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"A scientist studies what is, whereas an engineer creates what never was."

Ð Théodore von Karman





ABSTRACT

Boundary Layer Ingestion (BLI) propulsion is a promising concept in aviation engineering that aims
to improve aircraft efficiency. The ingestion of a distorted inlet flow, however, introduces stability
challenges due to the reduction of the stall margin. This thesis aims to create a family of profiles that can
perform efficiently with different values of inlet Mach number and incidence angles, thereby extending
the operational range. A multi-point multi-objective optimization was used to find the main features
of distortion-tolerant profiles. A Bayesian optimizer was used for its convergence velocity. Objective
function evaluations were made using CFD simulations, performed with 3D RANS software adapted
for bi-dimensional evaluations. Two significant blade sections were chosen for the optimization, namely
the tip and mid-span. High total pressure ratio individuals have low thickness ratio and higher flow
deflection. In both blade sections, improvement up to 5% was achieved compared to the initial cascade.
High-efficiency individuals are thick and straight at the blade tip, resulting in a gain of up to 15%
compared to the baseline, due to decreased shock losses. At mid-span, an increase of 11% is achieved
with thin and straight profiles by reducing wake losses. A comparison between the Bayesian optimizer
and a well-proven Genetic algorithm is conducted. The effectiveness of the first optimizer was confirmed
and earlier convergence was observed.
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SOMMARIO

La propulsione BLI (Boundary Layer Ingestion) è un concetto promettente nell’ingegneria aeronautica che
mira a migliorare l’efficienza degli aerei. L’ingestione di un flusso di ingresso distorto, tuttavia, introduce
problemi di stabilità dovuti alla riduzione del margine di stallo. Questa tesi mira a creare una famiglia
di profili che possano funzionare in modo efficiente con diversi valori di numero di Mach in ingresso
e angoli di incidenza, estendendo così la margine operativo. Per trovare le caratteristiche principali
dei profili tolleranti alle distorsioni è stata utilizzata un’ottimizzazione multi-punto multi-obiettivo.
Un ottimizzatore Bayesiano è stato impiegato per la sua velocità di convergenza. Le valutazioni della
funzione obiettivo sono state effettuate con simulazioni CFD, eseguite con un software RANS 3D adattato
per valutazioni bidimensionali. Per l’ottimizzazione sono stati scelti due sezioni palari significative,
ovvero il tip e il mid-span. Gli individui con un elevato rapporto di compressione totale hanno un basso
rapporto di spessore e una maggiore deflessione del flusso. Entrambe le sezioni della pala dimostrano
un miglioramento fino al 5% rispetto alle schiere iniziali. Gli individui ad alta efficienza sono spessi e
rettilinei al tip della pala, con un guadagno fino al 15% rispetto alla baseline, grazie alla riduzione delle
perdite per urto. A mid-span, si ottiene un aumento dell’11% con profili sottili e rettilinei, riducendo le
perdite di scia. È stato condotto un confronto tra l’ottimizzatore bayesiano e un algoritmo genetico ben
collaudato. L’efficacia del primo ottimizzatore è stata confermata e si è osservata una convergenza più
rapida.
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1 INTRODUCTION

In recent years, awareness of how different means of transportation affect the environment grew. This is
caused especially from the significant impact of carbon dioxide (CO2) emissions on long-term climate
change [1]. In this context, the European Commission created a long-term plan in 2018 to achieve
carbon neutrality (Net-Zero) by 2050 [2]. Although aviation currently contributes only about 2.5% to
environmental pollution [3], forecasts predict a substantial annual average growth of 4.2% in global
passenger numbers from 2023 to 2040 [4].

To reduce carbon emissions, new aviation concepts are being developed, aiming to enhance aircraft
efficiency. This not only helps in reducing emissions but also lowers the cost of flying. One concept
proposed to decrease carbon emissions by enhancing plane efficiency is the Boundary Layer Ingestion
(BLI) propulsion. The fundamental concept behind BLI propulsion is to improve the overall efficiency
of the aircraft by revitalizing the boundary layer that develops on the vehicle surface. This allows for a
reduction in fuel consumption by reducing the drag of the aircraft and increasing the engine propulsive
efficiency. The concept of BLI propulsion has been known for a long time. Early studies conducted
by Smith et al. [5] more than 70 years ago already confirmed the potential of the solution. While the
BLI configuration promises enhanced vehicle efficiency, the ingestion of the boundary layer introduces
stability challenges for the engine. These issues are primarily due to the decreased surge margin available
[6]. This latter raises considerable concerns about aircraft safety.

Over the years, many studies were conducted to understand flow physics and develop multi-fidelity
tools to address the problem. Here, some research contributions are reported and briefly described.

Investigations using Computational Fluid Dynamics (CFD) tools were performed to understand the
effects of distorted inflows on compressors. Fidalgo et al. [7] investigate the aerodynamics of NASA rotor
67 operating in a transonic regime with a 120-degree circumferential distortion in stagnation pressure to
understand the fan behaviour. Using high-fidelity, full-annulus, unsteady CFD, the researchers observe
a redistribution of incoming quantities, due to the total pressure distortion. This redistribution caused
the fan to work differently around the annulus and also distorted conditions were observed after the
compressor stage. A variation of the shock passage was also observed.

Lesser et al. [8] used numerical data and an analytical approach to understand how circumferential
distortions are transported throughout a transonic fan. The main finding was the role of the decoupled
speed of propagation of the inflow velocity and static pressure distortions which increases the distorted
sector and causes the variation of the distortion after the fan stage. The results of the transportation
phenomena were general since they were not dependent on the specific compressor geometry. Also, the
flow field at the tip of the compressor was studied since the area is critical for stability. Conditions similar
to near-stall were observed with no separation occurring. Overall in the distorted area, the compressor
was working beyond the surge line.

Gunn et al. [9] studied a BLI fan at cruise conditions to understand the fluid dynamics and the loss
causes using full annulus CFD simulations along with high-resolution experimental data. Researchers
observed that one of the main causes for the loss of efficiency was the off-design conditions across the
annulus due to the inlet distortion. This was present in both the transonic and subsonic test cases.

Several methods were developed for predicting the performances of compressors under distorted
inflows. One of the first was the parallel compressors theory proposed by Pearson et al. [10]. This theory
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calculates the performance of the compressor as the weighted sum of two compressors working with
the same angular velocity and static back pressure. The first operating under free-stream conditions
with a high total pressure; the second with a low total pressure, simulating the distorted inflow. This
method deals with total pressure circumferential distortions. A modified version was proposed in 2011 by
Cousins et al. [11], extending the theory also to complex circumferential patterns, swirl, and temperature
distortions.

Concerning the solutions proposed to mitigate the inlet distortion effects, one was submitted by Shaw
et al. [12]. Researchers investigate the impact of variable inlet guide vanes (VIGV) on a transonic fan with
distorted inlet flow. Specifically, the study revealed that the implementation of VIGVs not only enhances
performance but also increases stability margins by mitigating the presence of the swirl at the fan inlet.
Furthermore, a good correlation between CFD and experimental data was found.

Da et al. [13] performed an optimization on a transonic fan ingesting a distorted inflow, investigating
the best sweep angle to reduce losses. The aim was to create useful guidelines for the design of com-
pressors under distorted inflow. The final design reduced tip leakage and flow separation at the hub,
improving the efficiency also outside the design conditions.

1.1 Objectives

This thesis aims to create a family of profiles that can perform efficiently with different values of inlet
Mach number and incidence angles, thereby extending their operational range. For this purpose, a
previously designed transonic fan is taken as a test case. Two blade sections were analyzed. First, the
blade tip was studied, where a multi-point optimization was performed to create the family. The second
design point was specifically chosen to recreate the conditions under a distorted inlet. A Bayesian
optimizer was used for its velocity of convergence. A new optimization of the same problem was
performed using a well-proven Genetic algorithm to test the effectiveness of the Bayesian optimizer. The
mid-span blade section was then considered. Two Bayesian optimizations were performed using two
different strategies to induce the near-stall conditions at the second design point.
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2 METHODS

2.1 Test Case: Fan Baseline

To evaluate the improvements achieved through the optimization, a baseline was established as a
reference point. The initial fan was designed for a BLI propulsion configuration, with the engine placed
at the tail of the aircraft. Two-dimensional cascades were constructed using common geometries typical
of fans with uniform inlet flow. For example, a Multiple-Circular-Arc (MCA) airfoil was used at the tip of
the blade due to its well-known performance in low supersonic conditions. The 3D blade was generated
by stacking the 2D profiles while accounting for the distorted inflow. This procedure resulted in a fan
with 13 blades and a target fan pressure ratio of 1.3. Figure 2.1 displays the two-dimensional profiles
respectively at spans 0%, 50%, and 100%. The coordinate r and m will be defined later on, while θ is the
circumferential angle.
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Figure 2.1: Baseline blade sections at the tip (100% span), mid-span (50% span) and hub (0% span).

2.2 Parametrization

In engineering optimization tasks, the input variables often refer to the geometry of the components
being optimized. Given the complexity of turbomachinery shapes, achieving complete control over the
blade shape would require regulating each point that composes it. This would overly complicate the
problem due to the large number of variables involved. To solve this, the geometries are described using
a parameterization method. This approach facilitates effective control of the shape by adjusting the
positions of only a few "control points," thus mitigating the complexity of the problem.

In the field of turbomachinery, Bézier Curves and B-splines are widely employed as parameterization
curves, with the latter used in this study. Particularly, cubic B-splines (degree 3) were used due to their
balance between flexibility and computational efficiency. A cubic B-spline curve is a composite curve,
constructed by smoothly joining adjacent segments of polynomial curves. The curve is defined by a set
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of control points {P0, P1, . . . , Pn} with n ≥ 3 (our variables), and a set of basis functions. The control
points define n− 2 adjacent cubic curve segments. The basis functions are defined from a non-decreasing
sequence of real numbers {t0, t1, . . . , tm} called knots where for cubic functions m+1 = n+3. In general,
the points of the control polygon do not belong to the curve. This happens only if the multiplicity of the
nodal value is equal to the degree of the curve. The cubic B-spline function is defined as follows:

B(t) =

n
∑

i=0

Ni,k(t)Pi (2.1)

where k is the degree of the polynomial and Ni,k(t) are the cubic B-spline basis functions. This is the
final function of the curve. The basis functions are computed recursively as:

Nj,1(t) =







1 if ti ≤ t < ti+1

0 otherwise
(2.2)

Nj,k(t) =
t− tj

tj+k − tj
Nj,k−1(t) +

tj+k+1 − t

tj+k+1 − tj+1

Nj+1,k−1(t) (2.3)

Finally, between successive curves, second-order continuity is guaranteed: the last point of the first
curve coincides with the first point of the second curve, and at these two points there is the same tangent
(first derivative) and curvature (second derivative).

2.2.1 Parameterized Geometry

To uniquely describe a profile, two methods are possible. The first one is to parametrize separately the
suction side and the pressure side with two different curves. The second way is to reconstruct the airfoil
by using a curve for the camber line and another curve for the distribution of thicknesses. In this study,
the second strategy was used to avoid the generation of profiles with intersecting suction and pressure
sides.

The geometry is parametrized using 8 DV. The first six (x1, ..., x6) control the Camber line by describ-
ing it in the m′-β space, where β denotes the angle between the tangent to the Camber line and the axial
direction while m′ refers to the coordinate defined as:

m′ =

∫

dm

r
(2.4)

where r is the radius. The Camber line is parametrized using a cubic B-spline cure, with 6 control points,
as shown in figure 2.2. Each of the first six decision variables controls the positions of the control points
along the β axis, thereby influencing the shape of the profile.
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Figure 2.2: Parametrization of the Camber line of the baseline at the tip.

The thickness distribution is parameterized in the t−m plane, where t is denotes the thickness and m

the meridional coordinate. A cubic B-spline curve with 6 control points is used, as visible in figure 2.3.
The second, third, and fourth points (marked as red circles in the figure) are the only ones that can be
moved. In particular, the 7th decision variable (x7) controls the position of the maximum thickness by
changing the m coordinate of these three points. The value of the maximum thickness is controlled by x8,
which changes the y-axis position of the third and fourth points.
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Figure 2.3: Parametrization of the thicknesses distribution of the baseline at the tip blade section.

Finally, the DV are defined as variations in the position of the control points from their original
positions in the baseline. The variables do not directly represent the values of the final angle or thickness
but instead, quantify the deviation of each individual from the baseline values.

In tables 2.2 and 2.1 the boundaries of the DV are presented.
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Camber Line Variables [°] Thickness Variables[]
-4.5 -4.5 -4.5 -4.5 -4.5 -4.5 0.0 -1.00
4.5 4.5 4.5 4.5 4.5 4.5 1.0 0.40

Table 2.1: Decision variables boundaries for the tip blade section optimization. Final values.

Camber Line Variables [°] Thickness Variables []
-6.5 -6.5 -6.5 -6.5 -6.5 -6.5 -1.0 -0.4
5.5 5.5 5.5 5.5 5.5 5.5 1.0 0.5

Table 2.2: Decision variables boundaries for the mid-span blade section optimization. Final values.

2.3 Optimization points

In optimization problems, deciding which and how many objective functions to optimize is always
important. An error in selecting the OF can lead to results that are completely incorrect or not useful for
the specific problem. The determination of the number of objective functions to minimize or maximize
during optimization also involves a trade-off between achieving control over the desired outcome and
the number of evaluations necessary to find the solutions. As more objectives are chosen, locating the
absolute minimum of the function within the feasible region becomes progressively more challenging.
Additionally, objective functions can be calculated at a single design point (Single-Point Optimization
Problem (SPOP)) or multiple design points (Multi-Point Optimization Problem (MPOP)) extending the
computational time per individual.

Since the objective of this thesis is to identify profiles capable of handling inflows with distorted
total pressure distribution, a two-objective multi-point optimization problem is implemented. The first
objective selected is the ηpol at design conditions, while the second objective is the TPR under near-stall
conditions.

2.3.1 Objective one: ηpol

The first objective chosen is the polytropic efficiency (ηpol), which is calculated using equation 2.5. This
OF is selected to ensure that the cascade operates efficiently under design conditions.

ηpol =
k − 1

k
log

(pt2
pt1

)/

log
(Tt2

Tt1

)

(2.5)

Where k is the specific heat ratio, equal to 1.4, pt2/pt1 is the TPR and Tt2/Tt1 is the Total Temperature
Ratio (TTR). The subscript "1" stands for upstream of the cascade while the "2" stands for downstream.

The simulations of the first design point are conducted at a static back pressure of p2 = 42000Pa and
at a rotational speed of 100%ω. This combination of p2 and ω was used as design conditions during the
construction of the baseline.
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2.3. OPTIMIZATION POINTS

2.3.2 Objective two: TPR

The second objective is chosen to optimize the performance of the cascade when operating with an inflow
partially composed of the boundary layer section. The entry of a boundary layer through the fan causes a
distorted distribution of the total pressure at the inlet, resulting in a reduced stall margin. This reduction
is evident from the downward shift of the surge line in the compressor map. For this reason, as the second
objective, it is decided to maximize the total pressure ratio (TPR) at a near-stall condition to improve
the stall margin of the cascade. Since the optimization is conducted at various blade spans, different
techniques are used to induce the stall condition in the respective blade sections.

Tip Blade Section

The relative inlet flow at the tip blade section is supersonic. In this condition, a bow shock is formed at
the leading edge of the blade and it is composed of two branches. The first one enters the passage, and
it is called passage shock. The second branch is the outer one, and under low supersonic conditions, it
exits the cascade. Indeed, the flow reaching the cascade is deviated by this outer shock, meaning that
the incidence angle depends solely on the Mach number for a given cascade geometry. This condition
is called "unique incidence" and is maintained until the flow on the blade surface reaches a subsonic
condition.

To recreate the near-stall conditions searched for the evaluation of the second objective function, it
was necessary to exit from the unique incidence. For this reason, a study of the influence of the simulation
input parameter was conducted to find the best settings to recreate the desired conditions. The individual
chosen for this study was not the baseline but a profile generated from a previous Design of Experiment
(DOE) study, as it exhibited greater stability than the baseline when subjected to changes in environmental
conditions. The parameters altered during the study were the rotational velocity ω, the absolute inlet
flow angle α, and the static back pressure. The results of the three studies are summarized in figure 2.4,
in particular, the graph represents the trend of β when Mach changes, where β is the angle of the relative
flow at the inlet.
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Figure 2.4: Trend of the inlet flow angle, varied using different approaches to exit from the unique
incidence condition.
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The overlapping of the α and ω curves reveals how the unique incidence condition begins at approx-
imately Mach 1.05 and persists for higher Mach numbers. With these parameters, it was necessary to
decelerate the flow to almost subsonic to exit from the unique incidence conditions. For the pressure
lines, the results were different. Its increase allowed to exit from the condition of unique incidence
while maintaining the inlet velocity almost unchanged thanks to the expulsion of the passage shock.
Consequently, the flow in front of the profile became partly subsonic and can adapt to the presence of
the cascade. The expulsion of the shock also allowed the mass flow to reduce and this is why the Mach
number slightly changes. The variation of the inlet angle occurred very rapidly with the rise of pressure,
as visible in figure 2.5. In the picture, the static back pressure is normalized with respect to the inlet total
pressure, which remains the same for all the simulations.
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Figure 2.5: Trend of the inlet flow angle, varied for the rise of back pressure at ω 100 %.

Varying the back pressure was found to be the most effective technique for changing the incidence of
inflow at each Mach inlet. The near stall condition was obtained by increasing the back pressure ratio to a
value of pexit/pt,inlet = 1.304 and by reducing the rotational speed to 90 % of ω. This last was slowed to
change the inlet Mach number from the first design point. The value of the back pressure was decided by
looking at the residuals of the simulation. In particular, it was chosen the last pressure whose residuals
remained stable (did not explode).

Mid-Span Blade Section

For the mid-span blade section, two optimizations were performed and the difference lies in the definition
of the stall conditions.

The first optimization used the same strategy of reducing the rotational velocity and increasing the
back pressure to simulate the near-stall conditions as at the tip blade section. In particular, ω was 90%
of the nominal value while the back pressure was p2 = 43300Pa. How this pressure was chosen will be
explained later in chapter 3.

For the second optimization, a different approach was chosen. Studying the stalled profiles, a common
trend observed was the variation of the incidence angles from the design condition (∆β). In particular,
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when the ∆β of the airfoils was around 4°, the flow conditions were similar. Instead, when applying the
same back pressure to all the cascades, as in the first optimization, the final incidence angles differed
among the profiles, resulting in different flow conditions. Namely, not all the profiles were exactly stalled.
Because the objective of the second design point was to replicate stall conditions in all profiles, the
imposition of an incidence angle at the inlet instead of a constant back pressure resulted in more similar
stall conditions.

Since the final goal of the second design point simulation was to impose the inlet flow angle, it
became necessary to establish a correlation between this angle and one of the input parameters. Several
combinations were tested, and the most effective was to correlate the variation of the flow angles
(β − βdesign) to the ratio between the static back pressure and the total back pressure under design
conditions (p/p0exit,design). This approach ensured that the characteristic curve of the profiles had a similar
trend, enabling prediction of the pressure to be used to obtain the desired β. The resulting curves of
the three profiles used to determine the method are presented in figure 2.6. In particular, the selected
individuals are the baseline and two profiles from the initial LHS sample.
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Figure 2.6: Correlation between the difference of the inlet flow angle and the ratio of static back pressure
and total back pressure for the baseline and two individuals from the LHS study.

Although the curves did not align perfectly, the trends were similar. In particular, after interpolating
them with cubic functions, it was observed that the curves were very similar but only shifted along the
x-axis.

From this knowledge, a four-step algorithm was created to achieve the desired ∆β. These steps are:

1. The first simulation of the near-stall conditions was performed using a fixed back pressure for all
the individuals. This was necessary to get a first point on the p/p0exit,design vs β − βdesign plane.

2. For the second evaluation, the backpressure was determined by assuming that the curve followed a
similar trend as that of Individual 2 in figure 2.6. This was because the interpolation function of
Individual 2 was an average of the other two functions. Therefore, the second point was determined
by shifting the interpolation function of Individual 2 along the x-axis and calculating the pressure
ratio that made the deltaβ equal to 4°.
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3. For the third evaluation, it was decided to use the acquired knowledge of the function by creating
a quadratic function that interpolates the available points. In particular, since three points were
needed to uniquely define a quadratic, the value of the coefficient of the squared term was imposed.
With this function, the new simulation point was predicted.

4. For the third simulation, another quadratic function was created, but since three points were
available, there was no need to choose coefficients.

The algorithm stopped if an individual reached a ∆β = 4± 0.2, considering the current simulation
as the final. Finally, in this strategy, the rotational velocity was reduced as in the other simulations, to
change the inlet Mach number.

2.4 CFD Model

The high-fidelity evaluations of the objective functions were obtained through CFD simulations of
the individuals proposed by the optimizer. The software used was Ansys CFX [14] due to its good
performance in simulating turbomachinery and easy controllability from an external code. The CFD code
solves the Reynolds-averaged Navier±Stokes (RANS) equations. Since this work focused on the shape of
the single profile, the meshes were created as bi-dimensional over the meridional plane of the specific
blade section and then, one element was extruded along both the directions orthogonal to the plane. In
this way, the simulation was seen as 3D by the software but the results were almost the same as a 2D
code since there were no variations along the radius. The meshes were structured multi-block with an
H-type topology and were generated using the software Ansys Turbogrid. The inlet and the outlet of the
domain were positioned far enough from the profile in order not to influence the fluid flows near the
profiles. An example of mesh can be seen in figures 2.7 and 2.8.
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Figure 2.7: Mesh extra course of the baseline at the tip blade section, isometric view. Inlet is on the right.

Figure 2.8: Mesh extra course of the baseline at the tip blade section, circumferential view. The inlet is on
the right.

The simulations were performed by imposing the total state at the inlet of the domain, the rotational
speed and the static pressure at the outlet. With this strategy, the convergence speed increases compared
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to the case in mass flow control, however, the continuity must be verified afterwards. During the
optimization, the different design points were characterized by the same stagnation values at the inlet
whereas the other parameters were changed as explained before. The total pressure at the inlet was
38180Pa while the rotational speed ω was 271.45rad/s. To close the problem of the turbulence, the k − ω

SST model was chosen. Every individual was simulated at 3 different working conditions and depending
on the considered blade section, different conditions were used. For all the blade sections, the first
simulation was used to initialise the solution and avoid the formation of flow recirculations. The second
CFD evaluation corresponds to the first design point while the 3rd was performed at near stall conditions.

2.4.1 Mesh Sensitivity Analysis

The effectiveness of the results obtained in a CFD analysis depends firstly on the quality of the mesh. If
the number of elements is not sufficient at points where the flow has many variations, the results obtained
will not describe the actual flow. On the other hand, too fine a mesh would lead to too long a calculation
time for the aim of this thesis. For these reasons, a mesh sensitivity analysis was conducted to identify
the minimum number of mesh nodes needed for the solution to converge. The study was made only
for the tip blade section and the same mesh was used for the mid-span optimization. In this study, four
meshes were generated by doubling the number of nodes each time, as shown in table 2.3. The extra
course mesh was reported in figure 2.8 while in figure 2.9 the fine mesh is reported.

Mesh Extra Course Course Medium Fine
Number of Nodes 60000 125000 250000 500000

Table 2.3: Number of odes for each mesh
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Figure 2.9: Mesh fine of the baseline at the tip blade section, circumferential view. Inlet is on the right.

To check the convergence of the mesh, three important quantities were analyzed: mass flow, TPR and
TTR. Since the mass flow is not imposed it was important to check the continuity. The TPR and TTR
are two quantities directly utilized during the optimization process, so it was important to ensure their
convergence. The results of the analysis are listed in the figures 2.10 (a), (b) and (c), reporting respectively
the trends of mass flow, TPR and TTR. From figure 2.10 (a) it is visible that, the steady value is reached
from the Course mesh for the first design point and at the Medium mesh for the design point 2. It is
important to note that because the scale of the figures is magnified to facilitate an understanding of the
trends, the differences between the solutions appear larger than they are. Namely the difference between
the last solution and the first is 0.4%. In the TPR and TTR figures, the differences between the different
meshes are smaller than in the mass flow case. The percentage difference between the last solution and
the first one is less than 0.1% in both design points. In figure 2.10 (d) the simulation time per individual
is presented. It is visible how the time scales almost linearly with the number of nodes.
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Figure 2.10: Resutls of the mesh sensitivity analysis. (a) Mass flow, (b) TPR, (c) TTR, (d) Simulation time

The mesh chosen for this analysis was the extra course since it was the fastest in terms of computational
time while maintaining almost the same results as the others.

2.5 Optimization Problem

Implementing the optimization process is crucial for achieving desirable outcomes. It involves selecting
the right optimizer and configuring it appropriately, as well as ensuring seamless integration with other
software components responsible for evaluating the objective functions (OF).

In the problems regarding fluid dynamics, due to the high complexity of the fundamental equations,
the fitness functions are usually highly distorted, non-continuous and with many local stationary points.
Due to this, the mathematical expression of the OF is unknown and it is possible to know the solutions of
only a few combinations of DV. Moreover, due to the high computational cost of each evaluation, it is
not possible to map the design space with a lot of points. For these reasons, optimizers used for CFD
problems must arrive at the optimal solution with the minimum number of evaluations (exploitation), but
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also consider the entire design space to avoid reaching a local minimum/maximum point (exploration).
Formally, what an optimizer does is find the best combination of DV x that minimizes the objective
function f(x), i.e.

x
∗ = argmin

x∈X

f(x)

where X is the design space, in other words, is the feasible space of the DV and x
∗ is the optimum of the

function. In multi-objective problems, there will be a set of optimal individuals instead of one. These
are all the solutions that belong to the Pareto front that, by definition, is made up of all and only the
non-dominated solutions (solutions that cannot be improved in any objective without degrading at least
one of the others). Therefore, the role of the optimizer is to find the global Pareto set of the specific
problem where it is used.

There are many different types of optimizers, from very simple to complex and each of them has
its pros and cons. One classification can be made by dividing them according to whether they directly
optimize the fitness function or a surrogate function, which is a new function created using the current
knowledge of the real functions. For the first case, the most common algorithms are GA that creates
a current population by mixing the genes of the best individual from the previous population. In this
case, decisions are made only using the actual values of the OF. Even though they are very good at
solving multi-objective problems the number of evaluations of the objective functions rapidly increases
with the increase of the number of variables. On the other hand, algorithms that optimize a surrogate
function, like BO, are designed to reach the optimal solutions with fewer iterations, becoming interesting
for the cases where the evaluations of the OF are expensive. In this case, decisions are not made by using
only the high-fidelity data but a surrogate model of the objective functions is created to speed up the
optimization. This latter represents the low-fidelity model that the optimizer uses to decide the next
points to be evaluated with the high-fidelity model. One of the problems with these types of strategies
is that the loop and the code are more complicated than in one of the GA. Furthermore, there are new
’default variables’ put into place to predict the behaviour of the real functions, increasing the time needed
to set the initial parameters.

Since the purpose of this thesis focuses on finding features that unify profiles suitable for distorted
transonic inflows, it was decided to utilize the second optimization technique to expedite the process.
The strategy chosen is called BO and hereafter there is an overview of how it operates.

2.5.1 Bayesian Optimization

Bayesian Optimization BO is a family of advanced optimization strategies that use Bayesian Inference as
a fundamental principle. In brief, Bayesian statistics uses the current knowledge of a sample to estimate
the proprieties of the population, and then, when new pieces of information are available, it updates the
proprieties. This feature helps to minimize the number of evaluations required to reach the final results,
making it particularly useful for problems where evaluating the objective functions is costly. Optimizers
using Bayesian inference vary in their approaches and may exhibit small or large differences from each
other. Nevertheless, they all follow the same basic structure when addressing optimization problems.

The optimization problem begins with an initial exploration phase where a sample of the DV space is
created. Common sampling techniques used to generate the initial population are random search or Latin
Hypercube Sampling (LHS). This sample is evaluated and the results represent the initial knowledge
from which we infer the propriety of the entire population. These sets of DV and OF are used to train the
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regression models which are usually based on GPS These models approximate the objective functions
used in the search for the minimum, commonly referred to as surrogate models or low-fidelity model.

Bayesian optimization relies on an acquisition function to decide which point in the search space
should be evaluated next. This function acts as a guide to decide where to sample the next point for
evaluation. For multi-objective problems, one of the most used acquisition functions is the Expected
Hypervolume Improvement (EHVI), used also in our case. This function takes as input the regression
models and calculates the improvement that a proposed solution makes on the Pareto front. To calculate
the improvement, the function uses a reference point that is assumed to be dominated by the population.
In our case, the reference point has values of the objective functions 0.49 and 0.99. At each iteration of the
optimizer, the next individual is selected by maximizing the acquisition function with a sub-optimization
problem. This is evaluated with the high-fidelity model and the results are used to update the GPS. The
new surrogate functions are then used to select a new individual using again the acquisition function.
The new individual then is evaluated with the high-fidelity model and the GPS are updated again. This
process is repeated with the regression model being refined with each new observation. This method
of iteratively updating the surrogate model and intelligently selecting points to evaluate, allows the
optimizer to gradually converge towards the optimal solution, achieving this goal with fewer evaluations
of the costly objective function when compared with conventional optimization approaches. In figure
2.11, the flowchart of the Bayesian optimizer loop is reported.

Figure 2.11: Bayesian optimization loop.
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2.5.2 Genetic Algorithm

Genetic algorithms are a family of optimization algorithms inspired by the principles of natural selection
and genetics. They are used to solve optimization problems by emulating the process of natural selection
in biological systems. At every iteration, a population of individuals is created taking the best from the
previous one. This new set of individuals is then evaluated using the expensive fitness functions and the
score is then assigned to each individual. The creation of a new population is done by using the genetic
operators. These operators are the key components that drive the evolution of the population. The three
usually used are, in order:

• Selection, ensures that better solutions are more likely to be chosen as parents

• Recombination, combines genetic material from selected parents to create offspring with potentially
improved characteristics

• Mutation, introduces stochastic variation to explore new regions of the search space

These play a key role in getting the right balance between exploration and exploitation of the optimizer so
the choice of which type of operator to use is very important. There are also other operators used to reach
the desired balance of the algorithm and the right implementation of them can speed up the solution
with a reduced risk of falling in local stationary points. Finally, these particular types of algorithms are
particularly well-suited for multi-objective optimizations since they evolve a generation of individuals at
a time. For this reason, they are widely used in engineering problems.

2.5.3 Optimization Loop

The optimization loop used during this study was composed of both a Bayesian optimizer, which works
how it was described previously, and a Genetic Algorithm optimizer. This decision was taken mainly
to increase the exploitation of the surrogate model. For the initial 80% iterations (where iterations
correspond with the number of individuals simulated), the algorithm worked like a normal BO. The
next individual to be evaluated was decided by the EHVI functions which in our case was maximized
using a particle swarms optimizer. After 80% of the total iterations, a GA optimization was introduced.
The algorithm alternated one optimization cycle with the BO and one with the GA. This latter started to
work optimizing directly on the surrogate model. Since the problem had two objectives, a Pareto front of
individuals was generated by the GA. The individual selected for the evaluation was the furthest from
the actual Pareto. This parallel optimization started only when more than 80% of total iterations were
performed to have a more realistic model of the objective functions since more data were available. This
optimization loop used is presented in figure 2.12.

The entire loop was controlled by MATLAB including the parameterizer. Our two objectives were
initially intended to be maximized. However, because the algorithm assumes minimization problems,
the sign of each objective was changed, transforming the problem into a minimization one.

17



2. METHODS

Figure 2.12: Optimization loop used for the optimizations.
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3 RESULTS

This chapter provides an overview of the analysis results. First, the results obtained at the tip blade
section are presented, subsequently, the mid-span results are analyzed.

3.1 Tip Optimization

3.1.1 Baseline

The baseline was simulated to establish a benchmark for the optimization. Additionally, this simulation
was used to determine the back pressure for the second optimization point. This point was identified as
the pressure threshold at which the residuals remain stable and it was found to be 49.8× 103Pa.

First, in figure 3.1, the profile geometry at the tip is presented.
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Figure 3.1: Geometry of the baseline at the blade’s tip.

The contour plots of the Mach number are then presented in figures 3.2 (a) and (b).
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3. RESULTS

(a)

(b)

Figure 3.2: Mach contour of the baseline. (a) design conditions (first design point) (b) near-stall conditions
(second design point).

In the first picture, the flow field is completely supersonic with the mass flow locked at the maximum
level. A detached bow shock is present at the LE of the blade and large subsonic zone forms after this,
indicating that the shock is strong and so dissipative. An expansion fan is then formed on both sides of
the LE, bringing the flow back to supersonic conditions. The inner branch of the bow shock enters the
passage and it is reflected after interacting with the suction side of the previous blade. This reflection
creates a passage shock that slows down the flow to subsonic conditions again. The interaction of the
second passage shock with the pressure side of the current profile causes the boundary layer to separate.
Later on, but due to the favourable pressure gradient, the flow reattached containing the wake losses.

At the second design point (figure 3.2 (b)) the passage shock is outside the cascade and so the mass
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3.1. TIP OPTIMIZATION

flow is no longer locked. The bow shock now is almost normal and no reflections of the inner shock are
visible. Two expansion fans are also formed in this case, but they are considerably weaker and tend to
dissipate with the interaction of the shock. A small flow separation occurs at the end of the suction side
mainly due to the final curvature of the blade.

The objective function results for the baseline are listed in the table 3.1.

ηpol TPR
0.732 1.575

Table 3.1: Baseline at tip objective functions’ results

3.1.2 Bayesian Optimization

To start the Bayesian optimization, an LHS study was performed to get a representative initial population.
This sample was then evaluated to determine the fitness of each individual. These results were used to
train the GPS parameters using a Matlab built-in optimizer. The parameters then remained the same
throughout the optimization process. During the optimization, 269 profiles were generated for a total of
301 individuals. Each individual takes about 40 minutes of calculation time and the total optimization
was about 8 days to finish. After 56 evaluations the boundaries of the first 6 DV (those who controlled the
Camber line) were increased from [−3,+3] to [−4.5,+4.5]. This was done because the algorithm started
to stagnate along the boundaries, indicating overly strict constraints. The solutions obtained during the
optimization are reported in figure 3.3.
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Figure 3.3: Results of the Bayesian Optimization at the tip, normalized with respect to the baseline.

The advancement from the initial LHS solution is small in terms of performance; however, greater
improvements have been made over the baseline. The optimizer obtained good results for the first
objective, with improvements of almost 15%. On the other hand, the Pareto front advanced less on the
TPR axis indicating a difficulty for this objective. Since the simulation of the first objective function was
conducted while maintaining a similar TPR, this difficulty is justified.
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3. RESULTS

The performance of the population is presented on the DV space using a colour map. The efficiency is
represented in figure 3.4 while the TPR results are shown in figure 3.5.

Figure 3.4: Rappresentation of the ηpol results of the airfoils in the space of the DV using a colour map.
Results after the BO at the tip.

Figure 3.5: Rappresentation of the TPR results of the airfoils in the space of the DV using a colour map.
Results after the BO at the tip.

For variables x1 and x2 the best individuals are almost all on the bottom left of both of the graphs.
This indicates that the leading edge (LE) of the optimized individuals has a lower inlet angle than the
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3.1. TIP OPTIMIZATION

baseline. The variables x3 and x4 have opposite behaviour in the two objectives. Positive values of both
are preferred for the first objective, on the other hand, the individuals that excel in the second OF have
negative values, although the correlation in this latter is weaker. The same behaviour is visible for DV x5

and x6 with negative values for high TPR individuals and positive for profiles with good ηpol. For the
variables controlling the thickness of the profile, some differences are noticeable. The individuals with
the best ηpol are almost all thicker than the baseline (i.e. positive values of x8) while airfoils with high
TPR are thinner. However good profiles for efficiency can be found also thinner than the baseline while
for high TPR a thin blade is needed. No significant correlations are observed for the DV x7.

To verify whether the optimizer achieved some level of convergence, 5 individuals were selected from
the final fitted Pareto. This Pareto was obtained by optimizing the GPS trained with the final population.
In particular, the fitted Pareto fronts were found using a GA optimizer. Due to the complexity of
evaluating the objective functions, 100000 generations of 100 individuals were generated. The individuals
selected were simulated to the real value of the OF. The results of this study are reported in figure 3.6.
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Figure 3.6: Results of the selection and simulations of the 5 individuals from the final fitted Pareto

Form figure 3.6 how the real OF values are still on the real Pareto front, confirming the results
of the optimization. The differences between the two final Pareto fronts are mainly caused by the
underdefinition of the GPS model.

The uncertainty of the final and initial regression models is studied; figure 3.7 illustrates the disparity
between the final predicted values of the objective functions and the actual ones. The predicted values
are for the initial and final GPS. The results are presented only for the first objective function (ηpol); for
the second, results are similar.
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Figure 3.7: Differences between the real values of the first objective function with the one predicted using
the first and last regression model.

Although the differences between the final fitted and real Pareto are high, the final GPS show a low
final error, visible from the flat green line. These low values (under 10−3) are not unexpected since the
model is trained with these data. The red line on the other hand present many spikes, indicating a
sensible difference between the real values of the objective function and the predicted.

A study of three different profiles is now conducted to delve deeper into the difference between the
optimal solutions. The individuals chosen are reported in figure 3.8. Overall the profiles were selected to
perform at least as well as the baseline.
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Figure 3.8: Best individuals selected for the study.

Best Efficiency

The first individual studied is the one having the best efficiency and it was created as the 15th profile of
the optimization. In figure 3.9 the geometry is visible. The values of the DV and OF are reported in tables
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3.2 and 3.3.
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Figure 3.9: Best individual for efficiency.

Camber Line Variables [°] Thickness Variables []
-3.00 -3.00 3.00 3.00 2.43 -3.00 1.00 0.40

Table 3.2: Decision variables values of the best ηpol profile.

Value ∆% form base
ηpol 0.830 13.42
TPR 1.573 -0.12

Table 3.3: Objective functions values and comparison with the baseline for the best ηpol profile.

Looking at figure 3.9 and table 3.2 the profile is thicker and with the maximum moved backwards.
The individual was generated before the enlargement, and the values of the decision variables are almost
all at the old boundaries.

To understand the difference in performance at the first design point, the relative Mach number
contour and the relative total pressure ratio contour are presented respectively in figure 3.10 and 3.11. In
particular, the relative total pressure ratio is calculated as the ratio between the total pressure ratio at the
specific position and the total pressure at the inlet, both in the relative frame.
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Figure 3.10: Mach contour of the individual with the best ηpol under design conditions (first design point).

Figure 3.11: Relative total pressure contour for the baseline (left) and the individual with the best ηpol
under design conditions (first design point). The values are expressed as the ratio between the relative
total pressure at the specific position and the relative total pressure at the inlet.

The relative Mach number at which the two cascades work is slightly different with the baseline at
1.23 and the current individual at 1.28. For this reason, efficiency improvements cannot be associated
with the weakening of the bow shock. Although the higher velocities, in the best efficiency profile, the
back pressure causes the inner branch of the bow shock to shift upstream, leading to the almost complete
dissipation of the reflected shock. The interaction between this shock and the SS of the previous blade
causes the separation of the boundary layer. This detachment does not occur on the pressure side since
no reflection of the shock is present. On the baseline, the separation was only on the PS and hence more
controlled than in the current case.
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3.1. TIP OPTIMIZATION

In figure 3.11 is visible how the second passage shock is the leading cause of the efficiency loss on the
baseline. Since there is almost no reflection of the bow shock in the optimized individual, this is the main
cause of the higher efficiency. in the baseline wake losses are contained since the separation occurs on the
PS while on the optimized profile they are higher because the detachment of the boundary layer is on the
suction side. Moreover, the bow shock is stronger on the current airfoil due to higher speed than in the
baseline. Finally, although larger wake and bow shock losses are present on the optimized profile, the
absence of the second passage shock enables the cascade to obtain a higher ηpol.

To understand the differences in the performances at the second design point, the relative Mach
number contour and the total pressure ratio contour are reported hereafter. Particularly, the total pressure
ratio is calculated as the ratio between the absolute total pressure and the absolute total pressure at the
inlet, which is the same on both cases.

Figure 3.12: Mach contour of the individual with the best ηpol under near-stall conditions (second design
point).
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Figure 3.13: Absolute total pressure ratio contour for the baseline (left) and the individual with the best
ηpol under near-stall conditions (second design point).

From figure 3.12 this condition, the flow on the optimized profile is more critical than in the baseline.
In the current individual, the bow shock shifted upstream, fully detaching from the LE of the blade,
becoming almost normal. This shape of the shock is also due to the high incidence of the flow. Looking
at the position of the stagnation point this is positioned on the side of the LE. This causes a consistent
difference in the velocities between the pressure and suction sides, and the creation of a big expansion
fan. This accelerates the flow that is then slowed by the shock. On the other hand, in the baseline, the
passage shock was just expelled and the incidence angle was smaller so the conditions were more stable.
Overall, the optimized profile looks nearer to the stall conditions than the baseline.

For figure 3.13 it is visible how the presence of the shocks, in both cases, is the leading cause of the
TPR increase. This is because the shocks reduce relative velocity and so absolute velocity rises. Moreover,
the pressure increases almost instantly through the wave, so overall the total pressure increases. Since the
optimized profile is straight, the pressure does not rise while to flow is in the passage. On the baseline,
since a small deviation of the flow is present at the back of the profile, a slight increase in total pressure
is visible between the blades. The final results are almost identical indicating that the main cause of
pressure rise are the shocks.

Overall, the better performance at the first design point is mainly due to the intrinsic characteristics of
supersonic profiles. These types of profiles see their efficiency growing while approaching stall conditions
and then falling immediately when the stall is reached. Thus, this is the leading cause of the increased
efficiency of the optimized profile. In fact, the flow filed at the first design point (figure 3.10) the passage
shock is positioned upstream of the passage indicating that the back pressure is already high for this
cascade. Moreover, comparing the flow fields at the second design point of both profiles, it is clear
that the current individual is in a much more critical condition than the baseline. Finally, although the
optimized individual looks better on the two objective functions than the baseline, this is partly because
it is working in a near-stall condition and for supersonic profiles this increases the efficiency. Overall, this
is still suitable for a BLI application.
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3.1. TIP OPTIMIZATION

Compromise

The second individual studied is the one being a compromise between the two objectives of the problem
and it was created as the 258th profile of the optimization. In figure 3.14 the geometry is visible. The
values of the DV and OF are presented in tables 3.4 and 3.5.
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Figure 3.14: Individual compromise between the two objectives.

Camber Line Variables [°] Thickness Variables []
-3.41 -3.83 0.26 1.84 -4.49 1.46 0.57 -0.10

Table 3.4: Decision variables values of the compromise profile.

Value ∆% form base
ηpol 0.799 9.12
TPR 1.605 1.86

Table 3.5: Objective functions values and comparison with the baseline for the compromise profile.

The profile has a smaller stagger angle than the baseline and it is slightly thinner with the maximum
shifted backwards. In this individual, good improvements have been made for the first objective function
while the TPR has improved by less than 2%.

To understand the difference in performance at the first design point, the relative Mach number
contour and the relative total pressure ratio contour are presented respectively in figure 3.15 and 3.16. In
particular, the relative total pressure ratio is calculated as the ratio between the total pressure ratio at the
specific position and the total pressure at the inlet, both in the relative frame.
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Figure 3.15: Mach contour of the compromise individual under design conditions (first design point).

Figure 3.16: Relative total pressure contour for the baseline (left) and the compromise individual under
design conditions (first design point). The values are expressed as the ratio between the relative total
pressure at the specific position and the relative total pressure at the inlet.

First, it is visible in figure 3.15 how the bow shock has a smaller subsonic zone than the baseline,
visible the green zone in front of the blade. This indicates that the shock occurring on the baseline is
stronger than on the current profile, and so causes more losses. The reduced subsonic zone is probably
caused by the fact that the flow here is faster than in the baseline with a relative Mach number of 1.30
against 1.23. Thanks to the reduced thickness and stagger angle the throat area is bigger and so the flow
is faster. As with the baseline, the passage shock is reflected by the interaction with the previous blade
in the form of another shock passage. This reflected shock is strong and it decelerates the flow from
supersonic to subsonic. The interaction between the previous blade and the inner branch of the bow

30



3.1. TIP OPTIMIZATION

shock promotes the separation of the flow at the TE as it happens at the end of the SS. However, thanks
to the presence of the expansion fan originating at the leading edge, this separation is contained and the
wake losses do not increase drastically. The second passage shock also interacts with the pressure side of
the current blade causing a slight separation of the boundary layer. This is more contained than in the
baseline thanks to the more favourable pressure gradient created by the profile shape.

Figure 3.16 highlighted that the losses caused by the reflected passage shock in the compromise
individual are fewer than in the baseline. In the latter case, the second shock was found to be the leading
cause for the loss of efficiency, thus the reduced intensity of this in the current individual is the motivation
for better efficiency. On the other hand, the wake losses here are higher than in either of the above cases.
This is caused by the partial detachment of the boundary layer on both sides after the interaction with
the passage shocks.

To understand the differences in the performances at the second design point, the relative Mach
number contour and the total pressure ratio contour are reported hereafter.

Figure 3.17: Mach contour of the compromise individual under near-stall conditions (second design
point).
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Figure 3.18: Absolute total pressure ratio contour for the baseline (left) and the compromise individual
under near-stall conditions (second design point).

The shock pattern here is similar to the individual with the best ηpol, but the conditions are more
stable. The bow shock is detached from the LE and moved upstream of the blade but it is still a little
inclined. On the other hand, in the baseline the passage shock was just expelled and so the conditions
were farther from the stall. The incidence angle in the current individual is larger than in the baseline but
still, it is well tolerated.

In figure 3.18, as in the previous case, the presence of the shock is the main reason for the increase
in the total pressure of both profiles. Because in the current individual, the shock is almost normal, the
increase in total pressure is sharper than in the baseline where the shock is curved. Also, the inlet Mach
number in the two cases is slightly different. In particular, the baseline has an inlet Mach of 1.10 while
the optimized has 1.12 so more kinetic energy is available for the optimized profile. Finally, the increase
in TPR obtained throughout the passage is similar, and thus the 2% improvement results almost only
from the stronger shock.

Overall, in this case, the profile works better on both objectives. Indeed, for the second design point,
the individual achieved a better TPR due to the stronger passage shocks. For the first design point, on
the other hand, the profile improved the efficiency by more than 9% mainly due to a reduction in shock
wave losses. This latter improvement was mainly caused by a higher throat area. Thanks to the thinner
profile, the deviation between the blades due to the contraction of the section was smaller and so the
supersonic flow had to deviate less from its normal path. An increase in the wake losses was observed
but this still was lower than the shock losses. These latter were considered again as the leading causes of
the loss in efficiency. Finally, these profile results are well suited for a BLI propulsion application since
sensible improvements are made on both the OF, maintaining stable working conditions.

Best TPR

The last individual studied is the one having the best TPR and it was created as the 96th profile of the
optimization. In figure 3.19 the geometry is visible. The values of the DV and OF are presented in tables
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3.6 and 3.7.
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Figure 3.19: Best individual for TPR

Camber Line Variables [°] Thickness Variables []
-3.59 -4.50 -4.50 -4.50 -4.50 -1.73 0.13 -1.00

Table 3.6: Decision variables values of the best TPR profile.

Value ∆% form base
ηpol 0.753 2.89
TPR 1.646 4.56

Table 3.7: Objective functions values and comparison with the baseline for the best TPR profile.

The profile is thinner and with a lower stagger angle than the baseline. Looking at the DV, the values
are consistent with the overall view given in figure 3.5.

To understand the difference in performance at the first design point, the relative Mach number
contour and the relative total pressure ratio contour are presented respectively in figure 3.19 and 3.21. In
particular, the relative total pressure ratio is calculated as the ratio between the total pressure ratio at the
specific position and the total pressure at the inlet, both in the relative frame.
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Figure 3.20: Mach contour of the best TPR individual under design conditions (first design point).

Figure 3.21: Relative total pressure contour for the baseline (left) and the best TPR individual under
design conditions (first design point). The values are expressed as the ratio between the relative total
pressure at the specific position and the relative total pressure at the inlet.

In this case, the bow shock is almost oblique and the subsonic zone is the smallest of the three
individuals. This results in a less dissipative deceleration of the fluid compared to the baseline. However,
because the flow entered the blade passage at a higher speed (relative Mach here is 1.32 and 1.23 for
the baseline), the second passage shock is stronger than in the previous cases. Moreover, since the first
passage shock is oblique, it encounters the previous blade far behind, interacting directly with the wake
and not the solid wall of the profile. This causes the detachment of the boundary layer, contained by the
presence of the expansion fan. This is not observed on the Baseline. On the pressure side of the current
profile, the second passage shock detached the boundary layer but this is reattached later on thanks to
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the presence of a favourable pressure gradient. This is more intense in the baseline.
In figure 3.21 is visible that the leading cause of the decrease in efficiency is the second passage shock,

as with the previous cases. While in the two profiles, the phenomenology is similar, the shocks generated
from the baseline and the optimized profile have a different impact on the relative total pressure losses.
In particular, the second passage shock occurring on the baseline is more entropic. This can be associated
with the greater thickness of the blade which causes a severe deviation of the flow inside of the cascade.
While the passage shock looks worse on the baseline, the opposite occurs for the wake losses. In the
optimized individual, the wake interacts with the first passage shock. This causes the growth of a
detached flow and the rise of the wake losses. In the baseline, no flow separation occurs since the shock
is reflected by a "solid" wall. On the pressure side, the detachment of the boundary layer causes similar
losses so they are not the causes of the different efficiency. Overall, the weaker second passage shock is
again the leading cause for the higher efficiency of the optimized individual. However, the more oblique
bow shock causes, in the current individual, an increase in the wake losses.

To understand the differences in the performances at the second design point, the relative Mach
number contour and the total pressure ratio contour are reported hereafter.

Figure 3.22: Mach contour of the best TPR individual under near-stall conditions (second design point).
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Figure 3.23: Absolute total pressure ratio contour for the baseline (left) and the best TPR individual under
near-stall conditions (second design point).

The shock pattern is similar to what was found in the previous individuals. Namely, as expected,
the bow shock is outside the passage and almost normal. The condition here is stable and the wake is
contained. The stagnation point is positioned on one side of the TE indicating that the incidence angle is
not zero. This causes, as in the other profiles, the creation of an expansion fan on the suction side that
ends with the bow shock. From the colour map in figure 3.2 (b) and 3.22 it is visible how in the second
one, although the scale is not the same, the speed is higher. The relative Mach number is 1.10 for the
baseline and 1.18 for the individual with the best TPR.

Looking at figure 3.23 it can be noticed how the passage shocks are again the main reasons for the
increase of the TPR inside the passage. The difference in the performance of the two cascades is caused
by the stronger shock occurring on the current individual. In fact, due to higher velocities and stronger
deceleration, the increase in TPR is higher. Moreover, also the bigger curvature of the final part of
the profile increases the pressure ratio due to higher deflections of the flow and hence more energy is
exchanged.

Overall, this individual is better than the baseline on both objectives. In particular, since it maximizes
the TPR, the profile is well suited for BLI applications. Moreover, the good performance on the first
design point enables the profile to reduce energy consumption.

Conclusions

From this study, the weaknesses of the baseline and how the optimizer addressed them were highlighted.
First, in high ηpol individuals, since most of the losses were caused by the shocks, the optimizer

created individuals with lower throat areas by increasing the thickness while maintaining almost the
same stagger angle. This creates profiles nearer to the stall conditions than the baseline. The TPR was
maintained equal to the baseline thanks to stronger shock on the optimized profiles.

Individuals with high TPR are thinner and exhibit a curved camber line on the back. They performed
well on the second objective, enhancing the total pressure ratio through stronger shocks and partly
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deviating the flow. Additionally, efficiency is improved due to weaker second passage shocks at the
first design point. This reduction in the strength of the shocks is achieved by a lower contraction of the
passage. Thanks to the high stability of these profiles and the enhanced characteristics, they proved to be
well-suited for BLI applications.

3.1.3 Comparison between BO and GA

To test the effectiveness of the Bayesian optimizer, another optimization of the same problem was
launched using a well-known Genetic Algorithm. The solvers were compared using the same number
of evaluations of the objective functions. In particular, in the GA, the population size was set to 15
individuals for a total of 22 generations including the gen. 0 (initial generation), created using an LHS
method. The total number of evaluations was set to more than 301 (i.e. number of individuals simulated
in the BO) because, during the optimization, any duplicate individuals created are not directly evaluated
but the values of the OF are copied. The size of the final population was 309. The algorithm used is called
GeDEA II [15], a proprietary optimizer of the COMETES research group at the University of Padova. It is
a well-proven algorithm and it has the characteristic of focusing on the boundary of the domain to find
the best individuals.

First, the results are now shown on the DV space using a colour map, as done in figures 3.4 and 3.5
for the .

Figure 3.24: Rappresentation of the ηpol results of the airfoils in the space of the DV using a colour map.
Results after the GA at the tip.
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Figure 3.25: Rappresentation of the TPR results of the airfoils in the space of the DV using a colour map.
Results after the GA at the tip.

First, it is visible that the optimizer explores the design space less extensively than the BO. This is likely
because the optimizer discovers highly favourable solutions in certain areas and persists in searching
within them, indicating a preference for exploitation over exploration. Additionally, it is characteristic of
the GA used for the comparison to seek solutions, particularly along the boundaries. Overall, the colour
map shows results similar to what was found in the previous optimization, confirming the effectiveness
of the BO, with a few differences. For example, in the Bayesian optimization, a stronger correlation was
found over the x3 and x4 DV, especially in the efficiency results where the GA found that almost all
design space here could bring good results. For variables x5 and x6, a stronger correlation is visible in
figure 3.4 than in figure 3.24 probably also due to the less distributed DV on this latter plot. Although
these differences exist, the correlation between the results remains high. A comparison between profile
geometries will be conducted to confirm the correlation further.

Because the objective of this paragraph is to compare the results of the BO and the GA, there will
not be an in-depth study of the results of this optimization but instead, a comparison between the two
populations obtained was done. The final Pareto fronts are compared on the objective functions space in
figure 3.26.
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Figure 3.26: Comparison of the final Pareto fronts obtained with the BO and GA optimizers, plotted on
the OFs space.

The Pareto from the first optimization is slightly beyond the second Pareto. Furthermore, the Pareto
front obtained with the GA is denser than the one of the BO, especially in the zone where the TPR is
maximized. Overall, the results from the two optimizations are similar.

To understand how the BO and GA performed during the optimization, the Pareto fronts at different
moments are plotted. Since the Bayesian optimiser worked with generations composed of at most two
individuals, the results were compared regarding the number of objective function evaluations. More
specifically, the results are plotted every 3 generations (45 simulations) starting from generation 0 until
the 15th generation. Later generations were not displayed since no significant changes were obtained.
The results are visible in figure 3.27.

From figure 3.27 (a) it is visible that the Pareto fronts at generation 0 are different. This is because, in
the GA optimization, the boundaries of the DV space were already expanded, so the initial LHS study
found better individuals. At gen. 3, the BO already begins to find individuals from its final Pareto,
especially in the high-efficiency zone. The front is well distributed across the space with good solutions
also for the second objective. In the high TPR zone, the Pareto is still slightly far from the final solution
also because at this generation the DV boundaries were not enlarged. Indeed, as seen in the previous
section, individuals in this area have a smaller stagger angle compared to the baseline, only obtainable
with the enlarged limits. The GA, on the other hand, finds profiles from the final Pareto only in the high
TPR zone while not-dominated individuals are not visible for the first OF. At 105 individuals (figure
3.27 (c)), the Bayesian optimizer continued populating the final Pareto almost everywhere, except for the
high TPR zone where still the algorithm lacks. This is because the boundaries were just enlarged so new
DV space was available and the optimizer used new individuals for exploration purposes rather than
exploitation. At this generation, the Pareto GA has grown along the ηpol axis and continues to find final
solutions only in the lower front. Since Gen. 9 (150 individuals, half of the total optimization, figure 3.27
(d)), the Bayesian optimizer almost reached the final Pareto, finding solutions even with high TPR. In
later generations, new individuals tend to thicken the Pareto but not advance it, indicating a convergence
of the algorithm. For the GA optimizer, the front continues to grow towards more efficient individuals,
but the solution is still slightly far from the final one. New individuals from the final Pareto continue to
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Figure 3.27: Pareto fronts obtained with GA and BO form generation 0 to 15
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populate the bottom part of the front. In the next 45 individuals (Gen. 12, figure 3.27 (d)), the Pareto of
the GA advanced finding some final solutions with high efficiency. At generation 15 the genetic optimizer
almost reached its final solution. Overall, the Bayesian optimizer reached the final solution faster than
the GA, although it was penalized by the later boundaries enlargement. Despite this, some individuals of
the final Pareto were found before the new limits, but they are only 5 out of 25. Moreover, these are on
the boundaries of the first domain, indicating the necessity of the enlargement. Finally, the difference
between the two Pareto fronts is probably because the Bayesian optimizer used was a relatively simple
version. A better training of the fixed parameter or a different EHVI function can improve the final
solution.

To complete the comparison between the two optimizers, the geometries of the 3 profiles used in the
previous section are compared with 3 profiles from the GA optimization. The three new individuals were
selected to have similar OF values as the other three. In figure 3.28 the profiles selected are reported on
the Pareto fronts.
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Figure 3.28: Individuals selected for the comparison between the two Pareto fronts.

In figure 3.29, the geometries of the profiles are compared while in table 3.8 the values of the DV on the
profiles are presented. Overall both the geometries and the DV are similar in the two cases, confirming
the effectiveness of the BO.
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Figure 3.29: Geometry comparison between the individuals obtained form the BO and GA optimization
with (a) Best Eff., (b) Compromise, (c) Best TPR

Camber Line Variables [°] Thickness Variables []
Best Eff. BO -3.00 -3.00 3.00 3.00 2.43 -3.00 1.00 0.40
Best Eff. GA -4.31 -0.84 2.17 0.88 4.50 -0.62 0.75 0.17

Compromise BO -3.41 -3.83 0.26 1.84 -4.49 1.46 0.57 -0.10
Compromise GA -4.50 -3.84 -2.22 1.11 -4.50 -4.50 0.75 0.08

Best TPR BO -3.59 -4.5 -4.50 -4.50 -4.50 -1.73 0.13 -1.00
Best TPR GA -4.50 -4.50 -4.50 -4.50 -4.50 -4.50 0.73 -1.00

Table 3.8: Decision variables values of the selected profiles of the BO andGA optimizations.

Conclusions

In conclusion, the performances of the two optimizers are similar, confirming the effectiveness of the
BO. Some differences in terms of final results between the two final Pareto fronts are visible and they
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are mainly due to the EHVI function and the surrogate functions. These latter contain uncertainties that
cannot be completely eliminated. Moreover, despite the differences in the final Pareto fronts, the BO
found optimal solutions earlier than the GA. In fact, at 60 individuals simulated (figure 3.27 (b)), the
Bayesian optimizer almost arrived at the final front while the Genetic did not explore some space yet.
Also, convergence time could be reduced if the initial boundaries were already enlarged, so the algorithm
did not lose time in exploring the new working space.

3.2 Mid-Span Optimization

For this blade section, two optimizations were performed, both using the Bayesian optimizer. In the
first one, the back pressure was selected as the last that makes most of the profiles of the LHS stall.
The choice of checking all the initial profiles and not looking only at the baseline was made because,
with the pressure that stalled the baseline, almost half of the simulations of the initial population did
not converge. For this reason, the final back pressure was chosen as the highest allowing almost all
simulations to converge. A second optimization was launched with the last back pressure chosen looking
at the incidence of the blade. The selection algorithm was explained in chapter 2 in the optimization
points section.

3.2.1 Baseline

The benchmark used to compare the results of the optimization is the baseline. In this section, the results
of its simulations are presented. In figure 3.30, the geometry of the baseline is reported.
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Figure 3.30: Geometry of the baseline at the blade’s mid-span.

The contour plots of the Mach number are presented hereafter.
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Figure 3.31: Mach contour of the baseline under design conditions (first design point).

In this case, the inlet relative Mach number is 0.90 and so the flow is subsonic. At the LE of the profiles,
no bow shocks are visible, however, an expansion fan is present at the beginning of SS. This is because the
flow does not enter the passage with zero incidence as visible from the shifted stagnation point. Thanks
to the expansion fan and the passage shape, the flow is accelerated till a supersonic condition that locks
the mass flow at its maximum level. This acceleration ends with an almost normal shock wave that
decelerates the flow to subsonic conditions. The interactions between the shock wave and the suction
side of the profile cause the separation of the boundary layer. This is contained and does not deteriorate
the blade performance.

Figure 3.32: Mach contour of the baseline under near-stall conditions (second design point) for the
constant back pressure optimization.
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Figure 3.32 shows the Mach number contour of the baseline under near-stall conditions for the first
optimization. The value of static back pressure of this design point is 43.3 × 103Pa. The decrease in
angular velocity and the increase in static pressure at the outlet cause the inlet Mach number to decrease
to 0.80. Consequently, the passage shock dissipates and the flow field becomes almost entirely subsonic.
The inlet flow angle changes by only 0.3° compared to the first design point. Overall, the wake is
well-controlled, and the flow is stable.

For the second optimization, the final back pressure obtained was 44.94× 103Pa with a difference
between the flow angle at the design and stall conditions of 4.07°. The final ∆β was reached at the 3rd
simulation of the second design point. In figure 3.33 the iterations for the selection of the final back
pressure are shown.
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Figure 3.33: Back pressure ratio vs inlet angle of the baseline.

The initial guess made using the imposed cubic function was already accurate. In fact, with the
pressure ratio calculated from this, the final ∆β was 3.6°. In the third simulation, the pressure was
determined using the quadratic interpolator with one coefficient imposed (the first coefficient was
imposed since only two points were available). This approach proved highly effective, allowing to
achieve a final ∆β of 4.07°. The relative Mach contour number of this flow field is shown hereafter.
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Figure 3.34: Mach contour of the baseline under near-stall conditions (second design point) for the
variable back pressure optimization.

In figure 3.34 it is visible that the increase in static back pressure brought the cascade to a much
more unstable condition than the previous. The higher inlet flow angle is visible from the shift of the
stagnation point near the pressure side. This causes a higher acceleration of the air on the suction side
with the formation of an expansion fan. Overall this acceleration is contained and interested only a small
part of the flow. Due to the higher incidence, at the end of the SS, the boundary layer tends to separate,
increasing the wake losses.

Although with the two strategies, the differences in the back pressure are contained (about 1640Pa),
the flow fields are very different. Also, it is evident, how a small increase in back pressure can drastically
deteriorate the flow conditions. For this reason, at this blade section, it was difficult to determine the
optimal back pressure for the first optimization. On the other hand, the control of the incidence angle
enables the comparison of all profiles in conditions that better represent the stall. The time constraint, due
to the multiple simulations needed for the second strategy, was the reason why it was first performed the
constant back pressure optimization. In fact, the baseline took less than 40 minutes with the first strategy
while using the second it took more than 90 minutes.

The objective function results are then listed in the table below.

ηpol TPR, 1st strategy TPR, 2nd strategy
0.854 1.306 1.352

Table 3.9: Baseline at mid-span objective functions’ results.

The results obtained in this section will be used to understand what improvements the optimized
profiles get.

46



3.2. MID-SPAN OPTIMIZATION

3.2.2 Bayesian Optimization with fixed back pressure

Firstly, an LHS study was performed to obtain the initial population used to train the regression model.
32 individuals were generated and evaluated through the high-fidelity model. The optimization process
began with a final total number of direct evaluations of the real objective functions set to 168. This
decision was made based on the observation from the tip optimization, where after nearly 150 total
evaluations, the improvements of the Pareto front were completed, and subsequent simulations continued
to populate the same front. The evaluation of a single individual took 40 minutes on average and the
total optimization was complete in about 4.5 days. Thanks to the lower Mach number, this blade section
was less critical than the upper one, and so the boundaries of the DV were already taken as the larger
used for the tip optimization. However, also in this case the algorithm started to stagnate on the edges of
the domain. For this reason, the DV boundaries of the Camber line were increased from [−4.5,+4.5] to
[−6.5,+5.5] after 89 total evaluations. The final Pareto front obtained from the optimization is shown in
figure 3.35.
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Figure 3.35: Results of the Bayesian Optimization at mid-span, normalized with respect to the baseline.

From figure 3.35, it is noticeable that the optimizer significantly improved both objectives. The final
Pareto consists of 14 individuals, with nearly half of them exhibiting a TPR value over 5% higher than the
baseline. Moreover, all the not-dominated individuals surpassed the initial profile in terms of efficiency,
with the most improved profile achieving an enhancement of over 11%.

The performances of each individual are represented on the DV space using a colour map to under-
stand how best individuals are composed. In particular, the efficiency is represented in figure 3.36 while
the TPR results are shown in figure 3.37.
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Figure 3.36: Rappresentation of the ηpol results of the airfoils in the space of the DV using a colour map.
Results after the BO at mid-span using constant back pressure.

Figure 3.37: Rappresentation of the TPR results of the airfoils in the space of the DV using a colour map.
Results after the BO at mid-span using constant back pressure.

First, it can be noticed that the decision space is still too tight since a lot of solutions are stacked at
the boundaries of the domain. These should be extended more, but because the optimizer was already
improving, it was decided to conclude the optimization with these values. Moreover, some DV could
not be enlarged since this would lead to ineligible geometries. For instance, the variable x8 has all
the best individuals at the minimum of its range but, because this controlled the maximum thickness,
some structural considerations must be taken. In particular, it was not possible to reduce the variable
below −0.4 so all the results were stacked on the boundary. For the first two variables, high-efficiency
individuals are all contained in a small area on the bottom left of the graph while for the best TPR
profiles the correlation between the two variables and the performance are less clear. The 3rd DV shows a
significant trend for the first objective function, with the best individuals having x3 negative while for
the second objective, no correlations between the variable and the function are visible. For variable x4,
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negative values are correlated with good profiles for the second objective function while for the ηpol no
significant trends are visible. In variables x5 and x6 the trend looks opposite between the two graphs.
Individuals with the best ηpol are on the top right of the graph while profiles that optimize the TPR are
located on the bottom left. The variable controlling the position of the maximum thickness along the
Camber line (i.e. x7) does not influence either of the two objective functions. On the other hand, the best
individuals have all minimum values of x8.

To check whether the optimizer reaches convergence or if further improvements are possible, the
Pareto, initial and final and real and fitted with the GPS are presented in figure 3.38.
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Figure 3.38: Pareto fronts initial and final both real and predicted with the GPS model.

The initial Pareto calculated using the regression model uses the first DV boundaries and despite
this, very good improvements were expected. Comparing this with the final obtained it is visible how
the initial GPS were not enough accurate in the description of the fitness functions. Looking at both the
final Pareto it is evident how the regression model and the real almost match. The differences are mainly
because the minimum of the function lies at the edges of the domain and so the function is difficult to
explore for the optimizer. Moreover, since the regression functions are highly distorted, the final Pareto
of the surrogate functions was calculated imposing to the GA optimizer 2 million generations composed
of 160 individuals.

A study of three different profiles is done to delve deeper into the differences between the optimal
solutions. The individuals chosen are reported in figure 3.39. Particularly, the individual with the highest
TPR is not the one at the edge of the Pareto because near profiles have almost the same value in the
second objective function while sensibly improving efficiency.
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Figure 3.39: Best individuals selected for the study. Mid-span optimization at constant back pressure.

Best Efficiency

The first individual studied is the best efficiency profile. It was created as the 86th (118th of the overall
optimization) profile of the optimization. In figure 3.40 the geometry of the profile is presented, while in
table 3.10 the values of the decision variables are shown. The values of the OF are then reported in table
3.11.
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Figure 3.40: Best individual for efficiency.
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Camber Line Variables [°] Thickness Variables []
-1.64 -3.78 -6.50 -0.62 1.53 5.50 -0.50 -0.40

Table 3.10: Decision variables values of the best ηpol profile of the mid-span optimization with constant
back pressure.

Value ∆% form base
ηpol 0.950 11.31
TPR 1.297 -0.65

Table 3.11: Objective functions values and comparison with the baseline for the best ηpol profile for the
optimization at mid-span with constant back pressure.

The profile is thinner and straighter than the baseline similar to a flat plate. This latter is very good
in terms of efficiency but lacks compression performance since it almost does not deflect the flow. The
values of the decision variables are consistent with what was observed in figure 3.36, with 3 of the 8 DV
situated at the edges of the domain.

The Mach number contours at the two optimization points are now analyzed to understand the
differences in the performances. First, the contour at the first design point is reported in figure 3.41. To
understand the differences in the values of the efficiency, the contour of the relative total pressure ratio is
presented in figure 3.42.

Figure 3.41: Mach contour of the individual with the best ηpol under design conditions (first design point).
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Figure 3.42: Relative total pressure contour for the baseline (left) and the individual with the best ηpol
under design conditions (first design point). The values are expressed as the ratio between the relative
total pressure at the specific position and the relative total pressure at the inlet.

In figure 3.41 it is noticeable that, although the Mach number is similar to the baseline (0.94 here, 0.90
the baseline) the flow fields show multiple differences. First, in the current airfoil, since the flow enters
the passage with a non-zero incidence angle, a big expansion fan is formed on the suction side causing
the flow entering the cascade to become supersonic. The air then decelerates, before entering the passage,
due to a shock that originates from the suction side of the profiles. In the baseline, this effect is much
weaker, with the expansion fan affecting only a small area. On the other hand, in the starting profile,
the flow after entering the cascade accelerates again until reaching an almost normal passage shock. In
the optimized profile, there are no other noticeable accelerations or decelerations of the flow inside the
cascade, attributed to the geometry of the passage. Because the blade is almost straight, neither diffusion
nor significant deviations of the flow are visible, and thus losses through the cascade are low. Finally, in
the baseline, the shock passages caused the flow to separate at the end of the SS. In the current profile,
since there are no other shocks than the one described before, no flow separation is visible. Also, the
low deviation helps to contain the losses. Overall, because no passage shock is present on the current
individual, the mass flow is not locked at its maximum level.

From figure 3.42 it can be noticed that the shock losses are very low in both cases, especially compared
to the tip blade section where they were the main cause of loss of efficiency. The magnitude of the two
shock losses here is similar in the two cases. In this blade section, the main cause for the decrease in
ηpol of the baseline are wake losses. For the optimized individual, the wake is contained since no flow
separation occurs also thanks to the shape of the profile.

The performances at the second design point are now investigated. Figure 3.43 and 3.44 reported
respectively the relative Mach number and the total pressure ratio contours. Particularly, the total
pressure ratio contour is obtained by dividing the total absolute pressure with the total absolute pressure
at the inlet.
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Figure 3.43: Mach contour of the individual with the best ηpol under near-stall conditions (second design
point).

Figure 3.44: Absolute total pressure ratio contour for the baseline (left) and the individual with the best
ηpol under near-stall conditions (second design point).

In figure 3.43, the flow field is more critical than in the baseline with a high-incidence condition and a
partial separation of the flow on the suction side, visible from the big wake formed from almost half of
the profile’s chord. The inlet flow angle goes from 54.8° under design conditions to 60.6° with this back
pressure with this high incidence condition visible from the shifted stagnation point This condition causes
also the formation of an expansion fan on the suction side of the profile which ends with a normal shock.
Overall this latter effect is very contained, not influencing the flow field. Although the profile is nearer to
the stall compared to the baseline, the TPR at these conditions is smaller by only 0.65%. Although the
inlet flow on the baseline is high subsonic (i.e. 0.80) the flow is almost everywhere subsonic. Similarly,
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the optimized individual worked with a relative Mach number at the inlet of 0.78.
In figure 3.44 the baseline increases the total pressure gradually as the flow passes through the cascade

thanks to the shape of the profile. On the other hand, in the current individual, since the blades are
almost straight, all the flow deceleration and compression occur at the entrance of the cascade due to the
contraction of the streamlines. Despite these differences, the final values of the objective functions are
similar thanks to the similar inlet Mach conditions.

Overall, this profile performed well at both design points, exhibiting significant improvements under
design conditions while matching the baseline at stall pressure. However, in the last simulation, the
flow field conditions were more critical compared to the baseline. Despite this, for a BLI application, this
profile remains a viable option, particularly if the emphasis is on engine efficiency.

Compromise

The next individual studied is the one being a compromise between the two objectives and it was created
as the 158th profile of the optimization. In figure 3.45 the geometry of the profile is presented, while in
table 3.12 the values of the decision variables are shown. The values of the OF are then reported in table
3.13.
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Figure 3.45: Best compromise individual.

Camber Line Variables [°] Thickness Variables []
-3.63 -5.66 -6.44 -6.16 -4.64 1.79 -0.56 -0.40

Table 3.12: Decision variables values of the compromise profile of the mid-span optimization with
constant back pressure.
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Value ∆% form base
ηpol 0.921 7.89
TPR 1.328 1.74

Table 3.13: Objective functions values and comparison with the baseline for the best ηpol profile for the
optimization at mid-span with constant back pressure.

The profile is thinner than the baseline with a slightly curved Camber line and a decreased stagger
angle. The profile improved the efficiency by almost 8% while the TPR rose by less than 2%. To understand
how these improvements are made, the flow field of the two design points is studied.

The results at the first design point are illustrated by the contours of relative Mach number and
relative total pressure ratio, displayed in Figures 3.46 and 3.47, respectively.

Figure 3.46: Mach contour of the compromise individual under design conditions (first design point).
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Figure 3.47: Relative total pressure contour for the baseline (left) and the compromise individual under
design conditions (first design point). The values are expressed as the ratio between the relative total
pressure at the specific position and the relative total pressure at the inlet.

The flow field of this profile shown in figure 3.46 is substantially different from the one of the baseline.
In this case, the relative Mach number contour is similar to what occurs on supersonic cascades. The
relative Mach number at the inlet is 0.97 while in the baseline was 0.90. It is visible near the LE, the
formation of a detached bow shock. This is more clear in the branch entering the passage while the other
part of the shock tends to dissolve. Two expansion fans are formed from the LE of the blade, accelerating
the flow to supersonic conditions. The acceleration caused by the fan formed on the SS of the previous
blade is the main reason why the inner shock is stronger than the other. After passing through this shock
the flow is then accelerated from the second expansion fan. After this a second passage shock is formed
and the flow becomes subsonic. This latter is not caused by the reflection of the bow shock but by the
shape of the passage. Overall, the incidence angle of the cascade is contained, visible from the centered
stagnation point.

In figure 3.47, the shocks formed on the optimized individual (right figure) create slightly more losses
than the ones occurring on the baseline due to the higher velocities. Since the flow is low supersonic,
shocks are weak and the decrease in relative total pressure is low. What still is the primary factor
contributing to the loss of efficiency is the wake losses. In fact, in the left picture, the separation of the
boundary layer caused by the shock causes a sensible total pressure loss. In the optimized individual,
however, although there is a complex formation of shocks and expansion fans, the final wake of the
cascade is contained. This last characteristic is the main reason why the current profile has a higher
efficiency.

Now the second objective function results are investigating. In figure 3.48, the Mach number contour
is reported while in figure 3.49 the total pressure ratio is shown.
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3.2. MID-SPAN OPTIMIZATION

Figure 3.48: Mach contour of the compromise individual under near-stall conditions (second design
point).

Figure 3.49: Absolute total pressure ratio contour for the baseline (left) and the compromise individual
under near-stall conditions (second design point).

At the second design point, the flow slowed down to an inlet Mach number of 0.81, almost equal to
the baseline. All of the flow field is subsonic, as visible from figure 3.48, except for a small expansion fan
in the first part of the suction side. This is caused by the high incidence of the flow, noticeable also from
the shifted stagnation point. In particular, the final angle of the flow is 57.48° which is almost 5° larger
than at design point 1 and higher than at the baseline. The acceleration due to the fan is followed by a
small shock that returns the flow to subsonic conditions. This is not visible in the baseline, where, thanks
to the lower Mach number and incidence angle, the magnitude of the expansion fan is smaller. While
passing the cascade the flow is slowed down and at the end of the SS, a separation of the boundary layer
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occurs. This is similar to what was observed on the baseline.
From figure 3.49, it is visible how the optimized individual compressed the flow almost only at the

entrance of the cascade while, in the baseline, the compression occurs more gradually throughout the
passage. There seem to be no significant reasons why the TPR of the optimized cascade is better than
the one of the initial profile but, since the difference is less than 2%, this is mainly due to the difference
on the inlet Mach number that is 0.814 for the current individual and 0.800 for the baseline. In terms of
efficiency, the optimized profile goes from 0.92% at the first design point to 0.93% at the second design
point by reducing shock losses while the baseline increases its efficiency from 0.85% to 0.95% thanks to a
smaller wake.

In conclusion, the profile shows good performances on both design points making it well-suited
for BLI applications. In particular, under design conditions, the optimized individual improved the
baseline efficiency by almost 8% thanks to the reduction of wake losses. Under stall conditions, the profile
overcomes the baseline TPR mostly thanks to a higher inlet Mach number. In this condition, the profile
improved also its efficiency thanks to the elimination of the shock losses, compared to the first design
point.

Best TPR

The third individual studied is the best TPR profile, created as the 98th profile of the optimization. In
figure 3.50 the geometry of the profile is presented, while in table 3.14 the values of the decision variables
are shown. The values of the OF are then reported in table 3.15.
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Figure 3.50: Best individual for TPR.
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Camber Line Variables [°] Thickness Variables []
-6.50 -5.49 -6.50 -6.50 -6.50 -6.50 -1.00 -0.40

Table 3.14: Decision variables values of the best TPR profile of the mid-span optimization with constant
back pressure.

Value ∆% form base
ηpol 0.894 4.76
TPR 1.373 5.20

Table 3.15: Objective functions values and comparison with the baseline for the best TPR profile for the
optimization at mid-span with constant back pressure.

The profile is thinner and more curved compared to the baseline. Specifically, it is similar to a MCA
airfoil, with the initial arc appearing almost straight while the tail is more curved. The stagger angle
is decreased compared to that of the baseline. All the decision variables are on the boundaries of the
domain except for x2 and x7. This observation aligns with the trends shown in figure 3.37.

To delve deeper into the reasons behind the improvements observed in the objective functions due to
the optimized profile, a study of the flow fields is now conducted. The relative Mach number and the
relative total pressure ratio contour are presented respectively in figure 3.51 and 3.52.

Figure 3.51: Mach contour of the individual with the best ηpol under design conditions (first design point).
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Figure 3.52: Relative total pressure contour for the baseline (left) and the individual with the best TPR
under design conditions (first design point). The values are expressed as the ratio between the relative
total pressure at the specific position and the relative total pressure at the inlet.

The flow field of this cascade (figure 3.51) is similar to the one found on the compromise individual.
In this case, thanks to the lower stagger angle, the passage area is bigger enabling higher velocities than
the baseline with a relative Mach number of 0.989. A detached bow shock is formed with the passage
branch being stronger than the other. At the sides of the leading edge, two expansion fans are formed as
in the previous individual, accelerating the flow to supersonic conditions. Inside the passage, the flow is
then decelerated to subsonic conditions by an almost normal shock. This shock leads the boundary layer
to separate, especially on the SS causing the growth of the wake as occurs on the baseline. The separation
is promoted also by the curvature of the last part of the blade which creates an unfavourable pressure
gradient.

The losses introduced by the shocks, and visible in figure 3.52, are similar in the two cases and again,
they are not the main reason for the loss of efficiency. On the other hand, the wake is bigger on the
baseline, mostly due to the increased thickness of the baseline. However, from the contour, the intensity
looks similar. To delve deeper into the magnitude of the two different losses in the two profiles, this time
a comparison between the relative total pressure ratio along the circumferential direction at the outlet of
the cascade is presented. In particular, the reference arc is positioned at a distance of 0.5 the chord from
the TE, downstream the cascade. The circumferential coordinate is normalized with respect to the pitch
angle.
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Figure 3.53: Trend of the relative total pressure ratio along the circumferential direction for the best TPR
individual and the baseline under design conditions (first design point). Measurement at 0.5 chords from
the blade TE of the array. Theta coordinate is normalised to the pitch, the y-coordinate to the total relative
pressure at the inlet.

The shock losses on the baseline cause a bigger downshift of the blue line indicating that the shock
is stronger. This is mainly due to the shape of the profile and the reduced acceleration on the current
individual. Overall, shock losses are contained and in fact, in figure 3.52 the contour colours after the
shock are similar. For wake losses, while intensity looks similar, in fact the difference between the highest
value (free stream) and the lowest (TE flux) is the same on both curves, the one occurring in the baseline
is more extended than in the best TPR individual. This is visible from the fact that the blue line returns to
undisturbed flow conditions after the red line. Overall the optimized individual improved the efficiency
by reducing shock losses and containing the wake dimension.

The performances at the second design point are now investigated. Figure 3.54 and 3.55 reported
respectively the relative Mach number and the total pressure ratio contours.
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Figure 3.54: Mach contour of the individual with the best TPR under near-stall conditions (second design
point).

Figure 3.55: Absolute total pressure ratio contour for the baseline (left) and the individual with the best
TPR under near-stall conditions (second design point).

The inlet angle, in this case, increases by more than 2° compared to the value at the design condition,
due to the higher back pressure and lower rotational speed. Despite the little changes in the inlet angles,
an expansion fan formed on the first part of the suction side due to the high velocities as visible in figure
3.54. The Mach number here is 0.86 which is higher than the baseline under the same conditions. After
the expansion fan, the flow is supersonic and a normal shock wave decelerates the flow to subsonic
conditions. This phenomenon is almost not observed on the baseline where, due to the lower incidence
angle, the flow remains subsonic nearly everywhere. In the current individual, as well as in the baseline,
no flow separation occurs on the suction side indicating good stability of the flow field.
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From figure 3.55, it is visible that in the optimized profile as in the baseline, the compression occurs
throughout the passage thanks to the shape of the blade. In the current profile, most of the increase in
total pressure occurs in the first half of the profile while in the baseline this occurs in the second half.
These zones where most of the compression happens are the areas where the passage shock is positioned
in the two profiles at the first design point. This confirms that the passage shock was caused by the
shape of the profile. Moreover, the shape of the baseline tends to create a shock shifted downstream,
causing the flow separation. Although the process of compression is similar between the baseline and
the current profile, the latter has better performances mainly for two causes. First, the deflection angle
of the optimized profile is greater compared to the baseline and second, the speed is higher so more
kinetic energy can be converted into pressure energy. In the previous cases, at the second design point,
the profile efficiencies were penalized by the separation of the boundary layer at the SS. This does not
occur on the baseline and hence the efficiency is very high. Also on the profile that optimizes the TPR,
the flow did not separate and the efficiency here results in 0.961%, the highest of all the optimizations.

Overall the optimized profile outperforms the baseline in both conditions. At the first design point,
the current individual increases the efficiency by almost 8% thanks to contained wake losses. On the
second design point, the total pressure ratio increases thanks to a greater deviation of the flux and
higher velocities. Under this condition also efficiency improves thanks to the low wake and shock losses
overcoming the baseline by 1%. In conclusion, given the profile outstanding performance in both aspects,
its results are highly suitable for BLI applications.

Conclusions

The good outcomes of the optimization were confirmed in this study, by highlighting the weaknesses of
the baseline and illustrating how the optimizer successfully addressed them.

At the first design point, most of the losses on the baseline were caused by the separation of the
boundary layer on the suction side of the profile. This separation was caused by the interaction between
the passage shock and the suction side of the profile causing drastic growth of the wake. To overcome
this problem, the optimizer worked on reducing the wake magnitude by shifting the shock upstream
where the boundary layer was more stable. Moreover, the profiles with higher efficiency were also less
curved so there were no adverse pressure gradients on the later part of the suction side.

For the second objective function, the baseline was already good but still some improvements were
made. In particular, the TPR were increased firstly thanks to the higher velocities of the flow due to
bigger passage areas, achieved with thinner and less staggered profiles. The individual with the best TPR
was also more curved than the baseline and so it deviates more from the flow, thus exchanging more
energy

In conclusion, a fundamental requirement for a profile to be considered good is the low thickness.
Profiles who maximize efficiency are straight while individuals who privilege the TPR are curved and
less staggered than the baseline.

3.2.3 Bayesian Optimization with variable back pressure

The initial sample used was the same as the previous optimization but the individuals were re-simulated
to update the results for the new strategy at the second design point. After reviewing the results of the
previous optimization, it was noticed that the minimum thickness was slightly too low for the specific
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application. Particularly, since the blade is subjected to cyclical loads over time, the resistance section
should not be too small so the boundaries of the last DV went from [−0.4,+0.5] to [−0.3,+0.5]. The other
limits of the optimization space were chosen as the last used previously. Because the time per individual
was significantly higher than in the previous optimization, 90 individuals were simulated (122 with the
LHS) for a total computational time of more than 150 hours (more than 6 days).

The overall results of the optimization are reported in figure 3.56, where the final population and the
initial and final Pareto fronts are shown. It is important to notice that the baseline objective functions are
different from the one used in the previous analysis since the conditions at the second design point were
different.
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Figure 3.56: Results of the Bayesian Optimization at mid-span with variable back pressure, normalized
with respect to the baseline.

Although the number of individuals generated by the optimizer is low, sensible improvements
were achieved, with a final Pareto composed of 22 individuals. However, these improvements are
relatively smaller compared to those obtained in the other cases, mainly because fewer individuals were
simulated. Overall the final Pareto appears wide and densely populated with good solutions visible
for both objectives. The most efficient individuals increase the baseline efficiency by almost 12%, while
cascades with the best TPR achieved over a 9% improvement compared to the initial profile. However,
these individuals are situated on the edges of the Pareto, and although they significantly gain in one
objective function, they lack in the other when compared to the baseline.

To better understand the final results, the performances of each individual are represented on the DV
space using a colour map. In particular, the efficiency is represented in figure 3.57 while the TPR results
are shown in figure 3.58.
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Figure 3.57: Rappresentation of the ηpol results of the airfoils in the space of the DV using a colour map.
Results after the BO at mid-span using constant back pressure.

Figure 3.58: Rappresentation of the TPR results of the airfoils in the space of the DV using a colour map.
Results after the BO at mid-span using constant back pressure.

Some blank spaces are visible in all the domains indicating that the optimizer did not explore enough
the design space so to cover the entire domain more iterations are needed. For variables x1 and x2, in the
efficiency results it is visible that all best individuals are clustered on the bottom left part of the graph,
with some outliers on the bottom right. This is similar to what was found in figure 3.36 for the previous
optimization. On the other hand, profiles with high TPR have positive values of x1 (first angle bigger than
the baseline) and negative for x2. For the second objective, however, the correlation is weaker than for the
ηpol results, especially for x2. This is different to what was found for the previous optimization, where
the best individuals were lying mostly on the left part of the graph. This difference can be caused by the
lack of data in that zone. For variables x3 and x4, no stronger correlations are visible. Best individuals
lay almost only on the boundaries of x4 and on all domains of x3. This is different from what happened
previously, especially for high-efficiency profiles, that have negative x3 with every x4. In variables x5 and
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x6, the correlation is opposite between the two objectives, with the best individuals stacked one over the
other at the corners of the domain. In particular efficient profiles have values on the top right of the graph
while high TPR cascades are on the bottom left. A similar influence of the variables is observed in the
previous work. For the DV controlling the thickness, the optimizer did not concentrate on low-thickness
individuals as in the optimization with constant back pressure. Here, the best individuals for both
objectives have all values of x8 as visible in figure 3.58. For x7 the correlation is stronger and in fact,
profiles with high values of the second objective have the maximum thickness shifted upstream (negative
x7) while airfoils with high efficiency are characterized by positive x7 (maximum moved downstream).

To check whether the optimiser has reached some level of convergence or if still some improvements
can be made, the Pareto, initial and final and real and fitted with the GPS are presented in figure 3.59. In
particular, the fitted Pareto fronts were found using a GA optimizer. Since the computational cost of the
evaluations of these functions was very low, 100000 generations of 100 individuals were generated.
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Figure 3.59: Pareto’s fronts initial and final both real and predicted with the GPS model for the BO at
mid-span with variable back pressure.

The final fitted Pareto and the final real Pareto are very similar but still, some differences are noticeable.
These are due to the under definition of the GPS that are trained with too low data for this problem.
Overall, the model predicts a Pareto front that closely aligns with the final one obtained by the optimizer,
indicating the successful progress of the optimization. However, due to the significant distortion of the
functions and the limited data in some areas of the decision variable space, it would be wise to continue
the optimization.

Figure 3.60 shows the difference between the real value of the objective function and the predicted
value both for the initial and final regression models. The initial regression models are trained using
the LHS sample, while the final models are trained with all the population available at the end of the
optimization.
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Figure 3.60: Differences between the real values of the first objective function with the one predicted
using the first and last regression model.

As seen in the previous optimizations, the initial regression model has good performance only on the
train data while on new samples there are a lot of differences between real end predicted values. This
is mostly because the OF are complicated, so 32 individuals are not enough to recreate the functions.
However, this uncertainty is acceptable at the beginning and it is why Bayesian optimizers perform
well. The final model, on the other hand, predicts the values almost perfectly also because they are the
data used to train the model. In summary, given the proximity of the two final Pareto fronts and the
low error of the GPS models on the final population, it can be concluded that the optimization process
is progressing very well. Convergence appears to be within reach, although additional data are still
required.

Now, to compare the results of the two optimizations, the Pareto fronts are presented on the same
graph with the respective baseline. The axes are not normalized due to differences in the baseline
objective function values.
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Figure 3.61: Comparison of the final Pareto fronts obtained with the BO at constant back pressure and
variable back pressure, plotted on the OFs space.

Although the second optimization evaluates fewer individuals, its Pareto front is wider compared to
the one obtained with the first optimization. Moreover, the results found with the second strategy are
improving also the first baseline. Comparing profiles on the two Pareto fronts, the two optimizations have
similar results. Individuals who maximize the ηpol in both cases improve the weaknesses of the baseline,
in particular the wake losses. In the first optimization, the profiles were straight to avoid boundary layer
separation. However, on the second optimization, the airfoils are not straight but a discontinuity is visible
in the middle of the Camber line. This seems not to have any specific purpose and it would probably
disappear with the continuation of the optimization. Similar results were obtained also for high TPR
individuals. They were more curved, to enable a higher deflection of the flow and so exchange more
energy.

Despite these similarities, the optimization with the second strategy looks behind the first one,
especially in the zone of high-efficiency individuals. To delve deeper into the results in this area, one
individual for each optimization is selected. In particular, to compare more fairly the results, the
individual selected from the first optimization was the compromise individual studied in the previous
section. This was chosen because it has an "incidence angle" of 4.78° and so the conditions at the second
design point are similar between the two profiles. For the last optimization, the individual selected was
generated at the 50th iteration (82nd considering also the LHS). This profile has a final back pressure of
43480Pa, obtained at the third simulation under near-stall conditions. This back pressure is similar to
the one of the other individual, making the comparison more fair. In figure 3.62 the two individuals are
represented on the respective Pareto fronts while the fitness functions values are reported in table 3.16.
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Figure 3.62: Individuals selected for the comparison of the two optimizations at mid-span.

ηpol TPR
BO constant pressure 0.921 1.328
BO variable pressure 0.915 1.313

∆% 0.651 1.130

Table 3.16: Objective functions values of the profiles obtained form the two BO.

The geometries of the two individuals are compared in figure 3.63 while the values of the DV are
reposted in talbe 3.17
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Figure 3.63: Geometries of the individuals selected for the comparison of the two optimizations at
mid-span.
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Camber Line Variables [°] Thickness Variables []
BO p conts. -3.63 -5.66 -6.44 -6.16 -4.64 1.79 -0.56 -0.40
BO p var. -2.95 -5.38 -6.50 5.50 5.50 0.53 -1.00 -0.30

Table 3.17: Decision variables values of the best ηpol profiles of the BO andGA optimizations.

Although the two profiles have very similar performance under similar boundary conditions, the
geometries are quite different. In the current individuals, the second part of the Camber line deviates
from other profiles creating a shape similar to a dovetail. The values of the DV confirm that the profile is
almost equal in the first half while in the second they are almost opposite.

To understand how these two different geometries reach similar results, first, the Mach contour and
the relative total pressure ratio contour of both individuals are presented.

Figure 3.64: Mach contour of the individual with the individual form the first optimization (left) and
second (right) under design conditions (first design point).
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Figure 3.65: Relative total pressure ratio contour for the individuals from the first optimization (left) and
second (right) under design conditions (first design point).

The two flow fields in figure 3.64 are different although the final efficiency is almost the same, with
the right contour being similar to the baseline. Moreover, the dovetail shape of this individual creates a
convergent zone inside the passage that accelerates the flow like in a nozzle. This acceleration terminates
on the second half of the camber line with the presence of a passage shock. Although the passage shock on
the current individual is positioned on the second half of the passage, no flow separation is visible. This
occurs due to the passage shape, resembling a diffuser after the shock, thereby generating a favourable
pressure gradient. In the profile of the first optimization, the flow field is different and it is similar to a
supersonic cascade flow field. Overall the ηpol of the two cases is very similar because the wake losses
are limited since no boundary layer separation occurs. The relative inlet Mach number of the individual
from the first optimization is 0.97 while in the current profile is 0.94. For this reason, the difference in the
final values of ηpol is not caused by the viscous stresses.

Form figure 3.65 it is noticeable the separation of the boundary layer on the initial part of the suction
side, but overall it appears to be well-contained and it is not the primary cause of the efficiency loss.
Looking at the shock losses, on the left case slightly greater decrease in total pressure ratio is visible
compared to the right due to the higher velocities on the first profile. On the other hand, the current
cascade shows slightly larger wake losses, noticeable especially from the TE of the two individuals. To
compare these last two losses, the relative total pressure ratio is plotted downstream the profiles along a
circumferential direction as visible in figure 3.66.
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Figure 3.66: Relative total pressure downstream the cascade.

The shock losses on the current individual are lower than those on the optimized profiles from the
first optimization visible from the downshift of the red line in figure 3.66. On the other hand, the wake
losses are higher for the current individual, as indicated by the fact that the two curves converge to the
same value at the centre while starting from different heights. This is the main reason why the optimized
individual with the variable pressure outlet has a little higher losses. Moreover, looking back at figure
3.64, it is visible that the wake is not perfectly aligned with the final part of the profile. These higher
losses are mainly due to the final shape of the airfoil. Overall, this confirms that in this blade section, the
most significant losses are caused by the wake.

To understand the differences in the performances at the second design point, the relative Mach
number contour and the total pressure ratio contour are reported hereafter. Particularly, the total pressure
ratio is calculated as the ratio between the absolute total pressure and the absolute total pressure at the
inlet, which is the same on both cases.
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Figure 3.67: Mach contour of the individuals from the first optimization (left) and second (right) under
near-stall conditions (second design point).

Figure 3.68: Total pressure ratio contours of the individuals from the first optimization (left) and second
(right) under near-stall conditions (second design point).

Since the ∆β is similar in the two cases, and the profiles have almost the same shape on the first part of
the Camber line, the flow filed in this region is very similar, as visible in figure 3.67. More differences are
noticeable in the second half of the airfoil. Here, since the passage has a divergent shape, the separation
of the flow is slightly more contained in the current profile than in the left individual. On the other hand,
the dovetail shape of the profile obtained with the second optimization creates some small zones where
the flow decelerates. Form figure 3.68 it can be noticed that the shape of the profile obtained with the
second optimization causes the total pressure to fluctuate inside the passage. This, combined with the
slightly lower Mach number for this profile (0.81 vs. 0.79), are the reasons why the TPR of this profile is
lower than that of the other profile. Although the shape causes a fluctuation of the total pressure, the
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final wake of the current profile is smaller than the one of the first one. Also in this case the wake is the
leading cause for the efficiency losses and in fact, the final ηpol is 0.93% for the individual obtained with
the second optimization while for the other is 0.92%.

Overall, although the profiles have different geometries, the final results of the two flow fields are
similar. In particular both the individuals improved the baseline problems in similar ways. However,
the dovetail geometry of the individual obtained by the second optimization appears to lack functional
reasons for its specific shape. It is possible that with further optimization iterations, the shape becomes
more similar to the one obtained in the first optimization.

Conclusions

The two different strategies for simulating near-stall conditions brought similar results, although some
differences were observed.

First, the Pareto front obtained with the second strategy looks much wider than the first one, indicating
that more solutions were explored. Imposing the incidence angle instead of a fixed back pressure allows
for more cascades to be simulated without encountering numerical issues. Moreover, the conditions
at the second design point were more similar whereas on the first optimization, the individuals were
in more different conditions. Profiles with higher stall pressure were unable to achieve their final TPR,
penalizing the second objective function. An example of this is the baseline, which has a higher pressure
ratio in the second optimization.

Looking at the geometry of the profiles composing the Pareto, in general, individuals with high TPR
were really curved and thin, confirming what was found in the previous optimization. On the other
hand, high ηpol airfoils exhibited geometric differences between the two strategies. While both minimized
the baseline losses (especially wake losses), in the first optimization, they were straight, whereas in the
second, dovetail profiles were generated. The unusual shape of the profile composing the final Pareto of
the second optimization seems not to be justified. To confirm this, further optimizations are necessary to
validate the effectiveness of this particular geometry. Overall these differences are the main causes for the
second Pareto front to be slightly behind.

In conclusion, the use of a different strategy to recreate near-stall conditions on the profiles allowed
for a much larger Pareto front to be found. Moreover, the comparison between the individuals was more
fair in terms of proximity to the stall conditions, without penalizing the profiles that have different stall
pressures. However, to confirm the effectiveness of these results, the optimization should be continued
further.
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4 CONCLUSION

A multi-objective, multi-point optimization of two different profiles of a transonic fan was conducted to
find the main features of distortion-tolerant profiles. A Bayesian optimizer was used for its velocity of
convergence whereas objective functions evaluations were performed using bi-dimensional steady state
CFD simulations. The tip blade section was investigated for its high sensitivity to inflow conditions. For
the second optimization at mid-span, near-stall conditions were obtained by looking at the inlet incidence
angle. This latter study was used as a comparison with the first strategy.

For the tip blade section, improvements of almost 15% were achieved in terms of ηpol compared to
the baseline while only 5% for the second objective function. High ηpol profiles were thicker than the
baseline and had almost the same stagger angle. The improvement was obtained by reducing the losses
caused by the second passage shock. Particularly, no reflection of the passage shock was present because
the profiles were nearer to the stall conditions than the baseline. Results similar to the baseline were
achieved at near-stall conditions where improvements were obtained thanks to stronger shock on the
optimized profiles. Individuals with high TPR were thinner and had a curved Camber line on the back.
Performances were improved on the second objective, enhancing the total pressure ratio through stronger
shocks and partly deflecting the flow. Additionally, efficiency was improved under design conditions due
to weaker second passage shocks. This reduction was achieved by a lower contraction of the passage.

At mid-span, in the optimization with the first strategy, a common feature of the overall population
was the low thickness of the high-performance profiles. High-efficiency profiles increased the ηpol up
to 11% compared to the baseline thanks to a reduction in the wake losses. In particular wake losses
were caused by the interaction between the suction side and the passage shock. Best individuals were
straight and improved performances by expelling the passage shock. High TPR individuals increased the
second objective thanks to higher velocities and greater flow deviation achieving up to a 5.2% increase
in pressure ratio compared to the baseline. The resulting profiles were more curved and with a lower
stagger angle than the baseline. Good performances were obtained also on the first objective function
thanks to contained wake losses. This was achieved by shifting upstream the second passage shock and
thus containing the flow separation.

With the second optimization strategy, the final Pareto was wider and slightly behind the one obtained
with the first optimization of the mid-span. The bigger extension was mainly due to the variable back
pressure. In the first optimization, the fixed back pressure caused the elimination of certain profiles
because of the too-high counter-pressure whereas the adjustable back pressure of the second strategy
allowed the exploration of more solutions. In terms of decision variables, the biggest difference was
observed with the thickness where no correlation between x8 and performance was visible. High TPR
profiles were thin and with a curved camber line, confirming what was found in the previous optimization.
On the other hand, high ηpol airfoils exhibited geometric differences between the two strategies. While
both minimized the baseline losses (especially wake losses), in the first optimization, cascades were
straight, whereas, in the second, dovetail profiles were generated. Furthermore, certain areas of the
design variable space remain unexplored, leading to the neglect of some solutions. Overall, the use of a
different strategy to recreate near-stall conditions on the profiles allowed the finding of a wider Pareto
front compared to the first strategy.

Finally, the Bayesian optimizer demonstrated its effectiveness in comparison with the GA, obtaining
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similar results. A faster convergence was observed in the BO with this latter reaching the final Pareto at
about 50% of the total evaluations while the genetic took more than 70%. Moreover, at less than 2/10 of
the total iterations, the BO already started to find individuals on the final Pareto, with good solutions for
both objectives. This was not observed in the case of GA, where the optimizer continued to extend the
Pareto front as the optimization proceeded.
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A.1 Riassunto Esteso

La propulsione BLI (Boundary Layer Ingestion) è un concetto promettente nell’ingegneria aeronautica che
mira a migliorare l’efficienza degli aerei. Questa tipologia di soluzione porta però a delle problematiche
a livello del motore a causa del fatto che il flusso all’inlet è distorto. La seguente tesi affronta la
progettazione di una famiglia di profili che reasca a lavorare in modo efficiente quando soggetta a
flussi in ingresso distorti. Per trovare le caratteristiche principali dei profili tolleranti alle distorsioni è
stata utilizzata un’ottimizzazione multi-punto multi-obiettivo. Il primo capitolo offre una panoramica su
questo argomento, oltre ad illustrare una serie di contributi scientifici sul tema e ad indicare gli obiettivi
dell’elaborato.

Nel secondo capitolo vengono presentati i metodi utilizzati. Inizialmente viene introdotto il caso
studio, contestualizzando quindi il lavoro di tesi. Viene poi descrtitta la modalità con la quale la
geometria viene parametrizzata durante l’ottimizzazione. In particolare, i profili vengono ricostruiti
parametrizzando separatamente Camber line e distribuzione degli spessori, utilizzando delle B-spline
cubiche. In seguito, il modello CFD utilizzato per le simulazioni viene presentato assieme ad un’analisi
di convergenza della mesh, resa necessaria per validare i risultati ottenuti. I punti di ottimizzazione scelti
per il caso studio sono poi presentati. Il primo punto scelto è stato l’efficienza politropica in condizione
di progetto mentre il secondo è stato il rapporto tra le pressioni totali in condizioni di stallo. Due diversi
metodi per la scelta delle condizioni di stallo sono stati utilizzati. Nel primo, condizioni uguali venivano
applicate per tutti gli individui dell’ottimizzazione mentre nel secondo le condizioni di stallo venivano
decise guardando all’angolo in ingresso. Infine è stato descritto l’ottimizzatore utilizzato. In particolare è
stato utilizzato un ottimizzatore Bayesiano per la sua velocità di convergenza alla soluzione finale.

Nel terzo capitolo vengono presentati i risultati. Prima viene analizzata l’ottimizzazione eseguita al
tip della pala. Per questa sezione palare, sono stati ottenuti miglioramenti di quasi il 15% in termini di
prestazioni rispetto al valore della baseline, mentre solo il 5% per la seconda funzione obiettivo. I profili
ad alta efficienza risultavano più spessi rispetto alla baseline e avevano angoli di calettamento simili. Il
miglioramento è stato ottenuto riducendo le perdite causate dal secondo shock di passaggio. Gli individui
con elevato TPR hanno aumentato il secondo obiettivo grazie a velocità più elevate e una maggiore
deflessione del flusso, superando la baseline di quasi 5%. I profili risultanti erano più curvi e con un
angolo di calettamento inferiore rispetto al profilo di partenza. È stato poi confrontato l’ottimizzatore
Bayesiano con un ottimizzatore ben collaudato basato su un algoritmo genetico. Risultati simili sono stati
ottenuti ed inoltre è stata osservata una maggiore velocità di convergenza da parte del Bayesiano. La
sezione di mid-span della pala è stata poi analizzata. Una prima ottimizzazione Bayesiana è stata eseguita
utilizzando delle condizioni simili alla sezione superiore. Si è notato come i profili ad alta efficienza
aumentavano le prestazioni fino all’11% rispetto al valore della baseline grazie a una riduzione delle
perdite di scia. Qui gli individui migliori erano diritti e miglioravano le prestazioni espellendo lo shock
di passaggio. Gli individui ad alto TPR hanno aumentato il secondo obiettivo grazie a velocità più elevate
e una maggiore deflessione del flusso, aumentando le prestazioni fino a 5,2% in più ripetto al rapporto di
compressione della baseline. I profili risultanti erano più curvi e con un angolo di calettamento inferiore
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rispetto alla baseline. Una seconda ottimizzazione è stata poi eseguita utilizzando una diversa tecnica per
la determinazione delle condizioni di stallo. In particolare si guardava all’angolo del flusso in ingresso.
Una buona correlazione con i risultati precedenti è stata trovata, ed in particolare con questa tecnica il
fronte di Pareto finale è risultato più esteso ripetto al caso precedente.
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