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Preface

One of the most influential theories for elliptic equations of the following form
−div(A(x)∇u(x)) = 0 is the De Giorgi-Nash-Moser theorem on the continuity
of weak solutions to uniformly elliptic equations. Ennio De Giorgi first proved
the theorem in 1957 [1] and indipendently was also discovered by Jonh Nash [2]
in 1958. Later J. Moser [3] in 1960 gave a proof using the powers of the solution
and John-Nirenberg inequality. De Giorgi used the theorem to solve Hilbert’s
19th problem and his proof has far reaching influence on the whole field of the
analysis of partial differential equations.
In the first chapter we will exhibit a more generalized version of the De Giorgi
method combined with the use of Harnack’s inequality to show the iteration of
Moser. Applying the De Giorgi-Nash-Moser theorem we obtain thatDw ∈ C0,α.
Then, with a bootstrap argument, we will conclude the solution to the Hilbert
problem with the Calderon–Zygmund result.
After exhibiting some applications of Harnack’s inequality, in the last chapter
we will shift our focus on proving the Harnack’s inequality on general second-
order elliptic equation of the form −△u + b · ∇u + au = 0. In the previous
elliptic equation we set A = 1 to concentrate on the coefficients a, b of inferior
order. The qualitative properties of solutions to elliptic and parabolic equations
in divergence form with low regularity of the coefficients have been studied
extensively, starting with the classical papers of De Giorgi [1], Nash [2], and
Moser [3]. We are mostly interested in the improved regularity for divergence
free drifts b, which arise in fluid dynamics models [12].
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1 Elliptic equations

In this section, we consider the following linear equation, set on some domain
(i.e. nonempty, open, connected set) of Rn, where n ≥ 2:

−div(A(x)∇u(x)) = −
n
∑

i,j=1

∂

∂xi

(

aij(x)
∂

∂xj
u(x)

)

= 0, (1)

where the matrix A(x) = [aij(x)]1≤i,j≤n has measurable entries. If u is such
that (1) holds we will write LAu = 0 to abbreviate the future notations. We
will also need the boundedness and ellipticity of A, therefore there exist Λ ≥ 1
such that

Λ−1
I ≤ A(x) ≤ ΛI (2)

for almost all x, where the previous inequality is meant in the following sense:
for almost all x and for all ξ ∈ R

n with modulus 1, we require

Λ−1 ≤ ⟨ξ,A(x)ξ⟩ ≤ Λ,

for some Λ ≥ 1. If the matrix A is diagonalizable and (λi(x))1≤i≤n denote the
eigenvalues of A(x), this condition is equivalent to Λ−1 ≤ λi(x) ≤ Λ for almost
every x. This also means that A is positive definite.

Definition 1.0.1 (Weak solution). Let Ω ⊂ R
n be open and bounded. We say

that u ∈W 1,2(Ω) is a weak solution of (1) if the equation

∫

Ω

⟨∇ϕ(x),A(x)∇u(x)⟩dx = 0

holds for all test functions ϕ ∈ C∞
c (Ω).

Theorem 1.0.2 (De Giorgi, Nash, Moser). Let u ∈ W 1,2(Ω) be a weak
solution of (1) where A fulfils the condition (2). Then there exists 0 < α(n,Λ) ≤
1 such that u ∈ C0,α(Ω′) for all Ω′ relatively compact in Ω. Moreover, there
exists C(n,Λ,Ω,Ω′) > 0 such that the following norm estimate holds:

∥u∥C0,α(Ω′) ≤ C∥u∥L2(Ω).
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The method of De Giorgi

In the following subchapter we will prove Theorem 1.0.2 for a general matrix A

which satisfies (2), contrarily to the work of De Giorgi ( see [1]), who confined
to consider A symmetric. Anyway, we will consider a general matrix and do not
require A to be symmetric.

Remark 1.0.2.1. Let u ∈W 1,2 be a weak solution of (3.1) on some domain Ω,
where A fulfils (2). Scalings and translations of u solve a similar equation, for
which (2) still holds. In more detail let λ > 0, x0 ∈ Ω and ϵ > 0 and define

v(y) := λu(x0 + ϵy),

for y ∈ Ω̃ ⊂ {y ∈ R
n : x0 + ϵy ∈ Ω}. Let ψ ∈ C∞

c (Ω̃) and define ϕ := y →
ψ(x0 + ϵy),B := y → A(x0 + ϵy). We then have
∫

Ω̃

⟨∇yv(y),B(y)∇yψ(y)⟩dy =

∫

Ω̃

⟨ϵλ∇xu(x0 + ϵy),A(x0 + ϵy)ϵ∇xϕ(x0 + ϵy)⟩dy,

= ϵ2−nλ

∫

Λ

⟨∇xu(x),A(x)∇xϕ(x)⟩dx

= 0,

due to the fact that ϕ ∈ C∞
c (Ω). From the previous equation it follows that v is

a weak solution on LB on Ω̃, where B satisfies (2).

Remark 1.0.2.2. Without loss of generality it is enough to prove the theorem
on the balls B1 and B1/2 since by translation and scaling one can get the desired
result for any ball as follows: let d = dist(Ω′, ∂Ω). For any x0 ∈ Ω′, we define

f(x) = u(x0 + dx),

where x ∈ B1, so that by the previous remark, f is a weak solution LBd
= 0 on

B1, where Bd := y → A(x0 + dy) fulfils (2). Then v ∈ C0,α(B1/2) where α does
not depend on x0 or d, therefore u ∈ C0,α(Ω′).

The proof can be split in two steps: the first one consists in estimating the
supremum of u using the energy. For the second one we can use the estimate in
L∞(Ω′), to prove the fact that u is in C0,α(Ω′).

First step: the supremum bound

Lemma 1.0.3. There exists δ > 0, which depends only on n and Λ, such that
for any u ∈W 1,2(B1) which is a weak solution of (1) in B1, where A fulfils (2),
the following proposition is true: if

∥u+∥L2(B1) ≤ δ,

then

∥u+∥L∞(B 1
2
) ≤

1

2
.
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First of all we introduce some notation. We initially define the following
family of balls centered in the origin:

B′
k := B 1

2(1+2−k)
,

which by definition satisfy B′
0 = B1 and limk→∞B′

k = B1/2. We will also define

uk := (u− 1−2−k

2 )+ which is the positive part of the function u− 1−2−k

2 and we
define as well

Uk =

∫

B′
k

|uk(x)|
2dx.

We would like to derive an estimate of the following form

Uk+1 ≤ CkUβ
k , (3)

where C > 1 and β > 1. Using that by definition U0 = ∥u+∥
2
L2(B1)

and

limk→∞ Ck = +∞, since β > 1 if U0 ( the L2− norm of u+ on B1) is small
enough, this factor will overwhelm the factor Ck and the sequence Uk converges
to 0, which means that by dominated convergence

∫

B 1
2

(

u(x)−
1

2

)2

+
dx = 0,

which implies that u(x) ≤ 1
2 for almost every x in B 1

2
, therefore u ∈ L∞(B 1

2
). In

the previous propositions we introduced the key ideas to the proof of the Lemma
1.0.3 which consisted in proving the estimate (3) and using this inequality to
prove u ∈ L∞(B 1

2
) in a rigorous way. To prove the estimate (3) we have to

apply the three following well-known inequalities:

Theorem 1.0.4 (Sobolev’ s inequality). Assume n ≥ 3. Let 2⋆ = 2n
n−2 . For

any smooth, bounded domain Ω ⊂ R
n there exist a constant S such that for any

u ∈ H1
0 (Ω) we have the following inequality:

∥u∥L2⋆ (Ω) ≤ S∥∇u∥2L2(Ω). (4)

Proof. We initially remark that is enough to prove the theorem in case u ∈
C

∞
0 (Ω) by density. We firstly assume that p = 1, then p⋆ = n

n−1 . Due to the
fact that u has compact support we obtain that

|u(x)| ≤

∫ xi

−∞

|uxi(x1, . . . , xi−1, yi, xi+1, . . . , xn)|dyi

≤

∫ +∞

−∞

|Du(x1, . . . , , xi−1, yi, xi+1, . . . , xn)|dyi

for all i ∈ {1, . . . , n} therefore taking the product we obtain

|u(x)|
n

n−1 ≤
n
∏

i=1

(

∫ +∞

−∞

|Du(x1, . . . , xi−1, yi, xi+1, . . . , xn)|dyi
)

1
n−1

.
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Integrating the previous inequality with respect to xi we obtain:

∫ +∞

−∞

|u|
n

n−1 dx1 ≤

∫ +∞

−∞

n
∏

i=1

(

∫ +∞

−∞

|Du|dyi
)

1
n−1

dx1

=
(

∫ +∞

−∞

|Du|dy1
)

1
n−1

∫ +∞

−∞

n
∏

i=2

(

∫ +∞

−∞

|Du|dyi
)

1
n−1

dx1

≤
(

∫ +∞

−∞

|Du|dy1
)

1
n−1
(

n
∏

i=2

∫ +∞

−∞

∫ +∞

−∞

|Du|dx1dyi
)

1
n−1

where the last inequality follows from Hölder’ s inequality. Iterating the proce-
dure with respect to the other variables we obtain

∫

Rn

|u|
n

n−1 dx ≤
(

∫

Rn

|Du|
n

n−1 dx
)

n
n−1

as desired. Now we will consider the case 1 < p < n. We apply the previous
estimate on v := |u|α. Then

(

∫

Rn

|u|
αn
n−1 dx

)

n−1
n

≤

∫

Rn

|D|u|α|dx = α

∫

Rn

|u|α−1|Du|dx

≤ α
(

∫

Rn

|u|(α−1) p
p−1 dx

)

p−1
p
(

∫

Rn

|Du|pdx
)1

p

where in the last inequality we applied the general Hölder’ s inequality and if

we choose α such that αn
n−1 = (α− 1) p

p−1 , therefore α := p(n−1)
n−p > 1, we obtain

that αn
n−1 = np

n−1 = p⋆ from which it follows that

∥u∥Lp⋆ (Rn) ≤
p(n− 1)

n− p
∥Du∥Lp(Rn),

which proves the general theorem with Sp = p(n−1)
n−p and assigning p = 2 we

obtain the thesis.

Theorem 1.0.5 (Markov’s inequality). Let f be a positive and measurable func-
tion. Then we have the following inequality for any a > 0:

|{x : f(x) ≥ a}| ≤
∥f∥L1

a
.

Proof. Since f is positive the theorem follows trivially from:

∥f∥L1 =

∫

Rn

f(x)dx ≥

∫

{x:f(x)≥a}

f(x)dx ≥

∫

{x:f(x)≥a}

adx.

Theorem 1.0.6 (Cacciopoli inequality). Let u ∈ W 1,2(Br) be a weak solution
of LAu = 0, where A fulfils (2), and let ϕ ∈ C∞

c (Br). Then there exists C > 0
independent of u such that the following inequality holds:

∫

Br

|∇(ϕu+)|
2dx ≤ C∥∇ϕ∥2L∞

∫

Br∩supp ϕ

u2+dx.
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Moreover C = Λ2 if the matrix A is symmetric.

Proof. Since u is a weak solution of LAu = 0, testing with ϕ2u+ we obtain

∫

Br

⟨∇(ϕ2u+),A∇u+⟩dx = 0.

And we do the following computations to use the fact that the matrix A satisfies
(2):

0 =

∫

Br

⟨∇(ϕ2u+),A∇u+⟩dx

=

∫

Br

⟨ϕ∇(ϕu+),A∇u+⟩dx+

∫

Br

⟨(ϕu+)∇(ϕ),A∇u+⟩dx

=

∫

Br

⟨∇(ϕu+),A∇(ϕu+)⟩ −

∫

Br

⟨∇(ϕu+),Au+∇ϕ⟩dx+

∫

Br

⟨(ϕu+)∇ϕ,A∇u+⟩dx

=

∫

Br

⟨(ϕu+),A(ϕu+)⟩dx−

∫

Br

⟨∇(ϕu+), (A− A
T )u+∇ϕ⟩dx

−

∫

Br

⟨∇(ϕu+),A
Tu+∇ϕ⟩dx+

∫

Br

⟨(ϕu+)∇ϕ,A∇u+⟩dx

=

∫

Br

⟨∇(ϕu+),A∇(ϕu+)⟩dx−

∫

Br

⟨∇(ϕu+), (A− A
T )u+∇ϕ⟩dx

−

∫

Br

⟨u2+∇ϕ,A
T∇ϕ⟩dx−

∫

Br

⟨(ϕu+)∇u+,A
T∇ϕ⟩dx+

∫

Br

⟨(ϕu+)∇ϕ,A∇u+⟩dx

And if the matrix A is symmetric the second term vanishes and we obtain

∫

Br

⟨∇(ϕu+),A∇(ϕu+)⟩dx =

∫

Br

u2+⟨∇ϕ,A
T∇ϕ⟩dx,

and using the ellipticity (2) of the matrix A we obtain

∫

Br

|∇(ϕu+)|
2dx ≤ Λ2

∫

Br

u2+|∇ϕ|
2dx ≤ Λ2∥∇ϕ∥2L∞

∫

Br∩supp ϕ

u2+dx.

If A is not symmetric we use the following estimate:

∣

∣

∣

∫

Br

⟨∇(ϕu+), (A− A
T )u+∇ϕ⟩dx

∣

∣

∣
≤

∫

Br

(

|⟨∇(ϕu+),Au+∇ϕ⟩|+ |⟨A∇(ϕu+), u+∇ϕ⟩|
)

dx

≤ 2Λ∥∇(ϕu+)∥L2∥u+∇ϕ∥L2

≤ 2Λ
3
2

(

∫

Br

⟨∇(ϕu+),A∇(ϕu+)⟩dx
)

1
2

∥u+∇ϕ∥L2

≤
1

2

∫

Br

⟨∇(ϕu+),A∇(ϕu+)⟩dx+ 2Λ3

∫

Br

u2+|∇ϕ|
2dx
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where in the penultimate line we used the ellipticity condition and in the last
line we used a2 + b2 ≥ 2ab. Plugging this inequality in the expression above we
obtain

1

2

∫

Br

⟨∇(ϕu+),A∇(ϕu+)⟩dx− Λ(1 + 2Λ2)

∫

Br

u2+|∇ϕ|
2dx ≤ 0,

and using the ellipticity again we obtain:

∫

Br

|∇(ϕu+)|
2dx ≤ 2Λ2(1 + 2Λ2)

∫

Br

u2+|∇ϕ|
2dx

≤ 2Λ2(1 + Λ2)∥∇ϕ∥2L∞

∫

Br∩supp ϕ

u2+dx,

which concludes the proof.

Once showed the previous theorems we can proceed to the proof of Uk+1 ≤
CkUβ

k by defining the following family of cut-off functions ϕk such that: ϕk ∈
C∞

c (B′
k−1) and ϕk = 1 in B′

k with ∥∇ϕk∥L∞ ≤ C · 2k. By definition we have

Uk =

∫

B′
k

|uk|
2dx ≤

∫

B1

ϕ2ku
2
kdx

and also 1B′
k+1

≤ ϕk ≤ 1B′
k
and uk+1 ≤ uk, therefore applying Sobolev’ s

inequality on ϕk+1uk+1 in B′
k and taking C big enough (> 16) we obtain

(

∫

B′
k

(ϕk+1uk+1)
2⋆dx

)
2
2⋆

≤ S

∫

B′
k

|∇(ϕk+1uk+1)|
2dx,

and using Cacciopoli inequality (Theorem 1.0.6) we obtain

(

∫

B′
k

(ϕk+1uk+1)
2⋆dx

)
2
2⋆

≤ C22k
∫

B′
k

|uk+1|
2dx ≤ C22k

∫

B′
k

|uk|
2dx ≤ CkUk.

Using Markov’ s inequality (Theorem 1.0.5), Hölder’ s inequality with exponents
( n
n−2 ,

n
2 ) and previous inequality we obtain

Uk+1 ≤

∫

B′
k

ϕ2k+1u
2
k+1dx

≤
(

∫

B′
k

(ϕk+1uk+1)
2⋆dx

)
2
2⋆ ∣
∣{ϕk+1uk+1 > 0}

∣

∣

2
n

≤ CkUk|{ϕkuk > 2−(k+2)}|
2
n = CkUk

∣

∣

{

(ϕkuk)
2 > 2−2(k+2)

}∣

∣

2
n

≤
Ck

2
−4(k+2)

n

U
1+ 2

n

k ≤ 2
8
n

(

2
4
nC
)k
U

1+ 2
n

k .
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which proves (3) with β = 1 + 2
n and k ≥ 2.

Proven this inequality we can conclude the proof of the Lemma 1.0.3 by looking
for δ such that if ∥u+∥L2(B1) = U0 ≤ δ, then ∥u∥L∞(B 1

2
) ≤ 1

2 . The idea is to

show that Uk converges to zero. To do so let E(k) the following inequality:

E(k) : CkUβ−1
k ≤

1

(2C)
1

β−1

. (5)

We will prove that if U0 is small enough E(k) holds for all k. Choosing k0
such that 1

2k0
≤ 1

(2C)
1

β−1
, for δ small enough E(k) holds for any k ≤ k0 since

U∥+∞ ≤ Uk by definition. Using strong induction on k we will prove that E(k)

holds for all k. Using (3) we have that Uk+1 ≤ 1

(2C)
k+1
β−1

, which implies that

Ck+1Uβ−1
k+1 ≤

1

2k+1
≤

1

2k0
≤

1

(2C)
1

β−1

,

which proves E(k + 1). Using this result we obtain that

∫

B 1
2

(u−
1

2
)2+dx = lim

k→+∞
Uk = 0,

which implies that ∥u+∥L∞(B 1
2
) ≤

1
2 , which concludes the proof.

Corollary 1.0.6.1. Let Ω ⊂ R
n be a smooth bounded domain. Let u ∈W 1,2(Ω)

be a weak solution of (1) in Ω where A fulfils the ellipticity condition (2). Then
for any Ω′ ⋐ Ω we have that u ∈ L∞(Ω′).

Proof. Let d := dist(Ω′, ∂Ω). For any x0 ∈ Ω′, we define v on B1 as

v(y) := δ
d

n
2

∥u∥L2(Ω)
u(x0 + dy)

where δ is the constant in Lemma 1.0.3. By Remark 1.0.2.1 v is a weak solution
of LB = 0 on B1 for some B fulfilling condition (2). Moreover we have that
∥v∥L2(B1) ≤ δ, which implies by Lemma 1.0.3 that v(y) ≤ 1

2 for almost every y

in B1. Using same procedure for −v we obtain |v(y)| ≤ 1
2 for almost every y in

B1 which implies that

∥u∥L∞(Ω′) ≤
∥u∥L2(Ω)

2δ · d
n
2
.

Second step: the Oscillation Lemma

In this section we will conclude the proof of Theorem 1.0.2 by proving the
Oscillation Lemma below.
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Definition 1.0.7 (Oscillation). For any open set A and any real-valued function
f on A, the oscillation of f on A is defined as

oscAf = sup
A
f − inf

A
f.

Lemma 1.0.8 (Oscillation Lemma). Let u ∈W 1,2(B2) be a weak solution of (1)
on B2 where A fulfils the ellipticity condition (2). Then there exists a constant
λ(Ω, n) < 1 such that the following inequality holds:

oscB 1
2

u ≤ λ oscB2u.

The De Giorgi-Nash-Moser Theorem follows as a conseguence of the Oscil-
lation Lemma:

Proof of Theorem 1.0.2. Take x0 ∈ Ω′ ⋐ Ω and let d := dist(Ω′, ∂Ω) as before.
We introduce the following family of functions vk on B2: v1(y) = u(x0 +

d
2y),

vk(y) = vk−1

(y

4

)

= u
(

x0 +
1

4k−1

d

2
y
)

,

which, as proven by Remark 1.0.2.1 and Remark 1.0.2.2, the functions vk are
weak solutions of LBk

vk = 0, where Bk(y) := A
(

x0+
1

4k−1
d
2y
)

fulfils the ellipticity
condition (2) with the same constant Λ of A. Applying the Oscillation Lemma:

oscB 1
2

vk+1 ≤ λoscB2
vk+1 ≤ λoscB 1

2

vk ≤ λkoscB 1
2

v1 ≤ 2λk∥u∥L∞(Ω′),

where we used the definition of vk+1 : y → vk(
y
4 ). Using the previous estimate

we obtain:

sup
|x0−x|≤4−k−1d

|u(x0)− u(x)| ≤ oscB 1
2

vk+1 ≤ 2λk∥u∥L∞(Ω),

which don’ t depend on d, x0. Let Ik be the following interval Ik := [4−k−1d, 4−kd],
then

sup
|x0−x|≤d

|u(x0)− u(x)|

|x0 − x|α
= sup

k∈N

sup
|x0−x|∈Ik

|u(x0)− u(x)|

|x0 − x|α

≤ sup
k∈N

2λk−1∥u∥L∞(Ω)

4−α(k+1)
= sup

k∈N

2λ−1∥u∥L∞(Ω)

4−α
(λ4α)k.

Picking α = − lnλ
ln 4 the right-hand side is limited and u ∈ C0,α(Ω′).

To prove the Oscillation Lemma (Lemma 1.0.8) we will prove the equivalent
proposition:
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Proposition 1.0.9. Let v ≤ 1 be a weak solution of LAv = 0 on B2, with A

fulfiling (2). If there exists µ > 0 such that |B1 ∩{v ≤ 0}| ≥ µ, then there exists
a constant λ depending only on n, µ and Λ such that the following estimate
holds:

sup
B 1

2

v ≤ 1− λ.

We will prove below how this proposition implies the Oscillation lemma:

Proof. Let u be a function which satisfies the hypothesis of Lemma 1.0.8 (Os-
cillation lemma). We rescale the function u by putting its image between −1
and 1 by introducing the function v as

v(x) :=
2

oscB2
u

(

u(x)−
supB2

u+ infB2
u

2

)

.

Without loss of generality we can assume v ≤ 0 on at least half of B1

(otherwise we can replace v with −v ). Applying Proposition 1.0.9 we obtain

oscB 1
2

v = sup
B 1

2

v − inf
B 1

2

v ≤ 1− λ− (−1) = 2− λ,

from which it follows by definition of v that

oscB 1
2

u =
oscB2u

2
oscB 1

2

v ≤ (1−
λ

2
)oscB2u.

To prove Proposition 1.0.9 we will introduce the following notations: let
w a measurable function defined on B1, we define the following subsets of B1:

S0
w := B1 ∩ {w ≤ 0}, S

1
2
0,w := B1 ∩ {0 < w < 1

2}, S 1
2 ,w

:= B1 ∩ { 1
2 ≤ w}.

Lemma 1.0.10 (De Giorgi’s isoperimetric inequality). There exists a constant
Cn > 0, only depending on n, such that the following holds: if w ∈W 1,2(B1) is
such that

∫

B1
|∇w+|

2dx ≤ C0, then we have

Cn

(

|S 1
2 ,w

||S0
w|

1− 1
n

)2

≤ C0|S0,w|
1
2 .

Proof. We start by setting the function w as w(x) := max{0,min(w(x), 12 )}.
Note that by definition ∇w = 1{0≤w≤ 1

2}
∇w+. For any x ∈ S0

w, y ∈ S 1
2 ,w

, we
have

1

2
≤ w(y)− w(x) =

∫ 1

0

d

dt
w(x+ t(y − x))dt

=

∫ 1

0

(y − x) · ∇w(x+ t(y − x))dt

≤

∫ |x−y|

0

∣

∣

∣
∇w
(

x+ s
x− y

|x− y|

)
∣

∣

∣
ds.
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Extending the last integral we obtain 1
2 ≤

∫ ∞

0

∣

∣

∣
∇w
(

x+ s
x− y

|x− y|

)∣

∣

∣
ds, by which

integrating in y ∈ S 1
2 ,w

we obtain

|S 1
2 ,w

|

2
≤

∫

S 1
2
,w

(
∫ ∞

0

∣

∣

∣
∇w
(

x+s
x− y

|x− y|

)
∣

∣

∣
ds

)

dy ≤

∫

B1

(
∫ ∞

0

∣

∣

∣
∇w
(

x+s
x− y

|x− y|

)
∣

∣

∣
ds

)

dy

and changing to the polar coordinates we obtain

|S 1
2 ,w

|

2
≤

∫ 1

0

rn−1

∫

Sn−1

(
∫ ∞

0

∣

∣

∣
∇w
(

x+ s
x− y

|x− y|

)
∣

∣

∣
ds

)

dσdr

≤

∫

Sn−1

∫ ∞

0

∣

∣

∣
∇w
(

x+ s
x− y

|x− y|

)
∣

∣

∣
dsdσ

≤

∫

Sn−1

∫ ∞

0

sn−1

sn−1

∣

∣

∣
∇w
(

x+ s
x− y

|x− y|

)
∣

∣

∣
dsdσ

=

∫

B1

∇w(y)|

|x− y|n−1
dy,

and integrating now with respect to x ∈ S0
w we obtain:

|S0
w||S 1

2 ,w
|

2
≤

∫

B1

|∇w(y)|
(

∫

S0
w

dx

|y − x|n−1

)

dy.

Changing the variable we obtain that

∫

S0
w

dx

|y − x|n−1
≤

∫

Sn−1

dθ

∫

(

n|S0
w|

|Sn−1|

) 1
n

0

rn−1

rn−1
dr ≤ cn|S

0
w|

1
n ,

where we used the fact that |y − x| is a non-increasing function which max-

imized the integral in a ball of radius
(

n|S0
w|

|Sn−1|

)
1
n

centered on y and cn =

|Sn−1|1−
1
n

(

n|S0
w|
)

1
n

. By definition of w, ∇w is zero outside of B1, therefore

applying Cauchy-Schwarz inequality we obtain

|S0
w||S 1

2 ,w
|

2
≤ cn|S

0
w|

1
n

(
∫

S
1
2
0,w

|∇w+|
2dx

)
1
2

|S
1
2
0,w|

1
2 .

Using by hypothesis that
∫

S
1
2
0,w

|∇w+|
2dx ≤ C0 we have completed the proof

since Cn = 1
2cn

is a constant depending on n.

Proof of Proposition 1.0.9. We consider the family of functions: wk := 2k(v −
(1 − 2−k)) = 2k(v − 1) + 1. By definition wk ≤ 1 and wk+1 = 2wk − 1. Using

11



Caccioppoli inequality or energy inequality (Theorem 1.0.6) with r = 2 and
1B1 ≤ ϕ ≤ 1B2 , we have

∫

B1

|∇(wk)+|
2dx ≤

∫

B2

|∇(ϕwk)+|
2 ≤ C

∫

B1

|(wk)+|
2dx ≤ C0.

And we can apply De Giorgi’ s isoperimetric inequality (Lemma 1.0.10) on wk

with the constant δ of Lemma 1.0.3 if
∫

B1

(wk+1)
2
+dx ≥ δ2. (6)

and from this we can deduce that

|B1 ∩ {wk+1 ≥ 0}| = |B1 ∩ {2wk ≥ 1}| ≥

∫

B1

(wk+1)
2
+dx ≥ δ2.

So applying De Giorgi’ s isoperimetric inequality (Lemma 1.0.10) ∃Cn > 0 such
that

∣

∣

∣
B1 ∩ {0 < wk <

1

2
}
∣

∣

∣
≥
Cn

C0

(

|S 1
2 ,w

||S0
w|

1− 1
n

)2

,

and combining with

|S0
wk

| = |B1 ∩ {wk ≤ 0}| ≥ |S0
wk−1

| ≥ |S0
w0

| = |B1 ∩ {v ≤ 0}| ≥ µ > 0,

we obtain that

|B1 ∩ {0 < wk <
1

2
}| ≥ γ

for some γ > 0. Then by definition of wk we obtain that |S0
wk

| ≥ |S0
wk−1

|+ γ ≥
µ+ kγ which is absurd as k is large enough, therefore (6) is false for k = k0:

∫

B1

(wk0+1)
2
+dx ≤ δ2.

By Lemma 1.0.3 wk0+1 ≤ 1
2 , which by definition of wk concludes the proof of

Proposition 1.0.9 with λ = 2−(k0+2).

The iteration of Moser

In this section we will present the alternative approach by Moser, published in
[3], in which we will derive the proof by proving the Harnack’s inequality. To
do so we will remind some definitions:

Definition 1.0.11 (Sub and super-solutions). We say that u ∈ W 1,2(Ω) is a
weak sub-solution ( supersolution ) of (1) if

∫

Ω

⟨∇ϕ(x),A(x)∇u(x)⟩dx ≤ (≥ )0

holds for all ϕ ∈ C∞
c (Ω).

12



Theorem 1.0.12 (Harnack’s inequality). Let u ∈ W 1,2(Ω) be a non-negative,
weak sub-solution of (1), where A is symmetric and satisfies (2). Then there is
a constant c(n,Λ) > 0 such that for every ball Br(y) ⊂ Ω we have

sup
B r

2
(y)

u ≤ c inf
B r

2
(y)
u.

Remark 1.0.12.1. Note that in this section we assumed A symmetric, contrary
to the previous one.

As a consequence of the Harnack’s inequality we have the following theorem:

Theorem 1.0.13. Let u ∈ W 1,2(Ω) be a weak solution of (1) where A is sym-
metric and fulfils (2). Then there is 0 < α(n,Λ) ≤ 1, such that u ∈ C0,α(Ω).
Moreover, for every ball BR(y) ⊂ Ω and all 0 < r ≤ R <∞, we have

oscBr(y)u ≤ 2α
( r

R

)α

oscBR(y)u.

The proof is again divided in two parts: one for the sup and one for the inf.

Harnack’s inequality: sup

We will start by proving the fact that the weak solutions are bounded locally.

Lemma 1.0.14. Let u ∈ W 1,2(Ω) be a weak solution of (1) where A is sym-
metric and fulfils (2). Then u ∈ L∞

loc(Ω). Moreover, for every ball Br(y) ⊂ Ω,
we have that there exists a constant c = c(n,Λ) such that

sup
B r

2
(y)

u ≤ c

(

−

∫

Br(y)

|u|2dx

)
1
2

.

As before we will prove by iteration using Caccioppoli inequality and Sobolev’s
inequality. We will start by proving the following inequality:

Lemma 1.0.15. Let u ∈ W 1,2(Ω) be a weak solution of (1) where A is sym-
metric and satisfies (2). Then for any α ≥ 0 such that u ∈ Lα+2

loc (Ω), we have

∫

Ω

|u|α|∇u|2η2dx ≤ c

∫

Ω

|u|α+2|∇η|2dx,

where c = c(Λ) > 0.

Proof. Fix η ∈ C∞
c (Λ) and let t ≥ 0. Define v = (u− t)+. We test the equation

(1) with ϕ = vη2 ∈ H1
0 (Λ) and we obtain:

0 =

∫

Ω

⟨∇ϕ,A∇u⟩dx

=

∫

Ω

⟨∇(u− t)+,A∇u⟩η
2dx+ 2

∫

Ω

⟨∇η,A∇u⟩(u− t)+ηdx.

13



To estimate the last integral we use the following Cauchy-Schwarz inequality
combined with the fact that the matrix A is symmetric:

|⟨∇η,A∇u⟩| ≤ ⟨∇u,A∇u⟩
1
2 ⟨∇η,A∇η⟩

1
2

combined with Hölder inequality. After squaring, we obtain

∫

{u>t}

⟨∇u,A∇u⟩η2 ≤ 4

∫

{u>t}

⟨∇η,A∇η⟩|(u− t)+|
2dx, (7)

and using the ellipticity condition (2) we get

∫

{u>t}

|∇u|2η2dx ≤ 4Λ2

∫

{u>t}

|(u− t)+|
2|∇η|2dx ≤ 4Λ2

∫

{u>t}

|u+|
2|∇η|2dx.

Since the above inequality holds for any t ≥ 0, we can can multiply both sides
by αtα−1 and integrating with respect to t over the interval (0,+∞) to obtain

∫ +∞

0

αtα−1

(
∫

{u>t}

|∇u|2η2dx

)

dt ≤ 4Λ2

∫ +∞

0

αtα−1

(
∫

{u>t}

|u+|
2|∇η|2dx

)

dt,

and using Fubini-Tonelli’s theorem we obtain:

∫

Ω

|∇u+|
2η2
(
∫ ∞

0

αtα−1
1
(x)
{u>t}dt

)

dx ≤ 4Λ2

∫

Ω

|u+|
2|∇η|2

(
∫ ∞

0

αtα−1
1
(x)
{u>t}dt

)

dx.

Noting that {u > t} = {u+ > t} and that
∫ +∞

0
αtα−1

1{u>t}(x)dt = |u|α almost
everywhere we obtain:

∫

Ω

|u|α|∇u+|
2η2dx ≤ 4Λ2

∫

Ω

|u+|
α+2|∇η|2dx.

Similarly we can get the same estimate for u− and we can conclude the result
by summing the two estimates.

From this we can use Sobolev’ s inequality to obtain

Lemma 1.0.16. Assume n ≥ 3 and let 2∗ be the following Sobolev exponent
2∗ = 2n

n−2 . Let u ∈W 1,2(Ω) be a weak solution of (1) where A is symmetric and

satisfies (2). Then for any α ≥ 0, u ∈ L
2∗(α+2)

2

loc (Ω) if u ∈ Lα+2
loc (Ω). Moreover,

for any η ∈ C∞
c (Ω),

(
∫

Ω

|u|
2∗(α+2)

2 η2
∗

dx

)
2
2∗

≤ c(α+ 2)2
∫

Ω

|u|α+2|∇η|2dx, (8)

where c = c(n,Λ) > 0.
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Proof. We define v := |u|
α
2 uη, therefore ∇v = (α2 + 1)|u|

α
2 η∇u+ |u|

α
2 u∇η.

To estimate the L2-norm of∇v, we use Young’s inequality and Lemma 1.0.15
to get

∫

Ω

|∇v|2dx ≤ c(α+ 2)2
∫

Ω

|u|α+2|∇η|2dx,

We can use Sobolev’s inequality for v due to the fact that n ≥ 3, which implies
that

∥v∥
2
2∗

L2∗ (Ω)
=

(
∫

Ω

|u|
2∗(α+2)

2 η2
∗

dx

)
2
2∗

≤ C

∫

Ω

|u|α+2|∇η|2dx,

which concludes the proof.

As a consequence we have the following corollary:

Corollary 1.0.16.1. Let u ∈ W 1,2(Ω) be a weak solution of (1) where A is
symmetric and fulfils (2). Then u ∈ L

q
loc(Ω) for every q ≥ 1. Moreover, for

every α ≥ 0, every ball Br(y) ⊂ Ω and every 0 < r′ < r, we have the following
reverse inequality:

(
∫

Br′ (y)

|u|
2∗(α+2)

2 dx

)
2

2∗(α+2)

≤
c

1
α+2 (α+ 2)

2
α+2

(r − r′)
2

α+2

(
∫

Br(y)

|u|α+2dx

)
1

α+2

, (9)

where c = c(n,Λ) > 0.

Proof. For any compact subset of Ω, there exists ηK ∈ C∞
c (Ω) with ηK↾K≡ 1.

Starting with α = 0, one can iterate (8) with η = ηK to get u ∈ L
qk
loc(Ω) for

qk := 2∗k, k ∈ N. Since Lp
loc(Ω) ⊂ L

q
loc(Ω), integrability holds for all q ≥ 1. To

derive (9) we take a cut-off function η ∈ C∞
c (Ω) such that 1Br′ (y)

≤ η ≤ 1Br(y)

with |∇η| < 2
r−r′ , and apply Lemma 1.0.16.

We can now prove Lemma 1.0.14 by iterating the previous corollary:

Proof of Lemma 1.0.14. We fix a ball Br(y) ⊂ Ω and define (αi){i∈N} as αi :=

2
(

2∗

2

)i

−2. We also define (ri){i∈N} as ri := r
2 + r

2i+1 . By defining βi+1 :=

αi+1 + 2 = 2∗

2 βi and

Mi :=

(
∫

B(y,ri)

|u|βidx

)
1
βi

,

and applying Corollary 1.0.16.1 with r = ri, r
′ = ri+1 and α = αi we get

Mi+1 ≤ c
1
βi β

2
βi
i

( r

2i+2

)− 2
βi
Mi.

By iterating Corollary 1.0.16.1 we haveMi+1 ≤ ciM0, where limi→∞ ci = c∞ <

+∞. Therefore

sup
B r

2
(y)

|u| = lim
i→+∞

(
∫

B r
2
(y)

|u|idx

)
1
i

≤ lim
i→+∞

Mi ≤ c∞M0 ≤ c

(

−

∫

Br(y)

|u|2dx

)
1
2

.
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Lemma 1.0.14 can be generalized to non-negative weak sub-solutions:

Lemma 1.0.17. Let u ∈W 1,2(Ω) be a non-negative weak sub-solution of equa-
tion (1). Then u ∈ L∞

loc(Ω). Moreover, for every ball Br(y) ⊂ Ω and 0 < σ < 1,
we have

sup
Bσr(y)

u ≤
c

(1− σ)
n
2

(

−

∫

Br(y)

u2dx

)
1
2

,

where c = c(n,Λ) > 0.

By iterating Lemma 1.0.17, one can strengthen the result by lowering the
exponent on the right-hand side:

Lemma 1.0.18. Let u ∈W 1,2(Ω) be a non-negative weak sub-solution of equa-
tion (1). Then u ∈ L∞

loc(Ω). Moreover, for every ball Br(y) ⊂ Ω and 0 < σ < 1
, we have

sup
Bσr(y)

u ≤
c

(1− σ)
n
q

(

−

∫

Br(y)

uqdx

)
1
q

for 0 < q ≤ 2,

sup
Bσr(y)

u ≤ c

(

−

∫

Br(y)

uqdx

)
1
q

for q > 2,

where c = c(n,Λ, q) > 0.

Proof. We proceed in two steps. We first assume q ≤ 2. Take Br(y) ⊂ Ω and
some 0 < σ < 1. Define (σi)i∈N as σi := 1− 1−σ

2i , so that σi varies monotonically
from σ to 1 as i varies from 0 to ∞. We can now use Lemma 1.0.17 with
r = σi+1r and σ = σi

σi+1
and get

Mi := sup
Bσir

(y)

u ≤
c

(1− σi

σi+1
)

n
2

(

−

∫

Bσi
r(y)

u2dx

)
1
2

≤
c

(1− σi

σi+1
)

n
2

(

−

∫

Bσi
r(y)

uqdx

)
1
2
(

sup
Bσi+1r(y)

u

)

2−q
2

≤
c

(1− σi

σi+1
)

n
2

(

−

∫

Bσi
r(y)

uqdx

)
1
2

M
2−q
q

i+1 .

Iterating this inequality we obtain the inequality for q ≤ 2.
Now we will assume q > 2. Using the above result with q = 2:

sup
Bσr(y)

u ≤ c

(

−

∫

Br(y)

u2dx

)
1
2

= c

(

−

∫

Br(y)

u2dx

)
1
q

q
2
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and using Jensen’s inequality on the convex function x→ x
q
2 (q > 2) we obtain:

sup
Bσr(y)

u ≤ c

(

−

∫

Br(y)

uqdx

)
1
q

which completes the proof.

Harnack’s inequality: inf

Lemma 1.0.19. Let u ∈W 1,2(Ω) be a non-negative weak supersolution of (1),
where A fulfils (2). Then there are q = q(n,Λ) > 0 such that, for every ball
B2r(y) ⊂ Ω, we have

inf
B r

2
(y)
u ≥ c

(

−

∫

Br(y)

uqdx

)
1
q

. (10)

Remark 1.0.19.1. Given ϵ > 0, we can assume u ≥ ϵ in Ω by replacing u with
u+ ϵ.

The main idea of the proof is the fact that log u is a function of bounded
mean oscillation.

Lemma 1.0.20. Let u ∈W 1,2(Ω) be a non-negative weak solution of (1), where
A fulfils (2). Suppose that u ≥ ϵ in Ω for some ϵ > 0. Then, for any q > 0,
there is a constant c = c(n,Λ, q) > 0 such that the following holds:

inf
B r

2
(y)
u ≥ c

(

−

∫

Br(y)

u−qdx

)− 1
q

.

Proof. We claim that u−1 is a sub-solution of (1): indeed u−1 ∈ H1
loc(Ω) and

for any non-negative η ∈ C∞
c (Ω), define ϕ := ηu−2. We test (1) with ϕ to get

0 =

∫

Ω

⟨∇ϕ,A(x)∇u⟩dx

=

∫

Ω

u−2⟨∇η,A(x)∇u⟩dx− 2

∫

Ω

ηu−3⟨∇u,A∇u⟩dx.

The last term is non-positive, therefore we have
∫

Ω

⟨∇η,A(x)∇u−1⟩ = −

∫

Ω

u−2⟨∇η,A(x)∇u⟩dx ≤ 0,

and so u−1 is a sub-solution. We can then apply Lemma 1.0.18 with σ = 1
2 and

get

inf
B r

2
(y)
u ≥ c

(

−

∫

Br(y)

u−qdx

)− 1
q

.
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We can now show that log u is a function of bounded mean oscillation:

Lemma 1.0.21. Let u ∈W 1,2(Ω) be a weak solution of (1), where A fulfils (2).
Suppose that u ≥ ϵ in Ω for some ϵ > 0. Then, for every ball B2r(y) ⊂ Ω, we
have

∫

Br(y)

|∇v|2dx ≤ crn−2,

where v = log u and c = c(n,Λ) > 0.

Proof. Fix η ∈ Cc(Ω) and let ϕ = η2u−1. We again test (1) with ϕ and get that

0 =

∫

Ω

⟨∇ϕ,A(x)∇u⟩dx

= −

∫

Ω

η2u−2⟨∇u,A∇u⟩dx+ 2

∫

Ω

ηu−1⟨∇η,A(x)∇u⟩dx

which using the ellipticity and continuity of A as well as the Cauchy-Schwarz
inequality like before, gives

∫

Ω

|∇v|2η2dx ≤ 4Λ2

∫

Ω

|∇η|2dx.

The result follows by choosing η ∈ C∞
c (Ω) such that 1B2r(y) ≤ η ≤ 1Br(y) and

|∇η| ≤ 2
r .

Proof of Lemma 1.0.19. We define vBr as the function vBr(y) := −
∫

Br(y)
v(x)dx.

On any ball B2r(y) ⊂ Ω, we can use the Poincaré-Wirtinger inequality and
Lemma 1.0.21 to obtain

∫

Br(y)

|v − vBr(y)|
2dx ≤ c(n)r2

∫

Br(y)

|∇v|2 ≤ c(n,Λ)r2rn−2,

which yields

−

∫

Br(y)

|v − vBr(y)|
2dx ≤ c(n,Λ).

In particular v = log u is a function of bounded mean oscillation. We can then
use the John-Nirenberg inequality [5, Theorem 7.21] which yields

−

∫

Br(y)

exp(c1|v − vBr(y)|)dx ≤ c2

for c1 = c1(n,Λ) > 0 and c2 = c2(n,Λ) > 0. Then we have

−

∫

Br(y)

uc1dx −

∫

Br(y)

u−c1dx = −

∫

Br(y)

exp(c1(v − vBr(y)))dx −

∫

Br(y)

exp(c1(vBr(y) − v))dx

≤

(

−

∫

Br(y)

exp(c1|v − vBr(y)|)dx

)2

≤ (c2)
2.

This, together with Lemma 1.0.20, proves (10) with q = c1 which concludes the
proof.
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Combining Lemma 1.0.18 and 1.0.19 one concludes the proof of the Har-
nack’s inequality Theorem 1.0.12. We can now be able to conclude the Hölder
continuity of solutions due to the iteration of Moser:

Proof of Theorem 1.0.13. Thanks to Lemma 1.0.14, we know that supu and
inf u are locally bounded, so we only need an estimate for the Hölder semi-norm.
We take BR(x0) ⋐ Ω and define m(x0, R) := infBR(x0) u and M(x0, R) :=
supBR(x0) u. Next we can apply Harnack inequality Theorem 1.0.12 to the
non-negative functions M(x0, R)− u and u−m(x0, R), and get

M(x0, R)−m(x0,
R

2
) ≤ c(n,Λ)(M(x0, R)−M(x0,

R

2
)),

M(x0,
R

2
)−m(x0, R) ≤ c(n,Λ)(m(x0,

R

2
)−m(x0, R)),

where the constants are the same on both lines and summing we obtain

oscBR(x0)u+ oscBR
2
(x0) ≤ c(n,Λ)

(

oscBR(x0)u− oscBR
2
(x0)u

)

.

Hence, we have
oscBR

2
(x0)u ≤ 2−αoscBR(x0)u,

for some α ∈ (0, 1] satisfying

2−α ≥
c(n,Λ)− 1

c(n,Λ) + 1
.

Note that α does not depend on x0. We can iterate this estimate and find

oscB2−jR(x0)u ≤ 2−jαoscBR(x0)u for all j ∈ N.

For r ∈ (0, R], there is a unique j0 ∈ N such that 2−j0−1R < r ≤ 2−j0R, from
which we get

oscBr(x0)u ≤ oscB
2j0R

(x0)u ≤ 2−j0αoscBR(x0)u ≤ 2α
( r

R

)α

oscBR(x0)u. (11)

which gives the result with the same argument of the proof of Theorem 1.0.2
at the end of page 9 and start of page 10.
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2 Applications of Moser-Harnack inequality

So we have shown that for any u ∈ W 1,2(Ω) weak solution (1) of the elliptic
equation

LAu =

n
∑

i,j=1

∂

∂xj

[

aij(x)
∂

∂xj
u(x)

]

= 0

where the coefficients of the matrix A = {aij}{i.j∈{1,...,n}} are measurable and
satisfy the ellipticity condition (2), then u is Hölder continuous for some α ∈
(0, 1). This regularity result has significant applications, the first of which is
a stronger version of the maximum principle and the second of which is an
analogue of Liouville′s theorem.

Theorem 2.0.1. Let u ∈ W 1,2(Ω) be a weak sub-solution of (1), i.e. LA ≥ 0,
where A fulfils (2). Suppose that for some open ball BR(y0) ⊂⊂ Ω we have

sup
BR(y0)

u = sup
Ω
u. (12)

Then we have that u is constant on the whole domain of Ω.

Proof. Due to the fact that (12) holds, then there is another ball Br0(x0) with
r ∈ (0, R) and B4r0(x0) ⊂ Ω such that supBr0

(x0) u = supΩ u. Moreover by
Theorem 1.0.13 supΩ u < M , i.e. must be finite, then M − u is a positive
super-solution to LA, and hence applying Lemma 1.0.19 and taking the limit
we obtain M = supΩ u. Again applying Lemma 1.0.19 we obtain

−

∫

B2r0
(x0)

(M − u) ≤ c inf
Bx0 (r0)

(M − u) = 0.

Since M is equal to the supremum of u, we obtain that u ≡M on B2r0(x0). To
extend this result let y ∈ Ω be arbitrary. The idea is to construct a series of balls
that connect x and y where in every ball u is constant, therefore u(x) = u(y).
Then there exists a sequence of ball {Bi}{i=1,...,n} such that Bi := Bri(xi),
B4ri(xi) ⊂ Ω and Bi−1 ∩Bi ̸= ∅ for i = 0, . . . , N − 1. With the same argument
as before u is constant on every ball, therefore on every point y ∈ Ω chosen
arbitrarily which implies u ≡M on Ω.

This result can be improved with stronger assumptions:

Theorem 2.0.2. Let u ∈ W 1,2(Rn) be a weak solution of (1), i.e. LA = 0,
where A fulfils (2). Then we have that u is a constant function.

Proof. By the assumption (2) we know that there exists α such that α < infRn u.
Then we know that u−α is a positive sub-solution to LA = 0 on all of Rn. Thus
applying Harnack’s inequality we obtain

0 ≤ sup
BR(0)

u− α ≤ c
[

inf
BR(0)

u− α
]

,
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and taking the limit as R→ ∞ we obtain

0 ≤ sup
Rn

u− α ≤ c
[

inf
Rn
u− α

]

= 0,

which implies that u is constant on all of Rn.

3 Regularity

Theorem 3.0.1. Let A a matrix with regular and bounded entries which fulfils
(2). If u ∈W 1,2(Ω) is a weak solution to LA = 0 in Ω, i.e., for all ϕ ∈W

1,2
0 (Ω)

∫

Ω

⟨∇ϕ(x),A(x)∇u(x)⟩dx = 0. (13)

then u ∈ C∞(Ω).

To prove this theorem we will use the Hölder continuity of weak solutions
to the elliptic equation LAu = 0 proved with both methods of De Giorgi and
Moser combined and with a few lemmas:

Lemma 3.0.2. Let A a matrix with regular and bounded entries which fulfils
(2). Let u ∈ W 1,2(Ω) be a weak solution to LA = 0 in Ω. For any X ⊂⊂ Ω we
have that u ∈W 2,2(X), and the inequality

∥u∥W 2,2(X) ≤ c∥u∥W 1,2(Ω)

holds, where c = c(λ,Λ, dist(X, ∂Ω)).

Proof. Let Aj : Rn → R be the j − th row of the matrix A. Let h be such that
|h| < dist(suppϕ, ∂Ω) so that ϕk,−h(x) := ϕ(x− hek) ∈W

1,2
0 (Ω). We then have

that

0 =

∫

Ω

n
∑

i=1

Ai(Du(x))Diϕk,−h(x)dx =

∫

Ω

n
∑

i=1

Ai(Du(x))Diϕ(x− hek)dx

=

∫

Ω

n
∑

i=1

Ai(Du(y + hek))Diϕ(y)dy

=

∫

Ω

n
∑

i=1

Ai((Du)k,h)Diϕ.

By subtracting from the above (13), which can be rewritten as

∫

Ω

⟨∇ϕ(x),A(x)∇u(x)⟩dx =

∫

Ω

n
∑

i=1

Ai(Du)Diϕ = 0,

we obtain that
∫

Ω

n
∑

i=1

[

Ai(Du(x+ hek))−Ai(Du(x))
]

Diϕ(x) = 0. (14)
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And using that for a.e. x ∈ Ω by Lagrange theorem:

Ai(Du(x+ hek))−Ai(Du(x)) =

∫ 1

0

d

dt
Ai(tDu(x+ hek) + (1− t)Du(x))dt

=

∫ 1

0

[ n
∑

i=1

Ai
yj
(tDu(x+ hek) + (1− t)Du(x))Dj(u(x+ hek)− u(x))

]

dt

where Ai
yj

:= ∂
∂yj

Ai. We can now define aijh and △h
ku(x) as the following:

a
ij
h (x) :=

∫ 1

0

Ai
yj [tDu(x+ hek) + (1− t)Du(x))]dt

△h
ku(x) :=

u(x+ hek)− u(x)

h
.

So (14) can be written as

∫

Ω

n
∑

i,j=1

a
ij
h (x)Dj(△

h
ku(x))Diϕ(x)dx = 0. (15)

Notice that the coefficients aijh also satisfy the ellipticity conditions. Then let
η ∈ C1

0 (X
′) where X ⊂⊂ X ′ ⊂⊂ Ω with max{dist(X ′, ∂Ω), dist(X, ∂X ′)} >

1
4dist(X, ∂Ω), such that η is bounded as follows: 0 ≤ η ≤ 1, η(x) = 1 for
all x ∈ X, |Dη| ≤ 8

dist(X,∂Ω) and |2h| < dist(X ′, ∂Ω). Using the ellipticity

conditions on (15) we deduce that

λ

∫

Ω

|D△h
ku|

2η2 ≤

∫

Ω

n
∑

i,j=1

a
ij
h (Dj△

h
ku)(Di△

h
ku)η

2

= −

∫

Ω

n
∑

i,j=1

a
ij
hDj△

h
ku · 2η(Diη)△

h
ku.

But from here we can apply Y oung′s inequality to get that for any ϵ > 0:

λ

∫

Ω

|D△h
ku|

2η2 ≤ ϵΛ

∫

Ω

|D△h
ku|

2 +
Λ

ϵ

∫

Ω

|△h
ku|

2|Dη|2

and if we take ϵ = λ
2Λ we obtain that
∫

Ω

|D△h
ku|

2η2 ≤ c

∫

X′

|△h
ku|

2 ≤ c

∫

Ω

|Du|2.

Therefore we have shown that ∥D△h
ku∥L2(X) ≤ c∥Du∥L2(Ω). We thus deduce

that D2u ∈ L2(X), and hence

∥D2u∥L2(X) ≤ c∥Du∥L2(Ω), (16)

from which it follows that u ∈W 2,2(X), as was to be shown.
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We note that △h
k is an approximation to the derivative, so that in the limit

as h → 0, if we let aij and v be defined as aij := Ai
yj
(Du(x)), v = Dku. Then

we obtain that

∫

Ω

n
∑

i,j=1

aij(x)DjvDiϕ = 0 for all ϕ ∈ H
1,2
0 (Ω).

Therefore applying the fact that a weak solution of an elliptic partial differential
equation is Hölder continuous (Theorem 1.0.2), we deduce trivially the following
lemma.

Lemma 3.0.3. Let u ∈ W 1,2(Ω) be a weak solution of (1), where A fulfils
(2). Using Theorem 1.0.2 we have that Du ∈ Cα(Ω) for some Hölder exponent
α ∈ (0, 1). In particular, this means that u ∈ C1,α(Ω) for some 0 < α < 1.

Therefore for each k = 1, . . . , n we have that v = Dku is a solution to the
divergence-type equation

n
∑

i,j=1

Di(a
ij(x)Djv) = 0 (17)

where the coefficients aij(x) satisfy the ellipticity requirements (2). In order
to prove Theorem 3.0.1 we need to prove some lemmas, the first of which is a
different form of Caccioppoli inequality then the one seen before:

Lemma 3.0.4. Let u ∈W 1,2(Ω) be a weak solution to the differential equation

n
∑

i,j=1

Dj(A
ijDiu) = 0 (18)

in Ω where the matrix {Aij}{i,j=1,...,n} fulfils (2). Then for any x0 ∈ Ω and
radius r with r < R < dist(x0, ∂Ω), we have that

∫

Br(x0)

|Du|2 ≤
c

(R− r)2

∫

BR(x0)\Br(x0)

|u− k|2 (19)

for any k ∈ R.

Proof. We define a cut-off function η ∈ W
1,2
0 (BR(x0)) by confining 0 ≤ η ≤ 1

with the following conditions: η = 1 on BR(x0) and |Dη| ≤ 2
R−r . Then let ϕ be

a test function defined by ϕ = (u− µ)η2 so that we can get

0 =

∫

Ω

n
∑

i,j=1

AijDiuDj((u− µ)η2)

=

∫

Ω

n
∑

i,j=1

AijDiuDjuη
2 + 2

∫

Ω

n
∑

i,j=1

AijDiu(u− µ)ηDjη.
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From this we can use the ellipticity of the matrix and the fact that Dη = 0
on the ball Br(x0), since η is constant on BR(x0), to deduce from Y oung′s

inequality that

λ

∫

BR(x0)

|Du|2η2 ≤

∫

BR(x0)

n
∑

i,j=1

AijDiuDjuη
2

≤ ϵΛn

∫

BR(x0)

|Du|2η2 +
Λ

ϵ
n

∫

BR(x0)\Br(x0)

|Dη|2|u− µ|2

for any ϵ > 0. In particular, taking ϵ = λ
2Λn we obtain that

∫

BR(x0)

|Du|2η2 ≤
c

(R− r)2

∫

BR(x0)\Br(x0)

|u− µ|2.

Using the fact that (by definition of η)
∫

Br(x0)
|Du|2 ≤

∫

BR(x0)
|Du|2η2, the

lemma is now proved.

Lemma 3.0.5 (Campanato inequalities). Let u ∈ W 1,2(Ω) be a weak solution
to the differential equation

n
∑

i,j=1

Dj(A
ijDiu) = 0 (20)

in Ω where the matrix {Aij}{i,j=1,...,n} fulfils (2). Then for any x0 ∈ Ω and
radius r with r < R < dist(x0, ∂Ω), we have the following two inequalities:

∫

Br(x0)

|u|2 ≤ c3

( r

R

)n
∫

BR(x0)

|u|2, (21)

∫

Br(x0)

∣

∣

∣
u− −

∫

BR(x0)

u
∣

∣

∣

2

≤ c4

( r

R

)n+2∣
∣

∣
u− −

∫

BR(x0)

u
∣

∣

∣

2

. (22)

Proof. Without loss of generality we assume that r < R
2 . So choose k > n; by

the Sobolev embedding theorem we have that W k,2(BR(x0)) ⊂ C0(BR(x0)). So
u ∈W k,2(BR

2
), and hence we have

∫

Br(x0)

|u|2 ≤ c5r
n sup

Br(x0)

|u|2 ≤ c6
rn

Rn−2k
∥u∥Wk,2(BR/2(x0))

≤ c3
rn

Rn

∫

BR(x0)

|u|2.

Hence we have proved (21). Testing (21) with Du we get that
∫

Br(x0)

|Du|2 ≤ c3

( r

R

)n
∫

BR
2
(x0)

|Du|2 (23)
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and so by the Poincarè inequality, we get that
∫

Br(x0)

∣

∣

∣
u− −

∫

BR(x0)

u
∣

∣

∣

2

≤ c8r
2

∫

Br(x0)

|Du|2. (24)

Lemma 3.0.4 implies that
∫

BR
2
(x0)

|Du|2 ≤
c9

R2

∫

BR(x0)

∣

∣

∣
u− −

∫

BR(x0)

u
∣

∣

∣

2

. (25)

Combining the inequalities (23), (24), (25) together proves the lemma.

Using Campanato′s inequalities, we can derive the desired regularity result.

Theorem 3.0.6. Let the matrix A fulfils (2) with entries aij(x) ∈ Cα(Ω) ∀i, j ∈
{1, . . . , n}. We then have that any weak solution v to

n
∑

i,j

Dj(a
ij(x)Div) = 0 (26)

is a C1,α′

(Ω) function for any α′ ∈ (0, α).

Proof. For an arbitrary x0 ∈ Ω we rewrite aij as aij = aij(x0)+(aij(x)−aij(x0)).
Then if we define Aij := aij(x0), equation (26) turns into

n
∑

i,j=1

Dj(A
ijDiv) =

n
∑

i,j=1

Dj((a
ij(x0)− aij(x))Div) =

n
∑

j=1

Dj(f
j(x))

where we defined f j as the following sum

f j(x) :=

n
∑

i=1

((aij(x0)− aij(x))Div).

We therefore have the following equality for each ϕ ∈W
1,2
0 (Ω) :

∫

Ω

n
∑

i,j=1

AijDivDjϕ =

∫

Ω

n
∑

j=1

f jDjϕ. (27)

From here taking some ball BR(x0) ⊂ Ω, and letting w ∈ W 1,2(Ω) be the
weak solution inside the ball to

n
∑

i,j=1

Dj(A
ijDiw) = 0 inside BR(x0); w ≡ v on ∂BR(x0). (28)

Such a function exists by the Lax-Milgram lemma. Then we know that w is the
solution to the differential equation for all ϕ ∈W

1,2
0 (BR(x0)) inside the ball:

∫

BR(x0)

n
∑

i,j=1

AijDiwDjϕ = 0. (29)
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Noting that (28) is a linear differential equation with constant coefficients, we
know that w is a solution implies that Dkw is as well for each k ∈ {1, . . . , n}.
Thus we get that

∫

Br(x0)

|Dw|2 ≤ c10

( r

R

)n
∫

BR(x0)

|Dw|2, (30)

and since the functions w and v are equal on the boundary of the ball BR(x0),
we can set ϕ = v − w to be a test function in (29) to obtain that

∫

BR(x0)

n
∑

i,j=1

AijDiwDjw =

∫

BR(x0)

n
∑

i,j=1

AijDiwDjv. (31)

We then use Cauchy-Schwarz inequality together with (31) and (2) to get that
∫

BR(x0)

|Dw|2 ≤
(nΛ

λ

)2
∫

BR(x0)

|Dv|2. (32)

So then (27) and (29) give us that for any ϕ ∈W
1,2
0 (BR(x0)), we have

∫

BR(x0)

n
∑

i,j=1

AijDi(v − w)Djϕ =

∫

BR(x0)

n
∑

i,j=1

f jDjϕ.

Since this holds for any ϕ ∈ W
1,2
0 (BR(x0)), we can test ϕ = v − w to obtain

that
∫

BR(x0)

|D(v − w)|2 ≤
1

λ

∫

BR(x0)

n
∑

i,j=1

AijDi(v − w)Dj(v − w)

=
1

λ

∫

BR(x0)

n
∑

j=1

f jDj(v − w)

≤
1

λ

[
∫

BR(x0)

|D(v − w)|2
]

1
2
[
∫

BR(x0)

n
∑

j=1

|f j |2
]

1
2

,

where in the last inequality we used Cauchy-Schwarz inequality. We thus
deduce that

∫

BR(x0)

|D(v − w)|2 ≤
1

λ2

∫

BR(x0)

n
∑

j=1

|f j |2. (33)

Putting all of the previous inequalities together, we have by (30) and (32) that
for any 0 < r ≤ R,

∫

Br(x0)

|Dv|2 ≤ 2

∫

BR(x0)

|Dw|2 + 2

∫

BR(x0)

|D(v − w)|2

≤ c11

( r

R

)n
∫

BR(x0)

|Dv|2 + 2

∫

BR(x0)

|D(v − w)|2.
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Therefore, applying (33) and aij(x) ∈ Cα(Ω) ∀i, j ∈ {1, . . . , n}, we obtain that

∫

Br(x0)

|D(v − w)|2 ≤

∫

BR(x0)

|D(v − w)|2

≤
1

λ2

∫

BR(x0)

n
∑

j=1

|f j |2

≤
1

λ2
sup
i,j

|aij(x0)− aij(x)|2
∫

BR(x0)

|Dv|2

≤ C R2α

∫

BR(x0)

|Dv|2,

from which we can deduce the following estimate
∫

BR(x0)

|Dv|2 ≤ γ
[( r

R

)n

+R2α
]

∫

BR(x0)

|Dv|2. (34)

We can then bound the R2α term in the above with the following lemma.

Lemma 3.0.7. Let σ(r) be a positive increasing function such that for any
0 < r ≤ R ≤ R0 with µ > ν and δ ≤ δ0(γ, µ, ν),

σ(r) ≤ γ
(( r

R

)µ

+δ
)

σ(R) + κRν .

If δ0 is small enough, then again for 0 < r ≤ R ≤ R0 we have that

σ(r) ≤ γ1

( r

R

)ν

σ(R) + κ1r
ν

where γ1 = γ1(γ, µ, ν) and κ1 = κ1(γ, µ, ν, κ).

Proof. Let t ∈ (0, 1) and R < R0. By assumption, we thus have that

σ(tR) ≤ γtµ(1 + δt−µ)σ(R) + κRν .

So let t be such that tλ = 2γtµ, with ν < λ < µ, and assume that δ0t
−µ ≤ 1.

We then have that
σ(tR) ≤ tλσ(R) + κRν .

We can continue this inequality iteratively to get for any m ∈ N,

σ(tm+1(R)) ≤ tλσ(tmR) + κtmνRν

≤ tλ(m+1)σ(R) + κtmνRν
m
∑

j=0

tj(λ−ν)

≤ γ0t
ν(m+1)[σ(R) + κRν ].
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So let m ∈ N be large enough such that tm+2R < r ≤ tm+1R, and then we get
the desired inequality:

σ(r) ≤ σ(tm+1(R)) ≤ γ1

( r

R

)ν

σ(R) + κ1r
ν .

This lemma will allow us to deal with the R2α term in (34), but we will
prove one last lemma before concluding the proof.

Lemma 3.0.8. Let f ∈ L2(BR(x0)). Then if we denote favg as the average of
f over the ball BR(x0), then we have that

∫

BR(x0)

|f − favg|
2 = inf

β∈R

∫

BR(x0)

|f − β|2.

Proof. The function F (β) :=
∫

BR(x0)
|f − β|2 is convex and differentiable since

f ∈ L2(BR(x0)). Its derivative is given by

F ′(β) = 2

∫

BR(x0)

(β − f)

and so F ′(0) = 0 when β = 1
|BR(x0)|

∫

BR(x0)
f = favg. Since F is convex, this

critical point is a minimizer of the functional.

Finally we return to the proof of Theorem 3.0.6. Let us use Lemma 3.0.7
in equation (34) for 0 < r ≤ R ≤ R0 and R2α

0 ≤ δ0 to get that for any ϵ > 0,
∫

BR(x0)

|Dv|2 ≤ c3

( r

R

)n−ϵ
∫

BR(x0)

|Dv|2. (35)

Repeating this procedure, we obtain that
∫

BR(x0)

|Dw − (Dw)avg|
2 ≤ c4

( r

R

)n+2
∫

BR(x0)

|Dw − (Dw)avg|
2 (36)

where the average is taken over the ball BR(x0) as defined in Lemma 3.0.8.
Now using again Lemma 3.0.8 we obtain that

∫

BR(x0)

|Dw − (Dw)avg|
2 ≤

∫

BR(x0)

|Dw − (Dv)avg|
2.

By (31), this means that

∫

BR(x0)

|Dw − (Dv)av|
2 ≤

1

λ

∫

BR(x0)

n
∑

i,j=1

Aij(Diw − (Div)av)(Djw − (Djv)av)

=
1

λ

∫

BR(x0)

n
∑

i,j=1

Aij(Diw − (Div)av)(Djv − (Djv)av)

+
1

λ

∫

BR(x0)

n
∑

i,j=1

Aij(Div)av(Djv −Djw).

28



Since u − v ∈ W
1,2
0 (BR(x0)) and Aij(Djv)av is constant the last term is zero,

and so by Cauchy-Schwarz we obtain that

∫

BR(x0)

|Dw − (Dw)av|
2 ≤

Λ2

λ2
n2

∫

BR(x0)

|Dv − (Dv)av|
2. (37)

So by Hölder inequality and (34), we obtain that

∫

Br(x0)

|Dv − (Dv)av|
2 ≤ 3

∫

Br(x0)

|Dw − (Dw)av|
2

+ 3

∫

Br(x0)

|Dv −Dw|2 + 3

∫

Br(x0)

|(Dv)av − (Dw)av|
2

≤ 3

∫

Br(x0)

|Dw − (Dw)av|
2 + 6

∫

Br(x0)

|Dv −Dw|2

≤ 3

∫

Br(x0)

|Dw − (Dw)av|
2 + c5R

2α

∫

Br(x0)

|Dv|2,

where all the averages here are taken over the ball Br(x0). Putting the previous
inequality together with (35), (36) and (37) give us that

∫

Br(x0)

|Dv − (Dv)av|
2 ≤ c6

( r

R

)n+2
∫

Br(x0)

|Dv − (Dv)av|
2 + c7R

2α

∫

BR(x0)

|Dv|2

≤ c6

( r

R

)n+2
∫

Br(x0)

|Dv − (Dv)av|
2 + c8R

n−ϵ+2α.

We then use Lemma 3.0.7 to finally obtain that

∫

Br(x0)

|Dv − (Dv)av|
2 ≤ c9

( r

R

)n−ϵ+2α
∫

BR(x0)

|Dv − (Dv)av|
2 + c′rn−ϵ+2α,

(38)
and Campanato′s theorem thus proves the theorem.

We can now finally complete the proof of Theorem 3.0.1.

Proof. Let v = Du and use Theorem 3.0.6 to deduce that v ∈ C1,α′

for any
α′ < α non-zero. Therefore we have that u ∈ C2,α′

for any 0 < α′ < α. We can
then differentiate with respect to xk and use that each of the derivatives

DiDku j, k = 1, . . . , n

satisfy the same equation, so that we can apply the theorem again to deduce
that D2u ∈ C1,α′′

, and so that u ∈ C3,α′′

. Evidently we can iterate this process
to deduce that u ∈ Ck,αk for each natural number k, with αk ∈ (0, 1) for all k.
This means u ∈ C∞.
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4 The generalized Harnack inequality

Our main result is the generalized Harnack inequality for the following second-
order elliptic equation which arise in fluid dynamics models:

Theorem 4.0.1 (Harnack inequality). Let u be a non-negative Lipschitz solu-
tion to the following elliptic equation

−△u+ b · ∇u+ au = 0 (39)

in a usual domain Ω ⊂ R
n. Assume that a ∈ Lq(Ω), b ∈ Lq(Ω) for n

2 < q, q ≤ n

and q ≥ 2, and that div b = 0 in the sense of distributions. Then for any
BR ⊂ Ω we have

sup
BR

u ≤ C inf
BR

u. (40)

Here C is a constant depending on n, q, q, R, andM1 = 1+∥a∥Lq+∥b∥2L2+∥b∥Lq .

Remark 4.0.1.1. From the proof it follows that

C = C(n, q, q)
(

R−1 + (R−1∥a∥Lq )
1

1− n
2q + (R−1∥b∥Lq )

1
1− n

2q

)C(n)R−1M1

, (41)

where M1 = 1 + ∥a∥Lq + ∥b∥2L2 + ∥b∥Lq .

Theorem 4.0.1 has the following consequence when Ω = R
n.

Theorem 4.0.2 (One-sided Lioville’s theorem). Let a(x) ≡ 0 and b(x) as in
theorem 4.0.1. Then any non-negative Lipschitz solution u to the elliptic equa-
tion (39) in R

n is equal to a constant.

Proof. Without loss of generality, we may assume that infRn u = 0. Then for
every ϵ > 0, we have infBR

u ≤ ϵ for any sufficiently large ball BR. By Theorem
4.0.1, supBR

u ≤ C infBR
u ≤ Cϵ for all sufficiently large R > 0. Observe that

the constant C given explicitly by (41) depends on R but remains bounded as
R→ ∞. Therefore, the assertion is established.

Theorem 4.0.1 is an immediate consequence of the following two lemmas
that compare supBθR

u and infBθR u to ∥u∥Lp(BτR) with some small p > 0 and
0 < θ < τ < 1.

Lemma 4.0.3. Assume that u is a non-negative Lipschitz sub-solution to the
equation

−△u+ b · ∇u+ au = 0 (42)

with a ∈ Lq(Ω), b ∈ Lq(Ω) for n
2 < q, q ≤ n and div b ≤ 0 in the sense of

distributions. Then for any BR ⊂ Ω, p > 0, and 0 < θ < τ < 1

sup
BθR

u ≤ C

(

R−n
p +

(

R
− 1

2−n
q ∥a∥

1
2−n

q

Lq(Ω)

)
n
p

+
(

R
− 1

2−n
q ∥b∥

1
2−n

q

Lq(Ω)

)
n
p

)

∥u∥Lp(BτR),

(43)
where C = C(n, p, q, θ, τ) is a positive constant.
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Lemma 4.0.4. Assume that u is a non-negative Lipschitz super-solution to
(39) satisfying the assumptions of Theorem 4.0.1. Then for any BR ⊂ Ω and
0 < θ < τ < 1 there exists a small positive number p0 = p0(n, q, q, θ, τ, R,M1)
such that

inf
BθR

u ≥ C

(
∫

BτR

up0

)
1
p0

(44)

where C = C(n, q, q, θ, τ, R,M1) is a positive constant and M1 = 1 + ∥a∥Lq +
∥b∥2L2 + ∥b∥Lq .

So to prove the generalized Harnack inequality we will need to prove Lem-
mas 4.0.3 and 4.0.4. To do so we will use the Moser iteration, with the general
strategy based on the proof of the Harnack inequality in [12].

The proof of Lemma 4.0.3. Let u be a non-negative Lipschitz sub-solution of
(42) in Ω, that is,

∫

Ω

(∂ju)(∂jϕ) +

∫

Ω

bj(∂ju)ϕ+

∫

Ω

auϕ ≤ 0 (45)

for any Lipschitz function ϕ ≥ 0 in Ω such that ϕ = 0 in Ωc. For simplicity of
the presentation of the proof we assume that a = 0. The first part of the proof
consists in obtaining an a priori bound on the Lp1 − norm of u on a smaller
ball Br1 , in terms of an Lp2−norm of u on a larger ball Br2 with r1 < r2 but
p1 > p2. Then an iterative procedure is used to bring the gap between r1 and
r2 to zero and simultaneously send p1 to infinity.

Let β ≥ 0 and η(x) be a Lipschitz cut-off function in the ball BτR such that
0 ≤ τ(x) ≤ 1. We use (β2 + 1)uβ+1η2γ as a test function in (45) to obtain that

(β

2
+1
)[

∫

Ω

(∂ju)∂j(u
β+1)η2γ +

∫

Ω

uβ+1(∂ju)∂j(η
2γ)+

∫

Ω

bju
β+1(∂ju)η

2γ
]

≤ 0.

(46)

Let w = u
β
2 +1 so that ∂jw =

(

β
2 + 1

)

u
β
2 ∂ju. By (46), we get that

β + 1
β
2 + 1

∫

Ω

|∂jw|
2η2γ ≤ −2γ

∫

Ω

w(∂jw)η
2γ−1(∂jη)−

∫

Ω

bjw(∂jw)η
2γ . (47)

For the first term in the right side we have

−2γ

∫

Ω

w(∂jw)η
2γ−1∂jη = γ

∫

Ω

w2(η2γ−1△η + (2γ − 1)η2γ−2|∂jη|
2), (48)

while for the second term

−

∫

Ω

bjw(∂jw)η
2γ =

1

2

∫

Ω

(∂jbj)w
2η2γ+γ

∫

Ω

bjw
2η2γ−1∂jη ≤ γ

∫

Ω

bjw
2η2γ−1∂jη,

(49)
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as div b ≤ 0. Next set γ0 = n
q . Then, as q >

n
2 , we have γ0 ∈ (0, 2) and, in

addition
1

q
+
γ0

2∗
+

2− γ0

2
= 1 (50)

for n ≥ 3. Note that if n = 2 then γ0 can be also chosen so that (50) is satisfied.
Assume also that γ is sufficiently large so that γγ0 ≤ 2γ − 1. Then, by

Hölder’s inequality we have, using (50)

∫

Ω

bjw
2η2γ−1∂jη ≤

∫

Ω

|bj ||wη
γ |γ0 |w|2−γ0 |∂jη| ≤ ∥b∥Lq∥wηγ∥γ0

L2∗ ∥w|∇η|
1

2−γ0 ∥2−γ0

L2 ,

(51)
as 0 ≤ η ≤ 1. By Young’s and the Gagliardo-Nirenberg inequalities, this leads
to

∫

Ω

bjw
2η2γ−1∂jη ≤

1

2
∥∇(wηγ)∥2L2 + C∥b∥

1
1− n

2q

Lq ∥w|∇η|
1

2−n
q ∥2L2 . (52)

By (47), (48), and (52), we obtain

∫

Ω

|∇(u
β
2 +1ηγ)|2 ≤ C

∫

Ω

uβ+2η2γ−1|△η| (53)

+ C

∫

Ω

uβ+2η2γ−2|∇η|2 + C∥b∥
1

1− n
2q

Lq ∥u
β
2 +1(∇η)

1
2−n

q ∥2L2 . (54)

By Sobolev embedding used in the right side of (53), we obtain that

∥u
β
2 +1ηγ∥L2χ ≤ C

(
∫

Ω

uβ+2η2γ−1|△η|

)
1
2

+C

(
∫

Ω

uβ+2η2γ−2|∇η|2
)

1
2

(55)

+ C∥b∥
1

2−n
q

Lq ∥u
β
2 +1(∇η)

1
2−n

q ∥L2 (56)

where χ = n
n−2 if n ≥ 3 and χ > 2 is arbitrary for n = 2. Now, let η ∈ C∞

0 (Ω)

be such that η ≡ 1 in BθR, η ≡ 0 in Bc
τR, |∇η| ≤

C
R(τ−θ) and |△η| ≤ C

R2(τ−θ)2 .

Then, we obtain that

∥u
β
2 +1∥L2χ(BθR) ≤

C

R(τ − θ)

(

∫

BτR

uβ+2
)

1
2

+
C

(R(τ − θ))
1

2−n
q

∥b∥
1

2−n
q

Lq(BτR)
∥u

β
2 +1∥L2(BτR).

(57)
The main point of (57) is that, since χ > 1, we have a bound on a higher norm
of u on a smaller ball in terms of the lower norm of u on a larger ball. We now
apply the estimate (57) iteratively on pairs of balls Bri+1

⊂ Bri , and also let
βi → +∞. More precisely, we choose βi = 2(χi − 1) and ri = θR+ (τ − θ)R2−i

for i = 0, 1, 2, . . . , so that ri − ri+1 = (τ − θ)R2−(i+1). We obtain

∥u∥L2χi+1 (Bri+1
) ≤ C

1

χi 2
i

χi (R(τ − θ))
− 1

χi ∥u∥L2χi (Bri
) (58)

+
(

C2
i

2−n
q (R(τ − θ))

− 1
2−n

q ∥b∥
1

2−n
q

Lq(Bri
)

)
1

χi

∥u∥L2χi (Bri
). (59)
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By iteration, letting i → +∞, we conclude that the estimate (43) holds for
p > 2.

Now, let p ∈ (0, 2). We have just shown that

sup
BθR

u ≤ C

(

(R(τ − θ))−
n
2 +

(

(R(τ − θ))
− 1

2−n
q ∥b∥

1
2−n

q

Lq(Bri
)

)
n
2

)

∥u∥L2(BτR) (60)

≤ C

(

(R(τ − θ))−
n
2 +

(

(R(τ − θ))
− 1

2−n
q ∥b∥

1
2−n

q

Lq(Bri
)

)
n
2

)

∥u∥
1− p

2

L∞(BτR)∥u∥
p
2

Lp(BτR)

(61)

which implies

sup
BθR

u ≤
1

2
∥u∥L∞(BτR)+C

(

(R(τ−θ))−
n
p +
(

(R(τ−θ))
− 1

2−n
q ∥b∥

1
2−n

q

Lq(Bri
)

)
n
p

)

∥u∥Lp(BτR)

A standard iteration argument ( [12, Lemma 4.3]) then implies that

sup
BθR

u ≤ C
(

(R(τ − θ))−
n
p +

(

(R(τ − θ))
− 1

2−n
q ∥b∥

1
2−n

q

Lq(Bri
)

)
n
p

)

∥u∥Lp(BτR) (62)

and the proof of Lemma 4.0.3 is complete.

The proof of Lemma 4.0.4. We assume without loss of generality that R = 1.
The idea of the proof is similar to that of Lemma 4.0.3: we obtain an a priori
bound and use it iteratively. Assume that u is a non-negative Lipschitz super-
solution to (39), and consider v = 1

u . The function v satisfies

−△v + b · ∇v − av ≤ 0 in Ω (63)

or equivalently
∫

Ω

(∂jv)(∂jϕ) +

∫

Ω

bj(∂jv)ϕ−

∫

Ω

avϕ ≤ 0 (64)

for any function ϕ ∈ C∞
0 (Ω) such that ϕ ≥ 0 in Ω. By Lemma 4.0.3, it follows

that for any 0 < θ < τ < 1 and p > 0, we have

sup
Bθ

v ≤ C∥v∥Lp(Bτ ) (65)

with C = C(n, p, q, q, τ, θ,M1). Therefore, we have

inf
Bθ

u ≥
1

C

(

∫

Bτ

u−p

∫

Br

up
)− 1

p
(

∫

Bτ

up
)

1
p

. (66)

We claim that there exists p0 > 0 such that
∫

Bτ

u−p0

∫

Bτ

up0 ≤ C (67)
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with a constant C = C(n, q, q, τ,M1), which would finish the proof of Lemma
4.0.4.

The first step of the proof consists in a reduction to an exponential bound:
in order to prove (67) for some sufficiently small p0 > 0, denote

(log u)Bτ
=

1

|Bτ |

∫

Bτ

log u,

and set
w = log u− (log u)Bτ

. (68)

We shall show that there exists p0 > 0 such that
∫

Bτ

ep0|w| ≤ C (69)

where C = C(τ), which implies (67). Indeed, if we assume that (69) holds, then
∫

Bτ

ep0(log u−(log u)Bτ ) ≤ C (70)

and
∫

Bτ

e−p0(log u−(log u)Bτ ) ≤ C. (71)

Therefore, we have e−p0(log u)Bτ

∫

Bτ
ep0 log u ≤ C and ep0(log u)Bτ

∫

Bτ
e−p0 log u ≤

C. Multiplying these two inequalities then leads to (67).
The second step of the proof consists in proving an L2−bound for w. We now

prove (69). Firstly, we establish bounds on the L2−norm of w. The function w
satisfies

|∇w|2 ≤ −△w + b · ∇w + a in B1. (72)

Fix τ ∈ (0, 1), and let η ∈ C1
0 (Ω) with 0 ≤ η ≤ 1 be a cutoff function such that

η ≡ 1 on B 1+τ
2
, η ≡ 0 on Bc

1, and |∇η| ≤ C
1−τ . Multiplying (72) by η2 and

integrating over B1, we obtain
∫

B1

|∇w|2η2 ≤ 2

∫

B1

(∂jw)η(∂jη) +

∫

B1

bj(∂jw)η
2 +

∫

B1

aη2 (73)

≤ 2∥η∇w∥L2∥∇η∥L2 + ∥b∥L2∥η∇w∥L2∥η∥L∞ + ∥a∥Lq∥η2∥Lq′

(74)

where 1
q + 1

q′ = 1. Absorbing the factors ∥η∇w∥L2 on the right using the term
on the left, we get

∫

B 1+τ
2

|∇w|2 ≤ CτM0 (75)

where M0 = 1+ ∥a∥Lq + ∥b∥2L2 , and the constant Cτ may depend on τ ∈ (0, 1).
Also, since

∫

Bτ

w = 0,

34



and 1+τ
2 ≥ τ, we have by the Poincaré inequality

∫

B 1+τ
2

w2 ≤ C

∫

B 1+τ
2

|∇w|2 ≤ CτM0. (76)

The third step of the proof consists on making bounds on the higher norms
of w. Next, we need to estimate

∫

Bτ
|w|β for all β ≥ 1. As in the proof of

Lemma 2.4 the idea is to bound first the higher norms of w on smaller balls in
terms of the lower norms of w on larger balls and then use the iteration process.

We multiply (72) by |w|2βη2γ and integrate over B1 in order to obtain

∫

B1

|w|2β |∇w|2η2γ ≤ 2β

∫

B1

|w|2β−2w|∇w|2η2γ + 2γ

∫

B1

|w|2β(∂jw)η
2γ−1(∂jη)

(77)

−
2γ

2β + 1

∫

B1

bj |w|
2βwη2γ−1(∂jη) +

∫

B1

a|w|2βη2γ . (78)

Here we utilized div b = 0 and ∂j |w| = w
∂jw
|w| . For the first term in the right side

of (77) we use

2β|w|2β−1 ≤
1

4
|w|2β + (8β)2β , (79)

while for the second

2γ

∫

B1

|w|2β(∂jw)η
2γ−1(∂jη) ≤

1

4

∫

B1

|w|2β |∇w|2η2γ+Cγ2
∫

B1

|w|2βη2γ−2|∇η|2.

(80)
This leads to
∫

B1

|w|2β |∇w|2η2γ ≤ C(8β)2β
∫

B1

|∇w|2η2γ + Cγ2
∫

B1

|w|2βη2γ−2|∇η|2 (81)

+
Cγ

β + 1

∫

B1

|b||w|2β+1η2γ−1|∇η|+ C

∫

B1

|a||w|2βη2γ . (82)

Let τ ≤ r ≤ R ≤ 1+τ
2 . We now choose a cutoff η ∈ C1

0 (Ω) with 0 ≤ η ≤ 1 such

that η ≡ 1 on Br, η ≡ 0 on Bc
R, and |∇η| ≤ C

R−r . By (73), for the first term in
the right side of (81) we have

(8β)2β
∫

B1

|∇w|2η2γ ≤ (8β)2β
∫

B 1+τ
2

|∇w|2 ≤ Cτ (8β)
2βM0. (83)

On the other hand, for the left side of (73), we use

∣

∣

∣
∇(|w|β+1ηγ)

∣

∣

∣

2

≤ 2γ2|w|2β+2η2γ−2|∇η|2 + 2(β + 1)2|w|2β |∇w|2η2γ . (84)
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Hence, we obtain
∫

B1

∣

∣

∣
∇(|w|β+1ηγ)

∣

∣

∣

2

≤ Cγ2
∫

B1

|w|2β+2η2γ−2|∇η|2 + C(β + 1)2(8β)2βM0 (85)

+ Cγ2(β + 1)2
∫

B1

|w|2βη2γ−2|∇η|2 (86)

+ Cγ(β + 1)

∫

B1

|b||w|2β+1η2γ−1|∇η|+ C(β + 1)2
∫

B1

|a||w|2βη2γ . (87)

For the third term in the right hand side we utilize

(β + 1)2|w|2β ≤
(β + 1)2β+2

β + 1
+
β(|w|2β)

β+1
β

β + 1
≤ (8β)2β + |w|2β+2 (88)

which gives

Cγ2(β + 1)2
∫

B1

|w|2βη2γ−2|∇η|2 ≤ C(8β)2βγ2
∫

B1

η2γ−2|∇η|2 (89)

+ Cγ2
∫

B1

|w|2β+2η2γ−2|∇η|2 ≤
C(8β)2βγ2M0

(R− r)2
+ Cγ2

∫

B1

|w|2β+2η2γ−2|∇η|2,

(90)

as M0 ≥ 1. The equations (86) and (87) are estimated as follows. First, we
have
∫

B1

|a||w|2βη2γ =

∫

B1

|a|(|w|β+1ηγ)
2β

β+1 η
2γ

β+1 ≤ ∥a∥Lq∥|w|β+1ηγ∥
2β

β+1

L
2βq′

β+1

(91)

where 1
q + 1

q′ = 1. Now, we use the Gagliardo-Nirenberg inequality

∥|w|β+1ηγ∥
L

2βq′

β+1
≤ C∥|w|β+1ηγ∥1−α

L2 ∥∇(|w|β+1ηγ)∥αL2 (92)

with α = n
2 − n(β+1)

2βq′ if 2βq′

β+1 ≥ 2, and α = 0 otherwise. By Young’s inequality,
we obtain
∫

B1

|a||w|2βη2γ ≤ C∥a∥Lq∥|w|β+1ηγ∥
2β(1−α)

β+1

L2 ∥∇(|w|β+1ηγ)∥
2αβ
β+1

L2 (93)

≤

(

1

(2(β + 1))
2αβ
β+1

∥∇(|w|β+1ηγ)∥
2αβ
β+1

L2

)

β+1
αβ

(94)

+ C
(

(2(β + 1))
2αβ
β+1 ∥a∥Lq∥|w|β+1ηγ∥

2(1−α)β
β+1

L2

)

β+1
β(1−α)+1

. (95)

As α ∈ (0, 1), this implies
∫

B1

|a||w|2βη2γ ≤
1

(2(β + 1))2
∥∇(|w|β+1ηγ)∥2L2+C(β+1)2α1∥a∥α1

Lq∥|w|β+1ηγ∥α2

L2 .

(96)
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Here we denoted α1 = β+1
β(1−α)+1 and α2 = 2β(1−α)

β(1−α)+1 . Observe that α ≥ 1 and

α1 is smaller than a constant independent of β, while 0 < α2 < 2 with α → 2
as β → ∞.

For the term in (87), we have

Cγ(β+1)

∫

B1

|b||w|2β+1η2γ−1|∇η| = Cγ(β+1)

∫

B1

|b|
(

|w|β+1ηγ)
2β+1
β+1 η

γ
β+1−1|∇η|.

(97)
Let us choose γ = β + 1. Then, the above expression becomes

Cγ(β+1)

∫

B1

|b|
(

|w|β+1ηγ
)

2β+1
β+1

|∇η| ≤ C(β+1)2∥b∥Lq∥|w|β+1ηγ∥
2β+1
β+1

L
(2β+1)q′

β+1

∥∇η∥L∞

(98)
where 1

q + 1
q′ = 1. Once again we apply the Gagliardo-Nirenberg inequality

∥|w|β+1ηγ∥
L

q′(2β+1)
β+1

≤ C∥|w|β+1ηγ∥1−α
L2 ∥∇(|w|β+1ηγ)∥αL2 (99)

with α = n
2 − n(β+1)

q′(2β+1) if q′(2β+1)
β+1 ≥ 2 and α = 0 otherwise.

Thus, by Young’s inequality, we have

Cγ(β + 1)

∫

B1

|b|
(

|w|β+1ηγ
)

2β+1
β+1

|∇η| (100)

≤ C(β + 1)2∥b∥Lq∥|w|β+1ηγ∥
(1−α)(2β+1)

β+1

L2 ∥∇(|w|β+1ηγ)∥
α(2β+1)

β+1

L2 ∥∇η∥L∞ (101)

≤
1

4
∥∇(|w|β+1ηγ)∥2L2 +

C(β + 1)2α1

(R− r)α1
∥b∥α1

Lq∥|w|
β+1ηγ∥α2

L2 . (102)

Here we denoted α1 = 2β+2
2β(1−α)+2−α and α2 = 2(2β+1)(1−α)

2β(1−α)+2−α . Note that, as in

(92), we have α1 ≥ 1 and α1 is less than a constant independent of β, while
0 < α2 < 2, and α2 → 2 when β → ∞.

Putting together (85), (88), (92) and (102), we obtain

∥∇(|w|β+1ηγ)∥L2(Br)2 ≤
C(β + 1)2

(R− r)2
∥|w|β+1∥2L2(BR) +

C(β + 1)2(8β)2βM0

(R− r)2

(103)

+ C(β + 1)2α1+2∥a∥α1

Lq(BR)∥|w|
β+1∥α2

L2(BR) +
C(β + 1)2α1

(R− r)α1
∥b∥α1

Lq(BR)
∥|w|β+1∥α2

L2(BR).

(104)

Using Sobolev embedding, we may rewrite (103) in the form

∥|w|β+1∥2L2χ(Br)
≤

C(β + 1)2κ

(R− r)α1+2

(

∥|w|β+1∥2L2(BR) + (8β)2βM0 (105)

+ ∥a∥α1

Lq(BR)∥|w|
β+1∥α2

L2(BR) + ∥b∥α1

Lq(BR)
∥|w|β+1∥α2

L2(BR)

)

(106)
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where κ =max{α1 + 1, α1} and χ = n
n−2 if n ≥ 3 and χ > 2 if n = 2. Estimate

(105) is analogous to (57): a higher norm of w on a smaller ball is bounded in
terms of a lower norm of w on a larger ball.

The fourth and last step on the proof is the iteration process. Let βi = χi−1
and ri = τ + 1+τ

2i+1 for i = 0, 1, 2, . . . . From (105), we get

∥|w|χ
i

∥2L2χ(Bri+1
) ≤ Cχ2κi2(α1+2)(i+2)

(

∥|w|χ
i

∥2L2(Bri
) + (8χi)2χ

i

M0 (107)

+ ∥a∥α1

Lq(Bri
)∥|w|

χi

∥α2

L2(Bri
) + ∥b∥α1

Lq(Bri
)
∥|w|χ

i

∥α2

L2(Bri
) (108)

for all i = 0, 1, 2, . . . . Taking 1
(2χi) power on both sides of (107) gives

∥w∥L2χi+1 (Bri+1
) ≤ C

1

2χi χ
κi

χi 2
(α1+2)(i+2)

2χi

(

∥w∥L2χi (Bri
) + 8χiM

1

2χi

0 (109)

+ ∥a∥
α1
2χi

Lq(Bri
)∥w∥

α2
2

L2χi (Bri
)
+ ∥b∥

α1
2χi

Lq(Bri
)
∥w∥

α2
2

L2χi (Bri
)

)

. (110)

This leads to the inequality

∥w∥L2χi+1 (Bri+1
) ≤ (CM1)

α̃

2χi (2χ)
κi

χi

(

∥w∥L2χi (Bri
) + 8χi + ∥w∥

α2
2

L2χi (Bri
)
(111)

+ ∥w∥
α2
2

L2χi (Bri
)

)

≤ (CM1)
α̃

2χi (2χ)
κi

χi

(

∥w∥L2χi (Bri
) + 8χi

)

, (112)

for all i = 0, 1, 2, . . . , with α̃ =max{α1, α1} andM1 = 1+∥a∥Lq +∥b∥2L2 +∥b∥Lq .

For the inequality in (112) we also used α2, α2 ≤ 2, so that ∥w∥
α2
2

Lp ≤ 1+ ∥w∥2Lp

and ∥w∥
α2
2

Lp ≤ 1 + ∥w∥2Lp .

Note that if a sequence Yi satisfies Yi+1 ≤ Ci(Yi + χi) with Ci ≥ 1 and
∏∞

i=1 Ci ≤ K, then by induction we have

Yi ≤ CK(Y0 +

i
∑

j=0

χj−1) ≤ C(Y0 + χi), (113)

for all i = 0, 1, 2, · · · . Thus, iterating (111), we obtain

∥w∥L2χi+1 (Bri+1
) ≤ CM

C(n)
1 (CM1 + χi+1) ≤ CM

C(n)
1 χi+1,

for all i = 0, 1, 2, . . . , as
∑i

j=1
j
χj ≤ C and

∑i
j=1 χ

j ≤ χi+1 for χ > 1.
Finally, for any β ≥ 1 there exists i = 0, 1, 2, . . . such that

2χi ≤ β + 1 ≤ 2χi+1.

Thus, in particular, we have

(

∫

Br

|w|β+1
)

1
β+1

≤ C∥w∥L2χi+1 (Bri+1
) ≤ CM

C(n)
1 (β + 1).
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Therefore, for all β ≥ 1, we obtain

∫

Bτ

(p0|w|)
(β+1)

(β + 1)!
≤ p

β+1
0

(

CM
C(n)
1 e

)(β+1)
≤

1

2(β+1)
(114)

by taking

p0 =
1

CM
C(n)
1 e

sufficiently small. By (76), we also have

∫

Bτ

|w| ≤ C

∫

Bτ

w2 ≤ CM0

which gives (114) for β = 0 as well. It follows from (114) that (69) holds, and
therefore the proof of the lemma is complete.
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