
University of Padova

Department of Information Engineering

Master Thesis in Computer Engineering

Embedded Speech Technology

Supervisor Master Candidate
Prof. Satta Giorgio HafizMuhammad Zakria
University of Padova

Co-supervisor Student ID
Domenico Crescenzo 2013045
Screevo

Academic Year
2022-2023

ii

“All truths are easy to understand once they are discovered; the point is
to discover them.”
—Galileo Galilei

iv

Abstract

End-to-Endmodels inAutomatic SpeechRecognition simplify the speech recognition process.
They convert audio data directly into text representation without exploiting multiple stages
and systems. This direct approach is efficient and reduces potential points of error. On the
contrary, Sequence-to-Sequence models adopt a more integrative approach where they use dis-
tinct models for retrieving the acoustic and language-specific features, which are respectively
known as acoustic and language models. This integration allows for better coordination be-
tween different speech aspects, potentially leading to more accurate transcriptions.

In this thesis, we explore various Speech-to-Text (STT) models, mainly focusing on End-to-
End and Sequence-to-Sequence techniques. We also look into using offline STT tools such
as Wav2Vec2.0, Kaldi and Vosk. These tools face challenges when handling new voice data
or various accents of the same language. To address this challenge, we fine-tune the models
to make them better at handling new, unseen data. Through our comparison, Wav2Vec2.0
emerged as the top performer, though with a larger model size. Our approach also proves that
using Kaldi and Vosk together creates a robust STT system that can identify new words using
phonemes.

v

vi

Contents

Abstract v

List of figures ix

Listing of acronyms xi

1 Introduction 1
1.1 Research Goal and Scope . 1
1.2 Thesis Structure . 2

2 Automatic Speech Recognition (ASR) 3
2.1 Background . 3
2.2 End-to-EndModels . 4

2.2.1 Recurrent Neural Network - Transducers 4
2.2.2 RNA - Recurrent Neural Aligner 5

2.3 Sequence-to-Sequence Models . 6
2.3.1 Connectionist Temporal Classification 6
2.3.2 Sequence-to-Sequence with CTC 7
2.3.3 Transformers . 8

2.4 Speech-to-Text . 9
2.5 EvaluationMetric . 10

2.5.1 Word Error Rate - WER . 11
2.5.2 Character Error Rate - CER . 11

3 Speech-to-Text Tools 13
3.1 Kaldi . 13

3.1.1 HMMTopology and TransitionModeling 13
3.1.2 Decoding Graph Construction: 14
3.1.3 Feature Extraction . 15

3.2 VOSK - Offline Speech Recognition . 15
3.2.1 Models . 16
3.2.2 Vosk Language Model Adaptation: 17

3.3 Difference between Kaldi and Vosk: . 17
3.4 Wav2Vec . 17

3.4.1 Architecture . 18

vii

4 ScreevoModel 21
4.1 Technological Components . 21
4.2 Architecture . 22

5 Speech -to- Phonemes 25
5.1 Problem . 25
5.2 Practical Approaches . 26

5.2.1 Fine-TuningWav2Vec 2.0 . 26
5.2.2 Language Model withWav2Vec2.0 - Our Solution 29
5.2.3 Kaldi Training . 33
5.2.4 Fine-Tuning Kaldi - Our Solution 39

5.3 Integration with Vosk . 42
5.3.1 Compress the Model . 42
5.3.2 Fine-Tuning Vosk - Our Solution 43

6 Results 47

7 Conclusion and FutureWork 53

References 55

Acknowledgments 57

viii

Listing of figures

2.1 A schematic representation of the vector sequences in an encoder 8
2.2 Transformer - Model architecture . 9

3.1 Flow of Kaldi Actions . 16
3.2 Cross-lingual training via wav2vec 2.0 . 19

4.1 Screevo - Model Architecture . 22

5.1 FineTuning - Wav2Vec 2.0 . 27
5.2 KenLM - LMOutput . 31
5.3 KenLM - Directory Hierarchy . 32
5.4 Flow Chart - Kaldi Training . 34
5.5 Arrangements of Files . 40
5.6 Vosk - Model Hierarchy . 43

6.1 Trend of Training-Loss, Validation-Loss andWER 48
6.2 Comparison of WER betweenWav2Vec2.0 Models 49
6.3 Comparing STTModels Based onWord Error Rate (WER) and Training Time 51

ix

x

Listing of acronyms

ASR Automatic Speech Recognition

E2E End-to-End

AM Acoustic Model

LM Language Model

STT Speech-To-Text

RNN Recurrent Neural Network

RNN-T Recurrent Neural Network-Transducer

CTC Connectionist Temporal Classification

RNA Recurrent Neural Aligner

NLU Natural Language Understanding

HMM HiddenMarkovModel

DTW Dynamic TimeWarping

WER Word Error Rate

CER Character Error Rate

GMMs GaussianMixture Models

TTS Text-To-Speech

RPA Robotic Process Automation

xi

xii

1
Introduction

1.1 Research Goal and Scope

Speech recognition systems are engineered to interpret and transcribe human speech into text.
However, the complex details of how people speak create several problems including variations
in accents as there are multiple accents for the same language across the globe. Moreover, the
intonation patterns including the rise and fall in pitch while speaking can make the speech
recognition systems less robust.

These challenges necessitate that speech recognition systems be equipped with vast datasets
and sophisticated algorithms to cater to the wide range of human speech variations. An emerg-
ing solution is to convert spoken sentences into a sequence of phonemes, the smallest units of
sound in speech, before transcribing them to text [1]. This intermediate phonetic representa-
tion can then undergo further processing to derive the intended text.

The goal of this research is to analyze variousmethodologies ofAutomatic SpeechRecognition
(ASR) that can address the challenges of converting speech to phonemes including:

• Hidden Markov Models (HMMs): Traditionally, Hidden Markov Models (HMMs)

1

have been the go-to for speech recognition tasks. Each phoneme is modeled as a state
chain with its respective transition probabilities.

• Deep Neural Networks (DNNs): Here, a neural network undergoes training to asso-
ciate acoustic features from speech to phoneme labels.

• Transfer Learning and Pre-trained Models: Models like wav2vec, which come pre-
trained on massive datasets, can be fine-tuned for specific phoneme recognition tasks to
achieve high accuracy.

• End-to-End Models: These models intend to directly link the input speech signal to
the output, be it phonemes or voice, without requiring any intermediate representation.

It also explains Speech-to-Text tools designed for the methods mentioned above, mainly high-
lighting End-to-EndModels and DNNs. Key tools in this domain are Wav2Vec2.0, Kaldi and
Vosk. We’ll explore how to generate phonemes, train the AcousticModel (AM) and Language
Model (LM). Additionally, the fine-tuning of Wav2Vec2.0 with and without LM, fine-tuning
of Vosk models, when integrated with Kaldi training using voice datasets, aims to enhance the
accuracy of speech recognition systems. Consequently, by boosting accuracy, the speech recog-
nition systems can better handle the variations of human speech. So, the lower theWord-Error-
Rate (WER), the more accurate and robust the speech-to-text model is.

1.2 Thesis Structure

The thesis is organized as follows:

• Chapter 2 gives the overview of ASR and technologies associated to it

• Chapter 3 introduces the Speech-to-Text Tools

• Chapter 4 presents the ScreevoModel and it’s implementation

• Chapter 5 demonstrates about research problem and it’s solution

• Chapter 6 shows the results achieved

• Chapter 7 concludes the thesis and discusses potential future work

2

2
Automatic Speech Recognition (ASR)

This chapter beginswith an overview of theAutomatic Speech recognition (ASR) architecture.
Then it explains in detail about different technologies of ASR, followed by a detailed overview
of Speech-To-Text (STT) components.

2.1 Background

In recent years, recurrent neural networks (RNNs) have revolutionized fields like machine
translation, speech recognition, time series prediction, and more through their ability to be
trained End-to-End without prior knowledge. A RNN is any network in which neurons send
feedback signals to each other and are usually applied in conjunctionwith othermodels, where
one component of the system is replaced with a neural network.

As an example, in speech recognition, a neural networkmodel is trained to output grapheme or
word sequences for a given utterance without utilizing external languages. This advancement
in neural network technology has paved the way for more efficient and accurate speech-to-text
systems. By eliminating the need for external language resources, these models can adapt to a
wider range of dialects and accents, making them increasingly valuable in a globalized world
where linguistic diversity is the norm. Additionally, the ability to train end-to-end models re-

3

duces the complexity of the system, making it more accessible for various applications, from
voice assistants to transcription services and beyond. This trend of self-contained, end-to-end
neural network solutions holds great promise for the future of artificial intelligence and natural
language processing.

2.2 End-to-EndModels

End-to-endmodels refer to architectures that take rawdata as input anddirectly produce the de-
sired output, eliminating the need for traditional hand-crafted features or intermediate process-
ing steps. This approach contrastswith traditionalmethodswhere tasksmight be brokendown
into distinct sub-tasks, each requiring specialized processing. By eliminating pre-processing,
these models can often uncover intricate patterns in the data that might be missed by conven-
tionalmethods. Popular infields like speech recognition,machine translation and autonomous
driving, end-to-end systems have demonstrated superior performances.

E2E learning mentions the training of a potentially complex learning system by a single model
that shows the complete target system. It is an interesting topic in the field deep learning field to
exploit the structure of deep neural network’s (DNNs), composed of multiple layers, to solve
complex problems like automatic speech recognition [2].

2.2.1 RecurrentNeural Network - Transducers

End-to-End ASR models like the RNN-Transducer have become popular. The Recurrent
Neural Network Transducer, denoted by “RNN-T,” is a model proposed by Alex Graves [3]
where he demonstrated that RNN-T is a reasonable model for application in speech recogni-
tion and he proved his claim by achieving good results on small datasets as demonstrated in the
Table 2.1.

However, the RNN-T has been underutilized when compared to Connectionist Temporal
Classification (CTC) models which is explained later in this chapter. After a while, the RNN-
T gained serious attention when Google researchers demonstrated that it could enable fully

4

Table 2.1: Phoneme Recognition Results on the TIMIT Speech Corpus

Network Epochs Log-Loss Error Rate
CTC 96 1.3 25.5%
Transducer 76 1.0 23.2%

on-device, low-latency speech recognition for Pixel phones. And recently, the RNN-Twas uti-
lized to achieve improved word error rates for the Libri Speech benchmark [4].

2.2.2 RNA - RecurrentNeural Aligner

Recurrent Neural Aligner, denoted by RNA, is a restricted version of RNN-Transducer. In
fact, RNA is a neural networkmodel in an encoder-decoder framework that can be taught end-
to-end to map input sequences to target sequences. For x = (x1, ..., xT), RNA model tries to
predict y = (y1, ..., yN) as an object sequence [5].

The model can be defined as a conditional distribution, P(z|x), where z = (z1, ..., zT) and
demonstrates one of the possible alignments between the sequences x and y. In order to es-
timate the distribution over the sequences y, it is marginalized over all alignments as follows:

P(y|x) =
∑
z

P(z|x) (2.1)

RNAmodel contains an encoder network that may be a unidirectional or bidirectional RNN,
or any other neural network. The decoder network has a soft-max output layer of size L + 1
units, where L stands for the number of labels in the output space and it has an extra unit for
the blank label which helpsRNAmodel to generate a label for every input vector. For a given z,
the input to the decoder network at time t is the concatenation of input vector xt and one-hot
encoded label vector zt1. Therefore,

P(z|x) =
∏
t

P(zt|x) (2.2)

Advantages of End-to-End Models:

5

• Better metrics: Currently, the systems that perform best based on metrics such as pre-
cision and recall are end-to-end models.

– Reason: Performance is often the primary criterion when evaluating systems. If
end-to-endmodels outperformothers based on standardmetrics, it’s a compelling
reason to use them.

• Simplicity: End-to-end models pass the sometimes difficult problem of determining
which components are required to perform a task.

– Reason: Simplicity can accelerate development, reduce the potential for errors,
and make the model easier to understand and modify.

• Applicability toNewTasks: End-to-endmodels are able towork by applying new data
for a new task, but a significant re-engineering is neededusing component-based systems.

– Reason: Flexibility and adaptability tonew taskswithout significant re-engineering
is crucial, especially in rapidly evolving fields like machine learning.

2.3 Sequence-to-SequenceModels

Sequence-to-sequence models are deep learning model that have been used in many fields such
as machine translation, text summarization and image captioning. In fact, they are a special
class ofRecurrentNeuralNetwork architectures that are used to solve complexLanguage prob-
lems. And some of them are explained as follows.

2.3.1 Connectionist Temporal Classification

CTCmodels are widely used in various sequence-to-sequence tasks, with one of their primary
applications being speech recognition. They are designed to handle situations where the align-
ment between input andoutput sequences is not one-to-one,making them suitable for variable-
length inputs and outputs.

6

• Monotonic Input-Output Alignment: One of the fundamental assumptions ofCTC
models is that they assume a monotonic alignment between the input and output se-
quences. This assumption simplifies the modeling process significantly [6].

• Length of Output Sequence: CTC models require that the length of the output se-
quence (denoted as U) is less than or equal to the length of the input sequence (denoted
asT). In speech recognition, this is usually not a problem since the input audio signal (T)
is typically much longer than the recognized words or phrases (U). However, this con-
straint may limit the applicability of CTCmodels in scenarios where extensive pooling
or compression of data is required to speed up processing.

• Independence of Outputs: Another assumption of CTCmodels is that they treat the
outputs as conditionally independent of each other. Thismeans that themodel predicts
each element of the output sequence independently based on the input sequence. This
can sometimes lead to incorrect outputs, such asmisrecognizing ”You ate Pizza” as ”You
eight Pizza.”

2.3.2 Sequence-to-Sequence with CTC

Connectionist Temporal Classification (CTC) has been used for training utterances without
requiring a frame-level alignment of the target labels. It enhances the set of target labels with
an extra “blank” symbol [7].

Let B(y, x) be the set of all sequences stand for the labels inY
∪
(b), where (b) corresponds to

an additional “blank” symbol. every sequence in B(y, x) stands for a frame-level assignment of
the label sequence in y. The probability of the output sequence conditioned on the acoustics
is defined by CTC as follows:

P(y|x) =
∑

ŷ∈B(y,x)

T∏
t=1

P(ŷt|x), (2.3)

such that labels at any time step are independent. P(ŷt|x) can be estimated applying a deep re-
current neural network, as an encoder. In Figure 2.1, a sequence of vectors henc = (henc1 , ..., hencT)

is calculated by the encoder. This sequence of vectors are treated as logits and passed to a single
softmax. Training the model to maximize the equation 2.3 is possible using gradient descent,

7

Figure 2.1: A schematic representation of the vector sequences in an encoder

where a forward-backward algorithm can be used for computing the required gradient.

2.3.3 Transformers

Transformers, a type of artificial neural network architecture, are applied to solve the problem
of transformation of input sequences into output sequences in deep learning applications. In-
deed, they take advantage of the concepts of attention and self-attention in a set of encoders
and decoders [8].

By relying on the concepts of attention and self-attention, transformers can represent a wider
range of context in a given sequence. They also can improve results for important natural lan-
guage processing like as speech recognition. In addition, transformers can produce better re-
sults compared to other sequential models, since we can apply parallelization.

Encoder and Decoder Stacks

8

Figure 2.2: Transformer ‐ Model architecture

Transformer has a structure that consists of self-attention and point-wise, fully-connected lay-
ers for both the encoder and decoder, as shown in Figure 2.2.

2.4 Speech-to-Text

Speech recognition, also knownas automatic speech recognition (ASR), computer speech recog-
nition or speech to text (STT) is a branch of natural language understanding (NLU). It focuses
on methodologies and technologies that use computers to recognize and translate spoken lan-
guage into text. Some speech recognition systems need training in which a speaker reads text
or individual words into the system that analyzes the person’s specific voice to increase the ac-
curacy.

9

These developments are not only evident in academia but, more importantly, in the universal
industry acceptance of a diverse range of deep learning methods for designing and deploying
speech recognition systems. Following are some of the models and methods.

• Hidden Markov Model (HMM): It is a statistical model which is used in speech recog-
nition because a speech signal is seen as a piece-wise stationary signal or a short-time
stationary signal. Moreover, speech is approximated as a stationary process for a short
time scales and in many stochastic purposes, it can consider as a Markov model.

• Dynamic time warping (DTW)-based speech recognition: Dynamic time warping is
used as an algorithm to measure similarity between two sequences. More recently, it is
used in video, audio and graphics processing.

• Neural networks: Neural networks have appeared as an attractive audio modeling ap-
proach in ASR. Compared to HMM, neural networks make less explicit assumptions
about the statistical properties of features and they have several features that make them
quite interesting recognition models for speech recognition. For example, sequence-to-
sequence with CTC, Transformers and others.

2.5 EvaluationMetric

In machine learning, it is so important to measure the quality of models and one of the most
important methods used, is evaluation metrics. There are different evaluation metrics in a dif-
ferent set ofmachine learning algorithms. Weuse classificationmetrics to evaluate classification
models and regression metrics to evaluate regression models.

Classification: A category is predicted regarding to some inputs. These problems try to cat-
egorize a data point into a specific group. The target outcome will be a discrete/categorical
values.

10

Regression: A certain number is predicted regarding to some inputs. These problems use in-
put variables to predict continuous values by using only training data. The target outcome is a
quantity/real value such as time-series data, weights, etc.

2.5.1 Word Error Rate - WER

Word error rate (WER) is a commonmetric of the performance of a speech recognition or ma-
chine translation systems. WER is derived from the Levenshtein distance, which operates at
the word level rather than the phoneme level. The WER can be used to compare various sys-
tems and also to evaluate improvements in a system. However, this method does not provide
details about the nature of translation errors and therefore more work is needed to identify the
main source of error.

This problem is solved by aligning the detected word sequence with the reference word se-
quence using dynamic string alignment. To address this issue, [9] expresses the correlation
between confusion and word error rate. Word error rate is given by:

WER =
S+D+ I

N
=

S+D+ I
S+D+ C

(2.4)

where S is the number of substitutions,D is the number of deletions,C is the number of correct
words, I is the number of insertions and N is the number of words in the reference.

2.5.2 Character Error Rate - CER

Character error rate (CER) is a common metric of the performance of an automatic speech
recognition system. CER is similar to WER, but works on character rather than word. CER
is given by:

CER = (S+D+ I)/N = (S+D+ I)/(S+D+ C), (2.5)

11

where S is the number of substitutions, D is the number of deletions, I is the number of in-
sertions, C is the number of correct characters, N is the number of characters in the reference
(N=S+D+C). The output of CER is often represented by the percentage of incorrectly pre-
dicted characters. Consequently, the lower the value is, the better is the performance of the
ASR system.

12

3
Speech-to-Text Tools

In this chapter, different Speech-to-Text tools have been explained with a brief overview about
their architecture and applicability.

3.1 Kaldi

Kaldi is a tool designed for researchers to help with speech recognition. It’s written in C++
and is free to use andmodify under the Apache License v2.0. It can work well with Finite State
Transducers (FSTs), has great math support and is flexible in design. An overview of kaldi op-
erations is represented in Figure 3.1.

3.1.1 HMMTopology and TransitionModeling

The way Kaldi represents HMM topologies and how it uses them to trainHMM transitions is
outlined in the subsequent points:

• HMMtopologies: Kaldi uses theHmmTopology class to specify the structure ofHMMs
for phones. Normally, a text form of the HmmTopology object is created and passed to
command-line programs as shown in Table 3.1.

13

Table 3.1: HMM Topology Entry for Phones 0 1 2

State PdfClass Transitions
0 0 0→ 0.5, 1→ 0.5
1 1 1→ 0.5, 2→ 0.5
2 2 2→ 0.5, 3→ 0.5

• Pdf-classes: These relate to the HmmTopology object, which sets a prototype HMM
for eachphone. EachHMMstate has twomain attributes: ”forward-pdf-class” and ”self-
loop-pdf-class”. The ”self-loop-pdf-class” is associated with the self-loop transition and,
by default, mirrors the ”forward-pdf-class”. If two states share the same pdf-class in the
same phonetic context, they will have the same probability distribution function (p.d.f).
This is due to the decision-tree code seeing only the pdf-class, not the HMM-state.

• DecisionTrees: ThealgorithmKaldi uses fordecision-treebuilding is a top-downgreedy
splitting approach. It identifies the optimal way to split data by examining various fac-
tors like the left, central, and right phone, the state, and others [10]. In Kaldi, the tree-
building process starts even with a mono-phone system, albeit producing a simple de-
cision tree. Post monophone system training, the mono-phone alignments are used to
accumulate statistics for tree building. This accumulation can come frommono-phone
or context-dependent alignments, facilitating the construction of trees based on various
alignments. Once statistics are compiled, the ”build-tree” program is used to establish
the tree, utilizing statistics, questions configuration, and a roots file. Integral to this is
the PDF (Probability Distribution Function) identifier, known as pdf-id. Each p.d.f. in
the system is assigned a unique pdf-id, acting as an index.

• Transition models: The Transition Model object holds transition probabilities and
HMM topologies information. Graph-building relies on this object to access topol-
ogy and transition probabilities. Transition modeling usually considers: phone, source
HMM-state, forward-pdf-id, self-loop-pdf-id, and transition index in the HmmTopol-
ogy object.

3.1.2 Decoding Graph Construction:
• Graph Creation: Kaldi constructs the decoding graph as HCLG = H o C o L o G,
where:

14

– G represents the grammar or language model.

– L stands for the lexicon, linking words to phones.

– C encodes context-dependency, transforming context-dependent phones to win-
dowed phone sequences.

– Hholds theHMMdefinitions,mapping transition-ids to context-dependentphones.

• Disambiguation symbols:
Symbols like#1,#2,#3 and so on are appended to phoneme sequences in the lexicon
for differentiation when sequences are prefixes of another or appear in multiple words.
This ensures the determinizability of L o G.

• Determinizability Considerations:
It’s vital for the graph compilation stages to be determinizable to ensure the reliability
of the Kaldi recipe. Gmust be determinizable, and for any such G, L o G should also be
determinizable and the lexicon L must be functional in its inverse.

3.1.3 Feature Extraction

The tool compute-mfcc-feats is employed to calculate theMel-FrequencyCepstral Coefficients
(MFCC) features from audio data. This command-line program necessitates two arguments:
an rspecifier for reading the .wavfiles (sorted byutterance) and awspecifier to save the generated
features (also sorted by utterance). Generally, the computed data is saved to a single ”archive”
file, but an accompanying ”scp” file is also created to facilitate straightforward random access.
The actual process of deriving the MFCC features is handled by an object from the MFCC
class, utilizing its Compute() function to transform the audio waveform into features.

3.2 VOSK - Offline Speech Recognition

Vosk is a speech recognition toolkit. Some of the standout features of Vosk include:

15

Figure 3.1: Flow of Kaldi Actions

• Supports 20+ languages and dialects - English, Indian English, German, French, Span-
ish, Portuguese, Chinese, Russian, Turkish, Vietnamese, Italian, Dutch, Catalan, Ara-
bic, Greek, Farsi, Filipino, Ukrainian, Kazakh, Swedish, Japanese, Esperanto, Hindi,
Czech, Polish, Uzbek, Korean. More to come.

• Works offline, even on lightweight devices - Raspberry Pi, Android, iOS.

• Portable per-languagemodels are only 50Mbeach, but there aremuchbigger servermod-
els available.

• Provides streaming API for the best user experience (unlike popular speech-recognition
python packages)

• There are bindings for different programming languages.

• Allows quick reconfiguration of vocabulary for best accuracy.

• Supports speaker identification beside simple speech recognition.

3.2.1 Models

Small models are compact, about 50Mb in size, and use around 300Mb of run time memory.
They’re perfect for mobile apps, desktop applications, and devices like Raspberry Pi. Addi-
tionally, small models can adapt their vocabulary on-the-fly. Big models, on the other hand,
are designed for high-precision transcription on servers. They need up to 16GB of memory
due to their advanced AI features. These models are best run on high-end servers like the i7 or
the latest AMDRyzen, with cloud options like AWS’s c5a machines.

16

3.2.2 Vosk LanguageModel Adaptation:

Information sources in speech recognition: TraditionalVoskmodels differentiate data sources
into an acoustic model, language model, and phonetic dictionary, offering flexibility in updat-
ing and adapting knowledge sources. However, newer models, like Transformers and Con-
formers, integrate all these sources into a single neural network, increasing accuracy and de-
coding speed but complicating domain transfers and new word introductions. Vosk remains
a preferred choice for domain-specific tasks, blending generic acoustic models with domain-
specific language models for optimal recognition.

Accuracy issues: Speech recognition accuracy can vary due to multiple factors including poor
audio quality, mismatched vocabularies, accents differing from training data, audio frame is-
sues, and software glitches. Diagnosing issues requires in-depth analysis of components like
audio quality checks, language model relevancy, and software comparisons.

3.3 Difference between Kaldi and Vosk:

Kaldi is a research speech recognition toolkit that implementsmany state-of-the-art algorithms.
If you are conducting research, Kaldi is probably the best choice for you.

Vosk is a practical speech recognition library equipped with a set of accurate models, scripts,
and best practices. It offers ready-to-use speech recognition for various platforms, including
mobile applications and Raspberry Pi. If your aim is to build practical applications with a
plug-and-play library, Vosk is the recommended option. Vosk draws from the best practices of
many speech recognition tool-kits, not just Kaldi.

3.4 Wav2Vec

This new model, wav2vec 2.0, is designed to identify and predict basic speech units in audio.
The model is trained to predict the correct speech unit for masked parts of the audio, while at

17

the same time learning what the speech units should be. With just 10 minutes of transcribed
speech and 53K hours of unlabeled speech, wav2vec 2.0 has enhanced speech recognition capa-
bilities, achieving aword error rate (WER) of 4.8 on the clean/other test sets of the LibriSpeech
benchmark [11]. This opens the door for speech recognition models in many more languages,
dialects, and domains that previously required much more transcribed audio data to provide
acceptable accuracy.

Similar to the Bidirectional Encoder Representations from Transformers (BERT), this model
is trained by predicting speech units for masked parts of the audio. A major difference is that
speech audio is a continuous signal that captures many aspects of the recording with no clear
segmentation into words or other units.

3.4.1 Architecture

• Learning discrete latent speech units: Traditional speech recognition models heavily
rely on annotated audio data for training. Meanwhile, some self-supervised methods
for speech aim to recreate the entire audio signal. These methods have the challenge of
accounting for all elements of speech, including the recording environment, any back-
ground noise, and unique speaker characteristics.

In a newer development, a Deep Bidirectional Transformer is trained on discretized un-
labeled speech data. These processed data points are then fed into a conventional acous-
tic model. Impressively, BERT representations outperform both log-mel filter bank
inputs and the more dense wav2vec representations, as seen in the TIMIT and WSJ
benchmarks[12]. By discretizing audio, it becomes possible to directly apply many algo-
rithms, initially designed for NLP, to speech data. This transformation demonstrates,
for instance, that a typical sequence-to-sequence model from NLP can effectively han-
dle speech recognition over these discrete audio tokens.

• Cross-lingual training: To address the limited data issue for some languages, cross-
lingual training has been explored. This technique involves training a single model on
several languages simultaneously, yielding superior results compared to training on just
one language. Such an approach has been notably effective in natural language process-

18

ing, especially with the XLM-Rmodel [13].

Thismethodologymarkedly enhances theperformance for languageswith scarce resources,
as they leverage information from related languages. Wav2vec 2.0 identifies common
speech units across different languages and interestingly, while some units are exclusive
to certain languages, others appear in multiple languages, irrespective of their similarity.
The process is shown in Figure 3.2 for training wav2vec2.0 cross-lingually.

Figure 3.2: Cross‐lingual training via wav2vec 2.0

19

20

4
ScreevoModel

Screevo is the Voice Assistant for Desk-less Workers that allows the creation of voice controls
on any software system, with no integration required. Technicians and operators spend 800
hours each year to enter data into forms, spreadsheets or software systems: about 40 percents
of their time. The voice assistants created with Screevo are capable of guiding the user through
business processes, automating data entry and allowing operators and technicians to focus on
tasks with greater added value.

Screevo, through the use of natural language understanding (NLU) and robotic process au-
tomation (RPA) algorithms, allows the voice assistant to interact without any difficulty with
any software system, eliminating complexity and friction.

4.1 Technological Components

Screevo boosts a technology capable of adapting to Android, iOS and Windows devices; it is
able to control any type of software already present in the company and easily interfaces with
ERP, MES, WMS systems and browsers. Speech recognition was designed and tested for the
most complex pronunciations and highly noisy environments.

21

4.2 Architecture

Architecture of Screevo is demonstrated in Figure 4.1.

Figure 4.1: Screevo ‐ Model Architecture

• Orchestrator: TheOrchestrator is a server component that can be installed on premise
or in the cloud and is responsible for orchestrating the data traffic between the voice ser-
vice, on device and locally, and the Execution. It is the heart of the platform which can
be accessed to consult the audit trail of the actions performed and monitor the perfor-
mance status of the processes in progress.

• Voice Service: As for the Voice Service, Speech to Text (STT) via VOSK and Text to
Speech (TTS) algorithms allow a natural interaction between the voice assistant and the
user. Voice Assistant is multi-platform (Android, iOS and Web App) and the libraries
developed in house do not require connections to external networks, allowing the use of
Screevo in the company intranet.

– Voice Service and Camera integration available to collect field pictures.

– Voice Service and PDAs integration available to scan bar codes.

– 20+ languages supported.

22

– Extendable to domain-specific words
– Resistant to noisy environment
– Low to none latency

The bio-metric data of the user entry is never saved, guaranteeing privacy and compli-
ance with the regulations. Finally, Natural LanguageUnderstanding (NLU) algorithms
allow voice assistant to interpret user requests and respond appropriately.

• Execution: It is the arm that performs the necessary automation to enable the voice
control of third party software. This can be done through the installation of a Robotic
Process Automation (RPA) agent on the local machine (physical or virtual) rather than
through integration via REST API interfaces.

• Studio: Finally, the Studio part allows the process design for the customization of each
single automation process. Within the studio it is possible to create conversations and /
or automation and publish them on the Orchestrator to make them immediately avail-
able and ready for use.

23

24

5
Speech -to- Phonemes

In this chapter, the problems associated with Speech-to-Text (STT) including Wav2Vec2.0,
Kaldi and Vosk are outlined and the implemented solutions to address them are discussed.

5.1 Problem

The Speech-to-Text (STT)models face challenges due to variations in howpeople speak. These
variations are mainly caused by differences in the following factors:

• Accent of the speaker: People from different regions or countries have unique ways of
pronouncing words. For example, the way someone from theUnited States says ”water”
may sound different from how someone from the United Kingdom says it.

• Pronunciations of the words: Evenwithin the same region, individuals may have their
own way of pronouncing certain words. For instance, some people might say ”tomato”
with a long ’a’ sound, while others might use a short ’a’ sound.

• Position ofPhonemes: The specific arrangementof speech sounds, knownasphonemes,
can vary based on the individual’s speech habits. For instance, the placement of the ’l’
and ’n’ sounds in the word ”London” may differ slightly from person to person.

25

5.2 Practical Approaches

In this section, a hybrid solution is implemented to deal with the problems mentioned above.
Following are the methods that can be addressed to improve the accuracy of STTmodels.

5.2.1 Fine-TuningWav2Vec 2.0

Wav2vec 2.0 has achieved notable results, achieving a WER around 5 when trained on the En-
glish dataset i.e. LibriSpeech dataset. To enhance its performance, we fine-tuned the model in
both languages English and Italian by utilizing Connectionist Temporal Classification (CTC).
CTC is an algorithm employed for training neural networks to tackle sequence-to-sequence
problems, primarily in Automatic Speech Recognition, as detailed in Chapter 2

This fine-tuning is implemented without using Language Model. The process of fine-tuning
is demonstrated in Figure 5.1.

• Prepare Data and Tokenizer: ASRmodels are tasked with transcribing speech to text.
This includes a feature extractor to convert the speech signal into a format the model
can process such as a feature vector and a tokenizer to transform the model’s output
format into text. We need to adjust a Wav2Vec2 checkpoint to match a series of con-
text representations with the right transcription. To do this, we add a linear layer on
top of the transformer. This layer classifies each context representation into a token
class. The size of the output from this layer is determined by the number of tokens in
the vocabulary. This size doesn’t depend on the original taskWav2Vec2 was trained for,
but only on the dataset used for fine-tuning. So, we used CommonVoice dataset with
Wav2Vec2CTCTokenizer to create a vocabulary according to dataset transcribed text.

• Remove Special Characters and Add Padding: The special characters are removed by
using this code:

chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"]'

def remove_special_characters(batch):
batch["text"] = re.sub(chars_to_ignore_regex, '',

batch["text"]).lower() + " "
return batch

26

Figure 5.1: FineTuning ‐ Wav2Vec 2.0

27

Plus, we also include a padding token, which matches up with CTC’s ”blank token.”
This ”blank token” is a crucial part of the CTC algorithm. Consequently, the vocabu-
lary is ready to be processed further for the Wav2Vec Processor.

vocab_dict["[UNK]"] = len(vocab_dict)
vocab_dict["[PAD]"] = len(vocab_dict)

• Wav2Vec Feature Extractor: To instantiate aWav2Vec2 feature extractor object, several
parameters are needed.

– feature size: This defines the size of the feature vectors inputted into the speech
models. For Wav2Vec2, it is set to 1 as the model is trained on raw speech signals.

– sampling rate: This denotes the rate at which the model is trained.

– padding value: This is used to pad shorter inputs for batched inference.
– do-normalize: This determines whether the input should be normalized, which

usually enhances the model’s performance.

– return attention mask: This decides whether the model should use an attention
mask for batched inference. For Wav2Vec2’s ”base” checkpoint, not using an at-
tention mask yields better results due to a specific design choice.

from transformers import Wav2Vec2FeatureExtractor
feature_extractor = Wav2Vec2FeatureExtractor(feature_size=1,

sampling_rate=16000, padding_value=0.0, do_normalize=True,
return_attention_mask=False)

• Training: The data has been prepared and we are now ready to establish the training
pipeline. We utilized HuggingFace Trainer, for which we essentially need to perform
the following steps:

– Data Collator: Define a data collator which is replicated from [14]

– EvaluationMetric: During training, the model’s performance should be assessed
based on the word error rate. Consequently, we need to define a compute-metrics
function to facilitate this evaluation.

def compute_metrics(pred):
pred_logits = pred.predictions
pred_ids = np.argmax(pred_logits, axis=-1)
pred.label_ids[pred.label_ids == -100] =

processor.tokenizer.pad_token_id

28

pred_str = processor.batch_decode(pred_ids)
label_str = processor.batch_decode(pred.label_ids,

group_tokens=False)

wer = wer_metric.compute(predictions=pred_str,
references=label_str)

return {"wer": wer}

– Pre-trainedCheckpoint: Load apre-trained checkpoint. Themodel that is being
used for fine-tuning is facebook/wav2vec2-base

model = Wav2Vec2ForCTC.from_pretrained(
"facebook/wav2vec2-base",
ctc_loss_reduction="mean",
pad_token_id=processor.tokenizer.pad_token_id)

– Training ConfigurationDefine a training configuration for the training environ-
ment.

The primary resources used for training are listed in the Table 5.1. And the training results are
shown in the Table 5.2. In this context, the model was trained for 30 epochs, indicating that
the entire dataset was passed forward and backward through the neural network thirty times.
The Training Loss, a measure of how well the model is performing, was quite low at 0.021,
suggesting that the model learned effectively from the training dataset. Finally, theWord Error
Rate (WER), a common metric in speech recognition that measures the performance of the
model in transcribing audio to text, was 9.40.

5.2.2 LanguageModel withWav2Vec2.0 - Our Solution

In this section,wewill explore the process of integrating aLanguageModel (LM)withWav2vec
2.0 to achieve enhanced results.

Table 5.1: Specification ‐ Wav2vec2.0 Training

Dataset CommonVoice
Language IT
Model wav2vec2-large-xlsr-53-italian
Training Time (hr:min) 1:54
GPU 1x NVIDIA Tesla T4

29

Table 5.2: Training Parameter

Epochs Training Loss Validation Loss WER
30 0.021 0.220 9.40

Previously, models for classifying audio needed an extra language model (LM) and a dictio-
nary to change a sequence of classified audio frames into understandable text. But Wav2Vec2
is built differently—it uses transformer layers, allowing each piece of processed audio to be
related to all other pieces. Plus, Wav2Vec2.0 uses the CTC algorithm when fine-tuning, help-
ing it handle differences in the length of input audio and output text. Because it can connect
audio classifications and does not have issues with alignment, Wav2Vec2.0 does not need an
outside language model or dictionary to create good audio transcriptions. Yet, as evident from
Wav2vec2.0 self-supervised learning [11], pairing Wav2Vec2.0 with a language model can lead
to notable enhancements.

• Creating a Language Model: We used KenLM [15] for creating an Italian based Lan-
guage Model which will be later on used with the fine-tuned model of wav2vec2-large-
xlsr-53-italian.

Following are steps to create KenLM Language Model from scratch.

– Download the repo andbuild thebinaries: wget -o-https://kheafield.com/code/kenlm.tar.gz
|tar xz

– Make the directory for the environment: mkdir build and cd build

– Build the environment: cmake .., make -j 4, sudo make install

– Build theLM:After successfully creating the environment, run this: cdkenlm/build/bin
and place the data.txt file which is dataset for training the LM.

– Run this command: lmplz -o 3 –discount-fallback<”data.txt” > ”3gram.arpa”The
result is shown in Figure 5.2

30

Figure 5.2: KenLM ‐ LM Output

– The hierarchy of the folders is shown in Figure 5.3. In the bin folder, you can
see the ”3gram.arpa”, this is the LM that we will use now with the fine-tuned
wav2vec2-large-xlsr-53-italian.

• Merging with Wav2vec2.0 Base Model: After merging the LM with the base model
by using this code:

from transformers import Wav2Vec2ProcessorWithLM
processor_with_lm = Wav2Vec2ProcessorWithLM(
feature_extractor=processor.feature_extractor,
tokenizer=processor.tokenizer,
decoder=decoder)

And re-training the model again with specifications mentioned in Table 5.1, we were
able to get the improvedWERup-to 7.26which is slightly better than the basewav2vec2-
large-xlsr-53-italian model. TheWER comparison is shown in Table 5.3

Table 5.3: WER Comparison

Without LM With LM
9.40 7.26

31

Figure 5.3: KenLM ‐ Directory Hierarchy

Theperformancedemonstratedbywav2vec2.0,whencombinedwith aLanguageModel (LM),
sets a high benchmark in terms of accuracy, standing out among several STT models, includ-
ing Kaldi and Vosk which will be further elaborated on in the subsequent sections. Notably,
wav2vec 2.0 not only showcases superior overall performance but also boasts a lower WER in
comparison to the aforementioned STT tools.

However, despite its impressive accuracy and performance, wav2vec 2.0 poses a significant chal-
lenge due to its substantialmodel size of 1.26GB.This large footprintmakes it particularly chal-
lenging to incorporate into mobile environments, where storage and computational resources
are often limited. As a consequence of this limitation, it becomes necessary to explore other vi-
able alternatives for mobile integration, leading us to consider other models such as Kaldi and
Vosk. These alternative models, while potentially not matching wav2vec 2.0 in accuracy, may
offer a better balance between size, efficiency and performance, making themmore suitable for
deployment in resource-constrained environments like mobile devices.

32

5.2.3 Kaldi Training

This section provides a brief overview of the directory structure of Kaldi and it’s training stages.
Themain directories at the top level include egs, src, tools, misc andwindows, out of whichwe
will primarily be utilizing egs. The egs directory, short for “examples”, contains training recipes
for a majority of the significant speech corpora such as voxforge, yesno, mini-librispeech and
several others. For this particular solution, mini-librispeech recipe with English dataset from
OpenSLR was selected. It includes the scripts which encompasses the training of the acoustic
model, aligning language model, MFCC feature extraction, GMMs and Time Delay Neural
Network (TDNN) - chain training and finally the decoding process.

The training process in kaldi is executed through several stages, as shown in the Figure 5.4

• Audio Dataset with transcription: Firstly, direct to “kaldi/egs/mini-librispeech/s5”
which includes all the required scripts. Download the dataset of English language from
organizations such as OpenSLR and CommonVoice, which offer a substantial amount
of audio data along with their transcriptions. To secure a transcript of the speech data,
acquiring the start and end times for each utterance or sentence level can be helpful for
achieving more accurate alignment, although it is not mandatory.

local/download_and_untar.sh $data $data_url $part

• Prepare the Dataset: For acoustic model training, Kaldi necessitates transcripts in var-
ious formats. The required information includes the start and end times of each utter-
ance, the speaker ID associated with each utterance and a list of all words and phonemes
found in the transcript.

local/data_prep.sh $data/LibriSpeech/$part data/$(echo $part | sed
s/-/_/g)

• Train Acoustic Model: Training acoustic model depends on multiple files which hold
information pertaining to the details of the audio files, transcripts and speakers. To ob-
tain all required files, execute the following command:

local/prepare_dict.sh --stage 3 --nj 30 --cmd "$train_cmd" \
data/local/lm data/local/lm data/local/dict_nosp

As a result, it will generate the following files in directory “data/train/”:

– spk2gender containing the gender tags ’m’ and ’f’. The file format is like:

33

Figure 5.4: Flow Chart ‐ Kaldi Training

34

1088-134315 f

– utt2spkfileholds the informationmapping eachutterance to its respective speaker.
The term ”speaker” doesn’t necessarily refer to an individual – it could represent
an accent, gender or any factor that might affect the recording. The format is as
follows:

1088-134315-0000 1088-134315

– spk2utt is a file encompassing the mapping from speaker to utterance. While this
information is already present in utt2spk, it is not in the required format. Execut-
ing the following line of code will not only automatically generate the spk2utt file
but also ensure that all data files are available and correctly formatted:

utils/fix_data_dir.sh data/train

The file format is as follows:
1088-134315 1088-134315-0000

– text file essentially serves as a transcript of the corpus, broken down by each ut-
terance, and follows a specific format. After the creation of this text file, it is also
necessary to refine the lexicon to include only the words found in the corpus. This
step is crucial to guarantee that no extra phones are being trained. It looks like this:

1088-134315-0000 AS YOU KNOW AND AS I HAVE GIVEN YOU A PROOF

– wav.scp gives the location of all audio files. If the audio files format are different
than wav (such as sphere, mp3, flac, ogg), a conversion to wav format will be nec-
essary. Rather thanmanually converting and storing multiple versions of the data,
you have the option to allow Kaldi to perform the conversion dynamically. The
tool ”sox” can be particularly useful in many such instances. The format of this
file is as follows;

1088-134315-0000 flac -c -d -s corpus LibriSpeech
train-clean-5/1088/134315/1088-134315-0000.flac |

• Prepare Dictionary/Language Data: It refers to the directory including language data
that is specific to your individual corpus. For instance, the lexicon exclusively includes
words and their corresponding pronunciations found in the corpus. Run the following
command to prepare the language data:

utils/prepare_lang.sh data/local/dict_nosp \
"<UNK>" data/local/lang_tmp_nosp data/lang_nosp

As a result, it will generate the following files in directory “data/lang/phones/”:

35

– lexicon.txt presents each word capitalized and listed on a separate line, followed
by its phonemic pronunciation. The format is like:

ACTS AE_B K_I S_E

– nonsilence-phones.txt contains a list of all the phones, excluding those represent-
ing silence.

EE_B
SS_I

– silence-phones.txt includes only SIL (silence) phone
– extra-questions.txt file poses “questions” concerning the contextual information

of a phone by segregating the phones into two distinct sets. Subsequently, an algo-
rithm evaluates whethermodeling that specific context is beneficial. The standard
extra-questions.txt typically encompasses the most frequent questions.

• Train Language Model (LM): The language model is a crucial component of the con-
figuration, informing the decoder about the sequences of words that are recognizable.
It contains probabilities for individual words and combinations of words. These proba-
bilities are estimated from sample data, inherently offering some flexibility. Every com-
bination from the vocabulary is plausible, though the probability assigned to each com-
bination may differ.

Numerousmethods exist for constructing statistical languagemodels. A languagemodel
can be created in three distinct formats: text ARPA format, binary BIN format and bi-
nary DMP format. The ARPA format consumes more space, but it is editable. So, in
our case, we will be using an online tool “SRILM” for creating LM in ARPA format.
The steps are demonstrated as follows:

– preparing text is thefirst step to gather a cleandata in a text file. Fordata-processing,
different methods can be adopted

– train LM via SRI Language Model Toolkit by executing following commands:
ngram-count -kndiscount -interpolate -text data.txt -lm your.lm

Then prune the model by executing:
ngram -lm your.lm -prune 1e-8 -write-lm your-pruned.lm

Now, we can incorporate this LM into our Kaldi environment.

36

• Extract features usingMel FrequencyCepstralCoefficients (MFCC):Thecommand
provided below is aimed to extract MFCC acoustic features and calculate the cepstral
mean and variance normalization (CMVN) statistics. After every operation, it also rec-
tifies the data files to confirm their format remains correct.

steps/make_mfcc.sh --cmd "$train_cmd" --nj 10 data/$part
exp/make_mfcc/$part $mfccdir

steps/compute_cmvn_stats.sh data/$part exp/make_mfcc/$part $mfccdir

The option –nj specifies the number of jobs to be dispatched, currently set at 10, indicat-
ing the data will be segmented into 10 portions. It’s worth noting that Kaldi maintains
data from identical speakers together, hence the number of splits should not exceed the
total number of speakers available. The mfcc files are stored in directory “mfcc” with
two formats which are “.ark” and “.scp” respectively.

• Prepare the Training Environment: Training can demand substantial computational
resources; however, it can be managed with multiple processors/cores or multiple ma-
chines. By dividing the dataset into smaller portions and processing them concurrently,
both training and alignment can be optimized. The specification for the number of jobs
or divisions in the dataset will be detailed in subsequent training and alignment phases.
Kaldi offers a wrapper to facilitate this parallelization, enabling each computational step
to leverage multiple processors. Kaldi wrappers are as follows:

– run.pl enables the execution of tasks on a local machine.
– queue.pl enables the distribution of jobs across machines utilizing the Sun Grid

Engine.
– cmd.sh defines the parallelization that adds training and decoding both separately.

• Initiate the Training of Model: The complete model incorporates several training al-
gorithms, including:

– TrainingMonophones: The trainingprocedurebeginswith themonophonemod-
els. For efficiency, only a subset of the data will be utilized during this phase. Even
with limited data, satisfactory monophone models can be developed, serving pri-
marily to initiate the training for subsequent models.

steps/train_mono.sh --boost-silence 1.25 --nj 2 --cmd
"$train_cmd" \

data/train_clean_5 data/lang_nosp exp/mono

37

The files are saved in directory “exp/mono/”

– Training Delta-Triphone: Training the triphone model necessitates additional
parameters, specifically for determining the number of leaves or HMM states on
the decision tree and the number of Gaussians. In this command, we designate
2000 HMM states and 10000 Gaussians.

steps/train_deltas.sh --boost-silence 1.25 --cmd "$train_cmd" \
2000 10000 data/train_clean_5 data/lang_nosp

exp/mono_ali_train_clean_5 exp/tri1

Determining the exact number of leaves and Gaussians often relies on heuristics.
These numbers primarily depend on the volume of data, the count of phonetic
questions and the objectives of the model. Additionally, it’s necessary that the
number of Gaussians always surpasses the number of leaves. The output files are
saved in the directory “exp/tri3b/”

– Chain Training: This approach uses Time Delay Neural Networks (TDNNs),
which are a type of neural network adopted atmodeling sequential data like speech
by employing layers with varying temporal contexts. During chain training, a
lattice-free Maximum Mutual Information (LF-MMI) criterion is applied to op-
timize the model, leveraging TDNNs to model the acoustic characteristics of the
input speech signals. TDNNs,with their ability to handle different time scales and
temporal contexts, capture the intricate temporal relationships within the speech
signals, making them especially suited for this task.

local/chain/tuning/run_tdnn_1j.sh

Chain training essentially leverages the strengths of TDNNs in handling sequen-
tial data and combines it with a specialized objective function to improve the accu-
racy and efficiency of ASR systems in Kaldi. The following trained files are stored
in thedirectory “exp/chain/”whichwill be later onused to formulateVOSKmodel.

* tdnn

* tdnn-sp-online

* tree-sp

* tri3b-train-sp

38

5.2.4 Fine-Tuning Kaldi - Our Solution

In this section, we will discuss the process of fine-tuning Kaldi and describe how this leads to
enhanced results across various accents and improvedWER.

The steps implemented during the training process are outlined and explained below:

• Download theDataset: Usemini-librispeech-endataset bydirecting to “kaldi/egs/mini-
librispeech/s5” and download the required dataset by executing “./run.sh” which is the
compilation of all training algorithms.

• Prepare the Dataset: To train new voices and words, we need to provide audio and add
the transcribed text of those audios in the .txt file. The specification of each audio file
should be:

– 16KHz
– flac/wav format
– channel: mono
– ideal time of recording of each audio file: 5-15 seconds

Now, direct to train folder of dataset and add new folders for each new speaker. Be
precise while adding a new speaker ID; it must be in sorted order and follow a specific
precedence. Duplicate speaker IDs should be avoided in both the training and testing
data. For verification, refer to the “SPEAKERS.TXT” file, which lists all the unique
speaker IDs along with their specifications. To introduce a new user, simply append the
new speaker ID to the “SPEAKERS.TXT” file. For example, in this use case, we added
a speaker ID “1130” For reference, see the Figure 5.5a

Open the folder “1130”, there is another subfolder “145061”. For picking the subfolder
ID, againwe should follow the precedence and order in thewaywe did for folder “1130.”

• AddTranscribedText: After the speaker ID folders and subfolders are created, thenwe
need to add our new data with the transcribed text. For example: in our case of speaker
ID “1130”: go to folder -> 1130 -> 145061, place your-audio-file here with the specific
format of “speakerID - subfolderID - audioid.flac.” For reference, see the Figure 5.5b

39

(a) Speaker ID (b) Precedence for Audio Files

Figure 5.5: Arrangements of Files

Then add the transcribed text in “1130 - 145061.trans.txt” filewith the format of “speak-
erid - subfolderid - audioid TRANSCRIBED TEXT”, demonstrated as follows:

1130-145061-0000 CHAPTER TWENTY FOUR
1130-145061-0001 IF HALSEY HAD ONLY TAKEN ME FULLY INTO HIS

CONFIDENCE

• Update SPEAKERS.TXT:After these all files and folder are ready, go to corpus -> Lib-
riSpeech: SPEAKERS.TXT and add a row of our speaker ID (details of that specific
speaker) that we just created.

• Update the Dictionary/Vocab: Add new words with their phonemes in the files that
are “librispeech-vocab.txt” and “librispeech-lexicon.txt” respectively.

• Training Parameters: The dataset and associated files are nowprepared, however, there
are some training configurations that require adjustments, as listed below:

– In the directory “s5”, open script “cmd.sh” and replace all the lines with following:

export train_cmd="run.pl"
export decode_cmd="run.pl"
export mkgraph_cmd="run.pl"
export cuda_cmd="run.pl"

– In the directory “s5”, go to this folder: “steps/nnet3/chain/” and open script “get-
egs.sh.” On line 60, change max-shuffle-jobs-run=50 to max-shuffle-jobs-run=10
and save it.

40

– Direct to this folder: “steps/nnet3/chain/” and open the script file “train.py” and
replace the line 243 with: args.use-gpu = (”wait” if args.use-gpu == ”true” else
”no”)

– Direct to this folder: “steps/chain/” and open the script file “train.py” and replace
the line 243 with: args.use-gpu = (”wait” if args.use-gpu == ”true” else ”no”)

– Goto this folder: “steps/online/nnet2/” andopen script “train-ivector-extractor.sh”
on line 43, change ivector-dim=100 to ivector-dim=30 and save it.

– Also, direct to this folder: “steps/nnet/ivector/” and open script “train-ivector-
extractor.sh” On line 38, change ivector-dim=100 to ivector-dim=30 and save it.

– Direct to this folder: “local/chain/tuning/” and open script “run-tdnn-1j.sh” In
line 161, change input dim=100 to input dim=30 and save it.

– In “s5” folder, open“./run.sh” and in line 144, change it to: local/chain/tuning/run-
tdnn-1j.sh.

– Last but not the least, set theGPU to exclusivemode by running these commands:
sudo su
nvidia-smi -c 3

Now the environment is ready to train as all the parameters are configured. Run the
script “./run.sh” in the directory “s5.”

• Train the Model: In order to initiate the entire model training, refer to Kaldi Train-
ing, section 5.2.3 and follow from point Train Acoustic Model toChain Training in
sequence.

Following the above steps, we obtained a newly trained model, including the incorpora-
tion of new words and their respective accents.

Training a model with Kaldi can be quite demanding in terms of resources; it often requires
powerful GPUs and the training time can extend considerably, especially with larger datasets.
This challenge can be addressed using Vosk, as we will explore in the following section.

41

Additionally, it’s notable that the model size with Kaldi is significantly smaller compared to
wav2vec 2.0, making it a more manageable option for mobile applications.

5.3 Integrationwith Vosk

In this section, we will outline the process of transferring the trained model files from Kaldi
training to a specific location, enabling the creation of a Vosk model. This model can subse-
quently be utilized in a mobile environment. Plus, fine-tuning of Vosk model will be briefly
explained.

There are some specific commands that are executed to retrieve the respective files fromChain
Training folder. This folder contains following files:

• tdnn

• tdnn-sp-online

• tree-sp

• tri3b-train-sp

After executing the commands, a folder “model” is created in the home directory, where all
the required files are available. Furthermore, it is necessary to create specific folders that are
compatible with the Vosk environment. So, there are 4 folders in total when combined, creates
a Vosk model as shown in Figure 5.6

5.3.1 Compress theModel

Onefile, “HCLG.fst,” is quite large in size; executing the provided scriptswill compress this file
and divide it into two separate files, while maintaining consistent accuracy and performance.
So, for this we need to direct to mini-librispeech recipe where the model is trained, go to -
> s5 and run “local/lookahead/run-lookahead.sh” This script will create 2 files “Gr.fst” and
“HCLr.fst” which are the required files to replace “HCLG.fst” in the “vosk-model/graph” and

42

Figure 5.6: Vosk ‐ Model Hierarchy

eventually the overall size has been compressed from 250MB to 60MB.

5.3.2 Fine-Tuning Vosk - Our Solution

Once the model has been prepared through Kaldi training and all files have been incorporated
into theVoskmodel, there is no need to retrainKaldi from the beginning if we need to add new
words along with their accents. Instead, we can fine-tune the Vosk model using the following
approach:

• Create a Vosk Environment: Set up a Vosk environment and compile a directory that
includes the following folders from Kaldi:

– dict

– lang

– lang-local

• Build the Environment: Build a process by executing a script which compiles all fold-
ers mentioned above along with the Language Model (LM). We used “phonetisaurus”
library from python and “bash scripting” for this process.

43

• Build a Docker Image: All the software needed for compilation (Kaldi + scripts) can
be used by using a custom image provided by the Dockerfile. To build the image:

docker build -t fine-tuning:1.0 .

• Words and Pronunciations Files: Now, we included two text files. In one file, we will
incorporate the new words that need training and in the other, we will add the corre-
sponding phonemes, which are provided by the Kaldi grapheme-to-phoneme library.

– words.txt:
lunesta
medica

– pronunciation.txt:
lunesta L UW N EH S T AH
medica M EH D IH K AA

• Add the Vosk Model: Incorporate the previously created Vosk model into the environ-
ment.

• Training Script: A bash script has been developed that initiates the training process by
running the docker container and setting up the environment. Consequently, it trains
the graph “Gr.fst” and substitutes the updated Gr.fst and corresponding files into the
graph folder of the Vosk model.

Thus, if there is a need to train newwords, we simply add the newwords alongwith their
phonemes in the “words.txt” and “pronunciation.txt,” respectively. Following this, ex-
ecuting the bash script will commence the training and returns an updated Vosk model,
which is then ready for use in Screevo’s mobile app.

Using Vosk for training takes considerably less time compared to Kaldi, making it a more ef-
ficient option. This advantage becomes particularly evident when there’s a need to introduce
newwords along with their pronunciations to the system. In such instances, Vosk proves to be
highly effective, as it only requires a few minutes to incorporate the new elements and update
the model accordingly. This quick adaptability and time efficiency make Vosk an appealing
choice for those looking to regularly update and expand their model’s vocabulary.

44

However, Vosk presents a limitation when it comes to training new voices along with their
distinct accents. In such scenarios, it does not offer a solution for incorporating these new
elements into the existingmodel. The onlyworkaround for this limitation is to initiate training
with Kaldi which despite its resource-intensive nature, provides the flexibility needed to adapt
the model to unique voice and accent characteristics.

45

46

6
Results

In this chapter, we will look at the outcomes we got from the activities carried out earlier and
discuss about the improvements that we achieved.

Figure 6.1 illustrates theprogressionof thefine-tuningprocess for theWav2vec2.0model, specif-
ically after the introduction of newdata. This fine-tuningwas conducted over 30 epochs, incor-
porating a range of training parameters. These parameters include a learning rate set at 1×10−4,
a CTC loss reduction method defined as “mean” and a batch size of 8. This model, sourced
fromMetaAI, is identified as “facebook/wav2vec2-base”.

The entire fine-tuning procedure spanned a duration of 1 hour and 54 minutes, culminating
in a training loss of 0.021 and a validation loss of 0.220. Notably, by the end of this training,
WER of 9.40 was recorded. This performance surpasses nearly all other STTmodels discussed
in the thesis, solidifying its position as a state-of-the-art STTmodel.

47

500 2000 3500 5000 6500 8000 9500
Steps

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Lo
ss

 /
W

ER

Training Loss
Validation Loss
WER

Figure 6.1: Trend of Training‐Loss, Validation‐Loss and WER

Furthermore, an evaluative comparison was undertaken to assess the relative performance of a
fine-tunedWav2vec2.0model against a specializedMedical model as shown in Figure 6.2. This
experimental setup involved the incorporation of a LM layered atop both of these models. To
facilitate this comparison, an audio recording containing medical information was used as the
test input, accompanied by its accurate transcribed text.

Upon feeding this audio sample and its corresponding transcription to both models, the fine-
tuned Wav2Vec2.0 model consistently showcased superior performance, evident from its re-
duced WER values. This superiority held true in both scenarios: when the models operated
autonomously andwhen theywere enhancedwith theLM.Thefindingsunderscore the robust-
ness and adaptability of the fine-tuned Wav2Vec2.0, even in comparison to a domain-specific
model like the Medical model.

In the provided table 6.1, we have detailed the parameters and configurations utilized through-

48

Wav2vec2.0 Model Medical Model
Model

0

5

10

15

20

25

W
ER

 (i
n

pe
rc

en
ta

ge
)

Without LM
With LM

Figure 6.2: Comparison of WER between Wav2Vec2.0 Models

out the Kaldi training procedure. The table indicates two distinct versions for our experiment.
The first, referred to as Version-1, represents a subset of the primary corpus extracted from the
Mini-LibriSpeech-en dataset. Conversely, Version-2 stands as another subset derived from the
same dataset. Their respective sizes are 458MB for Version-1 and 678MB for Version-2.

The details of the training method were explained earlier in the section 5.2.3. After this train-
ing phase, which spanned a duration of approximately 1 hour and 15 minutes for Version-1
and slightly less at 1 hour and 6 minutes for Version-2, we were able to obtain the final results.
The WER achieved were 12.57% for Version-1 and a marginally better 10.06% for Version-2,
highlighting the subtle performance variations between the two models. The computational
resources used for this training were sourced from Amazon Web Services (AWS). Specifically,
the setup included a machine equipped with 1 GPU and 4 CPUs, ensuring adequate process-
ing power for the training tasks.

49

Table 6.1: Specifications ‐ Kaldi Training

Properties Version-1 Version-2

Dataset: Mini-LibriSpeech train-clean-5 (train)
dev-clean-2 (test)

dev-clean (train)
test-clean (test)

Dataset Size 458MB 678MB
Language EN EN

Training Time (hr:min) 01:15 01:06
WER % 12.57 10.06

Machine Specification AWS - 4 CPUs (16GB),
1 GPU - Tesla T4 (15GB)

AWS - 4 CPUs (16GB),
1 GPU - Tesla T4 (15GB)

So far, we have looked at how well these STTmodels perform. Now, we will quickly compare
them side by side. The table 6.2 shows that Wav2Vec2.0 performs the best, having the lowest
error rate at 7.26%. Kaldi and Vosk follow closely with error rates of 10.06% and 9.85% respec-
tively. However, when we look at the training speed, Vosk beats the others. It trains in just 5
to 10 minutes, while Wav2Vec2.0 and Kaldi need hours.

Every STT system brings its own set of advantages and drawbacks, as highlighted in previous
chapter. For instance, Wav2Vec2.0, despite boasting the best accuracy with the lowest WER,
has a significant limitation due to its large size of 1.26GB. This size renders it unsuitable for the
majority of smartphones, given their storage constraints.

In contrast, Kaldi andVosk aremuchmore smartphone-friendly, weighing in at approximately
250MB and 70.90MB respectively. These sizes are much more manageable for mobile plat-
forms, making both systems viable options for smartphone applications. After evaluating the
performances and results, we chose Vosk because it integrates the Kaldi model within its frame-
work and the training duration is notably shorter than that of Kaldi. The following figure 6.3
visually displays the results, specifically focusing on training time andWERof these STTmod-
els.

50

Table 6.2: Comparison ‐ STT Models

Models Wav2Vec2.0 Kaldi Vosk
Model Size 1.26 GB 250MB 70.90MB
WER% 7.26 10.06 9.85

Training Time (hr:min) 01:54 01:06 5-10 min
Smartphone-Adaptive No Yes Yes

Figure 6.3: Comparing STT Models Based on Word Error Rate (WER) and Training Time

51

52

7
Conclusion and Future Work

In this dissertation, after a thorough review of pioneer STTmodels, we further examinedKaldi
and Vosk models that were fine-tuned with diverse voice accents and pronunciations. Along-
side, we incorporated text data with corresponding phonemes to improve training process. By
training these models on new data, we enhanced the STT system’s adaptability to a broader
range of voice inputs. Interestingly, when we fine-tuned the Wav2Vec2.0 using a voice dataset,
it outperformed both Kaldi and Vosk. It achieved the lowest WER, but its larger model size
made it incompatible for the smartphones ecosystem.

Thepaceofprogress in this domain is astonishing,with several groundbreakingproducts launched
just this year alone. Among them, OpenAI’s STTmodel “Whisper”, in particular represents a
significant paradigm shift in the Automatic Speech Recognition (ASR) and STT fields. How-
ever, as promising as Whisper appears, it’s not without its challenges. There remains a consid-
erable amount of research to be undertaken, especially in the realm of fine-tuning. Strategies
such as prompt tuning are just the tip of the iceberg. Ensuring compatibility of these models
with smartphones presents another hurdle. Additionally, enhancing the efficiency ofWhisper,
especially in terms of inference time and latency, remains a vital area of focus.

Numerous research institutions and emerging startups are directing their efforts towards these

53

challenges which also leads to the new advancements in Natural Language Processing (NLP)
domain. Now, with open-source Large LanguageModels like Llama2, Falcon and others avail-
able, we are entering a new phase of research in this field.

54

References

[1] Y. M. Cheng, C. Ma, and L. Melnar, “Voice-to-phoneme conversion algorithms for
speaker-independent voice-tag applications in embeddedplatforms,” in IEEEWorkshop
onAutomatic SpeechRecognition andUnderstanding, 2005. IEEE, 2005, pp. 403–408.

[2] J. Li et al., “Recent advances in end-to-end automatic speech recognition,” APSIPA
Transactions on Signal and Information Processing, vol. 11, no. 1, 2022.

[3] A. Graves, “Sequence transduction with recurrent neural networks,” arXiv preprint
arXiv:1211.3711, 2012.

[4] Y. He, T. N. Sainath, R. Prabhavalkar, I. McGraw, R. Alvarez, D. Zhao, D. Rybach,
A. Kannan, Y.Wu, R. Pang et al., “Streaming end-to-end speech recognition for mobile
devices,” in ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2019, pp. 6381–6385.

[5] H. Sak, M. Shannon, K. Rao, and F. Beaufays, “Recurrent neural aligner: An encoder-
decoder neural networkmodel for sequence to sequencemapping.” in Interspeech, vol. 8,
2017, pp. 1298–1302.

[6] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Connectionist temporal clas-
sification: labellingunsegmented sequence datawith recurrent neural networks,” inPro-
ceedings of the 23rd international conference onMachine learning, 2006, pp. 369–376.

[7] R. Prabhavalkar, K. Rao, T. N. Sainath, B. Li, L. Johnson, andN. Jaitly, “A comparison
of sequence-to-sequence models for speech recognition.” in Interspeech, 2017, pp. 939–
943.

[8] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin, “Attention is all you need,” Advances in neural information processing
systems, vol. 30, 2017.

[9] D. Klakow and J. Peters, “Testing the correlation of word error rate and perplexity,”
Speech Communication, vol. 38, no. 1-2, pp. 19–28, 2002.

55

[10] S. J. Young, J. J. Odell, and P. C. Woodland, “Tree-based state tying for high accuracy
modelling,” inHuman Language Technology: Proceedings of aWorkshop held at Plains-
boro, New Jersey, March 8-11, 1994, 1994.

[11] A. Baevski, Y. Zhou, A. Mohamed, and M. Auli, “wav2vec 2.0: A framework for self-
supervised learning of speech representations,”Advances inNeural Information Process-
ing Systems, vol. 33, pp. 12 449–12 460, 2020.

[12] A. Baevski, S. Schneider, andM. Auli, “vq-wav2vec: Self-supervised learning of discrete
speech representations,” arXiv preprint arXiv:1910.05453, 2019.

[13] A. C. Alexei Baevski andM. Auli, “Wav2vec 2.0: Learning the structure of speech from
raw audio,” 2020.

[14] “Data collator code from huggingface transformers,” 2021.

[15] “Kenlm language model toolkit,” 2011.

56

Acknowledgments

We have concluded this dissertation and I could not have done it without some great people by
my side.

Thanks a lot tomy supervisor, Prof. SattaGiorgio. Youhave guided and supportedme through-
out. I could not have done it without you.

My mentor and co-supervisor, Domenico Crescenzo, Thanks for expanding my views and
strengthening my work. You constantly pushed me to think more critically and your support
throughout the time was priceless.

Also, I would like to thank the University of Padova. Its atmosphere, resources and opportuni-
ties to learn from top experts have been essential for my studies.

Last but not the least, my family and friends that have been my pillars of support throughout
this journey. During the challenging times, when stress took its toll, you all displayed immense
patience and understanding. Your unwavering presence and encouragement kept me going,
making the tough times easier.

57

	Abstract
	List of figures
	Listing of acronyms
	Introduction
	Research Goal and Scope
	Thesis Structure

	Automatic Speech Recognition (ASR)
	Background
	End-to-End Models
	Recurrent Neural Network - Transducers
	RNA - Recurrent Neural Aligner

	Sequence-to-Sequence Models
	Connectionist Temporal Classification
	Sequence-to-Sequence with CTC
	Transformers

	Speech-to-Text
	Evaluation Metric
	Word Error Rate - WER
	Character Error Rate - CER

	Speech-to-Text Tools
	Kaldi
	HMM Topology and Transition Modeling
	Decoding Graph Construction:
	Feature Extraction

	VOSK - Offline Speech Recognition
	Models
	Vosk Language Model Adaptation:

	Difference between Kaldi and Vosk:
	Wav2Vec
	Architecture

	Screevo Model
	Technological Components
	Architecture

	Speech -to- Phonemes
	Problem
	Practical Approaches
	Fine-Tuning Wav2Vec 2.0
	Language Model with Wav2Vec2.0 - Our Solution
	Kaldi Training
	Fine-Tuning Kaldi - Our Solution

	Integration with Vosk
	Compress the Model
	Fine-Tuning Vosk - Our Solution

	Results
	Conclusion and Future Work
	References
	Acknowledgments

