
Università degli Studi di Padova
Facoltà di Ingegneria

Corso di Laurea Magistrale in Computer Engineering

Master’s Thesis

A Multi-view Pixel-wise Voting
Network for 6DoF Pose Estimation

Advisor: Alberto Pretto

Author: Ivano Donadi - 2019147



2

July 18, 2022



Abstract

6DoF pose estimation is an important task in the Computer Vision field
for what regards robotic and automotive applications. Many recent ap-
proaches successfully perform pose estimation on monocular images, which
lack depth information. In this work, the potential of extending such
methods to a multi-view setting is explored, in order to recover depth in-
formation from geometrical relations between the views. In particular two
different multi-view adaptations for a particular monocular pose estima-
tor, called PVNet, are developed, by either combining monocular results
on the individual views or by modifying the original method to take in
input directly the set of views. The new models are evaluated on the TOD
transparent object dataset and compared against the original PVNet im-
plementation, a depth-based pose estimation called DenseFusion, and the
method proposed by the authors of the dataset, called Keypose. Experi-
mental results show that integrating multi-view information significantly
increases test accuracy and that both models outperform DenseFusion,
while still being slightly surpassed by Keypose.

Sommario

La stima della posa a 6 gradi di libertà è un importante problema nel
campo della Visione Artificiale per quanto riguarda applicazioni di robo-
tica e guida autonoma. Esistono diversi modelli recenti che eseguono con
successo la stima della posa su immagini monocolari, che non forniscono
informazioni riguardo la profondità degli oggetti inquadrati. In questa tesi
si esploreranno i vantaggi di estendere tali metodi al caso di camere multi-
ple, che rendono possibile la stima della profondità degli oggetti inquadrati
sfruttando relazioni geometriche tra le camere stesse. In particolare sono
stati sviluppati due diversi adattamenti di un metodo di stima della posi-
zione di oggetti, chiamato PVNet: uno che combina i risultati del sistema
monocolare ottenuti indipendentemente dalle diverse camere, e l’altro che
modifica invece il metodo originale fornendo in ingresso l’intero insieme di
immagini catturate dalle camere presenti nel sistema. Entrambi i modelli
sono stati testati sul dataset TOD di oggetti trasparenti, e confrontati con
l’implementazione originale di PVNet, un metodo chiamato DenseFusion
che sfrutta anche le letture di un sensore di profondità, ed il metodo propo-
sto dagli autori del dataset, chiamato Keypose. Le sperimentazioni hanno
mostrato che integrare le informazioni di più camere migliora considere-
volmente il risultato della stima della posa, ed entrambi i modelli superano
l’accuratezza di DenseFusion, pur non raggiungendo i risultati di Keypose.





Contents

Introduction 1

1 Background 3
1.1 Pose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Projective geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Pinhole camera model . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Stereo cameras . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.3 Rectified stereo cameras . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Estimation background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.1 RANSAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.2 Perpective-n-Point problem . . . . . . . . . . . . . . . . . . . . . 7

1.4 Deep Learning background . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4.1 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . 8
1.4.2 Convolutional neural networks . . . . . . . . . . . . . . . . . . . 8
1.4.3 Residual networks . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4.4 Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Image-based 6DoF pose estimation 11
2.1 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Geometry-based methods . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Deep learning methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 RGB-D input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 Pure RGB input . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.3 First approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.4 Modern holistic methods . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.5 Modern two-step methods . . . . . . . . . . . . . . . . . . . . . . 16

2.4 PVNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 Keypose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Multi-view Pixel-wise Voting Network for 6DoF Pose Estimation 21
3.1 Pose estimation from stereo keypoints . . . . . . . . . . . . . . . . . . . 21

3.1.1 Integrating variance information . . . . . . . . . . . . . . . . . . 22
3.2 Parallel network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Stereo network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3.1 Stereo network 34 . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4 Single object assumption . . . . . . . . . . . . . . . . . . . . . . . . . . . 23



CONTENTS

4 Experiments 25
4.1 TOD Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Metrics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 Networks training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4.1 Stereo34 network . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4.2 Stereo18 network . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.4.3 Parallel network . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4.4 Mono network (original PVNet) . . . . . . . . . . . . . . . . . . 50
4.4.5 Summary and comparison . . . . . . . . . . . . . . . . . . . . . . 57
4.4.6 Results discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.4.7 Possible improvements . . . . . . . . . . . . . . . . . . . . . . . . 60
4.4.8 Successful test samples . . . . . . . . . . . . . . . . . . . . . . . . 60
4.4.9 Failed test samples . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5 Conclusions 65

Bibliography 65

List of Tables 71

List of Figures 73



Introduction

Object pose estimation, which is the task of detecting and estimating the position and
orientation of an object, is a fundamental problem in many Computer Vision applica-
tions involving robotic manipulation, augmented reality or autonomous driving. Pose
estimation on monocular images is particularly challenging due to the loss of depth
information incurred when projecting a 3D scene into a 2D image. Despite this limita-
tion, several recent deep learning based approaches have achieved impressive results in
the task of pose estimation from pure-RGB monocular images [1, 2, 3, 4, 5]. All those
models have to “work around” the missing depth information and must learn some bias,
implicit in the data they are trained on, to be able to recover the depth.

The problem of missing depth in pose estimation can be mitigated by employing
depth cameras, which associate each pixel in the RGB image with the reading from a
depth sensor, as is done by [6, 7, 8, 9]. These systems, however, are restricted to indoor
settings, might be imprecise when dealing with specular or transparent objects, and
may require too much power for mobile applications [10, 11]. For these reasons, the
problem of depth loss could be solved instead by leveraging geometrical constraints in
a multi-camera system, which allows to recover depth as a function of the difference
between 2D projections of the same 3D scene point in the different images.

This work aims to adapt a known pose estimation model working on monocular
images, called PVNet [1], to the case of multiple camera systems, with a particular
focus on stereo (dual cameras) setups. PVNet performs pose estimation in three steps:

1. define a set of 3D control points with respect to the object to detect. Examples
of control points may be 3D bounding box corners or vertices extracted from the
object’s model with furthest point sampling. The centroid of the object is added
as an additional control point;

2. use a residual neural network (see section 1.4.3) to perform object detection and,
for each pixel in the input image belonging to the object, cast a vote for the
location of each control point projected in the image plane;

3. perform a post-processing step in which votes from each pixel are aggregated to
extract the final hypothesis for the location of control points in the image; at this
point a PnP problem (see section 1.3.2) is solved to obtain the object’s 3D position
and orientation, by relating the 3D control points to their 2D correspondences in
the input image.

In this thesis, three models are proposed to adapt PVNet to the multi-view setup:

• A “parallel networks” setup which runs multiple PVNet instances in parallel, one
for each camera in the system, and then uses a novel multi-view iterative PnP
solver in the post-processing step to aggregate the results;



2 CONTENTS

• A novel “stereo network” setup which stacks images from all cameras in a single
tensor and uses a modified version of PVNet to perform object detection and
cast votes for each image in the stack; in contrast with the model above, this
architecture allows the network to potentially extract features aggregating infor-
mation from multiple images in the multi-view system; the post-processing step
is performed as in the model above;

• Another “stereo network” approach but this time using a more powerful residual
network backbone (from ResNet18 to ResNet34 [12]).

The performance of the models described above, and of the original PVNet model,
are evaluated on the TOD dataset [13], consisting on images of 15 different transparent
objects framed by a stereo camera system. All image pairs in this dataset frame a single
object, so the models should return one and only one detection for each input image
pair. To reflect this bias, two original post-processing steps are introduced: one which
enforces object detection in each input image by redistributing detection probabilities
for inputs with no detected objects, and one which enforces the presence of no more
than one object in each input by creating an histogram of object centroid hypotheses
and discarding votes not related to the “winning” one. The authors of the dataset also
provided an original pose estimation model, called KeyPose [13], and its performance
on the TOD dataset, which is used in this work as a baseline against which results can
be compared.

This thesis is structured as follows:

• in Chapter 1 the background material related with the thesis is presented, in-
cluding projective geometry, robust estimation frameworks, pose representation
and neural network architectures;

• in Chapter 2 several approaches for image-based pose estimation are presented,
starting from classical pre-deep learning methods up to modern state-of-the-art
approaches; particular attention is given to PVNet [1] and KeyPose [13], which
are used as baselines in the experimentation;

• in Chapter 3 the original contributions of this thesis are reported and described
in detail,

• in Chapter 4 the dataset [13] and metrics used during the experimentation are
presented, along with experimentation results and their discussion;

• finally, in Chapter 5 the thesis results are summed up and a discussion of strengths
and weaknesses of the models developed is provided, along with ideas for future
improvements.



Chapter 1

Background

In this chapter the theoretical background material needed to follow the contents of
this work is presented, starting from the necessary background on perspective geometry
and estimation algorithms, and ending with some insights on modern neural network
models.

1.1 Pose

The pose of a rigid object is the description of the translation and rotation of a reference
frame (O) attached to it with respect to a fixed “world” reference frame (W ).

The translation component is represented in R3 as a 3-dimensional vector t =
[tx, ty, tz]

T , representing the translation components respectively along the x, y and z
axis of the origin of one reference frame with respect to the other. For example tWO ,
the vector representing the translation of the object reference frame with respect to the
world reference frame, is composed by the coordinates of the origin of reference frame
O expressed in the world reference frame.

There are several possible representation for the rotation component, but only two
are referenced in this work:

• Rotation matrix: R ∈ R3×3. Each column represents an (unit) axis of the
source reference frame, expressed in the target reference frame. Let A and B be
two reference frames differing only by a rotation. Then it is possible to write
a point expressed in frame B’s coordinates (pB) in frame A’s coordinates as
pA = RA

B · pB , where the first column of RA
B is the vector expressing the x axis

of frame B in frame A’s coordinates, the second column of RA
B is the vector

expressing the y axis of frame B in frame A’s coordinates, and the same for z in
the third column of RA

B . Due to the properties of rotation matrices, the inverse
transformation can be obtained with the matrix RB

A = RA
B
−1

= RA
B
T . Due to the

unit norm of each column, rotation matrices can be represented by 6 parameters
instead of 9.

• Axis-angle representation: the transformation is represented as a single ro-
tation by an angle θ ∈ R about an unit axis r ∈ R3. Since the magnitude of r is
constrained, it can actually be represented with a vector in R2. This representa-
tion is more compact than rotation matrices, using only 3 parameters instead of



4 Background

6. The dimensionality difference is due to redundant information inside rotation
matrices and not to approximations.

Let now tWO describe the translation of the object reference frame with respect to
the world reference frame, and let RW

O be the rotation matrix representing the rota-
tion between frames O and W . Then, a generic point in the generic frame O can be
represented in frame W with a single linear operation as ˆpW = TW

O p̂O, where:

TW
O =

[
RW

O tWO
0 0 0 1

]
∈ R4×4,

ˆpW = [pWx
, pWy

, pWz
, 1]T , p̂O = [pOx

, pOy
, pOz

, 1]T

In this work, describing the pose of an object is synonym with providing the trans-
formation matrix TW

O , unless it is explicitly stated otherwise.

1.2 Projective geometry

1.2.1 Pinhole camera model

The simplest way to model a camera is through the pinhole camera model, where no
lenses are used and the camera aperture is modeled as a single point (pinhole). The
infinitesimal size of the aperture allows the camera to focus on objects at any distance
from it. When light rays hitting objects in the scene framed by the camera are reflected
and pass through the pinhole, they are projected into a plane called image plane. The
distance between this plane and the camera aperture is a fundamental parameter called
focal length (f). In real cameras, the image plane is usually identified with the one
where the camera sensors are located. The axis connecting the pinhole camera with the
aforementioned plane is called optical axis.

To transform 3D scene points into 2D image coordinates, a standard camera ref-
erence frame is introduced, centered at the intersection between the optical axis and
the image plane, whose Z axis is aligned with the optical axis, going out of the cam-
era. Usually the x axis is placed on the horizontal direction from left to right, while
the y axis is in the vertical direction going from top to bottom. Given a 3D point
Xp = (X,Y, Z)T , it is possible to find the coordinates of its 2D projection xp = (x, y)T

using the similar triangles rule as x = fX
Z and y = fY

Z . If we represent Xp and xp with
their homogeneous representations X̃p = (X,Y, Z, 1)T , x̃p = (xZ, yZ,Z)T , it is possible
to formulate the transformation as a matrix multiplication:

x̃p =

f 0 0 0
0 f 0 0
0 0 1 0

 X̃p

The projection described above maps 3D points to 2D points, so it is possible to
see the camera as a dimensionality reduction machine. Recovering the 3D coordinates
of a point just by ts 2D projection is an ill posed problem, since multiple 3D points are
mapped to the same 2D image plane coordinate.

Modern digital cameras use discrete sensors to acquire an image, thus performing
an additional transformation between continuous image plane coordinates to discrete
pixel coordinates. Since pixels coordinates conventionally are centered in the top-left



1.2 Projective geometry 5

corner of the image, the offsets between the image center and the top-left corner are
needed as parameters: uc in the x coordinate and vc in the y coordinate. Let hp and
wp be the height and width of the discrete sensor cells; then the mapping from image
plane coordinates to pixels can be expressed as: u = uc +

x
wp

, v = vc +
y
hp

, where x and
y are the image plane coordinates as described above. In order to go directly from 3D
scene points to pixel coordinates with a single matrix multiplication, let’s introduce the
parameters αu = f

wp
and αv = f

hp
. Then defining the camera matrix A as:

A =

αu 0 uc 0
0 αv vc 0
0 0 1 0


allows to obtain the pixel coordinates in homogeneous representation (up to a scale

factor s) ũp = (us, vs, s)T as:

ũp = AX̃p

Finally, if the 3D coordinates of the scene points are specified in a different reference
frame compared to the camera one, it is possible to transform them into the camera

frame coordinates prior to the projection using a transformation matrix T =

[
R t
0 1

]
:

ũp = ATX̃
′

p

where X̃
′

p represents the same point as X̃p but in the other reference frame. Due to the
nature of the matrix A, it is possible to rewrite the previous equation as:

ũp = K[R|t]X̃
′

p

where K is a re-definition of the camera matrix as:

K =

αu 0 uc

0 αv vc
0 0 1


1.2.2 Stereo cameras
A pair of cameras mounted on a rigid frame is called stereo rig, and is useful to simulate
human vision, which can estimate depth by using two cameras sharing a portion of their
field of view instead of just one. Assume the cameras are mounted in such a way that
it is clearly possible to differentiate between a left and right camera, and also that
the camera matrices of both are known (Kl,Kr). Also assume that the rigid body
transformation between the two cameras is known (Tlr), mapping points in the right
camera frame to points in the left camera frame. It is then possible to relate the
projections of the same 3D scene point in the two cameras using epipolar geometry. Let
the baseline be the segment connecting the origin of the two camera frames, and P be
a generic scene point. The two origins of the camera frames and the point P define a
plane called epipolar plane. The intersections between the baseline and the two image
planes are called epipoles, and the same name is given also to the projections of P in the
two image planes (pl and pr). Due to the geometry of this system, all points that are
projected in the same pixel as P in the left camera can only appear along a specific line



6 Background

in the right camera, called epipolar line. Thanks to this, the search of corresponding
points in the two images is restricted to a line rather than to the whole image.

Let tlr be the translation component of Tlr and let Rlr represent its rotation com-
ponent. Let also p̃l and p̃r be the homogeneous representations of pl and pr. Since tlr
corresponds to the baseline, then tlr, pl and pr lie all in the epipolar plane, and thus it
holds that p̃l · (tlr × Rlrp̃r) = 0, since the cross product will yield a vector orthogonal
to the epipolar plane. This constraint, called epipolar constraint, can be re-formulated
by transforming the cross product into a matrix multiplication by employing the skew-
symmetric representation for tlr = (xlr, ylr, zlr)

T , defined as:

t̂lr =

 0 −zlr ylr
zlr 0 −xlr

−ylr xlr 0


which yields:

p̃Tl t̂lrRlrp̃r = p̃Tl Ep̃r = 0

where E is called essential matrix and encapsulates the relative rotation and trans-
lation between the two cameras in 5 degrees of freedom. The same relation holds going
from the right camera to the left: p̃Tr E

T p̃l = 0.
Given a point pl in the left image and the essential matrix E, the line in the right

camera where the corresponding point lies can be obtained in homogeneous coordinates
as l̃r = ET p̃l. The same can be done in the opposite direction as l̃l = Ep̃r.

1.2.3 Rectified stereo cameras

It is possible to apply a transformation to the images of both cameras so that the images
appear as taken from two cameras with image planes parallel to the baseline and in the
same plane. This is done by applying a pure rotation transformation to both images.
In order to do so, the optical axes of both cameras need to be projected onto a plane
perpendicular to the baseline, and their bisector is taken as the new optical axis. At
this point a rotation transformation is applied to both images so that their new optical
axis coincides with the one just found. Since the two new image planes intersect the
baseline at infinity (given that they are parallel to it), any 3D point projected in the
left image is projected in the same row in the right image and vice versa. Any stereo
rig which employs this transformation is called a rectified stereo rig.

Let now pl = (xl, yl)
T and pr = (xr, yr)

T be the projections of the same point
P = (X,Y, Z)T in the left and right image respectively. Given the discussion above, it
follows that yl = yr. Let now B be the length of the baseline and f be the focal length
of both cameras. Let also d = xl − xr be a quantity called disparity. Knowing both
projections, and thus the disparity, it is possible to backproject the two 2D points in
the original 3D scene point, expressed in the left camera frame, by Z = fB

d , X = Zxl

f

and Y = Zyl

f . This same problem is ill-posed when performed on single images, but
as it has just been showed, it has a closed form solution when employing at least two
cameras. In the rest of this work, whenever stereo images are mentioned, it is assumed
that they are a pair of images taken by a rectified stereo rig.



1.3 Estimation background 7

1.3 Estimation background

1.3.1 RANSAC

The Random sample consensus algorithm (RANSAC) [14] is a robust method to es-
timate the parameters of a mathematical model from the model definition and a set
of input readings. The main strength of this approach is the ability to identify and
filter out outliers in the input. RANSAC is an iterative algorithm which runs for a
pre-determined number (N) of iterations. For each each iteration:

1. a minimum set of points is sampled from the input data, and is used to fit the
model;

2. the extracted model is compared with each input data point, to find the number
of inliers (points which are in agreement with the model). The maximum allowed
distance from an input point to the corresponding one predicted by the model,
in order to be considered an inlier, is a parameter of the algorithm and can be
used to define the amount of noise tolerated in the input data.

After executing all the iterations, the N models are compared, and the one with the
most inliers supporting it is chosen as the output. Usually the output model is fitted
again on the whole inlier set to increase precision. The number of iterations should be
tuned according to the input data quality, and is usually chosen based on the desired
probability (p) of getting a good model in output: let ϵ be the estimated number of
outliers in in the input data, and S be the size of a minimum point set needed to
estimate the model’s parameters, then the number of iterations can be derived in closed
form as:

N =
log(1− p)

log(1− (1− ϵ)S)

RANSAC is often used inside voting schemes, where the model parameters represent
candidates and the input data represent the votes, as can be seen in section 2.4.

1.3.2 Perpective-n-Point problem

The perspective-n-point problem (PnP) [14] has the goal of estimating the pose of a
camera from a set of n known 3D points and their corresponding 2D projections in an
image captured from aforementioned camera.

There are several algorithmic solutions to this problem, like the P3P algorithm
[15] for the case n = 3, or EPnP (efficient PnP) [16] for the general case n ≥ 4.
Another solution is to treat this problem as a non-linear optimization problem, where
the target is to minimize the reprojection error between the original 2D data points and
the 3D points reprojected using the camera matrix K and the current estimation of the
transformation given by R, t:

R∗, t∗ = argmin
R,t

n∑
i=1

ρ(||π(Pi)− pi||2)

where π(x) denotes the camera reprojection operation, Pi is one of the known 3D
points, pi is one of the input 2D correspondencies and finally ρ is a loss function, like
least squares or Cauchy. Typically, during the optimization, the rotation is represented



8 Background

with the axis-angle notation for compactness. This minimization problem can be solved
with any non-linear solver like Levenberg-Marquardt [17].

1.4 Deep Learning background

1.4.1 Artificial Neural Networks

An artificial neural network (ANN) in the context of machine learning is a class of
predictors described by directed graphs, whose nodes are called “neurons”. The most
basic type of ANN is called feed-forward neural network, where neurons are organized in
subsequent layers. Each neuron in one layer is connected by an outgoing edge to every
neuron in the next layer. In this architecture each neuron receives in input the weighted
sum of the outputs of the neurons connected to its incoming edges and its output is
the result of a function σ called “activation function” computed on its input ([18] pg.
228-229). The input to this model is set as the output of the first layer, while the output
of the last layer constitutes the model’s prediction. Feed forward neural networks can
be trained with heuristic methods, like stochastic gradient descent (SGD) [19], to learn
the parameters used to weight the outputs of each neuron. Artificial Neural Networks
can be used to solve both classification and regression problems [18]. A neural network
is called deep when there is more than one layer in the graph, excluding the input and
output layers.

1.4.2 Convolutional neural networks

Convolutional neural networks (CNNs) [20] are a specialized kind of neural networks
which encode the prior that the input data has a grid-like topology. These networks
are very popular in the field of Computer Vision due to images being 2D grids of pixels
and the fact that CNNs are able to exploit the spatial relationship between neighboring
pixels.

Convolutional neural networks get their name from the convolution operation which
substitutes the regular weighted sum described in section 1.4.1 in certain layers, called
convolutional layers. In the case of 2-dimensional images, each convolutional layer is
composed by a regular 2D grid of neurons. Let t and t + 1 be the indexes of two
subsequent layers in a CNN connected by the convolution operation, and let I(i, j)
denote the output of the neuron at index (i, j) in layer t. Let now K be a n×m matrix
of learnable weights called “kernel”. The input to the neuron at the generic index (i, j)
of layer t+ 1 is then computed as:

(K ∗ I)(i, j) :=
n∑

r=0

m∑
s=0

I(i+ r, j + s)K(r, s)

where ∗ denotes the convolution operation [21]. Convolution can work with inputs
of any size, since it does not specifically describe each edge in the graph, as long as the
kernel is smaller than the input. Since the kernel size is usually significantly smaller
than the input size, and since the convolution uses the same kernel to compute each
output value at the same layer, this operation is dramatically more efficient than dense
matrix multiplication both in terms of memory requirements and statistical efficiency
[21]. It is possible to apply a stride to a convolutional layer, which specifies when to
apply convolution. A stride of 1 means that the operation is applied to every pixel



1.4 Deep Learning background 9

position that allows the kernel to fall inside the input matrix, while a stride of 2, for
example, applies the operation to a feasible pixel position and skips the next one.

By its nature, the convolution operation reduces the size of the input, creating a
smaller representation of the input data. There are cases when it is desired to revert
this process, like in generative convolutional networks, where the task is to produce in
output an image possibly of the same size of the input. In order to do so, the smaller
feature matrices obtained by convolution need to be re-mapped to the original size. This
is done by an operation called transposed convolution, sometimes used interchangeably
with deconvolution. Let n be a feature matrix, nh and nw be its height and width and
let K be a kernel and kh and kw be its height and width. The result is a feature map
of height nh + kh − 1 and width nw + kw − 1, which is the sum of a set of intermediate
maps computed by multiplying the whole kernel by each element in the original feature
matrix. Formally, it can be defined as:

nh∑
i=0

nw∑
j=0

Y (K,n[i, j])

where Y (K,n[i, j]) is a matrix of size (nh + kh − 1)× (nw + kw − 1) initialized with
zeros and containing the kernel values multiplied by n[i, j] starting from index i, j and
ending at index i + kh, j + kw. Transposed convolution can be applied in strides to
further enlarge the size of its output, and in this case the stride is applied on the output
matrix, contrary to classical convolution where stride is applied to the input [22].

A convolutional network employing both convolution and transposed convolution
usually has the shape of an hourglass: first the convolutional layers compress the input
data into compact, abstract feature representations, and then those features are used
in the transposed convolutional layers to generate the output, forming an encoder-
decoder architecture, useful for example for predicting semantic segmentation maps
[23]. Sometimes the image given in input to the first network layer is also used as an
additional input to the last decoder layer, with the goal of producing in output an image
which is a modification of the input one, for example in image restoration [24].

1.4.3 Residual networks

Residual networks [12] are deep neural networks in which the output of some layers
is not only used as input to the subsequent one, but also as an additional input to a
layer deeper down in the graph, “skipping” all the intermediate layers. For this reason
these are called “skip connections”. Residual networks facilitate information flow across
many layers [25] and ease optimization [12]. A particular residual network model, called
“Resnet18” since it is 18 layers deep, presented in [12], will be referenced later in this
work. Similarly, “Resnet34” and “Resnet50” are terms used to refer to residual networks
which are, respectively, 34 and 50 layers deep.

1.4.4 Transformers

A transformer is a deep learning model which is able to weight differently the significance
of each part of the input data through a mechanism called “self-attention”. The network
realizing the transformer is shaped in an “encoder-decoder” model, where the encoder
compresses a possibly structured input into intermediate vector representations and the
decoder uses this representations as its input to provide a possibly structured network’s



10 Background

output. Both the encoder and decoder are organized in layers: each encoder layer
learns attention (weight) matrices to understand which parts of the input are relevant
to each other and should be encoded together, while each decoding layer learns attention
matrices to understand which parts of the input encodings and of the previous decoder
layer are useful to generate the desired output.

If the output of the encoder is a single vector, it is possible to make the transformer
learn to group relevant information together in a restricted portion of the output vector.
For example, if the network should make a fixed number of concurrent predictions, it
is possible to divide the output vector in virtual segments and make the transformer
focus each prediction in the dedicated virtual segment by employing an appropriate loss
function, thus enabling parallelization, as done in [3].

Transformers are widely used in the field of natural language processing [26] and
are recently gaining traction in the field of computer vision [27].



Chapter 2

Image-based 6DoF pose
estimation

2.1 Problem definition
Pose estimation is a well known general problem in the field of computer vision, where it
is required to detect the position and orientation of an object framed by one or multiple
cameras and possibly also by depth sensors. Usually the object is known and its 3D
CAD model is available as an additional input to the problem. Currently, solutions to
this task can be divided into two main categories:

• Holistic models try to solve the pose estimation problem directly, taking in
input the original images/depth readings and giving in output the relative trans-
formation between a fixed reference frame (usually the frame of the camera) and
a reference frame fixed on the object, without using intermediate representations.
Examples of this approach are [28, 29, 30].

• Two-step methods try to solve the pose estimation problem by first computing
a set of intermediate representations from the input images/depth readings, and
then recovering the object’s transformation from these intermediate representa-
tions. Most commonly, the intermediate representation used is a set of 2D interest
points locations in the input images, which are then related to their correspond-
ing 3D points on the object model using PnP algorithms, as seen in section 1.3.2.
Examples of this approach are [10, 1, 2]. Some modern two-step methods also
use additional intermediate representations, like edges or symmetry information
[2].

2.2 Geometry-based methods
Prior to the rise in popularity and effectiveness of deep learning methods, the pose
estimation problem was solved by leveraging geometrical constraints between the input
images and the known 3D model of the target object.

Template-based methods: In the context of pose estimation from a sequence of
video frames, the problem of extracting a 3D pose can be formulated as finding the



12 Image-based 6DoF pose estimation

parameters p of some deformation f mapping a known template T , of the object to be
located, into a patch of the input image, thus working globally on aligning the whole
object template rather than some of its local features. The solution to this problem can
be found with the Lukas-Kanade [31] algorithm: let I denote the current input image
and mj a location inside the template. The matching error between an image patch
and the template, given the current parameters, can be formulated as:

E(p) =
∑
j

(I(f(p;mj))− T (mj))
2 (2.1)

By minimizing E(p) one can find the best set of parameters matching a deformed
version of the template to an image patch. In the Lukas-Kanade algorithm in particular,
the aim is to start from given initial deformation parameters p and at each step finding
the best parameter update ∆ such that p+∆ is the best set of parameters for the current
frame, which is reasonable for the purpose of tracking in a sequence of video frames
[32]. The original problem is computationally expensive but it has been effectively
used for 3D pose estimation under additional constraints [33, 34, 35]. When the object
to track is planar, its pose can be extracted by an homography estimation once the
deformation parameters have been found. In the same way, the object can be modeled
with a simplified surface (like a generalized cylinder modeling a human head), in order
to be able to recover the pose using geometrical constraints [33].

Other, more recent, template-based approaches for single-image pose estimation
rely on other cues (like image gradient orientations) to match templates with the input
images [29].

Edge-based methods: One approach to pose estimation in a sequence of video
frames, proposed in [36] is to identify a set of “control points” along the edges of an
object’s 3D model and recovering their position in the input image. In order to perform
control points detection, the system starts from a known object’s pose and, for each
video frame, it uses the previous pose to estimate which points are going to be visible in
the current frame and where their location should be. After extracting image contours,
the predicted control points positions are matched against the image edges and the
pose is retrieved from the correspondences [32]. However, image contours are affected
by shadows, clutter and occlusions, so additional precautions should be taken to avoid
incorrectly detecting a non-existing edge and using points along it to predict the pose.

Another edge-based approach [37, 38, 39] is to extract image primitives, like straight
edges or parametric curves, and match them directly with the same primitives extracted
from the 3D model. The pose of the object is iteratively estimated by minimizing the
Mahalanobis distance between primitives using the Levenberg-Marquardt solver [32].

Lastly, [30] is a template matchng method based on edge information which relies
on the computation of the Hausdorff distance between the template and input image
to find the image patch which best matches the template or a portion of it.

Feature-based methods: In 1997, [40] proposed using local features robust to
illumination and contrast changes to describe a database of known images picturing the
objects to be located. In particular, such work made use of the Harris corner detector
[41] to detect interest points in the images and described them using “local jet” image
derivatives [42], to achieve invariance to similarity transformations. At test time a new
query image is fed to the system and its local salient points are extracted and compared



2.3 Deep learning methods 13

with the images in the database in order to find the best match. Since each feature
could match well with different images in the database, the system requires that the p
best matches in both the query and retrieved image are spatially distributed in a similar
way, by adding edges between the features and imposing that the angles between pair
of edges have to be locally consistent. This allows the retrieval of images where the
correct object has a different pose than the in the query image. A degree of multi scale
invariance is obtained by computing the features at different scales only for the query
images. This solution proved to be able to detect objects even under partial occlusions.
In the context of pose estimation, knowing the correspondences of keypoints between a
query image and a known database image would allow to extract the pose with methods
such as PnP. In 1999, [43] improved the previous model by introducing SIFT features
for object keypoint detection, which are intrinsically invariant to translation, rotation,
scale and partially to noise and small distortions.

Fiducial-based methods: In a controlled environment, it is possible to add “fidu-
cials” (easily recognizable markers with known 3D location) in the background of the
scene in which a camera is located. They can be designed in such a way that they can
be easily detected and identified by an “ad-hoc” method. Once a set of fiducials has
been identified in an image, their correspondences with their known 3D locations can be
used to solve a PnP problem to retrieve the camera pose [32]. These systems are only
able to detect the camera pose, and need additional assumptions to be able to locate
an object within the scene, so they are not flexible and not suitable for the general case
of unknown background environment.

2.3 Deep learning methods

In this section, several neural models are shown, starting from early attempts and ending
with modern, state-of-the-art proposals.

2.3.1 RGB-D input

Some deep learning architectures for 3d pose estimation use depth information together
with color images to improve estimation quality. Their applicability may be restricted
due to depth sensors failing outdoor or on specular objects; also depth sensors may be
too taxing on the batteries of mobile devices to be used extensively on mobile applica-
tions [10, 11]. Nonetheless, in situations where depth readings are available they can
be leveraged to increase the model’s accuracy [6, 7, 8, 9].

This work will focus on methods that only require one or more RGB images as
input, without the need for depth information, which is a more challenging problem.
However, an approach using RBG and depth information is still discussed briefly since
it will be used as a baseline comparison for the experiments in chapter 4.

DenseFusion: This recent method tries to combine RGB and depth information
in dense pixel-wise feature embeddings using a novel dense fusion network [9]. The
reasoning behind this approach is that depth information is very useful in cluttered
or otherwise adversarial environments, but it resides in a different space than RGB
information, so there is the need for a way to combine features extracted from these
heterogeneous data sources. The model proposed uses an heterogeneous architecture



14 Image-based 6DoF pose estimation

to process RGB and depth data differently, and then a dense pixel-wise fusion network
performs color-depth fusion for pose estimation. Finally, the pose is refined with a
lightweight differentiable iterative module. Experimental results show that training a
dedicated fusion network outperforms simple feature concatenation by a large margin.

2.3.2 Pure RGB input

As mentioned above, this work focuses on pose estimation methods relying only on RGB
color images as input, without any explicit depth measure. This makes the problem
more complex to solve in monocular pose estimation on opaque objects but has a broader
range of application, since it can be also applied to images acquired with cheap and
mobile devices, like a cellphone camera.

2.3.3 First approaches

Learning descriptors: in 2015, [44] proposed a convolutional architecture with
the task of learning images descriptors for object identification and pose estimation. In
contrast with the methods described in 2.2, the descriptors are not manually defined
with specific invariances in mind, but rather are directly extracted from the input
data by enforcing dissimilarity between images of different objects, while the distance
between descriptors of images framing the same object should be related to the difference
in the poses of the framed object. Such descriptors are able to outperform hand-
crafted ones like SIFT or SURF significantly [44]. Pose estimation is then achieved
by comparing the input image with images in a database containing different views of
the object and finding the most similar one, in terms of euclidean distance between
descriptors. Employing euclidean distances allows using fast nearest-neighbor search
methods for image retrieval.

The network is trained with a triplet loss: each input sample consists in two similar
images and a dissimilar one. The loss brings the descriptors of the two similar ones
close to each other, while distancing them from the descriptor of the dissimilar one. In
addition to the triplet loss, a pair-wise term is added, which considers a pair of images
framing the same object ideally in the same or in a very similar pose, and minimizes
the distance between the two descriptors, to add robustness to noise and artifacts such
as illumination changes.

Pose estimation as a classification task: In 2016, [45] built upon a deep object
detector [46] to obtain a pose estimator. Pose estimation is treated as a classification
problem by discretizing the pose space in disjoint bins and predicting the correct one.
The network used is obtained by substituting the last layers of an image classification
network such as VGG [47] with convolutional and max-pooling layers. The network
takes in input a single RGB image and produces scores for: each image category, a
constant number of detected objects bounding boxes and the discretized poses. The
results are then filtered with non-max suppression to produce the final output. Exper-
iments showed that this method provided results comparable with the state-of-the-art
at that time while providing a significant speedup, due to the object detection and pose
estimation being done in a single shot inside the same network. Moreover, discretizing
the pose space allows to obtain a confidence metric on the predicted pose, at the cost
of accuracy.



2.3 Deep learning methods 15

2.3.4 Modern holistic methods

PoseCNN: to handle the complex task of pose estimation, the PoseCNN model [4]
proposes to use a deep convolutional network which is able to decouple the translational
part of the pose, which reflects an object’s position and scale in an image, from the
rotational part, which instead affects the image appearance of the object. To achieve
this, a two-stage network is used: in the first stage general image features are extracted
using convolutional layers, while in the second stage there are three different branches
performing specific tasks leading to the pose estimation:

• semantic labeling: the first branch classifies each pixel in to an object class
using softmax and is trained with cross-entropy loss;

• 3D translation estimation: the second branch estimates the object’s 3D trans-
lation by making each pixel in the image vote for the direction of the 2D object’s
centroid and its depth, and is trained with a smooth l1 loss; then a Hough voting
layer is integrated in the network, taking in input both the pixels’ votes and their
semantic label and giving in output the most likely 2D centroid location + depth
for each class; finally, a bounding box is created by surrounding all the pixels
that voted for the winning centroid location;

• 3D rotation regression: the bounding boxes predicted in the second branch
are used to filter the features extracted by the first network stage. The filtered
features are fed to a sequence of fully connected layers which predict the object’s
orientation represented by a quaternion; this branch is trained with a squared loss
on the 3D point to point difference between the object model’s vertices rotated
with the ground truth and predicted quaternion.

SSD-6D: This model improves the SSD paradigm described in paragraph 2.3.3 to
cover the full 6D pose space, rather than discretizing it [5]. Since direct 6D pose
regression is a difficult problem, the approach proposed is to predict, for each object,
the viewpoint under which it is framed and an in-plane rotation w.r.t. the viewpoint
axis. From these two informations, it is possible to use projective geometry to obtain a
6D pose hypothesis.

SSD-6D takes in input an RGB image framing some objects of interest and uses
the SSD object detection paradigm [46] to predict bounding boxes, their associated ob-
ject ID and prediction confidence, the object’s viewpoint and the in-plane rotation. To
increase robustness, instead of predicting just one bounding box for each detected loca-
tion, multiple ones are created with different aspect ratios. At this point all bounding
boxes with a confidence above a certain threshold are kept and non maxima suppression
is used as an additional filter. This means that for each detected object the method
outputs a pool of views and in-plane rotations with the highest confidence, from which
a pool of 6D poses can be estimated. To refine the pose estimation, each hypothesis is
used to render the object into the scene and extract a series of 3D contour points, which
are projected into the image to find their closest scene edges. The pose refinement step
is then treated as a weighted least squares problem minimizing the distance between
control points projections and their closest scene edge. This procedure gives multiple
poses for each object instance and the best one is chosen by rendering again the object
into the scene and keeping the pose which minimizes the average deviation of contour
gradients between the render and the scene via absolute dot product.



16 Image-based 6DoF pose estimation

At training time, only synthetic images are used, which are created by rendering
the object’s CAD model over images from the MS COCO dataset [48]. When ren-
dering, the closest discrete viewpoint and in-plane rotation are taken as the ground
truth, in addition to all the possible bounding boxes with an IoU metric above 0.5 with
the rendered object’s mask. The training loss is computed as follows: given a set of
positive boxes, created with the method mentioned above, and hard-mined negative
boxes, the sum of the class probabilities loss for both positive and negative examples
is computed, with additional terms for bounding box tightness, viewpoint and in-plane
rotation classification for the positive samples. Classification losses are computed as
softmax cross-entropy, while the boxes’ tightness is computed as a smooth l1 loss. The
negative examples are created by choosing unassigned boxes with high class probabili-
ties. To avoid symmetry ambiguity, symmetrical object’s samples are only taken from
viewpoints which produce unique projections.

This method proved to be quite effective and able to match and surpass RGB-D
methods that were state-of-the-art at the time (2017). It is crucial for this method to
be effective that the training viewpoints are sampled with a fine grain to avoid missing
viewponts and that the rendered images are as close as possible in appearance to the
real image instances.

2.3.5 Modern two-step methods

BB8: one of the first instances of two-step keypoint based object detection is the
“BB8” network [10], whose name is an acronym which stands for the 8 corners of a 3D
bounding box. The main idea is to train a convolutional neural network to perform
object segmentation and to predict the 2D projections of the 8 bounding box corners
around the object. The output of the network is then given in input to a PnP solver
which returns the object’s pose. The main advantages of such method are that it does
not require a depth map in input and that 2D keypoint prediction is a simpler task than
regressing a continuous pose representation but, on the other side, the pose estimation
part comes after the network’s prediction, so it is not possible to train the model directly
on a loss defined on the pose.

The model is the composition of two convolutional networks:

• the first one takes in input the original RGB image and performs object seg-
mentation, giving in output the 2D centroid of the object, computed from the
segmentation mask;

• the second one takes in input an image patch surrounding the object’s centroid
and outputs the 2D locations of the 8 bounding box corners for the object. This
network is trained with a squared loss on the keypoints’ reprojection.

To handle objects with a symmetry of rotation of α degrees about an axis β, the
network’s training is done by restricting the range of rotations about such axis between
0 and α/2. At inference time a simple CNN classifier is used to predict whether the
object’s rotation about axis β is in the range [0;α/2[ or [α/2;α[. In the latter case, the
input image is mirrored so that the network still operates in the usual range, then the
output keypoints are mirrored again to predict the correct pose.

YOLOPose: a very recent and promising approach to deep pose estimation is given
by YOLOPose [3]. In contrast with the other methods mentioned in this section, YOLO-



2.4 PVNet 17

Pose leverages the transformer architecture after a Resnet50 backbone. The main idea
of this approach is to:

• use a transformer-based real time single stage model to predict the 2d projections
of a set of 3D keypoints defined on the object’s CAD model;

• go through a learnable rotation estimation module (fully connected network)
which predicts the object’s rotation from the 2D keypoints;

• a third and last independent fully connected network is used as a translation
estimator.

The architecture described above allows end-to-end learning without the hassle of
going through a non-differentiable PnP module. Although differentiable PnP modules
do exist, the authors were discouraged by the additional training overhead they added,
and opted for the simpler architecture described above.

YOLOPose formulates the keypoint regression problem as a set prediction problem.
Given an input RGB image, the model predicts a fixed size set of elements, each of
which contains 2D bounding boxes, class probability, translation and keypoints. The
translation component is regressed directly following the same procedure described in
paragraph 2.3.4. The rotation estimation module takes in input the predicted keypoints
and outputs the rotation estimation in the form of a regressed rotation matrix.

During training the transformer module is trained with a 4 component loss:

• the class probability loss is modeled with negative log likelihood;

• the bounding boxes loss is a combination of generalized IoU and l1 loss;

• the keypoint loss combines l1 loss and a cross-ratio component proposed in [49];

• finally the pose loss is the the l1 loss between the 3D keypoints rotated with the
ground truth rotation matrix and with the predicted rotation, plus the l1 loss of
the translation component alone.

For what concerns the choice of keypoints, YOLOPose uses 32 keypoints consisting
of the 8 bounding box corners and their interpolations, as described in [49]. This choice
has the advantage of always having 4 collinear points when projected into an image,
and the distance ratio between them can be exploited in the cross-ratio loss component
to improve the results.

Performance-wise this architecture proved to perform similarly to state-of-the-art
approaches in the YCB-video dataset [4], while being real-time capable due to the
parallelization abilities given by transformers.

2.4 PVNet
The work presented on this thesis is built upon the PVNet architecture, which stands for
pixel-wise voting network for 6DOF pose estimation [1]. As the other two-step methods
for pose estimation, the main idea is to predict the 2D position of keypoints in the
input RGB image and match them with their corresponding 3D model keypoints using
PnP. What’s particular about PVNet is that every pixel in the image corresponding to
the target object votes for the position of each keypoint; then the votes are aggregated
using RANSAC to obtain the final 2D coordinates. The PnP problem solution is also
improved by providing in input the candidate keypoint positions together with their



18 Image-based 6DoF pose estimation

variance, which can be computed during the voting process, in order to give more
weight to correspondencies with low variance.

Keypoints selection: The PVNet architecture requires a 3D CAD model of the
object to be located, together with K 3D keypoints. Usually K is chosen equal to 9,
where the first eight are computed with farthest point sampling [50], while the ninth is
the centroid of the object.

Voting scheme: PVNet is based on the “ResNet18” (1.4.3) architecture, and it takes
in input a single 3-channel RGB image and outputs a segmentation mask localizing the
object, together with unit vectors connecting each pixel to each keypoint. Let p be
a pixel in the input image, and let xk be one of the K 2D keypoint position to be
predicted. Then, the network’s prediction for p will be a semantic label, identifying
the object it belongs to, and K unit vectors vk(p) representing the direction of the
line connecting p and each xk: vk(p) = xk−p

||xk−p||2 . From the segmentation mask and
unit vectors, keypoint location hypotheses can be generated taking the intersections
of the vectors belonging to two random pixels in the object. A set of N hypotheses
hk,1 . . . hk,N is generated and each one is weighted according to the following formula:

wk,i =
∑
p∈O

1

(
(hk,i − p)T

||hk,i − p||2
vk(p) ≥ θ

)
(2.2)

where 1 is the indicator function, O is the set of 2D projected object points, and θ
is a threshold usually set to 0.99. This weighting function measures the percentage of
object points whose predicted direction match the one of the vector connecting them
to the hypothesis. The final keypoint position is computed as the weighted average
between the hypotheses:

µk =

∑N
i=1 wk,ihk,i∑N

i=1 wk,i

(2.3)

while the keypoint variance can be obtained as:

Σk =

∑N
i=1 wk,i(hk,i − µk)(hk,i − µk)

T∑N
i=1 wk,i

(2.4)

Uncertainty-driven PnP: since the keypoints are predicted together with their
variance, we can use the latter to formulate the PnP problem as weighted minimization:

argmin
R,t

K∑
k=1

(x̃k − µk)
TΣ−1

K (x̃k − µk) (2.5)

where x̃k is the reprojection of the k-th 3D keypoint Xk on the image: x̃k =
π(RXk + t), with π being the perspective reprojection function.

Performance: the PVNet architecture proved to be very effective, surpassing the
performance of the state-of-the-art at that time on two popular datasets for 3D pose
estimation: LINEMOD [51] and Occlusion LINEMOD [52]. The authors also created a
new test dataset by randomly cropping images in the LINEMOD dataset so that only
40% to 60% of the object surface is still visible. The voting scheme described above



2.5 Keypose 19

proved to be robust against occlusions and truncations due to its ability to potentially
predict keypoints outside the object’s mask and even outside the image.

2.5 Keypose
The dataset which will be used in this thesis (see section 4.1) was introduced in 2019
by [13], which also described a novel 3D pose estimation network called Keypose, which
exploits stereo images to let the system learn an implicit depth representation. This
method uses keypoints to predict objects’ poses but is not really a two-step method since
the network directly predicts the 2D keypoints’ positions along with their depth, so the
3D keypoints can be directly extracted by back-projection in a single step. The set of
3D keypoints is used to define the object’s pose, rather than a direct representation
through a transformation matrix.

Network structure Keypose takes in input the two stacked stereo images and puts
them through a set of dilated convolutional layers to predict a 2D location heatmap
for each keypoint, which is used to obtain a spatial probability distribution for each
keypoint, together with a disparity heatmap. The probability map for each keypoint
is integrated to obtain the final 2D keypoint position, and is also convoluted with the
disparity heatmap to obtain disparities, from which depths can be directly inferred with
epipolar geometry constraints. The output of the network is the set of UVD keypoints
locations (2D spatial position + depth)

Training The network is trained with three combined losses, from the keypoints’
ground truth UVD values:

• a keypoint loss, measuring the squared loss difference between predicted and
ground truth UVD values;

• a projection loss, measuring the squared difference between the 2D projections of
both predicted and ground truth UVD values in the original stereo images;

• a locality loss which encourages the 2d keypoints’ position heatmap to be uni-
modal and localized around the true keypoint location.

For some symmetric objects, there could be indistinguishable keypoints from the
point of view of the pose estimation. For this reason, when training the network, the loss
is computed on the best permutation of keypoints, obtained according to the object’s
symmetry. For some objects it is also possible to avoid symmetry ambiguity with a
smart keypoint choice, like just a keypoint in its center is sufficient to define a sphere.

Performance: The experiments were conducted on the TOD transparent objects
dataset, created by the same authors (see section 4.1 for more details). Keypose’s
performance was tested against the DenseFusion [53] architecture. The results of the
tests showed that Keypose’s ability to leverage stereo images allowed it to overcome the
difficulties in predicting transparent object’s poses, outperforming DenseFusion, which
struggled with some more challenging objects, despite its ability to exploit depth maps.



20 Image-based 6DoF pose estimation



Chapter 3

Multi-view Pixel-wise Voting
Network for 6DoF Pose
Estimation

In this thesis, several variations of the PVNet network presented in section 2.4 are
proposed, with the intent of extending the network’s domain to rectified stereo images.
The purpose of this chapter is to introduce the various models, the ideas behind them,
and the original contributions provided for their realization.

3.1 Pose estimation from stereo keypoints
As discussed in section 2.4, the main idea behind PVNet is to predict the 2D positions
of a set of keypoints in an image, and then use PnP to estimate the object pose. Assume
now to have two images which are the output of a rectified stereo rig, and assume to be
given the 2D positions of the same set of keypoints in both images, either as the result
of PVNet or by any other mean. It would obviously be possible to extract two pose
estimations by applying PnP independently to the two inputs. What is presented in
this section is a modification of the PnP problem in order to leverage the knowledge of
both sets of 2D keypoints at the same time, assuming that the geometry of the stereo
rig is known.

Let K = {K1,K2, . . . ,KN} be a set of 3D keypoints, of cardinality N , and let kl =
{kl,1, kl,2, . . . , kl,N}, kr = {kr,1, kr,2, . . . , kr,N} be the sets of 2D keypoints projections
respectively in the left and right image. It is then possible to rewrite the PnP problem
seen in section 1.3.2 as a non-linear optimization problem of the type:

R, t = arg min
R,t

(
N∑
i=1

||π(RKi + t)− kl,i||2 + ||π(RKi + t)− kr,i||2
)

(3.1)

where π(·) is the perspective projection function and t = t+(0,−b, 0)T is the translation
associated with the right image, with b being the length of the baseline of the rectified
stereo rig.

In this thesis, an iterative solver for this problem was developed using the Ceres op-
timization library for C++ [54]. Experimental results showed that the solver converges



22 Multi-view Pixel-wise Voting Network for 6DoF Pose Estimation

easily with good 2D keypoint predictions even from an empty initial guess for R and
t. During testing, the effects of providing a more accurate initial transformation, for
example by back-projecting the 2D stereo keypoints, were negligible, so the problem is
always initialized with null initial rotation and translation.

This approach to solving the stereo PnP problem was also proposed in [11], under
the name of “Object Triangulation”.

3.1.1 Integrating variance information

If the 2D keypoints positions are computed using the method proposed by PVNet, then
they also come with their associated variance, which can be used to transform PnP in
a weighted optimization problem, as in Eq. 2.5. Let N,K, kl, kr be as above. Let also
Σl = {Σl,1, . . . ,Σl,N} and Σr = {Σr,1, . . . ,Σr,N} be the covariance matrices of the N
2D keypoints in the left and right images respectively. Then, Eq. 3.1 can be modified
to obtain:

R, t = arg min
R,t

N∑
i=1

||(k̃l,i − kl,i)
TΣ−1

l,i (
˜kr,i − kl,i)||2+

N∑
i=1

||( ˜kr,i − kl,i)
TΣ−1

r,i (
˜kr,i − kl,i)||2

(3.2)

where k̃l,i and ˜kr,i are the projections of keypoints Ki respectively in the left and
right images, obtained as in Eq. 3.1.

An iterative solver for this problem was also developed using the Ceres library
[54]. Contrary to the previous case, experimental results proved that this problem
required accurate initialization to converge to a good solution. What worked best in
the experiments was to initialize the transformation by solving the classic PnP problem
from the 4 keypoints with lowest variance, as suggested in the original PVNet paper.
To select the view from which the initialization keypoints are extracted, the views are
ranked with a score defined as the sum of the trace of the covariance matrices of the
4 keypoints with lowest variance. Such score can also be used to discard noisy views
that would compromise the optimization: if the score of the worst view is greater than
three times the score of the best view, then all the weights associated with the worst
view are set to zero, so that they don’t interfere with the optimization procedure in the
better view.

3.2 Parallel network

A straightforward way to adapt PVNet to stereo RGB input is to predict keypoints
for the two images separately and then combining the result solving the stereo version
of PnP described above. This approach will be referred to as the “parallel network”
approach in the remainder of this work.

This method was introduced in [11], solving the PnP problem without the variance
information. In this work, the variance is instead considered since it has shown to
significantly increase precision during experimentation.



3.3 Stereo network 23

3.3 Stereo network
This approach changes the input and output layers of the original PVNet network while
keeping the core untouched. The new input to the network is composed by stacking the
left and right RGB images on top of each other, and the output contains segmentation
masks and pixel votes for both images. Essentially, this approach is similar to the
parallel one of the previous section, but the network is made aware of both images and
is allowed to share weights when processing the two images. The goal of this model is
to see whether the network is able to implicitly learn how to merge information coming
from both inputs. The resulting network is referred to as “stereo network 18” since it
has stereo inputs and uses the same ResNet18 backbone as the original PVNet.

Note: Since keypoints are obtained by post-processing the network’s output, it
is not possible to directly relate keypoints from both images in the network’s loss. A
number of attempts were made to predict parameters tying together the votes for both
images in order to include them in the loss (like predicting angle differences between
vote vectors belonging to corresponding pixels in the two images), but all proved to be
too complex for the network to learn. A possible way to overcome this problem would
be to integrate into the model a differentiable RANSAC module, and modify the loss
to include both a term adjusting the votes and one enforcing epipolar constraints on
the resulting keypoints.

3.3.1 Stereo network 34
The stereo network proposed in the previous section uses the same backbone network
as the original PVNet, i.e. ResNet18, while performing a more complex task. For
this reason, another model was tested by substituting the backbone network with a
ResNet34, with the goal of providing stronger feature extraction abilities. Current
state-of-the-art methods like YOLOPose [3], presented in paragraph 2.3.5, are using
ResNet50 as their backbone while still retaining real-time capabilities, so the added
training and inference complexity was deemed not to be detrimental to the cause of fast
object pose detection.

3.4 Single object assumption
As is detailed in section 4.1, the dataset used in this work is composed of images
containing one and only one object at a time. This prior can be leveraged to provide
robustness to the estimation process.

Enforcing object detection: As will be discussed in Chapter 4, the dataset used
in the experiments contains a small number of very challenging instances, where objects
are difficult to detect even to the human eye. In such cases, the system could fail to
detect the object, providing an empty segmentation mask. Given the prior that all
images frame at least one object, it is possible to force the system to make a prediction
by redistributing class probabilities. This is done by increasing the probability that each
pixel belongs to the object by a small fixed amount, until a minimum threshold of object
pixels is reached (computed empirically by extracting the minimum number of pixels
for a mask in the training set). In order not to burden the system with unnecessary
additional noise, this process is performed only in the case of completely empty masks;
this means that the system may perform detections in which the number of object pixels



24 Multi-view Pixel-wise Voting Network for 6DoF Pose Estimation

in the mask is lower than a very small threshold, to include images with virtually (but
not fully) empty detections.

Enforcing unimodal masks: Let M be the segmentation mask given in output
by PVNet applied on an image. If M has multiple connected components, it is possible
that multiple plausible object center hypotheses are found during the RANSAC voting
phase. This phenomenon may cause keypoint predictions to be influenced by the high
inliers count of a wrongly detected region of M. To suppress the influence of such areas,
the following algorithm is proposed:

1. use a RANSAC-based voting scheme to predict hypotheses only for the objects’
centers;

2. aggregate the resulting hypotheses in a 2D histogram (in the experiments the bin
size is always 15x15 pixels);

3. find the two bins with the highest number of votes;

4. if the bin with the second most voted bin has a vote count higher than a set per-
centage of the top bin’s (0.01 in the experiments) then a noisy center is detected
in the location of the second best bin;

5. if a noisy center is detected, alter the segmentation mask by silencing all pixels
which are closer to the noisy center than to the top hypothesis.

During the experimentation, a smaller bin size (5x5) with a higher noise detection
threshold (0.6 percent the winning bin votes) has been explored, but larger bin sizes
have resulted to be more reliable.



Chapter 4

Experiments

4.1 TOD Dataset
The transparent object dataset (TOD) was introduced by [13] along with a novel 3D
pose estimation network (Keypose) analyzed in section 2.5. The dataset contains 15
different transparent objects, including a sphere, 3 bottles, 2 cups, 7 mugs, a heart and
a Christmas tree, displayed in Figures from 4.1 to 4.8. The dataset includes, for each
object:

• rectified stereo RGB images (1280x720 pixels);

• a depth-map acquired framing the transparent object;

• a depth-map acquired by substituting the transparent object with an identical
opaque counterpart;

• 3D keypoints definitions;

• 2D projections of each keypoint in the images plus their depths;

• the segmentation mask for the left stereo image.

The RGB images for each object are divided into 10 “textures”, each of which
represents a different background image over which the transparent object is placed,
as shown in Figures from 4.9 to 4.13. The authors of the dataset mention that the
suggested use of this dataset is to perform training on images taken from 9 textures,
leaving out one. The images taken using the texture that is left out are to be considered
the test set.

This is a non-trivial dataset to perform pose estimation on, due to the transparent
nature of the objects and the complexity of the background textures, which make object
detection hard when pictures are taken under some challenging points of view.

In this work, the dataset was augmented by:

• extracting a ground truth pose by solving an Orthogonal Procrustes problem [55]
on the 3D model’s keypoints and ground truth 2D projections + depth;

• producing the segmentation masks for the right camera images by reprojecting
object vertices.

It is to note that all images in this dataset contain one and only one object, simpli-
fying the task.



26 Experiments

Figure 4.1. ball_0 and bottle_0 objects, with the keypoints used by Keypose, next to
an opaque counterpart

Figure 4.2. bottle_1 and bottle_2 objects, with the keypoints used by Keypose, next
to an opaque counterpart

Figure 4.3. cup_0 and cup_1 objects, with the keypoints used by Keypose, next to
an opaque counterpart

Figure 4.4. mug_0 and mug_1 objects, with the keypoints used by Keypose, next to
an opaque counterpart



4.1 TOD Dataset 27

Figure 4.5. mug_2 and mug_3 objects, with the keypoints used by Keypose, next to
an opaque counterpart

Figure 4.6. mug_4 and mug_5 objects, with the keypoints used by Keypose, next to
an opaque counterpart

Figure 4.7. mug_6 and heart_0 objects, with the keypoints used by Keypose, next to
an opaque counterpart

Figure 4.8. tree_0 object, with the keypoints used by Keypose, next to an opaque
counterpart



28 Experiments

Figure 4.9. heart_0 object over textures 0 and 1

Figure 4.10. heart_0 object over textures 2 and 3

Figure 4.11. heart_0 object over textures 4 and 5

Figure 4.12. heart_0 object over textures 6 and 7



4.1 TOD Dataset 29

Figure 4.13. heart_0 object over textures 8 and 9



30 Experiments

4.2 Metrics definition

The object detection and pose estimation tasks are evaluated on the following metrics:

• Mask AP 70: percentage of samples whose mask labels are correct for at least
70% of the pixels;

• 2D projections metric: percentage of samples for which the average distance
between predicted and ground truth 2D keypoints is at most 5 pixels;

• ADD(-S): percentage of samples for which the average distance between predicted
and ground truth 3D keypoints is less than 10% of the object’s diameter; if the
object has a symmetry axis, then distances are computed between each predicted
keypoint and its closest ground truth keypoint; in the TOD dataset, the ball,
cups and bottles are considered symmetrical objects;

• < 2cm metric: like ADD-(S) but the threshold is static at 2cm instead of 10% of
the object’s diameter;

• 5 cm 5 degrees metric: percentage of samples whose predicted transformation
matrix differs from the ground truth one by a maximum of 5 degrees in rotation
and 5 centimeters in translation;

• MAE (mean absolute error): average absolute distance between predicted and
ground truth 3D keypoints for all samples;

• AUC (area under curve): computes the area under a 2D curve where the x values
are a set of thresholds from 0 to 10 cm and the y values are the ADD(-S) metric
computed with the corresponding threshold.

4.3 Networks training

Each model presented in the previous chapter was trained on 10 different sets, each one
obtained by selecting samples coming from 9 textures out of 10 (as detailed in table 4.1).
The remaining texture is then used as the test set, while the validation set is obtained by
randomly picking 15% of the training samples. This results in a completely disjointed
train-validation-test split. Training and validation set are composed of similar samples,
while the test set contains instances that significantly differ from the training ones, due
to the different background texture.

All architectures and models were trained for 150 epochs and the best network
parameters were chosen on the basis of validation ADD(-S) and Mask AP 70 metrics.

The monocular version of PVNet is trained and evaluated on left images only.

Data augmentation: All networks have been trained on real full resolution sam-
ples only, augmented with color jittering, random blurring, normalization and random
scaling between 80% and 120% of the original size. Data in input to the “parallel” net-
work (which requires a single RGB image) is also subjected to random rotation about
the optical axis up to a maximum of 30 degrees.

For all architectures, each training sample has a 50% chance of being subjected to
random background augmentation. This procedure has demonstrated to be particularly
effective in regularizing models, since training and test sample differ mainly for the



4.4 Results 31

background used. The background images used in this step are sampled randomly from
a dataset coming from an unrelated domain.

Model Trained on Tested on
0 Textures 1,2,3,4,5,6,7,8,9 Texture 0
1 Textures 0,2,3,4,5,6,7,8,9 Texture 1
2 Textures 0,1,3,4,5,6,7,8,9 Texture 2
3 Textures 0,1,2,4,5,6,7,8,9 Texture 3
4 Textures 0,1,2,3,5,6,7,8,9 texture 4
5 Textures 0,1,2,3,4,6,7,8,9 Texture 5
6 Textures 0,1,2,3,4,5,7,8,9 Texture 6
7 Textures 0,1,2,3,4,5,6,8,9 Texture 7
8 Textures 0,1,2,3,4,5,6,7,9 Texture 8
9 Textures 0,1,2,3,4,5,6,7,8 Texture 9

Table 4.1. Train-test split

4.4 Results
In this section, fully detailed result tables are provided, allowing the reader to check
the performance of each model for each test set of each object. The results are then
combined and reported in a more concise table in section 4.4.5, for easy comparison
with the baseline models.

In the following tables, the models used for the evaluation have the following short-
ened names:

• DF-O: Dense fusion trained on RGB images plus depth maps acquired substitut-
ing the transparent objects with opaque counterparts in the framed scene;

• DF-T: Dense fusion trained on RGB images plus depth maps acquired leaving
the original transparent objects in the framed scene;

• KP: KeyPose;

• Mono: the original monocular PVNet implementation;

• Pr-18: the “parallel” approach for adapting PVNet to stereo images (uses ResNet18
as its backbone);

• St-18: the “stereo” approach for adapting PVNet to stereo images (uses ResNet18
as its backbone);

• St-34: the “stereo” approach for adapting PVNet to stereo images (uses ResNet34
as its backbone).

Furthermore, the following abbreviations are employed for metrics names:

• P2D: 2D projection metric;

• 5c5d: 5 cm 5 degrees metric;

• APL: mask AP70 for the left image in the stereo pair;



32 Experiments

• APR: mask AP70 for the right image in the stereo pair;

• AP: mask AP70 (used in the case of monocular PVNet).

The results are tabulated so that each column represents a different metric, while
each row contains the evaluation made on a different test set (equivalent to a different
background texture), from 0 to 9. The last row contains the average, for each metric,
of all 10 previous rows. The name of the method being evaluated can be found in the
table’s caption (and is the name of the section containing the table), while the name of
the object to be detected is in the first cell of each table.

All metrics are reported as a percentage, ranging from 0 to 1. The only exception
is the MAE metric which is measured in meters.

Failed test samples: In some particular cases, which will be analyzed after the
results, it may happen that a model cannot correctly detect the object in some input
image pairs. Such cases are recognizable by a MAE metric greater than one meter,
which is about ten times greater than the average diameter of the objects in the TOD
dataset. Since the MAE metric does not have an upper limit, counting such samples in
the test metrics computation would lead to results which are greatly skewed by a small
number of outliers. Instead, test sets from which image pairs have been excluded, will
be marked by an asterisk (∗) and the number of failed detections will be reported under
the corresponding table.

4.4.1 Stereo34 network

ball_0 P2D ADD(-S) <2cm MAE 5c5d AUC APL APR
T0 0.965 0.783 0.943 0.011 0.667 0.898 0.994 0.994
T1 0.943 0.770 0.918 0.017 0.421 0.888 0.978 0.978
T2 0.978 0.747 0.959 0.007 0.491 0.905 0.997 0.981
T3 0.972 0.828 0.972 0.012 0.577 0.905 0.994 0.991
T4 0.928 0.831 0.966 0.007 0.531 0.908 0.988 0.991
T5 0.968 0.855 0.962 0.007 0.416 0.914 0.997 1.000
T6 0.975 0.828 0.963 0.006 0.531 0.917 1.000 1.000
T7 0.959 0.643 0.956 0.009 0.589 0.893 1.000 1.000
T8 0.978 0.669 0.959 0.008 0.591 0.897 0.994 1.000
T9 0.988 0.797 0.959 0.007 0.528 0.909 1.000 1.000

Average 0.966 0.775 0.956 0.009 0.534 0.903 0.994 0.993

Table 4.2. Stereo34 network results on ball_0 object (Test set)



4.4 Results 33

heart_0 P2D ADD(-S) <2cm MAE 5c5d AUC APL APR
T0 0.938 0.581 0.909 0.013 0.319 0.867 0.997 1.000
T1 0.866 0.791 0.881 0.012 0.209 0.873 0.997 0.997
T2 0.819 0.472 0.775 0.015 0.147 0.831 1.000 0.994
T3 0.925 0.688 0.896 0.013 0.192 0.860 1.000 0.992
T4 0.628 0.209 0.428 0.054 0.103 0.630 0.838 0.694
T5 0.622 0.444 0.653 0.020 0.369 0.789 1.000 1.000
T6 0.850 0.331 0.669 0.018 0.250 0.800 1.000 0.953
T7 0.963 0.662 0.775 0.012 0.438 0.864 1.000 1.000
T8 0.429 0.175 0.450 0.086 0.000 0.632 0.738 0.492
T9 0.700 0.578 0.778 0.014 0.188 0.842 0.994 0.988

Average 0.774 0.493 0.721 0.026 0.221 0.799 0.956 0.911

Table 4.3. Stereo34 network results on heart_0 object (Test set)

tree_0 P2D ADD(-S) <2cm MAE 5c5d AUC APL APR
T0 0.633 0.783 0.821 0.015 0.542 0.838 0.996 1.000
T1 0.796 0.629 0.762 0.015 0.279 0.838 0.975 0.971
T2 0.347 0.301 0.410 0.048 0.130 0.640 0.845 0.611
T3 0.713 0.775 0.887 0.012 0.409 0.860 0.997 0.991
T4∗ 0.262 0.185 0.275 0.103 0.120 0.516 0.489 0.343
T5 0.597 0.700 0.781 0.018 0.253 0.815 0.981 0.969
T6 0.138 0.192 0.296 0.052 0.021 0.637 0.821 0.637
T7 0.400 0.312 0.362 0.056 0.075 0.614 0.700 0.450
T8∗ 0.159 0.142 0.189 0.193 0.077 0.367 0.348 0.176
T9 0.863 0.896 0.942 0.010 0.483 0.885 0.988 0.988

Average 0.491 0.491 0.573 0.052 0.239 0.701 0.814 0.714

Table 4.4. Stereo34 network results on tree_0 object (Test set)

Failed test samples: Texture 4 had 7/240 failed samples (2.9%), while texture 8
had 6/240 (2.5%).



34 Experiments

bottle_0 P2D ADD(-S) <2cm MAE 5c5d AUC APL APR
T0 0.871 0.818 0.884 0.011 0.313 0.876 1.000 1.000
T1 0.919 0.812 0.903 0.009 0.297 0.888 1.000 1.000
T2 0.938 0.503 0.747 0.017 0.247 0.816 1.000 0.953
T3 0.831 0.721 0.846 0.016 0.323 0.848 0.966 0.959
T4∗ 0.634 0.215 0.426 0.065 0.098 0.603 0.804 0.517
T5 0.875 0.803 0.903 0.010 0.300 0.881 1.000 1.000
T6 0.903 0.728 0.906 0.011 0.325 0.874 0.997 1.000
T7∗ 0.851 0.413 0.579 0.030 0.187 0.726 0.932 0.787
T8 0.616 0.272 0.497 0.047 0.125 0.680 0.825 0.684
T9 0.881 0.697 0.900 0.012 0.269 0.870 1.000 1.000

Average 0.832 0.598 0.759 0.023 0.248 0.806 0.952 0.890

Table 4.5. Stereo34 network results on bottle_0 object (Test set)

Failed test samples: Texture 4 had 3/320 failed samples (0.9%), while texture 7
had 5/240 (2.1%).

bottle_1 P2D ADD(-S) <2cm MAE 5c5d AUC APL APR
T0 0.997 0.997 0.997 0.006 0.988 0.925 0.981 0.947
T1 0.981 0.991 0.991 0.006 0.906 0.921 0.978 0.953
T2 0.981 0.897 0.916 0.009 0.825 0.889 1.000 0.906
T3 0.978 0.956 0.969 0.007 0.912 0.908 0.984 0.878
T4 0.856 0.768 0.812 0.020 0.649 0.832 0.928 0.737
T5 0.984 0.988 0.991 0.006 0.931 0.916 0.994 0.959
T6 0.953 0.963 0.984 0.010 0.897 0.886 0.991 0.941
T7 0.938 0.971 0.983 0.007 0.858 0.913 0.983 0.958
T8 0.956 0.863 0.891 0.012 0.688 0.867 0.956 0.831
T9 0.916 0.988 0.994 0.007 0.881 0.911 0.966 0.903

Average 0.954 0.938 0.953 0.009 0.854 0.897 0.976 0.901

Table 4.6. Stereo34 network results on bottle_1 object (Test set)



4.4 Results 35

bottle_2 P2D ADD(-S) <2cm MAE 5c5d AUC APL APR
T0 0.902 0.830 0.840 0.012 0.585 0.866 0.917 0.412
T1 0.960 0.870 0.875 0.012 0.695 0.868 0.953 0.405
T2 0.858 0.752 0.772 0.017 0.665 0.824 0.922 0.362
T3 0.940 0.910 0.922 0.011 0.762 0.878 0.922 0.360
T4 0.781 0.799 0.812 0.017 0.661 0.827 0.887 0.329
T5 0.953 0.909 0.925 0.011 0.872 0.875 0.922 0.391
T6 0.790 0.787 0.790 0.019 0.672 0.818 0.905 0.465
T7 0.870 0.800 0.810 0.015 0.615 0.837 0.922 0.312
T8 0.599 0.484 0.491 0.027 0.546 0.733 0.887 0.316
T9 0.845 0.805 0.815 0.014 0.540 0.847 0.927 0.405

Average 0.850 0.795 0.805 0.015 0.661 0.837 0.917 0.376

Table 4.7. Stereo34 network results on bottle_2 object (Test set)

cup_0 P2D ADD(-S) <2cm MAE 5c5d AUC APL APR
T0 0.562 0.416 0.594 0.029 0.097 0.733 0.988 0.884
T1 0.778 0.512 0.647 0.022 0.153 0.771 1.000 0.897
T2 0.584 0.362 0.500 0.035 0.119 0.720 0.950 0.725
T3 0.713 0.550 0.692 0.020 0.121 0.792 1.000 0.812
T4 0.331 0.191 0.274 0.117 0.051 0.448 0.592 0.268
T5 0.753 0.475 0.641 0.025 0.178 0.767 0.994 0.859
T6 0.713 0.550 0.700 0.019 0.175 0.802 0.988 0.887
T7∗ 0.266 0.119 0.176 0.156 0.045 0.390 0.494 0.163
T8∗ 0.303 0.143 0.245 0.100 0.070 0.470 0.624 0.293
T9 0.741 0.522 0.678 0.020 0.150 0.799 0.997 0.916

Average 0.574 0.384 0.515 0.054 0.116 0.669 0.863 0.671

Table 4.8. Stereo34 network results on cup_0 object (Test set)

Failed test samples: Texture 7 had 8/320 (2.5%), while texture 8 had 6/320 (1.9%)



36 Experiments

cup_1 P2D ADD(-S) <2cm MAE 5c5d AUC APL APR
T0 0.925 0.928 0.947 0.010 0.344 0.886 0.991 0.928
T1 0.903 0.869 0.909 0.012 0.316 0.866 0.988 0.875
T2 0.828 0.681 0.747 0.017 0.241 0.814 0.975 0.791
T3 0.881 0.784 0.825 0.015 0.341 0.838 0.975 0.713
T4 0.420 0.458 0.525 0.051 0.063 0.669 0.803 0.433
T5 0.809 0.613 0.666 0.019 0.219 0.792 0.981 0.700
T6 0.844 0.684 0.791 0.017 0.322 0.822 0.975 0.859
T7 0.834 0.731 0.812 0.015 0.269 0.839 0.975 0.791
T8 0.503 0.403 0.459 0.073 0.153 0.638 0.806 0.491
T9 0.784 0.637 0.706 0.019 0.228 0.794 0.978 0.812

Average 0.773 0.679 0.739 0.025 0.249 0.796 0.945 0.739

Table 4.9. Stereo34 network results on cup_1 object (Test set)

mug_0 P2D ADD(-S) <2cm MAE 5c5d AUC APL APR
T0 0.292 0.367 0.546 0.020 0.075 0.783 1.000 0.996
T1 0.156 0.166 0.291 0.033 0.009 0.678 1.000 0.997
T2 0.356 0.269 0.372 0.041 0.169 0.654 0.997 0.978
T3 0.419 0.566 0.703 0.020 0.222 0.795 1.000 0.984
T4 0.331 0.259 0.362 0.038 0.078 0.646 0.981 0.825
T5 0.464 0.608 0.746 0.019 0.097 0.798 1.000 0.981
T6 0.125 0.325 0.463 0.025 0.000 0.743 1.000 0.950
T7 0.019 0.038 0.069 0.060 0.006 0.510 0.881 0.868
T8 0.380 0.297 0.405 0.053 0.044 0.613 0.930 0.892
T9 0.800 0.863 0.919 0.014 0.359 0.858 1.000 0.997

Average 0.334 0.376 0.488 0.032 0.106 0.708 0.979 0.947

Table 4.10. Stereo34 network results on mug_0 object (Test set)



4.4 Results 37

mug_1 P2D ADD(-S) <2cm MAE 5c5d AUC APL APR
T0 0.416 0.391 0.516 0.026 0.212 0.729 0.997 0.872
T1 0.203 0.266 0.334 0.032 0.091 0.672 0.981 0.741
T2 0.105 0.105 0.206 0.072 0.029 0.490 0.752 0.311
T3 0.444 0.375 0.519 0.031 0.163 0.693 0.994 0.794
T4∗ 0.078 0.000 0.000 0.421 0.007 0.059 0.157 0.046
T5 0.519 0.374 0.516 0.034 0.201 0.701 0.956 0.714
T6 0.207 0.080 0.139 0.077 0.072 0.490 0.823 0.456
T7 0.125 0.225 0.325 0.043 0.000 0.583 0.875 0.375
T8∗ 0.022 0.022 0.057 0.304 0.009 0.181 0.209 0.052
T9 0.230 0.186 0.286 0.066 0.047 0.553 0.840 0.469

Average 0.235 0.202 0.290 0.111 0.083 0.515 0.758 0.483

Table 4.11. Stereo34 network results on mug_1 object (Test set)

Failed test samples: Texture 4 had 7/160 (4.4%), while texture 8 had 10/240
(4.1%).

mug_2 P2D ADD(-S) <2cm MAE 5c5d AUC APL APR
T0 0.909 0.781 0.847 0.017 0.725 0.828 0.997 0.766
T1 0.891 0.713 0.762 0.016 0.684 0.832 0.997 0.703
T2 0.484 0.319 0.438 0.031 0.272 0.711 0.984 0.419
T3 0.853 0.753 0.841 0.015 0.556 0.841 1.000 0.619
T4 0.274 0.186 0.236 0.067 0.101 0.466 0.906 0.321
T5 0.678 0.622 0.725 0.017 0.328 0.813 0.994 0.738
T6 0.756 0.628 0.731 0.025 0.419 0.774 0.994 0.731
T7 0.494 0.412 0.516 0.030 0.178 0.740 0.991 0.591
T8 0.617 0.433 0.529 0.033 0.312 0.696 0.963 0.562
T9 0.844 0.456 0.559 0.024 0.491 0.750 1.000 0.584

Average 0.680 0.530 0.618 0.027 0.407 0.745 0.982 0.603

Table 4.12. Stereo34 network results on mug_2 object (Test set)



38 Experiments

mug_3 P2D ADD(-S) <2cm MAE 5c5d AUC APL APR
T0 0.875 0.863 0.875 0.017 0.662 0.833 0.994 0.372
T1 0.869 0.734 0.759 0.026 0.613 0.771 0.997 0.509
T2 0.512 0.425 0.456 0.031 0.309 0.699 0.984 0.375
T3 0.828 0.850 0.863 0.031 0.762 0.778 0.984 0.247
T4 0.192 0.229 0.250 0.065 0.050 0.515 0.554 0.175
T5 0.738 0.694 0.709 0.025 0.416 0.784 0.997 0.225
T6 0.931 0.928 0.934 0.014 0.778 0.870 0.991 0.447
T7 0.831 0.753 0.794 0.020 0.506 0.823 0.997 0.400
T8 0.338 0.438 0.469 0.031 0.253 0.705 0.953 0.166
T9 0.809 0.547 0.606 0.025 0.441 0.764 0.969 0.231

Average 0.692 0.646 0.672 0.028 0.479 0.754 0.942 0.315

Table 4.13. Stereo34 network results on mug_3 object (Test set)

mug_4 P2D ADD(-S) <2cm MAE 5c5d AUC APL APR
T0 0.884 0.925 0.919 0.013 0.619 0.866 0.966 0.122
T1 0.829 0.900 0.892 0.013 0.575 0.856 0.963 0.087
T2 0.619 0.550 0.544 0.027 0.200 0.732 0.969 0.134
T3 0.688 0.872 0.841 0.018 0.397 0.834 0.981 0.059
T4 0.588 0.696 0.675 0.022 0.512 0.774 0.975 0.037
T5 0.753 0.734 0.703 0.021 0.491 0.798 0.963 0.166
T6 0.750 0.859 0.856 0.017 0.484 0.834 0.966 0.131
T7 0.637 0.756 0.741 0.018 0.481 0.806 0.963 0.069
T8 0.429 0.614 0.592 0.026 0.141 0.748 0.959 0.075
T9 0.487 0.650 0.637 0.024 0.344 0.754 0.981 0.087

Average 0.666 0.756 0.740 0.020 0.424 0.800 0.968 0.097

Table 4.14. Stereo34 network results on mug_4 object (Test set)



4.4 Results 39

mug_5 P2D ADD(-S) <2cm MAE 5c5d AUC APL APR
T0 0.755 0.824 0.809 0.027 0.721 0.777 0.937 0.113
T1 0.854 0.821 0.817 0.024 0.758 0.763 0.971 0.125
T2 0.812 0.842 0.829 0.017 0.683 0.835 0.917 0.062
T3 0.705 0.850 0.837 0.021 0.665 0.795 0.925 0.066
T4 0.580 0.592 0.589 0.034 0.552 0.720 0.909 0.066
T5 0.812 0.778 0.762 0.028 0.703 0.764 0.944 0.053
T6 0.844 0.847 0.828 0.018 0.637 0.826 0.959 0.044
T7 0.622 0.684 0.666 0.035 0.350 0.696 0.959 0.041
T8 0.562 0.641 0.625 0.029 0.369 0.740 0.922 0.075
T9 0.834 0.744 0.728 0.023 0.747 0.777 0.969 0.081

Average 0.738 0.762 0.749 0.026 0.619 0.769 0.941 0.073

Table 4.15. Stereo34 network results on mug_5 object (Test set)

mug_6 P2D ADD(-S) <2cm MAE 5c5d AUC APL APR
T0 0.783 0.775 0.733 0.019 0.475 0.818 0.958 0.046
T1 0.797 0.759 0.728 0.021 0.725 0.790 0.969 0.056
T2 0.891 0.934 0.909 0.012 0.706 0.875 0.941 0.084
T3 0.821 0.793 0.737 0.020 0.646 0.806 0.934 0.016
T4 0.609 0.694 0.659 0.037 0.278 0.729 0.878 0.041
T5 0.769 0.869 0.853 0.019 0.537 0.816 0.956 0.066
T6 0.716 0.859 0.831 0.020 0.431 0.831 0.978 0.081
T7 0.845 0.795 0.770 0.021 0.632 0.800 0.958 0.063
T8 0.358 0.592 0.546 0.028 0.333 0.718 0.925 0.013
T9 0.803 0.784 0.750 0.020 0.528 0.816 0.938 0.044

Average 0.739 0.785 0.752 0.022 0.529 0.800 0.944 0.051

Table 4.16. Stereo34 network results on mug_6 object (Test set)

4.4.2 Stereo18 network

In the following tables it is possible to see that in many cases the MaskAP70 metric
for the right images is very low. This does not mean that the network made disastrous
predictions on the right images, but that the prediction variance on the right images
was proportionally much higher than the variance on the left images and so the system
decided to discard them to avoid interference from data which was too noisy. Results
are not reported for all objects since this method had a failed detection rate above 10%
of the total number of test samples in some datasets and because, as can be seen from
the tables below, in many cases it just reverts to monocular PVNet.



40 Experiments

heart_0 P2D ADD(-S) <2cm MAE 5c5d AUC APL APR
T0 0.922 0.841 0.928 0.009 0.303 0.892 1.000 1.000
T1 0.881 0.778 0.900 0.059 0.237 0.881 0.997 0.997
T2 0.750 0.438 0.775 0.017 0.075 0.831 0.978 0.953
T3 0.600 0.429 0.608 0.023 0.075 0.774 0.996 0.975
T4 0.619 0.153 0.347 0.123 0.109 0.591 0.869 0.506
T5 0.550 0.544 0.606 0.018 0.391 0.805 1.000 1.000
T6 0.834 0.537 0.881 0.013 0.184 0.854 1.000 1.000
T7 0.938 0.787 0.912 0.010 0.550 0.877 0.975 0.988
T8 0.588 0.217 0.433 0.059 0.000 0.659 0.938 0.675
T9 0.622 0.412 0.625 0.020 0.134 0.782 0.972 0.975

Average 0.730 0.514 0.702 0.035 0.206 0.795 0.972 0.907

Table 4.17. Stereo18 network results on heart_0 object (Test set)

tree_0 P2D ADD(-S) <2cm MAE 5c5d AUC APL APR
T0 0.633 0.867 0.925 0.012 0.562 0.866 0.996 0.988
T1 0.750 0.762 0.917 0.015 0.171 0.843 0.992 0.963
T2 0.662 0.529 0.683 0.027 0.263 0.747 0.908 0.850
T3 0.625 0.675 0.853 0.013 0.269 0.849 1.000 0.975
T4 0.534 0.504 0.592 0.043 0.277 0.716 0.706 0.681
T5 0.656 0.694 0.806 0.017 0.322 0.818 0.988 0.972
T6 0.318 0.251 0.397 0.049 0.213 0.634 0.665 0.724
T7 0.215 0.165 0.253 0.084 0.013 0.506 0.519 0.291
T8 0.143 0.160 0.225 0.148 0.048 0.417 0.403 0.277
T9 0.838 0.775 0.900 0.014 0.629 0.852 0.975 0.979

Average 0.537 0.538 0.655 0.042 0.277 0.725 0.815 0.770

Table 4.18. Stereo18 network results on tree_0 object (Test set)

Failed test samples: Texture 8 had 8/240 (3.3%).



4.4 Results 41

mug_3 P2D ADD(-S) <2cm MAE 5c5d AUC APL APR
T0 0.897 0.834 0.847 0.017 0.759 0.839 0.991 0.366
T1 0.887 0.828 0.844 0.022 0.569 0.805 0.994 0.506
T2 0.528 0.362 0.409 0.036 0.284 0.648 0.988 0.362
T3 0.803 0.850 0.866 0.020 0.622 0.818 0.991 0.138
T4 0.219 0.211 0.232 0.091 0.059 0.451 0.591 0.190
T5 0.637 0.619 0.631 0.030 0.416 0.753 0.991 0.219
T6 0.891 0.912 0.931 0.013 0.738 0.872 0.997 0.391
T7 0.778 0.728 0.747 0.020 0.453 0.806 0.994 0.316
T8 0.336 0.368 0.409 0.042 0.217 0.637 0.987 0.088
T9 0.725 0.569 0.622 0.023 0.366 0.776 0.963 0.212

Average 0.670 0.628 0.654 0.031 0.448 0.740 0.948 0.279

Table 4.19. Stereo18 network results on mug_3 object (Test set)

mug_4 P2D ADD(-S) <2cm MAE 5c5d AUC APL APR
T0 0.838 0.922 0.909 0.012 0.672 0.867 0.966 0.119
T1 0.775 0.850 0.846 0.014 0.558 0.854 0.975 0.133
T2 0.591 0.597 0.588 0.028 0.191 0.726 0.975 0.106
T3 0.600 0.656 0.637 0.023 0.331 0.772 0.972 0.056
T4 0.438 0.454 0.417 0.050 0.354 0.624 0.912 0.021
T5 0.787 0.900 0.881 0.014 0.481 0.854 0.963 0.134
T6 0.637 0.762 0.756 0.020 0.369 0.804 0.959 0.113
T7 0.656 0.659 0.647 0.023 0.559 0.772 0.988 0.050
T8 0.514 0.665 0.655 0.031 0.135 0.736 0.972 0.047
T9 0.459 0.512 0.481 0.028 0.281 0.721 0.972 0.066

Average 0.630 0.698 0.682 0.024 0.393 0.773 0.965 0.084

Table 4.20. Stereo18 network results on mug_4 object (Test set)



42 Experiments

mug_5 P2D ADD(-S) <2cm MAE 5c5d AUC APL APR
T0 0.812 0.859 0.850 0.022 0.743 0.810 0.959 0.100
T1 0.846 0.875 0.875 0.020 0.783 0.808 0.963 0.108
T2 0.800 0.787 0.779 0.020 0.708 0.815 0.958 0.021
T3 0.724 0.793 0.787 0.024 0.586 0.781 0.928 0.050
T4 0.589 0.661 0.655 0.028 0.564 0.745 0.937 0.050
T5 0.853 0.800 0.787 0.023 0.775 0.791 0.928 0.075
T6 0.794 0.881 0.878 0.016 0.637 0.841 0.963 0.047
T7 0.697 0.713 0.709 0.030 0.362 0.740 0.972 0.041
T8 0.628 0.691 0.678 0.024 0.516 0.765 0.944 0.034
T9 0.831 0.800 0.794 0.017 0.741 0.826 0.959 0.075

Average 0.757 0.786 0.779 0.023 0.642 0.792 0.951 0.060

Table 4.21. Stereo18 network results on mug_5 object (Test set)

mug_6 P2D ADD(-S) <2cm MAE 5c5d AUC APL APR
T0 0.821 0.858 0.808 0.016 0.517 0.831 0.938 0.075
T1 0.784 0.863 0.838 0.017 0.706 0.830 0.906 0.066
T2 0.831 0.869 0.841 0.015 0.606 0.851 0.972 0.094
T3 0.846 0.815 0.784 0.018 0.661 0.816 0.972 0.031
T4 0.637 0.681 0.644 0.029 0.375 0.753 0.903 0.072
T5 0.822 0.894 0.881 0.016 0.603 0.839 0.956 0.041
T6 0.781 0.787 0.759 0.018 0.469 0.818 0.972 0.078
T7 0.774 0.791 0.778 0.021 0.611 0.791 0.967 0.063
T8 0.379 0.625 0.596 0.028 0.204 0.739 0.863 0.004
T9 0.838 0.847 0.812 0.017 0.613 0.824 0.959 0.041

Average 0.751 0.803 0.774 0.020 0.537 0.809 0.941 0.056

Table 4.22. Stereo18 network results on mug_6 object (Test set)



4.4 Results 43

4.4.3 Parallel network

ball_0 P2D ADD(-S) <2cm MAE 5c5d AUC AP
T0 0.956 0.412 0.909 0.015 0.167 0.859 0.994
T1 0.972 0.476 0.909 0.016 0.197 0.868 0.991
T2 0.984 0.559 0.928 0.009 0.125 0.887 1.000
T3 0.962 0.542 0.953 0.012 0.191 0.881 0.994
T4 0.922 0.647 0.956 0.009 0.181 0.892 0.991
T5 0.956 0.384 0.934 0.011 0.209 0.867 1.000
T6 0.919 0.469 0.881 0.011 0.178 0.873 1.000
T7 0.950 0.470 0.937 0.011 0.176 0.877 1.000
T8 0.966 0.466 0.872 0.012 0.181 0.862 0.997
T9 0.941 0.450 0.884 0.011 0.131 0.870 0.997

Average 0.953 0.488 0.916 0.012 0.174 0.874 0.996

Table 4.23. Parallel network results on ball_0 object (Test set)

heart_0 P2D ADD(-S) <2cm MAE 5c5d AUC AP
T0 0.953 0.666 0.950 0.010 0.319 0.882 1.000
T1 0.894 0.647 0.906 0.011 0.225 0.870 0.997
T2 0.781 0.541 0.891 0.013 0.106 0.854 0.988
T3 0.683 0.258 0.713 0.019 0.150 0.795 1.000
T4 0.759 0.491 0.838 0.014 0.041 0.844 0.997
T5 0.666 0.269 0.688 0.019 0.228 0.796 1.000
T6 0.863 0.347 0.806 0.015 0.116 0.834 1.000
T7 0.950 0.713 0.950 0.010 0.613 0.881 1.000
T8 0.746 0.438 0.792 0.032 0.037 0.810 0.938
T9 0.444 0.284 0.562 0.023 0.097 0.753 1.000

Average 0.774 0.465 0.809 0.017 0.193 0.832 0.992

Table 4.24. Parallel network results on heart_0 object (Test set)



44 Experiments

tree_0 P2D ADD(-S) <2cm MAE 5c5d AUC AP
T0 0.633 0.792 0.925 0.015 0.504 0.842 0.996
T1 0.742 0.758 0.921 0.012 0.279 0.861 0.983
T2 0.754 0.825 0.938 0.010 0.292 0.878 0.988
T3 0.525 0.878 0.972 0.010 0.159 0.880 0.981
T4 0.975 0.912 0.996 0.008 0.504 0.898 0.996
T5 0.659 0.762 0.812 0.018 0.369 0.806 0.994
T6 0.467 0.379 0.562 0.029 0.279 0.714 0.750
T7 0.762 0.738 0.863 0.024 0.250 0.848 0.950
T8 0.490 0.695 0.833 0.014 0.142 0.840 0.874
T9 0.792 0.825 0.933 0.011 0.325 0.868 0.988

Average 0.680 0.756 0.875 0.015 0.310 0.844 0.950

Table 4.25. Parallel network results on tree_0 object (Test set)

bottle_0 P2D ADD(-S) <2cm MAE 5c5d AUC AP
T0 0.812 0.592 0.834 0.016 0.094 0.825 1.000
T1 0.866 0.562 0.838 0.016 0.156 0.825 1.000
T2 0.872 0.512 0.828 0.017 0.138 0.828 1.000
T3 0.644 0.441 0.787 0.018 0.094 0.819 0.759
T4 0.722 0.331 0.722 0.020 0.081 0.798 0.928
T5 0.838 0.662 0.825 0.016 0.094 0.839 1.000
T6 0.822 0.528 0.825 0.017 0.109 0.822 0.997
T7 0.679 0.425 0.696 0.026 0.075 0.768 0.804
T8 0.629 0.434 0.664 0.026 0.079 0.770 0.828
T9 0.822 0.562 0.819 0.015 0.091 0.838 0.997

Average 0.770 0.505 0.784 0.019 0.101 0.813 0.931

Table 4.26. Parallel network results on bottle_0 object (Test set)



4.4 Results 45

bottle_1 P2D ADD(-S) <2cm MAE 5c5d AUC AP
T0 0.984 0.916 0.963 0.010 0.297 0.879 0.991
T1 0.963 0.872 0.934 0.010 0.334 0.880 0.975
T2 0.963 0.872 0.938 0.011 0.475 0.867 0.991
T3 0.953 0.825 0.938 0.012 0.381 0.861 0.994
T4 0.938 0.822 0.891 0.012 0.434 0.859 0.991
T5 0.950 0.869 0.925 0.010 0.419 0.880 0.994
T6 0.978 0.659 0.778 0.015 0.416 0.835 0.997
T7 0.950 0.804 0.846 0.013 0.358 0.850 0.992
T8 0.959 0.831 0.903 0.011 0.497 0.873 0.984
T9 0.853 0.828 0.922 0.011 0.356 0.869 0.994

Average 0.949 0.830 0.904 0.012 0.397 0.865 0.990

Table 4.27. Parallel network results on bottle_1 object (Test set)

bottle_2 P2D ADD(-S) <2cm MAE 5c5d AUC AP
T0 0.887 0.877 0.892 0.013 0.385 0.854 0.938
T1 0.927 0.785 0.820 0.014 0.445 0.845 0.943
T2 0.838 0.825 0.840 0.016 0.458 0.833 0.958
T3 0.635 0.695 0.713 0.017 0.400 0.813 0.902
T4 0.705 0.807 0.820 0.015 0.380 0.837 0.858
T5 0.938 0.875 0.900 0.012 0.591 0.861 0.938
T6 0.723 0.770 0.797 0.019 0.422 0.818 0.917
T7 0.792 0.812 0.830 0.016 0.235 0.825 0.915
T8 0.527 0.557 0.580 0.026 0.278 0.757 0.848
T9 0.700 0.672 0.703 0.020 0.362 0.797 0.940

Average 0.767 0.768 0.790 0.017 0.396 0.824 0.915

Table 4.28. Parallel network results on bottle_2 object (Test set)



46 Experiments

cup_0 P2D ADD(-S) <2cm MAE 5c5d AUC AP
T0 0.559 0.456 0.653 0.023 0.072 0.765 0.991
T1 0.716 0.519 0.678 0.022 0.078 0.775 0.997
T2 0.625 0.428 0.619 0.023 0.059 0.761 0.991
T3∗ 0.051 0.141 0.269 0.094 0.043 0.557 0.237
T4 0.352 0.333 0.459 0.057 0.031 0.622 0.706
T5 0.694 0.569 0.747 0.018 0.072 0.807 0.997
T6 0.692 0.417 0.546 0.025 0.092 0.746 0.996
T7∗ 0.260 0.234 0.330 0.088 0.003 0.533 0.606
T8 0.263 0.272 0.408 0.068 0.032 0.596 0.659
T9 0.497 0.503 0.647 0.024 0.075 0.779 0.850

Average 0.471 0.387 0.536 0.044 0.056 0.694 0.803

Table 4.29. Parallel network results on cup_0 object (Test set)

Failed test samples: 6/240 (2.5%) for texture 3 and 8/320 (2.5%) for texture 7.

cup_1 P2D ADD(-S) <2cm MAE 5c5d AUC AP
T0 0.734 0.697 0.728 0.019 0.144 0.796 0.975
T1 0.838 0.681 0.762 0.017 0.153 0.819 0.972
T2 0.662 0.641 0.688 0.023 0.109 0.767 0.975
T3 0.634 0.647 0.713 0.022 0.084 0.779 0.953
T4 0.317 0.433 0.492 0.058 0.071 0.666 0.625
T5 0.806 0.731 0.791 0.015 0.159 0.837 0.981
T6 0.725 0.691 0.744 0.024 0.113 0.777 0.963
T7 0.744 0.650 0.728 0.020 0.103 0.789 0.991
T8 0.558 0.561 0.611 0.033 0.069 0.732 0.812
T9 0.672 0.653 0.725 0.024 0.125 0.759 0.953

Average 0.669 0.639 0.698 0.025 0.113 0.772 0.920

Table 4.30. Parallel network results on cup_1 object (Test set)



4.4 Results 47

mug_0 P2D ADD(-S) <2cm MAE 5c5d AUC AP
T0 0.204 0.483 0.650 0.020 0.071 0.787 0.996
T1 0.472 0.531 0.697 0.019 0.188 0.796 0.997
T2 0.512 0.472 0.581 0.027 0.212 0.730 0.997
T3 0.084 0.287 0.431 0.031 0.009 0.712 0.672
T4 0.306 0.331 0.466 0.029 0.037 0.706 0.994
T5 0.803 0.768 0.868 0.015 0.345 0.843 0.994
T6 0.438 0.412 0.725 0.017 0.025 0.813 1.000
T7 0.006 0.087 0.144 0.044 0.000 0.559 0.988
T8 0.219 0.269 0.350 0.037 0.113 0.639 0.969
T9 0.850 0.562 0.884 0.016 0.409 0.827 1.000

Average 0.389 0.420 0.580 0.025 0.141 0.741 0.961

Table 4.31. Parallel network results on mug_0 object (Test set)

mug_1 P2D ADD(-S) <2cm MAE 5c5d AUC AP
T0 0.278 0.353 0.484 0.027 0.075 0.726 0.991
T1 0.228 0.269 0.409 0.036 0.062 0.658 0.956
T2 0.467 0.404 0.529 0.030 0.129 0.700 0.958
T3 0.463 0.481 0.631 0.026 0.044 0.744 0.963
T4 0.344 0.344 0.475 0.032 0.013 0.704 0.694
T5 0.533 0.502 0.658 0.023 0.100 0.759 0.994
T6 0.269 0.298 0.395 0.052 0.151 0.622 0.771
T7 0.175 0.338 0.412 0.041 0.000 0.661 0.975
T8 0.093 0.131 0.186 0.126 0.013 0.381 0.338
T9 0.484 0.478 0.644 0.024 0.216 0.751 0.950

Average 0.333 0.360 0.482 0.042 0.080 0.671 0.859

Table 4.32. Parallel network results on mug_1 object (Test set)



48 Experiments

mug_2 P2D ADD(-S) <2cm MAE 5c5d AUC AP
T0 0.844 0.759 0.894 0.015 0.662 0.833 0.988
T1 0.866 0.688 0.778 0.018 0.556 0.812 0.991
T2 0.541 0.569 0.647 0.025 0.369 0.741 0.991
T3 0.922 0.863 0.931 0.013 0.644 0.855 0.997
T4 0.388 0.472 0.609 0.025 0.163 0.751 0.944
T5 0.719 0.609 0.756 0.017 0.475 0.821 0.997
T6 0.706 0.581 0.659 0.026 0.362 0.749 0.991
T7 0.641 0.522 0.641 0.025 0.272 0.758 0.994
T8 0.792 0.742 0.850 0.017 0.250 0.826 1.000
T9 0.881 0.625 0.772 0.018 0.753 0.814 1.000

Average 0.730 0.643 0.754 0.020 0.451 0.796 0.989

Table 4.33. Parallel network results on mug_2 object (Test set)

mug_3 P2D ADD(-S) <2cm MAE 5c5d AUC AP
T0 0.709 0.794 0.853 0.020 0.319 0.811 0.994
T1 0.822 0.716 0.759 0.032 0.503 0.729 0.994
T2 0.450 0.375 0.431 0.037 0.175 0.650 0.966
T3 0.331 0.662 0.722 0.022 0.259 0.781 0.778
T4 0.308 0.425 0.479 0.039 0.054 0.673 0.900
T5 0.725 0.731 0.812 0.019 0.469 0.815 0.997
T6 0.938 0.887 0.919 0.014 0.844 0.853 0.991
T7 0.684 0.713 0.756 0.017 0.350 0.821 0.988
T8 0.438 0.588 0.616 0.029 0.281 0.722 0.978
T9 0.697 0.697 0.753 0.019 0.512 0.803 0.984

Average 0.610 0.659 0.710 0.025 0.377 0.766 0.957

Table 4.34. Parallel network results on mug_3 object (Test set)



4.4 Results 49

mug_4 P2D ADD(-S) <2cm MAE 5c5d AUC AP
T0 0.644 0.916 0.906 0.015 0.441 0.837 0.975
T1 0.775 0.875 0.863 0.016 0.675 0.829 0.971
T2 0.541 0.666 0.647 0.025 0.163 0.745 0.972
T3 0.309 0.744 0.719 0.020 0.138 0.786 0.950
T4 0.454 0.817 0.796 0.022 0.283 0.794 0.975
T5 0.616 0.816 0.803 0.018 0.372 0.814 0.984
T6 0.428 0.731 0.713 0.024 0.219 0.753 0.953
T7 0.578 0.666 0.631 0.026 0.566 0.749 0.978
T8 0.489 0.702 0.693 0.026 0.138 0.754 0.978
T9 0.319 0.550 0.528 0.026 0.212 0.733 0.978

Average 0.515 0.748 0.730 0.022 0.321 0.780 0.971

Table 4.35. Parallel network results on mug_4 object (Test set)

mug_5 P2D ADD(-S) <2cm MAE 5c5d AUC AP
T0 0.705 0.815 0.809 0.022 0.536 0.794 0.956
T1 0.879 0.829 0.825 0.022 0.833 0.781 0.979
T2 0.671 0.875 0.871 0.021 0.492 0.812 0.954
T3 0.734 0.884 0.862 0.017 0.599 0.815 0.953
T4 0.592 0.787 0.777 0.020 0.574 0.806 0.918
T5 0.869 0.894 0.891 0.020 0.816 0.802 0.978
T6 0.834 0.900 0.894 0.016 0.487 0.841 0.959
T7 0.738 0.762 0.744 0.027 0.459 0.757 0.963
T8 0.800 0.887 0.872 0.016 0.622 0.833 0.963
T9 0.819 0.794 0.775 0.021 0.637 0.786 0.978

Average 0.764 0.843 0.832 0.020 0.606 0.803 0.960

Table 4.36. Parallel network results on mug_5 object (Test set)



50 Experiments

mug_6 P2D ADD(-S) <2cm MAE 5c5d AUC AP
T0 0.779 0.887 0.838 0.014 0.408 0.849 0.958
T1 0.850 0.947 0.925 0.012 0.787 0.864 0.938
T2 0.672 0.834 0.787 0.016 0.519 0.828 0.981
T3 0.141 0.292 0.260 0.070 0.179 0.439 0.392
T4 0.603 0.925 0.900 0.014 0.500 0.847 0.938
T5 0.863 0.931 0.916 0.014 0.675 0.849 0.953
T6 0.747 0.909 0.884 0.013 0.472 0.856 0.950
T7 0.803 0.858 0.816 0.017 0.531 0.820 0.954
T8 0.375 0.800 0.779 0.017 0.113 0.823 0.921
T9 0.775 0.881 0.841 0.016 0.556 0.829 0.963

Average 0.661 0.826 0.795 0.020 0.474 0.800 0.895

Table 4.37. Parallel network results on mug_6 object (Test set)

4.4.4 Mono network (original PVNet)

ball_0 P2D ADD(-S) <2cm MAE 5c5d AUC APL
T0 0.925 0.789 0.984 0.013 0.311 0.912 0.994
T1 0.940 0.696 0.956 0.018 0.216 0.899 0.991
T2 0.959 0.616 0.897 0.010 0.228 0.881 1.000
T3 0.918 0.505 0.915 0.072 0.241 0.851 0.994
T4 0.894 0.578 0.931 0.010 0.306 0.885 0.991
T5 0.950 0.653 0.931 0.014 0.225 0.891 1.000
T6 0.900 0.237 0.588 0.083 0.219 0.757 1.000
T7 0.953 0.627 0.897 0.009 0.197 0.886 1.000
T8 0.953 0.391 0.766 0.043 0.303 0.824 0.997
T9 0.928 0.697 0.959 0.007 0.247 0.905 0.997

Average 0.932 0.579 0.882 0.028 0.249 0.869 0.996

Table 4.38. Mono network results on ball_0 object (Test set)



4.4 Results 51

heart_0 P2D ADD(-S) <2cm MAE 5c5d AUC APL
T0 0.994 0.434 0.694 0.213 0.325 0.742 1.000
T1 0.947 0.438 0.706 0.100 0.256 0.762 0.997
T2 0.822 0.150 0.325 0.271 0.078 0.552 0.988
T3 0.738 0.192 0.408 0.197 0.208 0.641 1.000
T4 0.725 0.100 0.256 0.295 0.031 0.441 0.997
T5 0.613 0.316 0.466 0.242 0.256 0.607 1.000
T6 0.900 0.206 0.475 0.115 0.119 0.686 1.000
T7 1.000 0.312 0.775 0.014 0.675 0.842 1.000
T8 0.642 0.104 0.242 0.504 0.004 0.439 0.938
T9 0.466 0.031 0.094 0.433 0.081 0.354 1.000

Average 0.784 0.228 0.444 0.238 0.203 0.607 0.992

Table 4.39. Mono network results on heart_0 object (Test set)

tree_0 P2D ADD(-S) <2cm MAE 5c5d AUC APL
T0 0.738 0.629 0.729 0.031 0.592 0.796 0.996
T1 0.796 0.379 0.487 0.091 0.229 0.721 0.983
T2 0.829 0.521 0.604 0.141 0.254 0.690 0.988
T3 0.547 0.006 0.019 0.557 0.044 0.345 0.981
T4 0.967 0.562 0.721 0.020 0.392 0.820 0.996
T5 0.725 0.481 0.550 0.151 0.353 0.679 0.994
T6 0.504 0.125 0.217 0.320 0.204 0.423 0.750
T7 0.850 0.400 0.525 0.095 0.325 0.707 0.950
T8 0.649 0.314 0.410 0.262 0.084 0.593 0.874
T9 0.858 0.463 0.588 0.038 0.237 0.767 0.988

Average 0.746 0.388 0.485 0.171 0.271 0.654 0.950

Table 4.40. Mono network results on tree_0 object (Test set)



52 Experiments

bottle_0 P2D ADD(-S) <2cm MAE 5c5d AUC APL
T0 0.404 0.122 0.191 0.636 0.038 0.305 1.000
T1 0.503 0.138 0.278 0.277 0.078 0.442 1.000
T2 0.575 0.222 0.388 0.248 0.100 0.502 1.000
T3 0.266 0.025 0.059 0.681 0.009 0.122 0.759
T4 0.403 0.144 0.322 0.309 0.059 0.435 0.928
T5 0.463 0.087 0.237 0.363 0.050 0.412 1.000
T6 0.500 0.075 0.194 0.350 0.059 0.368 0.997
T7 0.362 0.083 0.138 0.603 0.037 0.273 0.804
T8 0.303 0.141 0.234 0.377 0.041 0.392 0.828
T9 0.447 0.122 0.209 0.371 0.056 0.413 0.997

Average 0.423 0.116 0.225 0.421 0.053 0.366 0.931

Table 4.41. Mono network results on bottle_0 object (Test set)

bottle_1 P2D ADD(-S) <2cm MAE 5c5d AUC APL
T0 0.909 1.000 1.000 0.005 0.581 0.931 0.991
T1 0.928 1.000 1.000 0.004 0.525 0.938 0.975
T2 0.875 0.953 0.966 0.007 0.494 0.911 0.991
T3 0.784 0.950 0.963 0.029 0.394 0.902 0.994
T4 0.816 0.972 0.988 0.011 0.416 0.912 0.991
T5 0.947 0.984 0.997 0.006 0.606 0.919 0.994
T6 0.947 1.000 1.000 0.005 0.609 0.936 0.997
T7 0.963 0.996 0.996 0.005 0.600 0.933 0.992
T8 0.831 0.941 0.963 0.011 0.306 0.903 0.984
T9 0.719 0.994 0.997 0.006 0.444 0.923 0.994

Average 0.872 0.979 0.987 0.009 0.497 0.921 0.990

Table 4.42. Mono network results on bottle_1 object (Test set)



4.4 Results 53

bottle_2 P2D ADD(-S) <2cm MAE 5c5d AUC APL
T0 0.660 0.750 0.767 0.076 0.355 0.799 0.938
T1 0.870 0.875 0.880 0.089 0.540 0.849 0.943
T2 0.787 0.907 0.912 0.066 0.512 0.863 0.958
T3 0.642 0.767 0.777 0.028 0.310 0.841 0.902
T4 0.632 0.657 0.660 0.136 0.305 0.739 0.858
T5 0.925 0.966 0.972 0.008 0.700 0.905 0.938
T6 0.620 0.825 0.833 0.061 0.335 0.823 0.917
T7 0.552 0.642 0.650 0.079 0.253 0.751 0.915
T8 0.425 0.660 0.670 0.253 0.275 0.701 0.848
T9 0.595 0.650 0.665 0.074 0.367 0.762 0.940

Average 0.671 0.770 0.779 0.087 0.395 0.803 0.915

Table 4.43. Mono network results on bottle_2 object (Test set)

cup_0 P2D ADD(-S) <2cm MAE 5c5d AUC APL
T0 0.197 0.400 0.503 0.343 0.047 0.582 0.991
T1 0.259 0.450 0.569 0.191 0.072 0.633 0.997
T2 0.178 0.347 0.434 0.399 0.019 0.513 0.991
T3 0.008 0.029 0.075 1.236 0.021 0.092 0.237
T4 0.138 0.312 0.356 0.384 0.013 0.443 0.706
T5 0.247 0.403 0.491 0.346 0.047 0.541 0.997
T6 0.246 0.233 0.304 0.337 0.079 0.464 0.996
T7 0.050 0.209 0.241 0.373 0.009 0.377 0.606
T8 0.091 0.191 0.247 0.505 0.019 0.359 0.659
T9 0.206 0.222 0.294 0.590 0.066 0.377 0.850

Average 0.162 0.280 0.351 0.470 0.039 0.438 0.803

Table 4.44. Mono network results on cup_0 object (Test set)



54 Experiments

cup_1 P2D ADD(-S) <2cm MAE 5c5d AUC APL
T0 0.450 0.516 0.550 0.106 0.103 0.672 0.975
T1 0.531 0.613 0.688 0.090 0.175 0.741 0.972
T2 0.347 0.384 0.434 0.205 0.109 0.575 0.975
T3 0.259 0.509 0.550 0.205 0.075 0.610 0.953
T4 0.138 0.362 0.404 0.326 0.042 0.503 0.625
T5 0.450 0.619 0.662 0.132 0.138 0.681 0.981
T6 0.356 0.519 0.553 0.114 0.081 0.650 0.963
T7 0.394 0.588 0.628 0.142 0.122 0.675 0.991
T8 0.250 0.438 0.466 0.340 0.084 0.500 0.812
T9 0.338 0.456 0.519 0.132 0.084 0.607 0.953

Average 0.351 0.500 0.545 0.179 0.101 0.621 0.920

Table 4.45. Mono network results on cup_1 object (Test set)

mug_0 P2D ADD(-S) <2cm MAE 5c5d AUC APL
T0 0.192 0.129 0.179 0.538 0.037 0.409 0.996
T1 0.441 0.234 0.316 0.137 0.178 0.535 1.000
T2 0.438 0.156 0.231 0.467 0.184 0.396 0.997
T3 0.100 0.066 0.116 0.537 0.019 0.229 0.697
T4 0.309 0.216 0.319 0.487 0.047 0.426 0.991
T5 0.868 0.621 0.727 0.033 0.364 0.819 1.000
T6 0.425 0.338 0.425 0.037 0.037 0.645 1.000
T7 0.087 0.019 0.025 0.356 0.000 0.141 0.981
T8 0.163 0.062 0.087 0.627 0.062 0.222 0.856
T9 0.891 0.484 0.650 0.018 0.459 0.804 1.000

Average 0.391 0.232 0.308 0.324 0.139 0.463 0.952

Table 4.46. Mono network results on mug_0 object (Test set)



4.4 Results 55

mug_1 P2D ADD(-S) <2cm MAE 5c5d AUC APL
T0 0.225 0.194 0.275 0.350 0.072 0.501 0.991
T1 0.253 0.044 0.081 0.568 0.019 0.228 0.956
T2 0.512 0.158 0.212 0.451 0.138 0.438 0.958
T3 0.388 0.069 0.094 0.357 0.056 0.371 0.963
T4 0.300 0.181 0.269 0.358 0.000 0.488 0.694
T5 0.517 0.219 0.292 0.275 0.094 0.554 0.994
T6 0.229 0.100 0.133 0.430 0.062 0.339 0.771
T7 0.100 0.150 0.250 0.125 0.000 0.461 0.975
T8 0.087 0.087 0.121 0.671 0.004 0.207 0.338
T9 0.416 0.191 0.278 0.442 0.131 0.508 0.950

Average 0.303 0.139 0.201 0.403 0.058 0.409 0.859

Table 4.47. Mono network results on mug_1 object (Test set)

mug_2 P2D ADD(-S) <2cm MAE 5c5d AUC APL
T0 0.884 0.797 0.859 0.021 0.744 0.871 0.988
T1 0.872 0.775 0.841 0.025 0.597 0.842 0.991
T2 0.528 0.312 0.378 0.174 0.309 0.596 0.991
T3 0.938 0.528 0.616 0.044 0.603 0.789 0.997
T4 0.306 0.169 0.216 0.416 0.103 0.420 0.944
T5 0.744 0.591 0.672 0.095 0.434 0.766 0.997
T6 0.681 0.322 0.369 0.209 0.328 0.557 0.991
T7 0.491 0.400 0.463 0.242 0.200 0.590 0.994
T8 0.779 0.458 0.517 0.105 0.275 0.690 1.000
T9 0.878 0.503 0.631 0.088 0.656 0.759 1.000

Average 0.710 0.486 0.556 0.142 0.425 0.688 0.989

Table 4.48. Mono network results on mug_2 object (Test set)



56 Experiments

mug_3 P2D ADD(-S) <2cm MAE 5c5d AUC APL
T0 0.681 0.394 0.447 0.153 0.328 0.680 0.994
T1 0.881 0.625 0.669 0.111 0.547 0.776 0.994
T2 0.309 0.256 0.281 0.276 0.159 0.449 0.966
T3 0.216 0.081 0.091 0.636 0.128 0.292 0.778
T4 0.229 0.188 0.212 0.392 0.029 0.411 0.900
T5 0.756 0.491 0.522 0.065 0.444 0.735 0.997
T6 0.909 0.503 0.544 0.091 0.719 0.724 0.991
T7 0.491 0.412 0.434 0.221 0.306 0.565 0.988
T8 0.397 0.312 0.344 0.218 0.247 0.557 0.978
T9 0.709 0.388 0.428 0.148 0.422 0.667 0.984

Average 0.558 0.365 0.397 0.231 0.333 0.585 0.957

Table 4.49. Mono network results on mug_3 object (Test set)

mug_4 P2D ADD(-S) <2cm MAE 5c5d AUC APL
T0 0.700 0.606 0.578 0.115 0.553 0.732 0.975
T1 0.704 0.646 0.642 0.092 0.588 0.755 0.971
T2 0.400 0.275 0.272 0.306 0.147 0.516 0.972
T3 0.247 0.259 0.250 0.673 0.069 0.386 0.950
T4 0.546 0.512 0.508 0.150 0.258 0.674 0.975
T5 0.475 0.544 0.516 0.104 0.303 0.671 0.984
T6 0.356 0.441 0.428 0.262 0.178 0.564 0.953
T7 0.591 0.428 0.403 0.253 0.512 0.570 0.978
T8 0.382 0.461 0.455 0.226 0.160 0.582 0.978
T9 0.297 0.537 0.525 0.114 0.253 0.651 0.978

Average 0.470 0.471 0.458 0.230 0.302 0.610 0.971

Table 4.50. Mono network results on mug_4 object (Test set)



4.4 Results 57

mug_5 P2D ADD(-S) <2cm MAE 5c5d AUC APL
T0 0.793 0.687 0.680 0.035 0.461 0.790 0.956
T1 0.979 0.838 0.829 0.013 0.904 0.853 0.979
T2 0.650 0.596 0.579 0.052 0.467 0.750 0.954
T3 0.734 0.451 0.439 0.175 0.539 0.646 0.953
T4 0.530 0.536 0.527 0.214 0.467 0.647 0.918
T5 0.944 0.778 0.769 0.030 0.847 0.835 0.978
T6 0.675 0.588 0.569 0.061 0.450 0.739 0.959
T7 0.694 0.578 0.569 0.246 0.403 0.675 0.963
T8 0.762 0.622 0.606 0.035 0.556 0.774 0.963
T9 0.869 0.794 0.772 0.036 0.659 0.818 0.978

Average 0.763 0.647 0.634 0.090 0.575 0.753 0.960

Table 4.51. Mono network results on mug_5 object (Test set)

mug_6 P2D ADD(-S) <2cm MAE 5c5d AUC APL
T0 0.717 0.679 0.658 0.145 0.487 0.749 0.958
T1 0.822 0.637 0.613 0.110 0.644 0.741 0.938
T2 0.553 0.531 0.516 0.503 0.322 0.558 0.981
T3 0.110 0.107 0.103 0.637 0.094 0.182 0.392
T4 0.456 0.284 0.259 0.481 0.325 0.450 0.938
T5 0.825 0.625 0.600 0.105 0.688 0.763 0.953
T6 0.675 0.312 0.263 0.326 0.263 0.496 0.950
T7 0.686 0.690 0.674 0.096 0.439 0.727 0.954
T8 0.275 0.438 0.400 0.172 0.113 0.636 0.921
T9 0.725 0.709 0.666 0.228 0.553 0.721 0.963

Average 0.584 0.501 0.475 0.280 0.393 0.602 0.895

Table 4.52. Mono network results on mug_6 object (Test set)

4.4.5 Summary and comparison
In the following tables, the models used for the evaluation have the following shortened
names:

• DF-O: Dense fusion trained on RGB images plus depth maps acquired substitut-
ing the transparent objects with opaque counterparts in the framed scene;

• DF-T: Dense fusion trained on RGB images plus depth maps acquired leaving
the original transparent objects in the framed scene;

• KP: KeyPose;

• Mono: the original monocular PVNet implementation;

• Pr-18: the “parallel” approach for adapting PVNet to stereo images (uses ResNet18
as its backbone);



58 Experiments

• St-18: the “stereo” approach for adapting PVNet to stereo images (uses ResNet18
as its backbone);

• St-34: the “stereo” approach for adapting PVNet to stereo images (uses ResNet34
as its backbone).

The only metrics being considered are AUC, <2cm and MAE, since they are the
only ones reported in original KeyPose paper [13]. Performances on the KeyPose and
DenseFusion models are taken directly from the previously mentioned paper. The two
tables are meant to be seen as if they were concatenated horizontally, with each column
representing one of the 15 objects in the TOD dataset. Rows report the name of the
metric being computed and are combined in groups of three to distinguish between the
different models being evaluated.

All metrics are reported as percentages ranging from 0 to 100, with the exception
of the MAE metric which is expressed in millimeters.

meth. metr. ball bott0 bott1 bott2 cup0 cup1 mug0 mug1
DF-O AUC 90.0 88.6 69.1 56.0 84.0 80.7 67.8 66.3
DF-O <2cm 94.4 97.8 9.1 28.4 79.1 65.3 12.5 10.3
DF-O MAE 9.9 11.3 57.6 77.8 16.0 37.5 32.2 33.7
DF-T AUC 84.7 81.6 72.3 47.5 59.4 77.8 54.5 51.3
DF-T <2cm 78.8 67.5 18.1 9.1 5.6 54.4 4.6 0.3
DF-T MAE 15.3 18.4 27.6 65.6 40.5 22.1 45.5 48.7
KP AUC 96.1 95.4 94.9 90.7 93.1 92.0 91.0 78.1
KP <2cm 100 99.8 99.7 91.4 97.8 95.3 94.6 63.6
KP MAE 3.8 4.6 5.1 9.3 6.8 7.1 8.9 21.9

Mono AUC 86.9 36.6 92.1 80.3 43.8 62.1 46.0 40.9
Mono <2CM 88.2 22.5 98.7 77.9 35.1 54.5 30.7 20.1
Mono MAE 28.1 421 8.8 86.9 470 179 324 403
Pr-18 AUC 87.4 81.3 86.5 82.4 69.4 77.2 74.1 67.1
Pr-18 <2CM 91.6 78.4 90.4 79.0 53.6 69.8 58.0 48.2
Pr-18 MAE 11.7 18.8 11.7 16.8 44.3 25.5 25.5 41.7
St-18 AUC - - - - - - - -
St-18 <2CM - - - - - - - -
St-18 MAE - - - - - - - -
St-34 AUC 90.3 80.6 89.7 83.7 66.9 79.6 70.8 51.5
St-34 <2CM 95.6 75.9 95.3 80.5 51.5 73.9 48.8 29.0
St-34 MAE 9.1 22.8 8.9 15.3 54.2 24.7 32.5 111

Table 4.53. Results summary - part one



4.4 Results 59

meth. metr. mug2 mug3 mug4 mug5 mug6 heart tree mean
DF-O AUC 71.4 70.0 69.0 76.8 51.2 61.7 75.5 71.9
DF-O <2cm 28.1 20.3 4.7 41.9 3.1 17.2 50.9 37.5
DF-O MAE 28.6 30.0 31.0 23.2 75.2 38.3 24.5 35.1
DF-T AUC 60.4 67.3 48.1 70.6 64.9 61.2 55.6 63.8
DF-T <2cm 12.2 8.1 0.0 20.0 4.7 0.0 0.0 18.9
DF-T MAE 39.5 32.7 54.9 29.4 35.9 38.8 44.4 37.2
KP AUC 89.7 88.6 87.8 91.0 90.3 84.3 87.1 90.0
KP <2cm 90.1 87.2 87.1 93.1 92.2 77.2 82.5 90.1
KP MAE 10.1 11.3 12.1 9.0 9.7 15.6 12.8 9.9

Mono AUC 68.8 75.3 61.0 75.3 60.2 60.7 65.4 63.7
Mono <2CM 55.6 63.4 45.8 63.4 47.5 44.4 48.5 53.1
Mono MAE 142 231 230 90.0 280 23.8 171 205
Pr-18 AUC 79.6 76.6 78.0 80.3 80.0 83.2 84.4 79.2
Pr-18 <2CM 75.4 71.0 73.0 83.2 79.5 80.9 87.5 74.6
Pr-18 MAE 20.0 25.0 21.8 21.0 20.0 16.7 15.3 22.4
St-18 AUC - 74.0 77.3 79.2 80.9 79.5 72.5 -
St-18 <2CM - 65.4 68.2 77.9 77.4 70.2 65.5 -
St-18 MAE - 31.3 24.4 22.6 19.6 35.1 42.4 -
St-34 AUC 74.5 75.4 80.0 76.9 80.0 79.9 70.1 76.7
St-34 <2cm 61.8 67.2 74.0 74.9 75.2 72.1 57.3 68.9
St-34 MAE 27.5 28.5 20.0 25.6 21.6 25.6 52.2 31.9

Table 4.54. Results summary - part two

4.4.6 Results discussion

Keeping the performance of the original monocular PVNet approach as a baseline,
it is possible to see from table 4.54 that it outperforms the depth-based Densefusion
network on AUC and <2cm metrics but not on MAE, due to the presence of outliers in
the detections skewing the mean (since the <2cm metric is 53.1% in average, it means
that roughly half the samples have a MAE below 20 millimeters, while the average
MAE is 205 millimeters). This was expected since obtaining good depth readings on
transparent objects is hard, and so DenseFusion was not able to gain much information
from the depth maps. When the depth maps were acquired using a opaque substitute
for the object, DenseFusion has a better AUC than PVNet but still a significantly lower
<2cm metric, showing again that PVNet is generally more precise but has higher (in
magnitude) errors in the presence of a noisy detection.

Aggregating information from both images in the stereo pair significantly increases
PVNet’s performance, both in the “parallel” and “stereo” approaches. The “parallel”
model obtained better results than the “stereo” approach, getting close to the ones of
the original method proposed for the dataset (Keypose) in most objects. In particular,
table 4.54 shows that the average MAE for all objects goes down from 205 millimeters
for the monocular case to 22.4 millimeters in the “parallel” case, just above the 2cm
threshold for the corresponding metric. This demonstrates that, even in the presence
of noisy detection in one or both images, enforcing camera transformation constraints



60 Experiments

with an optimization procedure can correct both detections, reducing the error by an
order of magnitude.

4.4.7 Possible improvements

Possible improvements for both systems are:

• exploring different sets of keypoints rather than furthest point sampling, for ex-
ample the interpolated bounding box corners used in [3];

• separating the object detection and keypoint vote regression in two stages, per-
forming segmentation first and then performing regression on the patch high-
lighted by the detection step. In particular it would be interesting to implement
the heatmap object detection approach used in Keypose;

• exploring different backbone networks instead of ResNet, like EfficientNet [56];

• integrating a differentiable RANSAC procedure to optimize directly a loss defined
on the 2D keypoints.

• possibly integrating a differentiable PnP module to turn PVNet into an holistic
method able to optimize directly the object’s pose.

4.4.8 Successful test samples

Here are displayed some ideal network outputs for some test samples. In the follow-
ing images, green represents ground truth bounding boxes, blue represent monocular
PVNet predicted bounding boxes (computed on the left images), and magenta represent
bounding boxes predicted by the parallel or stereo models.

When comparing parallel and monocular predictions, if one looks at the left image
only it may seem that both networks made very similar predictions. In reality, this
reflects well the problem with monocular pose estimation: the model makes a prediction
that fits the left image, but that does not necessarily mean that it feats the real word,
and that becomes evident when the same pose is transformed in the right image frame.
Instead, the parallel network can refine the (possibly very wrong) predictions on left
and right images in order to force the result to fit both.



4.4 Results 61

Figure 4.14. heart_0 success case for the parallel network on texture 2; on the right
image it is possible to see that the monocular network prediction is not robust to
viewpoint changes. The MAE metric for the monocular estimation is 1.74 meters,
which is lowered to 9.5 millimeters when applying the parallel method

Figure 4.15. heart_0 success case for the parallel network on texture 4; in this case,
the monocular network made a better prediction and so the drift in the right image is
less apparent. The MAE metric for the monocular estimation is 7.1 centimeters, which
is lowered to 4.9 millimeters when applying the parallel method



62 Experiments

Figure 4.16. heart_0 success case for the Stereo34 network on texture 2; it is possible
to notice a slight tilt in the predicted bounding box but the MAE metric shows an error
of only 4.2 millimeters

4.4.9 Failed test samples
The TOD dataset contains many challenging samples, mainly when textures 4 and 8
are involved. Below, some failure cases are reported: in the images the green crosses
represent the ground truth location for the 2D keypoints, while the blue crosses are the
model’s prediction; the area highlighted in yellow represents the object’s segmentation.

Figure 4.17. Original left camera image for mug_1 object over texture 4. On the right
a zoom in on the transparent object is provided. The mug is at the center of the texture



4.4 Results 63

Figure 4.18. Stereo34 network prediction for mug_1’s failure case on texture 4: left
image’s prediction is on the object but with a wrong scale since it only detected a small
portion of the object, while the right image’s prediction is completely wrong, detecting
the object on the corner of the image

Figure 4.19. Original left camera image for mug_1 object over texture 8. On the right
a zoom in on the transparent object is provided. The mug is at the center of the texture



64 Experiments

Figure 4.20. Stereo34 network prediction for mug_1’s failure case on texture 8: both
cameras detect only a small part of the object, resulting in partially correct but incom-
patible results



Chapter 5

Conclusions

In this work two methods were developed to adapt the existing PVNet [1] monocular
pose estimator to the multi-view scenario: one processing each view in parallel with
PVNet and then performing post-processing to aggregate and optimize the results,
and one processing directly the aggregated views as a single input. Both models were
then provided with a custom post-processing procedure, optimizing reprojection errors
jointly on all camera views, and enforcing the bias that every image contains one and
only one object to detect.

Both models were evaluated on the challenging Transparent Object Dataset [13],
and showed significant improvements with respect to the monocular network baseline
and also outperformed a depth-based pose estimation model, which struggles to get a
good depth reading on transparent objects. Both systems did not reach the perfor-
mance of the original network developed for the specific dataset on some particularly
challenging objects but have the potential to grow and reach better results.

For what concerns the possible improvements , the “parallel” approach performs bet-
ter as is and can be easily extended to a system with more than two cameras by adding
more parallel executions of the same monocular PVNet architecture and modifying the
joint reprojection optimization; however, it is hard to add constraints that associate
images during the network inference step, since it is independent for each camera in
the system, so the only improvements that can be made are on the post-processing and
aggregation of the individual results. The “stereo” approach performs slightly worse
and adding more views directly in the model adds complexity to the network itself, so
it is less scalable in that sense; however, since all images are processed concurrently
by the same network, it is possible to create direct connections between the views, for
example by estimating disparities or leveraging a loss connecting votes from all views
with geometrical constraints. For this reason, this last model is the one with the most
growth potential for what concerns stereo pose estimation.

To conclude, the proposed approaches extending PVNet to the multi-view domain
have proven to be effective even in the challenging case of transparent object pose
estimation and the results have shown that the complexity of processing more than one
view pays off in terms of overall accuracy.



66 Conclusions



Bibliography

[1] S. Peng, Y. Liu, Q. Huang, H. Bao, and X. Zhou, “Pvnet: Pixel-wise voting network
for 6dof pose estimation,” 2018.

[2] C. Song, J. Song, and Q. Huang, “Hybridpose: 6d object pose estimation under
hybrid representations,” 2020.

[3] A. Amini, A. S. Periyasamy, and S. Behnke, “Yolopose: Transformer-based multi-
object 6d pose estimation using keypoint regression,” 2022.

[4] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox, “Posecnn: A convolu-
tional neural network for 6d object pose estimation in cluttered scenes,” CoRR,
vol. abs/1711.00199, 2017.

[5] W. Kehl, F. Manhardt, F. Tombari, S. Ilic, and N. Navab, “SSD-6D: mak-
ing rgb-based 3d detection and 6d pose estimation great again,” CoRR,
vol. abs/1711.10006, 2017.

[6] A. Doumanoglou, R. Kouskouridas, S. Malassiotis, and T.-K. Kim, “6d object
detection and next-best-view prediction in the crowd,” 12 2015.

[7] B. Drost, M. Ulrich, N. Navab, and S. Ilic, “Model globally, match locally: Efficient
and robust 3d object recognition,” pp. 998–1005, 07 2010.

[8] S. Hinterstoisser, V. Lepetit, N. Rajkumar, and K. Konolige, “Going further with
point pair features,” CoRR, vol. abs/1711.04061, 2017.

[9] C. Wang, D. Xu, Y. Zhu, R. Martín-Martín, C. Lu, L. Fei-Fei, and S. Savarese,
“Densefusion: 6d object pose estimation by iterative dense fusion,” CoRR,
vol. abs/1901.04780, 2019.

[10] M. Rad and V. Lepetit, “Bb8: A scalable, accurate, robust to partial occlusion
method for predicting the 3d poses of challenging objects without using depth,”
2017.

[11] X. Liu, S. Iwase, and K. M. Kitani, “Stereobj-1m: Large-scale stereo image dataset
for 6d object pose estimation,” CoRR, vol. abs/2109.10115, 2021.

[12] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 770–778, 2016.

[13] X. Liu, R. Jonschkowski, A. Angelova, and K. Konolige, “Keypose: Multi-
view 3d labeling and keypoint estimation for transparent objects,” CoRR,
vol. abs/1912.02805, 2019.



68 BIBLIOGRAPHY

[14] M. A. Fischler and R. C. Bolles, “Random sample consensus: A paradigm for model
fitting with applications to image analysis and automated cartography,” Commun.
ACM, vol. 24, pp. 381–395, jun 1981.

[15] X. Gao, X. Hou, J. Tang, and H.-F. Cheng, “Complete solution classification for
the perspective-three-point problem,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 25, pp. 930–943, 2003.

[16] V. Lepetit, F. Moreno-Noguer, and P. Fua, “Epnp: An accurate o(n) solution to
the pnp problem,” International Journal of Computer Vision, vol. 81, 02 2009.

[17] K. Levenberg, “A method for the solution of certain non - linear problems in least
squares,” Quarterly of Applied Mathematics, vol. 2, pp. 164–168, 1944.

[18] S. Shalev-Shwartz and S. Ben-David, Understanding Machine Learning: From The-
ory to Algorithms. USA: Cambridge University Press, 2014.

[19] H. E. Robbins, “A stochastic approximation method,” Annals of Mathematical
Statistics, vol. 22, pp. 400–407, 2007.

[20] Y. Lecun, Generalization and network design strategies. Elsevier, 1989.

[21] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

[22] A. Zhang, Z. C. Lipton, M. Li, and A. J. Smola, “Dive into deep learning,” arXiv
preprint arXiv:2106.11342, 2021.

[23] H. Noh, S. Hong, and B. Han, “Learning deconvolution network for semantic seg-
mentation,” CoRR, vol. abs/1505.04366, 2015.

[24] X.-J. Mao, C. Shen, and Y.-B. Yang, “Image restoration using very deep convolu-
tional encoder-decoder networks with symmetric skip connections,” 2016.

[25] R. K. Srivastava, K. Greff, and J. Schmidhuber, “Highway networks,” CoRR,
vol. abs/1505.00387, 2015.

[26] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin, “Attention is all you need,” CoRR, vol. abs/1706.03762, 2017.

[27] Y. Liu, Y. Zhang, Y. Wang, F. Hou, J. Yuan, J. Tian, Y. Zhang, Z. Shi, J. Fan,
and Z. He, “A survey of visual transformers,” CoRR, vol. abs/2111.06091, 2021.

[28] C. Gu and X. Ren, “Discriminative mixture-of-templates for viewpoint classifica-
tion,” in ECCV (5), pp. 408–421, 2010.

[29] S. Hinterstoisser, C. Cagniart, S. Ilic, P. Sturm, N. Navab, P. Fua, and V. Lep-
etit, “Gradient response maps for real-time detection of textureless objects,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 34, no. 5, pp. 876–
888, 2012.

[30] D. P. Huttenlocher, G. A. Klanderman, and W. A. Rucklidge, “Comparing images
using the hausdorff distance,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 15,
pp. 850–863, sep 1993.

[31] B. Lucas and T. Kanade, “An iterative image registration technique with an ap-
plication to stereo vision (ijcai),” vol. 81, 04 1981.



BIBLIOGRAPHY 69

[32] V. Lepetit and P. Fua, “Monocular model-based 3d tracking of rigid objects: A
survey,” Foundations and Trends in Computer Graphics and Vision, vol. 1, 01
2005.

[33] M. La Cascia, S. Sclaroff, and V. Athitsos, “Fast, reliable head tracking under
varying illumination: an approach based on registration of texture-mapped 3d
models,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22,
no. 4, pp. 322–336, 2000.

[34] F. Jurie and M. Dhome, “A simple and efficient template matching algorithm,”
in Proceedings Eighth IEEE International Conference on Computer Vision. ICCV
2001, vol. 2, pp. 544–549 vol.2, 2001.

[35] F. Jurie and M. Dhome, “Hyperplane approximation for template matching,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 7, pp. 996–
1000, 2002.

[36] C. Harris, “Tracking with rigid models,” 1993.

[37] D. G. Lowe, “Robust model-based motion tracking through the integration of search
and estimation,” Int. J. Comput. Vision, vol. 8, pp. 113–122, aug 1992.

[38] D. B. Gennery, “Visual tracking of known three-dimensional objects,” Int. J. Com-
put. Vision, vol. 7, pp. 243–270, apr 1992.

[39] D. Roller, K. Daniilidis, and H.-H. Nagel, “Model-based object tracking in monoc-
ular image sequences of road traffic scenes.,” International Journal of Computer
Vision, vol. 10, no. 3, pp. 257–281, 1993.

[40] C. Schmid and R. Mohr, “Local grayvalue invariants for image retrieval,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 19, no. 5, pp. 530–
535, 1997.

[41] C. G. Harris and M. J. Stephens, “A combined corner and edge detector,” in Alvey
Vision Conference, 1988.

[42] J. J. Koenderink and A. J. van Doom, “Representation of local geometry in the
visual system,” Biol. Cybern., vol. 55, pp. 367–375, mar 1987.

[43] D. Lowe, “Object recognition from local scale-invariant features,” in Proceedings of
the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 1150–
1157 vol.2, 1999.

[44] P. Wohlhart and V. Lepetit, “Learning descriptors for object recognition and 3d
pose estimation,” CoRR, vol. abs/1502.05908, 2015.

[45] P. Poirson, P. Ammirato, C.-Y. Fu, W. Liu, J. Košecká, and A. C. Berg, “Fast single
shot detection and pose estimation,” in 2016 Fourth International Conference on
3D Vision (3DV), pp. 676–684, 2016.

[46] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed, C. Fu, and A. C. Berg,
“SSD: single shot multibox detector,” CoRR, vol. abs/1512.02325, 2015.

[47] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” arXiv 1409.1556, 09 2014.

[48] G. Lin, C. Shen, Q. Shi, A. van den Hengel, and D. Suter, “Fast supervised hashing
with decision trees for high-dimensional data,” CoRR, vol. abs/1404.1561, 2014.



70 BIBLIOGRAPHY

[49] S. Li, Z. Yan, H. Li, and K.-T. Cheng, “Exploring intermediate representation for
monocular vehicle pose estimation,” 2020.

[50] P. Kamousi, S. Lazard, A. Maheshwari, and S. Wuhrer, “Analysis of farthest point
sampling for approximating geodesics in a graph,” CoRR, vol. abs/1311.4665, 2013.

[51] S. Hinterstoisser, V. Lepetit, S. Ilic, S. Holzer, G. Bradski, K. Konolige, and
N. Navab, “Model based training, detection and pose estimation of texture-less
3d objects in heavily cluttered scenes,” vol. 7724, 10 2012.

[52] E. Brachmann, A. Krull, F. Michel, S. Gumhold, J. Shotton, and C. Rother, “Learn-
ing 6d object pose estimation using 3d object coordinates,” in ECCV, 2014.

[53] C. Wang, D. Xu, Y. Zhu, R. Martín-Martín, C. Lu, L. Fei-Fei, and S. Savarese,
“Densefusion: 6d object pose estimation by iterative dense fusion,” CoRR,
vol. abs/1901.04780, 2019.

[54] S. Agarwal, K. Mierle, and T. C. S. Team, “Ceres Solver,” 2022.

[55] J. Berge, “J.c. gower and g.b. dijksterhuis. procrustes problems. new york: Oxford
university press,” Psychometrika, vol. 70, 12 2005.

[56] M. Tan and Q. V. Le, “Efficientnet: Rethinking model scaling for convolutional
neural networks,” 2019.

[57] P. J. Besl and R. C. Jain, “Three-dimensional object recognition,” ACM Comput.
Surv., vol. 17, pp. 75–145, mar 1985.

[58] S. Tulsiani and J. Malik, “Viewpoints and keypoints,” CoRR, vol. abs/1411.6067,
2014.



List of Tables

4.1 Train-test split . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Stereo34 results on ball_0 object . . . . . . . . . . . . . . . . . . . . . 32
4.3 Stereo34 results on heart_0 object . . . . . . . . . . . . . . . . . . . . . 33
4.4 Stereo34 results on tree_0 object . . . . . . . . . . . . . . . . . . . . . 33
4.5 Stereo34 results on bottle_0 object . . . . . . . . . . . . . . . . . . . . 34
4.6 Stereo34 results on bottle_1 object . . . . . . . . . . . . . . . . . . . . 34
4.7 Stereo34 results on bottle_2 object . . . . . . . . . . . . . . . . . . . . 35
4.8 Stereo34 results on cup_0 object . . . . . . . . . . . . . . . . . . . . . . 35
4.9 Stereo34 results on cup_1 object . . . . . . . . . . . . . . . . . . . . . . 36
4.10 Stereo34 results on mug_0 object . . . . . . . . . . . . . . . . . . . . . 36
4.11 Stereo34 results on mug_1 object . . . . . . . . . . . . . . . . . . . . . 37
4.12 Stereo34 results on mug_2 object . . . . . . . . . . . . . . . . . . . . . 37
4.13 Stereo34 results on mug_3 object . . . . . . . . . . . . . . . . . . . . . 38
4.14 Stereo34 results on mug_4 object . . . . . . . . . . . . . . . . . . . . . 38
4.15 Stereo34 results on mug_5 object . . . . . . . . . . . . . . . . . . . . . 39
4.16 Stereo34 results on mug_6 object . . . . . . . . . . . . . . . . . . . . . 39
4.17 Stereo18 results on heart_0 object . . . . . . . . . . . . . . . . . . . . . 40
4.18 Stereo18 results on tree_0 object . . . . . . . . . . . . . . . . . . . . . 40
4.19 Stereo18 results on mug_3 object . . . . . . . . . . . . . . . . . . . . . 41
4.20 Stereo18 results on mug_4 object . . . . . . . . . . . . . . . . . . . . . 41
4.21 Stereo18 results on mug_5 object . . . . . . . . . . . . . . . . . . . . . 42
4.22 Stereo18 results on mug_6 object . . . . . . . . . . . . . . . . . . . . . 42
4.23 Parallel results on ball_0 object . . . . . . . . . . . . . . . . . . . . . . 43
4.24 Parallel results on heart_0 object . . . . . . . . . . . . . . . . . . . . . 43
4.25 Parallel results on tree_0 object . . . . . . . . . . . . . . . . . . . . . . 44
4.26 Parallel results on bottle_0 object . . . . . . . . . . . . . . . . . . . . . 44
4.27 Parallel results on bottle_1 object . . . . . . . . . . . . . . . . . . . . . 45
4.28 Parallel results on bottle_2 object . . . . . . . . . . . . . . . . . . . . . 45
4.29 Parallel results on cup_0 object . . . . . . . . . . . . . . . . . . . . . . 46
4.30 Parallel results on cup_1 object . . . . . . . . . . . . . . . . . . . . . . 46
4.31 Parallel results on mug_0 object . . . . . . . . . . . . . . . . . . . . . . 47
4.32 Parallel results on mug_1 object . . . . . . . . . . . . . . . . . . . . . . 47
4.33 Parallel results on mug_2 object . . . . . . . . . . . . . . . . . . . . . . 48
4.34 Parallel results on mug_3 object . . . . . . . . . . . . . . . . . . . . . . 48
4.35 Parallel results on mug_4 object . . . . . . . . . . . . . . . . . . . . . . 49
4.36 Parallel results on mug_5 object . . . . . . . . . . . . . . . . . . . . . . 49
4.37 Parallel results on mug_6 object . . . . . . . . . . . . . . . . . . . . . . 50



72 LIST OF TABLES

4.38 Mono results on ball_0 object . . . . . . . . . . . . . . . . . . . . . . . 50
4.39 Mono results on heart_0 object . . . . . . . . . . . . . . . . . . . . . . 51
4.40 Mono results on tree_0 object . . . . . . . . . . . . . . . . . . . . . . . 51
4.41 Mono results on bottle_0 object . . . . . . . . . . . . . . . . . . . . . . 52
4.42 Mono results on bottle_1 object . . . . . . . . . . . . . . . . . . . . . . 52
4.43 Mono results on bottle_2 object . . . . . . . . . . . . . . . . . . . . . . 53
4.44 Mono results on cup_0 object . . . . . . . . . . . . . . . . . . . . . . . 53
4.45 Mono results on cup_1 object . . . . . . . . . . . . . . . . . . . . . . . 54
4.46 Mono results on mug_0 object . . . . . . . . . . . . . . . . . . . . . . . 54
4.47 Mono results on mug_1 object . . . . . . . . . . . . . . . . . . . . . . . 55
4.48 Mono results on mug_2 object . . . . . . . . . . . . . . . . . . . . . . . 55
4.49 Mono results on mug_3 object . . . . . . . . . . . . . . . . . . . . . . . 56
4.50 Mono results on mug_4 object . . . . . . . . . . . . . . . . . . . . . . . 56
4.51 Mono results on mug_5 object . . . . . . . . . . . . . . . . . . . . . . . 57
4.52 Mono results on mug_6 object . . . . . . . . . . . . . . . . . . . . . . . 57
4.53 Results summary, part one . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.54 Results summary, part two . . . . . . . . . . . . . . . . . . . . . . . . . 59



List of Figures

4.1 ball_0 and bottle_0 objects . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 bottle_1 and bottle_2 objects . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 cup_0 and cup_1 objects . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.4 mug_0 and mug_1 objects . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.5 mug_2 and mug_3 objects . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.6 mug_4 and mug_5 objects . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.7 mug_6 and heart_0 objects . . . . . . . . . . . . . . . . . . . . . . . . 27
4.8 tree_0 object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.9 heart_0 object over textures 0 and 1 . . . . . . . . . . . . . . . . . . . 28
4.10 heart_0 object over textures 2 and 3 . . . . . . . . . . . . . . . . . . . 28
4.11 heart_0 object over textures 4 and 5 . . . . . . . . . . . . . . . . . . . 28
4.12 heart_0 object over textures 6 and 7 . . . . . . . . . . . . . . . . . . . 28
4.13 heart_0 object over textures 8 and 9 . . . . . . . . . . . . . . . . . . . 29
4.14 heart_0 success case - T2: bounding boxes . . . . . . . . . . . . . . . . 61
4.15 heart_0 success case - T4: bounding boxes . . . . . . . . . . . . . . . . 61
4.16 heart_0 success case - T2: stereo bounding boxes . . . . . . . . . . . . 62
4.17 mug_1 failure case - T4: original pair . . . . . . . . . . . . . . . . . . . 62
4.18 mug_1 failure case - T4: ground truth and detection . . . . . . . . . . 63
4.19 mug_1 failure case - T8: original pair . . . . . . . . . . . . . . . . . . . 63
4.20 mug_1 failure case - T8: ground truth and detection . . . . . . . . . . 64


	Introduction
	Background
	Pose
	Projective geometry
	Pinhole camera model
	Stereo cameras
	Rectified stereo cameras

	Estimation background
	RANSAC
	Perpective-n-Point problem

	Deep Learning background
	Artificial Neural Networks
	Convolutional neural networks
	Residual networks
	Transformers


	Image-based 6DoF pose estimation
	Problem definition
	Geometry-based methods
	Deep learning methods
	RGB-D input
	Pure RGB input
	First approaches
	Modern holistic methods
	Modern two-step methods

	PVNet
	Keypose

	Multi-view Pixel-wise Voting Network for 6DoF Pose Estimation
	Pose estimation from stereo keypoints
	Integrating variance information

	Parallel network
	Stereo network
	Stereo network 34

	Single object assumption

	Experiments
	TOD Dataset
	Metrics definition
	Networks training
	Results
	Stereo34 network
	Stereo18 network
	Parallel network
	Mono network (original PVNet)
	Summary and comparison
	Results discussion
	Possible improvements
	Successful test samples
	Failed test samples


	Conclusions
	Bibliography
	List of Tables
	List of Figures

