝐿) is then passed through skip-
connections to the decoder. In the expanding arm, 𝐿 decoder blocks
process 𝐻𝐿, doubling its resolution using bilinear up-sampling, double
convolutions, and ReLU nonlinearity. Skip connections fuse 𝐻𝑙 tensors
from the contracting arm, and a final output convolutional layer followed
by a pixel-wise sigmoid returns the spatial probability distribution of the
final position 𝑀(𝑝𝑇𝑠𝑒𝑞 ).

• Distribution Sampling: The goal module outputs a 2D heat map that
represents the probability that the monitored agent will be in a specific
final location at 𝑇𝑜𝑏𝑠 + 𝑇𝑝𝑟𝑒𝑑 given the information from 𝑡 = 0 to 𝑇𝑜𝑏𝑠 . The
estimated goals are sampled from these probability maps. When more
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than one sample is required, they find it beneficial to use the Test-Time-
Sampling-Trick TTST proposed in Mangalam et al. [21], where 10, 000
goals are initially sampled and then clustered with K-means to obtain
the 20 output modalities. To inject the estimated destination into their
temporal backbone, they concatenate to 𝑃0:𝑡𝑛

𝑖 the goal and the following
three additional inputs, denoted as 𝐼𝑖 :

– last position
– current distance to the estimated goal
– time step value 𝑡

They also find it beneficial to use a skip connection to feed their backbone
with this additional information, which is concatenated both before and
after the self-attention layer.

• Loss Function In order to train their proposed architecture they considered
two losses:

𝐿𝑔𝑜𝑎𝑙 =
1
𝑁𝑝

𝑁𝑝∑
𝑖=1

𝐵𝐶𝐸
(
𝑀(𝑝𝑇𝑠𝑒𝑞𝑖 ), �̂�(𝑝𝑇𝑠𝑒𝑞𝑖 )

)
𝐿𝑡𝑟𝑎 𝑗 =

1
𝑁𝑝𝑇¤ 𝑝𝑟𝑒𝑑

𝑁𝑝∑
𝑖=1

𝑇𝑠𝑒𝑞∑
𝑡=𝑇𝑜𝑏𝑠+1

‖𝑝𝑡𝑖 − �̂�𝑡𝑖 ‖2
2

They first train the goal module to minimize a Binary Cross-Entropy loss
between predicted and ground-truth probability maps obtained as 2D
Gaussian distributions 𝑁(𝑝𝑇𝑠𝑒𝑞𝑖 , 𝜎2

𝑆𝐼2) centered at ground-truth final des-
tinations. Second, they train their recurrent backbone minimizing the
mean square error between the predicted and ground-truth positions from
𝑇𝑜𝑏𝑠 + 1 to 𝑇𝑠𝑒𝑞. The two terms are then normalized with respect to the
number of processed agents 𝑁𝑝 .
Their total loss function is defined as:

𝐿 = 𝐿𝑔𝑜𝑎𝑙 + 𝜆𝐿𝑡𝑟𝑎 𝑗

where 𝜆 is an hyper-parameter that balances the contribution of each
network.

4.1.2 ORB or SIFT Local Descriptor Module

One implementation has been done using the ORB [19] descriptor and an-
other one using SIFT [20]. Each agent is considered independently from others
and for every input coordinate 𝑃0:𝑡𝑛

𝑖 = (𝑝0
𝑖 , ..., 𝑝

𝑡𝑛
𝑖 ) from 𝑡 = 0 to 𝑡𝑛 we define as

the keypoint the position of the agent and we compute the ORB or SIFT descrip-
tor of the gray scale version of the input RGB image.
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Figure 4.1: Overview of Goal-SAR architecture

SIFT

Scale Invariant Feature Transform proposed by David Lowe in [20] is com-
posed by different steps:

• Scale-space peak selection: SIFT algorithm uses Difference of Gaussians
(DoG) which is an approximation of LoG and is obtained as the difference
of Gaussian blurring of an image with two different 𝜎.
This process is performed for different octaves of the image in Gaussian
Pyramid.
This procedure acts as a blob detector that detects blobs in various sizes
due to changes in 𝜎. So, we can find the local maxima across the scale
and space which gives us a list of (𝑥, 𝑦, 𝜎) values which means there is a
potential keypoint at (𝑥, 𝑦) at 𝜎 scale.

• Keypoint Localization: Once potential keypoints locations are found,
they have to be refined to get more accurate results. Algorithm uses Taylor
series expansion of the scale space to get a more accurate location of the
extrema, and if the intensity at this extrema is less than a threshold value,
it is rejected. The algorithm then uses a 2 × 2 Hessian matrix (H) to
compute the principal curvature. If the ratio of eigenvalues is greater than
a threshold, that keypoint is discarded.
After this phase the algorithm has eliminated any low-contrast keypoints
and edge keypoints and what remains are strong interest points.

• Orientation Assignment: An orientation is assigned to each keypoint to
achieve invariance to image rotation. A neighborhood is taken around
the keypoint location depending on the scale, and the gradient magnitude
and direction is calculated in that region. An orientation histogram with
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36 bins covering 360 degrees is created.
The highest peak in the histogram is taken (with other high peaks) to
calculate the orientation. The algorithm creates keypoints with same lo-
cation and scale, but different directions and this contribute to stability of
matching.

• Keypoint descriptor: A neighborhood 16×16 is taken around the keypoint.
It is divided into 16 sub-blocks of size 4 × 4 . For each sub-block, 8 bin
orientation histogram is created. So, a total of 128 bin values are available.
It is represented as a vector to form a keypoint descriptor.

• Keypoint Matching: The keypoints between two images are matched by
identifying their nearest neighbours. If the ratio of the closest distance to
the second closest distance is greater than 0.8, they are rejected.

ORB

ORB stands for Oriented FAST and rotated BRIEF and it is an amazing alter-
native to SIFT and SURF because it is faster and has less computation cost.
ORB makes use of a modified version of the FAST keypoint detector and BRIEF
descriptor. FAST features are not scale-invariant and rotation-invariant. There-
fore, to make it scale-invariant ORB uses a multiscale pyramid. A multiscale
pyramid consists of multiple layers where each successive layer contains a down-
sampled version of the previous layer image. ORB detects features at each level/
different scales. An orientation is assigned to each keypoint (left or right) de-
pending upon the change in intensities around that key point. Hence, ORB is
also rotation invariant.

Problems

This two implementations has a big problem: the training phase of the
implemented model takes more than 3 weeks, so we gave up on this idea.

4.1.3 Semantic Local Descriptor - Square Patch

Taking inspiration from [4] we decide to extract a semantic local descriptor.
Given in input:

• 𝑝𝑡𝑖𝑗 : position of agent j at time 𝑡𝑖

• Semantic image: obtained from the segmentation network considering 6
classes:

32



CHAPTER 4. EXPERIMENTS

Figure 4.2: Overview of Local semantic descriptor patch
a) representation of the square patch of size 32×32 around agent4 position on the

bookstore3 scene of the SDD dataset
b) representation of the semantic descriptor obtained

c) numerical values of the descriptor

1. Unlabeled
2. Pavement
3. Road
4. Structure
5. Terrain
6. Tree

Each pixel in the semantic image is a 6-dimensional vector, as the number of
classes, with all zero values but a 1 in the i-th position where 𝑐𝑖 ∈ 𝐶 represents
the class of the pixel (classes order is the one defined in the list above).
For example a pixel 𝑝 with value [0, 0, 1, 0, 0, 0] means that it is labeled as a Road
pixel.
In order to get our local descriptor, we considered a square patch of size 32 × 32
or 64× 64 around the agent position and we compute an histogram by counting
for each class 𝑐 ∈ 𝐶 how many pixels inside the patch are labeled as 𝑐. An
example is reported in the figure 4.2.

An important thing to highlight is that the order of the 6 bins of the descriptor
is always the same so what we are basically doing is to exploit for each semantic
class its pixel frequency inside the patch.

Pro and Cons

The pro of this technique are:
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Figure 4.3: Overview of Local semantic descriptor patch
a) representation of the circular patch of diameter of 33 pixels around agent3 position

on the bookstore2 scene of the SDD dataset
b) representation of the semantic descriptor obtained

c) numerical values of the descriptor

• It is fast: small computational time.

• It is easy to implement.

The cons are:

• It’s not Rotation Invariant

From now on the models defined in this subsection will be called Goal-
SAR-Square32 or Goal-SAR-Square64 (number represents the patch dimension
in pixels).

4.1.4 Semantic Local Descriptor - Circular Patch

In order to cope with the square semantic patch problem we decide to im-
plement a circular patch to obtain a rotation invariant local descriptor.
The idea is the same as the previous one but instead of using a square patch of
sizes 32×32 or 64×64 we used a circular patch with diameter of sizes 33 or 65.
An example is reported in figure 4.3.

To compute our descriptor:

• We created a fixed circular mask of the desired dimension: each pixel is
represented with a 6-dimensional vector, for the white part it’s [1, 1, 1, 1, 1, 1]
while for the black part it’s [0, 0, 0, 0, 0, 0]. An example of masks for dif-
ferent diameter dimensions is reported in figure 4.4

• We multiply it to the square patch around our agent position, obtaining
what we called the resulting patch.
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Figure 4.4: Example of circular masks
a) circular mask of diameter 33 pixels
b) circular mask of diameter 65 pixels

Figure 4.5: Representation of the circular patch extractor for circular patch of
size 64

• We summed all the values of the resulting patch so that we get a 6-
dimensional vector that represents our semantic frequency descriptor.

The visualization of the algorithm is resumed in the figure 4.5, note that
the black parts around the resulting circular patch are 0 vectors, so they do
not influence our semantic frequencies descriptor. The overview of the model
obtained is reported in figure 4.6.
From now on, the models defined in this subsection will be called Goal-SAR-
Circle33 or Goal-SAR-Circle65 (number represents the diameter dimension of
the circular patch in pixels).

4.1.5 Visual Transformer of Semantic Local Descriptor

Last model presented in this thesis extracts a feature vector from the semantic
image using a Visual Transformer [11].
First of all we consider a square patch of size 64×64 (with 6 channels representing
each pixel’s class) around human agent current position.
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Figure 4.6: Overview of the Goal-SAR model with the local semantic circular
descriptor extractor module

After that we concatenate it to 4 previous trajectory points heatmaps obtaining
a tensor with 6 + 4 = 10 channels.
Then we use it as input to a Vision Transformer and the output obtained is
flattened and then concatenated to the fusion layer of the Goal-SAR model.
An overview of the model created is presented in figure 4.7.

In order to create this module ( called Semantic Vision transformer in the
figure 4.7) we took inspiration from the Routing module of the GoalGAN model
[10].
In the aforementioned paper they take an RGB patch around the agent position
and they used MLP based self-attention in order to extract a feature vector from
the patch.
Our idea instead is to consider a semantic patch around the agent position, con-
sider as said before 4 previous trajectory points converted to heatmaps and use
a Visual transformer based self-attention [11] in order to extract a feature vector
from the semantic patch. It’s important to note that due to memory over-load
problems we had to decrease the batch size parameter to value 8 (while on the
other models in this thesis we used value 32).
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Figure 4.7: Overview of Goal-SAR with Semantic Visual Transformer

4.2 Results

In this section we report the results obtained with all the different networks
used starting from the baseline and going through all our implementations and
then we will focus on the results obtained applying transfer learning.
In this section for each aforementioned model we will report a table with all the
results obtained in which you can find:

• First Line: results obtained training the model on SDD and test on SDD.

• From line 2 to line 6: results obtained applying transfer learning meaning
training the model on SDD and test on all the five scenes of ETH/UCY
dataset

• From line 7 to line 11: results obtained training the model on ETH/UCY
and test on ETH/UCY.

Moreover, at the end, we will report three different tables which resume and
compare the averages ADE world and FDE world metrics over the ETH/UCY
and SDD dataset in both the cases of transfer learning applied and not.
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4.2.1 Baseline

In table 4.1 you can find the baseline obtained for the SAR model on both
the datasets (SDD and ETH/UCY) while in table 4.2 you can find the baseline
obtained for the Goal-SAR model on both the datasets (SDD and ETH/UCY).

Model Train Set Test Set ADE ADE world FDE FDE world
SAR sdd sdd 10.247 10.259 18.212 18.218
SAR sdd eth 8.443 0.369 15.680 0.680
SAR sdd hotel 9.653 0.187 17.704 0.344
SAR sdd univ 14.334 0.317 26.175 0.580
SAR sdd zara1 13.352 0.296 25.184 0.558
SAR sdd zara2 10.280 0.228 18.600 0.411
SAR eth5 eth 11.536 0.501 20.366 0.862
SAR eth5 hotel 9.204 0.176 16.071 0.309
SAR eth5 univ 18.905 0.419 35.481 0.793
SAR eth5 zara1 17.470 0.390 31.882 0.719
SAR eth5 zara2 10.906 0.243 19.949 0.447

Table 4.1: Baseline results for SAR

Model Train Set Test Set ADE ADE world FDE FDE world
Goal-SAR sdd sdd 7.644 7.642 11.688 11.679
Goal-SAR sdd eth 7.823 0.345 14.254 0.622
Goal-SAR sdd hotel 7.264 0.140 12.378 0.241
Goal-SAR sdd univ 14.326 0.316 26.001 0.573
Goal-SAR sdd zara1 11.379 0.251 21.060 0.513
Goal-SAR sdd zara2 9.189 0.204 16.304 0.360
Goal-SAR eth5 eth 6.608 0.290 11.631 0.512
Goal-SAR eth5 hotel 6.349 0.122 9.168 0.177
Goal-SAR eth5 univ 12.033 0.267 21.055 0.466
Goal-SAR eth5 zara1 7.644 0.171 11.529 0.258
Goal-SAR eth5 zara2 6.604 0.147 10.767 0.238

Table 4.2: Baseline Results for Goal-SAR

4.2.2 Local Descriptor Module - Square Patch

In table 4.3 we report the results obtained with the Goal-SAR Semantic
Sqaure Patch of size 32 while in table 4.4 we report the results obtained with
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Goal-SAR Semantic Sqaure Patch of size 64.

Model Training Set Test Set ADE ADE world FDE FDE world
Goal-SAR S32 sdd sdd 12.877 12.885 15.672 15.672
Goal-SAR S32 sdd eth 18.036 0.792 36.404 1.583
Goal-SAR S32 sdd hotel 29.484 0.568 51.348 0.995
Goal-SAR S32 sdd univ 25.761 0.567 48.838 1.075
Goal-SAR S32 sdd zara1 49.901 1.106 101.318 2.236
Goal-SAR S32 sdd zara2 27.614 0.611 55.638 1.226
Goal-SAR S32 eth5 eth 6.585 0.291 9.903 0.439
Goal-SAR S32 eth5 hotel 6.651 0.129 10.408 0.202
Goal-SAR S32 eth5 univ 12.574 0.279 22.790 0.505
Goal-SAR S32 eth5 zara1 8.221 0.182 12.544 0.278
Goal-SAR S32 eth5 zara2 6.859 0.153 10.698 0.236

Table 4.3: Results Goal-SAR Square 32

Model Training Set Test Set ADE ADE world FDE FDE world
Goal-SAR S64 sdd sdd 11.478 11.497 18.217 18.221
Goal-SAR S64 sdd eth 14.221 0.627 26.185 1.137
Goal-SAR S64 sdd hotel 17.970 0.347 30.820 0.594
Goal-SAR S64 sdd univ 19.254 0.428 37.082 0.825
Goal-SAR S64 sdd zara1 23.653 0.519 48.330 1.065
Goal-SAR S64 sdd zara2 16.320 0.359 32.190 0.708
Goal-SAR S64 eth5 eth 7.302 0.321 9.734 0.431
Goal-SAR S64 eth5 hotel 6.737 0.130 10.269 0.199
Goal-SAR S64 eth5 univ 12.982 0.288 23.740 0.529
Goal-SAR S64 eth5 zara1 8.442 0.188 12.541 0.278
Goal-SAR S64 eth5 zara2 6.819 0.151 11.023 0.244

Table 4.4: Results Goal-SAR Square 64

4.2.3 Local Descriptor Module - Circular Patch

In table 4.5 we reported the results obtained with the Goal-SAR Semantic
Circular Patch of size 33 while in table 4.6 we reported the results obtained with
Goal-SAR Semantic Circular Patch of size 65.
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Model Training Set Test Set ADE ADE world FDE FDE world
Goal-SAR C33 sdd sdd 7.738 7.738 11.782 11.782
Goal-SAR C33 sdd eth 7.720 0.339 9.949 0.429
Goal-SAR C33 sdd hotel 6.962 0.134 10.571 0.204
Goal-SAR C33 sdd univ 14.556 0.321 26.869 0.593
Goal-SAR C33 sdd zara1 11.830 0.261 19.951 0.439
Goal-SAR C33 sdd zara2 10.386 0.230 16.691 0.368
Goal-SAR C33 eth5 eth 6.475 0.284 9.980 0.438
Goal-SAR C33 eth5 hotel 6.608 0.127 10.658 0.207
Goal-SAR C33 eth5 univ 13.220 0.293 24.663 0.548
Goal-SAR C33 eth5 zara1 8.115 0.181 12.082 0.269
Goal-SAR C33 eth5 zara2 6.840 0.152 10.225 0.226

Table 4.5: Results Goal-SAR Circle 33

Model Training Set Test Set ADE ADE world FDE FDE world
Goal-SAR C65 sdd sdd 7.872 7.877 12.162 12.166
Goal-SAR C65 sdd eth 12.862 0.585 15.475 0.679
Goal-SAR C65 sdd hotel 9.233 0.180 0.323 0.323
Goal-SAR C65 sdd univ 14.380 0.318 27.158 0.599
Goal-SAR C65 sdd zara1 13.295 0.291 25.622 0.557
Goal-SAR C65 sdd zara2 10.772 0.236 20.145 0.439
Goal-SAR C65 eth5 eth 6.716 0.295 9.609 0.422
Goal-SAR C65 eth5 hotel 6.699 0.129 10.390 0.202
Goal-SAR C65 eth5 univ 13.971 0.311 26.414 0.588
Goal-SAR C65 eth5 zara1 8.437 0.187 12.404 0.276
Goal-SAR C65 eth5 zara2 7.343 0.163 12.026 0.266

Table 4.6: Results Goal-SAR Circle 65

4.2.4 Vision Transformers

In table 4.7 we reported the results obtained with Goal-SAR with Vision
Transformer on Semantic Patch.

4.2.5 Average Final Results

In this section we report all the average results for each model and for each
dataset in order to better understand which are the final results to highlight.
In table 4.8 you can see the comparison among all the different proposed models
and the baseline on training and testing on SDD dataset.
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Model Train Set Test Set ADE ADE world FDE FDE world
Goal-SAR ViT sdd sdd 7.914 7.904 12.385 12.388
Goal-SAR ViT sdd eth 8.735 0.380 15.619 0.664
Goal-SAR ViT sdd hotel 12.280 0.237 23.266 0.453
Goal-SAR ViT sdd univ 15.775 0.347 28.803 0.633
Goal-SAR ViT sdd zara1 14.960 0.331 29.875 0.660
Goal-SAR ViT sdd zara2 14.054 0.307 28.008 0.609
Goal-SAR ViT eth5 eth 7.872 0.348 13.222 0.587
Goal-SAR ViT eth5 hotel 9.010 0.174 13.914 0.269
Goal-SAR ViT eth5 univ 15.764 0.351 28.915 0.644
Goal-SAR ViT eth5 zara1 9.232 0.206 15.342 0.342
Goal-SAR ViT eth5 zara2 8.431 0.187 13.246 0.291

Table 4.7: Goal-SAR Results with Vision Transformer on Semantic Patch

As you can see, the best model for both the ADE world and the FDE world
metrics is Goal-SAR. In table 4.9 we compared the average ADE world and
average FDE world over the five scenes of ETH/UCY dataset obtained training
and testing all the models.
The best model for both the average metrics is Goal-SAR.
In table 4.10 we reported the average ADE world and average FDE world
results obtained training the models on SDD and testing them on ETH/UCY
(application of transfer learning). As we can see the best average ADE world
value is obtained using Goal-SAR while the best average FDE world value is
obtained using Goal-SAR Circle 33.

MODEL TRAIN SET TEST SET avg. ADE world avg. FDE world
SAR sdd sdd 10.259 18.218
Goal-SAR sdd sdd 7.642 11.679
Goal-SAR S. 32 sdd sdd 12.885 15.672
Goal-SAR S. 64 sdd sdd 11.497 18.221
Goal-SAR C. 33 sdd sdd 7.738 11.782
Goal-SAR C. 65 sdd sdd 7.877 12.166
Goal-SAR Sem. ViT sdd sdd 7.904 12.388

Table 4.8: Average Results for all models trained and tested on the SDD dataset
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MODEL TRAIN SET TEST SET avg. ADE world avg. FDE world
SAR eth-ucy eth-ucy 0.346 0.626
Goal-SAR eth-ucy eth-ucy 0.199 0.330
Goal-SAR S. 32 eth-ucy eth-ucy 0.207 0,332
Goal-SAR S. 64 eth-ucy eth-ucy 0.216 0.336
Goal-SAR C. 33 eth-ucy eth-ucy 0.208 0.338
Goal-SAR C. 65 eth-ucy eth-ucy 0.217 0.351
Goal-SAR Sem. ViT eth-ucy eth-ucy 0.253 0.426

Table 4.9: Average results for all models trained and tested on ETH/UCY dataset

MODEL TRAIN SET TEST SET avg. ADE world avg. FDE world
SAR sdd eth-ucy 0.279 0.515
Goal-SAR sdd eth-ucy 0.251 0.462
Goal-SAR S. 32 sdd eth-ucy 0.729 1.423
Goal-SAR S. 64 sdd eth-ucy 0.456 0.866
Goal-SAR C. 33 sdd eth-ucy 0.257 0.407
Goal-SAR C. 65 sdd eth-ucy 0.322 0.519
Goal-SAR Sem. ViT sdd eth-ucy 0.321 0.604

Table 4.10: Average results for all models when transfer learning is applied

4.3 Considerations and Problems

The quantitative results presented in the last section can be analyzed to gain
insight into the reasons why some approaches work better than others:

• SAR: comparing the table 4.10 with table 4.9 we can see that SAR model
is more prone to get better results when transfer learning is applied.
In table 4.10 in fact we got an improvement of both the average ADE world
and average FDE world metrics of about 20%.
In opposition looking at table 4.9 using SAR we got the worst average ADE
world and FDE world when trained and tested on ETH/UCY dataset.

• Goal-SAR: comparing Goal-SAR with the SAR model we can see that the
introduction of the Goal module let us always get better results on both
SDD and ETH/UCY datasets as shown in tables 4.9 and 4.8. On the other
hand, the Goal module does not allow Goal-SAR (compared to SAR) to get
benefits from the application of transfer learning.
In fact, comparing Goal-SAR results in table 4.10 with table 4.9, applying
transfer learning we got worst results for both averages ADE world=0.251
and FDE world=0.462 compared to baseline ones ADE world=0.199 and
FDE world=0.330.

• Goal-SAR Semantic Square: looking at tables 4.8 and 4.10 applying a
square semantic patch of size 32 to extract a local semantic descriptor led
us to the worst model in both cases.
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Increasing the size of the patch helps get better results but still really worse
compared with Goal-SAR baseline ones.
Contrastingly looking at table 4.9 we got really similar results compared
to the baseline ones training and testing this model on ETH/UCY .
Considering these results we can state that using a square semantic patch
in this way, we are introducing useless information to the temporal trans-
former and this could be related to its non-rotation invariant feature.

• Goal-SAR Semantic Circle: among all the models created in this thesis
so far, this is the only one that has been able to obtain better performance
compared to the baseline when transfer learning is applied.
As we can see from the table 4.10 we got an average ADE world of 0,257
and an average FDE world of 0,407 compared to the same situation for the
baseline where we got an average ADE world of 0,251 and an average FDE
world of 0,462.
From these results we can state that introducing the semantic Circle patch
(of diameter 33) descriptor extractor module to Goal-SAR, can lead to a
better knowledge transfering. Despite this, transfer learning results (Table
4.10) are not able to beat the baseline ones obtained without using transfer
learning (Table 4.9), which are an average ADE world of 0,199 and an
average FDE world of 0,330.
It’s important to note that, different from the previous model, increasing
the size of the circular patch does not find any benefit.

• Goal-SAR Semantic Vision Transformer: this is the most complex model
among the proposed ones.
Looking at the three tables 4.8 , 4.9 and 4.10. The introduction of more
complexity did not lead us to a better model; in fact, we always got worst
results compared to Goal-SAR and Goal-SAR Circle.
It’s important to highlight that we are currently doing more experiments
with this model on long-term trajectory prediction. On this last problem,
using the same batch size parameter as the one used in [7] for Goal-SAR,
we obtained better results for both ADE world and FDE world on SDD
datset with respect to the baseline.

4.3.1 Problems

There could be different reasons why we are dealing with these slightly worst
results obtained with our proposed models compared to Goal-SAR baseline.
All of these reasons have in common that we are concatenating to the input of
the temporal transformer useless or partial information.
This happens differently times for all of our approaches:

1. The semantic patch always covers the same semantic class for the entire
agent trajectory.
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2. Some agents remain in the same position for the entire sequence.

3. Some agents’ positions are on the border of the scene or outside of it,
leading to, respectively, an incomplete descriptor (the patch is partially
inside the scene) or a 0 descriptor.

To get a better comprehension of the probability in which the aforementioned
events happen, for both the SDD and ETH/UCY datasets, we report the statistics
obtained when dealing with a circular patch to compute the local semantic
descriptor.

1) Similar Descriptor for entire sequence

In tables 4.11 (considering Goal-SAR Circle 33) and 4.12 (considering Goal-
SAR Circle 65) we report the percentages of the agents whose trajectories define
a sequence of semantic patches with similar descriptors.
We defined 3 different thresholds T related with the distance between descriptors
of the same agent path:

• 1: same descriptors for the entire sequence

• 5: The sequence of descriptors for an agent has less than 5 pixels labeled
differently with respect to the descriptor computed at its starting position.

• 10: The sequence of descriptors of an agent have less than 10 pixels labeled
differently with respect to the descriptor computed at its starting position.

T Model Dataset Agents Same Sequence Total Agents Percentage
1 Goal-SAR C. 33 sdd 202 1522 13.27%
1 Goal-SAR C. 33 eth-ucy 58 193 30.05%
5 Goal-SAR C. 33 sdd 212 1522 13.92%
5 Goal-SAR C. 33 eth-ucy 62 193 32.12%
10 Goal-SAR C. 33 sdd 215 1522 14,13%
10 Goal-SAR C. 33 eth-ucy 63 193 32.64%

Table 4.11: Percentage of similar descriptor sequences (Goal-SAR C : Goal-SAR
circle) where T represents the threshold value in pixels

As we can see from table 4.11 the percentages on the ETH/UCY dataset are
really high considering a circular patch of diameter 33 pixels.
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T Model Dataset Agents Same Sequence Total Agents Percentage
1 Goal-SAR C. 65 sdd 212 1522 13.92%
1 Goal-SAR C. 65 eth-ucy 20 193 10.36%
5 Goal-SAR C. 65 sdd 212 1522 13.92%
5 Goal-SAR C. 65 eth-ucy 25 193 12.95%
10 Goal-SAR C. 65 sdd 214 1522 14.06%
10 Goal-SAR C. 65 eth-ucy 26 193 13.47%

Table 4.12: Percentage of similar descriptors (Goal-SAR C : Goal-SAR Circle)
where T represents the threshold value in pixels

Model Dataset Agents Same Position Total Agents Percentage
Goal-SAR C. 33 sdd 202 1522 13.27%
Goal-SAR C. 33 eth5 17 193 8.81%

Table 4.13: Percentage of agents always in the same position

2) Agents in the Same Position for entire sequence

In table 4.13 we reported the percentages of human agents who remain for the
entire sequence in the same position in the scene. This case represents a subset
of the previous one because the descriptors computed for the aforementioned
agents are exactly the same for the entire sequence.

3) Partial Descriptors

In tables 4.14 and 4.15 we reported the percentage of the agents positions
which are outside or near the border of the scene.
We computed it for both datasets (SDD and ETH/UCY) considering the total
number of agent positions.

Model Dataset Incomplete Descriptors Total Descriptors Percentage
Goal-SAR C. 33 sdd 4552 28918 15.74%
Goal-SAR C. 33 eth5 432 3667 11.78%

Table 4.14: Percentage of partial descriptors calculated for the Goal-SAR Circle
33

These situations led to partial semantic descriptors. As we can see from table
4.15, using a circular patch of 65 pixels in diameter, about 40% of the times we
concatenate incomplete information with the input of our temporal transformer.
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4.3. CONSIDERATIONS AND PROBLEMS

Model Dataset Incomplete Descriptors Total Descriptors Percentage
Goal-SAR C. 65 sdd 11969 28918 41.39%
Goal-SAR C. 65 eth5 1401 3667 38.21%

Table 4.15: Percentage of partial descriptors computed for the Goal-SAR Circle
65

Agents outside the scene

In table 4.16 we reported the percentages of agents positions outside the
scenes for each dataset (SDD and ETH/UCY) with respect to the total number
of agent positions.
These is a subset of the previously considered case.

Dataset Outside Positions Total positions Percentage
sdd 2095 28918 7.24%
eth5 76 3667 2.07%

Table 4.16: Percentage of Positions Outside the scene
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5
Conclusions and Future Works

5.1 Conclusions

Pedestrian trajectory prediction is one of the many topics in which the ad-
vent of deep learning completely changed the approach to the problem. While
the first solutions were based on physics modelling, nowadays state-of-the-art
approaches are mostly based on deep learning techniques. Data-driven models
such as deep learning models are very sensitive to the quantity and quality of
the training data and how this data is then presented to the model. This is
the reason why the goal of the thesis was to find ideas in order to efficiently
apply transfer learning. The final contribution of this thesis is a study on the
effectiveness of different techniques to transfer knowledge between different
scenes. All the different techniques used are based on trying to extract a local
descriptor from the semantic image in correspondence to the agent position.
This comes from the idea that scenes characterized by a similar semantic context
could determine similar behaviors of human agents trajectories. In chapter 4
we proposed different techniques. The one that led to the better results in the
transfer learning setting introduced a parallel module to the GoalSAR model.
This module extracts a circular patch from the semantic image and generates a
histogram representing the frequency of each semantic class inside the patch.
The numerical vector that represents the computed frequency histogram is then
concatenated to the temporal transformer of the GoalSAR model. When trans-
fer learning is not applied this technique led to similar results compared to the
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5.2. FUTURE WORKS

baseline GoalSAR model. Moreover, we deal with short-term trajectory pre-
diction while new tests and studies at the University of Padua are considering
long-term case in which using the same model proposed in chapter 4.2.4 (Vision
Transformer for semantic feature vector extraction) led to better results with
respect to the GoalSAR baseline for both average ADE and average FDE metrics.

5.2 Future Works

New techniques to extract a semantic local descriptor or new way to create
a semantic histogram could increase performances of the models when dealing
with transfer learning. Moreover, the creation of a big synthetic dataset that
could be used to apply transfer learning for both SDD and ETH/UCY datasets
could be interesting in order to get a stronger demonstration of the importance
of the semantic context when dealing with pedestrian trajectory prediction.

48



References

[1] Alexandre Alahi et al. “Social LSTM: Human Trajectory Prediction in
Crowded Spaces”. In: 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 2016, pp. 961–971. doi: 10.1109/CVPR.2016.110.

[2] Javad Amirian, Jean-Bernard Hayet, and Julien Pettre. “Social Ways: Learn-
ing Multi-Modal Distributions of Pedestrian Trajectories With GANs”. In:
June 2019, pp. 2964–2972. doi: 10.1109/CVPRW.2019.00359.

[3] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural Machine
Translation by Jointly Learning to Align and Translate. 2014. eprint: arXiv:
1409.0473.

[4] Lamberto Ballan et al. Knowledge Transfer for Scene-specific Motion Prediction.
2016. eprint: arXiv:1603.06987.

[5] Tamer Basar. “A New Approach to Linear Filtering and Prediction Prob-
lems”. In: Control Theory: Twenty-Five Seminal Papers (1932-1981). 2001,
pp. 167–179. doi: 10.1109/9780470544334.ch9.

[6] Denny Britz et al. “Massive Exploration of Neural Machine Translation
Architectures”. In: ArXiv abs/1703.03906 (2017).

[7] Luigi Filippo Chiara et al. Goal-driven Self-Attentive Recurrent Networks for
Trajectory Prediction. 2022. eprint: arXiv:2204.11561.

[8] Kyunghyun Cho et al. “Learning Phrase Representations using RNN En-
coderDecoder for Statistical Machine Translation”. In: EMNLP. 2014.

[9] Patrick Dendorfer, Sven Elflein, and Laura Leal-Taixé. MG-GAN: A Multi-
Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajec-
tory Prediction. 2021. eprint: arXiv:2108.09274.

49

https://doi.org/10.1109/CVPR.2016.110
https://doi.org/10.1109/CVPRW.2019.00359
arXiv:1409.0473
arXiv:1409.0473
arXiv:1603.06987
https://doi.org/10.1109/9780470544334.ch9
arXiv:2204.11561
arXiv:2108.09274


REFERENCES

[10] Patrick Dendorfer, Aljoa Oep, and Laura Leal-Taixé. Goal-GAN: Multimodal
Trajectory Prediction Based on Goal Position Estimation. 2020. eprint: arXiv:
2010.01114.

[11] Alexey Dosovitskiy et al. An Image is Worth 16x16 Words: Transformers for
Image Recognition at Scale. 2020. eprint: arXiv:2010.11929.

[12] Ian J. Goodfellow et al. Generative Adversarial Networks. 2014. eprint: arXiv:
1406.2661.

[13] Agrim Gupta et al. Social GAN: Socially Acceptable Trajectories with Generative
Adversarial Networks. 2018. eprint: arXiv:1803.10892.

[14] Dirk Helbing and Péter Molnár. “Social force model for pedestrian dy-
namics”. In: Phys. Rev. E 51 (5 May 1995), pp. 4282–4286. doi: 10.1103/
PhysRevE . 51 . 4282. url: https : / / link . aps . org / doi / 10 . 1103 /
PhysRevE.51.4282.

[15] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Memory”.
In: Neural Computation 9 (1997), pp. 1735–1780.

[16] Parth Kothari, Sven Kreiss, and Alexandre Alahi. “Human Trajectory Fore-
casting in Crowds: A Deep Learning Perspective”. In: IEEE Transactions on
Intelligent Transportation Systems 23 (2022), pp. 7386–7400.

[17] Mihee Lee et al. MUSE-VAE: Multi-Scale VAE for Environment-Aware Long
Term Trajectory Prediction. 2022. eprint: arXiv:2201.07189.

[18] Alon Lerner, Yiorgos Chrysanthou, and Dani Lischinski. “Crowds by Ex-
ample”. In: Computer Graphics Forum (2007). issn: 1467-8659. doi: 10.1111/
j.1467-8659.2007.01089.x.

[19] Tony Lindeberg. “Scale Invariant Feature Transform”. In: vol. 7. May 2012.
doi: 10.4249/scholarpedia.10491.

[20] Tony Lindeberg. “Scale Invariant Feature Transform”. In: vol. 7. May 2012.
doi: 10.4249/scholarpedia.10491.

[21] Karttikeya Mangalam et al. From Goals, Waypoints & Paths To Long Term
Human Trajectory Forecasting. 2020. eprint: arXiv:2012.01526.

[22] Karttikeya Mangalam et al. It Is Not the Journey but the Destination: Endpoint
Conditioned Trajectory Prediction. 2020. eprint: arXiv:2004.02025.

50

arXiv:2010.01114
arXiv:2010.01114
arXiv:2010.11929
arXiv:1406.2661
arXiv:1406.2661
arXiv:1803.10892
https://doi.org/10.1103/PhysRevE.51.4282
https://doi.org/10.1103/PhysRevE.51.4282
https://link.aps.org/doi/10.1103/PhysRevE.51.4282
https://link.aps.org/doi/10.1103/PhysRevE.51.4282
arXiv:2201.07189
https://doi.org/10.1111/j.1467-8659.2007.01089.x
https://doi.org/10.1111/j.1467-8659.2007.01089.x
https://doi.org/10.4249/scholarpedia.10491
https://doi.org/10.4249/scholarpedia.10491
arXiv:2012.01526
arXiv:2004.02025


REFERENCES

[23] Stefano Pellegrini, Andreas Ess, and Luc Van Gool. “You’ll Never Walk
Alone: Modeling Social Behavior for Multi-target Tracking”. In: Sept. 2009,
pp. 261–268. doi: 10.1109/ICCV.2009.5459260.

[24] Alexandre Robicquet et al. “Learning Social Etiquette: Human Trajectory
Understanding In Crowded Scenes”. In: ed. by Bastian Leibe et al. 2016.

[25] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional
Networks for Biomedical Image Segmentation. 2015. eprint: arXiv : 1505 .
04597.

[26] Amir Sadeghian et al. “CAR-Net: Clairvoyant Attentive Recurrent Net-
work”. In: (2017). eprint: arXiv:1711.10061.

[27] Amir Sadeghian et al. SoPhie: An Attentive GAN for Predicting Paths Com-
pliant to Social and Physical Constraints. 2018. eprint: arXiv:1806.01482.

[28] Tim Salzmann et al. Trajectron++: Dynamically-Feasible Trajectory Forecasting
With Heterogeneous Data. 2020. eprint: arXiv:2001.03093.

[29] Kihyuk Sohn, Honglak Lee, and Xinchen Yan. “Learning Structured Out-
put Representation using Deep Conditional Generative Models”. In: NIPS.
2015.

[30] Jimei Yang et al. “Context Driven Scene Parsing with Attention to Rare
Classes”. In: 2014 IEEE Conference on Computer Vision and Pattern Recogni-
tion. 2014, pp. 3294–3301. doi: 10.1109/CVPR.2014.415.

[31] Jiangbei Yue, Dinesh Manocha, and He Wang. Human Trajectory Prediction
via Neural Social Physics. 2022. eprint: arXiv:2207.10435.

[32] Shengjia Zhao, Jiaming Song, and Stefano Ermon. InfoVAE: Information
Maximizing Variational Autoencoders. 2017. eprint: arXiv:1706.02262.

51

https://doi.org/10.1109/ICCV.2009.5459260
arXiv:1505.04597
arXiv:1505.04597
arXiv:1711.10061
arXiv:1806.01482
arXiv:2001.03093
https://doi.org/10.1109/CVPR.2014.415
arXiv:2207.10435
arXiv:1706.02262




Acknowledgments

I would like to thank my supervisor Professor Lamberto Ballan, my co-
supervisors Sourav Das and Luigi Filippo Chiara. Their guidance and assistance
have been fundamental for all the aspects of this work, especially in the definition
of the tasks and in the discussion of the results. I thank my university colleagues
Alberto, Alessandro, Nicola and Pietro for their support and help during all my
five years long computer engineering career. I also thank the University of
Padova for having given me the possibility to accomplish my goals. I thank my
girlfriend Sofia who helped me psychologically to go through the adversities of
my carrier path and my friends who accompanied me during this experience.
Most important I want to thank my family, parents and brothers, who have
allowed all this. They support and motivate me through all the most important
steps in my life.

53


	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Problem Formulation
	Applications
	Purpose
	Methodology

	Related Works
	Trajectory Prediction
	Social Forces
	Social LSTM
	MUSE-VAE
	GAN
	PECNet
	Y-net
	Trajectron++
	NSP-SFM

	Knowledge Transfer
	Synthetic Dataset
	Local Descriptor


	Datasets and Evaluation Metrics
	Datasets
	SDD
	ETH and UCY

	Metrics
	Average Displacement Error (ADE)
	Final Displacement Error (FDE)


	Experiments
	Idea
	Baseline
	ORB or SIFT Local Descriptor Module
	Semantic Local Descriptor - Square Patch
	Semantic Local Descriptor - Circular Patch
	Visual Transformer of Semantic Local Descriptor

	Results
	Baseline
	Local Descriptor Module - Square Patch
	Local Descriptor Module - Circular Patch
	Vision Transformers
	Average Final Results

	Considerations and Problems
	Problems


	Conclusions and Future Works
	Conclusions
	Future Works

	References
	Acknowledgments

