
University of Padua
Mathematics Department "Tullio Levi Civita"

Degree in Computer Science

Improving product development of an
automotive interior lighting application

using SysML

Thesis supervisor:
Prof. Ombretta Gaggi

Student:
Marta Greggio
matr. 1222777

A.A. 2021/2022

Ai miei genitori che da sempre mi supportano negli studi,
Alla prof. Gaggi, relatrice di questa tesi, che mi ha seguita e sostenuta durante il
percorso,
Ad Andrea e Christopher,
A Giulia, a Simone, ad Elia,
A tutti coloro che con un piccolo o un grande gesto hanno reso speciali questi anni.

Abstract

The following document describes the internship experience made by Marta
Greggio, at Infineon Technologies Italia S.r.l based in Padova (PD).
It has been done at the end of the Bachelor’s degree course in Computer
Science and it lasted about 300 hours.
The internship is about improving the product development using SysML to
model typical use cases. The document illustrates the company itself, the
carried out activities and an evaluation of the work performed as well.

1

2

Contents
1 Introduction 5

1.1 The company . 5
1.2 Company divisions . 5
1.3 Way of working . 6

1.3.1 V-model . 6
1.3.2 MBSE . 7

1.4 Race UP Team . 8
1.5 Thesis structure . 8
1.6 Typographic conventions . 8

2 Internship proposal 9
2.1 Project presentation . 9
2.2 Introduction . 9

2.2.1 Interior lighting . 9
2.2.2 Application Engineer . 10

3 Internship experience 11
3.1 Technology requirements . 11

3.1.1 Enterprise Architect . 11
3.1.2 SysML . 11
3.1.3 Python . 12

3.2 Use case diagrams . 13
3.2.1 Identified actors . 14
3.2.2 BSL interaction . 16

3.3 Activity diagrams . 17
3.4 Practical application . 29

3.4.1 BSL via LIN protocol . 29
3.4.2 NVM Write command . 31
3.4.3 NVM Read command . 33

3.5 Python Script . 34

4 Conclusions 37
4.1 Generic overview . 37
4.2 Final balance . 37

4.2.1 Preliminary studies . 37
4.2.2 Analysis and Modeling . 37
4.2.3 Firmware optimization . 38
4.2.4 Verification with a demonstrator 38

4.3 Personal feedback . 38

5 Glossary 39

References 40

3

List of Figures
1 Infineon Technologies ’ logo . 5
2 V-model diagram . 6
3 Benefits of MBSE . 7
4 Example of footwell lights . 10
5 Example of interior lighting . 10
6 Enterprise Architect’s logo . 11
7 SysML’s logo . 11
8 Differences between SysML and UML diagrams 12
9 Python’s logo . 12
10 Different ways to interact with the device 14
11 Extended UC diagram . 15
12 Sub-use cases of UC8 - SWD interface management 16
13 Sub-use cases of UC9 - Configure BSL 16
14 Activity diagram for the UC6 - Download the program in the NVM . 18
15 Activity diagram for the UC7 - Interacts with the product via BSL . 19
16 BSL command processing . 20
17 Activity diagram for the UC8 - Interface management 21
18 Activity diagram for the UC8.1 - Deactivate interface 22
19 Activity diagram for the UC8.2 - Activate interface 23
20 Activity diagram for the UC9.1 - Change BSL register address 24
21 Activity diagram for the UC9.2 - Change BSL window time 25
22 Activity diagram for the UC9.3 - Disable BSL 26
23 Activity diagram for the UC11 - Interacts with the product via startup

service routine . 27
24 Request processing . 28
25 Frame format of a LIN message . 29
26 Sync field byte . 30
27 Finite state machine describing the correct unlock sequence 30
28 Passphrase content . 30
29 Capture with the Saleae tool [6] of the first frame of the passphrase . 31
30 Capture with the Saleae tool [6] of the second frame of the passphrase 31
31 Get NAD address command request and response 31
32 Sequence diagram for the NVM write command 32
33 Master header block for NVM write command 32
34 Data block . 33
35 NVM write command header block 33
36 Data block and slave acknowledge . 33
37 Master header block for NVM read command 34
38 Capture of read command and response 34

4

1 INTRODUCTION

1 Introduction

1.1 The company

Infineon Technologies AG (figure 1) is a German semiconductor manufacturer
founded in 1999 with headquarter in Munich and different operational sites in Eu-
rope, Middle East, Africa and America [3].
It is effectively one of the leading players regarding semiconductor solutions in dif-
ferent markets such as automotive, industrial, multi-market sectors, chip cards and
security products as well.
Infineon Technologies Italia S.r.l. is a legally independent subsidiary with its head-
quarters located in Milano and it is fully owned by Infineon Technologies AG in
Germany. The biggest Research and Development centre is located in Padova where
almost 200 engineers and researchers develop products mainly for the Automotive
industry and in particular drivers for conventional and LED lighting.

Figure 1: Infineon Technologies ’ logo

1.2 Company divisions

The company is comprised of four different divisions [2]:

• Automotive: this division aims to shape the future of mobility enabling
clean, safe and smart cars. Semiconductors are essential for supporting trends
like electromobility and autonomous driving;

• Industrial Power Control: power semiconductors play an important role
for increasing efficiency and reducing energy losses. This division works for
example on components for solar energy systems as well as power supplies or
home appliances;

• Power & Sensor Systems: this division focuses on power management and
data transfer capabilities. Infineon’s semiconductors enable intelligent smart
sensitivity and fast data processing in steadily increasing digitized world;

• Connected Secure Systems: this division is focusing on the heart of the
Internet of Things. IoT is having a huge impact on our lives and Infineon pro-
vides solutions for computing, wireless connectivity and trusted technologies
in order to help to securely connect the networked systems.

5

1.3 Way of working 1 INTRODUCTION

1.3 Way of working

1.3.1 V-model

The company organizes the development of a product following the V-model (see
figure 2). The V-model is a product development life cycle methodology that de-
scribes the activities to be performed and the results that have to be produced. It is
also known as verification and validation model. It consists of four different phases:

• Requirement phase: requirements contain the essential information regard-
ing functionality and performance of a product;

• Architectural design phase: it is referred to as high-level design in which
all the information from the requirements phase is split into easy to handle
modules, the functionality of each module is defined, as well as its relationships,
dependencies, architecture diagrams and technology design;

• Detailed design phase: it is referred to as low-level design in which for each
module a model fulfilling the required functionality is created;

• Implementation: final phase that consists in realizing the product.

The approach of the V-model helps to avoid defects in later stages of development
and allows testers to have the test cases ready when required.
Moreover, testing the product during every stage of the development helps to deliver
a high quality product. The model is considered to be quite strict since it lacks
flexibility when it comes to making even slight changes: this prevents changes to be
made without proper alignment.

Figure 2: V-model diagram

6

1.3 Way of working 1 INTRODUCTION

1.3.2 MBSE

After encountering some difficulties, the company decided to study a new paradigm
in order to design products more efficiently, reducing development costs and timescales.
Risk due to technology is also reduced, because of a greater focus on formalizing
how the technology works.
Model Based System Engineering (MBSE) [8] is a methodology used to support the
development of complex systems. MBSE, applied in the right circumstances, allows
designers to work successfully at greater degrees of complexity, as illustrated in fig-
ure 3.
MBSE brings together three concepts:

• Model: a simplified version of something that abstracts reality to eliminate
some complexity;

• Systems thinking: way of looking at a system under consideration not as a
self-sufficient entity but as a part of a larger system;

• System engineering: integrative approach to enable the successful realiza-
tion, use and withdrawal of engineered systems using system principles and
concepts.

Source: Benefits of Model-Based System Engineering [1]
Figure 3: Benefits of MBSE

7

1.4 Race UP Team 1 INTRODUCTION

1.4 Race UP Team

From an early age on I always watched Formula 1 with my dad and since then I
developed more and more passion for motorsport.
In September 2020 I applied to the Formula SAEG Team of the University of Padua,
the Race UP Team. Formula Student is a competition where teams from different
universities design and realize a formula-style car.
The University of Padua’s team actually has two divisions, building both an electric
car and one with a combustion engine. I am currently head of the software depart-
ment of the electric division.
As a proper team, we are also responsible for finding sponsors willing to help us
reach our goals. Infineon Technologies, who is one of our sponsors, offered me an
internship, which I was honored to accept.
Even if a semiconductor manufacturer didn’t seem to fit well with my bachelor’s
career, I realized I could still apply concepts learned in class and I thought it would
be a great chance to extend my knowledge.
Moreover, since Infineon is one of the leading companies in the automotive market,
this experience helped me understand what it is like to work in such a large and
complex environment.

1.5 Thesis structure

The thesis is divided into four chapters. The first chapter describes the company,
Infineon Technologies, starting from its history to the products and the services it
offers.
The second chapter motivates the internship experience, the choice of the company
and highlights the advantages of an internship for both the student and the company
itself.
The third chapter focuses on the activities of the stage, starting from the study
of the current trends in the automotive field, to the realization of the use cases and
the activity diagrams of the product to the "hands on" part where I interacted with
an Infineon product and made use of some offered features.
Last but not least, the fourth chapter contains a short review of the experience
from my point of view, concerning the acquired knowledge and an evaluation of the
achieved goals.

1.6 Typographic conventions

Acronyms, abbreviations and ambiguous words are defined in Section 5 and are
identified by a subscript G.

8

2 INTERNSHIP PROPOSAL

2 Internship proposal

2.1 Project presentation

During the internship experience I worked in the Technical Marketing and Software
team. My job there was to understand products Infineon is working on in order to
detect use cases and have a clear idea on how the customer will interact with the
final products.
In fact, with Infineon being the unchallenged leader in the automotive market, it
is very important to consider every scenario and even any failures in the product
during development in order to provide high quality products, having considered
the strengths and detecting and reacting to weaknesses at an early stage. My work
was also useful for the company itself: since Infineon is a very big company, even
if people work on the same product, they all operates in different stages of the
development. For example, the different teams are mainly working within their own
scope on the product and, depending on the product complexity, may only have an
abstracted view of the full product.

2.2 Introduction

2.2.1 Interior lighting

"Interior lighting" refers to all the lighting devices inside of a car that provide com-
fort and safety for the driver and passengers, such as footwell lights (see figure 4 at
page 10), interior decorations, as shown in figure 5 at page 10, door panel illumi-
nation, light guides and also assist in alerting the driver, for example by indicating
obstacle proximity or unfastened seat belts, to name a few examples.
The developments in the LED lighting industry affect topics like:

• Brand identification;

• Comfort;

• Safety;

• User experience;

• Communication and information.

Moreover, in the past years, expecially due to global warming and the more and
more strict regulations regarding the environmental protection, the focus has moved
to electric cars.
This big change was a great opportunity to re-design the interior of the car, not
only the architecture but also the comfort and the interior lighting itself.
In addition, if we consider the general transformation of the automotive field towards
autonomous vehicles, we notice how important it is to improve the user experience.
This could be done for example by trying to recreate the comfort of the living room,
and what is a better way to do so than with lights?

9

2.2 Introduction 2 INTERNSHIP PROPOSAL

Source: Interior lighting report [7]
Figure 4: Example of footwell lights

Source: Interior lighting report [7]
Figure 5: Example of interior lighting

2.2.2 Application Engineer

An Application Engineer (AE) is the application and product expert.
AE works throughout the product development life cycle in supporting application
design, analysis, development and testing processes, he coordinates and helps in
product development by focusing on the application from both user and technical
standpoints.
He understands all the features, the advantages of each product, how the product is
commonly employed, and how to troubleshoot common problems. An application
engineer is asked to confirm specifications of the product, standards and changes
and to solve technical problems the consumer may have using it. In particular at
Infineon there are different kinds of Application Engineers, such as Product AE and
System AE.

10

3 INTERNSHIP EXPERIENCE

3 Internship experience

3.1 Technology requirements

3.1.1 Enterprise Architect

Enterprise Architect (figure 6) is a visual modeling and design tool developed by
Sparx Systems based on the OMGG UMLG .
The platform supports different operations such as design and construction of soft-
ware systems, modeling business processes and modeling industry based domains.

Figure 6: Enterprise Architect’s logo

3.1.2 SysML

The System Modeling Language (SysML) (Figure 7) is a general-purpose graphi-
cal modeling language for specifying, analyzing, designing, and verifying complex
systems that may include software but also hardware, information, procedures and
facilities [9].
SysML is defined as a subset of UML with extensions needed to satisfy system
requirements.

Figure 7: SysML’s logo

Comparison with UML

• SysML reduces some of the software-centric restrictions in UML and thus
SysML diagrams are more flexible and expressive;

• SysML can model a wider range of systems, compared to UML being designed
only for software development;

• SysML is easier to learn and apply, since it is a smaller language with fewer
diagram types;

• SysML adds two diagram types: "Requirements" and "Parametric".

11

3.1 Technology requirements 3 INTERNSHIP EXPERIENCE

An overview of the different types of diagrams offered by both SysML and UML can
be seen in Figure 8.

Figure 8: Differences between SysML and UML diagrams

3.1.3 Python

Python (Figure 9) is an "interpreted, object-oriented, high-level programming lan-
guage with dynamic semantics", as described in the official website [11].
It provides high-level built in data structures, combined with dynamic typing and
dynamic binding and easy to learn syntax that emphasizes readability and therefore
reduces the cost of program maintenance.
Moreover, supporting modules and packages, it encourages program modularity and
code reuse. Extensive standard library are available in source or binary form without
charge for all major platforms, and can be freely distributed.

Figure 9: Python’s logo

12

3.2 Use case diagrams 3 INTERNSHIP EXPERIENCE

3.2 Use case diagrams

In software and systems engineering the use case is a list of actions and events that
define interactions between an actor and a system, in order to achieve a goal.
Use case diagram is a behavioral diagram in UML and it is a visual representation
of a use case scenario.
These diagrams are used to model the functionality of a system, to describe its
functional requirements and to present a simple but compelling picture of how the
system will be used.
Before starting to create the use case diagrams in Enterprise Architect, I found it
helpful to summarize some key concepts in a tabular structure.

For each use case I could think of, I followed a company template table in order
to write the use case specification. In fact, even if the diagram helps creating a
visual representation of the interactions, it is also important to have a textual or
tabular description that includes additional information, such as pre-conditions,
post-conditions, ecc. An example of the template is shown in Table 1. Moreover, I
also reported the sequence of events in another table, as shown in Table 2

UC X.X Change BSLG windows time

Type System

Actor User

Result User has configured the communication window with the BSL

Pre condition BSL interface is activated and BSL is enabled

Post condition BSL has a different configuration for the time window

Table 1: Example of use case table template

Use case scenario

Basic Path 1. User turns the device on
2. User establishes a connection with the device
3. User writes a number between 1 and 28 as the NACG value
on the register
4. User performs a cold or warm restart on the device
5. BSL time window has changed and set to the NAC value
×5ms

13

3.2 Use case diagrams 3 INTERNSHIP EXPERIENCE

Alternate path 1. User turns the device on
2. User establishes a connection with the device
3. User writes a number bigger than 28 that is the NAC value
on the register
4. User performs a cold or warm restart on the device
5. BSL time window has changed and set to forever

Table 2: Example of use case scenario table template

After that, thanks to an Enterprise Architect feature I was able to import all the
tables inside each use case, so that every step and a brief description could be in-
cluded inside the diagrams.

3.2.1 Identified actors

I identified three actors:

• Customer;

• Technician in the garage;

• Test Engineer.

The actor I focused on more is the customer, who is mainly a software developer
who interacts with the device. There are three ways he can do so (see Figure 10):

• via interface, both BSL and SWDG (UC1);

• via the API provided in the header file (UC10);

• via startup service routine (UC11).

Figure 10: Different ways to interact with the device

14

3.2 Use case diagrams 3 INTERNSHIP EXPERIENCE

Depending on the interaction, customers can perform different actions. The previous
diagram (Figure 10) can then be extended as the following (Figure 11):

Figure 11: Extended UC diagram

Then I could also extend the UC8 - SWD Interface management and the UC9 -
Configure BSL diagrams (Figures 12 and 13 at page 16).

15

3.2 Use case diagrams 3 INTERNSHIP EXPERIENCE

Figure 12: Sub-use cases of UC8 - SWD interface management

Figure 13: Sub-use cases of UC9 - Configure BSL

3.2.2 BSL interaction

Even if the use you could make of these diagrams is wide, I focused on the UC1 -
Interaction via interface and its extensions, expecially the interaction via BSL.
BSL stands for Bootstrap Loader and it’s a communication protocol over the serial
LING interface. LIN stands for Local Interconnect Network and it is a serial network
protocol used for low-speed communication between components in vehicles. More
details will be provided later in this thesis in section 3.4.

16

3.3 Activity diagrams 3 INTERNSHIP EXPERIENCE

3.3 Activity diagrams

An activity diagram is a UML behavioral diagram that provides a dynamic view of
the system and highlights the sequence of actions that describes the behaviour of a
structural element.
Common usage of an activity diagram in SysML includes creating graphical use
case specifications. Having considered what could be the usual steps the user has
to make to perform some kind of action, it was easy for me to create the activity
diagrams in SysML.

To describe the flow of events already identified in the tabular description of the use
cases, I also created some activity diagrams.
Some use cases did not require a more detailed view, so I will only report in this
thesis the most relevant ones.

UC6 - Download the program in the NVMG

One of the operations the user can perform is to download his code in the NVM of
the device.
The Non-volatile memory (NVM) is a type of memory that can retain stored in-
formation even after power is removed. The user code must be downloaded in the
NVM in order to allow the device to execute it.
This action can be performed in two different ways: via SWD debugger and via BSL
protocol.
In Figure 14 at page 18 you can see the corresponding activity diagram.

17

3.3 Activity diagrams 3 INTERNSHIP EXPERIENCE

Figure 14: Activity diagram for the UC6 - Download the program in the NVM

UC7 - Interacts with the product via BSL

This use case extends the less detailed use case UC1 - Interacts with the product via
interface. For interface we mean both the SWD debugger and the BSL.
Through BSL, for example,the user can:

• Read registers (UC4);

18

3.3 Activity diagrams 3 INTERNSHIP EXPERIENCE

• Verify NVM code (UC5);

• Download the program in the NVM (UC6);

• SWD interface management (UC8);

• Configure BSL (UC9).

In order to use the BSL, the relative interface must be activated.
In Figure 15 at page 19 you can see the corresponding activity diagram.

Figure 15: Activity diagram for the UC7 - Interacts with the product via BSL

In case the NAC window is open, the device processes the relative command as
shown in Figure 16 at page 20.

19

3.3 Activity diagrams 3 INTERNSHIP EXPERIENCE

Figure 16: BSL command processing

20

3.3 Activity diagrams 3 INTERNSHIP EXPERIENCE

UC8 - Interface management

This use case can be done in two different ways, via BSL and via startup routine.
It extends the respective use cases UC7 and UC11.
The user can decide to deactivate (UC8.1, Figure 18) or to activate (UC8.2, Figure
19) the interface (both BSL and SWD).

Figure 17: Activity diagram for the UC8 - Interface management

21

3.3 Activity diagrams 3 INTERNSHIP EXPERIENCE

UC8.1 - Deactivate interface

Figure 18: Activity diagram for the UC8.1 - Deactivate interface

22

3.3 Activity diagrams 3 INTERNSHIP EXPERIENCE

UC8.2 - Activate interface

Figure 19: Activity diagram for the UC8.2 - Activate interface

UC9 - Configure BSL

The BSL can be configured in different ways: for example user can decide to extend
the NAC window (UC9.2, Figure 21), to disable it (UC9.3, Figure 22) or to change

23

3.3 Activity diagrams 3 INTERNSHIP EXPERIENCE

the BSL address from its default value (Figure 20).

UC9.1 - Change BSL register address

Figure 20: Activity diagram for the UC9.1 - Change BSL register address

UC9.2 - Change BSL window time

In this case the user can change the BSL window time. In particular he sets the
NAC value. If the value is between 1 and 28, the Window_time = NAC × 5ms.
After that time the device jumps to the user code stored in the NVM. Otherwise, if
the value is bigger than 28, the device enters a loop where it waits forever for BSL
commands and it never executes user code.

24

3.3 Activity diagrams 3 INTERNSHIP EXPERIENCE

Figure 21: Activity diagram for the UC9.2 - Change BSL window time

25

3.3 Activity diagrams 3 INTERNSHIP EXPERIENCE

UC9.3 - Disable BSL

Figure 22: Activity diagram for the UC9.3 - Disable BSL

UC11 - Interacts with the product via startup service routine

It can happen that the user wants to interact with the product via BSL, but both
the interfaces are deactivated and so he can not use it.
In this particular case the device provides a way to manage the interfaces, and it is
a feature called "Startup service routine" (Figure 23).
There are only a few others operations the user can perform in this mode more than
the interface management, for example reading or writing a specific sector of the
memory.

26

3.3 Activity diagrams 3 INTERNSHIP EXPERIENCE

Figure 23: Activity diagram for the UC11 - Interacts with the product via startup
service routine

For this use case I also created another diagram (Figure 24 at page 28) that explains
how different requests are handled by the device.

27

3.3 Activity diagrams 3 INTERNSHIP EXPERIENCE

Figure 24: Request processing

28

3.4 Practical application 3 INTERNSHIP EXPERIENCE

3.4 Practical application

In the second part of the internship experience, I focused on the BSL interaction
with the product and so I recreated some of the identified use cases.
The goal was to better understand both BSL protocol and LIN protocol, and to see
the device response for a given command.

3.4.1 BSL via LIN protocol

LIN BSL is a LIN-like protocol [10]. The LIN protocol layer handles incoming
frames and proceeds to forward the given command to the BSL protocol layer who
is responsible for response message handling.
The frame format can be seen in the following picture (Figure 25).

Figure 25: Frame format of a LIN message

• SYN Break: specified as a dominant condition at least 13 bit times;

• SYN Char: byte sent to enable the slave to determine the transmission rate
the master uses. The bit pattern is 0b01010101 (see Figure 26) and so it has
a fixed hex value of 0x55;

• Protected ID: contains information about sender and receiver and the num-
ber of bytes which is expected in the response.
It can assume the following values depending on the message type:

– 0x3C in the master request header;

– 0x7D in the slave response header.

• Data: consists of 8 bytes. For BSL over LIN the first byte represents the
NADG while the remaining seven bytes contains information about the com-
mand to be performed;

• Checksum: checksum calculated with data bytes.

In particular I used FastLIN that is a LIN enhancement supporting higher baud
rates.
In order to communicate with the device, user must send the passphrase to activate
the interface. A passphrase consists of two consecutive frames sent by the host (the
PC) and for FastLIN communication the frames are extended with the checksum
byte.
As you can see in Figure 27, the BSL communication is unlocked if and only if the
passphrase frames are correctly sent to the device without any another messages in

29

3.4 Practical application 3 INTERNSHIP EXPERIENCE

between.
The content of the passphrase frames is described in Figure 28.

Figure 26: Sync field byte

Figure 27: Finite state machine describing the correct unlock sequence

Figure 28: Passphrase content

To implement some features, for example sending LIN frames via serial, I wrote a
script in Python (see Section 3.5).
Moreover I used a logic analyzer [5] to actually see the frames I was sending and
how the device was answering. A logic analyzer is an electronic instrument that is
able to capture and display multiple signals from a digital system. By setting the
right baud rate and with the correct pin configuration, I could see in real time how
the PC (the host) and the device (the slave) were communicating.
In Figures 29 and 30 you can see the actual passphrase sent via serial to the device.

30

3.4 Practical application 3 INTERNSHIP EXPERIENCE

Figure 29: Capture with the Saleae tool [6] of the first frame of the passphrase

Figure 30: Capture with the Saleae tool [6] of the second frame of the passphrase

The last byte is the checksum byte: it contains the inverted eight-bits sum with a
carry over all data bytes. An eight-bits sum with carry is equivalent to the sum of
all values, substracted by 255 every time the sum is ≥ 256.
With the passphrase set, I was finally able to send specific commands and wait for
the device response. For example, I tried to ask for the NAD address by sending
the corresponding BSL command.
The capture of the digital analyzer is shown in Figure 31.

Figure 31: Get NAD address command request and response

3.4.2 NVM Write command

Then I tried to write in the NVM some data in order to verify UC6 - Download
program in the NVM (§3.3). In fact, to download user code in the NVM means to
write zeros and ones in the memory. The corresponding BSL command consists in
two different frames. The communication between the host and the slave for the
write command is described in Figure 32.

31

3.4 Practical application 3 INTERNSHIP EXPERIENCE

Figure 32: Sequence diagram for the NVM write command

The master header block, that consists of seven bytes 1, is structured as shown in
Figure 33. In particular:

• Data length: set to 0x06;

• Command identifier: set to 0x05 for NVM write;

• Address: Address offset where to store data, maximum of 24 bits (3 bytes);

• Reserved byte: set to 0x00;

• Length of following data: number of data bytes to write.

Figure 33: Master header block for NVM write command

The data block is described in Figure 34.
1Not considering the checksum byte that is always attached to the frame and calculated as

described at page 31

32

3.4 Practical application 3 INTERNSHIP EXPERIENCE

Figure 34: Data block

Then I sent the BSL command via Python script, and you can see the actual header
frame sent by the host in Figure 35 as well as the data block containing the data to
write and the slave acknowledge frame in Figure 36.

Figure 35: NVM write command header block

Figure 36: Data block and slave acknowledge

3.4.3 NVM Read command

In order to check that the NVM was correctly written with the data I sent, I also
tried to read the memory (I used the same address offset of the write command) by
sending the relative BSL command.
The frame consists of seven bytes 2:

• Data length: set to 0x06;

• Command identifier: set to 0x84 for NVM read;

• Address: Address offset where to start reading;
2Not considering the checksum byte that is always attached to the frame and calculated as

described at page 31

33

3.5 Python Script 3 INTERNSHIP EXPERIENCE

• Reserved byte: set to 0x00;

• Length of following data: number of data bytes to read.

A picture of the frame is shown in Figure 37. In this way I was able to demonstrate
UC5 - Verify NVM code as well.

Figure 37: Master header block for NVM read command

The actual frame sent and the slave response with the required data has been cap-
tured by the logic analyzer and is shown in Figure 38.

Figure 38: Capture of read command and response

3.5 Python Script

First of all I had to import in the Python script the libraries I needed, as shown in
Listing 1.

1 import serial
2 import time
3 import serial.tools.list_ports
4 from serial.serialutil import SerialException
5 from struct import *
6 import binascii

Listing 1: Libraries import

Then I created a class LinMaster and implemented some basic features to commu-
nicate over serial, as shown in Listing 2. The baudrate is set to 115200bps since we
used the FastLIN.

1 class LinMaster:
2 def __init__(self , comPort=None):
3 self.baudRate = 115200 #set baudrate to 115200
4 self.syncBaudRate = 9600 #set slave synchronization

baudrate to 9600
5 self.ser = serial.Serial(baudrate=self.baudRate , stopbits=

serial.STOPBITS_TWO)

34

3.5 Python Script 3 INTERNSHIP EXPERIENCE

6 self.ser.timeout = 1
7 if comPort is not None: #set COM port
8 self.setPort(comPort)
9

10 """ closes the master communication """
11 def close(self):
12 self.ser.close()
13

14 """ gets all the available ports """
15 def getPorts(self):
16 ports = serial.tools.list_ports.comports ()
17 ports.sort(key=lambda x: x.device)
18 return ports
19

20 """ sets the selected port """
21 def setPort(self , port):
22 print(f"Port {port} opened")
23 self.ser.port = port
24 if (not self.ser.is_open):
25 self.ser.open()

Listing 2: Serial configuration

In order to send frames via serial I wrote a function that takes the data to send as
an argument, it calculates the checksum and send the data

1 """ Send BSL frame """
2 def send(self , data: bytes) -> None:
3 # Calculate classic checksum and convert to byte
4 checksum = 0xFF ^ reduce(
5 lambda a, b: (a + b) if (a + b) < 256 else (a + b -

255), data
6)
7 #send frame
8 self._sendData(data + checksum.to_bytes(1, "big"))

Listing 3: Send function

The checksum is calculated with a lambda function [4]. A lambda function is just
like any other Python function, except that it has no name when defining it, and
it is contained in one line of code. That allows to create small, single-use functions
that can save time and space in the program.
The keyword reduce is used to apply a particular function passed as its argument
to all of the list elements mentioned in the sequences passed along. In this case the
function is the lambda function while the elements are the single bytes of the data
passed as an argument.
To perform the three operations described in Section 3.4 I wrote three different
functions, one for each command. The code for getting the NAD is shown in Listing
4, the function for writing in the NVM a simple HELLOWORLD is shown in Listing 5
and finally the one for the NVM read is reported in Listing 6 below.

1 def getNad(self):
2 self.send(b"\x01\x92")

Listing 4: Get NAD function

35

3.5 Python Script 3 INTERNSHIP EXPERIENCE

1 def NVMwrite(self):
2 self.send(b"\x06\x02\x00\x00\x80\x00\x0A")
3 time.sleep (0.00001)
4 self.send(b"\x0B\x80" + b"HELLOWORLD")

Listing 5: NVM Write function

1 def NVMread(self):
2 self.send(b"\x06\x84\x00\x00\x80\x00\x0A")

Listing 6: NVM Read function

36

4 CONCLUSIONS

4 Conclusions

4.1 Generic overview

During my internship experience I worked as an Application Engineer at Infineon
Technologies.
Infineon is a German semiconductor manufacturer and I worked there for two
months. My main task was to identify the use cases of the interaction of the cus-
tomer with Infineon products and subsequently to create the use case and activity
diagrams using SysML to describe all the operation a user can perform with the
product.
Finally, I focused on the Bootstrap Loader interaction and implemented via Python
a script that allowed the communication with the device.

4.2 Final balance

I reported in Table 3 a comparison between the estimated time for each activity in
the preliminary schedule and the actual activities completed during the internship
experience.

Activity Spent time Estimated time

Preliminary studies 5 days 8 days

Analysis and modeling 14 days 20 days

Firmware optimization 14 days -

Verification with a demonstrator 7 days 12 days

Table 3: Report of the completed activities

4.2.1 Preliminary studies

In the first weeks of the internship I had to collect all the information about interior
lighting and the current solutions in the automotive field, as well as some innovative
trends.

4.2.2 Analysis and Modeling

In the second part of the experience I finally started to gather all the information.
I found it really helpful to talk with other departments inside Infineon in order to
cover as many points of view as possible.
Due to all the meetings I had to make with some colleagues, this phase required
almost six extra days since I had to add more and more details as I talked with
different people.

37

4.3 Personal feedback 4 CONCLUSIONS

4.2.3 Firmware optimization

The initial idea of writing color mixing code was replaced with a task focused on the
general usage of the device. A core functionality and feature is to be able to download
application software and calibration data onto a device. As a result, the practical
part was changed from firmware development to implementing the bootstrap loader
protocol and writing data to a device.

4.2.4 Verification with a demonstrator

In the last part of my internship experience I focused on both the BSL and the LIN
protocols. This activity required some extra days because I also had to study the
protocols, before implementing the commands via Python script.
After having collected all the important information, I could finally connect to a
device and use the BSL interface.

4.3 Personal feedback

At first, the thought of working in such a big company like Infineon both scared me
and excited me.
On the one hand I was fascinated by the idea of understanding what it was like
to work in such a complex environment; on the other hand I was afraid I could
not meet the company requirements with me being only a bachelor student with no
experience in the field.
With Infineon being such a big company, I really thought I would have found a
strict and severe environment: instead I was astonished by the friendly and warm
atmosphere in the office.
Behind the high quality products Infineon provides, there is the company welfare
for its employees: I think it is extremely important to allow one to feel confident
and appreciated so that one can be more productive and work more efficiently.
Nowadays work is considered one of the main causes of stress, and working for a
company with a billion dollars turnover, obviously represents a huge responsibility.
It was amazing for me to see the attention Infineon gives to all its workers and I
honestly think this is the key behind every successful company.
Concluding, I can say I learnt a lot, both from a professional and a personal point
of view and I am sure I will make use of my experience, whatever the future will
hold for me.

38

Glossary

5 Glossary
BSLG BootStrap Loader. 13

Formula SAEG Formula SAE is a student international engineering design com-
petition organized by the Society of Automotive Engineers in 1980.
A Formula SAE team must be made up entirely of active university students,
and creates the challenge if we consider the restrictions on available work
hours, skills set and experience. There are different categories, such as For-
mula Combustion, Formula Hybrid, Formula Electric and Formula Driverless.
8

LING Local Interconnect Network (LIN) is a serial network protocol that allows
master-slave communication between devices. It is largely used in the auto-
motive field. 16

NACG No Activity Counter. Its value defines the time window after reset release
within the firmware is able to receive BSL connection messages. 13

NADG Node Address for Diagnostics. It specifies the address of the active slave
node. 29

NVMG Non-Volatile Memory. 17

OMGG The Object Management Group (OMG) is a computer industry standards
consortium.The goal of the OMG was a common portable and interoperable
object model with methods and data that work using all types of development
environments on all types of platforms. 11

SWDG The Serial Wire Debug (SWD) debug interface is used for programming
firmware and accessing registers. 14

UMLG The Unified Modeling Language (UML) is a general-purpose modeling lan-
guage intended to provide a standard way to visualize the design of a system.
11

39

REFERENCES REFERENCES

References
[1] Benefits of Model-Based Systems Engineering. url: https://bit.ly/3A1xDdw.

[2] Infineon - Company Presentation. url: https://bit.ly/3u68CtJ.

[3] Infineon Technologies - Wikipedia. url: https://bit.ly/3NlhlPz.

[4] Lamda Functions with Practical example. url: https://bit.ly/3Rf8HFu.

[5] Logic Analyzer - Wikipedia. url: https://bit.ly/3apY9me.

[6] Logic Analyzers from Saleae. url: https://bit.ly/3Awp4aO.

[7] Driving Vision News. Interior lighting report. 2012. url: https://bit.ly/
3bsxbe0.

[8] Nataliya Shevchenko. An Introduction to Model-Based Systems Engineering
(MBSE). 2020. url: https://bit.ly/3bkl3vs.

[9] OMG SysML. What is SysML? | OMG SysML. url: https://bit.ly/
3bklfea.

[10] TLE984x Firmware User Manual. url: https://bit.ly/3yjnZS9.

[11] What is Python? Executive Summary. url: https://bit.ly/39U6oqH.

40

https://bit.ly/3A1xDdw
https://bit.ly/3u68CtJ
https://bit.ly/3NlhlPz
https://bit.ly/3Rf8HFu
https://bit.ly/3apY9me
https://bit.ly/3Awp4aO
https://bit.ly/3bsxbe0
https://bit.ly/3bsxbe0
https://bit.ly/3bkl3vs
https://bit.ly/3bklfea
https://bit.ly/3bklfea
https://bit.ly/3yjnZS9
https://bit.ly/39U6oqH

	Introduction
	The company
	Company divisions
	Way of working
	V-model
	MBSE

	Race UP Team
	Thesis structure
	Typographic conventions

	Internship proposal
	Project presentation
	Introduction
	Interior lighting
	Application Engineer

	Internship experience
	Technology requirements
	Enterprise Architect
	SysML
	Python

	Use case diagrams
	Identified actors
	BSL interaction

	Activity diagrams
	Practical application
	BSL via LIN protocol
	NVM Write command
	NVM Read command

	Python Script

	Conclusions
	Generic overview
	Final balance
	Preliminary studies
	Analysis and Modeling
	Firmware optimization
	Verification with a demonstrator

	Personal feedback

	Glossary
	References

