
Università degli Studi di Padova
Dipartimento di Ingegneria dell’Informazione

Corso di laurea magistrale in Ingegneria Informatica

Optimizing the positioning of medical facilities

using linear programming techniques

Relatore: Prof. Geppino Pucci

Tutor Aziendale: Dott. Federico Sitta

Studente: Andrea Ialenti
Matricola: 1056894

Anno Accademico: 2014 - 2015

If you fail to plan,
you are planning to fail

B.F.

Contents

Contents ii

1 The Plant Location Problem 1
1.1 Simple and Capacitated Plant Location Problems 1
1.2 A survey on SPLP and CPLP 3
1.3 Erlenkotter: A Dual-Based Procedure for the SPLP 4
1.4 Kuehn and Hamburger: A Heuristic Program for Locating Ware-

houses . 6
1.5 SPLP and CPLP Extensions 7

1.5.1 Multi-Commodity PLP 7
1.5.2 Other Plant Location Derived Problems 8

Multi-Echelon Plant Location 8
Multi Period Plant Location 9
Improving the Costs Definition 9
Plant Location and Uncertainities 9

2 Semi-Lagrangean Relaxation-based Algorithm for the SPLP 11
2.1 Semi-Lagrangean Relaxation 11
2.2 The Dual-Ascent Method . 13
2.3 Dual-Ascent Algorithm Applied to the SPLP 15

2.3.1 Properties of the SLR Dual Problem 16
2.4 The Core Subproblem . 17

3 MIN-MAX Capacitated and Budgetized Plant Location 21
3.1 Problem Description . 21
3.2 NP-Hardness . 23
3.3 The Semi-Lagrangean Relaxation with the New Problem 25
3.4 MMBPLP Feasibility . 27
3.5 The Min Capacity Knapsack Problem 27

4 Progressive Plants Selector 31
4.1 General Idea . 31
4.2 Algorithm Description . 32
4.3 Algorithm Correctness . 34

ii

CONTENTS iii

5 Case Study 39
5.1 Data . 39
5.2 Specifications . 40

System’s Reactivity . 41
5.3 Development Tools . 41

5.3.1 MIP Solver . 41
Open-source and free solvers 42
Commercial solvers . 42

5.3.2 Hadoop . 42
Hadoop Data Flow . 43

5.4 Oracle Database and Oracle Spatial 46
5.5 System’s Architecture . 48

6 Computational Results 59
6.1 Random Instances . 60

6.1.1 Problem Hardness . 60
Instances Description 60
Results . 61

6.1.2 SCIP vs. Progressive Plants Selector 62
6.1.3 Playing with the different factors 62

Users volumes . 63
6.2 The Feasibility Check . 68
6.3 Different Graphs . 71

6.3.1 Facilities Sorrounded by Users 71
6.3.2 Users Sorrounded by Facilities 73
6.3.3 Clustered Users . 74

6.4 Real Instances . 78

Bibliography 83

Introuction

The Plant Location Problem is one of the most important branch of operations
research concerned with the optimal placement of facilities to minimize trans-
portation costs. The problem is known to be NP -hard [1], and there exists a
high number of more complex problems that are based on the SPLP. Because it
is widely used in real applications, many studies based on SPLP have been de-
veloped and today there exists a big number of exact and heuristic approaches
for solving it.

We had to deal with a real problem related to the positioning of medical
facilities on the territory of Emilia-Romagna. These facilities are called “Health
Houses” and the aim of the Administrators is to use these structures in order
to replace or integrate some of the services that are actually provided by big
and centralized Hospitals.

We had several potential locations for our Health Houses and a set of users
to be served by these plants, consisting in clusters of possible patients; in
particular we were dealing with 1500 possible facilities locations and 38000
clusters. Our strategy was based on three steps: first we divided the problem by
considering one optimization process for each of the 11 administrative sectors
that divide the Region, second we applied a clustering algorithm (k-means) in
order to reduce the size of each instance and third we applied the heuristic
algorithm we developed on each problem that came out from the two previous
steps.

We started from the Simple Plant Location to create a mathematical model
for our real problem, but we needed to add some more constraints due to more
particular requests: we had a budget limitation and there was a specification on
the minimum and the maximum number of users to be served by a facility, to
ensure that this can be opened. Moreover we considered three different classes
of facilities: small, medium and big.

After we formulated a mixed-integer linear programming model, we tried to
solve it by using a general MIP solver to estimate the hardness of the problem.
Since it has been proved to be very hard to solve with only the MIP solver,
we decided to develop a heuristic algorithm based on Linear Programming.
The algorithm we implemented was designed to give to the end-user a rapid
feedback from the solving system.

Basically, we used a Semi-Lagrangean realxation of the MIP model in com-
bination with a Dual-Ascent Procedure [2] in order to progressively reduce the

instance size by selecting some of the most convenient facilities; once we fixed
some of the plants, we positioned the remaining facilities by using the MIP
solver. Once all the structures have been placed, we needed to understand how
to assign to each user one facility in order to get the minimum transportation
costs, obtaining a solution that was feasible in the sense of the original problem
formulation. The idea behind our approach was also based on the studies of
Erlenkotter [3] and Kuehn-Hamburger [4]; the first uses a Dual-Ascent Proce-
dure that aims to increase the SPLP dual problem objective function value,
while the second tries to progressively guess the best facilities choices in order
to find an heuristic solution to the problem.

This procedure required a fast method to check the reduced instance fea-
sibility with respect to the original constraints. We discovered a sufficient
condition that was very fast to prove, even if it involved the resolution of two
NP -hard problems.

Finally, we compared our algorithm results to those provided by the MIP
solver. The values of the solutions found by the heuristic and the execution
times have been satisfactory. Most of the time we have got better results
from our approach than the MIP solver; obviously giving to the MIP solver an
inifinite time limit, it would always give us the optimal solution, so in order to
compare the two strategies, we gave to the Solver a time limit that was equal
to the time used by the heuristic algorithm to solve the problem.

A further advantage of our method was a shorter “first-feedback-time”,
i.e. the time interval between the optimization starting instant and the first
feedback to the user.

This thesis is organized in two parts. In the first part we describe the Plant
Location Problem and its most important derived problems and we show some
of the different approaches that were developed so far. Furthermore we explain
the approach of [2] for solving the Simple version of the problem, reporting
some of the results obtained in their paper that prove the correctness of the
method.

The second part first describes the problem that we have derived, show-
ing how it is possible to apply the tecnique of [2] to the mathematical model
built around our case study, and second shows the sufficient condition to check
the feasibility of the model intances. Moreover, we expose the details of the
heuristic approach we have designed and, after a description of the case study
on which we have applied all the theory above, we show the goodness of our
method by comparing its results with those of a general MIP solver.

In the first Chapter we give an overview on the Uncapacitated and Capac-
itated Plant Location Problems, explaining how it is possible to model it by
using Mixed-integer Linear Programming; we also show a survey on what we
have found in literature relatively to the different techniques that were devel-
oped for solving it. We also report more details about the Erlenkotter [3] and
Kuehn and Hamburger [4] approaches. Our resolution method is based on the
approach, developed by [2], which works with the Semi-Lagrangean relaxation
of the SPLP and in Chapter 2 we explain in details this method. Moreover we
illustrate how it is possible to reduce the difficulty of the Lagrangean Oracle

by removing some of the unnecessary edges from the graph given in input. In
Chapter 3 we describe a new derived problem coming from the Capacitated
Plant Location that we call MMBPLP - Min-Max Budgetized Plant Location
Problem. First we analyze the problem itself, showing that it is NP -hard, sec-
ond we show how it is possible to apply the Semi-Lagrangean Relaxation in
order to solve the problem, and finally we provide the sufficient condition useful
to understand if an instance of the MMBPLP is feasible or not. Chapter 4
describes the Progressive Plants Selector, the heuristic algorithm we have de-
signed and implemented in order to solve the problem described above. After
a detailed description of the algorithm itself, we illustrate that it is correct, in
the sense that all the solutions that it provides are feasible. Chapter 5 de-
scribes our case study, proving that the model we have formulated in previous
Chapters, perfectly fits with our real needs. We describe which development
tools we have used and the reasons behind their choice. In the end we provide
a detailed description of the overall architecture of the solving system.

Finally, in Chapter 6, we report some computational results on both ran-
domly generated and real instances of the problem we have described in this
thesis. In addition we explain how its “hardness” increases or decreases ac-
cording to different choices of input parameters and different structure of the
graph that needs to be optimized.

Chapter 1

The Plant Location Problem

The Simple Plant Location Problem (SPLP) has been studied for many years.
It is rooted in the seminal work of Weber (1909), but workable and realistic
models and algorithms began to emerge only in mind-1960s with the arrival of
automatic computation capabilities [5]. There exists a high number of variants
of this problem each of which has a wide range of practical applications, and
often the modeling process for a new real location problem starts from the
capacitated and the uncapacitated version of the PLP.

1.1 Simple and Capacitated Plant Location Problems

The Simple Plant Location Problem (SPLP) takes as input a set U = 1, 2, 3, .., n
of clients, each having a unit demand, a set F = 1, 2, 3, ...,m of sites in which
plants can be located, a vector K = (fj) of fixed costs for setting up plants at
sites j ∈ F and a matrix C = [ci,j] of transportation costs from i ∈ U to j ∈ F .
It computes a set P ∗, ∅ ⊂ P ∗ ⊆ F at which plants can be located so that
the total cost of satisfying all clients demand is minimal. The costs involved
in meeting the clients demand include the fixed costs of setting up plants and
the transportation cost of moving the client from its original position to the
plant. The SPLP forms the underlying model in several combinatorial prob-
lems, like set covering, set partitioning, information retrieval, simplification of
logical Boolean expressions and it is a subproblem for various location analysis
problems.

In many cases, it is more realistic to incorporete some capacity limitations
on the facilities to be established and this new constraint leads to the Capaci-
tated version of the PLP (CPLP). In the CPLP we have the same elements de-
scribed above for the SPLP, but we need to consider the vector D = (dj), j ∈ F
of the maximal number of users supported by facility j.

The SPLP is NP -hard [1][6], and several exact and heuristic algorithms for
solving it have been discussed in the literature. This problem can be repre-
sented using a mathematical model whose requirements are expressed by linear

1

2 CHAPTER 1. THE PLANT LOCATION PROBLEM

relationships, so it is possible to use linear optimization to solve the problem
instance or approximate the optimal solution.

One possible linear programming (LP) formulation for the Simple Plant
Location Problem is the following:

xij =

{
1 if the user i is served by facility j

0 otherwise

yj =

{
1 if the facility j is opened

0 otherwise

min
∑
i∈U

∑
j∈F

xijcij +
∑
j∈F

yjfj (1.1a)

s.t.
∑
j∈F

xij = 1 ∀i ∈ U (1.1b)

xij ≤ yj ∀i ∈ U ∀j ∈ F (1.1c)

0 ≤ xij ≤ 1 integer (1.1d)

0 ≤ yj ≤ 1 integer (1.1e)

where:

• 1.1a wants to minize the sum of the connection costs between users and
facilities, plus the costs for opening those facilities.

• 1.1b tells that each user is served by exactly one facility.

• 1.1c grants that an user can be connected only to an open facility.

It is possible to turn the problem into its capacitated version by adding
some constraints on facilities’ capacities: each plant cannot support more than
dj ∈ D users; the constraints we need to add to the model are the following:∑

i∈U
xij ≥ dj ∀j ∈ F (1.2)

More in general, each user can have a different “volume”: there may exist
an user i such that facilities need to use more than one capacity unit to serve
it. In this case we need to define a vector R = (ρi), i ∈ U of users’ volumes,
and we must modify the constraint 1.2 as follows:∑

i∈U
ρixij ≥ dj ∀j ∈ F (1.3)

1.2. A SURVEY ON SPLP AND CPLP 3

Finally the full model of the Capacitated Plant Location Problem will be
the following:

xij =

{
1 if the user i is served by facility j

0 otherwise

yj =

{
1 if the facility j is opened

0 otherwise

min
∑
i∈U

∑
j∈F

xijcij +
∑
j∈F

yjfj (1.4a)

s.t.
∑
j∈F

xij = 1 ∀i ∈ U (1.4b)

xij ≤ yj ∀i ∈ U ∀j ∈ F (1.4c)∑
i∈U

rixij ≥ dj ∀j ∈ F (1.4d)

0 ≤ xij ≤ 1 integer (1.4e)

0 ≤ yj ≤ 1 integer (1.4f)

1.2 A survey on SPLP and CPLP

Most of the exact algorithms for SPLP are based on its mathematical program-
ming formulation. The seminal paper of Erlenkotter [3] presents a dual-based
algorithm for solving the SPLP that remains as one of the most efficient solution
techniques for this problem. Prior to Erlenkotter, the best-known approaches
for solving the SPLP where the branch-and-bound algorithm developed by
Efroymson and Ray [7] and the implicit enumeration technique of Spielberg
[8]. Khumawala [9] developed efficient branching and separation strategies for
the branch-and-bound algorithm. The Erlenkotter approach is based on the
“tight formulation” of the SPLP that is known to often produce natural inte-
ger solutions. This property of the tight formulation was first highlighted by
Scharge [10] and was used effectively by [1].

In Chapter 2 we will describe the approach to solve the SPLP developed by
Beltran-Royo et al. [2]. In their work they use a Semi-Lagrangean Relaxation
combined with a general mixed integer programming solver. Their idea is
to take advantage of the steadily increasing power of general MIP codes and
aiming to enhance the performance of the MIP solver at low programming cost.
This approach has been used as the starting point for the strategy we developed
to find a heuristic solution to the optimization problem we will define further.

One of the earliest linear programming-based heuristics for the CPLP was
developed by Kuehn and Hamburger in 1963 [4]. Branch and bound procedures
for this problem where presented by Akinc and Khumawala [11] using a linear
programming relaxation, and by Nauss [12] through Lagrangean relaxation.

4 CHAPTER 1. THE PLANT LOCATION PROBLEM

One of the most effective strategies for the CPLP, is the cross-decomposition
algorithm of Van Roy [13]. The basic idea of Van Roy’s algoritm is to obtain
a SPLP structure by dualizing the capacity constraints. This Lagrangean re-
laxation provides values for the location and allocation variables given a set of
multipliers. The location decisions are then used to fix the integer variables
and solve the CPLP as a transportation problem.

In a supply chain that comprises suppliers, plants, distribution centers,
warehouses and customers, these basic formulations are relevant for making
location decisions involving two consecutive echelons. For example, the focus
of a majority of the literature on warehouse location, the SPLP and CPLP
formulations are equally relevant for choosing suppliers to satisfy the needs of
a firm’s plants [14][15].

In the next Sections we will summarize some of the most popular approaches
to the Plant Location Problem, as seen in [15].

1.3 Erlenkotter: A Dual-Based Procedure for the SPLP

Erlenkotter provides the same problem formulation seen in Section 1.1, that
we report below for convenience:

xij =

{
1 if the user i is served by facility j

0 otherwise

yj =

{
1 if the facility j is opened

0 otherwise

min
∑
i∈U

∑
j∈F

xijcij +
∑
j∈F

yjfj (1.5a)

s.t.
∑
j∈F

xij = 1 ∀i ∈ U (1.5b)

xij ≤ yj ∀i ∈ U ∀j ∈ F (1.5c)

0 ≤ xij ≤ 1 integer (1.5d)

0 ≤ yj ≤ 1 integer (1.5e)

There exists a weak formulation of the SPLP that uses a more compact
model, generated by aggregating constraints 1.5c into a single constraint for
each facility location j: ∑

i∈U
xij ≥ |U |yj ∀j ∈ F (1.6)

In developing the solution approach, Erlenkotter utilizes a condensed dual
formulation of this relaxation. Let vi and wij represent the dual variables
associated with constraints 1.5b and 1.5c. By relaxing yj variables the dual
problem can be formulated as follows:

1.3. ERLENKOTTER: A DUAL-BASED PROCEDURE FOR THE SPLP 5

max
∑
i∈U

vi (1.7a)

s.t.
∑
i∈U

wij ≤ fj ∀j ∈ F (1.7b)

vi − wij ≤ cij ∀i ∈ U ∀j ∈ F (1.7c)

wij ≥ 0 ∀i ∈ U, j ∈ F (1.7d)

Since wij variables are not part of the objective function, we can set:

wij = max{0, vi − cij},

so the condensed dual formulation of [3] will be:

max

∑
i∈U

vi (1.8a)

s.t.
∑
i∈U

max{0, vi − cij} ≤ fj ∀j ∈ F (1.8b)

[15] explains that the Dual-Ascent procedure that constitutes the core of
Erlenkotter’s algorithm aims at increasing the values of vi so as to maximize
their sum. The idea is to use a quick heuristic for solving the condensed
dual problem. To this end, the algorithm starts by setting the vi values to the
smallest cij for each customer i. At each iteration of the dual ascent procedure,
the customer zones are processed one by one and the vi value at each zone is
raised to the next higher cij value, unless such an increase is constrainted
by 1.8b. When the inequality 1.8b becomes binding during this process, the vi
value is increased to the highest level allowed by the constraint. The heuristic
terminates when no further increase is possible for the vi variables.

Once we have got the dual solution, we want to obtain a primal feasible
solution to the original problem. It is helpful to analyze the complementary
slackness conditions for the condensed dual and the linear programming relax-
ation. If x∗ij and y∗j are the optimal values of the primal decision variables and
v∗i are the optimal values for the dual ones, we have:

y∗j [fj −
∑
i∈U

max{0, v∗i − cij}] = 0 ∀j ∈ F (1.9)

[y∗j − x∗ij]max{0, v∗i − cij} = 0 ∀i ∈ U, j ∈ F (1.10)

The Dual-Ascent procedure, produces a feasible solution v∗j with at least
one binding constraint 1.8b. For each associated location j, the slack of the
dual constraint is zero, and it is possibble to set yj = 1. It is likely that the
procedure terminates with a solution where, among open facilities, there is
more than one facility k with cij ≥ vi for some i. This would violate 1.10,

6 CHAPTER 1. THE PLANT LOCATION PROBLEM

since each customer zone must be served from the lowest cost open facility.
Therefore it is possible to set xij = yj = 1 only for the smallest value of cij .
We obtain a sub-optimal primal feasible integer solution.

It is possible that there is more than one cij with a smaller value than vi;
To close the duality gap in such cases, Erlenkotter first uses a dual adjustment
procedure and if this not suffice, he executes a simple B&B algorithm [3],[15].

1.4 Kuehn and Hamburger: A Heuristic Program for
Locating Warehouses

First of all, Kuehn and Hamburger (K-H) focus their attention on the potential
advantages of positioning warehouses in a distribution network:

1. Through warehouses is possible to generate economies of scale in trans-
portation costs between factories and warehouses;

2. It is possible to implement economies of scope from combining products
from different factories into a single shipment in serving customer de-
mand;

3. It is possible to improve delivery times by increasing proximity to the
end-users locations.

In positioning the warehouses K-H trade off the potential cost savings with
the costs of establishing and maintaining them.

They develop their heuristic approach, starting from three assumptions:

• The most promising locations will be at or near concentrations of demand.

• Near optimum warehousing systems can be developed by locating ware-
houses one at a time, adding progressively those warehouses which pro-
duce the maximum cost savings for the system.

• Only a small subset of warehouse locations need to be evaluated in detail
at each stage to determine the next site to be added.

Basically K-H assume that the set of M possible warehouse locations is a
subset of demand locations.

Their algorithm is based on a constructive phase (“the main program”) and
the improvement phase (“the bump and shift routine”). They use a data struc-
ture that they call “the buffer” which is used to confine the detailed evaluation
at each iteration to a subset of N locations.

• At the beginning of the constructive phase, the buffer is initialized with
the N sites where serving the local demand with a local warehouse results
in the hightest cost savings. Then the N sites in the buffer are assessed
one by one in terms of the system-wide cost savings that can be obtained
by opening the warehouse. The site that brings the hightest savings is

1.5. SPLP AND CPLP EXTENSIONS 7

selected as a position where a warehouse must be open. The algorithm
cycles between the buffer recostruction and the detailed evaluation, until
all the demand is satisfied.

• Starting from a solution determined in the constructive phase, the algo-
rithm tries to improve the soluton by eliminating some warehouses and/or
moving them to a nearby position.

1.5 SPLP and CPLP Extensions

The SPLP and CPLP constitute the basic discrete facility location problems
forumlations and there is an abundance of papers based on their extensions.
Follows an overview of the most important works that extended the classi-
cal formulations by increasing the number of products, the number of facility
echelons or the number of time periods included in the model.

1.5.1 Multi-Commodity PLP

An immediate generalization of the SPLP is the multi-commodity facility loca-
tion problem that relaxes the single product assumption. Even if Neebe and
Khumawala [16] and Karkazis and Boffey [17] offered two alternative formu-
lations for this problem, both papers assumed that each facility deals with a
single product. The first paper that studied a multi-commodity plant location
model without any restriction on the number of products at each facility was
written by Klincewicz and Luss [18].

One modeling example of a Multi-Commodity Plant Location Problem
comes from Shen [19]. He uses the following notation to define the problem:

• I is the set of customers.

• L is the set of commodities.

• Il is the set of customers that have demand for commodity l ∈ L.

• J is the set of candidate facility locations.

The problem takes the following input parameters:

• µil, the annual demand from customer i for commodity l.

• fj , the fixed annualized cost of locating a facility at j, for each j ∈ J .

When a facility j is used to serve the customer in set S ⊂ I, the associated
total cost is given by the following three cost components:

1. fj , the fixed location cost.

2.
∑

i∈S,l∈L dijlµil, where the term dijlµil is linear in µil where dijl is con-
stant.

8 CHAPTER 1. THE PLANT LOCATION PROBLEM

3.
∑

l∈LGjl(
∑

i∈S µil), where the term Gjl(
∑

i∈S µil) is concave and non-
decreasing in the total mean demand for commodity l at facility j.

For example, when dijl corresponds to the unit transportation cost for com-
modity l between facility j and customer i, the second term captures the total
transportation cost if facility j provides the customers in set S with commod-
ity l. The term Gjl(

∑
i∈S µil) can be interpreted as the economies of scale

cost term within the supply chain. For example, it can represent the facility
operation and inventory repleinshment cost.

The MIP model build by [19] is the following:

xijl =

{
1 if the demand for commodity l of customer i is served by j

0 otherwise

xj =

{
1 if the facility j is opened

0 otherwise

min
∑
j∈J

{
fjxj +

∑
l∈L

[∑
i∈I

(dijlµil)yijl+

Gjl(
∑
i∈I

µilyijl)
]} (1.11a)

s.t.
∑
j∈J

yijl = 1 ∀i ∈ I, l ∈ L (1.11b)

yijl − xj ≤ 0 ∀i ∈ I, j ∈ J, l ∈ L (1.11c)

0 ≤ xj ≤ 1 integer ∀j (1.11d)

0 ≤ yijl ≤ 1 integer ∀i, j, l (1.11e)

To solve the problem [19] uses a Lagrangean relaxation embedded in a
branch-and-bound procedure. In his paper, Shen shows how to drive low and
upper bounds of the problem. They also present a variable fixing technique to
speed up the algorithm. Refer to his paper for further readings.

1.5.2 Other Plant Location Derived Problems

Multi-Echelon Plant Location

Another important extension involves increasing the number of echelons in-
corporated in the problem formulation. One of the earliest multi-echelon for-
mulations is by Kaufman et al. [20], which determined the locations of a set
of facilities and a set of warehouses simultaneously. One of the most impor-
tant papers following the Capacitated Plant Location Problem formulation in
Kuehn and Hamburger [4] was the paper developed by Geoffrion and Graves
[21]. Their model wanted to minimize the total cost of transportation and
warehousing over a distribution network comprising three different echelons.

1.5. SPLP AND CPLP EXTENSIONS 9

Multi Period Plant Location

[15] underlines how a number of researchers focused on relaxing the single
period assumption of the two problems and developed models and solutions
for the dynamic facility location problem. The objective was to determine
the facilities positions at each time period so as to minimize the total costs for
satisfing the customer demand. The earliest work on this problem is by Van Roy
and Erlenkotter [22]: they extended the Erlenkotter algorithm (described in the
next Sections) to handle the time periods specifications. Some other papers
on this PLP variation are by Lim et al. [23] and Canel [24], who solved the
problem with capacity restrictions at the facilities.

Improving the Costs Definition

Another stream of research is about improving the realism of the cost metrics.
These efforts where made because of possible implications on economies of
scale and economies of scope in the fixed and/or variable costs. Moreover the
optimal solution should probably consider economic factors such as capacity
acquisition and technology selection. Soland [25] is one of the earliest researcher
who tried to incorporate economies of scale in the problem formulation, while
Holmberg [26] extended the CPLP by formulating the capacity acquisition costs
as arbitrary piecewise linear functions.

Plant Location and Uncertainities

Finally, an important stream of efforts in PL problems highlighted by [15],
is about the incorporation of uncertainities in the problem parameters. The
earlier works on this stream were by Jucker and Hodder et al. . They used
scenario-based approaches in modeling a risk-averse decision maker’s choices.

Chapter 2

Semi-Lagrangean
Relaxation-based Algorithm for
the SPLP

The Semi-Lagrangean Relaxation (SLR) method was introduced in [27] to solve
the p-median problem. Compared to the Lagrangean Relaxation, the SLR
method closes the duality gap and gives an optimal integer solution, but the
relaxed model is harder to solve. The SLR applies to problems with equal-
ity constraints. Like in Lagrangean Relaxation, the equality constraints are
relaxed, but the definition of the Semi-Lagrangean dual problem incorporates
those constraints under the weaker form of inequalities. On combinatorial prob-
lems with positive coefficients, it has the strong property of achieving a zero
duality gap. This method has been used with success to solve large instances
of the p-median problem.

In this Chapter, after defining the Semi-Lagrangean Releaxation and after
prooving that it closes the duality gap with the original problem, we will present
the Dual-Ascent Algorithm developed by Beltran-Royo et al. [2]. We will briefly
show how the authors applied this tecnique to the SPLP and we will explayn
“why” the algorithm works. Note that some of the assumptions made by
Beltran-Royo et al. that are valid for the Simple Plant Location, will not be
valid anymore for our new extended problem, so we will show how the same
strategy can be applied to find an heuristc solution to our model.

2.1 Semi-Lagrangean Relaxation

In this section, we summarize the main results obtained in [2] taking advantage
of the simplified versions of the proofs provided in [2].

Consider the following “primal” problem:

11

12
CHAPTER 2. SEMI-LAGRANGEAN RELAXATION-BASED

ALGORITHM FOR THE SPLP

z∗ = mincTx (2.1a)

s.t.Ax = b (2.1b)

x ∈ S ⊂ X ∩ Nn (2.1c)

Assumption 1. The components of A ∈ Rn × Rm, b ∈ Rn and c ∈ Rm are
non-negative.

Assumption 2. X is a polyhedral set, ∈ S and 2.1a is feasible.

Assumptions 1 and 2 together imply that 2.1a has an optimal solution.
The Semi-Lagrangean Relaxation consists in adding the inequality con-

straint Ax ≤ b and removing Ax = b only. We obtain the dual problem:

max
u∈Rn

L(u) (2.2)

where L(u) is the Semi-Lagrangean dual function defined as:

L(u) = min

x
cTx+ uT (b−Ax) (2.3a)

s.t. Ax ≤ b (2.3b)

x ∈ S (2.3c)

Note that with our assumptions the feasible set of 2.3a is bounded. We also
have that x = 0 is feasible to 2.3a. L(u) is well-defined, but the minimizer in
2.3a is not necessarily unique. We can write:

x(u) = argmin
x
{cTx+ uT (b−Ax)|Ax ≤ b, x ∈ S} (2.4)

to denote one such minimizer. With this notation we may write L(u) =
(c− ATu)Tx(u) + bTu. We denote U∗ the set of optimal solutions of problem
2.13. Finally, given two sets A and B, its addition corresponds to:

A+B = {a+ b : a ∈ A and b ∈ B} (2.5)

Theorem 1. The following statements hold [27]

1. L(u) is concave and b−Ax(u) is a subgradient at u.

2. L(u) is monotone and L(u′) ≥ L(u) if u′ ≥ u and u′ /∈ U∗.

3. U∗ + Rn
+ = U∗; thus U∗ is an unboundend set.

4. if x(u) is such that Ax(u) = b, then u ∈ U∗ and x(u) is optimal for
problem 2.1a.

5. Conversely, if u ∈ int(U∗), then any minimizer x(u) is optimal for prob-
lem 2.1a.

2.2. THE DUAL-ASCENT METHOD 13

6. the SLR closes the duality gap for problem 2.1a.

Proof. From the definition of the SLR function, the inequality:

L(u′) ≤ cTx(u) + (u′)T (b−Ax(u)) = L(u) + (b−Ax(u))T (u′ − u) (2.6)

holds for any pair u, u′. This shows that L(u′) is concave and that (b −
Ax(u)) is a subgradient at u.

To prove statement 2, we note, in view of b− Ax(u′) ≥ 0 and u′ ≥ u, that
we have the chain of inequalities:

L(u′) = cTx(u′) + (b−Ax(u′))Tu′, (2.7a)

= cTx(u′) + (b−Ax(u′))Tu+ (b−Ax(u′))T (u′ − u), (2.7b)

≥ cTx(u′) + (b−Ax(u′))Tu, (2.7c)

≥ cTx(u) + (b−Ax(u))Tu = L(u) (2.7d)

This proves the first part of the third statement. If u′ /∈ U∗, then 0 /∈ ∂L(u′),
the subdifferential of L at u′ [28], and we have (b − Ax(u′))j > 0 for some j.
Thus, u < u′ implies (b−Ax(u′))T (u′ − u) > 0. Hence L(u′) > L(u).

The third statement is a consequence of the monotone property of L(u) and
U∗ is convex since it is the optimal set of a concave function [28].

To prove the fourth statement, we note that Ax(u) = b implies 0 ∈ ∂L(u),
a necessary and sufficient condition of optimality for problem 2.13. Hence
u ∈ U∗. Finally, since x(u) is feasible to 2.1a and optimal for its relaxation, it
is also optimal for 2.1a.

To prove the fifth statement, assume u ∈ int(U∗). In this case there exists
u′ ∈ U∗ such that u′ < u; thus (b−Ax(u))T (u− u′) ≥ 0, with strict inequality
if b−Ax(u) 6= 0. In view of 2.6:

0 ≥ (b−Ax(u))T (u′ − u)) ≥ L(u′)− L(u). (2.8)

Thus Ax(u) = b, and x(u) is optimal to 2.1a. It follows that the original
problem and the Semi-Lagrangian dual problem have the same optimal value
(the last statement).

2.2 The Dual-Ascent Method

The main idea of a dual ascent algorithm is to start with a price vector and
successively obtain new price vectors with improved dual cost value, with the
aim of solving the dual problem (in our case we want to solve the 2.13 dual
problem). In this section we will state the algorithm and then prove its finite
convergence.

Theorem 2. The following statements hold:

1. Algorithm 1 is a dual ascent method when applied to solve the SLR dual
problem: for any two consecutive iterates uk and uk+1 we have L(uk+1) >
L(uk).

14
CHAPTER 2. SEMI-LAGRANGEAN RELAXATION-BASED

ALGORITHM FOR THE SPLP

Algorithm 1 Dual-Ascent algorithm (basic iteration)

1: Solve the Oracle, compute:

xk = argmin
x
{cTx+ (uk)T (b−Ax)|Ax ≤ b, x ∈ S},

where uk is the current dual iterate.
2: if sk := b−Axk is equal to 0 then
3: Stop. (xk, uk) is an optimal primal-dual point.
4: end if
5: Update the dual iterate. For j = 1, 2, ..., n, set

uk+1
j =

{
ukj + δkj if skk > 0 (2.9a)

ukj otherwise (2.9b)

where δkj ≥ ∆.

2. Let us suppose that u0 ≥ 0 and that U∗ 6= ∅. Algorithm 1 converges to an
optimal dual point u ∈ U∗ after finitely many iterations.

Proof. The updating procedure of the Algorithm, consists in increasing some
components of the current dual point, so uk+1 > uk and for the second state-
ment of Theorem 1 we have L(uk+1) > L(uk) and the first statement is proved.

Let us consider the sequences {sk} of subgradients generated by the algo-
rithm. We have two exclusive cases:

Case 1 There exists k0 such that sk0 = 0. Then 0 ∈ ∂L(uk0) and uk0 ∈ U∗.

Case 2 At least for one component of sk,say the 1−st, there exists a subsequence{ski
1 ⊂

{sk1} such that ski
1 6= 0 for all i = 0, 1, 2, [2] proves by contradiction

that this case cannot happen.

By definition of the Algorithm, we have:

uki
1 ≥ u

k0
1 + i∆. (2.10)

Then the subsequence {L(uki)} is unbounded, which contradicts the hy-
potesis U∗ 6= ∅.

Define Jki = {j|ski
j > 0}. Since x is a binary vector, it implies, by Assump-

tion 1, that there exists an absolute constat η > 0 such that:

min
j

min
x
{sj = (b−Ax)j |(b−Ax)j > 0} = η. (2.11)

Thus s
kj

j ≥ η ∀j ∈ Jki and ∀i. Using the fact that cTx ≥ 0 and that

uki ≥ 0, we have:

2.3. DUAL-ASCENT ALGORITHM APPLIED TO THE SPLP 15

L(uki) = cTx(uki) + (b−Ax(uki))Tuki

= cTx(uki) + (ski)Tuki

≥ (ski)Tuki

=
∑

j∈Jki

ski
j u

ki
j

≥ uki
1 η

≥ (uk0
1 + i∆)η.

Thus limi→∞ L(uki) = +∞

2.3 Dual-Ascent Algorithm Applied to the SPLP

Now that we proved the Algorithm convergence, we need to apply this method
to the SPLP. Also in this case we will summarize the Dual-Ascent algorithm
specialization developed by [2]. It is useful to remember the Simple Plant
Location linear programming model. Given a set F = {1, 2, ...,m} of possible
positions for opening a facility and a set U = {1, 2, ..., n} of users that have to
be served by those facilities, we can build the following model:

xi,j =

{
1 if the user i is served by facility j

0 otherwise

yj =

{
1 if the facility j is opened

0 otherwise

min
∑
i∈U

∑
j∈F

xijcij +
∑
j∈F

yjfj (2.12a)

s.t.
∑
j∈F

xij = 1 ∀i ∈ U (2.12b)

xij ≤ yj ∀i ∈ U ∀j ∈ F (2.12c)

0 ≤ xij ≤ 1 integer (2.12d)

0 ≤ yj ≤ 1 integer (2.12e)

Let’s formulate the Semi-Lagrangean Relaxation for this problem. We ob-
tain the following problem:

max
u∈Rn

L(u) (2.13)

and the following oracle:

16
CHAPTER 2. SEMI-LAGRANGEAN RELAXATION-BASED

ALGORITHM FOR THE SPLP

min
∑
i∈U

∑
j∈F

xij(cij − uj) +
∑
j∈F

yjfj +
∑
i∈U

ui (2.14a)

s.t
∑
j∈F

xij ≤ 1 ∀i ∈ U (2.14b)

xij ≤ yj ∀i ∈ U ∀j ∈ F(2.14c)

0 ≤ xij ≤ 1 integer (2.14d)

0 ≤ yj ≤ 1 integer (2.14e)

Let us denote (x(u), y(u)) an optimal point for the oracle.

2.3.1 Properties of the SLR Dual Problem

In this section we summarize properties of the SLR dual problem that where
underlined in [2]. These properties allow us to restrict the dual search to a
box, that is, we will be able to remove some of the variables from the problem,
proving that they do not belong to any optimal solution.

[2] first defines for each client i, its best combined costs as:

c̃i := minj{cij + fj}. (2.15)

Consider now the vector of best combined costs c̃ := (c̃1, c̃2, c̃3, ..., c̃n) and
the vector of the sorted costs for each client i:

c1i ≤ c2i ≤ c3i ≤ ... ≤ cni . (2.16)

Theorem 3. u ≥ c̃⇒ u ∈ U∗ and u > c̃⇒ u ∈ int(U∗).

Proof. Consider the oracle:

min
∑
i∈U

∑
j∈F

xij(cij − uj) +
∑
j∈F

yjkj +
∑
i∈U

ui (2.17a)

s.t.
∑
j∈F

xij ≤ 1 ∀i ∈ U (2.17b)

xij ≤ yj ∀i ∈ U ∀j ∈ F(2.17c)

0 ≤ xij ≤ 1 integer (2.17d)

0 ≤ yj ≤ 1 integer (2.17e)

Assume u ≥ c̃. If there exists an optimal solution of the Oracle such that:∑
j∈F

xij = 1 ∀i ∈ U, (2.18)

then for Theorem 1, this is an optimal solution for the original problem.
Suppose that we have an oracle solution such that, for some i,∑

j∈F
xij = 0. (2.19)

2.4. THE CORE SUBPROBLEM 17

Let jk be:

jk : c̃i = fjk + cijk . (2.20)

By hypotesis,c̃i − ui ≤ 0 and fjk + (cijk − ui) ≤ 0, so it is possible to set
xijk = 1 and yjk = 1 without increasing the objective value.

This implies that the new solution is also optimal, and there exists:∑
j∈F

xij = 1 ∀i ∈ U. (2.21)

The second statement follows from c̃ ∈ U∗ and statement 3 of Theorem 1.

Theorem 4. If u ∈ int(U∗), then u ≥ c1.

Proof. [2] proves this theorem by contradiction.
Assume that ui0 < c1i0 for some i0 ∈ U . If ui0 < c1i0 then cki0 − ui0 > 0 for

all k ∈ F . Any optimal solution x(u) is such that xi0j(u) = 0, for all j ∈ F .
Hence, 1 −

∑
j∈F xi0j(u) = 1 and by Theorem 1, u is not in int(U∗) which

contradicts the Theorem hypotesis.

Finally [2] proves that it is possible to define a box B ⊂ U such that there
exists at least one dual optimal solution u̇ for which is true that:

u̇ ∈ B ∩ U∗ (2.22)

Corollary 1. Consider the scalar ε > 0, the vector ε̄ where each compoment
is equal to ε and the box:

B := {u ∈ Rn|c1 < u ≤ c̃+ ε̄}. (2.23)

Then, for the SPLP:

int(U∗) ∩ B 6= ∅. (2.24)

This corollary implies that taking ū = c̃ + ε̄ and solving the Oracle, yields
to a primal optimal solution in one step. Of course at this point the oracle is
too difficult to be solved, so it makes sense to apply the Dual-Ascent Algorithm
described above, in order to detect a solution u∗ ∈ U∗ for which the oracle is
smaller and easier.

2.4 The Core Subproblem

[2] explains how some primal variables xij can be set to zero when ui is small
enough. Moreover, we will present the specialized version of the Dual-Ascent
Algorithm for the SPLP presented in [2].

Let c(u) be the matrix of reduced costs such that c(u)ij = cij − ui. Let
G = (W × V,E) be the bipartite graph associated to the SPLP problem, such

18
CHAPTER 2. SEMI-LAGRANGEAN RELAXATION-BASED

ALGORITHM FOR THE SPLP

that each node in W represents a client, each node in V stands for a facility
and each edge eij exists if facility j can serve user i. Let E(u) ⊂ E be the
subset of edges with strictly negative reduced cost for a given dual point u. Let
V (u) ⊂ V and W (u) ⊂ W be adjacent vertices to E(u). Then the subgraph
G(u) = (W (u)× V (u), E(u)) is the core subgraph.

Assumption 3. For any c(u)ij ≥ 0, there exists x(u) such that x(u)ij = 0.
Therefore we can restrict our search to the core subgraph G(u) to compute x(u).

The advantage of solving the oracle created on the subgraph G(u) is that
we have a linear model with much less variables. This makes the model more
handful for general MIP solvers. Another advantage is that G(u) may be
decomposable into independent subgraphs, allowing us to separate the core
subproblem into smaller subgraphs.

[2] uses the sorted costs to partition the domain of each coordinate ui into
intervals like [cki , c

k+1
i], with cm+1

i = +∞. In this way the core subgraph can
be partitioned in elementary boxes and the dual search can be restricted to one
representative point per elementary box. Follows [2] algorithmic scheme.

Take a small ε > 0 and for each client i, take some l(i) ∈ F where ui =

c
l(i)
i (i = 1, ..., n) and start the dual search at u0

i = c
l(i)
u . Query the Oracle and

if the current dual iterate is not optimal (that is there exist at least one i such
that

∑
j∈F xij = 0), we update ui:

ui = c
l(i)
i → c

l(i)+1
i + ε for some l(j) ∈ F (2.25)

We only update the coordinates for the iterate uk whose corresponding
subgradient coordinate is not null.

2.4. THE CORE SUBPROBLEM 19

Algorithm 2 Dual-Ascent algorithm (basic iteration)

1: Set k = 0 and ε > 0. For each client i ∈ U , set

• u0
i = c

l(i)
i + ε for some l(i) ∈ F

• c̃i = minj{cij + fj}
• cm+1

i = +∞
2: while Solution is not optimal do
3: Compute L(uk), (x(uk), y(uk))) and sk where

skj = 1−
∑
j∈F

xkij ∀i ∈ U

4: if sk = 0 then
5: Stop. The pair (uk, (x(uk), y(uk))) is a primal-dual optimal point
6: end if
7: For each i ∈ U such that ski = 1, set

uk+1
i = min{cl(i)+1

i , c̃i}+ ε and l(i) = min{l(i) + 1,m}.

8: set k = k + 1
9: end while

Chapter 3

MIN-MAX Capacitated and
Budgetized Plant Location

What we are going to do in this Chapter is to present a specialization of the
Plant Location Problem, involving some constraints on facilities capacities and
on the maximum budget that can be spent on facilities openings. Moreover,
we also wanted to “optimize” the size of the facilities that were open in the
optimal solution. We decided to integrate all the specifics in a single linear
programming model. The problem that came out, was very hard to solve,
expecally because, as we will see below, the instance’s size grows very fast in
relation to the number of possible facility locations.

3.1 Problem Description

We first recall sets and variables involved it the CPLP and then we explain
the new constraints added to our Plant Location specialization. We have a set
U = 1, 2, 3, .., n of clients, a set F = 1, 2, 3, ...,m of possible plants’ locations,
a vector K = (fj) of fixed costs for setting up plants at sites j ∈ F , a matrix
C = [ci,j] of transportation costs from i ∈ U to j ∈ F as input, a vector
D = (dj), j ∈ F of the maximal number of users supported by facility j and
finally a vector R = (ri), i ∈ U for the users’ volumes. In our problem, we first
decided to let the user fix the maximum budget that the solution can spend in
facilities openings. The relative constraint is quite simple:∑

j∈F
fjyj ≤ BUDGET (3.1)

Each plant can support a maximum number of users (we call this number
as “maximum capacity”) and must support a minimum number of users (“min-
imum capacity”), that is a facility cannot be open if the number of users that
want to be served by it are less than its minimum capacity. These specifications
could be modeled by using 2|M | constraints where M is the number of possible
positioning sites, but another specification makes this number much bigger.

21

22
CHAPTER 3. MIN-MAX CAPACITATED AND BUDGETIZED PLANT

LOCATION

Each facility belongs to one of three exclusive classes: “big facilities”,
“medium facilities” and “small facilities”. To introduce this concept in the
MIP model, we decided to triplicate the number of y variables, by positioning
three virtual “opening sites” onto the real ones. For example if we have a
point (X,Y) which is a possible opening site, we added three y variables for
that point; of course we needed to forbid the possibility to have more than one
opening at the same (X,Y) point. According to this specification, we needed
to specify different minimum and maximum capacities for each different class.
Note that, since we are triplicating the number of y variables, we are also trip-
licating the number of constraints about facilities capacities. We call B, M, S
respectively the set of big, medium, and small facilities, with F = B ∪M∪ S.

If we define T = (MAX CAPACITYj), j ∈ F as the vector of the maxi-
mum number of users supported by facility j and t = (MIN CAPACITYj), j ∈
F as the vector of the minimum number of user that must be supported by
facility j if we want it to be open, then we have the following constraints about
facilities capacities:∑

i∈U
ρixij ≤MAX CAPACITYj ∀j ∈ F (3.2)

∑
i∈U

ρixij ≥ yjMIN CAPACITYj ∀j ∈ F (3.3)

To force the problem to open only one facility onto each selected (X,Y)
point, we added the following constraints:

ys + ym + yb ≤ 1 ∀Ys,m,b ⊂ F : s,m, b ∈ Ys,m,b (3.4)

where s,m, b ∈ F are three facilities which have the same opening point.
The overall MIP problem is the following:

min
∑
i∈U

∑
j∈F

xijcij +
∑
j∈F

yjfj (3.5a)

s.t.
∑
j∈F

xij = 1 ∀i ∈ U (3.5b)

xij ≤ yj ∀i ∈ U ∀j ∈ F (3.5c)∑
j∈F

fjyj ≤ BUDGET (3.5d)

∑
i∈U

ρixij ≤MAX CAPACITYj ∀j ∈ F (3.5e)∑
i∈U

ρixij ≥ yjMIN CAPACITYj ∀j ∈ F (3.5f)

ys + ym + yb ≤ 1 ∀Ys,m,b = {s,m, b} (3.5g)

0 ≤ xij ≤ 1 integer (3.5h)

0 ≤ yj ≤ 1 integer (3.5i)

3.2. NP-HARDNESS 23

Note that we can give different formulations for this problem. For example
we could modify the constraint 3.5e as:∑

i∈U
ρixij ≤ yjMAX CAPACITYj ∀j ∈ F. (3.6)

This simple modification causes the constraints 3.5c to be unnecessary, since
they are implicated by constraints 3.5f and 3.6.

Moreover, we can eliminate from the model the constraints 3.5g trasforming
constraints 3.5f and 3.6 as follows:∑
i∈U

ρixij ≤ ysMAX Cs + ymMAX Cm + ybMAX Cb ∀Ys,m,b = {s,m, b} ⊂ F

(3.7)∑
i∈U

ρixij ≥ ysMIN Cs + ymMIN Cm + ybMIN Cb ∀Ys,m,b = {s,m, b} ⊂ F

(3.8)
Where MIN Cj and MAX Cj are the minimum capacity and the maxi-

mum capacity of facility j respectively.
We call this problem MIN-MAX Capacitated and Budgetized Plant Location

Problem (MMBPLP).

3.2 NP-Hardness

In this section we will prove that the MMBPLP is NP-Hard by reducing it
from the Simple Plant Location Problem.

Theorem 5.
SIMPLE PLANT LOCATION PROBLEM ≺p MMBPLP. (3.9)

Proof. Define ISPLP and IMMBPLP as the sets of the Simple Plant Location
and MMBPLP problems’ instances respectively, then to prove 3.9 we need to
define a bijective function f such that:

f : ISPLP → IMMBPLP . (3.10)

Moreover, to be the reduction valid, we must show:

Af ∈ P, (3.11)

where P is the complexity class that contains all decision problems that can
be solved by a deterministic Turing machine in polynomial time. To complete
the reduction we have to:

• Assume to have a polynomial algorithm to solve the MMBPLP

• Prove that this algorithm can be used to solve in polynomial time every
instance of th SPLP.

24
CHAPTER 3. MIN-MAX CAPACITATED AND BUDGETIZED PLANT

LOCATION

Starting from a Simple Plant Location Problem instace, we need to add all
the constraints needed to turn it into a MMBPLP instance. First of all let we
think about the budget. We can set the maximum budget that can be spent
in the optimal solution as:

BUDGET =
∑
j∈F

fj (3.12)

In this way we have no budget limitations in the MMBPLP, since it is not
possible to spend more than the sum of all facilities costs.

A similar approach can be used to add constraints about maximum capac-
ities:

MAX CAPACITYj =
∑
i∈U

ρi ∀j ∈ F. (3.13)

For the minimum capacity we can set:

MIN CAPACITYj = 1 ∀j ∈ F, (3.14)

that is, a generic facility can be open only if at least one user is connected to
it, just like in the SPLP.

Finally we need to handle constraints 3.5g; one solution is to simply trip-
licate the facilities, by positioning the new ones onto the facilities sites of the
original SPLP instance. It is easy to see that each instance in ISPLP can be
transformed into an instance of IMMBPLP and that if we solve the IMMBPLP

problem, we solve the original problem.
Define F = F ∪F ∪F (remember that we triplicated the number of facilities

because we need to add this specification to turn SPLP in MMBPLP), then
the resulting MIP model will be the following:

min
∑
i∈U

∑
j∈F

xijcij +
∑
j∈F

yjfj (3.15a)

s.t.
∑
j∈F

xij = 1 ∀i ∈ U (3.15b)

xij ≤ yj ∀i ∈ U, ∀j ∈ F (3.15c)∑
j∈F

fjyj ≤
∑
j∈F

fj (3.15d)

∑
i∈U

ρixij ≤
∑
i∈U

ρi ∀j ∈ F (3.15e)∑
i∈U

ρixij ≥ yj ∀j ∈ F (3.15f)

yj1 + yj2 + yj3 ≤ 1 ∀Ỹ = {j1, j2, j3} ⊂ F (3.15g)

0 ≤ xij ≤ 1 integer (3.15h)

0 ≤ yj ≤ 1 integer (3.15i)

3.3. THE SEMI-LAGRANGEAN RELAXATION WITH THE NEW
PROBLEM 25

3.3 The Semi-Lagrangean Relaxation with the New
Problem

As we described in previous sections, we want to use the same approach of [2]
to find a heuristc solution to MMBPLP. Since the MIP model is very “dense”
(there is a big number of non-zero variables in the constraints), we wanted
to apply the same principle used by [2] for removing the xij variables from
the Oracle, and approximate the problem’s solution by using the dual Ascent
method. We are talking about approximation and heuristics, because some
theorems and results that are valid for the SPLP are not valid anymore for the
MMBPLP; such these differences are generated by the constraints on facilities
minimum capacities. In this Section, we will first describe how to generate the
Semi-Lagrangean Relaxation for the MMBPL Problem and then we will show
how we applied the Dual-Ascent Algorithm we have seen in 2.3.

Like in [2], we have to dualize the equality constraints 3.5b. The MIP model
of the oracle will be the following:

min
∑
i∈U

∑
j∈F

xij(cij − uj) +
∑
j∈F

yjfj +
∑
i∈U

ui (3.16a)

∑
j∈F

xij ≤ 1 ∀i ∈ U (3.16b)

s.t. xij ≤ yj ∀i ∈ U ∀j ∈ F(3.16c)∑
j∈F

fjyj ≤ BUDGET (3.16d)

∑
i∈U

ρixij ≤MAX CAPACITYj ∀j ∈ F (3.16e)∑
i∈U

ρixij ≥ yjMIN CAPACITYj ∀j ∈ F (3.16f)

ys + ym + yb ≤ 1 ∀Ys,m,b ⊂ F (3.16g)

0 ≤ xij ≤ 1 integer (3.16h)

0 ≤ yj ≤ 1 integer (3.16i)

With this new model we decided to apply the same Dual-Ascent Algorithm
of [2], keeping the Assumption 3 to remove some xij variables from the oracle.
While the assumption is very useful in our heuristic approach, it is not math-
ematically correct, since the Oracle’s optimal solution could contain some of
the xij variables removed by using the Assumption. This happens because of
the constraints on minimum facilities capacities:∑

i∈U
ρixij ≥ yjMIN CAPACITYj (3.17)

Proposition 1. Given the Oracle for the Semi-Lagrangean Relaxation of the
MMBPLP, xij − ui < 0 ; xij = 0 in the Oracle MIP model.

26
CHAPTER 3. MIN-MAX CAPACITATED AND BUDGETIZED PLANT

LOCATION

Proof. To prove the Proposition, we can provide a counter example.
Suppose we have a facility yq such that its opening cost fq = ε > 0. This

facility’s minimum capacity is γq and its maximum capacity is Γq.
Suppose there exists an user p such that cpq = ε with volume ρp, with

|cpq| < |fq|.
Assume now that there is a subset Q of users, such that each user i ∈ Q, i 6=

p, has ciq < cij + ε ∀j ∈ F, j 6= q. Suppose the set Q to be such that:∑
i∈Q

ρi = γq − ρp (3.18)

Imagine that the budget is:

BUDGET =
∑
j∈F

fj . (3.19)

Because of the Assumption 3, we removed the xpq variable from the Oracle.
Solving this (reduced) Oracle, we get a solution S∗ (S∗ is the set of both x and
y variables selected in the solution). Imagine that every facility that is open in
the actual solution could still be open if we “disconnect” all the users in Q (that
is the remaining users have still enough volume to keep open all the facilities
in S∗), and call Q̃ the set of disconnected users. Define SQ as the set of xij
variables that represent the connection between every i ∈ Q and the facility q,
and define the set SQ̃ as the set of variables relative to the disconnections of

users in Q̃ in S∗.
If we add to the problem the xpq edge, then we have:∑

i∈Q∪{p}

ρi = γq, (3.20)

that is, the users in Q ∪ {p} have enough volume to open the facility q. If
we open the facility q, the new solution cost is:∑

xij∈S∗

cij +
∑

yj∈S∗

fj + fq + (
∑

xij∈SQ

cij −
∑

xij∈SQ̃

cij + cpq). (3.21)

Now, since ciq < cij + ε ∀j ∈ F, j 6= q, ∀i ∈ Q, we have:∑
xij∈SQ

cij >
∑

xij∈SQ̃

cij (3.22)

Moreover, since fq = cpq, we can state:

fq + (
∑

xij∈SQ

cij −
∑

xij∈SQ̃

cij + cpq) < 0, (3.23)

and we prove the Proposition by noting that:∑
xij∈S∗

cij +
∑

yj∈S∗

fj >
∑

xij∈S∗

cij +
∑

yj∈S∗

fj + fq + (
∑

xij∈SQ

cij −
∑

xij∈SQ̃

cij + cpq).

(3.24)

3.4. MMBPLP FEASIBILITY 27

Another key difference between SPLP and MMBPLP is that, when in the
first problem SLR we have that an user’s Lagrangean multiplier is greater then
the “best combined cost” for that user, then we can stop to increase that
multiplier, because the worst thing that can happen in the optimal solution is
that we open the facility involved in the best combined cost and connect the
user to that facility. Once we introduced constraints on facilities capacities,
this assumption is not valid anymore.

For the reasons described above, we cannot state that the Dual-Ascent
Algorithm previously exposed, mathematically reach the optimal solution after
a finite number of steps.

3.4 MMBPLP Feasibility

Before we describe the main algorithm we used to solve the MMBPLP, we need
to define a procedure to “fastly” define if a general instance of our problem is
feasible. Of course it is not possible to check feasibility in polynomial time,
unless P = NP , but it is still possible to decompose the MMBPLP in simpler
derived problems, such that we can prove the original problem’s feasibility by
analyzing the subproblems. In the next Sections we will define how it is possible
to derive the MMBPLP feasibility by analyzing two induced subproblems: the
“Min Capacity Knapsack Problem” (MCKP) and the “Maximal Sum Problem”
(MSP). We will first define the MCKP and the MSP, and then we will prove
a sufficient condition to derive the original problem feasibility by solving them
both.

All this process will be addressed in the below as the “Feasibility Check”,
and it will be used as a primitive function in the Progressive Plants Selector
Algorithms described below.

3.5 The Min Capacity Knapsack Problem

The 0-1 Knapsack is one of the most important problems of combinatorial
optimization. Is given a set of items J , each with a profit pj and a weight
wj , j ∈ J , these items must be packed into a knapsack of capacity c and the

objective is to choose a subset J̃ ⊆ J such that the total capacity of the items
in J̃ is less or equal to c, and the profit of the chosen object is maximum.

The problem can be expressed by using Mixed-Integer Linear Programming:

xj =

{
1 if the item j has to be included in the knapsack

0 otherwise

max
∑
j∈J

pjxj (3.25a)

s.t.
∑
j∈J

wjxj ≤ c (3.25b)

0 ≤ cj ≤ 1 integer (3.25c)

28
CHAPTER 3. MIN-MAX CAPACITATED AND BUDGETIZED PLANT

LOCATION

Our first derived problem is a specialization of the 0-1 Knapsack Problem.
Consider the orignal problem. We would like to know what is the “best

way” to allocate the budget we have at our disposal, that is we want to know
the facilities sizes such that we can serve all the users whitout violating the
budget constraint. In this problem we also need to keep constraints 3.5g. The
resulting LP problem is the following:

yj =

{
1 if structure j is selected

0 otherwise

min
∑
j∈F

yjMIN CAPACITYj

s.t.
∑
j∈F

fjyj ≤ BUDGET∑
j∈F

MAX CAPACITYjyj ≥
∑
i∈U

ρi

ys + ym + yb ≤ 1 ∀Ys,m,b = {s,m, b} ⊂ F
0 ≤ yj ≤ 1 integer

For the variables definition just look at the Sections above. Notice that the
problem is still NP-Hard, indeed it is possible to reduce it from 0-1 Knapsack,
by setting:

MAX CAPACITYj =
∑
i∈U

ρi. (3.26)

Proposition 2. If the induced MCKP is not feasible, then the original MMB-
PLP is not feasible.

Proof. We have:

MMBPLP is feasible⇒ the induced MCKP is feasible.

and if we consider its contrapositive:

The induced MCKP is not feasible⇒ MMBPLP is not feasible.

Of course the inverse is not true, because we did not consider the constraints
on facilities capacities. We define Φ∗(MCKP) as the optimal solution of this
problem. The set Φ∗(MCKP) is a good candidate to use if we want to check
the problem feasibility.

The only thing we have left to do is to check whether Φ∗(MCKP) can yeld
to a feasible solution to the original MMBPLP or not. Starting from those
Φ∗(MCKP) we want to satisfy the capacity constraints on facilities. To do
that, we need to know if there exists any combination of xij variables such that
they satisfy the following constraints:

3.5. THE MIN CAPACITY KNAPSACK PROBLEM 29

∑
j∈Φ∗(MCKP)

xij = 1 ∀i ∈ U

s.t.
∑
i∈U

ρixij ≤MAX CAPACITYj ∀j ∈ Φ∗(MCKP)∑
i∈U

ρixij ≥MIN CAPACITYj ∀j ∈ Φ∗(MCKP)

0 ≤ xij ≤ 1 integer

Informally, we need to know if there is a combination of xij such that it is
possible to open all the facilities in Φ∗(MCKP) while satisfing both minimum
and maximum capacities constraints.

What we have got in this Section, is a sufficient condition to dermine the
main problem feasibility. Even if we are splitting our problem in two different
NP-Hard ones, in practice solving the MCKP and checking the feasibility of
the second model, is much faster then determine the feasibility of the original
MMBPLP.

As described above, we will use this method in the algorithm that follows.

Chapter 4

Progressive Plants Selector

In this Chapter we will describe the heuristic algorithm that we developed for
finding a good feasible solution to MMBPLP. This method has been studied
considering the necessity to have a rapid feedback from the optimization system
without sacrificing too much quality.

The algorithm that follows is based on the Semi-Lagrangean Relaxation we
described in Section 3.3; another possibility could have been to approximate the
problem through a simple Lagrangean Relaxation, but we decided to follow the
other way since the SLR fits the original problem much better than its simple
version.

What we have got is a method that tipically yelds to a solution, on random
graphs (the hardest to solve), with less then 10% duality gap.

4.1 General Idea

Since we wanted to have a rapid feedback from our system, we thought to use a
greedy approach to solve the problem, because it allows to display fragments of
the solution during the algorithm execution. Our method is based on the Dual-
Ascent Algorithm described above and we exploited Lagrangean coefficients to
have information about which facilities we wanted to be open.

During the Progressive Plants Selector (PPS) we reduce the instace size
until we get to a problem that is solvable through the general MIP solver. To
do that, we apply the Dual-Ascent Method to the current instance (until some
stop conditions are verified), then we extract from the solution some of the
most convenient facilities with all the users that are connected to them. When
we arrive to an instance size that is good enough to be solved directly, we solve
it to get the last facilities positions.

In Figure 4.1 it is possible to see the flowchart of our algorithm.

Since we are reducing the instance size by starting from a solution that is
not feasible for the original problem (the Semi-Lagrangean relaxation allows
users to not connect to any of the facilities) and since open facilities and users
connections could be part of an infeasible solution for the original problem,

31

32 CHAPTER 4. PROGRESSIVE PLANTS SELECTOR

we need to certify, at each iteration of the reduction procedure, that the new
problem is still feasible in the sense of the original formulation.

After we decided the facilities positions and their size, we re-optimize the
users allocation in order to reduce the solution cost as much as possible.

4.2 Algorithm Description

We now describe step-by-step the Progressive Plants Selector Algorithm.
Before starting the instance resolution, we first check whether the sufficient

condition for problem feasibility is valid or not. If the feasibility check is not
passed, then we send a warning message as output.

The PPS algorithm inputs are:

• a step size, to be intended as the percentage of open facilities at each iter-
ation of the reducion procedure to be removed from the problem instance.
For example if the i-th solution provided by the reduction procedure has
q open facilities and the step size is α ∈ [0, 1], the reduction will take
place by removing from the problem the “best” dαqe facilities (with all
the users connected to them);

• a “reasonability threshold”, that is the size of the problem we belive to
be small enough to be optimized by the MIP solver. Here when we speak
about “size”, we intend the number of users to be allocated.

• a “time limit” for the Dual-Ascent Method that is tipically set to some
minutes.

The procedure that follows is iterated until both the following conditions
are verified:

1. The problem size is not reasonable.

2. The last iteration yeld to a feasible problem: if the i-th iteration has gen-
erated a infeasible problem, we rollback the changes that were previously
made (that is we re-insert both users and facilities that were removed
from the instance) and we start the resolution with the MIP solver..

We run the Dual-Ascent Algorithm on the current problem instance until
the time limit is reached and until we have found at least one new facility to
open; these are the candidates from which to choose those elements to add to
the solution we are building.

The criterion that we adopted to choose which facilities to extract from the
problem, uses the Lagrangean coefficients that are computed during the Dual-
Ascent Algorithm. These coefficients are user-related, but we want to extract
the facilities from the problem. If ui is the Lagrangean coefficients for user i,
we define score(j) as:

score(j) =
∑
i∈U

uixij , (4.1)

4.2. ALGORITHM DESCRIPTION 33

and we define as the “most convenient facility”, the plant j such that:

j = argmax{score(j) : j ∈ F}. (4.2)

As mentioned, if the Dual-Ascent Procedure contains q open facilities and
the step size is α ∈ [0, 1], then we extract from the solution the top dαqe
facilities from the list of facilities sorted in decreasing order by their score.

At this point we use the feasibility check to determine whether the new
problem is solvable or not 1. If the check is not passed, then we rollback the
changes and we start the MIP solver, else we iterate the reduction procedure.

Of course before iterating we need to update the problem data:

1. we need to update the budget subtracting all the budget we spent in the
actual solution;

2. we need to remove all the facilities that we have open and all the users
that are connected to them;

3. we need to remove from the problem all the variables that are relative to
the same position of all facilities in the current solution, that is ∀Ys,m,b =
{s,m, b} ⊂ F if ∃j|j ∈ Ys,m,b we remove all the elements of Ys,m,b from
the problem.

Note that after we checked that the problem is feasible and, consequently,
that the facilities we extracted will belong to the solution we are building, we
have the possibility to output those plants, giving to the end-user a feedback
even if the final solution will be provided in the future.

When we finally determined the facilities positions and sizes that cover
all the demand, we solve the “Optimal Allocation Problem” we have seen in
Section 3.5 in order to determine the optimal users allocation with the facilities
we have open.

1Remark that the feasibility here is relative to the original problem specifications but
with the new set of facilities, users and the new budget.

34 CHAPTER 4. PROGRESSIVE PLANTS SELECTOR

Algorithm 3 Progressive Plants Selector

1: procedure ProgressivePlantsSelector(stepSize, reasonThr,
timelimit)

2: instance← Build the problem
3: while istance.users > threshold do
4: DualAscentProcedure(istance, timelimit)
5: f̃ ← facilities open in DualAscentProcedure sorted by their score
6: oldInstace← instance
7: instance ← remove from instance the top dstepSize · |f̃ |e =

˜̃
f fa-

cilities
8: if checkInstanceFeasibility(instance) is true then

9: Save the
˜̃
f facilities and all the users connected to them

10: Remove all the facilities in
˜̃
f from the instance.

11: Remove all the users connected to facilities in
˜̃
f from the current

instance.
12: Remove all the facilities located on the same position of the fa-

cilities that are open2

13: Update the maximum budget:

BUDGET ← BUDGET −
∑
j∈ ˜̃

f

fj

14: else
15: instance← oldInstance
16: break the cycle
17: end if
18: end while
19: solveToOptimum(instance)
20: end procedure

4.3 Algorithm Correctness

For algorithm correctness, we intend the property of our method to return, if
it exists, a feasible solution for the input instance. In this section we will prove
this statement.

Proposition 3. Selective Plants Selector Algorithm returns a feasible solution
for any feasible instance of MMBPLP.

4.3. ALGORITHM CORRECTNESS 35

Proof. To be feasible, a solution must satisfy all the following constraints:

∑
j∈F

xij = 1 ∀i ∈ U (4.3a)

xij ≤ yj ∀i ∈ U ∀j ∈ F (4.3b)∑
j∈F

fjyj ≤ BUDGET (4.3c)

∑
i∈U

ρixij ≤MAX CAPACITYj ∀j ∈ F (4.3d)∑
i∈U

ρixij ≥ yjMIN CAPACITYj ∀j ∈ F (4.3e)

ys + ym + yb ≤ 1 ∀Ys,m,b = {s,m, b} ⊂ F (4.3f)

0 ≤ xij ≤ 1 integer (4.3g)

0 ≤ yj ≤ 1 integer (4.3h)

All the constraints from 4.3b to 4.3f are satisfied by any solution S̃ provided
by the Dual-Ascent Algorithm, with:

S̃ = (X̃, Ỹ), (4.4)

where:
X̃ = {xij |xij = 1} Ỹ = {yj |yj = 1}. (4.5)

If we take a subset Ẏ ⊆ Ỹ and we take the subset of Ẋ ⊆ X̃ such that:

Ẋ = {xij |j ∈ Ẏ and xij = 1}, (4.6)

Then all the constraints from 4.3b to 4.3f remain verified. Moreover, every
user relative to Ẋ variables is connected to only one facility.

Now, define
U̇ = {i ∈ U |xij = 1, xij ∈ Ẋ} (4.7)

Ḟ = {j ∈ F |yj = 1, yj ∈ Ẏ }. (4.8)

Consider the problem Φ̄ that can be build from the two subsets Ū ⊆ U and
F̄ ⊆ F with Ū = U \ U̇ and F̄ = F \ Ḟ , obtained by removing those users
and facilities that are selected in the reduction phase of PPS. The maximum
budget that can be spent in a solution of Φ̄ is:

BUDGET = BUDGET −
∑
j∈Ḟ

fj (4.9)

Then we have two cases:

1. Φ̄ is not feasible: the algorithm will rollback the modifications and it will
solve, through a MIP solver, a feasible instance of the original problem.

36 CHAPTER 4. PROGRESSIVE PLANTS SELECTOR

2. Φ̄ is feasible: define S̄ = (X̄, Ȳ) as a feasible solution of Φ̄. Then we have
that the solution Ŝ defined as:

Ŝ = (Ẋ ∪ X̄, Ẏ ∪ Ȳ) = (X̂, Ŷ),

is feasible for the original problem, since:

• all the users have been allocated to exactly one facility, so con-
straints 4.3a are satisfied;

• all the constraints 4.3d, 4.3e, 4.3b and 4.3f are satisfied because both
Ŝ and Ṡ = {Ẋ, Ẏ } satisfy them;

• constraint 4.3c is satisfied since the maximum budget that can be
spent is:

̂BUDGET = BUDGET + ˙BUDGET =

= BUDGET −
∑
j∈Ḟ

fj + ˙BUDGET

with:
˙BUDGET =

∑
j∈Ḟ

fj (4.10)

One can say that there is no need to remove a facility completely from
the problem because that facility may still have some space available for new
allocations.

For example if a facility j with maximum capacity MAX CAPACITYj has
been open in an intermediate step of the algorithm, we may have the situation
in which only a certain amount of its potential capacity has been filled. If we
remove this facility completely we waste some space.

Since we are discussing about NP-Hard problems, we must face the fact
that some instances could be very hard to solve. In our particular case we
observed that if there is a high variation of capacities among the facilities,
then the instances start to become very hard and we are not able to find a
solution in useful time (remember that this algorithm was developed to give
some feedback in at most one or two minutes).

4.3. ALGORITHM CORRECTNESS 37

Figure 4.1: Progressive Plants Selector Algorithm flowchart

Chapter 5

Case Study

The theorethical study carried out so far and the strategy developed to solve
the MMBPLP, were finalized to an application on a real situation: we needed
a method to optimally place medical structures onto the area of an Italian
administrative region.

In this Chapter we will describe the case study specifications and how we
modeled the problem starting from the data at our disposal. Moreover, we will
explain some technical choices on the tools we selected to solve the problem
and we will describe the software architecture designed.

Finally, we will report some computational results of both the Progressive
Plants Selector Algorithm and the overall system.

5.1 Data

Emilia-Romagna is an administrative Region of Northen Italy, comprising the
historical regions of Emilia and Romagna. At present its healthcare is orga-
nized into big Hospitals, but the intent of the administration is to build new
smaller structures in order achive a better distribution of the medical assis-
tance, mainly for those patients affected by chronic deseases. Some of these
structures (“Health Houses”) have been already built on the region area. What
we wanted to do is to position these structures onto the territory by minimizing
the overall system’s cost.

The healthcare administration of Emilia-Romagna is organized in eleven
different administrative sectors, also called USLs, each of which has a different
jurisdiction area. It’s also possible to partition the territory in 36.000 census
sections.

Since we wanted to position new facilities, we needed to have a set of possible
locations. We decided to use both the set of positions of the plants that are
already on the territory and a subset of the census sections, choosing those with
the highest population. An evolution of the system (not yet implemented) will
be to delegate, to the end-user, the selection of the new plant locations that
will be used by the optimization system.

39

40 CHAPTER 5. CASE STUDY

During the optimization we will assume that there are no facilities on the
territory, so that our algorithm will try to find the overall optimal solution
(without considering that some Health Houses are already positioned). Of
course if the end-user wants to keep some facilities from the present configura-
tion, we can force this facility to be open in our model.

The data at our disposal were organized into a well-structured dataware-
house (DWH) containing information about patients clinical history and geo-
graphical position. All the users data were, of course, anonymized, but each
patient were geolocalized on the region area. Moreover, we knew all the present
facilities locations.

5.2 Specifications

Given the 36.000 census sections and all the possible facilities positioning sites,
we wanted to decide the plants openings and the opened facilities’ capacities in
order to minimize the sum of the plants set-up costs and the users’ connections
costs. We wanted each user to be served by exactly one facility and we knew
that there exist a maximum budget that can be spent in new facilities openings.
About facilities capacities, we knew that there were three different sizes: small,
medium and big facilities.

One can see that these general specification can be modeled by the MMB-
PLP we described above. It is a good idea to formalize this evidence.

In order to model our problem as a MMBPLP instance, we need to define
the following elements:

• the set U = 1, 2, 3, .., n of users;

• the set F = 1, 2, 3, ...,m of possible facilities locations;

• the vector K = (fj) of fixed costs for setting up plants at sites j ∈ F ;

• the matrix C = [ci,j] of transportation costs from i ∈ U to j ∈ F ;

• the vector D = (dj), j ∈ F of the maximum number of users supported
by facility j;

• the vector T = (tj), j ∈ F of the minimum number of users to be
supported by facility j i we want it to be open;

• the vector R = (ri), i ∈ U for the users’ volumes.

In our case the set U will be the set of census sections and the vector R will
be formed by using the population for each section. Notice that, since we will
not be able to solve instances with 36.000 users and about 1.500 possible facil-
ities locations within a couple of minutes, we will need to reduce the problem
size in some way.

5.3. DEVELOPMENT TOOLS 41

The set F will be composed by the union of all the position relative to those
facilities that are actually positioned onto Emilia-Romagna’s territory, and the
subset of those census sections with the hightest population.

The elements of C will be defined as follows:

cij = distance(i, j) · ri · factor · km cost, ri ∈ R

where:

• distance(i, j) is the Euclidean distance, in km, between the census section
i and the facility j centroids;

• factor ∈ R is a constant that represents how much “importance” we want
to give to the users satisfcation in terms of distance from their facility
(if factor is very small we would open few facilities because we give less
relevance to the fact that a user must move far away to reach its facility);

• km cost is how much a user spends to travel for one km;

About K,D and T , they will be defined by the end-user.

System’s Reactivity

An important requrement we somehow already highlited, was about the sys-
tem’s response time: we wanted a well-approximated problem solution as fast
as possible, with possibly the first feedback from the system in less than 1-2
minutes. The problems we have solved are all NP-Hard and the instances are
non-trivial, so this specification has been very hard to be satisfied.

The motivation that led to the definition of this need, is relative to the
intent of iCONSULTING to commercialize the final product. Since business
users are more confident with Business Intelligence (BI) products, they will
expect our system to have a response time comparable to BI tools.

5.3 Development Tools

In this section we are going to discuss about tools and technologies we decided
to use to build our system. The general idea was to select open-source and free
technologies instead of using commercial products. Moreover, we wanted to be
as much “vendor independant” as possibile.

5.3.1 MIP Solver

Since we wanted to solve MIP models, the most important choice was about
the MIP solver. Available LP-solvers differ in many ways. They come with
different licences and features, for example in terms of how problems can be
specified. What follows is a brief description of the most popular tools on the
market:

42 CHAPTER 5. CASE STUDY

Open-source and free solvers

• GLPK: the GNU Linear Programming Kit is a free and open-source soft-
ware written in ANSI C.

• LP SOLVE: is open-source and written in ANSI C as GLPK.

• CLP: is a solver created within the Coin-OR project written in C++.
The Coin-OR project aims at creating open software for the operations
research community. CLP is used in many othe project within Coin-OR
such as SYMPHONY (a ibrary to solve MIP models) or CBC (a LP-based
branch-and-cut library).

• SCIP: is a framework for solving integer and constraint programs which
is available as a C callable library or a standalone solver. The codebase of
SCIP is freely available and the framework ca be used without restrictions
for academic research but not for commercial use.

Commercial solvers

• CPLEX: the IBM ILOG CPLEX Optimiaziont Studio is a commercial
solver designed to deal with large scale MIP problems. The software
supports several interfaces so that it is possible to connect the solver to
different program languages. CPLEX is often acknowledged as the best
MIP solver on the market.

• Xpress: Xpress is a commercial software that can solve MIP problems.
As CPLEX it offers different interfaces to interact with different program-
ming languages.

• Gurobi: is a modern solver for MIP linear (and also for non-linear) math-
ematical optimization problems.

Among all these tools, our choice fell on the open-source/free softwares,
but our system is solver-independent, in the sense that we can replace the MIP
solver very easily by implementing a C++ “interface”.

During the development process we tested two MIP solvers: GLPK and
SCIP (with SoPlex). GLPK gave us very poor results, expcially on non-trivial
instances of MMBPLP, so we choose SCIP as the principal MIP Solver.

5.3.2 Hadoop

As we highlighted above, the problem of optimizing the Health Houses position-
ing onto the Emilia-Romagna area, can be divided into sub-problems relative
to each USL in the region. This fact yelds to the possibility of parallelizing
our computation by solving on different machines/threads the different USLs
sub-problems.

5.3. DEVELOPMENT TOOLS 43

In order to distribute our optimization on different machines without think-
ing about networking problems, fault tolerance issues and scalability, we de-
cided to use Hadoop for the parallelization.

The Apache Hadoop project develops open-source software for reliable, scal-
able, distributed computing. The library is a framework that allows for the dis-
tributed processing of large data sets across clusters of computers using simple
programming model. It is designed to scale up from single servers to thousands
of machines, each offering local computation and storage. Rather than rely on
hardware to deliver high-availability, the library itself is designed to detect and
handle failures at the application layer, so delivering a highly-available service
on top of cluster of computers, each of which may be prone to failures [29].

Hadoop consists of the Hadoop Common package, which provides filesystem
and OS level abstractions, a MapReduce engine and the Hadoop Distributed
File System (HDFS). The Hadoop Common package contains the necessary
JAR files and the scripts needed to start Hadoop.

For effective scheduling of work, every Hadoop-compatible file system should
provide location awareness: the name of the rack (more precisely, of the network
switch) where a worker node is. Hadoop applications can use this information
to run work on the node where the data is, and, failing that, on the same rack-
/switch, reducing backbone traffic. HDFS uses this method when replicating
data to try to keep different copies of the data on different racks. The goal is
to reduce the impact of a rack power outage or switch failure, so that even if
these events occur, the data may still be readable.

A small Hadoop cluster includes a single master and multiple worker nodes.
The master node consists of a JobTracker, TaskTracker, NameNode and DataN-
ode. A slave or worker node acts as both a DataNode and TaskTracker, though
it is possible to have data-only worker nodes and compute-only worker nodes.
These are normally used only in nonstandard applications.[30] Hadoop requires
Java Runtime Environment (JRE) 1.6 or higher. The standard startup and
shutdown scripts require that Secure Shell (ssh) be set up between nodes in
the cluster.

In a larger cluster, the HDFS is managed through a dedicated NameN-
ode server to host the file system index, and a secondary NameNode that
can generate snapshots of the namenode’s memory structures, thus prevent-
ing file-system corruption and reducing loss of data. Similarly, a standalone
JobTracker server can manage job scheduling. In clusters where the Hadoop
MapReduce engine is deployed against an alternate file system, the NameN-
ode, secondary NameNode, and DataNode architecture of HDFS are replaced
by the file-system-specific equivalents [31].

Hadoop Data Flow

To understand how we used Hadoop in the optimization process, it is useful
to spend some words on MapReduce programming model and Hadoop’s Data
Flow.

44 CHAPTER 5. CASE STUDY

Conceptually, MapReduce programs transform lists of input data elements
into lists of output data elements . A MapReduce program will do this twice,
using two different list processing idioms: map and reduce. The first phase of
a MapReduce program is called mapping. A list of data elements are provided,
one at a time, to a function called the Mapper, which transforms each element
individually to an output data element (Figure 5.1).

Figure 5.1: Hadoop transforms a list of input data into a list of output data

Reducing lets you aggregate values together. A reducer function receives
an iterator of input values from an input list. It then combines these values
together, returning a single output value (Figure 5.2).

Figure 5.2: The reduce function transforms an input list into a single output
value

The Hadoop MapReduce framework takes these concepts and uses them to
process large volumes of information. A MapReduce program has two com-

5.3. DEVELOPMENT TOOLS 45

ponents: one that implements the mapper, and another that implements the
reducer.

In MapReduce, no value stands on its own. Every value has a key associated
with it. Keys identify related values.

The mapping and reducing functions receive not just values, but (key, value)
pairs. The output of each of these functions is the same: both a key and a
value must be emitted to the next list in the data flow.

A reducing function turns a large list of values into one (or a few) output
values. In MapReduce, all of the output values are not usually reduced to-
gether. All of the values with the same key are presented to a single reducer
together. This is performed independently of any reduce operations occurring
on other lists of values, with different keys attached (Figure 5.3).

Figure 5.3: Every output element with the same key is processed by the same
reduce task. In this picture, different colors mean different keys

When the mapping phase has completed, the intermediate (key, value) pairs
must be exchanged between machines to send all values with the same key to
a single reducer. The reduce tasks are spread across the same nodes in the
cluster as the mappers. This is the only communication step in MapReduce.
Individual map tasks do not exchange information with one another, nor are
they aware of one another’s existence. Similarly, different reduce tasks do not
communicate with one another.

MapReduce inputs typically come from input files loaded onto the process-
ing cluster in HDFS. These files are evenly distributed across all cluster’s nodes.
Running a MapReduce program involves running mapping tasks on many or
all of the nodes in the cluster. Each of these mapping tasks is equivalent.
Therefore, any mapper can process any input file. Each mapper loads the set
of files local to that machine and processes them.

In Figure 5.4 is possible to see the whole map-reduce process described
above.

46 CHAPTER 5. CASE STUDY

Figure 5.4: The map-reduce process in its entirety

5.4 Oracle Database and Oracle Spatial

All the data needed for the optimization were stored in a Oracle Database with
Oracle Spatial extension.

Oracle Spatial (or Spatial) is an integrated set of functions and procedures
that enables spatial data to be stored, accessed and analyzed quickly and ef-
feciently in an Oracle database. Spatial data represents the essential location
characteristics of real or conceptual objects relate to the real or conceptual
space in which they exists. Spatial provides a SQL schema and functions to fa-
cilitate the storage, retrieval, udpate and query of collections of spatial features
in an Oracle Database; it consists of the following components:

• A schema (MDSYS) that prescribes the storage, syntax and semantics
for supported geometrica data types

• A spatial indexing mechanism

• A set of operators and functions for performing area-of-interest queries,
spatial join queries and other spatial analysis operations.

• Administrative utilities

The spatial component of a spatial feature is the geoetric representation of
its shape in some coordinate space (SRID). This is referred to as its geometry.

5.4. ORACLE DATABASE AND ORACLE SPATIAL 47

Once spatial data is stored in an Oracle database, it can be easily manip-
ulated, retrieved and related to all the other data stored in the database. In
our case, we had different types of spatial data, such as:

• The shapes of different sub-areas of Emilia-Romagna (such as the shape
of each USL’s jurisdiction area);

• Points relative to the geolocalization of clients and facilities

• Compound lines relative to different streets

Oracle Spatial extension has been very useful to let us present our results in-
side a map: in the database we stored geometries which can be straight-forward
drawed in a map, without any particular effort. Notice that we used Oracle
for convenience, but our system is independent from the database technology
which can be replaced with minimal effort.

48 CHAPTER 5. CASE STUDY

5.5 System’s Architecture

In this section we will present the architecture of our optimization system.
Each step of the optimization process will be described in detail, starting from
the request made by the user for the optimization to the output presentation
by the map engine.

In the following Figure, we reported all the steps of the optimization process
and what follows is their description:

Figure 5.5: The overall optimization system architecture

• Step 1: The user sends the request for optimization with all the param-
eters relative to capacities and costs.

• Step 2: An Apache Tomcat server retrieves the data needed for the opti-
mization from a database. These data are relative to the census sections
centroids and all the possible facilities opening points.

• Step 3: The information obtained from the database is processed and the
results of this processing step is written into the “problem’s files”:

1. One file for each USL containing information about facility positions
and sizes;

2. One file for each USL with the information about census sections’
population and position

3. Since the optimization procedure (the PPS) will be called by “com-
mand line”, one single file containing the command to be launched
for each USL.

5.5. SYSTEM’S ARCHITECTURE 49

• Step 4: After Tomcat propagated all the problem’s files in each machine
that is delegated to perform an USL optimization procedure, a Hadoop
job is started. The input file for Hadoop is the third file described above;
such this file will have the following form:

<PATH TO EXEC>/mipopt BOLOGNA [parameters]
<PATH TO EXEC>/mipopt FERRARA [parameters]
. . .
<PATH TO EXEC>/mipopt MODENA [parameters]

where the first parameter is name of the USL that will be optimized by
invoking the relative command from terminal. The MapReduce job that
is working on the file described above will proceed as follows:

– Map Step: The file is splitted into different key-value pairs. The key
will be the name of the USL to be optimized while the value will be
the command itself;

– Reduce Step: Since each pair has a different key they will be sent
to different Reduce functions, each of which just creates a process
using the value of the pair it recived.

Since we had three (virtual) machines and we forced Hadoop to create
exactly one reducer at time on each computer, we had a parallelism-degree
of three.

• Step 5 and 6: When the single Hadoop task is started, the real optimiza-
tion begins. First we need to reduce the size of our input instance. Each
USL has something like 5000 census sections (our users) and 150-180 pos-
sible facilities locations (counting the triplication of facilities due to the
Health House size definition). For these reasons we want to limitate the
number of users. To do that we applied a clustering algorithm on census
sections.

The algorithm we used for clustering is K-Means, with the distance be-
tween elements defined as the simple Euclidean distance between census
sections. K-Means is executed for a fixed number of iterations and the
starting points for centroids are randomly choosen among the census
sections centroid. Note that the number of clusters desired is an input
provided by the end-user. We can assert that it is likely that an execu-
tion with higher number of clusters will yeld to a better solution then an
execution with a lower number of elements.

An important observation is that, after K-Means has completed, the sys-
tem starts to give an output to the user (the generated clusters).

After K-Means has been executed, we start the Progressive Plants Selec-
tor where the set of users is the set of clusters we just generated.

When the PPS finds a facility to be open, it writes the facility position
and size in the Database. At this point the data is already ready to be
displayed on the map.

50 CHAPTER 5. CASE STUDY

The procedure just described continues until all the USLs have been
optimized.

• Step 7 and 8: Since the Map Engine (Oracle Map Viewer) and the
database are made to work together, once spatial data are written in
the DB by the optimizer, then they are displayed straight forward on the
map with very little effort.

Finally we show some screenshots from our application, starting from the
empty scenario until all the USLs have been optimized.

Our starting point are the USLs and in Figure 5.6 we can see the shapes
which represent the single USLs. Note that if we consider the union of those
shapes, we get the Emila-Romagna’s area.

When the user asks for the optimization, the system starts the cluster-
ing procedure. When K-means has been executed, clusters are written in the
database and displayed to the client. Since showing the clusters involves Oracle
Spatial functions dedicated to the aggregation of shapes (a cluster is an aggre-
gation of census sections and, to display the cluster, we aggregate the census
sections shapes), this step may take some minutes; this is the reason why the
user will see clusters while they are being written in the database and not all
at the same time. In Figure 5.7 and 5.8, we can see the clusters displaying
process, while Figure 5.9 shows a different rapresentation of this aggregations:
a circle positioned on the cluster’s centroid which size and color depends on
cluster’s population.

Notice that the system starts K-means on three different USLs at time:
these are the three Hadoop’s reduce tasks on the three virtual machines.

When the clustering has finished for a particular USL, the Progressive
Plants Selector starts its search for the facilities to open. Since those structures
are found progressively, the user interface can display them while the algorithm
is still running. In Figure 5.10 we show an instant in which the system found a
certain number of facility. We represent with a blu square the small facilities,
yellow square the medium facilities and with a red square the big facilities.

When all the users have been allocated in the PPS, the algorithm searches
for the best users allocation. As usual this step is performed for each USL
and in Figure 5.11 we can see the connections found for some USL. Once the
Progressive Plants Selector found the connections for every user, the USL sub-
problem has been fully solved.

Finally, in Figure 6.13, we can see the solution found by our algorithm for
the full Emilia-Romagna area with 450 users and 150 positioning sites for each
USL.

5.5. SYSTEM’S ARCHITECTURE 51

F
ig

u
re

5.
6:

E
m

il
a-

R
om

a
g
n

a
p

a
rt

it
io

n
ed

in
to

th
e

d
iff

er
en

t
U

S
L

s

52 CHAPTER 5. CASE STUDY

F
igu

re
5
.7:

C
lu

sters
fo

u
n

d
b
y

K
-m

ea
n

s
b

eg
in

to
b

e
d

isp
layed

to
th

e
u

ser

5.5. SYSTEM’S ARCHITECTURE 53

F
ig

u
re

5.
8:

M
o
re

cl
u

st
er

s
h

av
e

b
ee

n
g
en

er
a
te

d

54 CHAPTER 5. CASE STUDY

F
ig

u
re

5
.9

:
B

u
b

b
le

ra
p

resen
ta

tio
n

fo
r

clu
sters

5.5. SYSTEM’S ARCHITECTURE 55

F
ig

u
re

5.
10

:
T

h
e

P
P

S
fo

u
n

d
so

m
e

fa
ci

li
ti

es
.

W
e

re
p

re
se

n
t

w
it

h
a

b
lu

sq
u

a
re

th
e

sm
a
ll

fa
ci

li
ti

es
,

ye
ll

ow
sq

u
a
re

th
e

m
ed

iu
m

fa
ci

li
ti

es
an

d
w

it
h

a
re

d
sq

u
a
re

th
e

b
ig

fa
ci

li
ti

es

56 CHAPTER 5. CASE STUDY

F
igu

re
5.11

:
T

h
e

P
P

S
fo

u
n

d
a
ll

th
e

co
n

n
ectio

n
s

fo
r

so
m

e
U

S
L

s

5.5. SYSTEM’S ARCHITECTURE 57

F
ig

u
re

5.
12

:
T

h
e

so
lu

ti
on

fo
u

n
d

b
y

P
P

S
fo

r
th

e
fu

ll
E

m
il

ia
-R

o
m

a
g
n

a
a
re

a

Chapter 6

Computational Results

In this Chapter we are going to present some results to show the performances
of our methods. We will first show the behavior of our algorithm on randomly
generated MMBPLP instances. Generating random problems allowed us to
dermine those factors that make the instance harder or simpler to solve.

In the second part we will expose the computational results obtained by
solving the real instances, id est those instaces generated starting from our real
problem. Luckily these are much more simple than the random ones, and we
will optimize problems involving a high number of users and facilities.

In addition to showing the Progressive Plants Selector performances and
emphasizing the differences from an optimization performed by using the raw
MIP Solver, we will show the results obtained by using the different MIP model
formulations we have seen in Chapter 3.

All the tests were carried out on an Ubuntu 13.10 with LXDE GUI system,
equipped with an Intel i5 480m processor (1st generation Intel’s i5) and 4GB
DDR3 RAM.

59

60 CHAPTER 6. COMPUTATIONAL RESULTS

6.1 Random Instances

6.1.1 Problem Hardness

To give an idea on “how hard” our problem is, we show the performances of
the optimization obtained by using SCIP with the MMBPLP expressed using
the following MIP model:

xij =

{
1 if the user i is served by facility j

0 otherwise

yj =

{
1 if the facility j is opened

0 otherwise

min
∑
i∈U

∑
j∈F

xijcij +
∑
j∈F

yjfj (6.1a)

s.t.
∑
j∈F

xij = 1 ∀i ∈ U (6.1b)

∑
j∈F

fjyj ≤ BUDGET (6.1c)

∑
i∈U

ρixij ≤ yjMAX CAPACITYj ∀j ∈ F (6.1d)∑
i∈U

ρixij ≥ yjMIN CAPACITYj ∀j ∈ F (6.1e)

ys + ym + yb ≤ 1 ∀Ys,m,b = {s,m, b} (6.1f)

0 ≤ xij ≤ 1 integer (6.1g)

0 ≤ yj ≤ 1 integer (6.1h)

Instances Description

The objects involved in the instances we used for this test are generated as
follows:

1. Facilities maximum and minimum capacities are fixed and equal for each
facility of the same size:

• Small Facilities

(MIN CAPACITY,MAX CAPACITY) = (100, 200)

• Medium Facilities

(MIN CAPACITY,MAX CAPACITY) = (150, 450)

6.1. RANDOM INSTANCES 61

• Big Facilities

(MIN CAPACITY,MAX CAPACITY) = (200, 600)

2. Facilities costs are fixed:
Small Facilities = 1000

Medium Facilities = 2000

Big Facilities = 3000

3. Users volumes ρi, are randomly generated with ρi ∈ [1, 10], ρi ∈ N

4. Users and Facilities positions are randomly generated in a 100 × 100
square. The maximum distance between an user and a facility is:√

1002 + 1002 = 141.42 (6.2)

5. The budget is set to:

BUDGET = Facilities Number ×Medium Facility Cost (6.3)

Results

In the following Table one can see the execution times and the gap obtained
by optimizing the instances described above. The timelimit was set to 3600
seconds. Moreover we highlighted the average amount of memory used during
the optimization:

Seed Bud Usrs yVars Tim SVS Mem GapS
999 50000 100 75 4.2 5014.4 49 0.00
2553 100000 400 150 186.4 11964.0 320 0.00
3330 150000 400 225 3600.0 15068.3 500 0.47
4107 200000 400 300 3065.6 22896.8 675 0.00
4884 140000 500 210 3600.0 27701.5 600 0.05
5661 150000 600 225 3600.0 17698.3 750 0.04
7215 300000 800 450 3600.0 72894.0 1900 ∞
7992 200000 1000 300 3600.0 26785.0 1650 0.07

Table 6.1: Columns description: Seed: the seed used to generate tha random
graph; yVrs: the number of y-variables in the model; Bud: the budget; Usrs:
the number of users in the model; Tim: the time needed to PPS solve the
problem; SVS: the value of the solution found by SCIP; Mem: the average
amount of RAM memory used; GapS: the gap for SCIP

Looking at these results one can see that the instances becomes harder when
the number of y variables starts growing: SCIP needs only 186 seconds to solve
the 400× 150 instance to optimum, but reaches the timelimit in almost all the

62 CHAPTER 6. COMPUTATIONAL RESULTS

successive problems. We give more relevance to y variables because in our case
#users > #facilities, so each new y-variable (i.e. a new facility positioning
site) adds more edges to the problem’s graph than an user.

In the bigger instances, i.e. the one with seed 7215, to represent the model
for a graph of 800× 450 = 360000 edges, SCIP needs about 2 GB of RAM.

One big advantage of the Progressive Plants Selector, will be the lower
amount of memory needed to represent the problem in the computer main
memory.

6.1.2 SCIP vs. Progressive Plants Selector

In order to highlight the differences between a raw SCIP optimization and the
PPS we needed to use the same metric of costs. Considering only the solution
quality (i.e. the duality gap) was not a good idea, because giving SCIP a
sufficient amount of time, we will always find the optimal solution; moreover
the main purpose of PPS is to provide a good solution to our problem using a
small amount of time, so we need to involve in its evaluation both those factors.

What we did to compare the two methods, was to first solve the instances
using PPS and then start SCIP by using the time used by PPS as timelimit for
SCIP (e.g. if PPS needed 200 seconds to solve a particular instance, we used
SCIP for 200 seconds to solve the same instance). We are somehow challenging
SCIP to do better than PPS using the same amount of time.

Notice that once we obtained the PPS solution value, the SCIP solution
value and the SCIP duality gap, we are able to compute the duality gap of the
PPS solution.

6.1.3 Playing with the different factors

After we tested our algorithm with generally random generated instances, we
started to tune all the problem factors to understand how much each element
is involved in MMPLP instance hardness.

We discovered that the problem size, to be intended as the number of edges,
users and facilities, is not a good indicator to represent the difficiulty of an
instance. Other factors, such as the users volumes or the budget, if badly
chosen, can make the problem much harder to solve than increasing the number
of users or facilities.

Of course once the instances start to become very big (1500 users and 200×3
facilities, or even smaller), the problem is still very hard to solve even if we
make the best choice in terms of the other factors.

In all the tests that follow, we will show a comparison between SCIP and
PPS, to remark the advantages obtained by using the second method in terms
of rapidity.

6.1. RANDOM INSTANCES 63

Users volumes

To understand how much the users volumes are involved in the instance hard-
ness, we decided to set the budget to a very high value, so that it was possible
to open all the facilities. We made this choice to reduce as much as possible
the influence of this factor on problem hardness. The following Table collects
the results obtained by solving instances generated using the same criteria of
Section 6.1.1 with the key differences explained above.

In the following Table, we show the comparison described above using in-
stances generated as in Section 6.1.1, with the difference that, in each instance,
every user i has the same volume defined as:

ρi = ρ ∀i ∈ U with ρ ∈ {1, 3, 5} (6.4)

64 CHAPTER 6. COMPUTATIONAL RESULTS

Seed yVars ρ Usrs Tim SVS SVP GapS GapP

9111 150 1 500 45.23 ∞ 15456.6 ∞ ∞
18000 150 1 500 45.14 ∞ 13763.2 ∞ ∞
26889 150 1 500 46.54 ∞ 14206.7 ∞ ∞
35778 150 1 500 45.14 ∞ 13976.7 ∞ ∞
44667 150 1 500 52.86 13680.0 13892.8 0.00 0.01
53556 150 1 500 48.42 ∞ 14233.3 ∞ ∞
62445 150 1 500 44.87 ∞ 13972.8 ∞ ∞
71334 150 1 500 53.21 13586.5 13670.8 0.00 0.01
80223 150 1 500 44.90 ∞ 13843.7 ∞ ∞
89112 150 1 500 54.02 29022.6 14037.6 ∞ ∞
9111 150 3 500 96.29 35893.0 15652.6 ∞ ∞
18000 150 3 500 115.22 34344.6 15363.2 ∞ ∞
26889 150 3 500 138.24 34436.8 15576.2 ∞ ∞
35778 150 3 500 109.01 32991.9 14899.8 ∞ ∞
44667 150 3 500 130.17 38061.9 15656.4 ∞ ∞
53556 150 3 500 139.19 31077.4 15468.1 ∞ ∞
62445 150 3 500 100.21 35072.2 15315.6 ∞ ∞
71334 150 3 500 125.23 32980.2 15243.0 ∞ ∞
80223 150 3 500 112.21 33423.8 15182.1 ∞ ∞
89112 150 3 500 98.16 33174.8 15030.3 ∞ ∞
9111 150 5 500 298.11 38528.0 18579.0 1.13 0.03
18000 150 5 500 265.12 39096.6 18629.1 1.15 0.02
26889 150 5 500 412.18 19640.7 18942.7 0.06 0.02
35778 150 5 500 427.83 19333.5 18672.2 0.06 0.02
44667 150 5 500 436.14 20538.2 18922.4 0.11 0.02
53556 150 5 500 444.36 20031.7 18656.4 0.10 0.03
62445 150 5 500 320.12 19405.7 18616.9 0.06 0.02
71334 150 5 500 459.98 20627.9 19158.2 0.11 0.03
80223 150 5 500 263.13 38460.9 18577.0 1.11 0.02
89112 150 5 500 443.04 19663.0 18996.5 0.07 0.03

9111 150 [1,10] 500 286.81 43231.2 18631.6 ∞ ∞
18000 150 [1,10] 500 265.11 20922.5 21819.1 0.00 0.04
26889 150 [1,10] 500 121.24 34338.3 15569.8 ∞ ∞
35778 150 [1,10] 500 46.13 ∞ 14234.9 ∞ ∞
44667 150 [1,10] 500 291.16 39727.4 18893.7 1.15 0.02
53556 150 [1,10] 500 448.01 20285.4 18826.3 0.11 0.03
62445 150 [1,10] 500 1094.39 21128.8 21982.5 0.01 0.05
71334 150 [1,10] 500 925.30 20847.7 21137.2 0.01 0.03
80223 150 [1,10] 500 206.92 36431.6 16732.9 1.20 0.01
89112 150 [1,10] 500 244.33 20473.2 20963.5 0.00 0.02

Table 6.2: Columns description: Seed: the seed used to generate tha random
graph; yVrs: the number of y-variables in the model; ρ: the volume of each
user; Usrs: the number of users in the model; Tim: the time needed to PPS
solve the problem; SVS: the value of the soluion found by SCIP; SVP: the
value of the solution found by PPS; GapS: the gap for SCIP; GapP: the gap
for PPS

6.1. RANDOM INSTANCES 65

Figure 6.1: In the image it is possible to see the solution values found by SCIP
(in orange) and by PPS (in blue) for instances with user’s volumes equals to 1
with instances generated as described in Section 6.1.3. In most cases SCIP is
not able to find any feasible solution within the same time of PPS and, when
it does, the two values are almost equal.

Figure 6.2: In the image it is possible to see the solution values found by SCIP
(in orange) and by PPS (in blue) for instances with user’s volumes equals to
3 with instances generated as described in Section 6.1.3. In this case SCIP
always finds a solution that doubles the costs of the one discovered by PPS.

66 CHAPTER 6. COMPUTATIONAL RESULTS

Figure 6.3: In the image it is possible to see the solution values found by SCIP
(in orange) and by PPS (in blue) for instances with user’s volumes equals to
5 with instances generated as described in Section 6.1.3. In this case SCIP
always finds a solution that is worse than the one discovered by PPS.

Figure 6.4: In the image it is possible to see the solution values found by SCIP
(in orange) and by PPS (in blue) for instances with user’s volumes randomly
distributed in [1, 10], with instances generated as described in Section 6.1.3. In
this case SCIP often finds a solution that is worse than the one discovered by
PPS.

6.1. RANDOM INSTANCES 67

Like before, we used the time needed to the PPS as timelimit for the SCIP-
based solution method. Consider that when we set SolV al(SCIP) = ∞ we
want to express the fact that SCIP did not find any solution for the instance
within the timelimit. In this case we are not able to compute both the du-
ality gap of SCIP and the duality gap of the PPS. If SolV al(SCIP) 6= ∞
but Gap(SCIP) = ∞, SCIP was not capable to find a lower bound for that
instance, so that it is impossible to compute the duality gap for SCIP and PPS
both.

Table 6.2 shows that the users volumes highly influence the overall solution
process performance. If users capacities are all set to 1 the Progressive Plants
Selector is able to find a good solution in very little time (we know for sure
that the solution is good only when we have the duality gap found by SCIP).

If we increase the users capacities, the problem becomes harder, and we
were not able to solve in useful time these instances with users capacity set to
7.

Moreover, we can see that the duality gap achieved by PPS is much better
than the one obtained using SCIP with the timeout described above. Even
when SCIP finds a feasible solution, but does not find the lower bound to
compute the gap, we can see that PPS discovers a feasible solution with much
better than the one found by the other method.

We also noticed that those instances with random generated users volumes
(the last block of the Table) are simpler than those with all the users with the
same volume, when it is different from 1.

68 CHAPTER 6. COMPUTATIONAL RESULTS

6.2 The Feasibility Check

In Section 3.4 we described a sufficient condition to check the feasibility of
a generic instance of MMBPLP, stating that applying this condtion is much
faster than using SCIP to check the problem feasibility.

We now present some results that prove our statement. Remind that the
feasibility checking procedure is often called during PPS execution, and it must
be as fast as possible.

In the following table we report a comparison of the executions times of two
methods: the feasibility check described above and a feasibility test directly
performed by using SCIP. In this second case we optimized the SCIP param-
eters in order to find a feasible solution to our problem as fast as possible:
whenever SCIP finds a feasible solution, the problem feasibility is proved and
the execution can be stopped.

Seed Bud yVrs Usrs TimP TimS Diff%
1583 375000 225 100 0.05 14.39 286.80
1668 375000 225 100 0.04 14.42 359.50
1753 375000 225 100 0.07 14.44 205.28
1838 500000 300 100 0.07 18.89 268.85
1923 500000 300 100 0.06 18.86 313.83
2008 500000 300 100 0.06 18.74 311.33
2093 500000 300 100 0.06 18.89 313.83
2178 500000 300 100 0.07 18.85 268.28
2263 500000 300 100 0.06 18.88 313.66
2348 500000 300 100 0.06 18081.00 301349
2433 500000 300 100 0.06 18.87 313.05
2518 500000 300 100 0.07 18.76 267.00
2603 625000 375 100 0.07 24.04 342.43
2688 625000 375 100 0.07 23.41 333.42
2773 625000 375 100 0.03 23.77 791.33
2858 625000 375 100 0.11 23.58 213.36
2943 625000 375 100 0.08 22.78 283.75
3028 625000 375 100 0.06 23.72 394.33
3113 625000 375 100 0.08 23.65 294.62
3198 625000 375 100 0.08 23.62 294.25
3283 625000 375 100 0.09 23.93 264.88
3368 750000 450 100 0.11 28.95 262.18
3453 750000 450 100 0.15 29.65 196.66
1073 375000 225 300 0.13 47.73 366.15

6.2. THE FEASIBILITY CHECK 69

1158 375000 225 300 0.13 42.85 328.61
1243 375000 225 300 0.13 48.42 371.46
1328 375000 225 300 0.13 46.01 352.92
1413 375000 225 300 0.13 43.37 332.61
1498 375000 225 300 0.13 46.47 356.46
1583 375000 225 300 0.13 46.86 359.46
1668 375000 225 300 0.13 46.27 354.92
1753 375000 225 300 0.14 46.62 332.00
1838 500000 300 300 0.13 55.65 427.07
1923 500000 300 300 0.14 62.56 445.85
2008 500000 300 300 0.14 56.45 402.21
2093 500000 300 300 0.14 63.26 450.85
2178 500000 300 300 0.15 56.35 374.66
2263 500000 300 300 0.15 62.65 416.66

Table 6.3: Columns description: Seed: the seed used to generate tha random
graph; Bud: the budget; yVrs: the number of y-variables in the model; Usrs:
the number of users in the model; TimP: the time needed to PPS to check
the feasibility; TimS: the time needed to SCIP to check the feasibility; Diff%:
the percentage difference between TimP and TimS

70 CHAPTER 6. COMPUTATIONAL RESULTS

F
ig

u
re

6.5:
T

h
e

o
ran

g
e

lin
e

rep
resen

ts
th

e
tim

e
n

eed
ed

to
S

C
IP

to
ch

eck
th

e
fea

sib
ility

o
f

ou
r

p
rob

lem
(th

at
is

it
is

th
e

tim
e

it
n

eed
s

to
fi

n
d

a
feasib

le
solu

tion
).

T
h

e
b

lu
e

lin
e

is
rela

tive
to

o
u

r
F

ea
sib

ility
C

h
eck

.
S

in
ce

th
e

d
iff

eren
ce

is
h
u

ge,
w

e
n

eed
ed

to
rep

resen
t

th
e

d
ata

in
loga

ritm
ic

scale.

6.3. DIFFERENT GRAPHS 71

6.3 Different Graphs

Since here we analyzed the performances of our model by using randomly
generated graphs where both facilities and users were evenly distributed inside a
square. In this section we will show the results obtained by optimizing different
types of graphs. We will notice that these structures will increase/decrease the
problem hardness.

6.3.1 Facilities Sorrounded by Users

In these instances facilities are placed inside a square and most of the users are
generated all around that square (a small number of users is generated inside
the square of facilities). An example of this kind of graph is shown in Figure 6.6
and Figure 6.7.

Figure 6.6: A graph with facilities (in pink) clustered in a square and users (in
blue) mainly positioned outside that square. The red points are the facilities
that are open in the solution provided by PPS. The edges are not displayed

These instaces have proved to be very hard to solve by both the Progressive
Plants Selector algorithm and SCIP, even if SCIP gave better results in this
case. We were not able to solve many medium-big instances, expecally if users
volumes were randomly chosen (as usual in the interval [1, 10]. To give an idea

72 CHAPTER 6. COMPUTATIONAL RESULTS

Figure 6.7: The solution provided by PPS of the graph in Figure 6.6

on how this structure is complicating, we show, in Table 6.4, some results on
instances with random volumes for users.

Seed yVrs Usrs TimP SVP TimS SVS GapS
980170 150 250 1690.63 14293.6 1698.24 14322.1 0.03
980255 150 250 1382.14 14321.4 1389.89 14303.3 0.06
980340 300 250 8499.88 14359.8 2470.72 14329.5 0.03

Table 6.4: Columns description: Seed: the seed used to generate tha random
graph; yVrs: the number of y-variables in the model; Usrs: the number of
users in the model; TimP: the time needed to PPS to solve the problem; SVP:
the solution value found by PPS; TimS: the time needed to SCIP to solve the
problem; SVS: the solution value found by SCIP; GapS: the gap value for
SCIP (percentage/100)

We decided to show the results obtained by instances where the users vol-
umes were constant and equals to 1 (the easiest case).

6.3. DIFFERENT GRAPHS 73

6.3.2 Users Sorrounded by Facilities

These instances are constructed symmetrically to those described in the pre-
vious Section. In this case users are placed in a square and this square is
sorrounded by facilities. An example of these graphs is shown in Figure 6.8
and Figure 6.9.

Figure 6.8: A graph with users (in blue) clustered in a square and facilities (in
pink) positioned outside that square. The red points are the facilities that are
open in the solution provided by PPS. The edges are not displayed

74 CHAPTER 6. COMPUTATIONAL RESULTS

Figure 6.9: The solution provided by PPS of the graph in Figure 6.8

6.3.3 Clustered Users

We have a small number of users that is evenly distributed in a square and a
big number of users organized into clusters. Facilities are evenly distributed in
the square.

These kind of instances are those most similar to the real ones: Emilia-
Romagna has the biggest number of users concentrated into the main cities,
while a small number of clients is (evenly) distributed onto the remaining ter-
ritory.

These instances have been solved more easy than the previous, and the
algorithm behaved as for the real instances.

6.3. DIFFERENT GRAPHS 75

Figure 6.10: A graph with users (in blue) mostly organized in different clusters
and facilities randomly distributed in the full square. These type of graphs
are the most similar to the real instances, in which we have some big cities in
which is concentrated the biggest number of users.

Figure 6.11: The solution provided by PPS of the graph in Figure 6.10

76 CHAPTER 6. COMPUTATIONAL RESULTS

Seed yVrs Usrs SVP SVS Tim GapS
1287 90 600 15281.7 14817.8 197.74 0
1372 150 400 13216.5 11561.4 53.61 0
1457 210 400 11372.6 10202.7 65.47 0
1542 270 400 10056.9 10056.9 76.86 0
1627 300 400 11033.3 10521.7 366.24 0
1712 90 700 18025.6 17254.9 66.69 0
1797 150 700 15444.7 13861.8 73.56 0
1882 210 700 14347.6 14008.9 280.87 0
1967 270 700 15434.4 15282.8 193.13 0
2052 300 700 14864.9 14435.1 182.13 0
88164 90 600 15977.2 15538 142.57 0
88249 150 400 11537.2 11251.1 358.73 0
88334 210 400 11453.2 11152.4 211.89 0
88419 270 400 10843.2 10345.9 77.81 0
88504 300 400 9931.34 9637.53 269.62 0
88589 90 700 15965.6 15641.9 48.46 0
88674 150 700 16143 38288.3 364.81 1.45
88759 210 700 14278.9 13849.4 230.09 0
88844 270 700 13264.9 13264.9 142.49 0
88929 300 700 16043.1 14348 176.85 0

Table 6.5: Columns description: Seed: the seed used to generate tha random
graph; yVrs: the number of y-variables in the model; Usrs: the number of
users in the model; SVP: the solution value found by PPS; SVS: the solution
value found by SCIP; Tim: the time needed to solve the problem; GapS: the
gap value for SCIP (percentage/100)

6.3. DIFFERENT GRAPHS 77

F
ig

u
re

6.
12

:
In

th
e

im
ag

e
it

is
p

os
si

b
le

to
se

e
th

e
co

m
p

a
ri

so
n

b
et

w
ee

n
th

e
so

lu
ti

o
n

va
lu

es
fo

u
n

d
b
y

S
C

IP
(i

n
o
ra

n
g
e)

a
n

d
b
y

P
P

S
(i

n
b

lu
e)

fo
r

so
m

e
in

st
an

ce
s

ge
n

er
at

ed
as

d
es

cr
ib

ed
in

S
ec

ti
o
n

6
.3

.3
.

T
h

e
re

su
lt

s
g
iv

en
b
y

P
P

S
a
re

ve
ry

cl
o
se

to
th

e
so

lu
ti

on
s

p
ro

v
id

ed
b
y

S
C

IP
it

se
lf

.
N

ot
ic

e
th

at
in

th
is

ca
se

S
C

IP
a
lm

o
st

a
lw

ay
s

fi
n

d
s

th
e

o
p

ti
m

a
l

so
lu

ti
o
n

to
th

e
p

ro
b

le
m

.

78 CHAPTER 6. COMPUTATIONAL RESULTS

6.4 Real Instances

Finally we show some of the results obtained by solving the real instances.
As we said in the previous sections, we needed to optimize the positioning of
Health Houses on all the territory of Emilia-Romagna, but, due to the size of
the problem, we decided to analyze the different USLs separately. This takes
us to eleven different optimization problems, that we solved in parallel using
Hadoop.

In the following table we report the solution values obtained by optimizing
the graphs corresponding to each USL, in which we used a constant set of
possible facility locations and we varied the number of clusters.

USL yVrs Usrs Tim SVP SVS GapS
BOLOGNA 198 250 81.25 1.85E+008 1.82E+008 0
BOLOGNA 198 350 99.44 1.89E+008 1.81E+008 0
BOLOGNA 198 400 152.6 1.85E+008 1.81E+008 0
BOLOGNA 198 600 172.85 1.85E+008 1.82E+008 0
BOLOGNA 198 800 190.74 1.86E+008 1.82E+008 0
CESENA 171 250 48.75 4.32E+007 4.31E+007 0
CESENA 171 350 72.44 4.35E+007 4.31E+007 0
CESENA 171 400 72.26 4.43E+007 4.31E+007 0
CESENA 171 600 79.64 4.35E+007 0 0
CESENA 171 800 144.01 4.37E+007 0 0

FERRARA 162 250 70.23 1.03E+008 1.03E+008 0
FERRARA 162 350 73.72 1.04E+008 1.02E+008 0
FERRARA 162 400 73.58 1.04E+008 1.02E+008 0
FERRARA 162 600 98.92 1.04E+008 1.03E+008 0
FERRARA 162 800 106.02 1.03E+008 1.06E+008 0.03

FORLI 180 250 46.53 3.76E+007 3.75E+007 0
FORLI 180 350 64.93 3.76E+007 3.75E+007 0
FORLI 180 400 65.93 3.76E+007 3.76E+007 0
FORLI 180 600 72.18 4.00E+007 1.50E+008 3.01
FORLI 180 800 71.08 3.77E+007 1.45E+008 2.89
IMOLA 153 250 24.32 2.85E+007 2.85E+007 0
IMOLA 153 350 44.7 2.85E+007 2.85E+007 0
IMOLA 153 400 50.66 2.85E+007 2.85E+007 0
IMOLA 153 600 88.62 2.92E+007 2.84E+007 0
IMOLA 153 800 96.76 2.92E+007 2.84E+007 0

MODENA 180 250 62.28 2.26E+008 2.07E+008 0
MODENA 180 350 75.43 2.19E+008 6.61E+008 2.21
MODENA 180 400 78.89 2.20E+008 2.07E+008 0

6.4. REAL INSTANCES 79

MODENA 180 600 154.65 2.21E+008 2.07E+008 0
MODENA 180 800 139.82 2.22E+008 6.87E+008 2.34
PARMA 198 250 48.07 1.36E+008 1.36E+008 0
PARMA 198 350 71.47 1.36E+008 1.36E+008 0
PARMA 198 400 72.1 1.37E+008 1.31E+009 8.65
PARMA 198 600 114.25 1.38E+008 1.34E+009 8.87
PARMA 198 800 139.4 1.37E+008 1.34E+009 8.83

PIACENZA 144 250 50.79 8.62E+007 8.24E+007 0
PIACENZA 144 350 70.53 8.26E+007 8.22E+007 0
PIACENZA 144 400 68.81 8.24E+007 8.20E+007 0
PIACENZA 144 600 100.83 8.35E+007 8.20E+007 0
PIACENZA 144 800 122.78 8.26E+007 8.20E+007 0
RAVENNA 180 250 71.92 1.12E+008 1.09E+008 0
RAVENNA 180 350 74.57 1.12E+008 4.59E+008 3.21
RAVENNA 180 400 56.59 1.10E+008 4.39E+008 3.03
RAVENNA 180 600 141.81 1.10E+008 1.09E+008 0
RAVENNA 180 800 149.46 1.12E+008 1.09E+008 0
REGGIO 207 250 131.31 1.30E+008 1.29E+008 0
REGGIO 207 350 162.92 1.35E+008 1.29E+008 0
REGGIO 207 400 183.62 1.36E+008 1.29E+008 0
REGGIO 207 600 169.14 1.30E+008 4.20E+008 2.26
REGGIO 207 800 344.7 1.41E+008 4.22E+008 2.26
RIMINI 171 250 89.66 5.89E+007 5.76E+007 0
RIMINI 171 350 119.08 5.78E+007 5.75E+007 0
RIMINI 171 400 91.98 5.96E+007 5.91E+007 0.03
RIMINI 171 600 140.35 5.90E+007 2.15E+008 2.74
RIMINI 171 800 164.47 5.94E+007 2.14E+008 2.74

Table 6.6: Columns description: USL: the name of the USL; yVrs: the num-
ber of y-variables in the model; Usrs: the number of users in the model; Tim:
the time needed to solve the problem; SVP: the solution value found by PPS;
SVS: the solution value found by SCIP; GapS: the gap value for SCIP (per-
centage/100)

80 CHAPTER 6. COMPUTATIONAL RESULTS

F
ig

u
re

6
.1

3:
In

th
e

im
a
ge

it
is

p
ossib

le
to

see
th

e
co

m
p

a
riso

n
b

etw
een

th
e

so
lu

tio
n

va
lu

es
fou

n
d

b
y

S
C

IP
(in

oran
ge)

an
d

b
y

P
P

S
(in

b
lu

e)
fo

r
som

e
rea

l
in

sta
n

ces.

Conclusion

The two valuable assets we have obtained from the study we described so
far, are the MIP model of a new problem derived from the well-known Plant
Location Problem and a heuristic algorithm that has proved to be good both on
the times and the quality of the solutions point of view. The Progressive Plant
Selector performs pretty well in all our tests. It often gives better results than
the MIP solver (within the same time) and it has a better “first-feedback-time”.

“Luckily”, the real instances of the MMBPLP are the easiest to solve with
both the solution strategies. This makes the model good enough to be used in
practical applications.

There are several aspect of the study we made that could be the starting
point for future works.

One possibility could be to extend the model in order to manage k different
classes of facility sizes, with k ∈ N; by studying a problem with this new
specification, one must consider that the number of y variables involved in the
problem is directly proportional to the number of classes.

Another possible extension, could be to allow multi-utility facilities (i.e. in
our particular case study, each Health House could perform different services).
Also, users could ask for different performances, so we could have at the same
time facilities providing diverse services and users having various necessities.

Finally, an improvement to our case study application, could be to use
routing distances instead of Euclidean distances. This would allow us to give
better solutions, involving more realistic traveling times between people and
plants. An evoluton of this last idea, could be to consider the distances among
users and facility positioning sites, as a set of aleatory variables.

Bibliography

[1] G. Cornuejols, G. L. Nemhauser, and L. A. Wolsey, “The uncapacitated fa-
cility location problem,” In Francis RL, MIrchandani PB (Eds.) Discrete
Location Theory. New York: Wiley-Interscience, pp. 119–171, 1983.

[2] C. Beltran-Royo, J.-P. Vial, and A. Alonso-Ayuso, “Semi-lagrangian re-
laxation applied to the uncapacitated facility location problem,” Compu-
tational Optimization and Applications, vol. 51, pp. 387–409, 2012.

[3] D. Erlenkotter, “A dual-based procedure for uncapacitated facility loca-
tion,” Oper Res, vol. 26, pp. 992–1009, 1978.

[4] A. Kuehn and M. Hamburger, “A heuristic program for locating ware-
houses,” Manag Sci, vol. 9, pp. 643–666, 1963.

[5] C. S. Revelle and G. Laporte, “The plant location problem: New models
and research prospects,” Operations Research, vol. 44(6), pp. 864–874,
1996.

[6] N. Megiddo and A. Tamir, “On the complexity of locating linear facilities
in the plane,” Operations Research Letters, vol. 5, pp. 194–197, 1982.

[7] M. Efroymson and T. Ray, “A branch and bound algorithm for plant
location,” Oper Res, vol. 14, pp. 361–368, 1966.

[8] K. Spielberg, “Algorithms for the simple plant location problem with some
side constraints,” Oper Res, vol. 17, pp. 85–111, 1969.

[9] B. Khumawala, “An efficient branch and bound algorithm for the ware-
house location problem,” Manag Sci, vol. 18, pp. B718–B731, 1972.

[10] L. Scharge, “Implicit representation of variable upper bounds in linear
programming,” Math Program Study, vol. 4, pp. 118–132, 1975.

[11] U. Akinc and B. Khumawala, “An efficient branch and bound algorithm for
the capacitated warehouse location probelm,” Manag Sci, vol. 23, pp. 585–
594, 1977.

[12] R. Nauss, “An improved algorithm for the capacitated facility location
problem,” J Oper Res Soc, vol. 29, pp. 1195–1201, 1978.

[13] T. Van Roy, “A cross decomposition algorithm for capacitated facility
location,” Oper Res, vol. 34, pp. 145–163, 1986.

[14] G. Gutierrez and P. Kouvelis, “A robustness approach to international
sourcing,” Ann Oper Res, vol. 59, pp. 165–193, 1995.

[15] H. A. Eiselt and V. Marianov, eds., Foundations of Location Analysis.
2011.

[16] A. Neebe and B. Khumawala, “An improved algorithm for the multi-
commodity location problem,” J Oper Res Soc, vol. 32, pp. 143–169, 1981.

[17] J. Karkazis and T. Boffey, “The multi-commodity facilities location prob-
lem,” J Oper Res Soc, vol. 32, pp. 803–814, 1981.

[18] J. Klincerwicz and H. Luss, “A dual based algorithm for multiproduct
uncapacitated facility location,” Transp Sci, vol. 21, pp. 198–206, 1987.

[19] Z. Scen, “A multi-commodity supply chain design problem,” IIE Trans,
vol. 7, pp. 753–762, 2005.

[20] L. Kaufman and H. P. Eede M.V., “A plant and warehouse location prob-
lem,” Oper Res Quart, vol. 28, pp. 547–554, 1977.

[21] A. Geoffrion and G. Graves, “Multicommodity distribution system design
by bender’s decomposition,” Manag Sci, vol. 20, pp. 822–844, 1974.

[22] T. Van Roy and D. Erlenkotter, “Dual-based procedure for dynamic facil-
ity location,” Manag Sci, vol. 28, pp. 1091–1105, 1982.

[23] S.-K. Lim and Y.-D. Kim, “An integrated approach to dynamic plant loca-
tion and capacity planning,” Journal of the Operational Research Society,
vol. 50, pp. 1205–1216, 1999.

[24] C. Canel, “An algorithm for the capacitated, multi-commodity multi-
period facility location problem,” Comput Oper Res, vol. 28, pp. 411–427,
2001.

[25] R. Soland, “Optimal facility location with concave costs,” Oper Res,
vol. 22, pp. 373–382, 1974.

[26] K. Holmberg, “Solving the staircase cost facility location problem with de-
composition and piecewise linearization,” Eur J Oper Res, vol. 75, pp. 41–
61, 1994.

[27] C. Beltran, C. Tadonki, and J.-P. Vial, “Solving the p-median problem
with a semi-lagrangian relaxation,” Computational Optimization and Ap-
plications, vol. 35(2), pp. 239–260, 2006.

[28] J. Hiriart-Urruty and C. Lemaréchal, Fundamentals of Convex Analysis.
2001.

[29] T. A. S. Foundation, “What is apache hadoop,” 2014.

[30] M. G. Noll, “Running hadoop on ubuntu linux,” 2014.

[31] W. F. Inc., “Apache hadoop,” 2014.

	Contents
	The Plant Location Problem
	Simple and Capacitated Plant Location Problems
	A survey on SPLP and CPLP
	Erlenkotter: A Dual-Based Procedure for the SPLP
	Kuehn and Hamburger: A Heuristic Program for Locating Warehouses
	SPLP and CPLP Extensions
	Multi-Commodity PLP
	Other Plant Location Derived Problems
	Multi-Echelon Plant Location
	Multi Period Plant Location
	Improving the Costs Definition
	Plant Location and Uncertainities

	Semi-Lagrangean Relaxation-based Algorithm for the SPLP
	Semi-Lagrangean Relaxation
	The Dual-Ascent Method
	Dual-Ascent Algorithm Applied to the SPLP
	Properties of the SLR Dual Problem

	The Core Subproblem

	MIN-MAX Capacitated and Budgetized Plant Location
	Problem Description
	NP-Hardness
	The Semi-Lagrangean Relaxation with the New Problem
	MMBPLP Feasibility
	The Min Capacity Knapsack Problem

	Progressive Plants Selector
	General Idea
	Algorithm Description
	Algorithm Correctness

	Case Study
	Data
	Specifications
	System's Reactivity

	Development Tools
	MIP Solver
	Open-source and free solvers
	Commercial solvers

	Hadoop
	Hadoop Data Flow

	Oracle Database and Oracle Spatial
	System's Architecture

	Computational Results
	Random Instances
	Problem Hardness
	Instances Description
	Results

	SCIP vs. Progressive Plants Selector
	Playing with the different factors
	Users volumes

	The Feasibility Check
	Different Graphs
	Facilities Sorrounded by Users
	Users Sorrounded by Facilities
	Clustered Users

	Real Instances

	Bibliography

