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Abstract

The spectral factorization problem is a cornerstone of many areas of systems,
control and prediction theory. Starting from the seminal studies of Kolmogorov
and Wiener, much work has been done on the subject and many approaches have
been proposed to solve this classical problem. More recently, a natural extension
of the spectral factorization problem, the so-called J-spectral factorization prob-
lem, has been investigated in several papers. Interestingly, the latter problem plays
a crucial role in H∞ control and estimation theory.

In this thesis, we address the two aforementioned problems. We first review
the multivariate spectral factorization method devised by Youla in his celebrated
paper Youla [1961] focusing, in particular, on some of its remarkable features.
Then, in the spirit of Youla’s work, we present a technique which provide a solu-
tion to the multivariate spectral factorization problem in discrete-time. Finally, a
J-spectral extension of the proposed factorization approach is discussed.
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0. GENERAL NOTATION

We fix here some general terminology and notation which will be used through-
out the thesis. Additional nomenclature, when needed, will be introduced at the
beginning or within the following Chapters.

∅ empty set

N set of natural numbers {0,1,2,3, . . .}
Z ring of integers {. . . ,−2,−1,0,1,2, . . .}
Q field of rational numbers

R field of real numbers

C field of complex numbers

Rn×m set of real n×m matrices

R[z] ring of real polynomials

R[z,z−1] ring of real Laurent polynomials (L-polynomials, for
short)

R(z) field of real rational functions

R[z]n×m set of real polynomial n×m matrices

R[z,z−1]n×m set of real L-polynomial n×m matrices

R(z)n×m set of real rational n×m matrices

ℜe a real part of a ∈ C

ℑm a imaginary part of a ∈ C

a complex conjugate of a ∈ C

0n,m n×m zero matrix

0n n×n zero matrix
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In n×n identity matrix

ker(A) kernel of matrix A

det(A) determinant of matrix A

rank(A) rank of matrix A

in(A) inertia of A, i.e., triple (νp,ν0,νn) denoting the num-
ber of positive, zero, negative eigenvalues of A, in the
order shown

diag[a1, . . . ,an] diagonal matrix with diagonal elements a1, . . . ,an

[A]i j entry at (i, j) of matrix A

[A]i: j,k:h sub-matrix of A obtained by extracting the rows from
index i to index j (i ≤ j) of A and the columns from
index k to index h (k ≤ h) of A

A complex conjugate of matrix A

A> transpose of matrix A

A−1 inverse of matrix A

A−R right inverse of matrix A

A−L left inverse of matrix A

rk(A) normal rank of polynomial/rational matrix A (see also
p.14)

As a final remark, we recall that a minor of a matrix A is the determinant of
some smaller square matrix, cut down from A by removing one or more of its
rows, indexed by tuple i, or columns, indexed by tuple j. If, furthermore, i = j the
minor is called a principal minor of A.

| 2
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1. INTRODUCTION

The purpose of this Chapter is to provide a brief introduction to the two major
topics we address in this work, namely the spectral and J-spectral factorization
problem. We will briefly review the historical developments, some applications
and the current state-of-the-art of these problems. In the final section, we will
present the contributions and the organization of the work.

1.1 | Spectral factorization
Spectral factorization is a classical and extensively studied topic in control and

systems theory. The origins of this mathematical tool can be traced back in the
forties, when Kolmogorov and Wiener, independently each other, introduced it
in order to obtain a frequency domain solution of optimal filtering problems for
both the discrete-time scalar case Kolmogorov [1939] and continuous-time scalar
case (the well-known Wiener-Hopf technique) Wiener [1949]. Since that time,
spectral factorization has turned to be a crucial problem in many other areas be-
yond optimal filtering and prediction theory, such as circuit and network theory
Oono [1956], Anderson and Vongpanitlerd [1973], Fornasini [1977], and linear-
quadratic optimization Willems [1971].

Although extensions to the non-rational case have been handled in scientific
literature, e.g., Ferrante [1997b], in its most common continuous-time form, the
multivariate spectral factorization problem can be stated as follows.

Problem 1.1 (Spectral factorization – continuous-time)
Consider a square real rational matrix Φ(s) ∈ R(s)n×n of normal rank
rk(Φ) = r ≤ n, satisfying:

• Φ(s) = Φ>(−s),

• Φ( jω)≥ 0, ∀ω ∈ R, s = jω not a pole of Φ(s).
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Find a spectral factor W (s) ∈ R(s)r×n, i.e., a real rational matrix such that

Φ(s) =W>(−s)W (s), (1.1)

with the following properties:

(i) W (s) is analytic in a right half-plane {ℜe s > τ1, τ1 < 0, s ∈ C},

(ii) its (right) inverse W−R(s) is analytic in a right half-plane {ℜe s >
τ2, τ2 < 0, s ∈ C}.

The discrete-time version of Problem 1.1 is reported below.

Problem 1.2 (Spectral factorization – discrete-time)
Consider a square real rational matrix Φ(z) ∈ R(z)n×n of normal rank
rk(Φ) = r ≤ n, satisfying:

• Φ(z) = Φ>(1/z),

• Φ(e jω)≥ 0, ∀ω ∈ [0,2π), z = e jω not a pole of Φ(z).

Find a spectral factor W (z) ∈ R(z)r×n, i.e., a real rational matrix such that

Φ(z) =W>(1/z)W (z), (1.2)

with the following properties:

(i) W (z) is analytic in a region {|z|> τ1, τ1 < 1, z ∈ C} without any pole
at infinity,

(ii) its (right) inverse W−R(z) is analytic in a region {|z| > τ2, τ2 < 1, z ∈
C} without any pole at infinity.

It is worth noticing that, in the context of filtering and estimation theory, Φ(s)
denotes the spectral density (or spectrum) of a multivariate continuous-time sta-
tionary stochastic process, while Φ(z) denotes its discrete-time counterpart.

The existence of a solution of Problem 1.1 was firstly proved by Youla in his
celebrated work Youla [1961]. In this paper, Youla presents an ingenious tech-
nique, which exploits the Smith-McMillan canonical form of rational matrices,

| 4
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to compute a spectral factor that satisfies properties (i)-(ii) of Problem 1.1 (the
so-called minimum-phase stable spectral factor). Subsequent to this fundamental
work, many other algorithms have been proposed in order to solve the multivariate
spectral factorization problem. By following the description given in Picci [2007,
Ch.4], we can distinguish two general sets of techniques:

1. The first one uses the Matrix Fraction Description (MFD) theory in order to
simplify the problem to that of a polynomial matrix factorization. Indeed,
there exist efficient algorithms which are able to compute the minimum-
phase polynomial factor, viz.

(a) algorithms based on Cholesky factorization of the covariance matrix of
the process Rissanen [1973] or on analogous techniques for equivalent
state-space representations Anderson et al. [1974],

(b) Newton-like iterative algorithms Ježek and Kučera [1985], Tunnicliffe-
Wilson [1972].

2. The second set of techniques is closely related to the Kalman filtering the-
ory. It provides a solution of the spectral factorization problem in terms of
a solution of a suitable Algebraic Riccati Equation (ARE), cf. Picci [2007,
Ch.10]. This kind of techniques has gathered momentum in the last decades
and it has been used to provide complete parametrization and interesting
characterization of (stochastically) minimal spectral factors Ferrante et al.
[1993], Ferrante [1997a].

Far from being only of historical interest, the approach presented in Youla’s
paper can be regarded an interesting and useful tool when applied in other areas
of control and systems theory. An example can be found in Ferrante and Pan-
dolfi [2002]. In this paper, the method devised by Youla is used to compute a
γ-spectral factor in order to weaken the standard assumption for the solvability
of the classical Positive Real Lemma equations. Notably, unlike the other algo-
rithms mentioned above, Youla’s approach allows to easily modify the region of
analyticity of both the obtained spectral factor and its (right) inverse. This can be
considered one of the peculiar and relevant feature of Youla’s method. Another
relevant aspect of Youla’s factorization approach is that it always leads to the com-
putation of a (stochastically) minimal spectral factor, i.e., a factor with the least
possible McMillan degree1, that is, in turn, the dimension of a minimal state-space
realization of the spectral factor.

1Such McMillan degree is equal to one-half of the McMillan degree of the spectrum.

5 |
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1.2 | J-spectral factorization

The J-spectral factorization problem can be considered a natural extension of
the standard spectral factorization problem discussed above. In fact, the former
problem encompasses the latter. More specifically, in the standard spectral factor-
ization the rational spectrum Φ is required to be positive semi-definite on certain
contours of the complex plane (namely, the imaginary axis in the continuous-time
case, the unit circle in the discrete-time case). Instead, in the J-spectral factor-
ization it is required that Φ has constant inertia (i.e., constant number of positive,
zero and negative eigenvalues) on certain contours of the complex plane.

The J-spectral factorization problem naturally arises in different areas of sys-
tems and control theory and it plays a prominent role in H∞ estimation and control
theory. A general survey on the subject can be found, for instance, in Stoorvogel
[1992], while references based on the J-spectral factorization approach are, e.g.,
Green et al. [1990], Colaneri and Ferrante [2002], Colaneri and Ferrante [2006].

In the continuous-time case the multivariate J-spectral factorization problem
can be formulated as follows.

Problem 1.3 (J-spectral factorization – continuous-time)
Consider a square real rational matrix Φ(s) ∈ R(s)n×n of normal rank
rk(Φ) = r ≤ n, satisfying:

• Φ(s) = Φ>(−s),

• in(Φ( jω)) = (νp,ν0,νn), ∀ω ∈ R, s = jω not a zero/pole of Φ(s).

Find a J-spectral factor W (s) ∈ R(s)r×n, i.e., a real rational matrix such that

Φ(s) =W>(−s)

 Iνp 0νp,νn

0νn,νp −Iνn

W (s), (1.3)

with the following properties:

(i) W (s) is analytic in a right half-plane {ℜe s > τ1, τ1 < 0, s ∈ C},

(ii) its (right) inverse W−R(s) is analytic in a right half-plane {ℜe s >
τ2, τ2 < 0, s ∈ C}.

| 6
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In this work we will study the discrete-time version of the aforementioned
problem, which is stated below.

Problem 1.4 (J-spectral factorization – discrete-time)
Consider a square real rational matrix Φ(z) ∈ R(z)n×n of normal rank
rk(Φ) = r ≤ n, satisfying:

• Φ(z) = Φ>(1/z),

• in(Φ(e jω))= (νp,ν0,νn), ∀ω ∈ [0,2π), z= e jω not a zero/pole of Φ(z).

Find a J-spectral factor W (z) ∈ R(z)r×n, i.e., a real rational matrix such that

Φ(z) =W>(1/z)

 Iνp 0νp,νn

0νn,νp −Iνn

W (z), (1.4)

with the following properties:

(i) W (z) is analytic in a region {|z|> τ1, τ1 < 1, z ∈ C} without any pole
at infinity,

(ii) its (right) inverse W−R(z) is analytic in a region {|z| > τ2, τ2 < 1, z ∈
C} without any pole at infinity.

In analogy to standard spectral factorization, the rational matrix Φ is usually
termed J-spectrum.

The J-spectral factorization problem is quite recent in literature. The most
common approach for solving this problem hinges on the solution of suitable
AREs (see, for instance, Colaneri and Ferrante [2006] and references therein).
Other types of methods have been investigated, e.g., in Kwakernaak and Šebek
[1994] and in Trentelman and Rapisarda [1999], but the majority of them work
only for the polynomial matrix case.

Moreover, conversely to the standard spectral factorization, a (stochastically)
minimal J-spectral factor, i.e., a J-spectral factor having the least possible McMil-
lan degree, does not always exist, as shown in Colaneri and Ferrante [2006]. How-
ever, this rather counterintuitive fact has not been fully understood yet.

7 |
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1.3 | Contributions and outline of the thesis
The contribution of this work is threefold.

1. We give a detailed, and, in the author’s opinion, simplified with reference
to certain steps, description of the Youla’s factorization method. We focus
on some peculiar features of the method, namely, on the minimality and on
some properties of analyticity of the computed spectral factor, which are
neither explicitly discussed in the original paper Youla [1961] nor in more
recent works.

2. We present a discrete-time version of the Youla’s factorization method.
In particular, we draw the attention on the main differences between the
continuous- and discrete-time case and on some special properties of the
factorization.

3. We extend, under mild assumptions, the previous approach to the J-spectral
factorization problem in discrete-time and we discuss certain issues which
arise in this more general case.

The thesis is organized as follows. In Chapter 2, we review some mathemat-
ical notions and results on polynomial and rational matrices. In Chapter 3, we
analyze in detail the factorization method proposed by Youla in his paper Youla
[1961]. In particular, in section §3.3, we focus on some interesting by-products
of this approach. By following the lines of Youla’s approach, in Chapter 4, we
present a method for solving the discrete-time spectral factorization problem. In
Chapter 5, a “J-spectral” generalization of the previous method is proposed. Fi-
nally, in Chapter 6, we draw some final considerations and we describe a number
of possible future developments.

| 8
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2. MATHEMATICAL PRELIMINARIES

In this Chapter, we review the main mathematical notions and tools used in
the development of Youla’s approach and in its extensions. More specifically, we
give a very short introduction to some abstract algebraic structures, polynomials,
polynomial matrices and rational matrices. We will stress on those aspects which
we consider more relevant in order to fully understand the rest of the work. We
refer the interested reader to Jacobson [1985], Mac Lane and Birkhoff [1999],
Fornasini [2011, Ch.1,3,4] and Kailath [1998, Ch.6] for an exhaustive and more
rigorous dissertation on these subjects.

2.1 | Basic facts of algebra
This section is devoted to provide to the reader some background material on

polynomial algebra over fields.

2.1.1 | Rings and fields
Throughout this Chapter a ring is intended to be a commutative ring with iden-

tity, unless otherwise indicated. We refer to Jacobson [1985, Vol.I, Ch.2, §1 and
§17] for more general definitions of ring.

Definition 2.1.1 (Ring) A ring (commutative, with identity) is a set R
equipped with two operations, addition “+” and multiplication “·”, and with
a zero element 0 and an identity element 1, which obey the following axioms,
for all a,b,c ∈ R:

A1) (a+b)+ c = a+(b+ c)

A2) a+b = b+a

A3) a+0 = 0+a = a
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A4) for each a there is an inverse −a such that a+(−a) = 0 =−a+a

M1) (a ·b) · c = a · (b · c)

M2) a ·b = b ·a

M3) a ·1 = 1 ·a = a

D1) a · (b+ c) = a ·b+a · c

Definition 2.1.2 (Subring) A subring of a ring R is a subset of R that is it-
self a ring when binary operations of addition and multiplication on R are
restricted to the subset, and which contains the multiplicative identity of R.

If a is any element of a ring R such that a ·b = 1 for some element b of R, then
a is said to be a unit of R.

If a and b are elements of a ring R, then we say a divides b, a | b, if there exists
an element q of R such that b = a ·q. In this case a is called a divisor (or factor) of
b and b is called a multiple of a. If an element d of R divides both a and b, then d
is a common divisor of a and b; if, furthermore, d is a multiple of every common
divisor of a and b, then d is a greatest common divisor (g.c.d.) of a and b. If an
element m of R is a multiple of both a and b, then it is called a common multiple
of a and b; if, furthermore, m is a divisor of every common multiple of a and b,
then m is a least common multiple (l.c.m.) of a and b.

We say that elements a and b are coprime or relatively prime in R if their great-
est common divisor is a unit of R.

Definition 2.1.3 (Field) A (commutative) ring R in which every non-zero el-
ement is a unit is called a field.

Thus, in a field. the set of axioms M1)-M3) can be completed by:

M4) a ·a−1 = 1, a 6= 0, a ∈ R.

Two rings, or fields, are isomorphic if there is a one-to-one correspondence
between their elements which preserves the operations of addition and multipli-
cation.

To conclude this subsection, we observe that a well-known example of a ring is
the set of integers Z with usual +, ·,0,1, while examples of a field are the rationals

| 10
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Q, the reals R, and the complex numbers C.

2.1.2 | Polynomials
A polynomial p(z) over a field F is an expression

p(z) := pnzn + · · ·+ p1z+ p0 (2.1)

in which p0, p1, · · · , pn belong to F. In the sequel, for our purposes, we set F=R.
If pn 6= 0, the non-negative integer n is the degree of p(z), written deg p(z). If

p(z) is the zero polynomial, we use the convention deg p(z) =−∞. If pn = 1, the
polynomial is said to be monic.

We define the addition of two polynomials p(z) = ∑i pizi and q(z) = ∑i qizi as

p(z)+q(z) := ∑
i
(pi +qi)zi, (2.2)

and the multiplication of the two polynomial as

p(z) ·q(z) := ∑
i

∑
h
(pi−h ·qh)zi. (2.3)

With these two operations, the set of polynomials over R is a (commutative) ring,
denoted by R[z]. The units of R[z] are polynomials of zero degree.

At least one greatest common divisor and one least common multiple exist for
any pair of polynomials in R[z]. Moreover, any greatest common divisor, d(z), of
two polynomials a(z) and b(z) can be expressed in the form

d(z) = a(z) · p(z)+b(z) ·q(z), (2.4)

for some (relatively prime) polynomials p(z) and q(z) of R[z] and any least com-
mon multiple, m(z), of a(z) and b(z) is given by

m(z) = a(z) · r(z) =−b(z) · s(z), (2.5)

where r(z) and s(z) are relatively prime polynomials in R[z] that satisfy

a(z) · r(z)+b(z) · s(z) = 0. (2.6)

Hence, a(z) and b(z) are relatively prime in R[z] if and only if there exist polyno-
mials p(z) and q(z) in R[z] such that

a(z) · p(z)+b(z) ·q(z) = 1. (2.7)

11 |
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This relationship is known as the Bézout identity. We notice also that g.c.d. and
l.c.m. are unique up to multiplication by units.

We point out that a polynomial p(z) may be viewed in two different ways.
Either it is considered to be an element of R[z], in which case z is an indeterminate
over R and no question arises of giving it a value in R, or it is considered to be a
function that associates to each element z of R, another element p(z), i.e.,

p : R→ R
z 7→ p(z)

Since different elements of R[z] identify different polynomial functions, no dis-
tinction need to be made between these two points of view. In general, if we deal
with the ring F[z], F being an arbitrary field, this fact is not always true (see For-
nasini [2011, Ch.1, §5] for further details).

The values of z for which a polynomial p(z) takes the value zero in R are
called the roots or zeros of p(z). They reside in an algebraic closure of R, which
is the field of complex number C. We say that a polynomial p(z) is Hurwitz if it
has no root z such that ℜe z > 0 and it is strictly Hurwitz if it has no root z such
that ℜe z ≥ 0. Furthermore, we say that a polynomial p(z) is Schur if it has no
root z such that |z|> 1 and it is strictly Schur if it has no root z such that |z| ≥ 1.

2.1.3 | Laurent polynomials
A Laurent polynomial, or briefly L-polynomial, p(z) over a field F is an ex-

pression

p(z) := p−mz−m + · · ·+ p−1z−1 + p0 + p1z+ · · ·+ pnzn (2.8)

in which p−m, . . . , p−1, p0, p1, . . . , pn belong to F. The set of L-polynomials over
R equipped with operations defined in (2.2) and (2.3) is a (commutative) ring, de-
noted by R[z,z−1]. In this case, the units of R[z,z−1] are the monomials αzk, α ∈
R, α 6= 0, k ∈ Z.

We define the maximum-degree of p(z), denoted by maxdeg p, as the largest
integer n such that pn 6= 0, the minimum-degree of p(z), denoted by mindeg p, as
the smallest integer m such that pm 6= 0 and the total degree, or simply degree,

| 12



2.1. BASIC FACTS OF ALGEBRA |

of p(z) as deg p := n+m. If p(z) is the zero L-polynomial, we set by conven-
tion maxdeg p = deg p = −∞ and mindeg p = +∞. Similarly to polynomials,
we can define the greatest common divisor and the least common multiple for
L-polynomials.

2.1.4 | Rational functions
In this subsection, we will construct the field of rational functions starting from

the polynomial ring R[z] and we will study some of its elementary properties.

Let us consider the set R[z]× (R[z]\{0}), which consists of the ordered pairs
(p(z),q(z)), q(z) 6= 0. We introduce in this set the equivalence relation ∼, requir-
ing that

(p(z),q(z))∼ (n(z),d(z)) ⇔ n(z)q(z) = p(z)d(z). (2.9)

We denote the equivalence class identified by the pair (p(z),q(z)) as p(z)/q(z).
In the equivalence class set R[z]×(R[z]\{0})/∼, the addition and multiplication
operations are defined as follows

p(z)
q(z)

+
n(z)
d(z)

:=
p(z) ·d(z)+n(z) ·q(z)

q(z) ·d(z)
, (2.10)

p(z)
q(z)
· n(z)

d(z)
:=

p(z) ·n(z)
q(z) ·d(z)

. (2.11)

The set equipped with these operations takes the form of a field, the field of real
rational functions. We denote it by symbol R(z), as stated in Chapter 0.

Let f (z) = p(z)/q(z) ∈ R(z) be a non-zero rational function. We can always
write f (z) in the form

f (z) =
n(z)
d(z)

(z−α)ν , ∀α ∈ C, (2.12)

where ν is a integer and n(z), d(z) ∈ R[z] are non-zero polynomials such that
n(α) 6= 0 and d(α) 6= 0. The integer ν is called valutation of f(z) at α , we de-
note it by symbol vα( f ). The valutation of f (z) at infinity is defined as v∞( f ) :=
degq(z)− deg p(z). If f (z) is the null function, by definition, vα( f ) = +∞ for

13 |
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every α ∈ C. If vα( f ) < 0, then α ∈ C is called a pole of f (z) of multiplicity
−vα( f ). If vα( f ) > 0, then α ∈ C is called a zero of f (z) of multiplicity vα( f ).
We can define the pole and zero at infinity in a similar way. A rational function
f (z) is said to be proper if v∞( f )≥ 0, strictly proper if v∞( f )> 0.

A real rational function f (z) ∈ R(z) is called weakly Hurwitz stable if it does
not possess any pole in the open right half-plane {ℜe z > 0, z ∈ C} and weakly
Schur stable if it does not possess any pole in the region {|z| > 1, z ∈ C}. Fur-
thermore, f (z) ∈ R(z) is called strictly Hurwitz stable if it does not possess any
pole in the closed right half-plane {ℜe z ≥ 0, z ∈ C} and strictly Schur stable if
it does not possess any pole in the region {|z| ≥ 1, z ∈ C}.

As a final remark, we notice that the ring of Laurent polynomials is a subring
of the rational functions.

2.2 | Polynomial matrices

We recall, from Chapter 0, that R[z]p×m denotes the set of p×m matrices with
entries in R[z] and R[z,z−1]p×m denotes the set of p×m matrices with entries in
R[z,z−1].

2.2.1 | Elementary matrices and canonical forms
We start by reviewing some basic definitions.

Definition 2.2.1 (Singular polynomial matrix) A matrix M(z)∈R[z]m×m is
said to be singular if its determinant is the zero polynomial, i.e., detM(z) = 0.
Otherwise, M(z) is said to be non-singular.

Definition 2.2.2 (Normal rank) A matrix M(z) ∈ R[z]p×m has normal rank
r, written rk(M)= r, if all its (r+1)×(r+1) minors are zero polynomials and
there exists at least one non-zero r× r minor. Clearly, rk(M)≤min{p,m}. If
rk(M) = min{p,m}, then M(z) is said to be of full normal rank.

It is worthwhile noticing that the normal rank of G(z) coincides with the rank
of G(z) almost everywhere (i.e., for all but finitely many points) in z ∈ C.
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A particularly relevant class of polynomial matrices is the class of elementary
matrices. These are square matrices which can assume one of the following three
structures:

Ẽ1(z) :=



1 0 · · · 0

0 . . .

1
... α

...

1
. . . 0

0 · · · 0 1


, α ∈ R\{0},

Ẽ2(z) :=



1 · · · 0

0 . . .

0 · · · 1
...

...
... . . . ...

1 · · · 0
. . . 0

0 · · · 1


,

Ẽ3(z) :=



1 0 · · · 0

0 . . .

1 · · · p(z)
... . . . ...

...

1
. . . 0

0 · · · 1


, p(z) ∈ R[z].

An elementary matrix Ẽi(z) ∈ R[z]m×m, i = 1,2,3, can be viewed as a linear
operator acting on the columns of an arbitrary p×m polynomial matrix M(z), i.e.,

Ẽi : R[z]p×m→ R[z]p×m, M(z) 7→M(z)Ẽi(z),
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More specifically, Ẽ1(z) corresponds to multiply a column of M(z) by a non-zero
real constant α , Ẽ2(z) to swap two columns of M(z) and Ẽ3(z) to sum a column of
M(z) multiplied by p(z)∈R[z] to another column of M(z). Clearly, if we consider
the linear operator

Ẽi : R[z]p×m→ R[z]p×m, M(z) 7→ Ẽi(z)M(z),

then we have analogous elementary operations acting on the rows of M(z).
We also notice that the determinant of an elementary matrix is a non-zero

constant. Hence, an elementary matrix is invertible and its inverse also is an ele-
mentary matrix.

Definition 2.2.3 Let M(z), N(z) ∈ R[z]p×m. We say that M(z) is equiv-
alent to N(z), written M(z) ∼ N(z), if there exist elementary matrices
E1(z),E2(z), . . . ,Ek(z) ∈ R[z]p×p and E ′1(z),E

′
2(z), . . . ,E

′
h(z) ∈ R[z]m×m such

that

Ek(z) · · ·E2(z)E1(z)N(z)E ′1(z)E
′
2(z) · · ·E ′h(z) = M(z). (2.13)

The relation ∼ in R[z]p×m is an equivalence relation and, therefore, the set
R[z]p×m can be partitioned in disjoint equivalence classes. The following Theo-
rem states that every polynomial matrix is equivalent to a polynomial matrix with
a peculiar structure, the Smith canonical form of M(z).

Theorem 2.2.1 (Smith canonical form) Let M(z) ∈ R[z]p×m. There exists a
finite sequence of elementary matrices which reduces M(z) to the form

Γ(z) := Ek(z) · · ·E1(z)M(z)E ′1(z) · · ·E ′h(z)

=


γ1(z)

. . . 0r,m−r

γr(z)

0p−r,r 0p−r,m−r

 (2.14)

where r = rk(M) and γ1(z),γ2(z), . . . ,γr(z) ∈ R[z] are monic polynomials
which satisfy γi(z) | γi+1(z), for i = 1,2, . . . ,r− 1. These polynomials are
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uniquely determined by the previous conditions and they are termed invariant
polynomials of M(z).

A proof of Theorem 2.2.1 can be found in Fornasini [2011, Ch.3, §1, Thm.
3.1.4]. We underline the fact that, although the Smith canonical form is unique,
the sequence of elementary matrices used to obtain it is not so.

By using elementary operations acting only on the rows, we can convert a
polynomial matrix to another well-known “standard” form, the column Hermite
form.1 In what follows, we restrict the analysis only to polynomial matrices whose
normal rank is equal to the number of columns. For a complete discussion on the
topic, as well as for a proof of the Theorem below, we refer to [Kailath, 1998,
Ch.6, §3].

Theorem 2.2.2 (Column Hermite form) Let M(z) ∈ R[z]p×m be a polyno-
mial matrix of normal rank rk(M) = m. There exists a family of elementary
matrices E1(z), E2(z), . . . , Ek(z) ∈ R[z]p×p such that

H(z) := Ek(z) · · ·E1(z)M(z) =



h11(z) h12(z) · · · h1m(z)

0 h22(z) · · · h2m(z)
... . . . . . . ...

0 · · · 0 hmm(z)

0p−m,m


(2.15)

with h j j(z) ∈ R[z] monic satisfying degh j j > deghi j for j = 1,2, . . . ,m and
i < j.

By interchanging the roles of rows and columns, one can obtain a similar row
Hermite form, the details of which we shall not spell out.

1It is worthwhile noticing that this form is obtained by using elementary operations acting only
on the rows of the matrix and, therefore, does not represent a canonical form for the equivalence
relation ∼ introduced before.
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2.2.2 | Unimodular matrices and coprime matrices
Unimodular matrices are the units (i.e., the invertible elements) of the (non-

commutative) ring of square polynomial matrices R[z]m×m. Obviously, the ele-
mentary matrices introduced in the previous subsection are also unimodular ma-
trices. Actually, they are the building blocks of unimodular matrices, since any
unimodular matrix can be written as a product of suitable elementary matrices.

Definition 2.2.4 (Unimodular matrix) A matrix U(z)∈R[z]m×m is unimod-
ular if it is invertible in R[z]m×m.

The following Proposition provides various characterizations of unimodular
matrices. The proof can be found in Fornasini [2011, Ch.3, §2, Prop.3.2.2].

Proposition 2.2.1 Let U(z) ∈ R[z]m×m. The following statements are equiv-
alent:

1. U(z) is a unimodular matrix;

2. detU(z) is a non-zero real constant;

3. the Smith canonical form of U(z) is the identity matrix Im;

4. the (column and row) Hermite form of U(z) is the identity matrix Im;

5. U(z) can be written as a product of elementary matrices.

A direct consequence of Proposition 2.2.1 is that two polynomial matrices
N(z) and M(z) are equivalent if and only if N(z) = U(z)M(z)V (z), where U(z)
and V (z) are suitable unimodular matrices. In particular, Theorem 2.2.1 can be
reformulated as follows: let M(z) ∈ R[z]p×m be a polynomial matrix of normal
rank rk(M) = r, there exist a pair of unimodular matrices U(z) ∈ R[z]p×p and
V (z) ∈ R[z]m×m such that

Γ(z) =U(z)M(z)V (z) =


γ1(z)

. . . 0r,m−r

γr(z)

0p−r,r 0p−r,m−r

 , (2.16)
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where r = rk(M) and γ1(z),γ2(z), . . . ,γr(z) ∈ R[z] are uniquely determined monic
polynomials which satisfy γi(z) | γi+1(z), for i = 1,2, . . . ,r−1.

A similar result holds for Theorem 2.2.2. Let M(z)∈R[z]p×m be a polynomial
matrix of normal rank rk(M) =m. Then, there exists an unimodular matrix U(z)∈
R[z]p×p such that

H(z) :=U(z)M(z) =



h11(z) h12(z) · · · h1m(z)

0 h22(z) · · · h2m(z)
... . . . . . . ...

0 · · · 0 hmm(z)

0p−m,m


(2.17)

with h j j(z) ∈ R[z] monic satisfying degh j j > deghi j for j = 1,2, . . . ,m and i < j.

It is useful to extend the notion of unimodular matrices to the non-square case.
In this case, a unimodular matrix U(z) ∈ R[z]m×p is intended to be a polynomial
matrix possessing either a right or left polynomial inverse. By using the latter
definition of unimodular matrices, the Smith decomposition (2.16) can be equiva-
lently rewritten as

Γ
′(z) =U ′(z)M(z)V ′(z) =


γ1(z)

γ2(z)
. . .

γr(z)

 , (2.18)

where the only difference is that Γ′(z) ∈ R[z]r×r is non-singular and U ′(z) ∈
R[z]p×r, V ′(z) ∈ R[z]r×m are non-square unimodular matrices, which are related
to U(z) and V (z) in (2.16) by

U ′(z) :=U(z)

 Ir

0p−r,r

 , V ′(z) :=
[

Ir 0r,m−r

]
V (z). (2.19)

With a partial abuse of notation, in the following, when we will refer to the Smith
decomposition of M(z) we intend a decomposition of the form (2.18). In particu-
lar, by using this convention, we have that also in the non-square case the Smith
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canonical form of a unimodular matrix is the identity matrix of suitable dimension.

The notion of divisor of a polynomial can be extended to the matrix case as
described in the following Definition.

Definition 2.2.5 (Right and left matrix divisors) Let M(z) ∈ R[z]p×m. A
square matrix ∆ ∈ R[z]m×m is said to be a right divisor of M(z) if there exists
a matrix M̄(z) ∈ R[z]p×m such that

M(z) = M̄(z)∆(z). (2.20)

Moreover, a square matrix ∇ ∈ R[z]p×p is said to be a left divisor of M(z) if
there exists a matrix M̃(z) ∈ R[z]p×m such that

M(z) = ∇(z)M̃(z). (2.21)

In particular, we have that if in every factorization (2.20) ∆(z) is unimodular,
then M(z) is said to be right coprime. Similiarly, if in every factorization (2.21)
∇(z) is unimodular, then M(z) is said to be left coprime.

2.2.3 | Column-reduced and row-reduced matrices

Definition 2.2.6 (Degree of a polynomial vector) The degree of a non-zero
polynomial column (or row) vector v(z) ∈ R[z]p is defined as the highest de-
gree of its polynomial entries.

Definition 2.2.7 (External and internal degree) Let M(z) ∈ R[z]p×m be a
polynomial matrix of normal rank rk(M) = m. Let ki, i = 1, . . . ,m, be the
degree of the i-th column of M(z). The external (column) degree of M(z) is
defined as

extc deg M :=
m

∑
i=1

ki. (2.22)

The internal degree of M(z), int deg M, is defined as the highest degree be-
tween all the m×m minors of M(z).
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It can be shown (see Fornasini [2011, Ch.3, §5]) that the external degree of
M(z) provides an upper bound on the internal degree of M(z), i.e.,

int deg M ≤ extc deg M. (2.23)

Inequality may hold because of possible cancellations. However, if M(z) is such
that equality holds in the above, we shall say that M(z) is column reduced.

Definition 2.2.8 (Column-reduced matrix) A polynomial matrix M(z) ∈
R[z]p×m of normal rank rk(M) = m is said to be column-reduced if

int deg M = extc deg M. (2.24)

In particular, a square column-reduced polynomial matrix M(z) ∈ R[z]m×m

satisfies

deg det M = extc deg M =
m

∑
i=1

ki. (2.25)

Let M(z) ∈ R[z]p×m and let rk(M) = m. We denote by Mhc ∈ Rp×m the highest-
column-degree coefficient matrix of M(z), i.e., the matrix whose i-th column con-
sists of the coefficients of the monomials zki’s of the same column of M(z). Then,
we can write M(z) in the form

M(z) = Mhc


zk1

zk2

. . .

zkm

+Mrem(z), (2.26)

where the column degrees of the “remainder matrix” Mrem(z) are strictly lower
than the corresponding column degrees of M(z). The next Proposition provides a
simple test to verify if M(z) is column-reduced. For a proof of the latter we refer
to Fornasini [2011, Ch.3, §5, Prop.3.5.3].
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Proposition 2.2.2 A matrix M(z) ∈ R[z]p×m of normal rank rk(M) = m is
column-reduced if and only if its highest-column-degree coefficient matrix
Mhc has rank m.

Let M(z) ∈R[z]p×m be a polynomial matrix of normal rank rk(M) = p and let
hi, i = 1, . . . , p, be the degree of the i-th row of M(z). We can define the external
(row) degree of M(z) as extr deg := ∑

p
i=1 hi. The Definition of row-reduced matrix

is similar to Definition 2.2.8 of column-reduced matrix.

Definition 2.2.9 (Row-reduced matrix) A polynomial matrix M(z) ∈
R[z]p×m of normal rank rk(M) = p is said to be row-reduced if

int deg M = extr deg M. (2.27)

In particular, a square row-reduced polynomial matrix M(z)∈R[z]p×p satisfies

deg det M = extr deg M =
p

∑
i=1

hi. (2.28)

At this point, if we denote by Mhr ∈ Rp×m the highest-row-degree coefficient ma-
trix of M(z) ∈ R[z]p×m, i.e., the matrix whose i-th row consists of the coefficients
of the monomials zhi’s of the same row of M(z), we have a “row-reduced” coun-
terpart of Proposition 2.2.2.

Proposition 2.2.3 A matrix M(z) ∈ R[z]p×m of normal rank rk(M) = p is
row-reduced if and only if its highest-row-degree coefficient matrix Mhr has
rank p.

2.2.4 | Laurent polynomial matrices
The results on polynomial matrices contained in the previous sections can be

adapted to Laurent polynomial matrices, or more briefly, L-polynomial matrices.
The main difference lies in the fact that the units of the ring R[z,z−1] are the mono-
mials αzk, α ∈ R, α 6= 0, k ∈ Z, as noticed before in §2.1.3.

The class of Laurent elementary matrices, or simply L-elementary matrices, is
wider than that of elementary polynomial matrices introduced in §2.2.1. In fact, in
this case, matrices of the form Ẽ1 can have non-zero monomials on their diagonal
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elements and in matrices of the form Ẽ3 the polynomial p(z) is an element of the
ring R[z,z−1]. In analogy to Definition 2.2.4, we define the Laurent unimodular
matrices as the units of the (non-commutative) ring of square L-polynomial ma-
trices R[z,z−1]m×m.

Definition 2.2.10 (L-unimodular matrix) A matrix U(z) ∈ R[z,z−1]m×m

is Laurent unimodular, or simply L-unimodular, if it is invertible in
R[z,z−1]m×m.

A matrix U(z) ∈ R[z,z−1]m×m is L-unimodular if and only if its determinant
is a non-zero monomial. Moreover, any L-unimodular matrix U(z) possesses a
factorization in terms of L-elementary matrices. The notion of L-unimodular
matrices can be extended to the non-square case as follows: the non-square L-
polynomial matrix U(z) ∈ R[z,z−1]p×m is L-unimodular if it has either a right or
left L-polynomial inverse.

Let M(z) ∈ R[z,z−1]p×m be a L-polynomial matrix of normal rank rk(M) = r.
By applying suitable L-unimodular transformations to M(z), we can reduce M(z)
to its Smith canonical form

Γ(z) :=


γ1(z)

γ2(z)
. . .

γr(z)

 , (2.29)

where the L-polynomials γi(z)’s are uniquely determined by the following condi-
tions: (i) they are monic polynomials which belong to R[z], (ii) they have non-zero
constant term and (iii) they satisfy γi(z) | γi+1(z), for i = 1,2, . . . ,r− 1. It can be
verified that the Smith canonical form of a L-unimodular matrices is the identity
matrix of suitable dimension.

Moreover, by pre-multiplying M(z) by a suitable square L-unimodular matrix,
we can convert it to the column Hermite form. In particular, if rk(M) = m, the
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latter is given by

H(z) :=



h11(z) h12(z) · · · h1m(z)

0 h22(z) · · · h2m(z)
... . . . . . . ...

0 · · · 0 hmm(z)

0p−m,m


(2.30)

where h j j(z), j = 1,2, . . . ,m, satisfies the conditions: (i) it is a monic polynomial
which belong to R[z], (ii) it has non-zero constant term and (iii) degh j j > deghi j
for i < j. For a generic L-unimodular matrix U(z) ∈ R[z,z−1]p×m, p ≥ m, the
column Hermite form is

H(z) :=

 Im

0p−m,m

 . (2.31)

We can also adapt the results about column-reduced and row-reduced poly-
nomial matrices described in §2.2.3 to L-polynomial matrices. For the sake of
brevity, we will restrict the analysis only to the column-reduced L-polynomial
case. For details and proofs we refer to Fornasini [2011, Ch.3, §7].

Definition 2.2.11 (Degrees of a L-polynomial vector) Let v(z) ∈R[z,z−1]p

be a non-zero L-polynomial column (or row) vector. We define the maximum-
degree of v(z) as the highest maximum-degree of its L-polynomial entries
and the minimum-degree of v(z) as the lowest minimum-degree of its L-
polynomial entries.

Let M(z) ∈ R[z,z−1]p×m and let rk(M) = m. We denote by K1, . . . ,Km and
by k1, . . . ,km the maximum-degrees and the minimum-degrees of the columns
of M(z), respectively. Moreover, we define Mhc ∈ Rp×m as the highest-column-
degree coefficient matrix of M(z), i.e., the matrix whose i-th column consists of the
coefficients of the monomials zKi’s of the same column of M(z), and Mlc ∈ Rp×m

as the lowest-column-degree coefficient matrix of M(z), i.e., the matrix whose i-th
column consists of the coefficients of the monomials zki’s of the same column of
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M(z). We can now introduce the Definition of external (column) degree and inter-
nal degree of a L-polynomial matrix.

Definition 2.2.12 (External and internal degree) Let M(z) ∈ R[z,z−1]p×m

and let rk(M) = m. The external (column) degree of M(z) is defined as

extc deg M :=
m

∑
i=1

Ki−
m

∑
i=1

ki. (2.32)

The internal degree of M(z), int deg M, is defined as

int deg M := max
i
{maxdeg(detM(i))}−min

i
{mindeg(detM(i))}, (2.33)

where M(i) denotes the sub-matrix obtained by selecting the rows of M(z)
contained in the ordered m-tuple i = (i1, . . . , im), 1≤ i1 < · · ·< im ≤ p.

The following Definition and the subsequent Proposition are the L-polynomial
counterparts of Definition 2.2.8 and Proposition 2.2.2, respectively.

Definition 2.2.13 (Column-reduced matrix) A L-polynomial matrix M(z)
∈ R[z,z−1]p×m of normal rank rk(M) = m is said to be column-reduced if

int deg M = extc deg M. (2.34)

Notably, a square column-reduced L-polynomial matrix M(z) ∈ R[z,z−1]m×m

satisfies

maxdeg (det M)−mindeg (det M) =
m

∑
i=1

Ki−
m

∑
i=1

ki. (2.35)

Actually, it can be verified by using the Leibniz formula for determinants (see
Fornasini [2011, Ch.3, §7]), that equality

max
i
{maxdeg(detM(i))}=

m

∑
i=1

Ki (2.36)

holds if and only if Mhc has rank m. Similarly,

min
i
{mindeg(detM(i))}=

m

∑
i=1

ki (2.37)
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holds if and only if Mlc has rank m. These considerations lead to the following
Proposition.

Proposition 2.2.4 A matrix M(z) ∈ R[z,z−1]p×m of normal rank rk(M) = m
is column-reduced if and only if both Mhc and Mlc have rank m.

As a final remark, we notice that similar definitions and results can be derived
if we consider, instead of columns, the rows of a L-polynomial matrix.

2.3 | Rational matrices

We recall, from Chapter 0, that R(z)p×m denotes the set of p×m matrices with
real rational entries. Moreover, as in the polynomial case, we define the normal
rank of a rational matrix G(z) ∈ R(z)p×m as the rank of G(z) almost everywhere
in z ∈ C.

2.3.1 | Matrix fraction descriptions

Consider a pair of polynomial matrices (N(z),D(z)) ∈ R[z]p×m ×R[z]m×m,
where D(z) is non-singular. We can associate to the pair (N(z),D(z)) the right ma-
trix fraction N(z)D−1(z). In a similar way, we can associate to a pair (Q(z),P(z))∈
R[z]p×m×R[z]m×m, Q(z) being non-singular, the left matrix fraction Q−1(z)P(z).
Since D−1(z) and Q−1(z) are rational matrices, both the right matrix fraction and
the left matrix fraction obtained above belong to R(z)p×m. Vice versa, let us con-
sider an arbitrary rational matrix G(z) ∈ R(z)p×m, then there exist two pairs of
matrices (N(z),D(z)) and (Q(z),P(z)) such that

G(z) = N(z)D−1(z) = Q−1(z)P(z). (2.38)

In fact, if d(z) ∈ R[z] is the l.c.m. of all the denominators appearing in G(z), we
can write

G(z) = M(z)[d(z)Im]
−1 = [d(z)Ip]

−1M(z), (2.39)

for a suitable polynomial matrix M(z) ∈ R[z]p×m.
We will refer to N(z)D−1(z) and Q−1(z)P(z) as the right and left, respectively,

matrix fraction description (MFD) of G(z). Furthermore, in analogy to the scalar
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case, N(z) and P(z) will be called numerator matrices, while D(z) and Q(z) de-
nominator matrices.

Given a rational matrix G(z) ∈ R(z)p×m there exist an infinite number of left
an right MFDs of G(z). A particular class of (right) MFDs is described in the
following Definition.

Definition 2.3.1 Let G(z) ∈ R(z)p×m. The (right) MFD NR(z)D−1
R (z) is said

to be an irreducible (right) matrix fraction description of G(z) if

G(z) = NR(z)D−1
R (z) (2.40)

and NR(z) ∈R[z]p×m and DR(z) ∈R[z]m×m are right coprime polynomial ma-
trices.

2.3.2 | Smith-McMillan canonical form
Similarly to the Smith canonical form of polynomial matrices discussed in

§2.2.1, we can also introduce a canonical form for rational matrices, the so-called
Smith-McMillan canonical form.

Theorem 2.3.1 (Smith-McMillan canonical form) Let G(z) ∈ R(z)p×m be
a rational matrix of normal rank rk(G) = r. There exist unimodular matrices
U(z) ∈ R[z]p×r and V (z) ∈ R[z]r×m such that

S(z) :=U(z)G(z)V (z)

= diag
[

ε1(z)
ψ1(z)

,
ε2(z)
ψ2(z)

, . . . ,
εr(z)
ψr(z)

]
, (2.41)

where ε1(z),ε2(z), . . . ,εr(z),ψ1(z),ψ2(z), . . . ,ψr(z) ∈ R[z] are monic polyno-
mials satisfying the conditions: (i) εi(z)’s and ψi(z)’s are relatively prime,
i = 1,2, . . . ,r, (ii) εi(z) | εi+1(z) and ψi+1(z) |ψi(z), i = 1,2, . . . ,r−1. The ra-
tional functions εi(z)/ψi(z), i = 1, . . . ,r, are termed invariant factors of G(z).

A proof of the previous Theorem and further properties of the Smith-McMillan
canonical form may be found in Fornasini [2011, Ch.4, §3] and in Kailath [1998,
Ch.6, §5]. We just mention an important Definition and a useful Lemma (we refer
to Fornasini [2011, Ch.4, §4, Lemma 4.4.3] for a proof of the latter).
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Definition 2.3.2 (McMillan degree) Let G(z) ∈ R(z)p×m be a proper ratio-
nal matrix, i.e., a rational matrix whose entries are proper rational functions,
and let (2.41) be its Smith-McMillan canonical form. Then, we define the
McMillan degree of G(z), δM(G), as follows

δM(G) :=
r

∑
i=1

degψi(z). (2.42)

The Definition above has an alternative and interesting system theoretic inter-
pretation (for a comprehensive treatment on systems theory one may refer to the
book Fornasini and Marchesini [2011]). In fact, let Σ = (A,B,C,D) be a state-
space realization of the proper transfer matrix G(z), i.e., a quadruple of matrices
A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m, such that

G(z) =C(zIn−A)−1B+D, (2.43)

then the McMillan degree of G(z) coincides with the minimum state-space di-
mension (i.e., the smallest dimension n of matrix A) of any realization of G(z).
Any such a realization is termed a minimal realization of G(z).

Lemma 2.3.1 Let (2.41) be the Smith-McMillan canonical form of G(z) ∈
R(z)p×m and denote by g(`)ij and s(`)ij the `×` minor (1≤ `≤ rk(G)) of the ra-
tional matrices G(z) and D(z), respectively, obtained by selecting those rows
and columns whose indices appear in the ordered `-tuples i and j, respec-
tively. Then, for every α ∈ C

ṽ(`)α := min
ij

vα(s
(`)
ij ) = min

ij
vα(g

(`)
ij ) =: v(`)α , (2.44)

where vα(·) denotes the valuation at α of a rational function (see §2.1.4).

A noteworthy Corollary of the previous Lemma is reported below together
with a proof.

Corollary 2.3.1 Let G(z) ∈ R(z)n×n and let T be a region of the complex
plane such that

x>G(λ )x≥ 0, (2.45)
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for all x ∈Rn and for all values λ ∈ T for which G(λ ) has finite entries. (Let
us denote this subset of T by T̄). Then, for every α ∈ T equation (2.44) can
be equivalently replaced by

ṽ(`)α := min
i

vα(s
(`)
ii ) = min

i
vα(g

(`)
ii ) =: v(`)α . (2.46)

PROOF. Since G(z) is non-negative Hermitian in the region T̄, it admits a de-
composition of the form G(λ ) = W (λ )W ∗(λ ) for all λ ∈ T̄. By applying the
Binet-Cauchy Theorem (see Gantmacher [1959, Vol.I, Ch.1, §2]), we have2

g(`)ij (λ ) = ∑
h

w(`)
ih (λ )w(`)

jh (λ ), (2.47)

g(`)ii (λ ) = ∑
h

w(`)
ih (λ )w(`)

ih (λ ) = ∑
h

∣∣∣w(`)
ih (λ )

∣∣∣2 , (2.48)

where g(`)ij (λ ) and w(`)
ij (λ ) denote the `× ` minor of matrices G(λ ) and W (λ ),

respectively, obtained by selecting those rows and columns whose indices appear
in the ordered `-tuples i := (i1, . . . , i`), 1≤ i1 < · · ·< i` ≤ n, and j := ( j1, . . . , j`),
1≤ j1 < · · ·< j` ≤ n, respectively. Moreover, in both the summations (2.47) and
(2.48), h :=(h1, . . . ,h`), 1≤ h1 < · · ·< h`≤ n, runs through all such multi-indices.

By using Cauchy-Schwarz inequality and equation (2.48), we have

∣∣∣g(`)ij (λ )
∣∣∣= ∣∣∣∣∣∑h w(`)

ih (λ )w(`)
jh (λ )

∣∣∣∣∣
≤
√

∑
h

∣∣∣w(`)
ih (λ )

∣∣∣2 ∑
h

∣∣∣w(`)
jh (λ )

∣∣∣2
=

√
g(`)ii (λ )g(`)jj (λ ),

≤max
{

g(`)ii (λ ),g(`)jj (λ )
}
, ∀λ ∈ T̄. (2.49)

The latter inequality implies that for every zero α ∈ T of multiplicity k of a minor
of G, there exists at least one principal minor of G which has the same α either as
a zero of multiplicity less than or equal to k or a pole of multiplicity greater than

2In deriving expressions (2.47) and (2.48), we implicitly use the fact that the determinant of
the complex conjugate of a square matrix A is the complex conjugate of the determinant, i.e.,
det(A) = det(A).
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or equal to 0. Similarly, inequality (2.49) implies also that for every pole α ∈T of
multiplicity k of a minor of G, there exists at least one principal minor of G which
has the same pole of multiplicity greater than or equal to k.

Therefore,

min
ij

vα(g
(`)
ij ) = min

i
vα(g

(`)
ii ), ∀α ∈ T. (2.50)

Since minij vα(s
(`)
ij ) = mini vα(s

(`)
ii ), ∀α ∈ T, we finished. �

2.3.3 | Poles and zeros of a rational matrix
The Smith-McMillan canonical form introduced in Theorem 2.3.1 is espe-

cially useful to define poles and zeros for rational matrices.

Definition 2.3.3 (Zeros and poles of a rational matrix) Consider a rational
matrix G(z) ∈ R(z)p×m of normal rank r = rk(G) and let

S(z) = diag
[

ε1(z)
ψ1(z)

,
ε2(z)
ψ2(z)

, . . . ,
εr(z)
ψr(z)

]
, (2.51)

be its Smith-McMillan canonical form. The complex number α is a (finite)
zero of G(z) if it is a zero of at least one of the polynomials εi(z), i = 1, . . . ,r.
The complex number α is a (finite) pole of G(z) if it is a zero of at least one
of the polynomials ψi(z), i = 1, . . . ,r.

From the conditions on εi(z) and ψi(z), i= 1, . . . ,r, imposed in Theorem 2.3.1,
it follows that the (finite) zeros of G(z) coincides with the zeros of εr(z) and the
(finite) poles of G(z) with the zeros of ψ1(z). Moreover, it is worthwhile noticing
that, unlike what happens in the scalar case, the set of zeros and poles of a rational
matrix may not be disjoint.

Let α1,α2, . . . ,αt be the (finite) zeros and (finite) poles of G(z) ∈ R(z)p×m,
r = rk(G), and let

S(z) = diag
[
(z−α1)

ν
(1)
1 · · ·(z−αt)

ν
(1)
t , . . . ,(z−α1)

ν
(r)
1 · · ·(z−αt)

ν
(r)
t

]
, (2.52)

be the Smith-McMillan canonical form of G(z). Then the integer exponents

ν
(1)
i ≤ ν

(2)
i ≤ ·· · ≤ ν

(r)
i , (2.53)
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are called the structural indices of G(z) at αi, i = 1, . . . , t.

We introduce now the notion of degree of a pole for rational matrices, which
will be useful in the following.

Definition 2.3.4 (Degree of a pole) Let G(z) ∈R(z)p×m be a rational matrix
of normal rank rk(G) = r and let p0 be a pole (not necessarily finite) of G(z).
We define the degree of z = p0 as a pole of G(z) as follows

δ (G; p0) :=−min
`

v(`)p0 , (2.54)

where v(`)p0 denotes the minimum valuation at p0 between all the `×` (1≤ `≤
r) minors of G(z) (cf. equation (2.44)).

In other words, the degree δ (G; p0) of z = p0 as a pole of G(z) equals the
largest multiplicity it possesses as a pole of any minor of G(z). Moreover, if S(z)
is the Smith-McMillan form of G(z), by Lemma 2.3.1, the degree of a finite pole
p0 ∈ C of G(z) is equal to the degree of p0 as a pole of S(z) which, in turn, coin-
cides with the sum, changed in sign, of all the negative structural indices of G(z)
at p0. However, the latter result does not apply, in general, for the pole at infinity.
Lastly, if p0 ∈ C∪{∞} is a pole of G(z) of degree n, then we will also say that
G(z) has n poles at p0.

The following Propositions (see Fornasini [2011, Ch.4, §4] for the proofs)
provide some additional characterization of the structure of the (finite) poles and
(finite) zeros of a rational matrix.

Proposition 2.3.1 Let NR(z)D−1
R (z) be a irreducible right MFD of the ratio-

nal matrix G(z) ∈ R(z)p×m and let α be a complex number. The following
facts are equivalent:

1. α is a pole of G(z);

2. α is a zero of detDR(z);

3. α is a pole of some entry [G(z)]i j of G(z).
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Proposition 2.3.2 Let NR(z)D−1
R (z) be a irreducible right MFD of the ratio-

nal matrix G(z) ∈ R(z)p×m of normal rank rk(G) = r and let α be a complex
number. The following facts are equivalent:

1. α is a zero of G(z);

2. the rank of NR(α) is lower than r, i.e., rank(NR(α))< r;

3. the smallest valuation at α , v(r)α , of the r× r minors of G(z) is strictly
greater than the smallest valuation at α , v(r−1)

α , of the (r−1)× (r−1)
minors of G(z), i.e., v(r)α > v(r−1)

α .

It is important to remark that Definition 2.3.3, Proposition 2.3.1 and Proposi-
tion 2.3.2 apply only to poles and zeros at finite points in the complex plane, be-
cause the (highly non-unique) unimodular matrices used to get the unique Smith-
McMillan form destroy information about the behaviour at infinity. In fact, uni-
modular matrices can have both poles and zeros at infinity. To obtain the zero-pole
structure3 at infinity of a rational matrix G(z) ∈ R(z)p×m, we can proceed as de-
scribed in Kailath [1998, Ch.6]. We make a change of variable, z→ λ−1, and
compute the Smith-McMillan form of G(λ−1), then the zero-pole structure of
G(λ−1) at λ = 0 will give the zero-pole structure of G(z) at z = ∞.

Finally, we notice that we can extend the definition of the McMillan degree
of a rational matrix by taking into account its behaviour at infinity. In fact, we
previously defined the McMillan degree of a proper rational matrix as the sum
of the degrees of the denominator polynomials in its Smith-McMillan form, cf.
equation (2.42). For a general rational matrix G(z)∈R(z)p×m, we can decompose
it as

G(z) = Gsp(z)+P(z), (2.55)

where Gsp(z) is strictly proper and P(z) is polynomial, and define its McMillan
degree as

δM(G(z)) = δM(Gsp(z))+δM(P(λ−1)). (2.56)

3The zero-pole structure at α ∈C of a rational matrix G(z)∈R(z)p×m of normal rank rk(G)= r
is given by the set of structural indices {ν(1)

α , . . . ,ν
(r)
α }.
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Moreover, by exploiting the Definition 2.3.4 of polar degree, we can restate in
a equivalent and particularly simple way the Definition of McMillan degree given
above. In fact, the McMillan degree of a (either proper or non-proper) rational
matrix G(z) equals the sum of the degrees of all its distinct poles, the pole at
infinity included (see Kailath [1998, Ch.6]). Thus, if p1, . . . , ph are the distinct
poles of G(z) with associated degrees δ (G; pi), i = 1, . . . ,h, then

δM(G) =
h

∑
i=1

δ (G; pi). (2.57)

2.3.4 | Some special classes of rational matrices
We collect here a set of definitions involving some classes of rational ma-

trices which share a particular structure. For each definition we distinguish the
“continuous-time” case and the “discrete-time” case by using the variable s and z,
respectively, as indeterminate of rational matrices.

Definition 2.3.5 (Para-Hermitian matrix) A rational matrix G(s) ∈
R(s)n×n is said to be continuous-time (CT) para-Hermitian if
G>(−s) = G(s). Similarly, a rational matrix G(z) ∈ R(z)n×n is said to
be discrete-time (DT) para-Hermitian if G>(1/z) = G(z).

We notice that, a CT para-Hermitian matrix G(s) is Hermitian in the ordi-
nary sense on the imaginary axis, i.e., G∗( jω) = G( jω). Similarly, a DT para-
Hermitian matrix G(z) is Hermitian in the ordinary sense on the unit circle, i.e.,
G∗(e jω) = G(e jω).

When there is no risk of confusion, we will use a common notation for both
the continuous-time and discrete-time para-Hermitianity operator, namely

G∗(s) := G>(−s), (2.58)

G∗(z) := G>(1/z). (2.59)

Moreover, for convenience, we define

G−∗(s) := [G∗(s)]−1, G−∗(z) := [G∗(z)]−1, (2.60)

G−R∗(s) := [G∗(s)]−R, G−R∗(z) := [G∗(z)]−R, (2.61)

G−L∗(s) := [G∗(s)]−L, G−L∗(z) := [G∗(z)]−L. (2.62)
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Let A(z),B(z) ∈ R(z)m×m, we observe that the relations

A∗∗(z) = A(z), (2.63)
[AB]∗(z) = B∗(z)A∗(z) (2.64)

hold in both the continuous-time and discrete-time case.

Definition 2.3.6 (Para-unitary matrix) A rational matrix G(s) ∈R(s)n×n is
said to be continuous-time (CT) para-unitary if

G∗(s)G(s) = G(s)G∗(s) = In. (2.65)

Similarly, a rational matrix G(z) ∈ R(z)n×n is said to be discrete-time (DT)
para-unitary if

G∗(z)G(z) = G(z)G∗(z) = In. (2.66)

We notice that, a CT para-unitary matrix G(s) is unitary in the ordinary sense
on the imaginary axis, i.e., G∗( jω)G( jω) = G( jω)G∗( jω) = In. Similarly, a DT
para-Hermitian matrix G(z) is unitary in the ordinary sense on the unit circle, i.e.,
G∗(e jω)G(e jω) = G(e jω)G∗(e jω) = In.

Definition 2.3.7 (Jp,q-para-unitary matrix) Let us define

Jp,q :=

 Ip 0p,q

0q,p −Iq

 , p+q =: n. (2.67)

A rational matrix G(s) ∈ R(s)n×n is said to be continuous-time (CT) Jp,q-
para-unitary if

G∗(s)Jp,qG(s) = G(s)Jp,qG∗(s) = Jp,q. (2.68)

Similarly, a rational matrix G(z) ∈ R(z)m×n is said to be discrete-time (DT)
Jp,q-para-unitary if

G∗(z)Jp,qG(z) = G(z)Jp,qG∗(z) = Jp,q. (2.69)

A Jp,q-para-unitary matrix is para-unitary if q = 0. Jp,q-para-unitary matrices
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play an important role in the J-spectral factorization problem.

Definition 2.3.8 (Regular matrix) A rational matrix G(s) ∈ R(s)m×n is said
to be continuous-time (CT) regular if it is analytic in the open right half-plane
{ℜe s > 0, s ∈ C}. Similarly, a rational matrix G(z) ∈ R(z)n×n is said to be
discrete-time (DT) regular if it is analytic outside the closed unit disk, i.e., in
{|z|> 1, z ∈ C}.

Definition 2.3.9 (Anti-regular matrix) A rational matrix G(s) ∈R(s)m×n is
said to be continuous-time (CT) anti-regular if it is analytic in the open left
half-plane {ℜe s < 0, s ∈ C}. Similarly, a rational matrix G(z) ∈ R(z)m×n is
said to be discrete-time (DT) anti-regular if it is analytic in the open unit disk
{|z|< 1, z ∈ C}.

For the sake of brevity, we will often drop the prefix “continuous-time” and
“discrete-time” in the following, since the meaning will be clear from the context.
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Φ(s) =W ∗(s)W (s)
=W>(−s)W (s)

3. CONTINUOUS-TIME
SPECTRAL FACTORIZATION

In this Chapter, we will describe and study in detail the rational matrix factor-
ization method proposed by Youla in his classical paper Youla [1961]. In particu-
lar, this ingenious technique can be used to solve the multivariate continuous-time
spectral factorization problem, presented as Problem 1.1 in Chapter 1. Unlike
Youla’s paper, in the sequel, we will deal with real coefficients rational matrices.

A remark on notation. A rational matrix A(s) is said to be analytic in a region
of the complex plane if all its entries are analytic in this region. Moreover, as in
Youla [1961], with a slight abuse of notation, when we say that a rational function
f (s) is analytic in a closed region T of the complex plane we mean that f (s) is
analytic in an open region Tε ⊃ T which is “larger” than T of an arbitrarily small
quantity. For example, if f (s) is rational and has all its poles in the open left
half complex plane, we say that f (s) is analytic in the closed right half complex
plane to mean that there exists ε > 0 s.t. f (s) is analytic in {ℜe s > −ε, s ∈
C}. Similarly, we say that f (s) is analytic on the imaginary axis in place of f (s)
is analytic on an open strip containing the imaginary axis. When dealing with
rational functions that feature a finite number of poles, this abuse of notation does
not cause any problem. Finally, we say that a rational matrix is canonic if it
satisfies the properties of the Smith-McMillan Theorem 2.3.1. For other standard
notation we refer to Chapter 0 and Chapter 2.

3.1 | Preliminary results

The auxiliary results reported in this section will be used to prove the main
factorization Theorem of the next section.

Lemma 3.1.1 A matrix G(s) ∈ R(s)m×n is analytic in the entire complex
plane together with its inverse (either right, left or both) if and only if it is
a unimodular polynomial matrix.
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PROOF. If G(s) is a unimodular polynomial matrix, then, from §2.2.2, we know
that G(s) has an inverse (either right, left or both) which is also polynomial. With-
out loss of generality, we can suppose that G(s) has a left polynomial inverse.
Then rk(G) = n and the Smith-McMillan canonical form of G(s), denoted by
D(s), is the identity matrix of dimension n, i.e., D(s) = In. This implies that G(s)
does not have any finite pole and zero. Hence, G(s) must be analytic together with
its left inverse in C.

Vice versa, suppose that G(s) is analytic with its inverse (either right, left or
both) in C. First, we notice that the existence of a left or right inverse for G(s)
implies that the normal rank of G(s) is either r = n or r = m, respectively. Without
loss of generality, we can suppose that r = n. By the Smith-McMillan Theorem
2.3.1, we can write G(s) =C(s)D(s)F(s), where C(s) ∈ R[s]m×n, F(s) ∈ R[s]n×n

are unimodular polynomial matrices and D(s) ∈ R(s)n×n is diagonal, canonic of
the form

D(s) = diag
[

ε1(s)
ψ1(s)

,
ε2(s)
ψ2(s)

, . . . ,
εn(s)
ψn(s)

]
, (3.1)

where εk(z), ψk(z), k = 1, . . . ,n, are relatively prime monic polynomials such that
εk(s) | εk+1(s), ψk+1(s) | ψk(s), k = 1, . . . ,n− 1. The analyticity of G(s) in C
implies that all ψ’s are non-zero real constants. Moreover, the Smith-McMillan
canonical form of the left inverse of G(s), G−L(s), is given by

diag
[

ψn(s)
εn(s)

,
ψn−1(s)
εn−1(s)

, . . . ,
ψ1(s)
ε1(s)

]
, (3.2)

and so the analyticity of G−L(s) in C implies that all ε’s are non-zero real con-
stants. Hence, D(s) in (3.1) is a diagonal constant matrix. Since G(s) is the
product of three unimodular polynomial matrices, G(s) must also be a unimodu-
lar polynomial matrix. �

Lemma 3.1.2 The only CT regular para-unitary matrices with regular in-
verse are constant orthogonal matrices.

PROOF. From Definition 2.3.6, we recall that a CT para-unitary matrix G(s) ∈
R(s)n×n satisfies

G∗(s)G(s) = G(s)G∗(s) = In. (3.3)

The analyticity of the inverse of G(s) in {ℜe s > 0, s ∈ C} implies that of G(−s)
in the same region, and therefore that of G(s) in {ℜe s < 0, s ∈ C}. We also
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notice that in the imaginary axis { jω, ω ∈ R} we have G∗( jω)G( jω) = In and
we can write out the diagonal element of G( jω) in expanded form as

n

∑
i=1
|[G( jω)]ik|2 = 1, ∀k = 1, . . . ,n, ∀ω ∈ R. (3.4)

The latter equation implies that

|[G( jω)]ik| ≤ 1, ∀i,k = 1, . . . ,n, ∀ω ∈ R, (3.5)

which, in turn, implies that G(s) is bounded at infinity and analytic in the entire
imaginary axis. Thus, G(s) is analytic (together with its inverse G−1(s) = G∗(s))
in the entire complex plane and bounded at infinity. We are in position to apply
Liouville’s Theorem (see Lang [1985, Ch.V, §1, Thm.1.4]) and conclude that G(s)
must be a constant orthogonal matrix. �

Definition 3.1.1 (CT left-standard factorization) Let G(s) ∈ R(s)m×n and
let rk(G) = r ≤min{m,n}. A decomposition of the form

G(s) = A(s)∆(s)B(s) (3.6)

is called a continuous-time (CT) left-standard factorization if

1. ∆(s) ∈ R(s)r×r is diagonal and analytic together with its inverse in the
entire complex plane with the possible exception of a finite number of
points on the imaginary axis {ℜe s = 0, s ∈ C};

2. A(s) ∈ R(s)m×r is analytic together with its left inverse in {ℜe s ≤
0, s ∈ C};

3. B(s) ∈ R(s)r×n is analytic together with its right inverse in {ℜe s ≥
0, s ∈ C}.

By interchanging A(s) and B(s) in Definition 3.1.1, we obtain a CT right-
standard factorization. Any CT left-standard factorization of G(s) gives rise to a
CT right-standard factorization of G>(s), G−1(s) (if G(s) is non-singular), G(−s),
e.g., in the first case we have

G>(s) = B>(s)∆(s)A>(s). (3.7)
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A CT left-standard factorization of a rational matrix G(s) always exists, as
stated in the following Lemma.

Lemma 3.1.3 Any rational matrix G(s) ∈ R(s)m×n of normal rank rk(G) =
r ≤min{m,n} has a CT left-standard factorization.

PROOF. By the Smith-McMillan Theorem 2.3.1, we can write G(s)=C(s)D(s)F(s),
where C(s) ∈ R[s]m×r, F(s) ∈ R[s]r×n are unimodular polynomial matrices and
D(s) ∈ R(s)r×r is diagonal and canonic of the form

D(s) = diag
[

ε1(s)
ψ1(s)

,
ε2(s)
ψ2(s)

, . . . ,
εr(s)
ψr(s)

]
, (3.8)

where εk(s), ψk(s), k = 1, . . . ,r, are relatively prime monic polynomials such that
εk(s) | εk+1(s), ψk+1(s) | ψk(s), k = 1, . . . ,r− 1. We can factor εi(s) and ψi(s),
i = 1, . . . ,r, in D(s) into the product of three polynomials: the first without zeros
in {ℜe s≤ 0, s ∈C}, the second without zeros in {ℜe s 6= 0, s ∈C} and the third
without zeros in {ℜe s≥ 0, s ∈ C}. Thus, it is possible to write

D(s) = D−(s)∆(s)D+(s), (3.9)

where D−(s) and its inverse are analytic in {ℜe s≤ 0, s∈C}, ∆(s) and its inverse
in {ℜe s 6= 0, s ∈ C} and D+(s) and its inverse in {ℜe s≥ 0, s ∈ C}. Finally, by
defining A(s) :=C(s)D−(s) and B(s) := D+(s)F(s), we have that

G(s) = A(s)∆(s)B(s) (3.10)

is a CT left-standard factorization of G(s). �

Now, consider two left-standard factorizations of G(s), the following Theorem
gives a characterization of the two decompositions.

Theorem 3.1.1 Let G(s) ∈ R(s)m×n be a rational matrix of normal rank
rk(G) = r ≤ min{m,n} and let A(s)∆(s)B(s), A1(s)∆1(s)B1(s) be two CT
left-standard factorizations of G(s). Then,

A1(s) = A(s)M−1(s), B1(s) = N(s)B(s) (3.11)
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where M(s) ∈ R[s]r×r and N(s) ∈ R[s]r×r are two unimodular polynomial
matrices such that

M(s)∆(s)N−1(s) = ∆1(s). (3.12)

PROOF. By assumption,

G(s) = A(s)∆(s)B(s) = A1(s)∆1(s)B1(s), (3.13)

and, therefore,

∆
−1
1 (s)A−L

1 (s)A(s)∆(s) = B1(s)B−R(s). (3.14)

By Definition 3.1.1 of CT left-standard factorization, the right-hand side of (3.14)
is analytic in {ℜe s ≥ 0, s ∈ C}, while the left-hand side in {ℜe s < 0, s ∈ C}.
Hence, B1(s)B−R(s) is analytic in the entire complex plane. Moreover,

[B1(s)B−R(s)]−1 = ∆
−1(s)[A−L

1 (s)A(s)]−1
∆1(s) (3.15)

is also analytic in the entire complex plane. Thus, for Lemma 3.1.1, N(s) :=
B1(s)B−R(s) must be a r× r unimodular polynomial matrix. Similarly, M(s) :=
A−L

1 (s)A(s) must be a r× r unimodular polynomial matrix. Finally, from (3.13)
we have

M(s)∆(s)N−1(s) = ∆1(s). (3.16)

and we finished. �

It is not difficult to derive a CT right-standard counterpart of Lemma 3.1.3 and
Theorem 3.1.1.

Let Φ(s) ∈R(s)n×n be a para-Hermitian matrix of normal rank rk(Φ) = r ≤ n
and let Φ(s) = A(s)∆(s)B(s) be a CT left-standard factorization of Φ(s). We have
that

Φ(s) = Φ
∗(s) = B∗(s)∆∗(s)A∗(s) (3.17)

is also a CT left-standard factorization of Φ(s). In particular, ∆∗(s) is equal to
∆(s), except, perhaps, for the signs of its diagonal elements, i.e.,

∆
∗(s) = Σ∆(s), (3.18)
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where

Σ = diag [e1,e2, . . . ,er] (3.19)

and ei =±1, i = 1, . . . ,r. By invoking Theorem 3.1.1, we can write

A∗(s) = N(s)B(s), (3.20)

B∗(s) = A(s)M−1(s), (3.21)

where N(s), M(s) ∈ R(s)r×r are unimodular polynomial matrices.

If a para-Hermitian matrix is positive semi-definite on the imaginary axis then
the result reported below holds.

Lemma 3.1.4 Let Φ(s) ∈R(s)n×n be a CT para-Hermitian matrix of normal
rank rk(Φ) = r≤ n which is positive semi-definite on the imaginary axis, i.e.,
x>Φ( jω)x≥ 0, ∀x ∈ Rn and ∀ω ∈ R such that s = jω is not a pole of Φ(s).
Let

Φ(s) =C(s)D(s)F(s) (3.22)

with D(s) ∈ R(s)r×r be the Smith-McMillan canonical form of Φ(s). Then,
the zeros and poles on the imaginary axis of the diagonal elements of D(s)
must be of even multiplicity.

PROOF. First of all, we can suppose that the numerators and denominators of all
entries in Φ(s) are coprime polynomials. Let

α1 = jω1, α2 = jω2, . . . , αt = jωt , (3.23)

be the finite zeros/poles on the imaginary axis of Φ(s) and let

ν
(1)
i ,ν

(2)
i , . . . ,ν

(r)
i , ν

(1)
i ≤ ν

(2)
i ≤ ·· · ≤ ν

(r)
i , (3.24)

be the structural indices of Φ(s) at αi, i = 1, . . . , t, i.e., the valuations at αi of the
diagonal terms of D(s) (see §2.3.3). Since Φ(s) is non-negative on the imaginary
axis, it is easy to verify that the zeros and poles on the imaginary axis of the
principal minors of Φ(s) are of even multiplicity. Furthermore, by choosing T =
{ℜe s = 0, s ∈ C}, we are in position of applying Corollary 2.3.1. Thus, by
considering the minors of order `= 1, it follows that

ν
(1)
i is even, i = 1,2, . . . , t. (3.25)
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Similarly, by considering the minors of order ` = 2 in Corollary 2.3.1, it follows
that

ν
(1)
i +ν

(2)
i is even, i = 1,2, . . . , t. (3.26)

Since ν
(1)
i is even, then also ν

(2)
i must be even for all i= 1,2, . . . , t. By iterating the

argument, we conclude that every zero/pole on the imaginary axis of the diagonal
elements of D(s) must be of even multiplicity. �

Let Φ(s) ∈R(s)n×n be a para-Hermitian matrix of normal rank rk(Φ) = r ≤ n
and let D(s) ∈ R(s)r×r be its Smith-McMillan canonical form. We have

Φ(s) =C(s)D(s)F(s) = F∗(s)D∗(s)C∗(s) = Φ
∗(s), (3.27)

and, by a previous argument,

D∗(s) = Σ
′D(s), (3.28)

where Σ′ has the form (3.19). By (3.28), every zero/pole at α of the diagonal
elements of D(s) is accompanied by a zero/pole at −α and we can always write
D(s) in the form

D(s) = Σ1Λ
∗(s)∆(s)Λ(s), (3.29)

where Λ(s)∈R(s)r×r is diagonal, canonic and analytic with its inverse in {ℜe s≥
0, s ∈ C} and Σ1Λ∗(s) ∈ R(s)r×r is diagonal and analytic with its inverse in
{ℜe s ≤ 0, s ∈ C}. The diagonal matrix ∆(s) ∈ R(s)r×r is canonic and ana-
lytic with its inverse in {ℜe s 6= 0, s ∈ C} and, by exploiting Lemma 3.1.4, can
be written as

∆(s) = Θ
2(s) = Σ2Θ

∗(s)Θ(s), (3.30)

with Θ(s) ∈ R(s)r×r diagonal and canonic. In conclusion, we can rearrange D(s)
in the form

D(s) = Σ3Λ
∗(s)Θ∗(s)Θ(s)Λ(s), (3.31)

where Σ1, Σ2 and Σ3 := Σ1Σ2 are of the form (3.19).
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3.2 | The main theorem

We present here the main result of the Chapter due to Youla, Youla [1961,
Thm. 2].

Theorem 3.2.1 Let Φ(s) = Φ∗(s) ∈R(s)n×n be a CT para-Hermitian matrix
of normal rank rk(Φ) = r≤ n which is positive semi-definite on the imaginary
axis { jω, ω ∈ R}. Then, there exists a rational matrix W (s) ∈ R(s)r×n such
that

(i) Φ(s) =W ∗(s)W (s).

(ii) W (s) and its (right) inverse W−R(s) are both analytic in {ℜe s > 0, s ∈
C}.

(iii) W (s) is unique up to within a constant, orthogonal r× r matrix mul-
tiplier on the left, i.e., if W1(s) also satisfies points (i) and (ii), then
W1(s) = TW (s) where T ∈ Rr×r is a constant orthogonal matrix.

(iv) Any factorization of the form Φ(s) = L∗(s)L(s) in which L(s) ∈R(s)r×n

is analytic in {ℜe s > 0, s ∈ C}, is given by L(s) = V (s)W (s), V (s) ∈
R(s)r×r being an arbitrary, CT regular para-unitary matrix.

(v) If Φ(s) is analytic on the imaginary axis, then W (s) is analytic in a
region {ℜe s > τ, τ < 0, s ∈ C}.

(vi) If Φ(s) is analytic on the imaginary axis and the rank of Φ(s) is constant
on the imaginary axis, then W (s) and its (right) inverse W−R(s) are both
analytic in a region {ℜe s > τ1, τ1 < 0, s ∈ C}.

PROOF. We first consider statement (iii). Let W (s) and W1(s) be two matrices
satisfying (i) and (ii). Then,

W ∗(s)W (s) =W ∗1 (s)W1(s). (3.32)

The latter equation implies

V ∗(s)V (s) = Ir, (3.33)
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where we have defined V (s) :=W1(s)W−R(s) which is analytic in {ℜe s > 0, s ∈
C}. Hence, V (s) ∈ R(s)r×r is a regular para-unitary matrix. But, from (3.32), we
also have

V (s) =W−R∗
1 (s)W ∗(s) (3.34)

and so V ∗(s) =V−1(s) =W (s)W−R
1 (s) which is also regular. By applying Lemma

3.1.2, we conclude that V (s) must be a constant orthogonal matrix T ∈ Rr×r,
T>T = T T> = Ir.

Consider now statement (iv). Let Φ(s) = L∗(s)L(s) where L(s) ∈ R(s)n×r is
analytic in {ℜe s > 0, s ∈ C}. Notice that in this case we do not suppose that
L−R(s) is analytic in {ℜe s > 0, s ∈ C}. We can write

L∗(s)L(s) =W ∗(s)W (s). (3.35)

The latter equation implies

V ∗(s)V (s) = Ir, (3.36)

where V (s) := L(s)W−R(s) and W (s) ∈ R(s)r×n is a rational matrix satisfying (i)
and (ii). Since L(s) and W−R(s) are both analytic in {ℜe s > 0, s ∈ C}, then
V (s) ∈ R(s)r×r is a regular para-unitary matrix and we finished.

In order to prove the existence of a matrix W (s) with the properties (i) and (ii)
we use a constructive procedure which consists of the following four steps.

Step 1. Reduce Φ(s) to the Smith-McMillan canonical form. One possible
technique to perform this reduction is described below.

• Assuming that all entries of Φ(s) are relatively prime, we write

Φ(s) =
1

ϕ(s)
Φ̃(s), (3.37)

where ϕ(s) is the normalized l.c.m. of all denominators appearing in Φ(s)
and Φ̃(s) is a polynomial matrix.

• The polynomial matrix Φ̃(s) can be reduced to its Smith canonical form
by the standard technique described in Fornasini [2011, Ch.3] or in Kailath
[1998, Ch.6]:

Φ̃(s) = C̃(s)Ẽ(s)F̃(s), (3.38)
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where C̃(s)∈R[s]n×n and F̃(s)∈R[s]n×n are square unimodular polynomial
matrices and

Ẽ(s) = diag[ε̃1(s), ε̃2(s), . . . , ε̃r(s),0,0, . . . ,0]. (3.39)

The ε̃i(s), i = 1, . . . ,r, appearing in (3.39) are monic polynomials arranged
so that ε̃i(s) | ε̃i+1(s), i = 1,2, . . . ,r−1.

• Let

J :=

 Ir

0n−r,r

 ∈ Rn×r. (3.40)

Then C(s) := C̃(s)J ∈ R(s)n×r and F(s) := J>F̃(s) ∈ R(s)r×n are unimod-
ular polynomial matrices. Moreover, we have

Φ̃(s) =C(s)E(s)F(s), (3.41)

where

E(s) := diag[ε̃1(s), ε̃2(s), . . . , ε̃r(s)]. (3.42)

• Finally, if we define

D(s) := diag
[

ε̃1(s)
ϕ(s)

,
ε̃2(s)
ϕ(s)

, . . . ,
ε̃r(s)
ϕ(s)

]
(3.43)

each element being normalized in lowest terms, then the Smith-McMillan
decomposition for Φ(s) is given by Φ(s) =C(s)D(s)F(s).

Step 2. According to (3.31), we can write D(s) in the form

D(s) = ΣΛ
∗(s)∆̃(s)Λ(s), (3.44)

where:

1. Λ(s) ∈ R(s)r×r is diagonal, canonic and analytic together with Λ−1(s) in
{ℜe s≥ 0, s ∈ C};

2. ∆̃(s) := Θ∗(s)Θ(s) = ∆̃∗(s), where Θ(s) ∈R(s)r×r is diagonal, canonic and
analytic together with Θ−1(s) in {ℜe s 6= 0, s ∈ C};
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3. Σ ∈ Rr×r is diagonal with diagonal elements ±1.

Let

A(s) :=C(s)ΣΛ
∗(s), (3.45)

B(s) :=Λ(s)F(s). (3.46)

Then

Φ(s) = A(s)∆̃(s)B(s) (3.47)

is a CT left-standard factorization of Φ(s).

Step 3. Let

I(s) := B−R(s)Θ−1(s). (3.48)

Recall that, by equation (3.20), we have A∗(s) = N(s)B(s) and so, by direct com-
putation,

I∗(s)Φ(s)I(s) = I∗(s)Φ∗(s)I(s)

= Θ
−∗(s)B−R∗(s)B∗(s)∆̃∗(s)N(s)B(s)B−R(s)Θ−1(s)

= Θ
−∗(s)Θ∗(s)Θ(s)N(s)Θ−1(s)

= Θ(s)N(s)Θ−1(s), (3.49)

where N(s) = A∗(s)B−R(s) ∈ R[s]r×r is a unimodular polynomial matrix. Let us
define

Ψ(s) := Θ(s)N(s)Θ−1(s). (3.50)

By (3.49), Ψ(s) is r× r, para-Hermitian and non-negative on the imaginary axis.
Actually, we notice that A(s)∆̃(s)B(s) and B∗(s)∆̃(s)A∗(s) are two CT left-standard
factorizations of Φ(s). Hence, by replacing ∆1(s) with ∆̃(s) = ∆̃∗(s) in (3.12), we
can write

∆̃(s)N(s)∆̃−1(s) = M(s), (3.51)

where M(s) ∈ R[s]r×r is unimodular. Since ∆̃(s) = Θ∗(s)Θ(s) is diagonal and
Θ(s) := diag[θ1(s), . . . ,θr(s)] canonic, (3.51) implies that [N(s)]i j is divisible by
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the polynomial [∆̃(s)] j j/[∆̃(s)]ii, j ≥ i. But

[∆̃(s)]ii = θ
∗
i (s)θi(s)

= θi(−s)θi(s)

=±θ
2
i (s), (3.52)

for i = 1, . . . ,r. So, [N(s)]i j must be divisible by the polynomial

f 2
i j(s) :=

θ 2
j (s)

θ 2
i (s)

, j ≥ i, (3.53)

and, a fortiori, by

fi j(s) =
θ j(s)
θi(s)

, j ≥ i. (3.54)

This suffices to establish that Ψ(s) is polynomial. Finally, since by (3.49) detΨ(s)
is a non-zero positive constant, Ψ(s) must be a para-Hermitian unimodular poly-
nomial matrix which is positive definite on the imaginary axis. The problem is
now reduced to that of finding a factorization of Ψ(s) of the form

Ψ(s) = P∗(s)P(s), (3.55)

where P(s) ∈ R[s]r×r is a unimodular polynomial matrix. After this is achieved,
the desired factorization for Φ(s) is obtained as Φ(s) =W ∗(s)W (s) with

W (s) := P(s)Θ(s)B(s)
= P(s)Θ(s)Λ(s)F(s)
= P(s)D+(s)F(s), (3.56)

where we have defined D+(s) := Θ(s)Λ(s). In fact, by straightforward algebra,

W ∗(s)W (s) = B∗(s)Θ∗(s)P∗(s)P(s)Θ(s)B(s)

= B∗(s)∆̃(s)N(s)B(s)

= B∗(s)∆̃(s)A∗(s)
= Φ

∗(s)
= Φ(s). (3.57)
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Step 4. An algorithm which provides a factorization of a unimodular polyno-
mial matrix Ψ(s)∈R[s]r×r positive definite on the imaginary axis into the product
P∗(s)P(s), where P(s) is a unimodular polynomial matrix, is due to Oono and Ya-
suura and first appeared in the paper Oono and Yasuura [1954]. This algorithm
is the one adopted in the approach devised by Youla in his paper Youla [1961].
In what follows, we present a revised version of the latter algorithm which makes
use of the mathematical machinery introduced in Chapter 2.

The proposed procedure is based on two steps. First, let us define Ψ1(s) :=
Ψ(s) and denote by h ∈ N the loop counter of the algorithm, which is initially set
to h := 1.

I. By the positive nature of Ψh(s), it follows that the degrees of the diagonal
elements of Ψh(s) are even non-negative integers. Let ki, i = 1, . . . ,r, be
the half diagonal degrees (that is, half the degrees of the diagonal entries) of
Ψh(s). Since Ψh(s) is positive definite on the imaginary axis, no element in
Ψh(s) has degree exceeding 2kmax, with

kmax := max{k1, . . . ,kr}. (3.58)

If Ψh(s) is a constant positive definite matrix, we skip to step II. Otherwise,
we construct a polynomial matrix Ω

−1
h (s) such that, by operating the trans-

formation

Ψh+1(s) := Ω
−∗
h (s)Ψh(s)Ω−1

h (s), (3.59)

we obtain a new positive matrix Ψh+1(s) with the same determinant of Ψh(s)
but a lower diagonal degree. More specifically, the matrix Ω

−1
h (s) can be

viewed as the product of three matrices, namely

Ω
−1
h (s) := Qh(s)ThQ−1

h (s), (3.60)

where:

• the polynomial matrix

Qh(s) := diag[skmax−k1, . . . ,skmax−kr ] (3.61)

is such that

Ψ
′
h(s) := Q∗h(s)Ψh(s)Qh(s) (3.62)
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has all the diagonal elements of the same degree 2kmax. This is always
possible since, by the positive nature of Ψh(s), ki≥ 0 for all i= 1, . . . ,r.
Hence, any diagonal element of Ψh(s) cannot be identically zero.

• Th is a constant matrix constructed in order to reduce the degree of a
diagonal element of Ψ′h(s). The construction of this matrix requires
a further explanation. First, we notice that the highest-column-degree
coefficient matrix (recall the definitions given in §2.2.3) of Ψ′h(s), de-
noted by Ψ′hc

h , is symmetric and equal to the highest-row-degree coef-
ficient matrix, of Ψ′h(s), denoted by Ψ′hr

h , since all the diagonal entries
of Ψ′h(s) have the same maximum degree 2kmax and Ψ′h(s) = Ψ′∗h (s).
Moreover, the external (column) degree1 of Ψ′h(s) satisfies

extc degΨ
′
h(s) = 2rkmax. (3.63)

At this point, we note that, by (3.62),

degdetΨ
′
h(s) = 2degdetQh(s)< 2rkmax, (3.64)

so, degdetΨ′h(s) < extc degΨ′h and, in view of Proposition 2.2.2, we
have that Ψ′hc

h is singular. Thus, we can compute a non-zero vector
vh := [v1,v2, . . . ,vr]

> ∈Rr such that Ψ′hc
h vh = 0. Let us define the active

index set

I := {i : vi 6= 0} (3.65)

and the highest degree active index set, M ⊂I ,

M := {i ∈I : ki ≥ k j, ∀ j ∈I }. (3.66)

We choose an index p ∈M . Then, Th is constructed by replacing the
p-th column of the r× r identity matrix with the vector

v′h :=
[

v1

vp
, . . . ,

vp−1

vp
,1,

vp+1

vp
, . . . ,

vr

vp

]>
(3.67)

and it is such that

Ψ
′′
h(s) := T>h Ψ

′
h(s)Th (3.68)

1that is, the sum of all the column degrees of Ψ′h(s) (Definition 2.2.7 of §2.2.3).
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has the diagonal entry at (p, p) of degree at least two less than 2kmax.
In fact, since Ψ′hc

h v′h = 0, we have

Ψ
′hc
h Th =

[
[Ψ′hc

h ]1:r,1:p−1 01,r [Ψ′hc
h ]1:r,p+1:r

]
. (3.69)

Analogously, since Ψ′hc
h is symmetric, v>h Ψ′hc

h = 0> and

T>h Ψ
′hc
h Th =


[Ψ′hc

h ]1:p−1,1:p−1 0p−1,1 [Ψ′hc
h ]1:p−1,p+1:r

01,p−1 0 01,r−p+1

[Ψ′hc
h ]p+1:r,1:p−1 0r−p+1,1 [Ψ′hc

h ]p+1:r,p+1:r

 .
(3.70)

By the positive nature of Ψ′′h(s), the degrees of its diagonal entries of
must be even non-negative integers, therefore, by (3.70), the diagonal
element (p, p) of Ψ′′h(s) must have degree at least two less than 2kmax.

• Q−1
h (s) is such that Ψh+1(s) :=Q−∗h (s)Ψ′′h(s)Q

−1
h (s) possesses the orig-

inal diagonal degrees except for the degree of the reduced diagonal en-
try at (p, p), which is at least two less than 2kp.

To sum up, Ω
−1
h (s) takes the form

column p

Ω
−1
h (s) :=



1 · · · 0 v1
vp

skp−k1 0 · · · 0

0 . . . ... 0
... 1 vp−1

vp
skp−kp−1

...
... 1

...
... vp+1

vp
skp−kp+1 1

...

0
... . . . 0

0 · · · 0 vr
vp

skp−kr 0 · · · 1


, (3.71)

and it is polynomial since kp ≥ ki, for all i = 1, . . . ,r such that vi 6= 0. Actu-
ally, Ω

−1
h (s) is a polynomial unimodular matrix, since, from (3.71), we find

that detΩ
−1
h (s) = 1.

Eventually, we update the index h by setting h := h+1 and return to step I.
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II. Since Ψh ∈ Rr×r is positive definite, we can always factorize it into the
product Ψh = C>C where C ∈ Rr×r, by using, for instance, the Cholesky
decomposition (see Golub and Van Loan [1996, Ch.4]). Finally, we have
constructed the desired polynomial unimodular matrix

P(s) =CΩh−1(s)Ωh−2(s) · · ·Ω1(s). (3.72)

such that Ψ(s) = P∗(s)P(s).

It is worthwhile noticing that the procedure at step I is always brought to an
end (after a maximum of k1 + · · ·+ kp iterations) since at the h-th iteration the
degree of a diagonal element of Ψh(s) is reduced, while the degree of all the other
diagonal elements is not affected.

Finally, we notice that W (s) in (3.56) is analytic with its (right) inverse in
{ℜe s > 0, s ∈ C} by construction, since D+(s) is so and F(s), P(s) are unimod-
ular polynomial matrices. Hence, the proof of points (i)-(ii) is concluded.

Now consider statement (v). If Φ(s) is analytic on the imaginary axis, then
Θ(s) does not have any finite pole. This, in turn, implies that D+(s) = Θ(s)Λ(s) is
analytic in a region {ℜe s > τ, τ < 0, s ∈C}. Thus, W (s), as defined in (3.56), is
also analytic in the same region. It is worth noticing that this region is completely
determined by the poles of Λ(s).

The additional assumption that the rank of Φ(s) is constant on the imaginary
axis implies that Θ(s) does not have any finite zero. Thus, Θ(s) = Ir and, by
(3.56),

W−R(s) = F−R(s)Λ−1(s)P−1(s) (3.73)

is analytic in a region {ℜe s > τ̄, τ̄ < 0, s ∈ C}. Hence, W (s) is analytic
together with its (right) inverse in a half-plane on the right of a vertical line
{ℜe s > τ1, τ1 < 0, s ∈ C} where τ1 := max{τ, τ̄} is completely determined
by the zeros and poles of Λ(s). The proof of point (vi) along with that of the
Theorem is concluded. �

| 52



3.2. THE MAIN THEOREM |

For the sake of completeness, we present below two simple Corollaries of
Theorem 3.2.1.

Corollary 3.2.1 Let L(s) ∈ R(s)m×n, then Φ(s) = L∗(s)L(s) if and only if

L(s) =V (s)

 Ir

0m−r,r

W (s), (3.74)

where V (s) ∈ R(s)m×m is an arbitrary CT para-unitary matrix and r =
rk(Φ)≤ m.

PROOF. By repeating an argument used to prove statements (iii) and (iv) of The-
orem 3.2.1, we have that L(s) =U(s)W (s), with U(s)∈R(s)m×r a rational matrix
satisfying U∗(s)U(s) = Ir. If we choose V (s) ∈ R(s)m×m to be any para-unitary
matrix with U(s) incorporated into its first r columns, i.e.,

U(s) =V (s)

 Ir

0m−r,r

 , (3.75)

we finished. �

Corollary 3.2.2 If Φ(s) is polynomial, then W (s) is polynomial.

PROOF. If Φ(s) is polynomial, then it does not have finite poles. By (3.56), also
W (s) does not have finite poles, therefore W (s) is polynomial. �

In Fig.3.1 is shown a scheme of the Youla’s algorithm used in the constructive
proof of Theorem 3.2.1.
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Compute the
Smith-McMillan
decomposition

Φ(s) =C(s)D(s)F(s)

Φ(s) = Φ∗(s)

Compute the left-
standard factorization
Φ(s) = A(s)∆̃(s)B(s),

∆̃(s) = Θ∗(s)Θ(s)

Compute the
unimodular polynomial
matrix Ψ(s) = Ψ1(s)

Compute the
factorization

Ψ(s) = P∗(s)P(s),
P(s) unimodular

W (s) = P(s)Θ(s)B(s)

Is Ψh(s)
constant?

Reduce the degree
of a diagonal entry

of Ψh(s), Ψh+1(s) =
Ω
−∗
h (s)Ψh(s)Ω−1

h (s)

Compute a decom-
position Ψh = C>C

Compute the
factor P(s) =

CΩh−1(s) · · ·Ω1(s)

no

(h := h+1) yes

Figure 3.1: Schematic representation of Youla’s algorithm used for the construction of
the factorization Φ(s) =W ∗(s)W (s).
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3.3 | Some additional remarks

In this section, we want to point out two important facts regarding some prop-
erties of the factorization approach discussed before.

The first consideration regards the stochastic minimality of the factor W (s)
and it is stated in the Theorem below. (We refer to Lindquist and Picci [1991] for
a detailed discussion on the minimality of spectral factors).

Theorem 3.3.1 Let Φ(s) ∈ R(s)n×n be a CT para-Hermitian matrix non-
negative on the imaginary axis and let r = rk(Φ). Consider the factoriza-
tion Φ(s) =W ∗(s)W (s), where W (s) ∈ R(s)r×n is computed by following the
procedure described in Theorem 3.2.1. Then, the McMillan degree of W (s)
satisfies

δM(W ) =
1
2

δM(Φ). (3.76)

PROOF. First, we recall that, by equation (3.56), we have

W (s) = P(s)D+(s)F(s), (3.77)

where P(s) ∈ R[s]r×r, F(s) ∈ R[s]r×n are unimodular polynomial matrices and
D+(s) ∈R(s)r×r is diagonal, canonic and regular together with its inverse. More-
over, D+(s) satisfies

D(s) = ΣD∗+(s)D+(s), (3.78)

where D(s) ∈ R(s)r×r is the Smith-McMillan canonical form of Φ(s) and Σ ∈
Rr×r is a constant diagonal matrix with elements±1 on its diagonal. Let p1, . . . , ph
be the finite poles of Φ(s). By (3.77) and (3.78), it follows that2

δ (Φ; pi) =


δ (W ; pi) if ℜe pi < 0,
2δ (W ; pi) if ℜe pi = 0,
δ (W ;−pi) if ℜe pi > 0.

(3.79)

2For the definition of degree of a pole of a rational matrix we refer to §2.3.3, Definition 2.3.4.

55 |



| CHAPTER 3. CONTINUOUS-TIME SPECTRAL FACTORIZATION

Moreover, if pi is a pole of Φ(s) then also −pi is a pole of Φ(s) and if pi is not a
pole of Φ(s) then neither pi nor −pi are poles of W (s). Thus, we have

h

∑
i=1

δ (Φ; pi) = ∑
i : ℜe pi<0

δ (W ; pi)+ ∑
i : ℜe pi>0

δ (W ;−pi)+ ∑
i : ℜe pi=0

2δ (W ; pi)

= 2 ∑
i : ℜe pi≤0

δ (W ; pi) (3.80)

By equation (2.57) of section §2.3.3, the McMillan degree of a rational matrix
equals the sum of the degrees of all its poles, the pole at infinity included. Hence,
it remains to prove that

δ (Φ;∞) = 2δ (W ;∞). (3.81)

The degree of the pole at s=∞ of Φ(s) is equal to the degree of the pole at λ = 0 of
Φ(λ−1). The rational matrix Φ(λ−1) is para-Hermitian and positive semi-definite
on the imaginary axis, so we can apply Theorem 3.2.1 and obtain

Φ(λ−1) = W̃ ∗(λ )W̃ (λ ), (3.82)

Since Φ(λ−1) =W ∗(λ−1)W (λ−1) is also a factorization satisfying the properties
of Theorem 3.2.1, by statement (iii) of the same Theorem, we have

W (λ−1) = TW̃ (λ ), (3.83)

T ∈Rr×r being a constant orthogonal matrix. Therefore, by a previous argument,

δ (Φ(s);∞) = δ (Φ(λ−1);0)
= 2δ (W̃ (λ );0)

= 2δ (W (λ−1);0) = 2δ (W (s);∞). (3.84)

In view of (3.80) and (3.84), we conclude that

δM(Φ) =
h

∑
i=1

δ (Φ; pi)+δ (Φ;∞)

= 2 ∑
i : ℜe pi≤0

δ (W ; pi)+2δ (W ;∞) = 2δM(W ), (3.85)

and, hence, the thesis. �
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Another interesting by-product of Youla’s method is that the procedure can
be easily modified in order to change the region of analyticity of W (s) and of
its (right) inverse. First of all, let us introduce some nomenclature. We say that
a region of the complex plane A is continuous-time skew-symmetric (for short,
skew-symmetric), if it satisfies

A ∪A ∗ = C\{ℜe s = 0, s ∈ C} and A ∩A ∗ =∅, (3.86)

where A ∗ := {s ∈ C : −s ∈A }.
Now, suppose that we want to compute a factor WΩ,Ω′(s) analytic in a skew-

symmetric region Ω (see Fig.3.2) and with (right) inverse W−R
Ω,Ω′(s) analytic in a

skew-symmetric region Ω′.3 To obtain such a factor, we only need to write the
diagonal matrix D(s) in (3.44) in a different form, namely

D(s) = ΣΛ
∗
Ω,Ω′(s)Θ

∗(s)Θ(s)ΛΩ,Ω′(s), (3.87)

where ΛΩ,Ω′(s) is diagonal, canonic and analytic in Ω with inverse Λ
−1
Ω,Ω′(s) ana-

lytic in Ω′, and apply Youla’s factorization algorithm.

ℜe s

ℑm s

ℜe s

ℑm s

Figure 3.2: Example of an admissible choice of the region Ω (filled in gray, on the left)
and a not admissible choice of Ω (filled in gray, on the right). Here, dashed gray lines
denote open boundaries, while solid gray lines denote closed boundaries.

3In the following, we use the notation AΩ,Ω′ to emphasize the dependence of matrix A on the
choice of the regions Ω and Ω′. If Ω = Ω′, we write, for short, AΩ = AΩ,Ω′ .
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To prove this fact, it is sufficient to show that the r× r matrix

ΨΩ,Ω′(s) = Θ(s)NΩ,Ω′(s)Θ
−1(s)

= Θ(s)A∗
Ω,Ω′(s)B

−R
Ω,Ω′(s)Θ

−1(s)

= Θ(s)ΛΩ,Ω′(s)ΣC∗(s)F−R(s)Λ−1
Ω,Ω′(s)Θ

−1(s), (3.88)

defined in (3.50), still remains a polynomial unimodular matrices for any choice
of Ω and Ω′. This is provided by the following Lemma.

Lemma 3.3.1 Consider the r × r matrix ΨΩ,Ω′(s) described by equation
(3.88). For any choice of the skew-symmetric regions Ω and Ω′, ΨΩ,Ω′(s)
is a unimodular polynomial matrix.

PROOF. We can rewrite equation (3.88) in a more compact form as

ΨΩ,Ω′(s) = ΓΩ,Ω′(s)R(s)Γ
−1
Ω,Ω′(s), (3.89)

where ΓΩ,Ω′(s) := Θ(s)ΛΩ,Ω′(s) ∈ R(s)r×r and R(s) := ΣC∗(s)F−R(s) ∈ R[s]r×r.
We notice that R(s) unimodular, since C(s), F(s) are so and Σ is constant, and
does not depend on the choice of Ω and Ω′. Moreover, ΓΩ,Ω′(s) is diagonal and
canonic for any choice of Ω and Ω′.

Consider first the standard choice Ω = Ω′ = C+ := {ℜe s > 0, s ∈ C}. By
Theorem 3.1.1 and Theorem 3.2.1 (step 3), ΨC+(s) is unimodular. Since ΓC+(s)∈
R(s)r×r is diagonal and canonic, by (3.89), it follows that [R(s)]i j must be divisible
by the polynomial

pi j(s) :=
[ΓC+(s)] j j

[ΓC+(s)]ii
, j ≥ i. (3.90)

On the other hand, consider the opposite choice Ω = Ω′ = C− := {ℜe s <
0, s∈C}. By using the right-standard counterpart of Theorem 3.1.1 and following
the same argument used in the step 3 of Theorem 3.2.1, it can be proved that
ΨC−(s) is unimodular. Hence, by (3.89), [R(s)]i j must be also divisible by the
polynomial pi j(−s), j ≥ i.

Therefore, [R(s)]i j must be divisible by every factor which appears in the poly-
nomial

qi j(s) := pi j(s)pi j(−s), j ≥ i. (3.91)
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Since, for any choice of Ω and Ω′, the factors of [ΓΩ,Ω′(s)] j j/[ΓΩ,Ω′(s)]ii are con-
tained in the ones of qi j(s), then [R(s)]i j must be divisible by the polynomial
[ΓΩ,Ω′(s)] j j/[ΓΩ,Ω′(s)]ii, j ≥ i, and so ΨΩ,Ω′(s) must be a polynomial matrix for
any choice of Ω and Ω′. Finally, by (3.89), detΨΩ,Ω′(s) = constant, for any choice
of Ω and Ω′, therefore we conclude that ΨΩ,Ω′(s) is unimodular. �

In particular, we can use Youla’s method in order to compute some interesting
“extremal” factors:

• the regular factor with regular (right) inverse, called the minimum-phase
regular factor, W− (whose existence was proved in Theorem 3.2.1);

• the anti-regular factor with regular (right) inverse, called the minimum-
phase anti-regular factor, W−;

• the regular factor with anti-regular (right) inverse, called the maximum-
phase regular factor, W+;

• the anti-regular factor with anti-regular (right) inverse, called the maximum-
phase anti-regular factor, W+.

These four “extremal” factors are unique (modulo orthogonal transformations)
and are related each other as shown in the commutative diagram of Fig.3.3.

W− W W+

W− W W+

W− W W+

V ′ V ′′

V ′

K′′−

V ′′

K′′ K′′+

V ′

K′−

V ′′

K′ K′+

Figure 3.3: Relations between the “extremal” factors. Here arrows indicate pre-
multiplication, V ’s and K’s are para-unitary matrices. In particular, the meaning of
symbols is as follows: underbar stands for regular, overbar for anti-regular, subscript
− for minimum-phase and subscript + for maximum-phase.
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3.4 | An illustrative example
In this final section, we present an illustrative example of application of the

Youla’s method described in the constructive proof of Theorem 3.2.1.

Let us consider the following 2×2 rational matrix

Φ(s) =

 1
1−s2

1
s(1−s2)

− 1
s(1−s2)

s2−2
s2(1−s2)

 . (3.92)

It may be verified that Φ(s) is para-Hermitian and positive definite on the imagi-
nary axis.

Step 1. The Smith-McMillan canonical form of Φ(s) is given by

D(s) =

 1
s2(s2−1) 0

0 1

 . (3.93)

The rational matrix Φ(s) is related to its Smith-McMillan canonical form by

Φ(s) =C(s)D(s)F(s), (3.94)

where C(s) and F(s) are (non-unique) unimodular polynomial matrices, e.g.,

C(s) =

 −1
2s 1

1− 1
2s2 s

 , F(s) =

 s(s2 +1) 2
1
2 0

 . (3.95)

Step 2. With reference to the notation introduced in the corresponding step of
Theorem 3.2.1, the regular rational matrix Λ(s) is given by

Λ(s) =

 1
s+1 0

0 1

 . (3.96)

while the diagonal matrix Θ(s) by

Θ(s) =

 1
s 0

0 1

 . (3.97)
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The matrices A(s) and B(s), defined in (3.45) and (3.46), respectively, take the
form

A(s) =

 s
2(s−1) 1
1
2 s2−1
s−1 s

 , (3.98)

B(s) =

 s(s2+1)
s+1

2
s+1

1
2 0

 . (3.99)

Step 3. We have that Ψ(s) = Θ(s)N(s)Θ−1(s) has the form

Ψ(s) = Θ(s)A∗(s)B−1(s)Θ−1(s)

=

 −1
4s2 + 1

2
1
2s2(s−1)

−1
2s2(s+1) s4 + s2 +2

 . (3.100)

It may be checked directly that Ψ(s) is a para-Hermitian, unimodular polynomial
matrix which is positive definite on the imaginary axis.

Step 4. We make all diagonal entries in Ψ1(s) = Ψ(s) equidegree by operating
the transformation

Ψ
′
1(s) = Q∗1(s)Ψ1(s)Q1(s) =

 1
4s4− 1

2s2 −1
2s3(s−1)

−1
2s3(s+1) s4 + s2 +2

 , (3.101)

where Q1(s) = diag[s,1]. The highest-column-degree coefficient matrix Ψ′hc
1 is

given by

Ψ
′hc
1 =

 1
4 −1

2

−1
2 1

 . (3.102)

Since Ψ′hc
1 is singular, we calculate a vector v1 ∈ R2 \ {0} such that Ψ′hc

1 v1 = 0.
In our case such a vector is given, for example, by v1 = [2, 1]>. In order to reduce
the degree of a diagonal element of Ψ′1(s), we construct the matrix T1

T1 =

 1 2

0 1

 . (3.103)
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By applying to Ψ′1(s) the transformation induced by T1, we reduce the diagonal
degree of the entry (2,2),

Ψ
′′
1(s) = T>1 Ψ

′
1(s)T1 =

 1
4s4− 1

2s2 1
2s2(s−2)

−1
2s2(s+2) −s2 +2

 . (3.104)

Finally, by operating the inverse transformation Q−1
1 (s) to Ψ′′1(s), the first reduc-

tion cycle is concluded

Ψ2(s) = Q−∗1 (s)Ψ′′1(s)Q
−1
1 (s) =

 −1
4s2 + 1

2 −1
2s(s−2)

−1
2s(s+2) −s2 +2

 . (3.105)

The overall transformation of the first reduction cycle is given by

Ω
−1
1 (s) = Q1(s)T1Q−1

1 (s) =

 1 2s

0 1

 . (3.106)

Since Ψ2(s) is polynomial, we repeat the reduction procedure. The diagonal en-
tries in Ψ2(s) are equidegree, thus Q2(s) = I2 and Ψ′2(s) = Ψ2(s). The highest-
column-degree coefficient matrix Ψ′hc

2 is given by

Ψ
′hc
2 =

 −1
4 −1

2

−1
2 −1

 (3.107)

and is singular. Hence, we compute a vector v2 ∈ R2 \{0} such that Ψ′hc
2 v2 = 0.

In our case such a vector is given, for example, by v2 = [−2, 1]>. In order to
reduce the degree of a diagonal element of Ψ′2(s), we construct the matrix T2

T2 =

 1 −2

0 1

 . (3.108)

By applying to Ψ′2(s) the transformation induced by T2, we reduce the diagonal
degree of the entry (2,2),

Ψ3(s) = T>2 Ψ
′
2(s)T2 =

 −1
4s2 + 1

2 s−1

−s−1 4

 . (3.109)
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The second reduction cycle is concluded and we can define the overall transfor-
mation of this reduction cycle as Ω

−1
2 (s) = T2.

An additional reduction cycle is needed, since Ψ3(s) is polynomial. We make
all diagonal entries in Ψ3(s) equidegree by operating the transformation

Ψ
′
3(s) = Q∗3(s)Ψ3(s)Q3(s) =

 −1
4s2 + 1

2 s(s−1)

s(s+1) −4s2

 , (3.110)

where Q3(s) = diag[1, s]. The highest-column-degree coefficient matrix Ψ′hc
3 is

given by

Ψ
′hc
3 =

 −1
4 1

1 −4

 . (3.111)

Since Ψ′hc
3 is singular, we calculate a vector v3 ∈R2 \{0} such that Ψ′hc

3 v3 = 0. In
our case, such a vector is given, for example, by v3 = [4, 1]>. In order to reduce
the degree of a diagonal element of Ψ′3(s), we construct the matrix

T3 =

 1 0
1
4 1

 . (3.112)

By applying to Ψ′3(s) the transformation induced by T3, we reduce the diagonal
degree of the entry (1,1),

Ψ
′′
3(s) = T>3 Ψ

′
3(s)T3 =

 1
2 −s

s −4s2

 . (3.113)

Finally, by operating the transformation Q−1
3 (s) to Ψ′′3(s), the third reduction cycle

is concluded

Ψ4 = Q−∗3 (s)Ψ′′3(s)Q
−1
3 (s) =

 1
2 −1

−1 4

 . (3.114)

The overall transformation of the third reduction cycle is given by

Ω
−1
3 (s) = Q3(s)T3Q−1

3 (s) =

 1 0
1
4s 1

 . (3.115)
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Since Ψ4 is a constant positive definite matrix, we can decompose it as Ψ4 =
C>C by using the Cholesky factorization

C =

 √
2

2 −
√

2

0
√

2

 . (3.116)

In this way, we have found a factorization Ψ(s) = P∗(s)P(s), where P(s) is
unimodular of the form

P(s) =CΩ3(s)Ω2(s)Ω1(s) =
√

2

 1
4s+ 1

2 −1
2s2− 1

2s

−1
4s 1

2s2− 1
2s+1

 . (3.117)

At the end, the desired factorization of Φ(s) is given by Φ(s) =W ∗(s)W (s), where

W (s) = P(s)Θ(s)B(s) =
√

2

 1
2(s+1)

s+2
2s(s+1)

1
2(s+1)

−1
2(s+1)

 . (3.118)

The factor W (s) is analytic together with its inverse in the open right half-plane
{ℜe s > 0, s ∈ C}, as required.
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Φ(z) =W ∗(z)W (z)
=W>(1/z)W (z)

4. DISCRETE-TIME
SPECTRAL FACTORIZATION

In this Chapter, we will present a modification of Youla’s method, reviewed in
Chapter 3, which can be applied to provide a solution to the multivariate discrete-
time spectral factorization problem (cf. Problem 1.2 of Chapter 1). Even if some
results follow almost verbatim from that of the continuous-time case, there are
some aspects which are peculiar of the discrete-time case and significantly differ
from the analysis carried out in Youla [1961]. Our attention will be focused on
these aspects, in particular.

A remark on notation. A rational matrix A(z) is said to be analytic in a region
of the complex plane if all its entries are analytic in this region. Moreover, as in
Chapter 3, with a slight abuse of notation, when we say that a rational function
f (z) is analytic in a closed region T of the complex plane we mean that f (z) is
analytic in an open region Tε ⊃ T which is “larger” than T of an arbitrarily small
quantity. For example, if f (z) is rational and has all its poles inside the open unit
circle, we say that f (z) is analytic outside the closed unit circle to mean that there
exists ε > 0 s.t. f (z) is analytic in {|z| > 1− ε, z ∈ C}. Similarly, we say that
f (z) is analytic on the unit circle in place of f (z) is analytic on an open annulus
containing the unit circle. When dealing with rational functions that feature a
finite number of poles, this abuse of notation does not cause any problem. Finally,
we say that a rational matrix is canonic if it satisfies the properties of the Smith-
McMillan Theorem 2.3.1. For other standard notation refer to Chapter 0 and 2.

4.1 | Preliminary results

As in Chapter 3, §3.1, we collect in this section some auxiliary results that we
will exploit in the proof of the main Theorem, reported in the next section.

Lemma 4.1.1 A matrix G(z) ∈ R(z)m×n is analytic in C \ {0} together with
its inverse (either right, left or both) if and only if it is a L-unimodular poly-
nomial matrix.
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PROOF. If G(z) is a L-unimodular polynomial matrix, then, from §2.2.4, we know
that G(z) has an inverse (either right, left or both) which is also L-polynomial.
Hence, the only possible finite zeros/poles of G(z) are located at z = 0. This, in
turn, implies that G(z) must be analytic together with its inverse in C\{0}.

Vice versa, suppose that G(z) is analytic with its inverse in C\{0}. First, we
notice that the existence of a left or right inverse for G(z) implies that the normal
rank of G(z) is either r = n or r = m, respectively. Without loss of generality,
we can suppose that r = n. By the Smith-McMillan Theorem 2.3.1, we can write
G(z)=C(z)D(z)F(z), where C(z)∈R[z]m×r, F(z)∈R[z]r×n are unimodular (and,
a fortiori, L-unimodular) polynomial matrices, respectively, and D(z) ∈ R(z)r×r

is diagonal, canonic of the form

D(z) = diag
[

ε1(z)
ψ1(z)

,
ε2(z)
ψ2(z)

, . . . ,
εn(z)
ψn(z)

]
, (4.1)

where εk(z), ψk(z), k = 1, . . . ,r, are relatively prime monic polynomials such that
εk(z) | εk+1(z), ψk+1(z) |ψk(z), k = 1, . . . ,r−1. The analyticity of G(z) in C\{0}
implies that all ψ’s are non-zero monomials. The Smith-McMillan canonical form
of the left inverse of G(z), G−L(z), is given by

diag
[

ψn(z)
εn(z)

,
ψn−1(z)
εn−1(z)

, . . . ,
ψ1(z)
ε1(z)

]
. (4.2)

So, the analyticity of G−L(z) in C\{0} implies that all ε’s are non-zero monomi-
als. Hence, D(z) is a L-unimodular polynomial matrix. Since G(z)=C(z)D(z)F(z)
is the product of three L-unimodular polynomial matrices, G(z) must be a L-
unimodular polynomial matrix. �

Lemma 4.1.2 The only DT regular para-unitary matrices with regular in-
verse are DT para-unitary matrices analytic together with their inverse in
C\{0}.

PROOF. From Definition 2.3.6, we recall that a DT para-unitary matrix G(z) ∈
R(z)n×n satisfies

G∗(z)G(z) = G(z)G∗(z) = In. (4.3)

The analyticity of the inverse of G(z) in {|z| > 1, z ∈ C} implies that of G(1/z)
in the same region, and therefore that of G(z) in {|z|< 1, z ∈ C\{0}}.1 We also

1Notice that, unlike the continuous-time case, here G(z) can be, in general, not bounded at
infinity.
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notice that in the unit circle {e jω , ω ∈ [0,2π)} we have G∗(e jω)G(e jω) = In and
we can write out the diagonal element in expanded form as

n

∑
i=1
|[G(e jω)]ik|2 = 1, ∀k = 1, . . . ,n, ∀ω ∈ [0,2π). (4.4)

The latter equation implies that

|[G(e jω)]ik| ≤ 1, ∀i,k = 1, . . . ,n, ∀ω ∈ [0,2π), (4.5)

and, therefore, we proved the analyticity of G(z) on the unit circle. We conclude
that G(z) is analytic together with its inverse G−1(z) = G∗(z) in C\{0}. �

Corollary 4.1.1 Let G(z) ∈ R(z)n×n be a DT regular para-unitary matrix
without poles at infinity. Let the inverse of G(z) be also regular without poles
at infinity. Then G(z) is a constant orthogonal matrix.

PROOF. In this case, the additional assumption that G(z) and its inverse do not
possess poles at infinity, implies that G(z) is bounded at infinity and analytic on
the entire complex plane. Hence, we can apply Liouville’s Theorem Lang [1985,
Ch.V, §1, Thm.1.4] and conclude that G(z) must be a constant orthogonal ma-
trix. �

The following Definition is specular to Definition 3.1.1, given in the continuous-
time case.

Definition 4.1.1 (DT left-standard factorization) Let G(z) ∈ R(z)m×n and
let rk(G) = r ≤min{m,n}. A decomposition of the form

G(z) = A(z)∆(z)B(z) (4.6)

is called a discrete-time (DT) left-standard factorization if

1. ∆(z) ∈ R(z)r×r is diagonal and analytic together with its inverse in C\
{0} with the possible exception of a finite number of points on the unit
circle {|z|= 1, z ∈ C};

2. A(z) ∈ R(z)m×r is analytic together with its left inverse in {|z| ≤ 1, z ∈
C\{0}};
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3. B(z) ∈ R(z)r×n and analytic together with its right inverse in {|z| ≥
1, z ∈ C}.

If A(z) and B(z) are interchanged, we have a DT right-standard factorization.
Hence, any DT left-standard factorization of G(z) generates a DT right-standard
factorization of G>(z), G−1(z) (if G(z) is non-singular), G(1/z), e.g., in the first
case we have

G>(z) = B>(z)∆(z)A>(z). (4.7)

The following Lemma ensures that a DT left-standard factorization of a ratio-
nal matrix G(z) always exists.

Lemma 4.1.3 Any rational matrix G(z) ∈ R(z)m×n of normal rank rk(G) =
r ≤min{m,n} admits a DT left-standard factorization.

PROOF. By the Smith-McMillan Theorem 2.3.1, we can write G(z)=C(z)D(z)F(z),
where C(z) ∈ R[z]m×r, F(z) ∈ R[z]r×n are unimodular polynomial matrices and
D(z) ∈ R(z)r×r is diagonal and canonic of the form

D(z) = diag
[

ε1(z)
ψ1(z)

,
ε2(z)
ψ2(z)

, . . . ,
εr(z)
ψr(z)

]
, (4.8)

where εk(z), ψk(z), k = 1, . . . ,r, are relatively prime monic polynomials such that
εk(z) | εk+1(z), ψk+1(z) | ψk(z), k = 1, . . . ,r− 1. We factor εi(z) and ψi(z), i =
1, . . . ,r, in D(z) into the product of three polynomials: the first without zeros in
{|z| ≤ 1, z∈C}, the second without zeros in {|z| 6= 1, z∈C} and the third without
zeros in {|z| ≥ 1, z ∈ C}. Thus, it is possible to write

D(z) = D−(z)∆(z)D+(z), (4.9)

where D−(z) and its inverse are analytic in {|z| ≤ 1, z ∈ C}, ∆(z) and its inverse
in {|z| 6= 1, z ∈ C} and D+(z) and its inverse in {|z| ≥ 1, z ∈ C}. Finally, by
choosing A(z) :=C(z)D−(z) and B(z) := D+(z)F(z), we have that

G(z) = A(z)∆(z)B(z) (4.10)

is a DT left-standard factorization of G(z). �

Left-standard factorizations are not unique. Indeed, any two decompositions
are connected as follows.
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Theorem 4.1.1 Let G(z) ∈ R(z)m×n be a rational matrix of normal rank
rk(G) = r ≤ min{m,n} and let A(z)∆(z)B(z), A1(z)∆1(z)B1(z) be two DT
left-standard factorizations of G(z). Then,

A1(z) = A(z)M−1(z), B1(z) = N(z)B(z), (4.11)

where M(z) ∈ R[z,z−1]r×r and N(z) ∈ R[z,z−1]r×r are two L-unimodular
polynomial matrices such that

M(z)∆(z)N−1(z) = ∆1(z). (4.12)

PROOF. By assumption,

G(z) = A(z)∆(z)B(z) = A1(z)∆1(z)B1(z), (4.13)

which, in turn, implies

∆
−1
1 (z)A−L

1 (z)A(z)∆(z) = B1(z)B−R(z). (4.14)

By Definition 4.1.1 of DT left-standard factorization, the right-hand side of (4.14)
is analytic in {|z| ≥ 1, z ∈ C}, while the left-hand side in {|z| < 1, z ∈ C\{0}}.
Therefore B1(z)B−R(z) is analytic in C\{0}. The inverse of B1(z)B−R(z) satisfies

[B1(z)B−R(z)]−1 = ∆
−1(z)[A−L

1 (z)A(z)]−1
∆1(z) (4.15)

and is also analytic in C \ {0}. Thus, N(z) := B1(z)B−R(z) must be a r× r L-
unimodular polynomial matrix (see Lemma 4.1.1). Similarly, M(z) :=A−L

1 (z)A(z)
is a r× r L-unimodular polynomial matrix. Finally, from (4.13), we have

M(z)∆(z)N−1(z) = ∆1(z). (4.16)

and the proof is concluded. �

We notice also that it is straightforward to derive a DT right-standard counter-
part of Lemma 4.1.3 and Theorem 4.1.1.

Let Φ(z) ∈R(z)n×n be a para-Hermitian matrix of normal rank rk(Φ) = r ≤ n
and let Φ(z) = A(z)∆(z)B(z) be a DT left-standard factorization of Φ(z). We have
that

Φ(z) = Φ
∗(z) = B∗(z)∆∗(z)A∗(z) (4.17)
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is also a DT left-standard factorization of Φ(z). In particular, ∆∗(z) is equal to
∆(z), except for multiplication of suitable monomials of the form ±zki in its diag-
onal elements, i.e.,

∆
∗(z) = Σ(z)∆(z), (4.18)

where

Σ(z) = diag [e1(z),e2(z), . . . ,er(z)] (4.19)

and ei(z) =±zki, ki ∈ Z, i = 1, . . . ,r. By invoking Theorem 4.1.1, we can write

A∗(z) = N(z)B(z), (4.20)

B∗(z) = A(z)M−1(z), (4.21)

where N(z), M(z) ∈ R[z,z−1]r×r are L-unimodular polynomial matrices.

The following Lemma provides a further characterization of a para-Hermitian
matrix when it is non-negative definite on the unit circle.

Lemma 4.1.4 Let Φ(z) ∈R(z)n×n be a DT para-Hermitian matrix of normal
rank rk(Φ) = r ≤ n which is positive semi-definite on the unit circle, i.e.,
x>Φ(e jω)x≥ 0, ∀x ∈ Rn and ∀ω ∈ [0,2π) such that z = e jω is not a pole of
Φ(z). Let

Φ(z) =C(z)D(z)F(z) (4.22)

with D(z) ∈ R(z)r×r be the Smith-McMillan canonical form of Φ(z). Then,
the zeros and poles on the unit circle of the diagonal elements of D(z) are of
even multiplicity.

PROOF. We can assume that the numerators and denominators of all entries in
Φ(z) are relatively prime polynomials. Let

α1 = e jω1, α2 = e jω2, . . . , αt = e jωt , (4.23)

the zeros/poles on the unit circle of Φ(z) and let

ν
(1)
i ,ν

(2)
i , . . . ,ν

(r)
i , (ν

(1)
i ≤ ν

(2)
i ≤ ·· · ≤ ν

(r)
i ), (4.24)
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the structural indices of Φ(z) at αi, i = 1, . . . , t, i.e., the valuations at αi of the
diagonal terms of D(z) (see §2.3.3). Since Φ(z) is non-negative on the unit circle,
it is easy to verify that the zeros and poles on the unit circle of the principal minors
of Φ(z) must be of even multiplicity. Now, by setting T = {|z| = 1, z ∈ C}, we
are in position of applying Corollary 2.3.1. By considering the minors of order
`= 1, it follows that

ν
(1)
i is even ∀i = 1,2, . . . , t. (4.25)

Now, by considering the minors of order `= 2 in Corollary 2.3.1, it follows that

ν
(1)
i +ν

(2)
i is even ∀i = 1,2, . . . , t. (4.26)

Since ν
(1)
i is even, then also ν

(2)
i must be even for all i = 1,2, . . . , t. By iterating

the argument, we conclude that every zero/pole on the unit circle of the diagonal
elements of D(z) is of even multiplicity. �

Let Φ(z) ∈R(z)n×n be a para-Hermitian matrix of normal rank rk(Φ) = r ≤ n
and let D(z) ∈ R(z)r×r be its Smith-McMillan canonical form. We have

Φ(z) =C(z)D(z)F(z) = F∗(z)D∗(z)C∗(z) = Φ
∗(z), (4.27)

and, similarly to a previous argument,

D∗(z) = Σ
′(z)D(z), (4.28)

where, in this case, Σ′(z) has the form

Σ
′(z) = diag

[
e′1(z),e

′
2(z), . . . ,e

′
r(z)
]

(4.29)

with e′i(z) =αizki, αi ∈R\{0}, ki ∈Z, i= 1, . . . ,r. Moreover, since by (4.28) any
zero/pole at α 6= 0 in the diagonal terms of D(z) is accompanied by a zero/pole at
1/α , we can always write D(z) in the form

D(z) = Σ1(z)Λ∗(z)∆(z)Λ(z), (4.30)

where Λ(z) ∈ R(z)r×r is diagonal, canonic and analytic with its inverse in {|z| ≥
1, z ∈C}, Σ1(z)Λ∗(z) ∈R(z)r×r is diagonal and analytic with its inverse in {|z| ≤
1, z ∈ C} and ∆(z) ∈ R(z)r×r is diagonal, canonic and analytic with its inverse
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in {|z| 6= 1, z ∈ C}. Consequently, Λ(z) possesses the same structural indices at
z = 0 of D(z). By exploiting Lemma 4.1.4, ∆(z) can be written as

∆(z) = Θ
2(z) = Σ2(z)Θ∗(z)Θ(z), (4.31)

with Θ(z) ∈ R(z)r×r diagonal, canonic and analytic together with its inverse in
{|z| 6= 1, z ∈ C}. Finally, we can rearrange D(z) in the form

D(z) = Σ3(z)Λ∗(z)Θ∗(z)Θ(z)Λ(z), (4.32)

where Σ2(z) has the form (4.19), while Σ1(z) and Σ3(z) := Σ1(z)Σ2(z) possess the
form (4.29).

We report below another result which will be useful in the proof of the main
Theorem of the next section.

Lemma 4.1.5 Let Ψ(z) = Ψ∗(z) ∈ R[z,z−1]r×r be a DT para-Hermitian L-
unimodular matrix which is positive definite on the unit circle. Let Ψhc ∈Rr×r

denote the highest-column-degree coefficient matrix of Ψ(z). Then, Ψhc is
non-singular if and only if Ψ(z) is a constant matrix.

PROOF. If Ψ(z) is a constant matrix then Ψhc = Ψ(z) is non-singular, by defini-
tion of L-unimodular matrix.

Conversely, assume that Ψhc is non-singular. Let us denote by Ki ∈ Z, i =
1, . . . ,r, the maximum-degree of the i-th column of Ψ(z) and by ki ∈Z, i= 1, . . . ,r,
the minimum-degree of the i-th row of Ψ(z).2 Since Ψ(z) = Ψ∗(z), we have that
detΨ(z) is a non-zero real constant and

Ki =−ki, i = 1, . . . ,r. (4.33)

Moreover, since Ψ(z) is positive definite on the unit circle, the diagonal elements
of Ψ(z) cannot be equal to zero and, therefore, Ki ≥ 0, i = 1, . . . ,r. Actually, the
non-singularity of Ψhc implies that

Ki = 0, i = 1, . . . ,r, (4.34)

otherwise the maximum-degree of detΨ(z) would be strictly positive (cf. equation
(2.36) of §2.2.4). By (4.34), all the entries of Ψ(z) must have maximum-degree

2Recall the Definition 2.2.11 of maximum- and minimum-degree of a L-polynomial vector.
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less than or equal to zero. But, by (4.33), ki = −Ki for all i = 1, . . . ,r, and so
(4.34) also implies that all the entries of Ψ(z) must have minimum-degree greater
than or equal to zero. We conclude that

maxdeg [Ψ(z)]i j = mindeg [Ψ(z)]i j = 0, i, j = 1, . . . ,r, (4.35)

and, therefore, Ψ(z) must be a constant matrix. �

4.2 | The main theorem

In this section, we present the main result of the Chapter: the discrete-time
counterpart of Youla’s Theorem 3.2.1.

Theorem 4.2.1 Let Φ(z) = Φ∗(z) ∈R(z)n×n be a DT para-Hermitian matrix
of normal rank rk(Φ) = r≤ n which is positive semi-definite on the unit circle
{e jω , ω ∈ [0,2π)}. Then, there exists a matrix W (z) ∈ R(z)r×n such that

(i) Φ(z) =W ∗(z)W (z).

(ii) W (z) and its (right) inverse W−R(z) are both analytic in {|z|> 1, z∈C}
without poles at infinity.

(iii) W (z) is unique up to within a constant, orthogonal r× r matrix mul-
tiplier on the left, i.e., if W1(z) also satisfies points (i) and (ii), then
W1(z) = TW (z) where T ∈ Rr×r is a constant orthogonal matrix.

(iv) Any factorization of the form Φ(z) = L∗(z)L(z) in which L(z) ∈R(z)r×n

is analytic in {|z|> 1, z∈C} without poles at infinity, is given by L(z) =
V (z)W (z), V (z) ∈ R(z)r×r being an arbitrary, DT regular para-unitary
matrix without poles at infinity.

(v) If Φ(z) is analytic on the unit circle, then W (z) is analytic in a region
{|z|> τ, τ < 1, z ∈ C} without poles at infinity.

(vi) If Φ(z) is analytic on the unit circle and the rank of Φ(z) is constant
on the unit circle, then W (z) and its (right) inverse W−R(z) are both
analytic in a region {|z|> τ1, τ1 < 1, z ∈ C} without poles at infinity.
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PROOF. We first prove statement (iii). Let W (z) and W1(z) be two matrices satis-
fying (i) and (ii). Then,

W ∗(z)W (z) =W ∗1 (z)W1(z). (4.36)

The latter equation implies

V ∗(z)V (z) = Ir, (4.37)

where V (z) :=W1(z)W−R(z) is analytic in {|z|> 1, z ∈C} without poles at infin-
ity. Thus, V (z)∈R(z)r×r is a regular para-unitary matrix without poles at infinity.
Moreover, from (4.36), we also have

V (z) =W−R∗
1 (z)W ∗(z) (4.38)

and so V ∗(z) = V−1(z) = W (z)W−R
1 (z) is regular without poles at infinity. In

view of Corollary 4.1.1, we conclude that V (z) is a constant orthogonal matrix
T ∈ Rr×r, T>T = T T> = Ir.

Consider now statement (iv) and let Φ(z) = L∗(z)L(z) where L(z) ∈ R(z)n×r

is analytic in {|z|> 1, z ∈ C} without poles at infinity. We underline the fact that
we do not suppose that L−R(z) is analytic in {|z|> 1, z ∈ C} and/or L−R(z) does
not have poles at infinity. In this case, we can write

L∗(z)L(z) =W ∗(z)W (z). (4.39)

The latter equation implies

V ∗(z)V (z) = Ir, (4.40)

where V (z) := L(z)W−R(z) and W (z) ∈ R(z)r×n is a rational matrix satisfying (i)
and (ii). Since L(z) and W (z)−R are both analytic in {|z|> 1, z∈C}without poles
at infinity, then V (z) ∈ R(z)r×r is a regular para-unitary matrix without poles at
infinity and we finished.

Now, we provide a constructive proof of statements (i) and (ii), which repre-
sent the core of the Theorem. The procedure is divided in four steps.

Step 1. Reduce Φ(z) to the Smith-McMillan canonical form. By using the
same standard procedure described in Theorem 3.2.1, we arrive at

Φ(z) =C(z)D(z)F(z), (4.41)
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where C(z) ∈ R[z]n×r, F(z) ∈ R[z]r×n are unimodular polynomial matrices and
D(z) ∈ R(z)r×r is diagonal and canonic.

Step 2. According to (4.32), we can write D(z) in the form

D(z) = Σ(z)Λ∗(z)∆̃(z)Λ(z), (4.42)

where:

1. Λ(z) ∈ R(z)r×r is diagonal, canonic and analytic together with Λ−1(z) in
{|z| ≥ 1, z ∈ C} and possesses the same structural indices at z = 0 of D(z);

2. ∆̃(z) := Θ∗(z)Θ(z) = ∆̃∗(z), where Θ(z) ∈R(z)r×r is diagonal, canonic and
analytic together with Θ−1(z) in {|z| 6= 1, z ∈ C};

3. Σ(z) ∈ R(z)r×r is diagonal of the form

Σ(z) = diag [e1(z),e2(z), . . . ,er(z)] , (4.43)

where ei(z) = αizki, αi ∈ R\{0}, ki ∈ Z, i = 1, . . . ,r.

Let

A(z) :=C(z)Σ(z)Λ∗(z), (4.44)
B(z) :=Λ(z)F(z). (4.45)

We have that

Φ(z) = A(z)∆̃(z)B(z) (4.46)

is a DT left-standard factorization of Φ(z).

Step 3. Let

I(z) := B−R(z)Θ−1(z). (4.47)

By equation (4.20), we have A∗(z) = N(z)B(z) and, therefore,

I∗(z)Φ(z)I(z) = I∗(z)Φ∗(z)I(z)

= Θ
−∗(z)B−R∗(z)B∗(z)∆̃∗(z)N(z)B(z)B−R(z)Θ−1(z)

= Θ
−∗(z)Θ∗(z)Θ(z)N(z)Θ−1(z)

= Θ(z)N(z)Θ−1(z), (4.48)
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where N(z) = A∗(z)B−R(z) ∈ R[z,z−1]r×r is a L-unimodular polynomial matrix.
Let us define

Ψ(z) := Θ(z)N(z)Θ−1(z). (4.49)

By (4.48), Ψ(z) is a para-Hermitian matrix non-negative definite on the unit circle.
Actually a good deal more is true. We notice that A(z)∆̃(z)B(z) and B∗(z)∆̃(z)A∗(z)
are two DT left-standard factorizations of Φ(z). Hence, by replacing ∆1(z) with
∆̃(z) = ∆̃∗(z) in (4.12), we obtain

∆̃(z)N(z)∆̃−1(z) = M(z), (4.50)

where M(z) ∈ R[z,z−1] is L-unimodular. Since ∆̃(z) = Θ∗(z)Θ(z) is diagonal
and Θ(z) := diag[θ1(z), . . . ,θr(z)] canonic, equation (4.50) implies that [N(z)]i j is
divisible by the L-polynomial [∆̃(z)] j j/[∆̃(z)]ii, j ≥ i. But

[∆̃(z)]ii = θ
∗
i (z)θi(z)

= θi(1/z)θi(z)

=±zkiθ
2
i (z), (4.51)

where ki ∈ Z, i = 1, . . . ,r. So, [N(z)]i j must be divisible by the polynomial

f 2
i j(z) :=

θ 2
j (z)

θ 2
i (z)

, j ≥ i, (4.52)

and, a fortiori, by

fi j(z) =
θ j(z)
θi(z)

, j ≥ i. (4.53)

This suffices to establish that Ψ(z) is L-polynomial. Finally, since by (4.48)
detΨ(z) is a non-zero positive constant, Ψ(z) is a para-Hermitian L-unimodular
polynomial matrix which is positive definite on the unit circle. The problem is
now reduced to that of finding a factorization of Ψ(z) of the form

Ψ(z) = P∗(z)P(z), (4.54)

where P(z) ∈ R[z]r×r is a unimodular polynomial matrix. After this is achieved,
the desired factorization for Φ(z) is obtained as Φ(z) =W ∗(z)W (z) with

W (z) := P(z)Θ(z)B(z)
= P(z)Θ(z)Λ(z)F(z)
= P(z)D+(z)F(z), (4.55)
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where we have defined D+(z) := Θ(z)Λ(z). Indeed, by straightforward algebra,

W ∗(z)W (z) = B∗(z)Θ∗(z)P∗(z)P(z)Θ(z)B(z)

= B∗(z)∆̃(z)N(z)B(z)

= B∗(z)∆̃(z)A∗(z)
= Φ

∗(z)
= Φ(z). (4.56)

Step 4. We illustrate an algorithm which provides a factorization of a para-
Hermitian L-unimodular polynomial matrix Ψ(z) = Ψ∗(z) ∈ R[z,z−1]r×r positive
definite on the unit circle into the product P∗(z)P(z), where P(z) is a unimodular
polynomial matrix. This algorithm can be regarded as the discrete-time counter-
part of the technique described in the step 4 of Theorem 3.2.1.

The algorithm consists of the following two steps. First of all, we define
Ψ1(z) := Ψ(z) and denote by h ∈ N the loop counter of the algorithm, which
is initially set to h := 1.

I. Let Ki ∈ Z, i = 1, . . . ,r, be the maximum-degree of the i-th column of Ψh(z)
and ki ∈ Z, i = 1, . . . ,r, be the minimum-degree of the i-th row of Ψh(z).
Consider the highest-column-degree coefficient matrix of Ψh(z), denoted by
Ψhc

h , and the lowest-row-degree coefficient matrix of Ψh(z), denoted by Ψlr
h

(recall the definitions given in §2.2.4). As noticed in the proof of Lemma
4.1.5, the positive nature of Ψh(z) implies that Ki ≥ 0 for all i = 1, . . . ,r.
Moreover, the para-Hermitianity of Ψh(z) implies that

Ψ
hc
h = (Ψlr

h )
>, (4.57)

and, therefore, Ki =−ki for all i = 1, . . . ,r.

By Lemma 4.1.5, it follows that Ψhc
h is non-singular if and only if Ψh(z) is

a constant matrix. If Ψh(z) is a constant matrix, we skip to step II. If this is
not the case, we calculate a non-zero vector vh = [v1 v2 . . . vr]

> ∈ Rr such
that Ψhc

h vh = 0. Let us define the active index set

I := {i : vi 6= 0} (4.58)

and the highest maximum-degree active index set, M ⊂I ,

M := {i ∈I : Ki ≥ K j, ∀ j ∈I }. (4.59)
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We pick an index p ∈M . Then, we define the matrix

column p

Ω
−1
h (z) :=



1 · · · 0 v1
vp

zKp−K1 0 · · · 0

0 . . . ... 0
... 1 vp−1

vp
zKp−Kp−1

...
... 1

...
... vp+1

vp
zKp−Kp+1 1

...

0
... . . . 0

0 · · · 0 vr
vp

zKp−Kr 0 · · · 1


. (4.60)

Notice that the entry at (i, p) of Ω
−1
h (z) has the form

vi

vp
zKp−Ki = αizδi, i = 1, . . . ,r, (4.61)

with αi := vi/vp ∈ R and δi := Kp−Ki ≥ 0. In fact, if Ki > Kp, then vi = 0
and so αi = 0. By (4.60),

detΩ
−1
h (z) = 1 (4.62)

and, therefore, Ω
−1
h (z) ∈ R[z]r×r is a unimodular polynomial matrix. By

operating the transformation

Ψh+1(z) := Ω
−∗
h (z)Ψh(z)Ω−1

h (z), (4.63)

we obtain a new positive matrix Ψh+1(z) with the same determinant of Ψh(z).
Furthermore, the maximum-degree of the p-th column of Ψh+1(z) is lower
than Kp, while the maximum-degree of the i-th column, i 6= p, is not greater
than Ki.

This fact needs a detailed explanation. If we post-multiply Ψh(z) by Ω
−1
h (z),

we obtain a matrix of the form

Ψ
′
h(z) := Ψh(z)Ω−1

h (z)

=
[
[Ψh(z)]1:r,1:p−1 ψh(z) [Ψh(z)]1:r,p+1:r

]
, (4.64)
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where all the L-polynomials in the p-th column vector

ψh(z) = [Ψh(z)]1:r,p:p + ∑
i6=p

αizδi[Ψh(z)]1:r,i:i (4.65)

have maximum-degree lower than Kp, since vh ∈ ker(Ψhc
h ), and minimum-

degree which satisfies

mindeg [ψh(z)]i ≥ ki =−Ki, i = 1, . . . ,r, (4.66)

since in (4.65) δi ≥ 0, for all i such that αi 6= 0 (cf. equation (4.61)).

Now, by pre-multiplying Ψ′h(z) by Ω
−∗
h (z), the resulting matrix Ψh+1(z) can

be written in the form

Ψh+1(z) = Ω
−∗
h (z)Ψh(z)Ω−1

h (z)

=


[Ψh(z)]1:p−1,1:p−1 ψh+1(z) [Ψh(z)]1:p−1,p+1:r

ψ>h+1(1/z) ψ ′h+1(z) ψ ′′h+1
>(1/z)

[Ψh(z)]p+1:r,1:p−1 ψ ′′h+1(z) [Ψh(z)]p+1:r,p+1:r

 , (4.67)

where the p-th column vector [ψh+1(z)|ψ ′h+1(z)|ψ ′′h+1(z)]
> differs from ψh(z)

only for the value of the p-th entry ψ ′h+1(z). Moreover, the maximum-degree
of ψ ′h+1(z) cannot increase after the operation is performed, since

ψ
′
h+1(z) = [ψh(z)]p + ∑

i 6=p
αiz−δi[ψh(z)]i, (4.68)

and, by (4.61), δi ≥ 0, for all i such that αi 6= 0.

We conclude that all the L-polynomials in the p-th column of Ψh+1(z) have
maximum-degree lower than Kp, while, by (4.66), the maximum-degree of
all the other columns does not increase. We notice also that, since Ψh+1(z) =
Ψ∗h+1(z), all the L-polynomials in the p-th row of Ψh+1(z) have minimum-
degree greater than kp = −Kp, while the minimum-degree of the all other
rows does not decrease.

Eventually, we update the value of the loop counter h by setting h := h+ 1
and return to step I.

II. Since Ψh ∈Rr×r is positive definite, we can always factorize it into the prod-
uct Ψh = C>C where C ∈ Rr×r, by using standard techniques such as the

79 |



| CHAPTER 4. DISCRETE-TIME SPECTRAL FACTORIZATION

Cholesky decomposition (see Golub and Van Loan [1996, Ch.4]). Finally,
we have constructed a polynomial unimodular matrix

P(z) =CΩh−1(z)Ωh−2(z) · · ·Ω1(z). (4.69)

such that Ψ(z) = P∗(z)P(z), with P(z) ∈ R[z]r×r unimodular.

It is worthwhile noticing that the iterative procedure of step I is always brought
to an end (after a maximum of K1 + · · ·+Kp iterations) since at the h-th iteration
the maximum-degree of a column of Ψh(z) is reduced at least by one, while the
maximum-degree of all the other columns does not increase.

To complete the proof of points (i) and (ii), we notice that, by construction,
the rational matrix W (z), as defined in (4.55), and its (right) inverse are analytic
in {|z|> 1, z ∈C}. Moreover, we recall that D+(z) and D(z) have the same zero-
pole structure at z = 0 (i.e., they have the same structural indices at z = 0). Now,
suppose, by contradiction, that W (z) has a pole at z = ∞. Then W ∗(z) has a pole
at z = 0. But, since Φ(z) =W ∗(z)W (z), it follows that

W ∗(z) = Φ(z)W−R(z)

=C(z)D(z)F(z)F−R(z)D−1
+ (z)P−1(z)

=C(z)D(z)D−1
+ (z)P−1(z)

=C(z)D−(z)P−1(z), (4.70)

where D−(z) := D(z)D−1
+ (z) has no pole at z = 0. Since P−1(z) and C(z) are poly-

nomial unimodular matrices, in view of (4.70), also W ∗(z) has no pole at z = 0.
Hence the contradiction. We conclude that W (z) has no pole at infinity. Finally,
by following a similar argument, it can be verified that also W−R(z) has no pole
at infinity.

Now consider statement (v). If Φ(z) is analytic on the unit circle, then Θ(z)
does not possess any finite pole. This, in turn, implies that D+(z) = Θ(z)Λ(z)
is analytic in {|z| > τ, τ < 1, z ∈ C}. Thus, W (z), as defined in (4.55), is also
analytic in the same region and, by a previous argument, it does not possess any
pole at infinity (and the latter fact is also true for W−R(z)). It is worth noticing
that the above defined region is completely determined by the poles of Λ(z).
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The additional assumption that the rank of Φ(z) is constant on the unit circle
implies that Θ(z) does not possess any finite zero. Thus, Θ(z) = Ir and, by (4.55),

W−R(z) = F−R(z)Λ−1(z)P−1(z) (4.71)

is analytic in a region {|z|> τ̄, τ̄ < 1, z ∈C}. Hence, W (z) and its (right) inverse
W−R(z) are both analytic in a region {|z| > τ1, τ1 < 1, z ∈ C} without poles at
infinity. Here, τ1 := max{τ, τ̄} is completely determined by the zeros and poles
of Λ(z). This concludes the proof of point (vi), and, in turn, the proof of the entire
Theorem. �

As in Chapter 3, to conclude this section, we present two straightforward
Corollaries of Theorem 4.2.1.

Corollary 4.2.1 Let L(z) ∈ R(z)m×n, then Φ(z) = L∗(z)L(z) if and only if

L(z) =V (z)

 Ir

0m−r,r

W (z), (4.72)

where V (z) ∈ R(z)m×m is an arbitrary DT para-unitary matrix and r =
rk(Φ)≤ m.

PROOF. By repeating an argument used in points (iii) and (iv) of Theorem 4.2.1,
we have that L(z) = U(z)W (z), with U(z) ∈ R(z)m×r a rational matrix satisfying
U∗(z)U(z) = Ir. If we choose V (z) ∈ R(z)m×m to be any para-unitary matrix with
U(z) incorporated into its first r columns, i.e.,

U(z) =V (z)

 Ir

0m−r,r

 , (4.73)

we finished. �

Corollary 4.2.2 If Φ(z) is L-polynomial then W (z) is polynomial in z−1 and
W ∗(z) is polynomial (in z).

PROOF. If Φ(z) is L-polynomial, then the only finite poles it may possess are
located at z = 0. Since W (z) does not have poles at infinity, W (z) must be poly-
nomial in z−1. The latter fact, in turn, implies that W ∗(z) must be a polynomial
matrix. �
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In Fig.4.1 is shown a schematic representation of the procedure used in the
constructive proof of Theorem 4.2.1.

Compute the
Smith-McMillan
decomposition

Φ(z) =C(z)D(z)F(z)

Φ(z) = Φ∗(z)

Compute the left-
standard factorization
Φ(z) = A(z)∆̃(z)B(z),

∆̃(z) = Θ∗(z)Θ(z)

Compute the L-
unimodular polynomial
matrix Ψ(z) = Ψ1(z)

Compute the
factorization

Ψ(z) = P∗(z)P(z),
P(z) unimodular

W (z) = P(z)Θ(z)B(z)

Is Ψh(z)
constant?

Reduce the maximum-
degree of a column
of Ψh(z), Ψh+1(z) =
Ω
−∗
h (z)Ψh(z)Ω−1

h (z)

Compute a decom-
position Ψh = C>C

Compute the
factor P(z) =

CΩh−1(z) · · ·Ω1(z)

no

(h := h+1) yes

Figure 4.1: Schematic representation of the procedure used for the construction of the
factorization Φ(z) =W ∗(z)W (z).
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4.3 | Some additional remarks
As in section §3.3 of the previous Chapter, here, we want to underline two

important facts regarding the properties of the factorization approach discussed
before.

The first remark concerns the stochastic minimality of the factor W (z). More
precisely, the McMillan degree of W (z) satisfies δM(W ) = 1

2δM(Φ) (recall the
definition given in §2.3.2 and its extension of §2.3.3) which is the minimum at-
tainable value. This fact can be formally stated as follows.

Theorem 4.3.1 Let Φ(z) ∈ R(z)n×n be a DT para-Hermitian matrix non-
negative on the unit circle and let r = rk(Φ). Consider the factorization
Φ(z) =W ∗(z)W (z) where W (z) ∈ R(z)r×n is computed by following the pro-
cedure described in the previous section. Then, the McMillan degree of W (z)
satisfies

δM(W ) =
1
2

δM(Φ). (4.74)

PROOF. We notice that, by equation (4.55), we have

W (z) = P(z)D+(z)F(z), (4.75)

where P(z) ∈ R[z]r×r, F(z) ∈ R[z]r×n are unimodular polynomial matrices and
D+(z) ∈ R(z)r×r is diagonal, canonic, regular and satisfies

D(z) = Σ(z)D∗+(z)D+(z), (4.76)

where D(z) ∈ R(z)r×r is the Smith-McMillan canonical form of Φ(z) and Σ(z) ∈
R(z)r×r is a diagonal matrix with elements αizki , αi 6= 0, ki ∈ Z, on its diagonal.
Moreover, we recall that W (z) and Φ(z) have the same structural indices at z = 0.
Let p1, . . . , ph be the non-zero finite poles of Φ(z). By (4.75) and (4.76), it follows
that3

δ (Φ; pi) =


δ (W ; pi) if |pi|< 1,
2δ (W ; pi) if |pi|= 1,
δ (W ;1/pi) if |pi|> 1.

(4.77)

3For the definition of degree of a pole of a rational matrix we refer to §2.3.3, Definition 2.3.4.
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Moreover, if pi 6= 0 is a pole of Φ(z) then also 1/pi is a pole of Φ(z) and if pi 6= 0
is not a pole of Φ(z) then neither pi nor 1/pi are poles of W (z). Thus, we have

h

∑
i=1

δ (Φ; pi) = ∑
i : |pi|<1

δ (W ; pi)+ ∑
i : |pi|>1

δ (W ;1/pi)+ ∑
i : |pi|=1

2δ (W ; pi)

= 2 ∑
i : |pi|≤1

δ (W ; pi) (4.78)

By equation (2.57) of section §2.3.3, the McMillan degree of a rational matrix
equals the sum of the degrees of all its poles, the pole at infinity included. Since
Φ(z) = Φ∗(z), if Φ(z) has a pole at z = ∞, then Φ(z) has also a pole at z = 0. In
particular, from the Definition 2.3.4 of polar degree, we have

δ (Φ;∞) = δ (Φ;0). (4.79)

Now, since W (z) and Φ(z) have the same structural indices at z = 0 and W (z) has
no pole at z = ∞, it follows that

δ (Φ;0) = δ (W ;0) and δ (W ;∞) = 0. (4.80)

Therefore, by equations (4.78) and (4.80),

δM(Φ) =
h

∑
i=1

δ (Φ; pi)+2δ (Φ;0)

= 2 ∑
i : |pi|≤1

δ (W ; pi)+2δ (W ;0) = 2δM(W ), (4.81)

and we finished. �

The second remarkable feature of the proposed factorization method is that it
can be easily modified in order to change the region of analyticity of W (z) and of
its (right) inverse. First of all, let us introduce some nomenclature. We say that
a region of the extended complex plane A is discrete-time skew-symmetric (for
short, skew-symmetric), if it satisfies

A ∪A ∗ = C\{|z|= 1, z ∈ C} and A ∩A ∗ =∅, (4.82)

where A ∗ := {z∈C : 1/z∈A } and C :=C∪{∞} denotes the extended complex
plane.
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Suppose that we want to compute a factor WΩ,Ω′(z) analytic in a skew-sym-
metric region Ω of the extended complex plane (see Fig.4.2) and with (right)
inverse W−R

Ω,Ω′(z) analytic in another skew-symmetric region Ω′ of the extended
complex plane.4 To obtain such a factor, we only need to rearrange the diagonal
matrix D(z) of equation (4.42) in a different form, namely,

D(z) = Σ(z)Λ∗
Ω,Ω′(z)Θ

∗(z)Θ(z)ΛΩ,Ω′(z), (4.83)

where ΛΩ,Ω′(z) is diagonal analytic in Ω (with the possible exception of the point
at infinity) and its inverse Λ

−1
Ω,Ω′(z) is analytic in Ω′ (with the possible exception

of the point at infinity) and apply the same procedure described in the previous
section. The proof of this fact follows, mutata mutandis, from that one adopted in
§3.3 for the continuous-time case.

1

ℜe z

ℑm z

1

ℜe z

ℑm z

Figure 4.2: Example of an admissible choice of the region Ω (filled in gray, on the left)
and a not admissible choice of Ω (filled in gray, on the right). Here, dashed gray lines
denote open boundaries, while solid gray lines denote closed boundaries.

Similarly to what done in Chapter 3, also in this case we can compute some
“extremal” factors of particular relevance:

4In the following, we use the notation AΩ,Ω′ to emphasize the dependence of matrix A on the
choice of the regions Ω and Ω′.
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• the regular factor having no poles at infinity with regular (right) inverse
having no poles at infinity, called the minimum-phase regular factor, W−
(whose existence was proved in Theorem 3.2.1);

• the anti-regular factor with regular (right) inverse having no poles at infinity,
called the minimum-phase anti-regular factor, W−;

• the regular factor having no poles at infinity with anti-regular (right) inverse,
called the maximum-phase regular factor, W+;

• the anti-regular factor with anti-regular (right) inverse, called the maximum-
phase anti-regular factor, W+.

The four “extremal” factors are essentially unique (i.e., unique up to pre-
multiplication by orthogonal matrices) and are related each other in a manner
similar to that shown in Fig.3.3.

4.4 | An illustrative example
In this final section, we present a simple example of application of the method

described in Theorem 4.2.1.

Let us consider the following 2×2 rational spectrum

Φ(z) =

 1
(z−1/2)(z−1−1/2) +1 z−1

(z−1/2)(z−1−1/2)
z

(z−1/2)(z−1−1/2)
1

(z−1/2)(z−1−1/2) +1

 . (4.84)

It may be easily verified that Φ(z) is para-Hermitian and positive definite on the
unit circle.

Step 1. The Smith-McMillan canonical form of Φ(z) is given by

D(z) =

 1
(z−1/2)(z−2) 0

0 (z−α)(z−1/α)(z−β )(z−1/β )
(z−1/2)(z−2)

 , (4.85)

where α = 3−
√

5
2 ' 0.3820 and β = α2 = 7−3

√
5

2 ' 0.1459. The Smith-McMillan
decomposition of the spectrum Φ(z) is given by

Φ(z) =C(z)D(z)F(z), (4.86)
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where C(z) and F(z) are (non-unique) unimodular polynomial matrices, e.g.,

C(z) =

 −2 0

z2−5z+1 1
2

 , F(z) =

 −1
2z2 + 5

2 −
1
2 1

1 0

 . (4.87)

Step 2. In this case, the regular rational matrix Λ(z) is given by

Λ(z) =

 1
z− 1

2
0

0 (z−α)(z−β )

z− 1
2

 . (4.88)

Since Φ(z) does not possess any zero and pole on the unit circle, Θ(z) = I2 and,
therefore, D+(z) := Λ(z)Θ(z) = Λ(z). The matrices A(z) and B(z), defined in
(4.44) and (5.25), respectively, take the form

A(z) =

 − 2
z−2 0

z2−5z+1
z−2

(z−1/α)(z−1/β )
2(z−2)

 , (4.89)

B(z) =

 − 1
2 z2+ 5

2 z− 1
2

z− 1
2

1
z− 1

2
(z−α)(z−β )

z− 1
2

0

 . (4.90)

Step 3. We have that Ψ(z) = Θ(z)N(z)Θ−1(z) = N(z) has the form

Ψ(z) = N(z) = A∗(z)B−1(z)

=

 −1
2z+ 5

2 −
1
2z−1 −1

4z−1 (z− 1
α

)(
z− 1

β

)
−1

4z
(
z−1− 1

α

)(
z−1− 1

β

)
1

4αβ

(
−1

2z+ 5
2 −

1
2z−1)

 . (4.91)

The L-polynomial matrix Ψ(z) is para-Hermitian, L-unimodular with determinant
a positive constant, viz. detΨ(z) = 1

4αβ
= 9+4

√
5

4 ' 4.486.

Step 4. The highest-column-degree coefficient matrix of Ψ(z) = Ψ1(z) is

Ψ
hc
1 =

 −1
2 −1

4

− 1
4αβ

− 1
8αβ

 . (4.92)
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Since Ψhc
1 is singular, we calculate a vector v1 ∈R2 \{0} such that Ψhc

1 v1 = 0. In
our case such a vector is given, for example, by v1 = [1, −2]>. In order to reduce
the maximum-degree of the second column of Ψ1(z), we construct the matrix
Ω
−1
1 (z) whose structure is described in (4.60)

Ω
−1
1 (z) =

 1 −1
2

0 1

 . (4.93)

By applying to Ψ1(z) the transformation induced by Ω
−1
1 (z), we obtain a new

para-Hermitian L-unimodular matrix Ψ2(z) with lower maximum-degree in the
second column (and higher minimum-degree in the second row),

Ψ2(z) = Ω
−∗
1 (z)Ψ1(z)Ω−1

1 (z)

=

 −1
2z+ 5

2 −
1
2z−1 −5α2−α−1

4α3 − 1−α3

4α3 z−1

−5α2−α−1
4α3 − 1−α3

4α3 z 5
8

α3+1
α3 − 1

4
α+1
α2


=

 −1
2z+ 5

2 −
1
2z−1

√
5

2 − (2+
√

5)z−1
√

5
2 − (2+

√
5)z 5+2

√
5

 (4.94)

The highest-column-degree coefficient matrix of Ψ2(z) is

Ψ
hc
2 =

 −1
2

√
5

2

−(2+
√

5) 5+2
√

5

 . (4.95)

Since Ψhc
2 is singular, there exists a vector v2 ∈ R2 \{0} such that Ψhc

2 v2 = 0. In
our case such a vector is given, for example, by v2 = [1,

√
5]>. As before, we

construct a suitable unimodular matrix Ω
−1
2 (z) in order to reduce the maximum-

degree of the first column,

Ω
−1
2 (z) =

 1 0
1√
5
z 1

 . (4.96)

Eventually, by applying to Ψ2(z) the transformation induced by Ω
−1
2 (z), we obtain

| 88



4.4. AN ILLUSTRATIVE EXAMPLE |

a positive definite constant matrix Ψ3,

Ψ3 = Ω
−∗
2 (z)Ψ2(z)Ω−1

2 (z)

=

 3
2 −

2
√

5
5

√
5

2√
5

2 5+2
√

5

 (4.97)

The problem is now reduced to that of finding a matrix C such that Ψ3 = C>C.
This may be accomplished by using the Cholesky decomposition of Ψ3,

Ψ3 =C>C =

 a 0

b c

 a b

0 c

 , (4.98)

with a :=
√

3
2 −

2
√

5
5 ' 0.7782, b :=

√
75
58 +

10
√

5
29 ' 1.4367 and c :=

√
365
58 + 68

√
5

29 '
2.7216. To sum up, we have found a factorization Φ(z) = P∗(z)P(z), where P(z)
is unimodular of the form

P(z) =CΩ2(z)Ω1(z) =

 a− b√
5
z 1

2a+b− b
2
√

5
z

− c√
5
z c− c

2
√

5
z

 . (4.99)

The desired factorization of Φ(z) is given by Φ(z) =W ∗(z)W (z), where

W (z) = P(z)Θ(z)B(z) =


(
−15+6

√
5

5 b+
√

5a
)

z+(4−2
√

5)a+(9−4
√

5)b

z− 1
2

a− b√
5

z

z− 1
2

−15+6
√

5
5 cz+(9−4

√
5)c

z− 1
2

− c√
5

z

z− 1
2


'

 1.2851z−0.2874
z−0.5

−0.6425z+0.7782
z−0.5

−0.8620z+0.1517
z−0.5

−1.2171z
z−0.5

 . (4.100)

Finally, one may check that W (z) is analytic together with its inverse in {|z| ≥
1, z ∈ C} without any zero/pole at infinity.
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Φ(z) =W ∗(z)

 Ip 0p,q

0q,p −Iq

W (z)

5. DISCRETE-TIME
J-SPECTRAL FACTORIZATION

In this Chapter, we will present a J-spectral generalization (see Problem 1.4 of
Chapter 1) of the factorization Theorem 4.2.1 of Chapter 4. Notably, in this gen-
eral case, there are some critical issues which are characteristic of the J-spectral
factorization and do not occur in the standard (positive semi-definite) spectral fac-
torization. These issues concern, in particular, the existence of a J-spectral factor
and its (stochastic) minimality. As in Chapter 4, in what follows, we will deal
with the real rational case.

A remark on notation. We let Jp,q denote a constant block matrix of the form

Jp,q :=

 Ip 0p,q

0q,p −Iq

= J∗p,q = J−1
p,q. (5.1)

Moreover, in order to lighten the notation, we set C0 := C \ {0}. Other conven-
tions/notations remain unchanged from Chapters 0, 2 and 4.

5.1 | Preliminary results
The first result concerns the structure of a special class of Jp,q-para-unitary-

matrices, i.e., the class of matrices G(z) ∈ R(z)n×n satisfying

G∗(z)Jp,qG(z) = G(z)Jp,qG∗(z) = Jp,q, p+q = n. (5.2)

Lemma 5.1.1 The only DT regular Jp,q-para-unitary matrices with regular
inverse are DT Jp,q-para-unitary matrices analytic together with their inverse
in C0 \{e jω , ω ∈ [0,2π)}.

PROOF. Let G(z) ∈ R(z)n×n be a DT regular Jp,q-para-unitary matrix. Since Jp,q
is a constant matrix, the analyticity of the inverse of G(z),

G−1(z) = Jp,qG∗(z)Jp,q, (5.3)
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in {|z|> 1, z∈C} implies that of G(1/z) in the same region, and therefore that of
G(z) in {|z|< 1, z ∈ C0}. Thus, G(z) is analytic together with its inverse G−1(z)
in the region C0 \{e jω , ω ∈ [0,2π)}. �

From the previous Lemma, it follows that a DT regular Jp,q-para-unitary ma-
trix with regular inverse may possess poles on the unit circle. In fact, for instance,

G(z) =

 2z
1−z

1+z
1−z

1+z
1−z

2
1−z

 (5.4)

is J1,1-para-unitary and has a pole and a zero at z = 1. It is worthwhile noticing
that the latter fact cannot happen if Jp,q = In, i.e., if G(z) is simply a DT para-
unitary matrix. Indeed, in this case, G(z) is analytic together with its inverse in
C0, as stated in Lemma 4.1.2.

Consider a para-Hermitian rational matrix Φ(z) ∈ R(z)n×n of normal rank
rk(Φ) = r ≤ n and let D(z) ∈ R(z)r×r be its Smith-McMillan canonical form.
In Chapter 4, we have seen that, if Φ(z) is positive semi-definite on the unit cir-
cle, then all the zeros/poles on the unit circle of the diagonal terms of D(z) are
of even multiplicity (Lemma 4.1.4). This fact, in general, does not hold if Φ(z)
has constant inertia upon the unit circle, i.e., if in(Φ(e jω)) = (νp,ν0,νn) for all
ω ∈ [0,2π) (z = e jω not a zero/pole of Φ(z)).

Indeed, consider the following trivial counterexample

Φex(z) =

 0 z−1
z+1

− z−1
z+1 0

 . (5.5)

The eigenvalues of Φex(e jω) are given by

λ1(ω) :=
sinω

1+ cosω
= tan

ω

2
, (5.6)

λ2(ω) :=− sinω

1+ cosω
=− tan

ω

2
. (5.7)

Hence, in(Φex(e jω)) = (1,0,1) for all ω ∈ [0,2π), ω 6= kπ , k = 0,1. However,
the Smith-McMillan canonical form of Φex(z) is

Dex(z) =

 z−1
z+1 0

0 z−1
z+1

 (5.8)
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and its diagonal terms have a zero at z= 1 and a pole at z=−1 of odd multiplicity.
In general, this pathological behaviour occurs when some of the eigenvalues

of Φ(e jω) flip their sign (from positive to negative or vice versa) while in(Φ(e jω))
remains constant. For the J-spectrum (5.5) of the previous example, the latter fact
is graphically shown in Fig.5.1.

ω

0 π−π

λ1(ω)
λ2(ω)

Figure 5.1: Eigenvalues of Φex(e jω), ω ∈ [−π,π), in (5.5).

For the sake of simplicity, in what follows, we make the additional hypothesis
that the zeros and poles on the unit circle of the diagonal elements of the Smith-
McMillan form of Φ(z) have even multiplicity. The latter is a sufficient, but not
necessary, condition for the existence of a J-spectral factor. In fact, with reference
to the previous example, we find that a J-spectral factorization actually exists, e.g.,

Φex(s) =W ∗ex(s)J1,1Wex(s), Wex(s) :=
1√
2

1 z−1
z+1

1 − z−1
z+1

 . (5.9)

The following two Lemmata will be useful in the proof of the main Theorem
of the next section.

Lemma 5.1.2 Let Ψ(z) = Ψ∗(z) ∈ R[z,z−1]r×r be a non-constant L-
unimodular matrix of normal rank rk(Ψ) = r. Let Ψhc ∈ Rr×r denote the
highest-column-degree coefficient matrix of Ψ(z). If Ψhc is non-singular, then
Ψ(z) has at least a zero entry on its diagonal.

PROOF. First of all, since Ψ(z) is L-unimodular and para-Hermitian we have that
detΨ(z) = detΨ∗(z) is a non-zero real constant. Let us denote by Ki ∈ Z, i =
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1, . . . ,r, the maximum-degree of the i-th column of Ψ(z).1 Now, suppose that
Ψ(z) has no diagonal element equal to zero. Therefore, it follows that

Ki ≥ 0, i = 1, . . . ,r. (5.10)

Moreover, by assumption, Ψ(z) is non-constant, thus there exists at least one index
j ∈ {1, . . . ,r} such that K j > 0. But then Ψhc is singular, because otherwise, by
equation (2.36) of §2.2.4, it would be maxdeg(detΨ(z))> 0. �

Lemma 5.1.3 Consider a para-Hermitian L-unimodular block matrix of the
form

Ξ(z) :=

 0p Ip

Ip Ξ22(z)

 ∈ R[z,z−1]2p×2p. (5.11)

There exists a factorization

Ξ(z) =U∗(z)CU(z), (5.12)

with U(z) ∈ R[z,z−1]2p×2p L-unimodular and C ∈ R2p×2p constant symmet-
ric.

PROOF. The proof is constructive. By direct computation, we have

Ξ(z) =

 0p Ip

Ip Ξ22(z)


=

 Ip
1
2Ξ22(z)

0p Ip

∗ 0p Ip

Ip 0p

 Ip
1
2Ξ22(z)

0p Ip

 . (5.13)

Hence, by defining

U(z) :=

 Ip
1
2Ξ22(z)

0p Ip

 , C :=

 0p Ip

Ip 0p

 , (5.14)

we have constructed a factorization of the form (5.12). �

1Recall the Definition 2.2.11 of maximum-degree of a L-polynomial vector.
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5.2 | The main theorem
The following Theorem may be considered the “J-spectral” generalization of

Theorem 4.2.1 and is the main result of this Chapter.

Theorem 5.2.1 Let Φ(z) = Φ∗(z) ∈R(z)n×n be a DT para-Hermitian matrix
of normal rank rk(Φ) = r ≤ n which has constant inertia on the unit circle,
i.e., in(Φ(e jω)) = (νp,ν0,νn) for all ω ∈ [0,2π) such that z = e jω is not a
zero/pole of Φ(z). Furthermore, assume that the zeros and poles on the unit
circle of the diagonal entries of the Smith-McMillan canonical form of Φ(z)
have even multiplicity. Then, there exists a rational matrix W (z) ∈ R(z)r×n

such that

(i) Φ(z) =W ∗(z)Jνp,νnW (z).

(ii) W (z) and its (right) inverse W−R(z) are both analytic in {|z| > 1, z ∈
C}.

(iii) If W1(z) ∈ R(z)r×n also satisfies points (i) and (ii), then W1(z) =
T (z)W (z), with T (z) ∈ R(z)r×r being a DT Jνp,νn-para-unitary matri-
ces analytic together with its inverse in C0 \{e jω , ω ∈ [0,2π)}.

(iv) Any factorization of the form Φ(z) = L∗(z)Jνp,νnL(z) in which L(z) ∈
R(z)r×n is analytic in {|z| > 1, z ∈ C}, is given by L(z) = V (z)W (z),
V (z) ∈ R(z)r×r being an arbitrary, DT regular Jνp,νn-para-unitary ma-
trix.

(v) If Φ(z) is analytic on the unit circle, then W (z) is analytic in a region
{|z|> τ, τ < 1, z ∈ C}.

(vi) If Φ(z) is analytic on the unit circle and the rank of Φ(z) is constant
on the unit circle, then W (z) and its (right) inverse W−R(z) are both
analytic in a region {|z|> τ1, τ1 < 1, z ∈ C}.

PROOF. We address first statement (iii). Let W (z) and W1(z) be two matrices
satisfying (i) and (ii). Then,

W ∗(z)Jνp,νnW (z) =W ∗1 (z)Jνp,νnW1(z). (5.15)
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By defining T (z) :=W1(z)W−R(z), in view of the previous identity, we have

T ∗(z)Jνp,νnT (z) = Jνp,νn. (5.16)

By points (i) and (ii), we observe that T (z) must be analytic in {|z| > 1, z ∈ C}.
Hence, T (z) ∈ R(z)r×r is a regular Jνp,νn-para-unitary matrix. Equation (5.15)
also yields

T (z) = Jνp,νnW
−R∗
1 (z)W ∗(z)Jνp,νn (5.17)

so that T−1(z) = Jνp,νnT ∗(z)Jνp,νn = W (z)W−R
1 (s) is also regular. By applying

Lemma 5.1.1, we conclude that T (z) must be a Jνp,νn-para-unitary matrix analytic
together with its inverse in C0 \{e jω , ω ∈ [0,2π)}.

Consider now assertion (iv). Let Φ(z) = L∗(z)Jνp,νnL(z) where L(z)∈R(z)n×r

is analytic in {|z| > 1, z ∈ C}. (In this case we do not suppose that L−R(z) is
analytic in {|z|> 1, z ∈ C}). We have

L∗(z)Jνp,νnL(z) =W ∗(z)Jνp,νnW (z). (5.18)

The latter equation implies

V ∗(z)Jνp,νnV (z) = Ir, (5.19)

where V (z) := L(z)W−R(z) and W (z) ∈ R(z)r×n is a rational matrix satisfying
points (i) and (ii). Since L(z) and W−R(z) are both analytic in {|z| > 1, z ∈ C},
then, by (5.19), V (z) ∈ R(z)r×r is a regular Jνp,νn-para-unitary matrix and we are
done.

The proof of statement (i) and (ii) is constructive and is split in four steps,
as in the standard (positive semi-definite) case of Theorem 4.2.1. Steps 1–3 are
essentially the same of the corresponding steps of Theorem 4.2.1. Thus, we will
very briefly review these steps and we refer the reader to Theorem 4.2.1 for de-
tails. A more in-depth analysis will be devoted to step 4, which represents the
main difference between the present Theorem and the aforementioned one.

Step 1. Reduce Φ(z) to the Smith-McMillan form

Φ(z) =C(z)D(z)F(z), (5.20)
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C(z) ∈R[z]n×r, F(z) ∈R[z]r×n being unimodular and D(z) ∈R(z)r×r of the form

D(z) = diag
[

ε1(z)
ψ1(z)

,
ε2(z)
ψ2(z)

, . . . ,
εr(z)
ψr(z)

]
, (5.21)

where εk(z), ψk(z), k = 1, . . . ,r, are relatively prime monic polynomials such that
εk(z) | εk+1(z), ψk+1(z) | ψk(z), k = 1, . . . ,r−1.

Step 2. Since, by assumption, the zeros and poles of the diagonal elements of
D(z) are of even multiplicity, we can rearrange D(z) in the form

D(z) = Σ(z)Λ∗(z)∆̃(z)Λ(z), (5.22)

where:

1. Λ(z) ∈ R(z)r×r is diagonal, canonic and analytic together with Λ−1(z) in
{|z| ≥ 1, z ∈ C} and possesses the same structural indices at z = 0 of D(z);

2. ∆̃(z) := Θ∗(z)Θ(z) = ∆̃∗(z), where Θ(z) ∈R(z)r×r is diagonal, canonic and
analytic together with Θ−1(z) in {|z| 6= 1, z ∈ C};

3. Σ(z) ∈ R(z)r×r is diagonal of the form

Σ(z) = diag [e1(z),e2(z), . . . ,er(z)] , (5.23)

where ei(z) = αizki, αi ∈ R\{0}, ki ∈ Z, i = 1, . . . ,r.

Let

A(z) :=C(z)Σ(z)Λ∗(z), (5.24)
B(z) :=Λ(z)F(z). (5.25)

The decomposition

Φ(z) = A(z)∆̃(z)B(z) (5.26)

is a DT left-standard factorization of Φ(z).

Step 3. Let us define

I(z) := B−R(z)Θ−1(z). (5.27)
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We have

I∗(z)Φ(z)I(z) = Θ(z)N(z)Θ−1(z), (5.28)

where N(z) := A∗(z)B−R(z) ∈ R[z,z−1]r×r is a L-unimodular matrix. Let

Ψ(z) := Θ(z)N(z)Θ−1(z). (5.29)

By following the same argument used in the step 3 of Theorem 4.2.1, we find that
Ψ(z) is a para-Hermitian L-unimodular matrix which has constant inertia upon the
unit circle, viz. in(Ψ(e jω)) = (νp,0,νn) for all ω ∈ [0,2π). Hence, the problem
is reduced to that of factorizing Ψ(z) in the form

Ψ(z) = P∗(z)Jνp,νnP(z), (5.30)

where P(z) ∈ R[z,z−1]r×r is a L-unimodular matrix. After this is achieved, the
desired factorization for Φ(z) is obtained as Φ(z) =W ∗(z)Jνp,νnW (z) with

W (z) := P(z)Θ(z)B(z)
= P(z)Θ(z)Λ(z)F(z)
= P(z)D+(z)F(z), (5.31)

with D+(z) := Θ(z)Λ(z). Indeed,

W ∗(z)Jνp,νnW (z) = B∗(z)Θ∗(z)P∗(z)Jνp,νnP(z)Θ(z)B(z)

= B∗(z)∆̃(z)N(z)B(z)

= B∗(z)∆̃(z)A∗(z)
= Φ

∗(z)
= Φ(z). (5.32)

Step 4. In what follows, we will describe an algorithm which provides a factor-
ization of a L-unimodular matrix Ψ(z) ∈ R[z,z−1]r×r with constant inertia on the
unit circle into the product P∗(z)Jνp,νnP(z), where P(z) is a L-unimodular poly-
nomial matrix. This algorithm can be viewed as an extension of the procedure
described in the step 4 of Theorem 4.2.1. Notice that in this case P(z) is required
to be L-unimodular rather than unimodular.

The proposed algorithm consists of the successive application of three types
of steps. We define Ψ1(z) := Ψ(z) and denote by h ∈ N the loop counter of the
algorithm, which is initially set to h := 1.
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I. Let Ki ∈Z, i = 1, . . . ,r, be the maximum-degree of the i-th column of Ψh(z).
Consider the highest-column-degree coefficient matrix of Ψh(z), denoted by
Ψhc

h (recall the definition given in §2.2.4).

At this point, if Ψh(z) is a constant matrix, we skip to step II; else if Ψhc
h

is non-singular, we go to step III. Otherwise, we proceed as in step 4-I of
Theorem 4.2.1. We compute a non-zero vector vh = [v1 v2 . . . vr]

> ∈ Rr

such that Ψhc
h vh = 0. We define the active index set

I := {i : vi 6= 0} (5.33)

and the highest maximum-degree active index set, M ⊂I ,

M := {i ∈I : Ki ≥ K j, ∀ j ∈I }. (5.34)

We choose an index p ∈M . Hence, we calculate the unimodular matrix

column p

Ω
−1
h (z) :=



1 · · · 0 v1
vp

zKp−K1 0 · · · 0

0 . . . ... 0
... 1 vp−1

vp
zKp−Kp−1

...
... 1

...
... vp+1

vp
zKp−Kp+1 1

...

0
... . . . 0

0 · · · 0 vr
vp

zKp−Kr 0 · · · 1


. (5.35)

By operating the transformation

Ψh+1(z) := Ω
−∗
h (z)Ψh(z)Ω−1

h (z), (5.36)

we obtain a new matrix Ψh+1(z) with the same inertia on the unit circle of
Ψh(z). Moreover, the maximum-degree of the p-th column of Ψh+1(z) is
lower than Kp, while the maximum-degree of the i-th column, i 6= p, is not
greater than Ki. One can verify the latter assertion by following the same
lines of step 4-I of Theorem 4.2.1.

Then, we set h := h+1 and return to step I.
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II. Since Ψh ∈ Rr×r is symmetric and in(Ψh) = (νp,0,νn), we can always fac-
torize it into the product Ψh =C>Jνp,νnC where C ∈ Rr×r, e.g., by means of
a Schur decomposition (see Golub and Van Loan [1996, Ch.7]).

III. In this case, by Lemma 5.1.2, Ψh(z) has at least one diagonal entry equal to
zero. Hence, by suitable symmetric row and column permutations, we can
bring Ψh(z) into the block matrix form

Ψ
′
h(z) := T>Ψh(z)T =

 0p Ψ′∗h,21(z)

Ψ′h,21(z) Ψ′h,22(z)

 (5.37)

Notice that Ψ′h,21(z) is tall (i.e., has at least as many rows as columns), oth-
erwise Ψ′h(z) would be singular. By pre-multiplying Ψ′h,21(z) by a suitable
L-unimodular matrix V (z) ∈R[z,z−1](r−p)×(r−p), we can bring Ψ′h,21(z) into
its column Hermite form (see §2.2.4),

H21(z) :=V (z)Ψ′h,21(z) =

 H ′21(z)

0r−2p,p

 , H ′21(z) ∈ R[z,z−1]p×p. (5.38)

Let us define

V ′(z) :=

 Ip 0p,r−p

0r−p,p V ∗(z)

 ∈ R[z,z−1]r×r. (5.39)

Hence, we have

Ψ
′′
h(z) :=V ′∗(z)Ψ′h(z)V

′(z)

=

 Ip 0p,r−p

0r−p,p V (z)

Ψ
′
h(z)

 Ip 0p,r−p

0r−p,p V ∗(z)


=

 0p H∗21(z)

H21(z) V (z)Ψ′h,22(z)V
∗(z)



=


0p H ′∗21(z) 0p,r−2p

H ′21(z) Ψ′′h,22(z) Ψ′′h,23(z)

0r−2p,p Ψ′′∗h,23(z) Ψ′′h,33(z)

 , (5.40)
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where we have defined

V (z)Ψ′h,22(z)V
∗(z) =:

 Ψ′′h,22(z) Ψ′′h,23(z)

Ψ′′∗h,23(z) Ψ′′h,33(z)

 . (5.41)

By equation (5.40), we find that2

detΨ
′′
h(z) = (−1)p detH ′21(z)detΨ

′′
h,33(z)detH ′∗21(z). (5.42)

Since Ψ′′h(z) is L-unimodular, the latter equation implies that H ′21(z) and
Ψ′′h,33(z) are also L-unimodular. Hence H ′21(z) = Ip.

By operating another symmetric L-unimodular transformation, we can re-
move the off-diagonal blocks Ψ′′h,23(z) and Ψ′′∗h,23(z) from (5.40). Thus, we
obtain

Ψ
′′′
h (z) := Q∗(z)Ψ′′h(z)Q(z)

=


0p Ip 0p,r−2p

Ip Ψ′′h,22(z) 0p,r−2p

0r−2p,p 0r−2p,p Ψ′′h,33(z)

 , (5.43)

with

Q(z) :=


Ip 0p −Ψ′′h,23(z)

0p Ip 0p,r−2p

0r−2p,p 0r−2p,p Ir−2p

 ∈ R[z,z−1]r×r. (5.44)

Now the block square upper-left corner [Ψ′′′h (z)]1:2p,1:2p in (5.43) can be fac-
torized as shown in Lemma 5.1.3, while, the factorization of the L-unimodular
para-Hermitian matrix Ψ′′h,33(z) follows recursively from step I.

At the end of the recursion, we find a L-unimodular U−1(z) ∈ R[z,z−1]r×r

such that

Ψh+1 :=U−∗(z)Ψh(z)U−1(z), (5.45)

is a constant symmetric matrix. Eventually, we update the value of h by
setting h := h+1 and go to step II.

2This fact may be seen by bringing Ψ′′h(z) in (5.40) to triangular block form by suitable row-
column permutations. Then, the determinant is given by the product of the determinants of the
blocks on the diagonal (up to a plus-minus sign).
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To sum up, we have constructed a L-unimodular matrix

P(z) =CU(z)Ωh−1(z)Ωh−2(z) · · ·Ω1(z) (5.46)

such that

Ψ(z) = P∗(z)Jνp,νnP(z). (5.47)

It is worthwhile noticing that, if it is not required to perform step III, then U(z)= Ir
and P(z) is unimodular, since Ωh−1(z), . . . ,Ω1(z) are so.

By introducing P(z) in equation (5.31), we obtain the desired factor W (z) =
P(z)D+(z)F(z). Since F(z) is unimodular and P(z) is, in general, L-unimodular,
we conclude that W (z) is analytic together with its (right) inverse in {|z|> 1, z ∈
C}.3 Hence, the proof of points (i)-(ii) is concluded.

The proof of assertions (v)-(vi) is similar to that of Theorem 4.2.1. Consider,
first, statement (v). If Φ(z) is analytic on the unit circle, then Θ(z) does not pos-
sess any finite pole. This, in turn, implies that D+(z) = Θ(z)Λ(z) is analytic in
{|z| > τ, τ < 1, z ∈ C}. Thus, W (z), as defined in (5.31), is also analytic in the
same region.

The additional assumption that the rank of Φ(z) is constant on the unit circle
implies that Θ(z) does not possess any finite zero. Thus, Θ(z) = Ir and, by (5.31),
W−R(z) is analytic in a region {|z|> τ̄, τ̄ < 1, z∈C}. Therefore, W (z) is analytic
together with its (right) inverse in a region {|z|> τ1, τ1 < 1, z ∈ C}, where τ1 :=
max{τ, τ̄} is completely determined by the zeros and poles of Λ(z). Hence the
last statement (vi) is proved and the proof concluded. �

A Corollary of the previous Theorem is presented below.

Corollary 5.2.1 If Φ(z) is L-polynomial then W (z) is L-polynomial.

PROOF. If Φ(z) is L-polynomial, then also D+(z) is L-polynomial. Hence, ac-
cording to (5.31), W (z) must be a L-polynomial matrix. �

In Fig.5.2 is shown a diagram of the algorithmic procedure used in the proof
of points (i)-(ii) of Theorem 4.2.1.

3Notice that W (z) (and/or W−R(z)) may have a pole at z = ∞. In the next section, we will
address this problem in more detail.
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Compute the
Smith-McMillan
decomposition

Φ(z) =C(z)D(z)F(z)

Φ(z) = Φ∗(z)

Compute the left-
standard factorization
Φ(z) = A(z)∆̃(z)B(z),

∆̃(z) = Θ∗(z)Θ(z)

Compute the L-
unimodular polynomial
matrix Ψ(z) = Ψ1(z)

Compute the
factorization

Ψ(z) = P∗(z)Jνp,νnP(z),
P(z) L-unimodular

W (z) = P(z)Θ(z)B(z)

Is Ψh(z)
constant?

Is Ψhc
h non-

singular?

Compute (recursively)
the constant

matrix Ψh+1 =

U−∗(z)Ψh(z)U−1(z)

Reduce the maximum-
degree of a column
of Ψh(z), Ψh+1(z) =
Ω
−∗
h (z)Ψh(z)Ω−1

h (z)

Compute a decompo-
sition Ψh =C>Jνp,νnC

Compute the
factor P(z) =

CU(z)Ωh−1(z) · · ·Ω1(z)

no

no

yes

(h := h+1)

(h := h+1) yes

Figure 5.2: Schematic representation of the procedure used for the construction of the
factorization Φ(z) =W ∗(z)Jνp,νnW (z).

103 |



| CHAPTER 5. DISCRETE-TIME J-SPECTRAL FACTORIZATION

5.3 | Some additional remarks

The factor W (z) computed by using the procedure described in the previ-
ous section and its (right) inverse W−R(z) may possess poles at infinity. More-
over, W (z) is not, in general, (stochastically) minimal, since it may happen that
δM(W ) > 1

2δM(Φ) for some particular J-spectra Φ(z) (see the example of the
next section). However, as stated in the Theorem below, there exists a simple
condition that ensures that both W (z) and W−R(z) have no poles at infinity and
δM(W ) = 1

2δM(Φ).

Theorem 5.3.1 Let Φ(z) = Φ∗(z) ∈R(z)n×n be a DT para-Hermitian matrix
of normal rank rk(Φ) = r≤ n which satisfies the conditions of Theorem 5.2.1.
Consider the factorization Φ(z) =W ∗(z)Jνp,νnW (z) where W (z) ∈R(z)r×n is
computed by following the procedure described in the proof of Theorem 5.2.1.
If it is not necessary to perform step 4-III of the procedure, then

(i) W (z) and its (right) inverse W−R(z) are both analytic in {|z|> 1, z∈C}
without poles at infinity.

(ii) W (z) is (stochastically) minimal, i.e.,

δM(W ) =
1
2

δM(Φ). (5.48)

PROOF. First of all, we recall that

Φ(z) =C(z)D(z)F(z) (5.49)

is the Smith-McMillan decomposition of Φ(z). Moreover, by equation (5.31), we
have

W (z) = P(z)D+(z)F(z), (5.50)

where D+(z)∈R(z)r×r is diagonal, canonic, regular and possesses the same struc-
tural indices at z = 0 of D(z) and F(z) ∈ R[z]r×n is unimodular. If it is not nec-
essary to perform step 4-III of the constructive procedure of Theorem 5.2.1, by
equation (5.46), P(z) ∈ R[z]r×r is also unimodular (rather than L-unimodular).
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Since Φ(z) =W ∗(z)Jνp,νnW (z), by direct calculation, we have

W ∗(z) = Φ(z)W−R(z)Jνp,νn

=C(z)D(z)F(z)F−R(z)D−1
+ (z)P−1(z)Jνp,νn

=C(z)D(z)D−1
+ (z)P−1(z)Jνp,νn

=C(z)D−(z)P−1(z)Jνp,νn, (5.51)

where D−(z) := D(z)D−1
+ (z) has no pole at z = 0. Since P−1(z), C(z) are uni-

modular and Jνp,νn is constant, in view of the previous equation, W ∗(z) has no
pole at z = 0. The latter fact, in turn, implies that W (z) has no pole at z = ∞. A
similar argument can be used to prove that also W−R(z) has no pole at z = ∞. This
concludes the proof of point (i).

The proof of statement (ii) is essentially the same of that of Theorem 4.3.1 of
Chapter 4. �

To conclude this section, we notice that is always possible to find, under the
hypotheses of Theorem 5.2.1, a J-spectral factor which is analytic together with
its (right) inverse in {|z| > 1, z ∈ C} and, in addition, has no pole at infinity.
In fact, let W (z) be a J-spectral factor of Φ(z) computed by using the procedure
described in Theorem 5.2.1. Let us define

` :=−min
i, j

v∞

(
[W (z)]i j

)
, (5.52)

where v∞(·) denotes the valuation at infinity of a rational function (see §2.1.4).
Then, we have that

W ′(z) :=
W (z)

z`
(5.53)

satisfies points (i) and (ii) of Theorem 5.2.1 and has no pole at infinity.

5.4 | An illustrative example

In this section, we present a worked example of the factorization algorithm
described in Theorem 5.2.1.
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Let us consider the following J-spectrum

Φ(z) =

 1
(z−2)(z−1−2) + ε

z
(z−2)(z−1−2)

z−1

(z−2)(z−1−2)
1

(z−2)(z−1−2) − ε

 , ε ∈ R\{0}. (5.54)

One can verify that in(Φ(e jω)) = (1,0,1) for all ω ∈ [0,2π).

Step 1. The Smith-McMillan decomposition of Φ(z) is given by

Φ(z) =C(z)D(z)F(z), (5.55)

with D(z) canonical of the form

D(z) =

 1
(z−2)(z−1/2) 0

0 (z−2)(z−1/2)

 , (5.56)

while the (highly non-unique) unimodular matrices C(z) and F(z) may be taken
to be

C(z) =

εz2− 1+5ε

2 z+ ε 1

−1
2 0

 , F(z) =

1 2εz2 +(1−5ε)z+2ε

0 −2ε2

 . (5.57)

Step 2. With reference to the notation introduced in the corresponding step of
Theorem 5.2.1, we have

Λ(z) =

 1
z− 1

2
0

0 z− 1
2

 , Σ(z) =

− 1
2z 0

0 −2z

 , Θ(z) = I2, (5.58)

Thus, by computing

A(z) =C(z)Σ(z)Λ∗(z) =

 εz2− 1+5ε

2 z+ε

z−2 z−2

− 1
2(z−2) 0

 , (5.59)

B(z) = Λ(z)F(z) =

 1
z− 1

2

2εz2+(1−5ε)z+2ε

z− 1
2

0 −2ε2 (z− 1
2

)
 , (5.60)
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we find that Φ(z) = A(z)∆̃(z)B(z), with ∆̃(z) = Θ∗(z)Θ(z) = I2, is a DT left-
standard factorization of Φ(z).

Step 3. Since Θ(z) = Ir, we have

Ψ(z) = Θ(z)N(z)Θ−1(z) = N(z) = A∗(z)B−1(z). (5.61)

Hence, by direct computation, we obtain

Ψ(z) =

−1
2εz+ 1+5ε

4 −
1
2εz−1 −2z−1 +2+ 1

2z

−2z+2− 1
2z−1 −2

ε
z− 1−5ε

ε2 − 2
ε
z−1

 , ε ∈ R\{0}. (5.62)

Step 4. Let Ψ1(z) := Ψ(z). The highest-column-degree coefficient matrix of
Ψ1(z) is given by

Ψ
hc
1 =

−1
2ε −1

2

−2 −2
ε

 (5.63)

and is singular for all ε ∈ R \ {0}. Thus, we compute a non-zero vector v1 such
that Ψhc

1 v1 = 0, e.g., v1 = [1, −ε]>. Then, we construct the unimodular matrix

Ω
−1
1 (z) =

1 0

ε 1

 , (5.64)

and we conclude the first reduction cycle by computing

Ψ2(z) = Ω
−∗
1 (z)Ψ1(z)Ω−1

1 (z)

=

 −3+9ε

4
3
2z+ 1−5ε

ε
+2

3
2z−1 + 1−5ε

2 +2 −2
ε
z− 1−5ε

ε2 − 2
ε
z−1

 , ε ∈ R\{0}. (5.65)

The highest-column-degree coefficient matrix of Ψ2(z) has the form

Ψ
hc
2 =

−3+9ε

4
3
2

1−3ε

ε
−2

ε

 (5.66)
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and is singular for all ε ∈ R \ {0} except for ε = 1/3. In fact, in the latter case,
the first diagonal entry of Ψ2(z) is equal to zero and by (5.65)

Ψ
hc
2 =

0 3
2

3
2 −6

 (5.67)

which is clearly non-singular. Consider first the case ε 6= 1/3. As before, we
calculate a non-zero vector v2 such that Ψhc

2 v2 = 0, e.g., v2 = [2/(1−3ε), 1]>.
Finally, we compute the unimodular matrix

Ω
−1
2 (z) =

1 2
1−3ε

z

0 1

 . (5.68)

and obtain the constant symmetric matrix

Ψ3 = Ω
−∗
2 (z)Ψ2(z)Ω−1

2 (z)

=

−3+9ε

4
1−3ε

ε

1−3ε

ε

−12ε2+8ε−1
ε2(1−3ε)

 , ε ∈ R\{0,1/3}. (5.69)

Since in(Ψ3) = (1,0,1) for all ε ∈ R\{0,1/3}, there exists a factorization of the
form Ψ3 =C>J1,1C for all ε ∈ R\{0,1/3} with

C =


1√
ε− 1

3

[
3
2ε− 1

2
−6ε+2

3ε

0 1
3ε

]
if ε > 1

3 ,

1√
−ε+ 1

3

[
0 1

3ε

−3
2ε + 1

2
6ε−2

3ε

]
if ε < 1

3 , ε 6= 0.
(5.70)

Eventually, we compute the J-spectral factor

W (z) = P(z)Θ(z)B(z)

=



1√
ε− 1

3

 εz− 1
2 ε+ 1

6
z− 1

2

1
6 z

z− 1
2

1
3

z− 1
2

1
3 z−εz+ 1

2 ε

z− 1
2

 if ε > 1
3 ,

1√
−ε+ 1

3


1
3

z− 1
2

1
3 z−εz+ 1

2 ε

z− 1
2

−εz+ 1
2 ε− 1

6
z− 1

2

− 1
6 z

z− 1
2

 if ε < 1
3 , ε 6= 0.

(5.71)
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where P(z) = CΩ2(z)Ω1(z). It may be verified that W (z) has no zero/pole at in-
finity and it is (stochastically) minimal, i.e., δM(W ) = 1

2δM(Φ).

Now consider the particular case ε = 1/3. By plugging this value into equation
(5.65), we obtain

Ψ2(z) =

 0 3
2z

3
2z−1 −6z+6−6z−1

 . (5.72)

As shown before, Ψhc
2 is non-singular, so we have to apply step 4-III of Theorem

5.2.1. By using the same nomenclature introduced in Theorem 5.2.1, we have
T = Ir and so Ψ′2(z) = Ψ2(z). Hence, we compute the matrix

V ′(z) =

1 0

0 2
3z−1

 (5.73)

such that

Ψ
′′
2(z) =V ′∗(z)Ψ′2(z)V

′(z)

=

0 1

1 −8
3z+ 8

3 −
8
3z−1

 . (5.74)

Then, as shown in Lemma 5.1.3, we reduce Ψ′′2(z) to a constant symmetric matrix

Ψ3 =

1 −1
2 p(z)

0 1

∗Ψ
′′
2(z)

1 −1
2 p(z)

0 1

=

0 1

1 0

 (5.75)

with p(z) := −8
3z+ 8

3 −
8
3z−1. To sum up, we find that the overall L-unimodular

transformation of this cycle is given by

U−1(z) =V ′(z)

1 −1
2 p(z)

0 1

=

1 4
3z− 4

3 +
4
3z−1

0 2
3z−1

 . (5.76)

To conclude, we factorize Ψ3 as Ψ3 =C>J1,1C, with

C =
1√
2

1 1

1 −1

 . (5.77)
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Finally, we find that the factor W (z) has the form

W (z) = P(z)Θ(z)B(z)

=
1√
2

−
2
3 z2+ 7

6 z+ 1
3

z− 1
2

1
3 z2− 1

12 z+ 1
3

z− 1
2

− 2
3 z2+ 1

6 z+ 1
3

z− 1
2

1
3 z2− 7

12 z+ 1
3

z− 1
2

 . (5.78)

where P(z) = CU(z)Ω1(z). Notably, in this case W (z) has a pole at infinity and
it is not (stochastically) minimal, since one may check that δM(W ) = δM(Φ). By
multiplying all the entries of W (z) by 1/z, we obtain the factor

W ′(z) :=
W (z)

z
(5.79)

which has no pole at infinity, but the same McMillan degree of W (z).

| 110



6. CONCLUSIONS

In this thesis, we dealt with two crucial problems in systems and control the-
ory, namely, the spectral and the J-spectral factorization problem.

The continuous-time spectral factorization problem was solved by using a
well-known factorization algorithm due to Youla. In Chapter 3, we described
in detail this approach. In order to explain more clearly certain critical points and
make the discussion more self-contained, we introduced some minor modifica-
tions of the original method (cf. the proof of Lemma 3.1.4 and the step 4 of the
proof of Theorem 3.2.1). Moreover, in section §3.3, we pointed out two impor-
tant features of the method. The first one concerns the (stochastic) minimality of
the Youla’s spectral factor, while the second one the possibility of modifying the
region of analyticity of the spectral factor and that of its (right) inverse without
significantly affecting the algorithm’s structure.

In Chapter 4, we presented a discrete-time version of Youla’s algorithm. In
particular, the main difference between the continuous- and the discrete-time ap-
proach may be found in the step 4 of the constructive proof of Theorem 4.2.1.
Here, we discussed in detail an ad hoc procedure to unimodularly factorize a para-
Hermitian L-unimodular matrix. Furthermore, in analogy to the continuous-time
case, we listed, in section §4.3, some remarkable properties of the factorization
approach.

Finally, in Chapter 5, we proposed a “J-spectral” generalization of the factor-
ization algorithm analyzed in Chapter 4. This method works under mild assump-
tions on the Smith-McMillan canonical form of the J-spectrum. Moreover, in sec-
tion §5.3, we established a simple condition to ensure the (stochastic) minimality
of the J-spectral factor. Unlike the most common approaches studied in literature
which are based on state-space methods and on the solution of suitable AREs,
the proposed J-spectral factorization approach allows, in the author’s opinion, to
investigate in more detail the internal matrix structure of the J-spectral factor.
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There are a number of interesting directions in which our work could be ex-
tended; in particular, with reference to the J-spectral factorization method de-
scribed in Chapter 5. Firstly, one may study a continuous-time counterpart of
the latter approach. Secondly, the initial assumptions on the Smith-McMillan
canonical form of the J-spectrum may be removed or replaced by weaker ones.
Eventually, it would be interesting to exploit this method in order to derive some
conditions on the (stochastic) minimality of J-spectral factor which rely on some
“structural properties” of the J-spectrum.
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