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Abstract

After introducing the concept of divisor and the generalities of Intersection Theory, we will

see Mori’s Cone Theorem. This result will be the starting point of the Minimal Model

Program (MMP), whose goal is to find a “simple” birational model of any projective

variety. We will analyze in detail the MMP for surfaces, and then we will try to understand

the strategy for bigger dimentional cases.
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Introduction

The purpose of this thesis is to present an introductory course to the Minimal Model

Program, which is a relevant field of study in modern Mathematics: it suffices to say that

in 2014, Caucher Birkar was awarded the Fields Medal “for the proof of the boundedness

of Fano varieties and for contributions to the minimal model program”. We are going to

follow Mori’s path, and use his Cone Theorem to walk towards the MMP: this cohomo-

logical approach is founded on the study of contractions of extremal rays of the effective

cone which have negative intersection with the canonical divisor. Despite the fact that

for curves and surfaces we have now a complete understanding on how to find a minimal

model, in the general setting this remains an open problem.

Let us present more specifically the content of each chapter. In the first one, we will list

some elemental definitions and present (almost always without proof) some basic propo-

sitions regarding those concepts. In the first section we will focus on sheaves and schemes

with nice structures, while in the second we will use Čech cohomology in order to intro-

duce the concept of the nth cohomology group and its primary properties.

In Chapter 2, we are going to define the concepts of Weil and Cartier divisor and study

their correlation, see the connection between invertible sheaves and line bundles, look at

the notion of Picard group, and analyze the correspondence between linear systems and

morphisms to projective spaces. We will then study fundamental properties of divisors,

such as when they are globally generated, ample, very ample; for each one of those, we

will try to find cohomological consequences.

The Riemann-Roch Theorem will be the main result of the third Chapter, in which we

will also study intersection theory, first of curves and then in general (by using the Hilber-

Serre Theorem). We are also going to talk about blow-ups of points: this section is central
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in the study of the MMP, and is almost sufficient to give the complete classification of

minimal models for curves (that we will not treat in this thesis).

Chapter 4 will be centred on cones: we will see the elementary properties of cones (in

particular of the ones that contain no lines) and of extremal subcones; then, we will in-

troduce the notions of N1♣XqR and N1♣XqR, and of the Picard number of X, which will

lead to the concept of cone of curves and effective cone. We are going to see a numerical

characterization of ampleness through Kleiman’s criterion, study the order of dimension

of some nth cohomology groups, introduce the property of being big for a divisor, define

the relative cone of curves and present some examples, other than find the correlation

between φ and NE♣φq as a consequence of Stein factorization. Before all that, we will

present Nakai-Moishezon ampleness criterion, and then talk about nef divisors and their

characterization regarding intersection with curves.

In Chapter 5 we will initially introduce some concepts and results, often without a com-

plete proof, such as the notion of canonical divisor KX , the Adjunction formula, the

Riemann-Roch Theorem for curves formulated using KX (for which we will use Serre’s

duality Theorem), and the genus formula for curves. Then, Tsen’s Theorem will be the

starting point to introduce ruled surfaces and their characterization. We are now able

to talk about the extremal rays of the effective cone; after citing the Cone Theorem for

surfaces, we will see Castelnuovo’s Theorem. This result, together with the consequences

of the Theorem of elimination of indeterminacies, will provide a complete understanding

of the MMP for surfaces.

The dense last chapter will try to present the main results of the MMP in dimension higher

than 3. At the beginning, we will define the quasi-projective variety that parametrizes

morphisms, and make observations about its local dimension. Then, we are going to

present (often without proof) the main results of Mori Theory through his “bend-and-

break” lemmas, that will allow us to know in advance the presence of rational curves

through certain varieties with “nice” canonical divisor: in this context, it is of great im-

portance the Miyaoka-Mori Theorem. We are now ready to prove Mori’s Cone Theorem in

its full generality, which will allow us to study the properties ofKX-negative extremal rays
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of the effective cone; the existence of a contraction of those is guaranteed by Kawamata’s

base-point-free Theorem. The central part of the chapter is dedicated to the study of the

exceptional locus and its irreducible components, and will allow us to make a distinction

between all possible type of contractions: they can be of fiber type, divisorial, or small. If

the first two types guarantee nice properties for the codomain, small categories are much

difficult to handle, so that we need the new concept of flip in order to manage them.

Lastly, we are going to talk about minimal models: the origin of the name, a summary

of all results we were able to prove during this thesis (and some more), and the problems

that arise with this approach, some of which are still open in full generality.





Chapter 1

Preliminaries

In this whole thesis, we will always talk about commutative rings with unity, and K will

always be a field.

In this chapter, we will say (pre)sheaf for a (pre)sheaf of abelian groups.

1.1 Schemes

Definition 1.1.1. Let F be a sheaf on X. A subsheaf of F is a sheaf G on X s.t.

G♣Uq ↕ F♣Uq for any open subset U of X, and the restriction maps of G are induced by

those of F .

Definition 1.1.2. Let G be a subsheaf of a sheaf F on X. We define the quotient sheaf

F④G as the sheaf associated to the presheaf U ÞÑ F♣Uq④G♣Uq.

Remark 1.1.3. ♣F④Gqx ✏ Fx④Gx for any x P X.

Definition 1.1.4. Let f : X Ñ Y be a continuous map of topological spaces. For any

sheaf F on X, we define the direct image sheaf f✝F on Y by ♣f✝Fq♣Uq ✏ F♣f✁1♣Uqq.

Definition 1.1.5. If F and G are (pre)sheaves on X, a morphism φ : F Ñ G is a family

of morphisms of abelian groups φ♣Uq : F♣Uq Ñ G♣Uq for each open set U of X, s.t.

whenever V ❸ U we have that the diagram

F♣Uq G♣Uq

F♣V q G♣V q

ϕ♣Uq

ρU,V ρ✶
U,V

ϕ♣V q
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is commutative.

Let us recall some basic facts about sheaves.

Proposition 1.1.6. Let φ : F Ñ G be a morphism of sheaves on X. Then, φ is an

isomorphism ðñ φx : Fx Ñ Gx is an isomorphism for every x P X.

Definition 1.1.7. Let R be a ring, and X ✏ SpecR. Taking f P R, set

Cf ✏ tg P R ⑤ V ♣gq ❸ V ♣fq✉. Then, we define OX♣Xf q ✏ Cf
✁1R.

Remark 1.1.8. There is a natural isomorphism Rf ✕ OX♣Xf q.

Proposition 1.1.9. The previous Def. determines a sheaf on the base of distinguished

open subsets of X, and thus on the whole X.

Definition 1.1.10. Let R be a ring, and X ✏ SpecR. OX is called the structure sheaf of

X. The ringed space ♣X,OXq is said to be an affine scheme.

Definition 1.1.11. An affine scheme is a ringed space that is isomorphic to ♣SpecR,OSpecRq

for some ring R. A ringed space ♣X,OXq is a scheme if ❅x P X ❉U open neighborhood

of x s.t. ♣U,OX ⑤Uq is an affine scheme.

Definition 1.1.12. A morphism of schemes φ : X Ñ Y is affine if the inverse image of

every affine open subset of Y is an affine open subset of X.

Definition 1.1.13. A ring is said to be reduced if it has no nonzero nilpotents. Moreover,

a scheme ♣X,OXq is said to be:

❼ reduced if OX♣Uq is reduced for every open set U of X;

❼ integral if OX♣Uq is an integral domain for every nonempty open subset U of X.

Remark 1.1.14. An affine scheme SpecR is integral if and only if R is an integral

domain.

Proposition 1.1.15. A scheme is integral if and only if it is irreducible and reduced.
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Definition 1.1.16. Let R be a ring. A scheme ♣X,OXq is an R-scheme, or a scheme

over R, if OX♣Uq is an R-algebra for any open subset U of X, and all restriction maps

are morphisms of R-algebras.

Definition 1.1.17. An R-scheme ♣X,OXq is said to be locally of finite type if X can be

covered by a family of affine open sets tSpecAi✉iPI s.t. Ai is a f.g. R-algebra ❅i P I.

If furthermore X is quasi-compact, the scheme is said to be of finite type (over R).

Definition 1.1.18. An affine scheme that is reduced and of finite type over K is said to

be an affine variety (over K). A K-variety is an integral scheme of finite type over K.

Definition 1.1.19. Let ♣X,Oq be a ringed space. A sheaf F on X is an O-module if

F♣Uq is an O♣Uq-module for any open subset U of X, and this structure behaves well with

respect to restriction maps. Explicitely, if U ❸ V , then

O♣V q ✂ F♣V q F♣V q

O♣Uq ✂ F♣Uq F♣Uq

✝V

ρV,U✂ρ
✶
V,U ρ✶

V,U

✝U

is a commutative diagram, where ✝W is the operation associated to the multiplicative struc-

ture of F♣W q as an O♣W q-module.

Definition 1.1.20. A (locally) free sheaf on a ringed space ♣X,Oq is an O-module

(locally) isomorphic to O♣Iq for some index set I; it has rank n if ⑤I⑤ ✏ n.

A rank 1 locally free sheaf is called an invertible sheaf.

Definition 1.1.21. Given a topological space X, let Y be an irreducible closed subset of

X. η P Y is a generic point for Y if tη✉ ✏ Y .

Proposition 1.1.22. Every nonempty irreducible closed subset of a scheme has a unique

generic point.

Definition 1.1.23. A variety X is normal at a point x P X if OX,x is integrally closed

in K♣Xq. If this holds for any x P X, then X is said to be normal.
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Definition 1.1.24. A scheme is said to be locally noetherian if it can be covered by a

family of affine open subsets tSpecAi✉iPI , where each Ai is a noetherian ring.

A scheme is noetherian if it is locally noetherian and quasi-compact.

Proposition 1.1.25. A scheme is locally noetherian if and only if for every affine open

subset SpecA, A is a noetherian ring.

In particular, an affine scheme SpecA is noetherian if and only if A is noetherian.

Definition 1.1.26. A local noetherian ring R with maximal ideal m is called regular if m

is generated by dimR elements, i.e. if the tangent space has dimention

dimR④mm④m
2 ✏ dimR.

A noetherian ring R is said to be regular if Rp is regular for any prime ideal p⊴R.

Remark 1.1.27. A regular local ring is integral.

Definition 1.1.28. A scheme ♣X,OXq is said to be regular (or nonsingular) in codimen-

sion one if every local ring OX,x of dimension 1 is regular.

Remark 1.1.29. Nonsingular varieties over a field and noetherian normal schemes are

both regular in codimension 1.

Definition 1.1.30. A scheme ♣X,OXq is said to be locally factorial if every local ring

OX,x is a UFD.

Definition 1.1.31. Given a scheme ♣X,OXq and an open subset U of X, let us denote

by S♣Uq the set of elements of OX♣Uq which are not zero divisors in any local ring OX,u

for u P U . Then, the presheaf F defined by F♣Uq ✏ S♣Uq✁1OX♣Uq can be extended to a

sheaf KX , called the sheaf of (total) quotient rings of OX .

Definition 1.1.32. Given a ringed space ♣X,Oq, let F ,G be sheaves of O-modules. We

define F ❜ G as the sheaf associated to the presheaf U ÞÑ F♣Uq ❜O♣Uq G♣Uq.

Proposition 1.1.33. Given a ringed space ♣X,Oq, let F ,G be sheaves of O-modules.

Then, for any x P X we have that ♣F ❜ Gqx ✏ Fx ❜ Gx.
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Definition 1.1.34. Given a ring R, let M be an R-module. We define the sheaf ⑨M as⑨M♣Uq ✏ ts : U Ñ
➜
pPU

Mp ⑤ s♣pq PMp ❅p P U , and s is locally of the type m④r for some

m PM, r P R✉ for any open set U ❸ SpecR.

Proposition 1.1.35. Given a ring R and an R-module M , let ⑨M be the sheaf on

X ✏ SpecR associated to M . Then, ⑨M is an OX-module s.t. ⑨M♣Xq ✏M , and⑨M♣Xf q ✏Mf for any f P KrXs.

Definition 1.1.36. Let ♣X,OXq be a scheme. A sheaf of OX-modules F is said to be

quasi-coherent if X can be covered by open affine subsets Ui ✏ SpecAi such that for each

i we have F ⑤Ui
✕ ⑨Mi for some Ai-module Mi. We say that F is coherent if furthermore

each Mi can be taken to be f.g.

Remark 1.1.37. The structure sheaf OX is coherent.

Proposition 1.1.38. Let ♣X,OXq be a scheme. Then, an OX-module F is quasi-coherent

ðñ for every affine open subset U ✏ SpecA of X there is an A-moduleM s.t. F ⑤U ✕ ⑨M .

Proposition 1.1.39. Let ♣X,OXq be a noetherian scheme. Then, an OX-module F is

coherent ðñ for every affine open subset U ✏ SpecA of X there is a f.g. A-module M

s.t. F ⑤U ✕ ⑨M .

Theorem 1.1.40. Let R be a noetherian local domain of dim ✏ 1, with maximal ideal

m. Then, TFAE:

❼ R is a DVR;

❼ R is integrally closed;

❼ R is a regular local ring;

❼ m is a principal ideal.
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1.2 Čech cohomology

Definition 1.2.1. Let U ✏ tUi✉iPI be an open cover of a topological space X. For any

finite set of indexes i0, . . . , in P I, we set Ui0,...,in ✏
n↔

m✏0

Uim. Let F be a sheaf on X. After

fixing a well-ordering on I, for any n ➙ 0 we define Cn♣U ,Fq ✏
➵

i0➔☎☎☎➔in

F♣Ui0,...,inq. Thus,

each α P Cn♣U ,Fq is completely determined by a family of elements αi0,...,in P F♣Ui0,...,inq

for each ♣n � 1q-tuple i0 ➔ . . . ➔ in of indexes in I. Now, we define the nth coboundary

map dn : Cn♣U ,Fq Ñ Cn�1♣U ,Fq as ♣dn♣αqqi0,...,in�1
✏

n�1➳
m✏0

♣✁1qmαi0,...,①im,...,in ⑤Ui0,...,in�1
,

where the hat over an index means that it is omitted.

Proposition 1.2.2. Let U be an open cover of a topological space X, and let F be a sheaf

on X. Then,

0 Ñ C0♣U ,Fq
d0

ÝÑ C1♣U ,Fq
d1

ÝÑ C2♣U ,Fq
d2

ÝÑ . . .

is a cochain complex of abelian groups, called Čech complex.

Definition 1.2.3. Let U be an open cover of a topological space X. For any sheaf F on

X, we define the nth Čech cohomology group of F with respect to U asqHn♣U ,Fq :✏ ker♣dnq④Im♣dn✁1q.

Lemma 1.2.4. Let U be an open cover of a topological space X, and let F be a sheaf on

X. Then, qH0♣U ,Fq ✏ F♣Xq.

Proof. qH0♣U ,Fq ✏ ker♣d0q. If U ✏ tUi✉iPI and α P C
0♣U ,Fq is given by tαi P F♣Uiq✉iPI ,

then ♣d0♣αqqi,j ✏ αj ✁ αi for any i ➔ j. Therefore, the condition d0♣αq ✏ 0 means that

the sections αi and αj agree on Ui ❳ Uj. By the sheaf axioms, the thesis follows.

Theorem 1.2.5. Given a quasi-compact separated scheme X, let F be a quasi-coherent

sheaf on X. Then, qHn♣U ,Fq is independent of the choice of affine open cover U .

Definition 1.2.6. Given a quasi-compact separated scheme X, let F be a quasi-coherent

sheaf on X. For any affine open cover U of X, we define its nth cohomology group as

Hn♣X,Fq :✏ qHn♣U ,Fq.
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Proposition 1.2.7. Given a ring R and a quasi-compact separated R-scheme X, let F

be a quasi-coherent sheaf on X. Then, Hn♣X,Fq is an R-module. Moreover,

Hn♣X, q : QCohX ÑModR is a covariant functor.

Definition 1.2.8. Given a quasi-compact separated K-scheme X, let F be a quasi-

coherent sheaf on X. Then, by the previous Proposition we know that Hn♣X,Fq is a

vector space over K, so we can define hn♣X,Fq :✏ dimKH
n♣X,Fq.

Proposition 1.2.9. hs♣PnK ,OPn
K
♣mqq ✏

✩✬✫✬✪
�
n�m
m

✟
if s ✏ 0 and m ➙ 0�

✁m✁1

✁n✁m✁1

✟
if s ✏ n and m ↕ ✁n✁ 1

0 otherwise

.

Remark 1.2.10. The fact that h0♣PnK ,OPn
K
♣mqq ✏

★�
n�m
m

✟
if m ➙ 0

0 if m ➔ 0
will be a conse-

quence of Proposition 2.2.14.

Corollary 1.2.11. The cohomology groups Hs♣PnK ,OPn
K
♣mqq are always finite dimen-

sional K-v.s., and they vanish in degree above n.

Proposition 1.2.12. Hn♣X, q respects direct sums, i.e. Hn♣X,
à
iPI

Fiq ✏
à
iPI

Hn♣X,Fiq.

Theorem 1.2.13. Let X be quasi-compact and separated. Then, every exact sequence

0 Ñ F Ñ G Ñ H Ñ 0 of quasi-coherent sheaves on X induces a long exact sequence of

cohomology groups 0Ñ H0♣X,Fq Ñ H0♣X,Gq Ñ H0♣X,Hq Ñ H1♣X,Fq Ñ . . .

Theorem 1.2.14. If X can be covered by n � 1 affine open sets, or dimX ✏ n, then

Hm♣X,Fq ✏ t0✉ ❅m → n for any quasi-coherent sheaf F on X.

Corollary 1.2.15. On an affine scheme, all higher (i.e. for m → 0) quasi-coherent

cohomology groups vanish.

Definition 1.2.16. Given a projective K-scheme X, let F be a coherent sheaf on X. We

define the Euler-Poincaré characteristic of F as χ♣X,Fq :✏
dimX➳
m✏0

♣✁1qmhm♣X,Fq.

Proposition 1.2.17. χ♣PnK ,OPn
K
♣mqq ✏

�
n�m
m

✟
.

Proposition 1.2.18. Given a projective K-scheme X, let 0 Ñ F1 Ñ . . . Ñ Fn Ñ 0 be

an exact sequence of coherent sheaves on X. Then,
n➳
i✏1

♣✁1qiχ♣X,Fiq ✏ 0.





Chapter 2

Divisors and line bundles

In this chapter we will often consider schemes with the property of being

♣✍q noetherian integral separated schemes which are regular in codimension one.

2.1 Weil and Cartier divisors

Definition 2.1.1. Let ♣X,OXq be a scheme. A prime divisor on X is a closed integral

subscheme Y of codimension 1. The free abelian group generated by prime divisors of X

is indicated as Div♣Xq, and its elements are called Weil divisors on X.

D ✏
m➳
i✏1

niYi P Div♣Xq has support Supp♣Dq :✏
↕
ni✘0

Yi, and it is said to be effective if

ni ➙ 0 ❅i ✏ 1, . . . ,m.

Remark 2.1.2. Given a scheme ♣X,OXq satisfying ♣✍q, let Y be a prime divisor on X.

If η P Y is its generic point, then the local ring OX,η is regular of dimension 1, so it’s a

DVR thanks to Theorem 1.1.40. We call the corresponding discrete valuation

vY : K♣Xq Ñ Z❨t✽✉ the valuation of Y . Taking f P K♣Xq∖t0✉, we have two possibilities

for vY ♣fq: if it is positive, we say f has a zero along Y of order vY ♣fq; if it is negative,

we say f has a pole along Y of order ✁vY ♣fq.

Lemma 2.1.3. Let f P K♣Xq ∖ t0✉. Then, vY ♣fq ✏ 0 for almost all prime divisors Y

on X.

Definition 2.1.4. We define the divisor of f P K♣Xq∖t0✉ as div♣fq ✏
➳
Y

vY ♣fqY , where

the sum is taken over all prime divisors Y on X. Notice that div♣fq P Div♣Xq thanks to
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the previous Lemma. Any Weil divisor which can be (locally) written as the divisor of a

nonzero rational function is said to be (locally) principal.

Remark 2.1.5. Recall that prime ideals of height 1 in a UFD are principal. Therefore,

if X is locally factorial, then any hypersurface can be defined locally by one (regular)

equation; hence, any Weil divisor is locally principal.

Definition 2.1.6. Let ♣X,OXq be a scheme. A Cartier divisor D on X is a global section

of the sheaf K✝
X④O

✝
X . It has support Supp♣Dq :✏ tx P X ⑤Dx ✘ 1✉.

Remark 2.1.7. In other words, a Cartier divisor on X is given by a family t♣Ui, fiq✉iPI ,

where tUi✉iPI is an open cover of X and fi is an invertible element of KX♣Uiq s.t.

fi④fj P O✝
X♣Ui ❳ Ujq for any i, j P I.

Remark 2.1.8. If U is integral, then K✝
X♣Uq ✏ Frac♣OX♣Uqq as a multiplicative group.

Therefore, if X is integral we may take an open cover of integral sets tUi✉iPI , and fi is

then a nonzero rational function on Ui s.t. fi④fj is a regular function on Ui❳Uj that does

not vanish.

Proposition 2.1.9. Let ♣X,OXq be a scheme satisfying ♣✍q. Then, any Cartier divisor

on X is associated to a Weil divisor on X.

Proof. Let t♣Ui, fiq✉iPI be a Cartier divisor on X. Taken a prime divisor Y on X, notice

that vY❳Ui
♣fiq ✏ vY❳Ui❳Uj

♣fj ☎ fi④fjq ✏ vY❳Uj
♣fjq � vY❳Ui❳Uj

♣fi④fjq ✏ vY❳Uj
♣fjq for any

i, j P I s.t. Y ❳ Ui ✘ ❍ ✘ Y ❳ Uj, because X is integral by hypotesis, so the previous

Remark holds. Therefore, we can associate to the initial Cartier divisor the Weil divisor➳
Y

vY❳Ui
♣fiqY , where for any Y we choose i s.t. Y ❳Ui ✘ ❍; notice that it is well-defined

(i.e. it’s independent on the choice of i) thanks to the previous reasoning.

Theorem 2.1.10. Let ♣X,OXq be a locally factorial variety satisfying ♣✍q. Then, there

is a bijection between the Cartier divisors on X and Div♣Xq.

Proof. By the previous Proposition, we know that we can associate a Weil divisor to

any Cartier divisor on X. Using Remark 2.1.5, we have that any D P Div♣Xq is locally
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principal, thus it can be written as D ✏
➳
Y

vY❳Ui
♣fiqY , where tUi✉iPI is an open cover of

X. Then, we get a Cartier divisor t♣Ui, fiq✉iPI , which is well-defined since every fi is a

nonzero rational function. Since those constructions give maps that are mutual inverses,

we can conclude.

Definition 2.1.11. A Cartier divisor D on X is effective if it can be defined by a family

t♣Ui, fiq✉iPI with fi P OX♣Uiq; in this case, we write D ➙ 0.

Remark 2.1.12. Every nonzero effective Cartier divisor D ✏ t♣Ui, fiq✉iPI on X defines

a subscheme of X of codimension 1 given by V ♣fiq on each Ui; we still denote it by D.

Definition 2.1.13. A Cartier divisor on X is principal if it is in the image of the natural

map K✝
X♣Xq Ñ ♣K✝

X④O
✝
Xq♣Xq.

Remark 2.1.14. Let ♣X,OXq be a scheme satisfying ♣✍q. A Cartier divisor on X is

principal if it can be defined by a global nonzero rational function.

Remark 2.1.15. Let ♣X,OXq be a locally factorial variety satisfying ♣✍q. Then, the

bijection between Cartier divisors on X and Div♣Xq respects principality.

Definition 2.1.16. Two Cartier divisors D,D✶ on X are linearly equivalent, and we

write D ✒ D✶, if their difference is principal. Similarly, if ♣X,OXq satisfies ♣✍q, two

Weil divisors are linearly equivalent if their difference is the divisor of a nonzero rational

function.

Remark 2.1.17. This clearly defines an equivalence relation.

Example 2.1.18. Let X ❸ A3

K be the quadric cone defined by the equation xy ✏ z2;

notice that X is normal. The line ℓ defined by x ✏ 0 ✏ z is contained in X, thus it

defines a Weil divisor on X, which cannot be defined near the origin by one equation

since the ideal ♣x, zq is not principal in OX,0. X is therefore not locally principal, so the

previous is not a Cartier divisor. However, 2ℓ is a principal Cartier divisor, defined by x.

Example 2.1.19. On a smooth projective curve X over K, a (Weil) divisor is just a finite

formal linear combination of closed points, i.e. D ✏
➳
pPX

nptp✉. We define its degree as
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deg♣Dq ✏
➳
pPX

nprK♣pq : Ks; notice that if K is algebraically closed, then deg♣Dq ✏
➳
pPX

np.

One can prove that the degree of the divisor of a regular function is 0; this tells us that

we have a well-defined map deg : Div♣Xq④ ✒ Ñ Z given by deg♣rDs✒q ✏ deg♣Dq.

2.2 Invertible sheaves

Proposition 2.2.1. Given a ringed space ♣X,Oq, let L,M be invertible sheaves on X.

Then, L❜M is invertible on X. Moreover, if L✁1 ✏ Hom♣L,Oq then L❜ L✁1 ✕ O.

Definition 2.2.2. Let ♣X,Oq be a ringed space. We define the Picard group of X as the

group of isomorphism classes of invertible sheaves on X with operation ❜; it is denoted

as Pic♣Xq. By the previous Proposition, it is indeed a group, with identity O.

Theorem 2.2.3. Let ♣X,OXq be a noetherian separated scheme. Then,

Pic♣Xq ✕ H1♣X,O✝
Xq.

Proof. We have to show that Pic♣Xq ✕ qH1♣U ,O✝
Xq for any affine open cover U of X.

Taking L invertible sheaf on X, let U ✏ tUi✉iPI be an open cover of X by affine open

subsets s.t. L⑤Ui
✏ OUi

. Since L is invertible, we have an isomorphism

φij : ♣L⑤Ui
q⑤Uj

Ñ ♣L⑤Uj
q⑤Ui

given by 1 ÞÑ gij for some gij P O✝
Ui❳Uj

; notice that gji ✏ g✁1

ij .

Since the map ♣L⑤Ui
q⑤Uj❳Uk

ϕij
ÝÝÑ ♣L⑤Uj

q⑤Ui❳Uk
ϕjk
ÝÝÑ ♣L⑤Uk

q⑤Uj❳Ui
given by 1 ÞÑ gij ÞÑ gijgjk

must be equal to ♣L⑤Ui
q⑤Uk❳Uj

ϕikÝÝÑ ♣L⑤Uk
q⑤Ui❳Uj

defined by 1 ÞÑ gik, we get that gijgjk ✏ gik,

i.e. the cocycle condition gijgjkgki ✏ 1 is satisfied. Now we can define a map

φ : Pic♣Xq Ñ qH1♣U ,O✝
Xq as rLs✒ ÞÑ rtgij✉i,js✒. Let us prove that it is well-defined:

indeed, if L ✒ L✶, i.e. there exists an isomorphism h : L Ñ L✶, then for any i ➔ j we have

the commutative diagram

♣L⑤Ui
q⑤Uj

♣L✶⑤Ui
q⑤Uj

♣L⑤Uj
q⑤Ui

♣L✶⑤Uj
q⑤Ui

hij

ϕij ϕ✶
ij

hji

This means that φ✶ij ✆ hij ✏ hji ✆ φij, which evaluated in 1 gives us g✶ijhij ✏ hjigij, thus

gij ✏ ♣hij④hjiqg
✶
ij. But hij④hji P Im♣d0q, so this implies that tgij✉i,j ✒ tg✶ij✉i,j as we

wanted.
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Since U is an open cover of X, the map ψ : qH1♣U ,O✝
Xq Ñ Pic♣Xq defined as

rtgij✉i,js✒ ÞÑ rLgs✒, where Lg is s.t. Lg⑤Ui
✏ OUi

and 1 ÞÑ gij gives an isomorphism

φij : ♣L
g⑤Ui

q⑤Uj
Ñ ♣Lg⑤Uj

q⑤Ui
, is well-defined: it suffices to look at the previous computa-

tions in the inverse order.

Since φ and ψ are clearly mutually inverse, we are done.

Definition 2.2.4. Let D ✏ t♣Ui, fiq✉iPI be a Cartier divisor on ♣X,OXq. We define the

sheaf associated to D, and we denote it by OX♣Dq, as the sub-OX-module of KX generated

by 1④fi on Ui for each i P I.

Remark 2.2.5. OX♣Dq is well-defined: indeed, since fi④fj is invertible on Ui ❳ Uj, 1④fi

and 1④fj generate the same OX-module.

Proposition 2.2.6. Let ♣X,OXq be a scheme. Then:

❼ for any Cartier divisor D on X, OX♣Dq is an invertible sheaf on X;

❼ the map D ÞÑ OX♣Dq gives a one-to-one correspondence between Cartier divisors

on X and invertible subsheaves of KX ;

❼ OX♣D1q ❜OX♣D2q ✕ OX♣D1 �D2q;

❼ D1 ✒ D2 ðñ OX♣D1q ✕ OX♣D2q.

Proof. Refer to [4], Proposition II.6.13.

Proposition 2.2.7. Let ♣X,OXq be an integral K-scheme. Then, every invertible sheaf

on X is isomorphic to a subsheaf of KX .

Proof. Look at [4], Proposition II.6.15.

Corollary 2.2.8. Let ♣X,OXq be an integral scheme. Then, Pic♣Xq ✕ tCartier divisors on X✉④ ✒.

Proposition 2.2.9. Let ♣X,OXq be a scheme satisfying ♣✍q. If D is a Cartier divisor on

X, then OX♣Dq♣Xq ✕ tf P KX♣Xq ⑤ f ✏ 0 ❴ div♣fq �D ➙ 0✉.
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Proof. Let D ✏ t♣Ui, fiq✉iPI . Any global section of OX♣Dq is a rational function f on X

s.t. f ⑤Ui
fi is regular on each Ui ; thus, div♣fq �D is effective.

Conversely, if f is a nonzero rational function on X s.t. div♣fq �D is effective, then ffi

is regular on Ui, and f ⑤Ui
✏ ♣ffiq④fi defines a section of OX♣Dq over Ui.

Remark 2.2.10. Let D be a nonzero effective Cartier divisor on ♣X,OXq. If we denote

by D also the subscheme of X that it defines, then we have the exact sequence

0 Ñ OX♣✁Dq Ñ OX Ñ OD Ñ 0.

Lemma 2.2.11. Pic♣PnKq ✕ Z.

Proof. Any prime divisor Y on PnK corresponds to a principal prime ideal of the factorial

ring Krx0, . . . , xns thanks to Remark 2.1.5. Hence, Y is defined by one homogeneous

irreducible polynomial f of degree d (called the degree of Y ). This defines a surjective

morphism deg : Div♣PnKq Ñ Z.

Since any rational function on PnK is the quotient of two homogeneous polynomials of

the same degree, the correspondent divisor has deg ✏ 0; therefore, we get a well-defined

surjective map deg : Div♣PnKq④ ✒ Ñ Z. If we can show that it is injective, then by

Corollary 2.2.8 we are done. Since f④xd
0
is a rational function on PnK with associated

divisor Y ✁dH0, where H0 is the hyperplane defined by x0 ✏ 0, we have that Y ✒ dH0, so

that deg♣Y q ✏ deg♣dH0q. This shows that any rDs✒ P Div♣PnKq④ ✒ has a representative

of the type mH0 for some m P Z, so the proof is complete.

Definition 2.2.12. Let D P Div♣PnKq be of degree d; then, we set OPn
K
♣dq :✏ OPn

K
♣Dq.

Remark 2.2.13. Thanks to the previous Lemma, this is a good definition.

Proposition 2.2.14. OPn
K
♣dq♣PnKq ✕

★
Krx0, . . . , xnsd if d ➙ 0

t0✉ if d ➔ 0
.

Proof. Since OPn
K
♣dq is an invertible sheaf on PnK , if tUi✉i✏0,...,n is the standard affine

open cover of PnK , then OPn
K
♣dq⑤Ui

✏ OUi
. With the notations of the previous proof, we

have that OPn
K
♣dq ✏ OPn

K
♣dH0q is generated by 1④xd

0
; therefore, if we have coordinates

x on Ui ❳ Uj, it follows that OUi
✏ t✁d0 Krt0, . . . , ♣ti, . . . , tns, where tk ✏ xk④xi ❅k ✘ i.
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The latter can be embedded in OUi
⑤Ui❳Uj

✏ Krt0, . . . , ♣ti, . . . , tn, 1

tj
s, where clearly 1

tj
✏ xi

xj
.

With the same reasoning for the index j, we get that OUj
✏ s✁d0 Krs0, . . . , ♣sj, . . . , sns ãÑ

OUj
⑤Ui❳Uj

✏ Krs0, . . . , ♣sj, . . . , sn, 1

si
s with sk ✏ xk④xj ❅k ✘ j, and in particular 1

si
✏

xj
xi
.

By the fact that OPn
K
♣dq is invertible, we have an isomorphism OUi

⑤Ui❳Uj
Ñ OUj

⑤Ui❳Uj
,

i.e. Krt0, . . . , ♣ti, . . . , tn, 1

tj
s ✕ Krs0, . . . , ♣sj, . . . , sn, 1

si
s, that associates every

gi ✏ t✁d0 p♣t0, . . . , t̂i, . . . , tnq P OUi
to a gj ✏ s✁d0 q♣s0, . . . , ŝj, . . . , snq P OUj

when their

variables are seen in Ui ❳ Uj. Since xk
xj

✏ xk
xi

xi
xj
, i.e. sk ✏ tk

1

tj
, we obtain the condition

t✁d0 p♣t0, . . . , t̂i, . . . , tnq ✏ ♣ t0
tj
q✁dq♣ t0

tj
, . . . , 1̂, . . . , tn

tj
q, which tells us that the isomorphism is

given by p♣t0, . . . , t̂i, . . . , tnq ÞÑ tdjq♣
t0
tj
, . . . , 1̂, . . . , tn

tj
q.

If d ➔ 0, then we do not have any polynomial that satisfies the condition; if instead

d ➙ 0, what we have seen implies that by gluing the local sections together we obtain

Krx0, . . . , xnsd.

Proposition 2.2.15. Let ♣X,OXq be a scheme satisfying ♣✍q. Then,

Pic♣X ✂ PnKq ✕ Pic♣Xq ✂ Z.

Proof. Proceed as in [4], following Proposition II.6.6 and Example II.6.6.1.

Remark 2.2.16. Let π : Y Ñ X be a morphism between schemes, and let D be a

Cartier divisor on X. The pull-back π✝OX♣Dq is an invertible subsheaf of KY , hence

by Proposition 2.2.6 it defines an equivalence class of Cartier divisors on Y , which is

(improperly) denoted by π✝D. If Y is reduced and the support of D ✏ t♣Ui, fiq✉iPI does

not contain the image of any irreducible component of Y , then the collection

t♣π✁1♣Uiq, fi ✆πq✉iPI defines a Cartier divisor in that class, which is also denoted by π✝D.

This tells us that we can restrict an equivalence class of divisors to any subvariety, and

that we can restrict a Cartier divisor to a subvariety not contained in its support.

2.3 Line bundles

Definition 2.3.1. A line bundle on a scheme ♣X,OXq is a pair ♣L, πq, where ♣L,OLq is

a scheme and π : L Ñ X is a morphism which is locally trivial, i.e. there is an open

cover U of X and a family of isomorphisms γU : π✁1♣Uq Ñ A1

U for any U P U s.t. the
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changes of trivializations A1

U Ñ A1

U are linear, so given by ♣x, tq Ñ ♣x, φ♣xqtq for some

φ P O✝
U♣Uq. A section of π over an open subset V of X is a morphism s : V Ñ L s.t.

π ✆ s ✏ idV .

Proposition 2.3.2. There is a one-to-one correspondence between line bundles on X and

invertible sheaves on X, and this map preserves the sections.

Proof. Let ♣L, πq be a line bundle on X. Then, the sheaf of sections of π, i.e. the one

defined by U Ñ tsections of π over U✉, is an invertible sheaf on X.

Now, let L be an invertible sheaf on X. Then, we can suppose that tUi✉iPI is an affine

open cover ofX on which L is trivial, but we have isomorphisms φij : ♣L⑤Ui
q⑤Uj

Ñ ♣L⑤Uj
q⑤Ui

given by 1 ÞÑ gij for some gij P O✝
Ui❳Uj

. Then, using ♣x, tq Ñ ♣x, gij♣xqtq as changes of

trivializations, we obtain a line bundle.

From this construction, we immediately deduce that the sections of a line bundle are

exactly the sections of the associated invertible sheaf and viceversa.

Definition 2.3.3. Given a scheme ♣X,OXq satisfying ♣✍q, let ♣L, πq be a line bundle on

X. Then, every nonzero global section s : X Ñ L of π defines an effective Cartier divisor

div♣sq on X given by the equations s ✏ 0 on each affne open subset of X over which L is

trivial.

Remark 2.3.4. Let D be a Cartier divisor on a scheme ♣X,OXq satisfying ♣✍q. Thanks

to Corollary 2.2.8, rDs✒ is associated to a unique (up to isomorphism) invertible sheaf

OX♣Dq of X, which by Proposition 2.3.2 corresponds to a line bundle ♣L, πq with the same

sections. Hence, each nonzero global section s : X Ñ L of π (i.e. of OX♣Dq) defines an

effective Cartier divisor div♣sq P OX♣Dq♣Xq. Therefore, by Proposition 2.2.9 we get that

div♣sq ✏ div♣fq �D ➙ 0 for some f P K♣Xq.

Remark 2.3.5. If D is an effective Cartier divisor on a scheme ♣X,OXq satisfying ♣✍q,

then f ✏ 1 corresponds to a section of OX♣Dq with divisor D. More generally, any

nonzero rational function f on X can be seen as a nonzero section of OX♣✁div♣fqq.

Definition 2.3.6. The projective space associated to a K-v.s. V is P♣V q ✏ ♣V ∖ t0✉q④ ✒,

where v ✒ w ðñ ❉α P K s.t. w ✏ αv.
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Remark 2.3.7. P♣V q ✕ tW ↕ V ⑤ dimKW ✏ 1✉ can be seen as the set of linear subspaces

of V .

Example 2.3.8. Given a K-v.s. V with basis tu1, . . . , un✉, let Ui ✏ tui ✘ 0✉ be a

standard open set of P♣V q. Then, L ✏ t♣ℓ, vq P P♣V q ✂ V ⑤ v P ℓ✉ with the map

π : LÑ P♣V q given by π♣ℓ, vq ✏ ℓ defines a line bundle. Noticing that

π✁1♣ℓq ✏ t♣ℓ, vq ⑤ v P ℓ✉ ✕ ℓ, we get that L is defined in π✁1♣Ukq ✂ V ✕ Uk ✂ V with

coordinates ♣x, vq by the condition rk

✂
x1 . . . xn
v1 . . . vn

✡
✏ 1, i.e. by the equations

xivj ✁ xjvi ✏ 0 ❅i, j ✏ 1, . . . , n. Looking at Ui as a subset of An
K with 1 in the ith

component, we get the family of isomorphism π✁1♣Uiq ✂ V Ñ Ui ✂ V given by

♣rx1, . . . , xns, vq ÞÑ ♣♣x1
xi
, . . . , 1, . . . , xn

xi
q, vq. Therefore, we get the trivializations

Ui ✂ V Ñ Uj ✂ V defined as ♣y, vq ÞÑ ♣z, vq with yk ✏
xk
xi

and zk ✏
xk
xj
❅k ✏ 1, . . . , n, so

that zk ✏
xi
xj
yk, hence gij♣xq ✏

xi
xj

for any x P Ui❳Uj. One can check that this line bundle

is isomorphic to OP♣V q♣✁1q.

Example 2.3.9. Let X be a complex manifold of dimension n. We define the canonical

(line) bundle ωX on X as the one whose fiber at x P X is the 1✁dim v.s. of C-differential

n-forms on TX,x. Any divisor associated to a section of this bundle is called a canonical

divisor, and is denoted by KX .

If X ✏ PnK, any differential n-form over x is a multiple of dx1❫☎ ☎ ☎❫dxn. If Ui ✏ txi ✘ 0✉,

on U0 ❳ U1 we have that ♣x0, 1, x2, . . . , xnq ✏ ♣1, 1

x0
, x2
x0
, . . . , xn

x0
q, so dx1 ❫ ☎ ☎ ☎ ❫ dxn ✏

✏ d♣ 1

x0
q❫ d♣x2

x0
q❫ ☎ ☎ ☎ ❫ d♣xn

x0
q ✏ ✁ 1

xn�1

0

dx0❫ dx2❫ ☎ ☎ ☎ ❫ dxn. Therefore, any section of the

canonical bundle is associated to the divisor ✁♣n � 1qH0, where H0 is the hyperplane of

equation x0 ✏ 0. Hence, ωPn
K
✕ OPn

K
♣✁n✁ 1q.

If instead X ❸ PnK is a smooth hypersurface of deg ✏ d defined by a homogeneous polyno-

mial f P Krx0, . . . , xnsd, the ♣n✁1q-form defined on X❳U0 by ♣✁1q
i dx1❫☎☎☎❫②dxi❫☎☎☎❫dxn

♣❇f④❇xiq♣xq
does

not depend on i and does not vanish. Similarly as before, with the choice i ✏ 2, it can be

written on X ❳ U0 ❳ U1 as
d♣ 1

x0
q❫d♣

x3
x0

q❫☎☎☎❫d♣xn
x0

q

♣❇f④❇xiq♣1,
1

x0
,
x2
x0
,...,xn

x0
q
✏ ✁ 1

x
n✁♣d✁1q
0

dx0❫dx3❫☎☎☎❫dxn
♣x0,1,x2,...,xnq

. Therefore, any

section of the canonical bundle is associated to the divisor ✁♣n� 1✁ dq♣H0❳Xq. Hence,

ωX ✕ OX♣✁n✁ 1� dq.
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2.4 Linear systems and morphisms to projective spaces

Definition 2.4.1. Given a normal K-variety ♣X,OXq satisfying ♣✍q, let L be an invertible

sheaf on X. We define the linear system associated to L as the set of effective divisors of

nonzero global sections of L, and we denote it by ⑤L⑤.

Remark 2.4.2. The quotient of two global sections which have the same divisor is a

regular function on X which does not vanish. Therefore, if X is projective we have that

the map div : P♣L♣Xqq Ñ ⑤L⑤ is bijective.

Remark 2.4.3. Let D be a Cartier divisor on X. Since each element of ⑤D⑤ :✏ ⑤OX♣Dq⑤

is of the type div♣fq � D for some f P K♣Xq, ⑤D⑤ is the set of effective divisors on X

which are linearly equivalent to D, i.e. ⑤D⑤ ✏ rDs✒.

Theorem 2.4.4. Let ♣X,OXq be a K-variety. Then:

1. any morphism from X to a projective space is associated to a finite-dim vector space

of sections of an invertible sheaf on X;

2. any finite-dim vector space of sections of an invertible sheaf on X is associated to

a rational map from X to a projective space.

Proof. (1) Let V be a K-v.s. of finite dim, and consider a morphism φ : X Ñ P♣V q.

Taking the invertible sheaf L ✏ φ✝♣OP♣V q♣1qq on X, we have a linear map

φ✝ : V ✝ ✕ OP♣V q♣1q♣P♣V qq Ñ L♣Xq given by the pull-back, i.e. by φ✝♣sq ✏ s ✆ φ. Then,

its codomain is a finite-dim v.s. of sections of an invertible sheaf on X as we wanted.

(2) Let W be a finite-dim v.s. of sections of an invertible sheaf L on X. Then, the map

ψ : X 99K P♣W q✝ which sends x to the hyperplane of sections of L that vanish at x is

a rational map, since it is not defined at the base-points of W , i.e. the x P X where

all sections of L vanish. Notice that, chosen a basis ts0, . . . , sn✉ of W , ψ can be locally

written as ψ♣xq ✏ ♣s0♣xq, . . . , sn♣xqq (where “locally” means that the choice of the basis

depends on the trivialization of L in a neighborhood of x).
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Corollary 2.4.5. Let ♣X,OXq be a K-variety. Then, we have a one-to-one correspon-

dence between morphisms from X to a projective space whose image is not contained in

any hyperplane, and finite-dim vector spaces of sections of an invertible sheaf on X which

are base-point-free.

Proof. With the notations of the previous proof, notice that by definition a section of

OP♣V q♣1q vanishes on a hyperplane, thus its image by φ✝ is zero if and only if φ♣Xq is

contained in this hyperplane; in particular, φ✝ is injective if and only if φ♣Xq is not

contained in any hyperplane. Moreover, if W is base-point-free, then the map ψ is a

morphism. This way, the two constructions of the previous Theorem becomes inverse of

one another.

Example 2.4.6. We already know that, fixed n ➙ 0, the v.s. OP1

K
♣nq♣P1

Kq ✕ Krx0, x1sn

has dim ✏ n�1, with basis given by tsn, sn✁1t, . . . , tn✉. The corresponding linear system is

base-point-free and induces a morphism P1

K Ñ PnK given by rs, ts ÞÑ rsn, sn✁1t, . . . , tns. The

image of the latter is called the rational normal curve, and it is defined by the condition

rk

✂
x0 x1 . . . xn✁1

x1 x2 . . . xn

✡
✏ 1, i.e. by the equations xixj�1✁xi�1xj ✏ 0 ❅i, j ✏ 0, . . . , n✁1.

Example 2.4.7. The Cremona involution is the rational map ζ : P2

K Ñ P2

K given by

rx, y, zs Ñ r 1
x
, 1
y
, 1
z
s ✏ ryz, xz, xys, which is well-defined everywhere except at the 3 points

r1, 0, 0s, r0, 1, 0s, r0, 0, 1s. It is associated to the v.s. ①yz, xz, xy② of sections of OP2

K
♣2q,

which is the space of all conics passing through these 3 points.

2.5 Globally generated sheaves

Definition 2.5.1. Given a scheme ♣X,OXq, an OX-module F is globally generated (or

generated by global sections) at x P X if the images of the global sections of F in Fx

generate that stalk as an OX,x-module. We say that F is globally generated if it is globally

generated at each point x P X; this is equivalent to the surjectivity of the evaluation map

ν : F♣Xq ❜K OX Ñ F given by νU♣s ❜ φq ✏ φ♣s⑤Uq. Moreover, F is finitely globally

generated (or generated by finitely many global sections) if we can replace F♣Xq in the

domain of ν with a vector subspace generated by finitely many global sections.
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Remark 2.5.2. Since F♣Xq is a K-v.s., we have that F♣Xq ✕ K♣Iq for some set I.

Hence, F♣Xq ❜K OX ✕ K♣Iq ❜K OX ✕ ♣K ❜K OXq
♣Iq ✕ O

♣Iq
X . Therefore, F is globally

generated ðñ it admits a surjection from a free sheaf on X, i.e. a map of the type

O
♣Iq
X ↠ F . Moreover, F is finitely globally generated if I can be taken to be finite. Also,

F is globally generated at x P X ðñ Fx is generated by global sections of F , i.e. if

there exists a map φ : O
♣Iq
X Ñ F that is surjective on stalks at x, so s.t. φx : O

♣Iq
X,x ↠ Fx.

Equivalently, F is globally generated at x if every germ at x is a linear combination over

OX,x of germs of global sections.

Remark 2.5.3. The set of points at which F is globally generated is an open set.

Remark 2.5.4. Since closed points are dense in X, it is enough to check global generation

at every closed point x P X.

Remark 2.5.5. By Nakayama’s Lemma, F is globally generated at x P X ðñ

νx : F♣Xq Ñ ♣F ❜K♣xqq♣Xq is surjective.

Remark 2.5.6. Since any A-module M is the homomorphic image of a free module,

we get that every quasi-coherent sheaf (of finite type) on any affine scheme is (finitely)

globally generated.

Remark 2.5.7. Quotient, tensor product and restriction to a subscheme preserve the

property of being globally generated.

Proposition 2.5.8. Given a scheme ♣X,OXq and a point x P X, let F be a finite type

quasi-coherent sheaf on X. Then:

❼ F is globally generated at x ðñ the fiber of F is generated by global sections at x;

❼ if F is globally generated at x, then F is globally generated near x, i.e. there exists

an open neighborhood U of x s.t. F is globally generated at every point u P U .

Proposition 2.5.9. An invertible sheaf L on X is globally generated ðñ for any x P X

there exists a global section of L not vanishing at x.



Chapter 2. Divisors and line bundles 25

Remark 2.5.10. By the correspondence seen in Corollary 2.4.5, it follows that an invert-

ible sheaf L is finitely globally generated ðñ there exists a morphism φ : X Ñ PnK s.t.

L ✕ φ✝♣OPn
K
♣1qq.

Definition 2.5.11. We say that a Cartier divisor D on X is globally generated if OX♣Dq

is globally generated.

Proposition 2.5.12. A Cartier divisor D on X is globally generated ðñ for any x P X

there exists a divisor in rDs✒ whose support does not contain x.

Proposition 2.5.13. OPn
K
♣dq is globally generated ðñ d → 0.

Proof. If d ↕ 0, then either OPn
K
♣dq♣PnKq ✏ t0✉ (if d ➔ 0) or OPn

K
♣0q♣PnKq ✕ K, so any

global section is constant, hence this sheaf is not globally generated.

If d → 0, then we know that OPn
K
♣dq♣PnKq ✕ Krx0, . . . , xnsd. At any point of PnK , at least

one of the homogeneous coordinates, say xi, does not vanish, hence the section xdi does

not vanish either. Therefore, in this case the sheaf is globally generated.

2.6 Ample divisors

Definition 2.6.1. Let ♣X,OXq be a noetherian scheme. A Cartier divisor D on X is

ample if for every coherent sheaf F on X, the sheaf F♣nDq :✏ F ❜ OX♣nDq is globally

generated for all n large enough.

Remark 2.6.2. Any Cartier divisor on a noetherian affine scheme is ample.

Remark 2.6.3. Any sufficiently high multiple of an ample divisor is globally generated:

it is enough to take F ✏ OX♣Dq in the definition.

Proposition 2.6.4. Sum and restriction to closed subschemes preserve ampleness.

Moreover, a sum of an ample and a globally generated Cartier divisor is ample.

Proof. The first statement is immediate. To prove the second one, letD,E be respectively

an ample and a globally generated divisor on the same noetherian scheme X. Taken a

coherent sheaf F on X, for n large enough we have that both F♣nDq and OX♣nEq are
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globally generated, hence F♣n♣D � Eqq ✏ F ❜OX♣nDq ❜OX♣nEq ✏ F♣nDq ❜OX♣nEq

is globally generated thanks to Remark 2.5.7.

Proposition 2.6.5. Let D be a Cartier divisor on a noetherian scheme. Then, TFAE:

1. D is ample;

2. nD is ample ❅n → 0;

3. nD is ample for some n → 0.

Proof. ♣1 ñ 2 q It comes directly from the definition.

♣2 ñ 3 q Obvious.

♣3 ñ 1 q If F♣mnDq is globally generated for all m large enough, then clearly F♣pDq is

globally generated for all p large enough.

Proposition 2.6.6. Let D,E be Cartier divisors on a noetherian scheme. If D is ample,

so is nD � E for all n large enough.

Proof. Since D is ample, with the choice F ✏ OX♣Eq we get that E �mD is globally

generated for all m large enough. Therefore, D � ♣mD � Eq ✏ ♣m � 1qD � E is ample

thanks to Proposition 2.6.4.

Definition 2.6.7. Given a normal scheme ♣X,OXq, a Q-divisor on X is a Q-linear

combination of prime divisors of X. A Q-divisor is said to be Q-Cartier if some multiple

of it has integral coefficients and is a Cartier divisor. A Q-Cartier divisor on a noetherian

scheme is ample if some (integral) positive multiple of it is ample.

Example 2.6.8. The line ℓ of Example 2.1.18 is associated to a Q-divisor in X which is

not a Cartier divisor.

Remark 2.6.9. Proposition 2.6.6 can be rephrased in the following way: let D,E be

Q-divisors on a noetherian normal scheme. If D is ample, then D � qE is ample for all

positive q P Q small enough.
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Lemma 2.6.10. If ☎ ☎ ☎ Ñ U
ϕ
ÝÑ V

ψ
ÝÑ W Ñ ☎ ☎ ☎ is an exact sequence in V ectK, then

dimV ↕ dimU � dimW .

Proof. From the split short exact sequence 0 Ñ Im♣φq Ñ V Ñ Im♣ψq Ñ 0, one gets

that dimV ✏ dim Im♣φq � dim Im♣ψq ↕ dimU � dimW .

Lemma 2.6.11. Given an affine scheme X ✏ SpecA, let f P A, and let F be a quasi-

coherent sheaf on X. Then:

1. if s P F♣Xq is s.t. s⑤Xf
✏ 0, then ❉n → 0 s.t. sfn ✏ 0;

2. if t P F♣Xf q, then ❉m → 0 s.t. tfm extends to a global section of F over X.

Proof. One can look at [4], Lemma II.5.3.

Theorem 2.6.12 (Serre’s Thm.). For any coherent sheaf F on PnK, the sheaf

F♣mq :✏ F ❜OPn
K
♣mq is finitely globally generated for all m large enough. In particular,

the hyperplane divisor on PnK is ample.

Proof. Let tUi✉i✏0,...,n be the standard affine open cover of PnK . Since for any i ✏ 0, . . . , n

the restriction F ⑤Ui
is generated by finitely many sections of F♣Uiq, let s be one of those;

if we can show that sxmi P F♣mq♣Uiq extends for m large enough to a global section

t P F♣mq♣PnKq, then we are done. By Lemma 2.6.11 ✁ ♣2 q, for each j ✏ 0, . . . , n we have

that sxpi ⑤Ui❳Uj
P F♣pq♣Ui ❳ Ujq extends to a section tj P F♣pq♣Ujq for p large enough. In

particular, for any j, k ✏ 0, . . . , n we have that tj⑤Ui❳Uj❳Uk
✏ tk⑤Ui❳Uj❳Uk

, i.e.

♣tj ✁ tkq⑤Ui❳Uj❳Uk
✏ 0. By Lemma 2.6.11 ✁ ♣1 q, we get that ♣tj ✁ tkqx

q
i ⑤Uj❳Uk

✏ 0 for q

large enough, i.e. tjx
q
i ⑤Uj❳Uk

✏ tkx
q
i ⑤Uj❳Uk

. This means that the tjx
q
i glue to a section

t P F♣p� qq♣PnKq which extends xp�qi s, as we wanted.

Corollary 2.6.13. Given a closed subscheme X of PnK, let F be a coherent sheaf on X.

Then:

1. the K-v.s. Hs♣X,Fq have finite dimension for any s ➙ 0;

2. Hs♣X,F♣mqq ✏ t0✉ for all s → 0 and all m large enough.
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Proof. Since any coherent sheaf on X can be considered as a coherent sheaf on PnK with

the same cohomology, we may assume X ✏ PnK .

If s → n, then by Theorem 1.2.14 we have that Hs♣PnK ,Fq ✏ 0, so in this case both theses

are true. We proceed by descending induction on s. In other words, suppose the thesis is

true for s� 1; we want to show it also holds for s ↕ n.

By Serre’s Theorem, there exist r, p P Z and an exact sequence

0 Ñ G Ñ OPn
K
♣✁pqr Ñ F Ñ 0 of coherent sheaves on PnK . By Theorem 1.2.13 we get

the exact sequence Hs♣PnK ,OPn
K
♣✁pqqr Ñ Hs♣PnK ,Fq Ñ Hs�1♣PnK ,Gq. Since both left and

right term are finite dimensional (the left thanks to Corollary 1.2.11, and the right by

inductive hypothesis), by Lemma 2.6.10 also the middle one is: this proves ♣1 q.

Starting with the same short exact sequence, by applying the exact functor ❜OPn
K
♣mq

and again by Theorem 1.2.13, we get the exact sequence

Hs♣PnK ,OPn
K
♣m ✁ pqqr Ñ Hs♣PnK ,F♣mqq Ñ Hs�1♣PnK ,G♣mqq. Since both left and right

term vanish for all m → p ✁ n ✁ 1 if s → 0 (the left thanks to Corollary 1.2.11, and the

right by inductive hypothesis), also the middle one is zero: this proves ♣2 q.

2.7 Very ample divisors

Definition 2.7.1. Let ♣X,OXq be a scheme of finite type over K. A Cartier divisor D

on X is very ample if there exists an embedding i : X ãÑ PnK s.t. D ✒ i✝H, where H is a

hyperplane in PnK.

Remark 2.7.2. A Cartier divisor on X is very ample ðñ its sections define a morphism

from X to a projective space which induces an isomorphism between X and a locally closed

subscheme of the projective space.

Remark 2.7.3. Restriction to locally closed subschemes preserves very ampleness.

Proposition 2.7.4. Very ample ñ finitely globally generated.

Remark 2.7.5. By Serre’s Theorem 2.6.12, a very ample divisor on PnK is also ample.

Proposition 2.7.6. Let H be a hyperplane in PnK. Then, D ✒ dH P Div♣PnKq is

very ample ðñ d → 0 ðñ D is ample.
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Proof. If d → 0, then dH is the inverse image of a hyperplane by the Veronese embedding

vn,d : P
n
K ãÑ P

♣n�d
d q✁1

K . If instead d ➔ 0, then we know dH is not ample.

Proposition 2.7.7. D ✒ aH1 � bH2 P Div♣P
n
K ✂ PmKq is very ample ðñ a, b → 0 ðñ

D is ample.

Proof. By Proposition 2.2.15, any D P Div♣PnK ✂ PmKq is linearly equivalent to a divisor

of the type aH1 � bH2, where H1, H2 are the pull-backs of hyperplanes on each factor.

H1 � H2 is very ample because it is the inverse image of a hyperplane by the Segre

embedding sn,m : PnK ✂ PmK ãÑ P
♣n�1q♣m�1q✁1

K . Similarly, if a, b → 0 then aH1 � bH2 is very

ample, because it is the inverse image of a hyperplane by the embedding

s♣n�a
a q✁1,♣m�b

b q✁1
✆ ♣vn,a, vm,bq : P

n
K ✂ PmK ãÑ P

♣n�a
a q♣

m�b
b q✁1

K .

On the other hand, if H2 : y ✏ 0, then aH1 � bH2 restricts to aH1 on PnK ✂ ty✉, hence it

is not ample if a ➔ 0; with a symmetric argument, it is not ample if b ➔ 0.

Proposition 2.7.8. Given a K-scheme ♣X,OXq of finite type, let D,E be Cartier divisors

on X. If D is very ample and E is globally generated, then D � E is very ample.

In particular, the sum of two very ample divisors is very ample.

Proof. Since D is very ample, there exists an embedding i : X ãÑ PnK s.t. D ✒ i✝H

for some hyperplane H of PnK . Since E is globally generated and X is noetherian, E is

finitely globally generated, so there exists a morphism j : X ãÑ PmK s.t. E ✒ j✝H ✶ for

some hyperplane H ✶ in PmK . Now, consider the morphism ♣i, jq : X Ñ PnK ✂ PmK : since its

composition with the first projection is i, it is an embedding. Moreover, the composition

ε ✏ sn,m ✆ ♣i, jq : X ãÑ P
♣n�1q♣m�1q✁1

K is an embedding that satisfies ε✝♣H ✂H ✶q ✒ D �E.

Therefore, D � E is very ample.

Corollary 2.7.9. Let D,E be Cartier divisors on a noetherian K-scheme of finite type.

If D is very ample, so is nD � E for all n large enough.

Proof. Since D is ample, mD � E is globally generated for all m large enough. Hence,

D � ♣mD � Eq ✏ ♣m� 1qD � E is very ample by the previous Proposition.
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Theorem 2.7.10. Given a noetherian K-scheme ♣X,OXq of finite type, let D be a Cartier

divisor on X. Then, D is ample ðñ nD is very ample for some (or all) n large enough.

Proof. ♣ðùq If nD is very ample, then it is ample, thus so is D.

♣ùñq Take x P X and let U be an affine open neighborhood of x over which OX♣Dq is

trivial, i.e. OX♣Dq⑤U ✕ OU . Setting Y as the complement of U in X, let FY be the ideal

sheaf of OX associated to Y . Since D is ample, there existsm → 0 s.t. FY ♣mDq is globally

generated; notice that its sections can be seen as sections of OX♣mDq that vanish on Y .

Therefore, there exists s P FY ♣Xq which does not vanish at x. Since OX♣Dq is trivial on

U , the section s can be seen as a regular function on U ; therefore, Xs is a distinguished

affine open subset of U containing x. Since X is noetherian, it can be covered by a finite

number of open subsets of this form. Upon replacing s with a power, we may assume

that m is the same for all these open subsets. Hence, we have a finite number of sections

s1, . . . , sp of OX♣mDq with no common zeroes s.t. the Xsi are an affine open cover of X.

Now, let fij be finitely many generators of the K-algebra OXsi
♣Xsiq; the same proof as

that of Serre’s Theorem 2.6.12 shows that there exists an integer r such that srifij extends

to a global section sij P OX♣rmDq♣Xq. The global sections sri , sij of OX♣rmDq have no

common zeroes, so they define a morphism ψ : X Ñ PNK . Let Ui ❸ PNK be the standard

open subset corresponding to the coordinate sri ; then, ψ✁1♣Uiq ✏ Xsi , and tUi✉i✏1,...,p

is an open cover of Im♣ψq. Moreover, the induced surjective morphism ψi : Xsi Ñ Ui

corresponds to a surjection ψ✝i : OUi
♣Uiq Ñ OXsi

♣Xsiq; therefore, ψi is also injective, so it

induces an isomorphism between Xsi and its image. It follows that ψ is an isomorphism

onto its image, hence rmD is very ample.

Corollary 2.7.11. A proper scheme which is noetherian of finite type is projective ðñ

it carries an ample divisor.

Proposition 2.7.12. Any Cartier divisor on a projective scheme is linearly equivalent to

the difference of two effective Cartier divisors.

Proof. Let D be a Cartier divisor on a projective scheme ♣X,OXq, and take H to be an

effective ample divisor on X (which exists thanks to the previous Corollary). Then, we
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know that for n large enough D � nH is globally generated; in particular, OX♣D � nHq

has a nonzero global section s. Hence, we have that div♣sq ✒ D�nH, so D ✒ div♣sq✁nH

and we are done.

2.8 A cohomological characterization of ample divi-

sors

Theorem 2.8.1. Given a projective scheme ♣X,OXq over K, let D be a Cartier divisor

on X. Then, TFAE:

1. D is ample;

2. for each coherent sheaf F on X, we have that Hn♣X,F♣mDqq ✏ 0 for all n → 0 and

all m large enough;

3. for each coherent sheaf F on X, we have that H1♣X,F♣mDqq ✏ 0 for all m large

enough.

Proof. ♣1 ñ 2 q By Theorem 2.7.10, aD is very ample for all a large enough. Thanks

to Corollary 2.6.13, we get that Hn♣X, ♣F♣aDqq♣bDqq ✏ 0 for all n → 0 and all b large

enough, so we are done.

♣2 ñ 3 q Obvious.

♣3 ñ 1 q Taken a closed point x P X, consider the surjection F Ñ F ❜K♣xq, and let G

be its kernel. Then, we get the exact sequence 0 Ñ G Ñ F Ñ F ❜K♣xq Ñ 0, to which

we can apply the exact functor ❜OX♣mDq, obtaining the exact sequence

0Ñ G♣mDq Ñ F♣mDq Ñ F♣mDq ❜K♣xq Ñ 0. Since by hypothesis we have that

H1♣X,G♣mDqq ✏ 0 for all m large enough, by Theorem 1.2.13 we get the exact sequence

H0♣X,F♣mDqq Ñ H0♣X,F♣mDq ❜K♣xqq Ñ 0, i.e. the surjection

F♣mDq♣Xq Ñ ♣F♣mDq❜K♣xqq♣Xq. This means that F♣mDq is globally generated at x.

Since this holds for any closed point x P X, we get that F♣mDq is globally generated for

all m large enough, proving that D is ample.

Proposition 2.8.2. Let φ : X Ñ Y be a projective morphism of schemes of finite type

over K. If F is a coherent sheaf on X, then φ✝F is a coherent sheaf on Y .
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Proof. Look at [4], Corollary II.5.20.

Proposition 2.8.3. Given X, Y projective schemes over K, let φ : X Ñ Y be a morphism

with finite fibers. Then, for any coherent sheaf F on X, we have a natural isomorphism

Hn♣Y, φ✝Fq ✕ Hn♣X,Fq.

Proof. By the previous Proposition, φ✝F is a coherent sheaf on Y . As a consequence of

Zariski’s Main Theorem, since φ is a projective morphism with finite fibers, it is finite; in

particular, it is affine. Therefore, if U is an affine open cover of Y , then φ✁1♣Uq is an affine

open cover of X. By definition of φ✝F , we obtain that qHn♣U , φ✝Fq ✕ qHn♣φ✁1♣Uq,Fq,

which concludes the proof.

Lemma 2.8.4 (Projection formula). Let φ : ♣X,OXq Ñ ♣Y,OY q be a morphism of

ringed spaces. If F is an OX-module and G is a locally free OY -module of finite rank,

then there is a natural isomorphism φ✝♣Fq ❜OY
G ✕ φ✝♣F ❜OX

φ✝Gq.

Corollary 2.8.5. Given X, Y projective schemes over K, let φ : X Ñ Y be a morphism

with finite fibers. If D is an ample Q-Cartier divisor on Y , then the Q-Cartier divisor

φ✝D on X is ample.

Proof. By hypotesis, ❉n → 0 s.t. nD is an ample Cartier divisor. Let F be a coherent

sheaf on X; then, since OY ♣mDq is a locally free OY -module of finite rank for any

m ➙ n, by the Projection formula we get that ♣φ✝Fq♣mDq ✕ φ✝♣F♣mφ
✝Dqq. Hence, by

the previous Proposition we have that H1♣Y, ♣φ✝Fq♣mDqq ✕ H1♣Y, φ✝♣F♣mφ
✝Dqqq ✕

✕ H1♣X,F♣mφ✝Dqq. Since mD is ample, the left-hand side vanishes for all m large

enough thanks to Theorem 2.8.1, hence so does the right-hand side. By the same Theorem,

it follows that φ✝D is ample.

Proposition 2.8.6. Let X be a projective scheme over K. Then, a Cartier divisor on X

is ample ðñ it is ample on each irreducible component of Xred.
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Intersections of curves and divisors

3.1 Curves

Definition 3.1.1. A curve is a projective integral scheme of dimension 1 over a field.

Definition 3.1.2. Let ♣X,OXq be a curve. Then, we define its (arithmetic) genus as

g♣Xq :✏ h1♣X,OXq.

Example 3.1.3. g♣P1

Kq ✏ 0. Indeed, let U ✏ tU0, U1✉ be the standard affine open cover

of P1

K. Then, C
0♣U ,OP1

K
q ✏ OP1

K
♣U0q ❵OP1

K
♣U1q ✏ Krts ❵Krt✁1s and

C1♣U ,OP1

K
q ✏ OP1

K
♣U0 ❳ U1q ✏ Krt, t✁1s, hence d0 : Krts ❵Krt✁1s Ñ Krt, t✁1s is defined

as ♣p♣tq, q♣t✁1qq ÞÑ p♣tq ✁ q♣t✁1q. Since every polynomial in Krt, t✁1s can be written as
n➳

i✏✁m

ait
i ✏

✁1➳
i✏✁m

ait
i �

n➳
i✏0

ait
i for some ai P K, d0 is surjective, therefore

H1♣P1

K ,OP1

K
q ✏ t0✉.

Proposition 3.1.4. Let C ❸ P2

K be a plain curve of degree d. Then, g♣Cq ✏
�
d✁1

2

✟
.

Idea of Proof. To shorten the notation, in this proof all rings of polynomials will contain

only elements of degree d. Let C ✏ div♣fq with f P Krx0, x1, x2sh. Up to a change of

coordinates, we can suppose that r0, 0, 1s ❘ Supp♣Cq, i.e. that f♣x0, x1, x2q ✏ xd
2
� . . . .

In this setting, if tU0, U1✉ is the standard affine open cover of P2

K and we set Vi ✏ Ui❳C,

then V ✏ tV0, V1✉ is an affine open cover of C.

Let us assume that f♣x0, x1, x2q ✏ xd
2
✁ xd✁1

0 x1. Then, OC♣V0q ✏
Krx,ys
♣yd✁xq

✕ Krys with

x ✏ x1
x0
, y ✏ x2

x0
, and OC♣V1q ✏

Krs,ts
♣td✁sd✁1q

with s ✏ x0
x1
✏ x✁1, t ✏ x2

x1
✏ yx✁1. Hence,
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C0♣V ,OCq ✕ Krys ❵ Krs,ts
♣td✁sd✁1q

, and OC♣V0 ❳ V1q ✏
Krx,ysx
♣yd✁xq

✏ Krx,y,x✁1s
♣yd✁xq

✕ Kry, x✁1s.

Therefore, d0 : Krys ❵ Krs,ts
♣td✁sd✁1q

Ñ Kry, x✁1s is defined as

♣p♣yq, rq♣s, tqsq ÞÑ p♣yq ✁ q♣x✁1, yx✁1q; we want to compute H1♣C,OCq ✏
Kry,x✁1s
Im♣d0q

.

Im♣d0q contains all (and only) polynomials of the form
d➳
i✏0

aiyi�
d➳

j�k✏0

bjk♣x
✁1qj♣yx✁1qk ✏

✏
d➳
i✏0

aiyi �
➳
l➙k

ckly
k♣x✁1ql, i.e. those of the type

d➳
i,j✏0

αijy
i♣x✁1qj with j ✏ 0 or j ➙ i.

Recalling that yd ✏ x ñ ydx✁1 ✏ 1, if we take the quotient of Kry, x✁1s by those we

get all polynomials which can be written as
d➳

i,j✏0

βijy
i♣x✁1qj with 0 ➔ j ➔ i ➔ d. This

means that for any i ✏ 2, . . . , d ✁ 1 we have i ✁ 1 choices for j: hence, we get a number

of
d✁1➳
i✏2

♣i ✁ 1q ✏
d✁2➳
i✏1

i ✏
♣d✁ 1q♣d✁ 2q

2
✏

✂
d✁ 1

2

✡
linearly independent generators of

H1♣C,OCq.

Remark 3.1.5. Let ♣X,OXq be a smooth curve over K. If D ✏
➳
pPX

nptp✉ is an effective

divisor on X, we can view it as a 0-dimensional subscheme of X. On its support, i.e. the

set of points p P X for which np → 0, it is defined by the ideal m
np

X,p. Notice that it holds

χ♣D,ODq ✏ h0♣D,ODq ✏
➳
pPX

dimK♣OX,p④m
np

X,pq ✏
➳
pPX

np dimK♣OX,p④mX,pq ✏

✏
➳
pPX

np rK♣pq : Ks ✏ deg♣Dq.

Lemma 3.1.6. Given a ring R, let A
ϕ
ÝÑ B

ψ
ÝÑ C

γ
ÝÑ D be an exact sequence in R✁Mod.

If γ is injective, then φ is surjective.

Proof. Since Im♣ψq ✏ ker♣γq ✏ t0✉, ψ ✏ 0, so Im♣φq ✏ ker♣ψq ✏ B.

Notation. Given a projective K-scheme X, let D be a divisor on X. Then, following

Definition 1.2.16 we set χ♣X,Dq :✏ χ♣X,OX♣Dqq.

Theorem 3.1.7 (Riemann-Roch Thm.). Given a smooth curve X, let D be a divisor

on X. Then, χ♣X,Dq ✏ deg♣Dq � χ♣X,OXq ✏ deg♣Dq � 1✁ g♣Xq.

Proof. Thanks to Proposition 2.7.12, we have that D ✒ E✁F for some effective divisors

E,F on X. By Remark 2.2.10, we get the exact sequences

0Ñ OX♣Dq ✕ OX♣E ✁ F q Ñ OX♣Eq Ñ OF ♣Eq ✕ OF Ñ 0 and
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0 Ñ OX ✏ OX♣E ✁ Eq Ñ OX♣Eq Ñ OE♣Eq ✕ OE Ñ 0 , where OF ♣Eq ✕ OF because

OX♣Eq is isomorphic to OX in a neighborhood of the support of F , and OE♣Eq ✕ OE

with a similar argument. By Proposition 1.2.18, from the first exact sequence we get that

χ♣X,Dq ✏ χ♣X,Eq✁χ♣X,OF q ✏ χ♣X,Eq✁χ♣F,OF q, while from the second one we have

χ♣X,Eq ✏ χ♣X,OXq � χ♣X,OEq ✏ χ♣X,OXq � χ♣E,OEq. Recalling that χ♣F,OF q ✏

✏ deg♣F q and χ♣E,OEq ✏ deg♣Eq, we conclude that χ♣X,Dq ✏ χ♣X,Eq ✁ χ♣F,OF q ✏

✏ χ♣X,OXq �χ♣E,OEq ✁ deg♣F q ✏ χ♣X,OXq � deg♣Eq ✁ deg♣F q ✏ χ♣X,OXq � deg♣Dq.

Corollary 3.1.8. Let X be a smooth curve. Then, a divisor D on X is ample ðñ

deg♣Dq → 0.

Proof. (ùñ) Let p be a closed point of X. Since D is ample, ❉m2 → 0 s.t. m2D is

very ample and effective; hence, ✁tp✉ �m1♣m2Dq is globally generated for any m1 suf-

ficiently large. Therefore, taken a nonzero global section s P OX♣✁tp✉ �mDq, we have

that div♣sq ✒ ✁tp✉ �mD for any m large enough. Being div♣sq effective, we get that

0 ↕ deg♣mD ✁ tp✉q ✏ m deg♣Dq ✁ deg♣tp✉q, which implies deg♣Dq ➙ deg♣tp✉q④m → 0.

(ðù) By the Riemann-Roch Thm. 3.1.7, we have that h0♣X,OX♣mDqq✁h
1♣X,OX♣mDqq ✏

✏ χ♣X,Dq ✏ deg♣mDq � 1 ✁ g♣Xq, which is strictly positive for m large enough, thus

h0♣X,OX♣mDqq → h1♣X,OX♣mDqq ➙ 0, so H0♣X,mDq ✘ t0✉. Taking a nonzero global

section s P H0♣X,mDq, we have that div♣sq ✏ div♣fq � mD for some f P K♣Xq,

hence mD ✒ div♣sq; therefore, at most by replacing D with a positive multiple, we

can assume that it is effective. From Remark 2.2.10 we then get the exact sequence

0Ñ OX♣♣m✁ 1qDq Ñ OX♣mDq Ñ OD Ñ 0. Since H1♣D,mDq ✏ t0✉ because D is

a 0-dimensional scheme, from the previous sequence we get a surjection

H1♣X, ♣m ✁ 1qDqq Ñ H1♣X,mDq; therefore, th1♣X,mDq✉m→0 is a decreasing sequence

which becomes stationary as m goes to infinity (since at most it reaches 0). Hence,

for m large enough the previous map is a bijection; from Lemma 3.1.6 we get that

H0♣X,mDq Ñ H0♣D,ODq is a surjection. In particular, the evaluation map νx for the

sheaf OX♣mDq is surjective at every point x P Supp♣Dq; since the same map is triv-

ially surjective for x outside of this support, OX♣mDq is globally generated. Therefore,
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its global sections define a morphism φ : X Ñ PnK s.t. OX♣mDq ✏ φ✝OPn
K
♣1q. Since

OX♣mDq is non trivial, φ is not constant, so it is finite because X is a curve. Hence,

OX♣mDq ✏ φ✝OPn
K
♣1q is ample thanks to Corollary 2.8.5, so D is ample.

3.2 Surfaces

Definition 3.2.1. A surface is a smooth connected projective scheme of dimension 2 over

an algebraically closed field.

Definition 3.2.2. Given a surface ♣X,OXq over K, let C,D be two curves on X with

no common components. If f, g are generators of the ideals of C and D respectively at a

point x P C ❳D, we define the intersection multiplicity of C and D at x as

mx♣C ❳ Dq :✏ dimKOC❳D,x, where OC❳D,x ✏ OX,x④♣f, gq by looking at C ❳ D as a

scheme-theoretic intersection. Moreover, we set ♣C ☎Dq :✏ χ♣X,OC❳Dq ✏ h0♣X,OC❳Dq ✏

✏
➳

xPC❳D

mx♣C ❳Dq.

Remark 3.2.3. By the Nullstellensatz, ♣f, gq contains a power of the maximal ideal mX,x,

say mn
X,x, hence mx♣C❳Dq ↕ dimKOX,x④m

n
X,x ✏ nrK♣xq : Ks, so in particular the number

mx♣C ❳Dq is finite. Moreover, mx♣C ❳Dq ✏ 1 ðñ f and g generate mX,x ðñ

C and D meet transversally at x.

Theorem 3.2.4. Given a surface ♣X,OXq, let C,D be two curves on X with no common

components. Then, ♣C ☎Dq ✏ χ♣X,✁C ✁Dq ✁ χ♣X,✁Cq ✁ χ♣X,✁Dq � χ♣X,OXq.

Proof. Let s be a global section of OX♣Cq with div♣sq ✏ C, and let t be a global section

of OX♣Dq with div♣tq ✏ D. Then, we have the exact sequence

0 Ñ OX♣✁C ✁ Dq
♣t,✁sq
ÝÝÝÑ OX♣✁Cq ❵ OX♣✁Dq

♣stq
ÝÝÑ OX

π
ÝÑ OC❳D Ñ 0. By Proposition

1.2.18, the thesis follows.

We now generalize this result to any couple of divisors by the following:

Definition 3.2.5. Given a surface ♣X,OXq, let C,D be divisors on X. Then, we set

♣C ☎Dq ✏ χ♣X,✁C ✁Dq ✁ χ♣X,✁Cq ✁ χ♣X,✁Dq � χ♣X,OXq.
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Remark 3.2.6. By definition, the intersection of two divisors depends only on their linear

equivalence classes. Therefore, ♣ ☎ q defines a symmetric bilinear form on Pic♣Xq.

Lemma 3.2.7. Given a surface ♣X,OXq, let C be a smooth curve on X. If D is a divisor

on X, then ♣C ☎Dq ✏ deg♣D⑤Cq.

Proof. From the exact sequences 0 Ñ OX♣✁Cq Ñ OX Ñ OC Ñ 0 and

0 Ñ OX♣✁D ✁ Cq Ñ OX♣✁Dq Ñ OC♣✁D⑤Cq Ñ 0, we get that χ♣X,✁Cq ✏

✏ χ♣X,OXq ✁ χ♣C,OCq and χ♣X,✁D ✁ Cq ✏ χ♣X,✁Dq ✁ χ♣C,✁D⑤Cq respectively. It

follows that ♣C ☎Dq ✏ χ♣X,✁C✁Dq✁χ♣X,✁Cq✁χ♣X,✁Dq�χ♣X,OXq ✏
✘
✘
✘
✘
✘✘

χ♣X,✁Dq✁

✁χ♣C,✁D⑤Cq✁
❳
❳
❳
❳
❳❳

χ♣X,OXq�χ♣C,OCq✁
✘

✘
✘

✘
✘✘

χ♣X,✁Dq�
❳

❳
❳
❳
❳❳

χ♣X,OXq ✏ ✁χ♣C,✁D⑤Cq�χ♣C,OCq.

By the Riemann-Roch Theorem 3.1.7, we have that deg♣D⑤Cq ✏ ✁deg♣✁D⑤Cq ✏

✏ χ♣C,OCq ✁ χ♣C,✁D⑤Cq. Therefore, we obtain that ♣C ☎Dq ✏ deg♣D⑤Cq.

3.3 Blow-ups

In this section, K will be an algebraically closed field.

3.3.1 Blow-up of a point in Pn

K

Let O be a point of PnK , and let H be a hyperplane in PnK which does not contain O. The

projection π : PnK 99K H from O is a rational map with domain PnK ∖ tO✉. Taking coordi-

nates s.t. O ✏ r0, . . . , 0, 1s and H ✏ V ♣xnq, we have that π♣rx0, . . . , xnsq ✏ rx0 . . . , xn✁1s.

The graph of π is Γ♣πq ✏ t♣x, yq P PnK ✂H⑤x ✘ O and xi ✏ yi ❅i ✏ 0, . . . , n✁ 1✉. One

can check that its closure P̃nK :✏❺Γ♣πq ❸ PnK ✂H, which is called the blow-up of PnK at O,

is defined by the homogeneous equations xiyj ✏ xjyi ❅i, j ✏ 0, . . . , n✁ 1.

The first projection ε : P̃nK Ñ PnK is called the blow-up morphism; its fiber is

ε✁1♣xq ✏

★
♣x, π♣xqq if x ✘ O

tO✉ ✂H ✕ H if x ✏ O
. Hence, ε induces an isomorphism

P̃nK ∖H ✕ PnK ∖ tO✉; it is therefore a birational morphism. The fibers of the second pro-

jection q : P̃nK Ñ H are all isomorphic to P1

K ; however, P̃
n
K is not isomorphic to P1

K ✂H,

although it is locally a product over each standard open subset Ui of H (we say that it is a

projective bundle): indeed, we have an isomorphism q✁1♣Uiq ✏ P̃nK❳♣PnK✂Uiq Ñ P1

K✂Ui
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given by ♣x, yq ÞÑ ♣rxi, xns, yq.

One can see that this construction is local and intrinsic; in particular, it is independent

of the choice of the hyperplane H.

Thinking of H as the set of lines in PnK passing through O, we have the geometric de-

scription P̃nK ✏ t♣x, ℓq P PnK ✂H⑤x P ℓ✉.

Example 3.3.1. Consider the Cremona involution ζ : P2

K 99K P2

K, i.e. the rational map

given by ζ♣rx0, x1, x2sq ✏ rx1x2, x0x2, x0x1s, which is regular except at r1, 0, 0s, r0, 1, 0s, r0, 0, 1s.

If P̃2

K is the blow-up at O ✏ r0, 0, 1s, let ε : P̃2

K Ñ P2

K be the blow-up morphism. Then, on

the open set x2 ✏ 1 ✏ y0 we have x1 ✏ x0y1, hence ζ ✆ ε♣rx0, x1, 1s, r1, y1sq ✏

✏ rx0y1, x0, x
2
0
y1s, which can be extended to a regular map above O by setting

ζ̃♣rx0, x1, 1s, r1, y1sq ✏ ry1, 1, x0y1s. Similarly, on the open set x2 ✏ 1 ✏ y1 we have

x0 ✏ x1y0, hence ζ ✆ ε♣rx0, x1, 1s, ry0, 1sq ✏ rx1, x1y0, x
2
1
y0s, which can be extended above O

by ζ̃♣rx0, x1, 1s, ry0, 1sq ✏ r1, y0, x1y0s. We can conclude that, if α : X Ñ P2

K is the blow-up

at O, then there exists a regular map ζ̃ : X Ñ P2

K s.t. ζ̃ ✏ ζ ✆ α.

3.3.2 Blow-up of a point in a subvariety of Pn

K

Given a subvariety X of PnK , take O P X. If ε : P̃nK Ñ PnK is the first projection, we

define the blow-up of X at O as the closure X̃ of ε✁1♣X ∖ tO✉q in ε✁1♣Xq. This yields a

birational morphism ε : X̃ Ñ X. Again, this construction can be made local and intrinsic;

in particular, it is independent of the embedding X ãÑ PnK .

If X is smooth at a point x, the projective space E :✏ ε✁1♣xq of dimension dimX ✁ 1 is

called exceptional divisor, and it is naturally isomorphic to P♣TX,xq.

Example 3.3.2. Consider the plane cubic C ❸ P2

K with equation x2
1
x2 ✏ x2

0
♣x2 ✁ x0q,

which has a singularity at O ✏ r0, 0, 1s; we want to compute the equations associated to

the blow-up C̃ at O. At a point ♣rx0, x1, x2s, ry0, y1sq of ε
✁1♣C∖ tO✉q with y0 ✏ 1, we have

x1 ✏ x0y1, hence (as x0 ✘ 0) we get the equation x2y
2
1
✏ x2 ✁ x0, which defines C̃ on the

open set P2

K ✂ U0. At a point with y1 ✏ 1, we have x0 ✏ x1y0, hence (as x1 ✘ 0) we get

the equation x2 ✏ y2
0
♣x2✁x1y0q, which defines C̃ on the open set P2

K✂U1. Moreover, both

points of the fiber ε✁1♣Oq ✏ t♣r0, 0, 1s, r1, 1sq, ♣r0, 0, 1s, r1,✁1sq✉ belong to both open sets.
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Notice that with this process we have desingularized C.

3.3.3 Blow-up of a point in a smooth surface

Proposition 3.3.3. Given a smooth projective surface X over an algebraically closed

field, let ε : X̃ Ñ X be the blow-up morphism of a point x P X, with exceptional divisor

E. Then, for any divisors C,D on X, we have that ♣ε✝C ☎ ε✝Dq ✏ ♣C ☎Dq, ♣ε✝C ☎Eq ✏ 0

and ♣E ☎ Eq ✏ ✁1.

Proof. Up to replacing C and D by linearly equivalent divisors whose supports do not

contain x (which is possible thanks to Proposition 2.7.12), the first two equalities are

obvious.

Assume now that C is a smooth curve in X passing through x, and let C̃ ✏ ε✁1♣C ∖ tx✉q

be its strict transform in X̃. Since C̃ meets E transversally at the point corresponding to

the tangent direction to C at x, we have that ε✝C ✏ C̃ � E. Therefore,

0 ✏ ♣ε✝C ☎ Eq ✏ ♣C̃ ☎ Eq � ♣E ☎ Eq ✏ 1� ♣E ☎ Eq, which concludes the proof.

Corollary 3.3.4. Given a smooth projective surface X over an algebraically closed field,

let ε : X̃ Ñ X be the blow-up morphism of a point x P X, with exceptional divisor E.

Then, Pic♣X̃q ✕ Pic♣Xq ❵ ZrEs.

Proof. We want to show that the map Pic♣Xq ❵ Z Ñ Pic♣X̃q defined as

♣rDs✒, nq Ñ rε✝D � nEs✒ is bijective.

Taken an irreducible curve C̃ on X̃ distinct from E, the pull-back ε✝♣ε♣C̃qq is the sum of

C̃ with a certain number of copies of E: this shows that the previous map is surjective.

To prove injectivity, consider ε✝D � nE ✒ 0; then, 0 ✏ ♣♣ε✝D � nEq ☎ Eq ✏ ♣ε✝D ☎ Eq �

�n♣E ☎ Eq ✏ ✁n ñ n ✏ 0. Moreover, OX ✕ ε✝OX̃ ✕ ε✝♣OX̃♣ε
✝Dqq ✕ OX♣Dq, where the

first and last isomorphisms hold thanks to Zariski’s Main Theorem and the Projection

formula 2.8.4 respectively. This implies that D ✒ 0, concluding the proof.

Definition 3.3.5. Given a noetherian scheme X, let I be a coherent sheaf of ideals on

X. Then, X̃ ✏ Proj♣
à
dPN

Idq is called the blow-up of X with respect to I. If Y is the

closed subscheme of X corresponding to I, then we also call X̃ the blow-up of X along Y .
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Proposition 3.3.6 (Universal property of the blow-up). Given a noetherian scheme

X and a coherent sheaf of ideals I on X, let ε : X̃ Ñ X be the blow-up with respect to I.

If f : Y Ñ X is a morphism s.t. the sheaf of ideals f✁1I is invertible in OY , then there

exists a unique morphism g : Y Ñ X̃ factoring f , i.e. satisfying f ✏ ε ✆ g.

Proof. See [4], Proposition II.7.14.

3.4 General intersection numbers

Theorem 3.4.1 (Hilbert-Serre Thm.). Let ♣X,OXq be a closed subscheme of PNK of

dimension n. Then, for all m large enough the function m ÞÑ χ♣X,OX♣mqq takes the

same values on the integers as a uniquely determined polynomial of degree n with rational

coefficients, called the Hilbert polynomial of X and denoted by PX .

Proof. See [4], Theorem I.7.5.

Definition 3.4.2. Let ♣X,OXq be a closed subscheme of PNK of dimension n. We define

degX as n! times the leading coefficient of PX .

Proposition 3.4.3. If Ø ✘ Y ❸ PnK, then degY is a positive integer.

Proof. One can look at [4], Proposition I.7.6-(a).

Remark 3.4.4. Let ♣X,OXq be a reduced closed subscheme of PNK of dimension n. If K

is algebraically closed, taken H1, . . . , Hn general hyperplanes, then degX is the number of

points in X ❳
n↔
i✏1

Hi. In other words, if HX
i is the Cartier divisor on X defined by Hi,

then degX is the number of points in
n↔
i✏1

HX
i .

Lemma 3.4.5. Let f : Z Ñ Z be s.t. the function m ÞÑ f♣mq ✁ f♣m ✁ 1q is a rational

polynomial of degree d. Then, f takes the same values as a rational polynomial of degree

d� 1.

Proof. Look at [4], Proposition I.7.3-(b).
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Lemma 3.4.6. Let f : Zr Ñ Z be s.t. for each ♣n1, . . . , nr✁1q P Zr✁1 the function

m ÞÑ f♣n1, . . . , ni✁1,m, ni, . . . , nr✁1q is a rational polynomial of degree at most d. Then,

f takes the same values as a rational polynomial in r indeterminates.

Proof. We proceed by induction on r. The case r ✏ 1 trivially holds. Assume that the

thesis holds for r ✁ 1; we want to prove it for r.

Surely, there exist f0, . . . , fd : Zr✁1 Ñ Q s.t. f♣m1, . . . ,mrq ✏
d➳
j✏0

fj♣m1, . . . ,mr✁1qm
j
r.

Now, let c0, . . . , cd be distinct integers; by inductive hypothesis, for any i ✏ 0, . . . , d there

exists a polynomial Pi P Qrx1, . . . , xr✁1s s.t. f♣m1, . . . ,mr✁1, ciq ✏
d➳
j✏0

fj♣m1, . . . ,mr✁1qc
j
i ✏

✏ Pi♣m1, . . . ,mr✁1q. Let us set v ✏

☎✝✆f♣m1, . . . ,mr✁1, c0q
...

f♣m1, . . . ,mr✁1, cdq

☞✍✌, C ✏ ♣cji qi,j✏0,...,d,

u ✏

☎✝✆f0♣m1, . . . ,mr✁1q
...

fd♣m1, . . . ,mr✁1q

☞✍✌and w ✏

☎✝✆P0♣m1, . . . ,mr✁1q
...

Pd♣m1, . . . ,mr✁1q

☞✍✌; then, we have that v ✏ Cu ✏ w.

Since C is a Vandermonde matrix, it has det♣Cq ✏
➵
i➔j

♣cj ✁ ciq ✘ 0 because the ci are

all distinct, hence C P GLd�1♣Zq. Therefore, u ✏ C✁1w with C✁1 P GLd�1♣Qq, which

means that each fj is a linear combination of P0, . . . , Pd with rational coefficients. This

concludes the proof.

Theorem 3.4.7. Given a projective K-scheme ♣X,OXq of dim ✏ d, let D1, . . . , Dr be

Cartier divisors on X. Then, the function ♣m1, . . . ,mrq ÞÑ χ♣X,
r➳
i✏1

miDiq takes the same

values on Zr as a polynomial with rational coefficients of degree at most d.

Proof. First, consider the case r ✏ 1; we proceed by induction on d. If d ✏ 0, then

χ♣X,Dq ✏ h0♣X,OXq P N, so the thesis trivially holds.

Assume that the thesis is true for any projective K-scheme of dimension strictly less then

d. By Proposition 2.7.12, we can write D ✏ D1 ✒ E1 ✁ E2 with E1, E2 effective, which

in particular tells us that OX♣mD ✁ E1q ✏ OX♣♣m ✁ 1qD ✁ E2q. By applying Propo-

sition 1.2.18 to the exact sequences 0 Ñ OX♣mD ✁ E1q Ñ OX♣mDq Ñ OE1
♣mDq Ñ 0

and 0 Ñ OX♣♣m ✁ 1qD ✁ E2q Ñ OX♣♣m ✁ 1qDq Ñ OE2
♣♣m ✁ 1qDq Ñ 0, we get that
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χ♣X,mDq ✁ χ♣E1,mDq ✏ χ♣X,mD ✁ E1q ✏ χ♣X, ♣m ✁ 1qD ✁ E2q ✏ χ♣X, ♣m ✁ 1qDq ✁

✁χ♣E2, ♣m✁ 1qDq, so χ♣X,mDq ✁ χ♣X, ♣m✁ 1qDq ✏ χ♣E1,mDq ✁ χ♣E2, ♣m✁ 1qDq. By

inductive hypothesis, the right-hand side of this equality is a rational polynomial function

in m of degree δ ➔ d. By Lemma 3.4.5, χ♣X,mDq is a rational polynomial function in m

of degree δ � 1 ↕ d. This concludes the case r ✏ 1.

We now consider the general case. For any Cartier divisor D0 on X, by the same proof

as the case r ✏ 1 after tensoring both the exact sequencies by OX♣D0q, we get that

m ÞÑ χ♣X,D0 � mDq is a rational polynomial function of degree strictly less than

d. Therefore, by the previous Lemma there exists a polynomial P P Qrx1, . . . , xrs s.t.

χ♣X,
r➳
i✏1

miDiq ✏ P ♣m1, . . . ,mrq for all ♣m1, . . . ,mrq P Zr. If degP ✏ δ̃, let n1, . . . , nr P Z

be s.t. the degree of Q♣yq ✏ P ♣n1y, . . . , nryq is still δ̃. Since Q♣mq ✏ χ♣X,m
r➳
i✏1

niDiq, it

follows from the case r ✏ 1 that δ̃ ↕ d.

Definition 3.4.8. Given a projective K-scheme ♣X,OXq of dim ↕ r, let D1, . . . , Dr be

Cartier divisors on X. We define the intersection number ♣D1 ☎ . . . ☎Drq as the coefficient

of
r➵
i✏1

mi in χ♣X,
r➳
i✏1

miDiq P Qrm1, . . . ,mrs.

Remark 3.4.9. Since the Euler-Poincaré characteristic is defined using the OX♣Diq, this

number only depends on the linear equivalence classes of the divisors Di. Moreover, by

Theorem 3.4.7 we get that ♣D1 ☎ . . . ☎ Drq is an integer that vanish if dimX ➔ r since

χ♣X,
r➳
i✏1

miDiq has degree at most dimX.

Remark 3.4.10. Taken α P Z, then ♣αD1 ☎ D2 ☎ . . . ☎ Drq is the coefficient of
r➵
i✏1

mi

in χ♣X,m1♣αD1q �
r➳
i✏2

miDiq, which is α times the coefficient of the same monomial in

χ♣X,
r➳
i✏1

miDiq. Therefore, we have that ♣αD1 ☎D2 ☎ . . . ☎Drq ✏ α♣D1 ☎ . . . ☎Drq.

Remark 3.4.11. For any polynomial P ♣x1, . . . , xrq of degree at most r, the coefficient of
r➵
i✏1

xi in P is
➳

I❸t1,...,n✉

αI P ♣✁x
Iq, where αI ✏ ♣✁1q⑤I⑤ and xIi ✏

★
1 if i P I

0 otherwise
.



Chapter 3. Intersections of curves and divisors 43

Proposition 3.4.12. Given a projective K-scheme ♣X,OXq of dim ↕ r, let D1, . . . , Dr

be Cartier divisors on X. Then, ♣D1 ☎ . . . ☎Drq ✏
➳

I❸t1,...,n✉

αI χ♣X,✁
➳
iPI

Diq.

Proof. It comes directly from the previous Remark.

Remark 3.4.13. The previous Proposition shows that this definition coincides with the

one for surfaces given in Definition 3.2.5. Moreover, by the Riemann-Roch Theorem 3.1.7

we get that on a curve it holds deg♣Dq ✏ ♣Dq.

Remark 3.4.14. If X has dimension n and H is a hyperplane section of X, then

♣Hnq ✏ degX. More generally, if K is algebraically closed and D1, . . . , Dn are effective

and meet properly in a finite number of points, then ♣D1 ☎ . . . ☎Dnq is the number of points

in
n↔
i✏1

Di counted with multiplicity, i.e. the length of
n↔
i✏1

Di as a 0-dimensional scheme.

Definition 3.4.15. Given a morphism f : C Ñ X from a projective curve to a quasi-

projective scheme, let D be a Cartier divisor on X. Then, we define ♣C ☎Dq :✏ deg♣f✝Dq.

Proposition 3.4.16. Given a projective K-scheme ♣X,OXq of dim ✏ n, let D be a

Cartier divisor on X. Then, χ♣X,mDq ✏ ♣Dnq
n!
mn �O♣mn✁1q.

Proof. Since for m large enough the function m ÞÑ χ♣X,mDq is a polynomial of the form

P ♣xq ✏
n➳
j✏0

ajx
j, ♣Dnq is the coefficient of

n➵
k✏1

mk in χ♣X,
n➳
i✏1

miDq ✏ P ♣
n➳
i✏1

miq ✏

✏
n➳
j✏0

aj♣m1� . . .�mnq
j, i.e. ann! . Therefore, χ♣X,mDq ✏ P ♣mq ✏ anm

n�O♣mn✁1q ✏

✏ ♣Dnq
n!
mn �O♣mn✁1q.

Proposition 3.4.17. Given a projective K-scheme ♣X,OXq of dim ✏ n, let D1, . . . , Dn

be Cartier divisors on X. Then:

1. the map ♣D1, . . . , Dnq ÞÑ ♣D1 ☎. . . ☎Dnq is Z-multilinear, symmetric and takes integral

values;

2. if Dn is effective, then ♣D1 ☎ . . . ☎Dnq ✏ ♣D1⑤Dn
☎ . . . ☎Dn✁1⑤Dn

q.
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Proof. ♣1 qWe already observed in Remark 3.4.9 that the map above takes integral values;

moreover, it is symmetric by definition. It remains to prove that it is Z-multilinear.

Let D1, D
✶
1
, D2, . . . , Dn be Cartier divisors on X; we want to show that

♣♣D1 �D✶
1
q ☎D2 ☎ . . . ☎Dnq ✏ ♣D1 ☎D2 ☎ . . . ☎Dnq � ♣D✶

1
☎D2 ☎ . . . ☎Dnq. Writing

♣♣D1 �D✶
1
q ☎D2 ☎ . . . ☎Dnq ✏

➳
I❸t2,...,n✉

αI

✁
χ♣X,✁

➳
iPI

Diq ✁ χ♣X,✁D1 ✁D✶
1
✁
➳
iPI

Diq
✠
and

♣D1 ☎D2 ☎ . . . ☎Dnq�♣D
✶
1
☎D2 ☎ . . . ☎Dnq ✏

➳
I❸t2,...,n✉

αI

✁
2χ♣X,✁

➳
iPI

Diq✁χ♣X,✁D1✁
➳
iPI

Diq✁

✁ χ♣X,✁D✶
1
✁
➳
iPI

Diq
✠
, by subtracting the former from the latter we obtain that

♣D1 ☎D2 ☎. . .☎Dnq�♣D
✶
1
☎D2 ☎. . .☎Dnq✁♣♣D1�D

✶
1
q☎D2 ☎. . .☎Dnq ✏

➳
I❸t2,...,n✉

αI

✁
χ♣X,✁

➳
iPI

Diq✁

✁ χ♣X,✁D1 ✁
➳
iPI

Diq ✁ χ♣X,✁D✶
1
✁
➳
iPI

Diq � χ♣X,✁D1 ✁D✶
1
✁
➳
iPI

Diq
✠
✏

✏ ♣D1 ☎ D
✶
1
☎ D2 ☎ . . . ☎ Dnq ✏ 0, where the last equality comes from Remark 3.4.9. This

shows what we wanted.

Since by Remark 3.4.10 we know that ♣aD1 ☎D2 ☎ . . . ☎Dnq ✏ a♣D1 ☎D2 ☎ . . . ☎Dnq, we can

conclude.

♣2 q We can write ♣D1 ☎ . . . ☎Dnq ✏
➳

I❸t1,...,n✁1✉

αI

✁
χ♣X,✁

➳
iPI

Diq ✁ χ♣X,✁Dn ✁
➳
iPI

Diq
✠
.

Since Dn is effective, we have the short exact sequence

0 Ñ OX♣✁Dn ✁
➳
iPI

Diq Ñ OX♣✁
➳
iPI

Diq Ñ ODn
♣✁
➳
iPI

Diq Ñ 0. Therefore, we get that

♣D1 ☎ . . . ☎Dnq ✏
➳

I❸t1,...,n✁1✉

αI χ♣Dn,✁
➳
iPI

Diq ✏ ♣D1⑤Dn
☎ . . . ☎Dn✁1⑤Dn

q.

Proposition 3.4.18 (Pull-back formula). Given a surjective morphism φ : X Ñ Y

between projective varieties, let D1, . . . , Dr be Cartier divisors on Y with r ➙ dimX.

Then, we have that ♣φ✝D1 ☎ . . . ☎ φ
✝Drq ✏ deg♣φq♣D1 ☎ . . . ☎Drq.

Proof. A sketch of the proof can be found in [1], Proposition 3.16.

Definition 3.4.19. Given a morphism φ : X Ñ Y between projective varieties, let C be

a curve on X. We define φ✝C :✏

★
0 if φ♣Cq is a point

dφ♣Cq if φ♣Cq is a curve
, where in the second case

d is the degree of φ⑤C : C Ñ φ♣Cq.
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Proposition 3.4.20 (Projection formula for curves). Given a morphism φ : X Ñ Y

between projective varieties, let C be a curve on X and D a Cartier divisor on Y . Then,

we have that ♣φ✝C ☎Dq ✏ ♣C ☎ φ✝Dq.

Proof. It comes directly from the Pull-back formula.

Definition 3.4.21. Given a K-scheme ♣X,OXq, a point p P X is said to be a K-point if

K♣pq ✕ K.

Corollary 3.4.22. Let ♣X,OXq be a curve of genus 0 over K. If X has a K-point, then

X ✕ P1

K.

Proof. Let p be a K-point of X. Since H1♣X,OXq ✏ 0, the long exact sequence in

cohomology associated to the short exact sequence 0 Ñ OX Ñ OX,p Ñ K♣pq Ñ 0 is

0 Ñ OX♣Xq Ñ OX,p♣Xq Ñ Kp Ñ 0. In particular, h0♣X,OX,pq ✏ 2, so the invertible

sheaf OX,p is generated by two global sections; those define a finite morphism φ : X Ñ P1

K

s.t. φ✝OP1

K
♣1q ✕ OX,p. By the Projection formula for curves, we get that

1 ✏ deg♣OX,pq ✏ deg♣φq, so φ is an isomorphism.

Remark 3.4.23. One can define by linearity the intersection number of Q-Cartier divi-

sors.





Chapter 4

Cones of curves

All results in this chapter will be stated for Cartier divisors, but they clearly hold also

for Q-Cartier divisors.

4.1 The Nakai-Moishezon ampleness criterion

Theorem 4.1.1 (Nakai-Moishezon criterion). A Cartier divisor D on a projective

K-scheme X is ample ðñ ♣♣D⑤Y q
rq → 0 for every integral subscheme Y of X of

dimension r.

Proof. (ùñ) By hypothesis ❉m → 0 s.t. mD is very ample, so there is an embedding

i : X ãÑ PnK s.t. s.t. OX♣mDq ✕ i✝OPn
K
♣1q. This tells us that for any (closed) subscheme

Y of X of dimension r we have ♣♣mD⑤Y q
rq ✏ deg♣i♣Y qq, which is strictly positive thanks

to Proposition 3.4.3.

(ðù) By Proposition 2.8.6, we may assume that X is integral. We will show by induction

on dimX that D is ample on X.

WrittenD ✒ E1✁E2 as the difference of two effective divisors, we have the exact sequences

0Ñ OX♣mD ✁ E1q Ñ OX♣mDq Ñ OE1
♣mDq Ñ 0 and

0 Ñ OX♣♣m ✁ 1qD ✁ E2q Ñ OX♣♣m ✁ 1qDq Ñ OE2
♣♣m ✁ 1qDq Ñ 0. Since by induction

D is ample on both E1 and E2, we have that for all m large enough

H i♣Ej,mDq ✏ t0✉ ❅j ✏ 1, 2, i → 0. By taking the long sequences of cohomology, we

respectively get H i♣X,mD ✁ E1q ✕ H i♣X,mDq and H i♣X, ♣m✁ 1qD ✁ E2q ✕

✕ H i♣X, ♣m✁1qDq for all i ➙ 2. Since OX♣mD✁E1q ✏ OX♣♣m✁1qD✁E2q, it follows that
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H i♣X,mDq ✕ H i♣X, ♣m ✁ 1qDq ❅i → 0, so in particular hi♣X,mDq ✏ hi♣X, ♣m ✁ 1qDq;

this tells us that χ♣X,mDq is asymptotic to h0♣X,mDq ✁ h1♣X,mDq as mÑ �✽.

Now, if dimX ✏ n, by Proposition 3.4.16 we have that χ♣X,mDq ✏

✏ ♣Dnq
n!
mn �O♣mn✁1q ÝÝÝÝÑ

mÑ�✽
�✽ because ♣Dnq → 0 by hypothesis, thus

h0♣X,mDq ✁ h1♣X,mDq ÝÝÝÝÑ
mÑ�✽

�✽, so the same surely happens to h0♣X,mDq.

To prove that D is ample we can replace it with any positive multiple, so we may assume

that D is effective; therefore, we have the exact sequence

0 Ñ OX♣♣m ✁ 1qDq Ñ OX♣mDq Ñ OD♣mDq Ñ 0. Since D is ample on D by induction

hypothesis, by Theorem 2.8.1 we get that H1♣D,mDq ✏ t0✉ for all m large enough; from

this, by taking the long sequence of cohomology one gets a surjection

H1♣X♣m ✁ 1qDq Ñ H1♣X,mDq. This tells us that th1♣X,mDq✉m→0 is a decreasing

sequence which becomes stationary as m goes to infinity, so for m large enough the

previous map is a bijection; then by Lemma 3.1.6 we get that the map

H0♣X,mDq Ñ H0♣D,mDq is surjective. This implies the surjectivity of the evaluation

map νx for the sheaf OX♣mDq at every point, thus OX♣mDq is globally generated for

m large enough. Therefore, its global sections define a morphism φ : X Ñ PnK s.t.

OX♣mDq ✏ φ✝OPn
K
♣1q. Since D has positive degree on every curve by hypothesis, φ has

finite fibers hence, being projective, is finite; Corollary 2.8.5 allows us to conclude.

Remark 4.1.2. This Theorem generalizes Corollary 3.1.8.

4.2 Nef divisors

Definition 4.2.1. A Cartier divisor D on a projective scheme X is nef if it satisfies

♣♣D⑤Y q
rq ➙ 0 for every subscheme Y of X of dimension r.

Remark 4.2.2. The restriction of a nef divisor to a subscheme is again nef.

By the Pull-back formula 3.4.18, the pull-back of a nef divisor by any morphism between

projective schemes is still nef.

Ample ñ nef.

A divisor D on a curve is nef ðñ deg♣Dq ➙ 0.
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Lemma 4.2.3. Let X be a projective K-scheme of dim ✏ n. If the Cartier divisors D

and H on X are respectively nef and ample, then ♣Dr ☎Hn✁rq ➙ 0.

Proof. We proceed by induction on n. By ampleness of H, ❉m → 0 s.t. mH is very

ample; then, let E be an effective divisor in ⑤mH⑤. If r ✏ n, then the thesis comes

directly from the fact that D is nef. If r ➔ n, using Proposition 3.4.17-(2) one gets that

♣Dr ☎Hn✁rq ✏ 1

m
♣Dr ☎Hn✁r✁1 ☎mHq ✏ 1

m
♣♣D⑤Eq

r ☎ ♣H⑤Eq
n✁r✁1q, which is nonnegative by

induction hypothesis.

Proposition 4.2.4. Let D and H be respectively a nef and an ample Cartier divisor on

the same projective K-scheme X. Then, D � tH is ample for any t → 0.

Proof. It suffices to show that D � H is ample. Let Y be an r-dimensional subscheme

of X. Since D⑤Y is nef, by Lemma 4.2.3 we have that ♣♣D⑤Y q
s ☎ ♣H⑤Y q

r✁sq ➙ 0 for all

0 ↕ s ↕ r, hence ♣♣D⑤Y � H⑤Y q
rq ✏

r➳
s✏0

✂
r

s

✡
♣♣D⑤Y q

s ☎ ♣H⑤Y q
r✁sq ➙ ♣♣H⑤Y q

rq → 0 because

H⑤Y is ample. By the Nakai-Moishezon criterion 4.1.1 we can conclude.

Proposition 4.2.5. On a projective K-scheme, a sum of nef divisors is nef.

Proof. Let D and E be nef divisors on a projective K-scheme X, and let H be an ample

divisor onX. By the previous Proposition, E�tH is ample ❅t → 0, and so isD�♣E�tHq.

For every subscheme Y of X of dimension r we then have that ♣♣D⑤Y �E⑤Y � tH⑤Y q
rq → 0

thanks to the Nakai-Moishezon criterion 4.1.1. By taking the limit as tÑ 0, multilinearity

assures us that ♣♣D⑤Y � E⑤Y q
rq ➙ 0, i.e. D � E is nef.

Proposition 4.2.6. Let X be a projective K-scheme. Then, a Cartier divisor on X is

nef ðñ it is nef on each irreducible component of Xred.

Theorem 4.2.7. Let X be a projective K-scheme. Then, a Cartier divisor D on X is

nef ðñ it has nonnegative intersection with every curve on X.

Proof. ♣ùñq It comes directly from the definition.

♣ðùq By the previous Proposition, we may assume that X is integral. Proceeding by

induction on n ✏ dimX, it is enough to prove that ♣Dnq ➙ 0. Let H be an ample divisor
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on X, and set Dt ✏ D � tH; then, consider the polynomial P ♣tq ✏ ♣Dn
t q ✏

✏
n➳

m✏0

✂
n

m

✡
♣Dn✁m ☎ Hmqtm of deg ✏ n. If we manage to show that P ♣0q ➙ 0, then we

are done. Assume by contradiction that P ♣0q ➔ 0; since the leading coefficient of P ♣tq is

♣Hnq → 0 (because H is ample), then lim
tÑ�✽

P ♣tq ✏ �✽, so P ♣tq has a largest positive real

root t0 and P ♣tq → 0 ❅t → t0. Taken a subscheme Y of X of dim ✏ r ➔ n, surely D⑤Y is

nef by inductive hypothesis. Since H⑤Y is still ample, it holds ♣♣H⑤Y q
rq → 0; moreover, by

Lemma 4.2.3 we have that ♣♣D⑤Y q
s ☎ ♣H⑤Y q

r✁sq ➙ 0 for all 0 ↕ s ↕ r. This implies that for

any t → 0 we have ♣♣Dt⑤Y q
rq ✏

r➳
s✏0

✂
r

s

✡
♣♣D⑤Y q

r✁s ☎ ♣H⑤Y q
sqts ➙ ♣♣H⑤Y q

rq → 0 for all t → 0.

Moreover, since ♣Dn
t q ✏ P ♣tq → 0 ❅t → t0, the Nakai-Moishezon criterion 4.1.1 implies

that Dt is ample for all t → t0. Now, let us define the polynomials Q♣tq ✏ ♣Dn✁1
t ☎Dq ✏

✏

✄
n✁1➳
m✏0

✂
n✁ 1

m

✡
♣Dn✁m✁1 ☎Hmqtm ☎D

☛
✏

n✁1➳
m✏0

✂
n✁ 1

m

✡
♣Dn✁m ☎Hmqtm and

R♣tq ✏ t♣Dn✁1
t ☎Hq ✏

n✁1➳
m✏0

✂
n✁ 1

m

✡
♣Dn✁m✁1 ☎Hm�1qtm�1 ✏

n➳
m✏1

✂
n✁ 1

m✁ 1

✡
♣Dn✁m ☎Hmqtm;

notice that their sum isQ♣tq�R♣tq ✏ ♣Dnq�
n✁1➳
m✏1

✂✂
n✁ 1

m

✡
�

✂
n✁ 1

m✁ 1

✡✡
♣Dn✁m☎Hmqtm�

� ♣Hnqtn ✏
n➳

m✏0

✂
n

m

✡
♣Dn✁m ☎ Hmqtm ✏ P ♣tq. Since Dt is ample for t → t0 and D has

nonnegative degree on curves, by Lemma 4.2.3 we get that Q♣tq ➙ 0 ❅t ➙ t0; with

the same Lemma and the induction hypothesis we have that ♣Dr ☎ Hn✁rq ➙ 0 for all

0 ↕ r ➔ n, which implies that R♣t0q ➙ ♣Hnqtn
0
→ 0. From this we get the contradiction

0 ✏ P ♣t0q ✏ Q♣t0q �R♣t0q ➙ R♣t0q → 0, and the proof is done.

4.3 Elementary properties of cones

Definition 4.3.1. A subset C of a vector space V over an ordered field ♣K,↕q is a (linear)

cone if αx P C ❅x P C, α → 0. A cone C is a convex cone if αx� βy P C ❅x, y P C,

α, β → 0, or equivalently if C � C ❸ C.

Remark 4.3.2. A subset C of a K-v.s. is a convex cone ðñ αC ✏ C ❅α → 0 and

C � C ✏ C.
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Definition 4.3.3. In an Euclidean space, the convex hull of a set X is the minimal convex

set containing X.

Remark 4.3.4. The convex hull of X is the intersection of all convex sets containing X,

or equivalently the set of all convex combinations of points in X.

Definition 4.3.5. Let C be a cone in the K-v.s. V ; we define its dual cone as

C✝ ✏ tv✝ P V ✝⑤v✝♣xq ➙ 0 ❅x P C✉.

Remark 4.3.6. The dual cone is a convex cone. Moreover, W ❸ V ñ V ✝ ❸ W ✝.

Definition 4.3.7. Let V be a cone in Rm. A subcone W of V is extremal if it is closed

and convex and if any two elements of V whose sum is in W are both in W . Given an

extremal subcone W of V , a nonzero linear form ℓ P V ✝ is a supporting function of W if

it vanishes on it. An extremal subcone of dim ✏ 1 is called an extremal ray.

Lemma 4.3.8. Let V be a convex cone in Rm. Then:

1. V ✏ V ✝✝;

2. V contains no lines ðñ ①V ✝② ✏ ♣Rmq✝;

3. ˚♣V ✝q ✏ tℓ P ♣Rmq✝⑤ℓ → 0 on V ∖ t0✉✉; in particular, for any v P ❇V there exists

0 ✘ ℓ P V ✝ s.t. ℓ♣vq ✏ 0;

4. given ℓ P V ✝, any extremal ray in ker♣ℓq ❳ V is still extremal in V ;

5. if V contains no lines, it is the convex hull of its extremal rays;

6. any proper extremal subcone of V is contained in ❇V ; in particular, it has a sup-

porting function;

7. if V contains no lines and W is a proper subcone of V , there exists a linear form in

V ✝ which is positive on W ∖ t0✉ and vanishes on some extremal ray of V .

Proof. (1) Since V ✝✝ ✏ tv P ♣Rmq✝✝⑤v ➙ 0 on V ✝✉ ✏ tv P Rm⑤ℓ♣vq ➙ 0 ❅ℓ P V ✝✉ ❹ V ,

it remains to show V ✝✝ ❸ V . Choose a scalar product ① , ② on Rm; pick z ❘ V , and let
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pV ♣zq be its projection on V . Since V is a cone, z ✁ pV ♣zq ❑ pV ♣zq; therefore, the linear

form ①pV ♣zq ✁ z, ② is nonnegative on V and negative at z, hence z ❘ V ✝✝.

(2) ♣ðùq If V contains a line L, for any v✝ P V ✝, ℓ P L and λ P R we have that

λv✝♣ℓq ✏ v✝♣λℓq ➙ 0, so in particular both v✝♣ℓq and ✁v✝♣ℓq are nonnegative, hence it

must be v✝♣ℓq ✏ 0. This tells us that V ✝ ❸ L❑.

♣ùñq If ①V ✝② ✘ ♣Rmq✝, then V ✝ is contained in a hyperplane H, hence the line H❑ is

contained in V ✝✝ ✏ V .

(3) Let ℓ P ˚♣V ✝q; for any 0 ✘ v P V , there exists a linear form ℓ✶ with ℓ✶♣vq → 0 and small

enough so that ℓ ✁ ℓ✶ P V ✝. This implies ♣ℓ ✁ ℓ✶q♣vq ➙ 0, hence ℓ♣vq ➙ ℓ✶♣vq → 0: this

proves ♣❸q. Since the set tℓ P ♣Rmq✝⑤ℓ → 0 on V ∖ t0✉✉ is open, also ♣❹q holds, so we are

done (since the consequence is immediate).

(4) Consider the extremal ray R�r in ker♣ℓq ❳ V . If r ✏ x1 � x2 with xi P V ❅i ✏ 1, 2,

since ℓ♣xiq ➙ 0 and ℓ♣rq ✏ 0 we have that ℓ♣xiq ✏ 0, hence xi P ker♣ℓq ❳ V . By the fact

that R�r is extremal in ker♣ℓq ❳ V , we get that xi P R�r.

(5) We want to prove by induction on m that any point of V is in the linear span of m

extremal rays. Let 0 ✘ ℓ P V ✝; by induction hypothesis, there exists an extremal ray R�r

in ker♣ℓq❳V ; by (4), it is still extremal in V . Taken v P V , the set tλ P R�⑤v✁λr P V ✉ is a

closed nonempty (since at least it contains 0) interval which is bounded above: otherwise,

✁r ✏ lim
λÑ�✽

1

λ
♣v ✁ λrq P V , which contradicts the fact that V contains no lines. If λ0

is its maximum, then v ✁ λ0r P ❇V , so by (3) there exists 0 ✘ ℓ✶ P V ✝ that vanishes at

v ✁ λ0r. Since v ✏ λ0r � ♣v ✁ λ0rq, from the induction hypothesis applied to the convex

cone ker♣ℓ✶q ❳ V and (4) we can conclude.

(6) Let W be a proper extremal subcone of V . If W contains a point v P V̊ , then

for any small x P V we have v ✟ x P V , hence 2v ✏ ♣v � xq � ♣v ✁ xq P V implies

v ✟ x P W . This shows that V̊ ❸ W , so by taking the closure we get (since W is closed)

that V ❸ W ❸ V ñ W ✏ V , which is a contradiction. Therefore, W ❸ ❇V . Now,

take 0 ✘ w P W ❸ ❇V ; by (3), there exists 0 ✘ ℓ P V ✝ ❸ W ✝ s.t. ℓ♣wq ✏ 0. Hence,

ℓ P W ✝ ∖ ˚♣W ✝q, i.e. ℓ ✏ 0 on W .

(7) Since W contains no lines, there exists by (2) a point in ˚♣W ✝q ∖ V ✝. The segment
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connecting it to a point in ˚♣V ✝q crosses ❇♣V ✝q at a point which is contained in ˚♣W ✝q. This

point corresponds to a linear form ℓ that is positive on W ∖ t0✉ and vanishes at a nonzero

point of V . By (5), the cone ker♣ℓq ❳ V has an extremal ray, which is still extremal in

V thanks to (4): this allows us to conclude.

4.4 The cone of curves and the effective cone

Definition 4.4.1. Given a projective K-scheme X, a real 1-cycle on X is a finite formal

linear combinations with real coefficients of irreducible curves in X; it is said to be effective

if all its coefficients are nonnegative.

Definition 4.4.2. Given a projective K-scheme X, we say that two Cartier divisors D,D✶

on X are numerically equivalent if they have the same degree on every curve C on X, i.e.

if ♣D ☎Cq ✏ ♣D✶ ☎Cq ❅C; in this case, we write D ✑ D✶. Since this is clearly an equivalence

relation, we can set N1♣XqZ :✏ tCartier divisors on X✉④ ✑, N1♣XqQ :✏ N1♣XqZ❜Q and

N1♣XqR :✏ N1♣XqZ❜R. The last two are finite-dimensional v.s., and their dim is called

the Picard number of X and is denoted by ρX .

Definition 4.4.3. We say that a property of a divisor is numerical if it depends only on

its numerical equivalence class, i.e. if it depends only of its intersection numbers with real

1-cycles.

Definition 4.4.4. Given a projective K-scheme X, we say that two 1-cycles C,C ✶ on X

are numerically equivalent if they have the same intersection number with every Cartier

divisor; in this case, we write C ✑ C ✶. Since this is an equivalence relation, we can set

N1♣XqZ :✏ treal 1-cycles on X✉④ ✑, N1♣XqQ :✏ N1♣XqZ❜Q and N1♣XqR :✏ N1♣XqZ❜R.

Remark 4.4.5. The intersection pairing ♣ ☎ q : N1♣XqR✂N1♣XqR Ñ R is nondegenerate

by definition. This implies that dimN1♣XqR ✏ dimN1♣XqR, hence N1♣XqR is a finite-

dimensional R-v.s.

Remark 4.4.6. Since X is projective, no numerical class of curve is 0 in N1♣XqR.
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Definition 4.4.7. Let X be a projective K-scheme. We define the cone of curves as

NE♣Xq :✏ trCs✑ P N1♣XqR⑤C is effective✉, and the effective cone as

NE1♣Xq :✏ trDs✑ P N
1♣XqR⑤D is effective✉. Their closures are denoted by NE♣Xq and

NE
1

♣Xq respectively; we will refer to NE
1

♣Xq as the pseudo-effective cone on X.

4.5 A numerical characterization of ampleness

Notation. Let D be a Cartier divisor on a projective variety X. Then, for any

rCs✑ P N1♣XqR we set D ☎ rCs✑ :✏ ♣D ☎ Cq. Notice that this is well-defined, i.e. it does

not depend on the choice of the representative, simply by definition of N1♣XqR.

Theorem 4.5.1 (Kleiman’s criterion). Let X be a projective variety. Then:

1. a Cartier divisor D on X is ample ðñ D ☎ z → 0 ❅0 ✘ z P NE♣Xq;

2. for any ample divisor H on X and any k P Z, the set tz P NE♣Xq⑤H ☎ z ↕ k✉ is

compact, so in particular it contains only finitely many classes of curves.

Proof. (1) ♣ùñq Let z P NE♣Xq ∖ t0✉; since D is nef, we have D ☎ z ➙ 0. Assume by

contradiction that D ☎ z ✏ 0. Since the intersection pairing is nondegenerate (and z ✘ 0),

there exists a divisor E such that E ☎ z ✘ 0; at most by changing the sign of E, we can

assume that E ☎ z ➔ 0, from which ♣D � tEq ☎ z ➔ 0 ❅t → 0. This tells us that D � tE is

not ample even if D is, contradicting Remark 2.6.9.

♣ðùq Choose a norm ∥ ∥ on NE♣Xq (notice that it exists: for example, one can choose

∥ ∥D defined as ∥z∥D ✏ D ☎ z, which is a good definition since D ☎ z ➙ 0 by hypothesis);

then, the set T ✏ ∥ ∥✁1♣t1✉q is compact. Since T ❸ NE♣Xq ∖ t0✉, the linear map

z ÞÑ D ☎ z is positive on T , so by Weierstrass Thm. it is bounded from below by a

positive rational number a. Let H be an ample divisor on X; by the same Thm., the

linear map z ÞÑ H ☎ z is bounded from above on T by a positive rational number b. It

follows that D✁ a
b
H is nonnegative on T , hence on the whole cone NE♣Xq (because every

0 ✘ z P NE♣Xq is just a positive multiple of an element of T ). This shows that D ✁ a
b
H

is nef, hence by Proposition 4.2.4 we conclude that D ✏ ♣D ✁ a
b
Hq � a

b
H is ample.

(2) Let B ✏ trD1s✑, . . . , rDns✑✉ be a basis for N1♣XqR. By Proposition 2.6.9, there
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exists m → 0 s.t. mH ✟ Di is ample ❅i ✏ 1, . . . , n. For any z P NE♣Xq we then have

♣mH✟Diq ☎z ➙ 0, hence ⑤Di ☎z⑤ ↕ mH ☎z. If H ☎z ↕ k, this bounds the coordinates of z in

the dual basis B✝, therefore it defines a closed bounded set, i.e. a compact one. Since the

classes of curves in this set have integral coordinates in B✝, so they form a discrete set in

N1♣XqR, we conclude that they are at most finitely many in tz P NE♣Xq⑤H ☎ z ↕ k✉.

4.6 Around the Riemann-Roch theorem

Proposition 4.6.1. Let D be a Cartier divisor on a projective K-scheme X of dim ✏ n.

Then:

1. hi♣X,mDq ✏ O♣mnq ❅i P N;

2. if D is nef, then hi♣X,mDq ✏ O♣mn✁1q ❅i → 0 and h0♣X,mDq ✏ ♣Dnq
n!
mn�O♣mn✁1q.

Proof. (1) Written D ✒ E1 ✁ E2 as the difference of two effective Cartier divisors,

we have the exact sequences 0 Ñ OX♣mD ✁ E1q Ñ OX♣mDq Ñ OE1
♣mDq Ñ 0 and

0Ñ OX♣♣m✁ 1qD✁E2q Ñ OX♣♣m✁ 1qDq Ñ OE2
♣♣m✁ 1qDq Ñ 0. From the long exact

sequences in cohomology and the previous Lemma, we obtain that

hi♣X,mDq ↕ hi♣X,mD ✁ E1q � hi♣E1,mDq ✏ hi♣X, ♣m✁ 1qD ✁ E2q � hi♣E1,mDq ↕

↕ hi♣X, ♣m✁1qDq�hi♣E2, ♣m✁1qDq�hi♣E1,mDq for all i P N. We proceed by induction

on n; if n ✏ 0 there is nothing to prove. From the previous inequality and the induction

hypothesis, we obtain that hi♣X,mDq ↕ hi♣X, ♣m✁ 1qDq �O♣mn✁1q ↕

↕ hi♣X, ♣m✁ 2qDq � 2O♣mn✁1q ↕ . . . ↕ mO♣mn✁1q ✏ O♣mnq, so we are done.

(2) If D is nef, so are D⑤E1
and D⑤E2

; in the same way as in (1), we get that

hi♣X,mDq ↕ hi♣X, ♣m ✁ 1qDq � O♣mn✁2q, which implies hi♣X,mDq ✏ O♣mn✁1q for all

i → 0. Therefore, h0♣X,mDq ✏ χ♣X,mDq�O♣mn✁1q ✏ ♣Dnq
n!
mn�O♣mn✁1q by Proposition

3.4.16.

Definition 4.6.2. A Cartier divisor D on a projective K-scheme X is said to be big if

lim sup
mÑ�✽

h0♣X,mDq

mn
→ 0.

Remark 4.6.3. From the previous Proposition, a nef Cartier divisor D on a projective

scheme of dim ✏ n is big ðñ ♣Dnq → 0. In particular, ample ñ nef and big.
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Corollary 4.6.4. Let D be a nef and big Q-divisor on a projective variety X. Then,

there exists an effective Q-divisor E on X s.t. D✁ tE is ample for all rationals t in s0, 1s.

Proof. Up to considering a multiple of D, we may assume it has integral coefficients. Set

n ✏ dim♣Xq, and let H be an effective ample divisor on X. Since h0♣H,mDq ✏ O♣mn✁1q

and h0♣X,mDq ✏ ♣Dnq
n!
mn � O♣mn✁1q by Proposition 4.6.1, from the fact that ♣Dnq → 0

by the previous Remark we get that H0♣X,mD ✁Hq ✘ t0✉ for all m large enough. This

tells us that mD ✁ H is linearly equivalent to an effective divisor E ✶; therefore, for any

rational t Ps0, 1s we have that mD ✏ m♣tD � ♣1✁ tqDq ✒ t♣H �E ✶q �m♣1✁ tqD, which

implies D ✒ ♣ t
m
H � ♣1 ✁ tqDq � t

m
E ✶. Since t

m
H � ♣1 ✁ tqD is ample for any choice of

t Ps0, 1s thanks to Proposition 4.2.4, the proof is done with E ✏ 1

m
E ✶.

4.7 Relative cone of curves

Definition 4.7.1. If φ : X Ñ Y is a morphism between projective varieties, we define

the induced morphisms φ✝ : N1♣Y qZ Ñ N1♣XqZ and φ✝ : N1♣Y qZ Ñ N1♣XqZ respectively

by φ✝♣rDs✑q ✏ rφ✝♣Dqs✑ and φ✝♣rCs✑q ✏ rφ✝♣Cqs✑ ✏ deg♣C
ϕ⑤C
ÝÝÑ φ♣Cqqrφ♣Cqs✑. Those

can be naturally extended to R-linear maps φ✝ : N1♣Y qR Ñ N1♣XqR and

φ✝ : N1♣Y qR Ñ N1♣XqR.

Remark 4.7.2. From the Projection formula 3.4.20, we have that the previous morphisms

satisfy φ✝♣dq ☎ c ✏ d ☎ φ✝♣cq for all d P N1♣Y qR, c P N1♣Y qR. This tells us that

ker♣φ✝q ❑ Im♣φ✝q with respect to the intersection pairing of Remark 4.4.5; in particular,

if φ✝ is surjective then φ✝ is injective.

Proposition 4.7.3. If φ : X Ñ Y is a surjective morphism between projective varieties,

then φ✝ : N1♣XqR Ñ N1♣Y qR is surjective.

Proof. Taken a curve C ❸ Y , by hypothesis there exists a curve C ✶ ❸ X s.t. φ♣C ✶q ✏ C.

Therefore, we have that φ✝♣rC
✶s✑q ✏ mrCs✑ for some m → 0, and this concludes the

proof.
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Definition 4.7.4. Let φ : X Ñ Y be a proper morphism of locally noetherian schemes.

We say that a subset Z of X is contracted by φ if φ♣Zq is a single point and φ is an

isomorphism elsewhere.

Definition 4.7.5. Let φ : X Ñ Y be a morphism between projective varieties. Then, the

relative cone of curves NE♣φq is the convex subcone of NE♣Xq generated by the classes

of curves on X contracted by φ.

Remark 4.7.6. Since Y is projective, an irreducible curve C on X is contracted by

φ ðñ φ✝♣rCs✑q ✏ 0, or equivalently if ♣φ✝H ☎ Cq ✏ 0 for any ample divisor H on Y .

Notice that the first characterization tells us that being contracted is a numerical property.

Remark 4.7.7. From the previous Remark, for any ample divisor H on Y we have

that NE♣φq ✏ NE♣Xq ❳ ♣φ✝Hq❑. Hence, NE♣φq is closed in NE♣Xq, and it holds

NE♣φq ❸ NE♣Xq ❳ ♣φ✝Hq❑.

Remark 4.7.8. The morphisms starting from X given by the identity and the map to a

point correspond respectively to the relative subcones t0✉ and NE♣Xq.

Example 4.7.9. Given a curve C and a hypersurface H in PNK, it holds

♣H ☎ Cq ✏ deg♣Hqdeg♣Cq. From this we have that the map N1♣P
N
Kq Ñ R defined by

n➳
i✏1

λirCis✑ ÞÑ
n➳
i✏1

λideg♣Ciq is an isomorphism. This implies that NE♣PNKq ✕ R�.

Example 4.7.10. Consider X ✏ PnK ✂ PmK. From Proposition 2.2.15, one gets that

dimN1♣XqR ✏ 2; hence, N1♣XqR has dim ✏ 2 as well, and it is generated by the class of

a line ℓ in PnK and the class of a line ℓ✶ in PmK. Therefore, NE♣Xq ✏ R�rℓs✑ ❵ R�rℓ✶s✑.

The relative subcones of NE♣Xq corresponding to the two projections are R�rℓs✑ and

R�rℓ✶s✑.

Example 4.7.11. If X is a smooth quadric in P3

K and C1, C2 are lines in X which meet,

the relations ♣C1 ☎ C2q ✏ 1 and ♣C1 ☎ C1q ✏ 0 ✏ ♣C2 ☎ C2q imply that rC1s✑ ✘ rC2s✑.

Therefore, N1♣Xq ✏ RrC1s✑ ❵ RrC2s✑ and NE♣Xq ✏ R�rC1s✑ ❵ R�rC2s✑.

Example 4.7.12. If X is a smooth cubic in P3

K, it contains 27 lines C1, . . . , C27, and one

can show that exactly 6 of those are pairwise disjoint, say C1, . . . , C6. If C is the smooth
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plane cubic obtained by cutting X with a general plane, we have that

N1♣Xq ✏ RrCs✑
6à
i✏1

RrCis✑ and NE♣Xq ✏ R�rCs✑
6à
i✏1

R�rCis✑.

Definition 4.7.13. Given a projective morphism of K-schemes φ : X Ñ Y , we say that

a Cartier divisor D on X is φ-ample if the restriction of D to every fiber of φ is ample.

Proposition 4.7.14. Given a projective morphism of K-schemes φ : X Ñ Y , let D be a

Cartier divisor on X. Then, D is φ-ample ðñ D ☎ z → 0 ❅0 ✘ z P NE♣φq. Moreover,

if D is φ-ample and H is ample on Y , then mφ✝H �D is ample for all m large enough.

Proof. It comes directly from Kleiman’s criterion 4.5.1.

Definition 4.7.15. A K-scheme X of finite type is said to be geometrically integral if

X ✂K is integral over K.

Definition 4.7.16. Given a morphism of K-schemes φ : X Ñ Y , let y P Y . We say

that the fiber φ✁1♣yq is geometrically connected if φ✁1♣yq ❜ L is connected for every field

extension L of K.

Proposition 4.7.17. Let φ : X Ñ Y be a projective morphism between integral schemes

with Y normal. Then, TFAE:

❼ φ✝OX ✕ OY ;

❼ K♣Y q is algebraically closed in K♣Xq;

❼ the generic fiber of φ is geometrically integral.

Moreover, if one of those holds, φ is surjective and its fibers are geometrically connected.

Proof. Look at [2], III, Corollaire ♣4.3.12q.

Remark 4.7.18. Since the closure of the image of any morphism f : X Ñ Y coincides

with the ideal sheaf kernel of the canonical map OY Ñ f✝OX , the surjectivity of φ in the

previous Proposition follows directly from the condition φ✝OX ✕ OY .
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Proposition 4.7.19 (Stein Factorization). Let φ : X Ñ Y be a projective morphism

of noetherian schemes. Then, there exist a projective morphism with connected fibers

φ✶ : X Ñ Z and a finite morphism ψ : Z Ñ Y s.t. φ ✏ ψ ✆ φ✶.

Proof. See [4], Corollary III.11.5.

Remark 4.7.20. In the proof of the previous Proposition, one chooses Z ✏ Spec♣φ✝OXq;

therefore, it holds φ✶
✝OX ✕ OZ. If the fibers of φ are connected, then ψ is bijective; if

moreover the characteristic of X is 0 and Y is normal, then ψ is an isomorphism and it

holds φ✝OX ✕ OY .

Remark 4.7.21. For any projective morphism φ : X Ñ Y with Stein factorization

X
ϕ✶

ÝÑ Z
ψ
ÝÑ Y , the curves contracted by φ and φ✶ are the same, hence NE♣φq ✏ NE♣φ✶q.

Lemma 4.7.22. Let φ : X Ñ Y and φ✶ : X Ñ Y ✶ be projective morphisms between

integral schemes s.t. φ✝OX ✕ OY .

1. if φ✶ contracts one fiber φ✁1♣y0q of φ, then there exists an open neighborhood Y0 of

y0 in Y s.t. there is a factorization φ✶⑤ϕ✁1♣Y0q : φ
✁1♣Y0q

ϕ
ÝÑ Y0 Ñ Y ✶;

2. if φ✶ contracts each fiber of φ, then it factors through φ.

Proof. (1) Define g ✏ ♣φ, φ✶q : X Ñ Y ✂ Y ✶, and set Z ✏ Im♣gq. If p : Z Ñ Y and

p✶ : Z Ñ Y ✶ are the two projections, by hypothesis we have that φ✁1♣y0q ✏ g✁1♣p✁1♣y0qq is

contracted by φ✶, hence by g. It follows that the fiber p✁1♣y0q ✏ g♣g✁1♣p✁1♣y0qqq is a point,

hence the proper surjective morphism p is finite over an open affine neighborhood Y0 of y0

in Y . Now, set X0 ✏ φ✁1♣Y0q and Z0 ✏ p✁1♣Y0q, and let p0 : Z0 Ñ Y0 be the restriction of

p. Then, from OZ0
❸ g✝OX0

we have that OY0 ❸ ♣p0q✝OZ0
❸ ♣p0q✝g✝OX0

✏ φ✝OX0
✏ OY0 ,

so the equal holds, hence ♣p0q✝OZ0
✕ OY0 . Since p0, being finite, is affine, the previous

condition tells us that p0 induces an isomorphism between the coordinate rings of Z0 and

Y0. Therefore, p0 is an isomorphism, and φ✶⑤X0
✏ p✶ ✆ p✁1

0 ✆φ⑤X0
, proving what we wanted.

(2) If φ✶ contracts each fiber of φ, then the morphism p above is finite, so one can take

Y0 ✏ Y and φ✶ factors through φ.
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Proposition 4.7.23. Let X, Y, Y ✶ be projective varieties and let φ : X Ñ Y be a mor-

phism. Then:

1. the subcone NE♣φq of NE♣Xq is extremal and, if H is an ample divisor on Y , it

satisfies NE♣φq ✏ NE♣Xq ❳ ♣φ✝Hq❑;

2. assume that φ✝OX ✕ OY , and let φ✶ : X Ñ Y ✶ be another morphism.

❼ If NE♣φq ❸ NE♣φ✶q, then there is a unique morphism f : Y Ñ Y ✶ s.t.

φ✶ ✏ f ✆ φ;

❼ φ is uniquely determined by NE♣φq up to isomorphism.

Proof. (1) Since φ✝H is nonnegative on NE♣Xq, it defines a supporting hyperplane of

this cone; from NE♣φq ❸ NE♣X❳q ❳ ♣φ✝Hq❑ we then get that NE♣φq is extremal. It

remains to show the equality in the previous inclusion. Suppose by contradiction that

NE♣φq ❼ NE♣Xq ❳ ♣φ✝Hq❑; then by taking the dual we have (thanks to Lemma 4.3.8-

(3)) that there exists a linear form ℓ which is positive on NE♣φq∖t0✉, but is s.t. ℓ♣zq ➔ 0

for some z P NE♣Xq❳ ♣φ✝Hq❑. Without loss of generality, we can assume that ℓ is given

by intersecting with a Cartier divisor D. Recalling that a morphism between projective

varieties is always projective, by the relative version of Kleiman’s criterion 4.7.14 we get

that D is φ-ample, and by the same Proposition mφ✝H � D is ample for all m large

enough. But ♣mφ✝H �Dq ☎ z ✏ D ☎ z ➔ 0, which gives us a contradiction.

(2) The assumption NE♣φq ❸ NE♣φ✶q implies that every curve contracted by φ is also

contracted by φ✶, hence every fiber of φ is contracted by φ✶. By item (2) of the previous

Lemma, the existence of such f is guaranteed. Following the notation of the previous

Lemma, if ❉f ✶ : Y Ñ Y ✶ s.t. φ✶ ✏ f ✶ ✆ φ, then ♣f ✶ ✆ pq ✆ g ✏ f ✶ ✆ φ ✏ φ✶ ✏ p✶ ✆ g, so by the

surjectivity of g we have that f ✶ ✆ p ✏ p✶, i.e. f ✶ ✏ p✶ ✆ p✁1 ✏ f .

To prove the second item, assume that NE♣φq ✏ NE♣φ✶q; then, by what we have just

shown ❉!f : Y Ñ Y ✶, f ✶ : Y ✶ Ñ Y s.t. φ✶ ✏ f ✆ φ and φ ✏ f ✶ ✆ φ✶. It follows that★
φ ✏ f ✶ ✆ ♣f ✆ φq ñ f ✶ ✆ f ✏ idY

φ✶ ✏ f ✆ ♣f ✶ ✆ φ✶q ñ f ✆ f ✶ ✏ idY ✶

, where the implications come from the uniqueness

given by the fact that NE♣φq ✏ NE♣φq and analogously for φ✶. This tells us that f, f ✶

are isomorphisms, so we are done.
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Example 4.7.24. We already know that the extremal subcones of NE♣PNKq ✕ R� are

the trivial ones, i.e. t0✉ and itself. By the previous Proposition, it follows that (up to

isomorphism) the only morphisms φ : PNK Ñ Y satisfying φ✝OPN
K
✕ OY are the identity

and the map to a point.

Example 4.7.25. Given X ✏ PnK ✂ PmK, we already know that the extremal subcones of

NE♣PNKq ✕ R� are four: the trivial ones and the two associated to the projections. By the

previous Proposition, it follows that a morphism φ : X Ñ Y satisfying φ✝OX ✕ OY is up

to isomorphism either the identity, the map to a point or one of the two projections.

Proposition 4.7.26. Given a smooth projective variety X, let ε : X̃ Ñ X be the blow-

up of a point, with exceptional divisor E. Then, Pic♣X̃q ✕ Pic♣Xq ❵ ZrOX̃♣Eqs✒ and

N1♣X̃qR ✕ N1♣XqR ❵ ZrEs✑.





Chapter 5

Surfaces

5.1 Preliminary results

Remark 5.1.1. The canonical divisor KX introduced over C in Example 2.3.9 is not

uniquely defined, but its numerical equivalence class (which is said to be canonical and is

denoted with the same symbol) is; moreover, the definition of KX can be given for any

smooth projective variety X.

Proposition 5.1.2 (Adjunction formula). Given a smooth projective variety X, let

Y ❸ X be a smooth hypersurface. Then, KY ✏ ♣KX � Y q⑤Y .

Idea of Proof. Let ΩX④K be the (locally free) sheaf of differentials; over C, this is just

the dual of the sheaf of local sections of the tangent bundle TX . If fi is a local equation

for Y in X on an open set Ui, the sheaf ΩY ④K is the quotient of the restriction of ΩX④K

to Y by the ideal generated by dfi. Dually, over C we have that in local coordinates

x1, . . . , xn on X, the tangent space TY,p at a point p P Y is defined by the equation

dfi♣pq♣tq ✏ ∇fi♣pq ☎ t ✏
n➳
j✏1

❇fi
❇xj

♣pqtj ✏ 0. If g ✏ ♣gijqi,j gives the change of coordinates,

then on Y ❳ Uij we have that fi ✏ gijfj, hence dfi ✏ dgijfj � gijdfj ✏ gijdfj. Since g

defines the invertible sheaf OX♣✁Y q, we obtain the exact sequence of locally free sheaves

0 Ñ OY ♣✁Y q Ñ ΩX④K ❜OY Ñ ΩY ④K Ñ 0. From the fact that det♣ΩX④Kq ✏ OX♣KXq, by

taking determinants we can conclude.

One can refer to [4], Proposition II.8.20 for a more detailed proof.
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Theorem 5.1.3 (Serre duality). Given a smooth projective variety X of dim ✏ n, let

D be a Cartier divisor on X. Then, for any 0 ↕ i ↕ n, the natural pairing

H i♣X,Dq ❜ Hn✁i♣X,KX ✁ Dq Ñ Hn♣X,KXq ✕ K is non-degenerate; in particular,

hi♣X,Dq ✏ hn✁i♣X,KX ✁Dq.

Definition 5.1.4. Let X be a smooth projective surface. We define the geometric genus

of X and the irregularity of X respectively as pg♣Xq ✏ h0♣X,KXq ✏ h2♣X,OXq and

q♣Xq ✏ h1♣X,KXq ✏ h1♣X,OXq.

Remark 5.1.5. It holds χ♣X,OXq ✏ pg♣Xq ✁ q♣Xq � 1.

Proposition 5.1.6. Let X be a smooth projective curve. Then, deg♣KXq ✏ 2g♣Xq ✁ 2.

Proof. By Serre duality, we have g♣Xq ✏ h0♣X,KXq. The Riemann-Roch Thm. 3.1.7 tells

us that, for any Cartier divisor D on X, h0♣X,Dq✁h0♣X,KX ✁Dq ✏ deg♣Dq�1✁ g♣Xq.

Using the previous observation and taking D ✏ KX , we can conclude.

Lemma 5.1.7. Any Cartier divisor on a smooth projective surface is linearly equivalent

to the difference of two smooth curves.

Proposition 5.1.8 (Riemann-Roch Thm. for curves). Given a smooth projective

surface X, let D be a divisor on X. Then, χ♣X,Dq ✏ 1

2
♣♣D2q ✁ ♣KX ☎Dqq � χ♣X,OXq.

Proof. By the previous Lemma, D ✒ C ✁ C ✶ with C,C ✶ smooth curves in X; hence, by

Theorem 3.2.4 we have that χ♣X,Dq ✏ ✁♣C ☎ C ✶q � χ♣X,Cq � χ♣X;✁C ✶q ✁ χ♣X,OXq.

From the exact sequences 0Ñ OX Ñ OX♣Cq Ñ OC♣Cq Ñ 0 and

0Ñ OX♣✁C
✶q Ñ OX Ñ OC✶ Ñ 0, we get that χ♣X,Dq ✏ ✁♣C ☎ C ✶q � χ♣X,OXq �

� χ♣C,C⑤Cq ✁ χ♣C
✶,OC✶q. Then, by Riemann-Roch Thm. 3.1.7 on both C and C ✶ we get

χ♣X,Dq ✏ ✁♣C ☎ C ✶q � χ♣X,OXq � ♣C2q � 1 ✁ g♣Cq ✁ ♣1 ✁ g♣C ✶qq. From the previous

Proposition and the Adjunction formula 5.1.2, we have that 2g♣Cq ✁ 2 ✏ deg♣KCq ✏

✏ deg♣KX � Cq⑤C ✏ ♣♣KX � Cq ☎ Cq, and analogously for C ✶. From this we obtain that

χ♣X,Dq✁χ♣X,OXq ✏ ✁♣C ☎C ✶q�♣C2q✁ 1

2
♣♣KX�Cq☎Cq�

1

2
♣♣KX�C

✶q☎C ✶q ✏ ✁♣C ☎C ✶q�

� ♣C2q� 1

2
♣♣KX ☎ C

✶q � ♣♣C ✶q2q ✁ ♣KX ☎ Cq ✁ ♣C2qq ✏ ✁♣C ☎C ✶q� 1

2
♣♣KX ☎C

✶q� ♣♣C ✶q2q✁
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✁ ♣KX ☎ Cq � ♣C
2qq ✏ ✁♣C ☎ C ✶q � 1

2
♣♣KX ☎ ♣C

✶ ✁ Cqq � ♣♣C ✶q2q � ♣C2qq ✏

✏ 1

2
♣♣♣C ✁ C ✶q2q ✁ ♣KX ☎Dqq, which concludes the proof.

Remark 5.1.9 (Genus formula for curves). Given a smooth projective variety X, let

C be an irreducible curve in X. Then, with the same calculations as in the previous Proof,

one can see that g♣Cq ✏ 1� 1

2
♣♣C2q � ♣KX ☎ Cqq. In particular, from Corollary 3.4.22 we

have that ♣C2q � ♣KX ☎ Cq ✏ ✁2 ðñ C is smooth and rational.

Example 5.1.10. Given a smooth curve C of genus g, let X be the surface C ✂ C, and

let p1, p2 : X Ñ C be the two projections. Consider the numerical equivalence classes x1

of t✝✉ ✂ C, x2 of C ✂ t✝✉, and ∆ of the diagonal. The canonical class of X is

KX ✏ p✝
1
KC � p

✝
2
KC ✑ deg♣KCq♣x1 � x2q ✏ ♣2g✁ 2q♣x1 � x2q. Since it holds ♣∆ ☎ xiq ✏ 1,

we have that ♣KX ☎∆q ✏ ♣2g ✁ 2q♣1� 1q ✏ 4♣g ✁ 1q. From the Genus formula for curves

and the fact that ∆ has genus g, we get that ♣∆2q ✏ 2g ✁ 2✁ ♣KX ☎∆q ✏ ✁2♣g ✁ 1q.

5.2 Ruled surfaces

Lemma 5.2.1. Any geometrically integral curve C of genus 0 over K is isomorphic to a

nondegenerate conic in P2

K.

Theorem 5.2.2 (Tsen’s Thm.). Let φ : X Ñ B be a surjective morphism from a

projective surface onto a smooth curve over an algebraically closed field K, s.t. its generic

fiber is a geometrically integral curve of genus 0. Then, X is birational over B to B✂P1

K.

Proof. Let C be a generic fiber of φ; by Corollary 3.4.22, it suffices to show that C has

a K♣Bq-point. From the previous Lemma, there exists a nondegenerate conic C ❸ P2

K♣Bq

s.t. C ✕ C; let q♣x0, x1, x2q ✏
➳

0↕i,j↕2

aijxixj ✏ 0 be an equation for C. Notice that all

aij P K♣Bq can be viewed as sections of OB♣Eq for some nonzero effective divisor E on

B. Consider now, for any m → 0, the map fm : H0♣B,mEq3 Ñ H0♣B, ♣2m�1qEq defined

by ♣x0, x1, x2q ÞÑ
➳

0↕i,j↕2

aijxixj. Since E is ample, by Riemann-Roch Thm. 3.1.7 we have

that for m large enough the domain of fm has dimension αm ✏ 3♣mdeg♣Eq � 1✁ g♣Bqq,

while the dimension of its codomain is βm ✏ ♣2m�1q deg♣Eq�1✁g♣Bq. A K♣Bq-point for
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C would be a nonzero ♣x0, x1, x2q P H
0♣B,mEq3 s.t. q♣x0, x1, x2q ✏ 0, hence an element

in the intersection of βm quadrics in a K-projective space of dim ✏ αm ✁ 1. Since for m

large enough αm ✁ 1 ➙ βm, such ♣x0, x1, x2q exists because K is algebraically closed.

Theorem 5.2.3 (Base change Thm.). Given a projective morphism of noetherian

schemes f : X Ñ Y , let F be a coherent sheaf on X which is flat over Y . Taken a

point y P Y , then:

1. if the natural map φi♣yq : Rif✝♣Fq ❜K♣yq Ñ H i♣Xy,Fyq is surjective, then it is an

isomorphism, and the same is true for all y✶ in a suitable neighborhood of y;

2. if φi♣yq is surjective, TFAE:

❼ φi✁1♣yq is surjective;

❼ Rif✝♣Fq is locally free in a neighborhood of y.

Proof. A reference can be found in [4], Theorem III.12.11.

Proposition 5.2.4 (Universal property of P♣Eq). Given a noetherian scheme X, let

E be a locally free coherent sheaf on X. Taken a morphism g : Y Ñ X, we have that

tmorphisms Y Ñ P♣Eq over X✉ Ø tsurjective maps g✝E Ñ L of sheaves on Y ⑤L is invertible✉

is a one-to-one correspondence.

Proof. See [4], Proposition II.7.12.

Definition 5.2.5. A ruled surface is a projective surface X with a surjective morphism

φ : X Ñ B onto a smooth projective curve s.t. the fiber of every closed point is isomorphic

to P1

K.

Theorem 5.2.6. Let X be a ruled surface over an algebraically closed field K. Then,

there exists a locally free rank-2 sheaf E on B s.t. X ✕ P♣Eq over B.

Proof. First, notice that the sheaf φ✝OX is locally free on B. Since φ is flat, and

h0♣Xb,OXb
q ✏ 1 for all closed points b P B, the Base change Thm. 5.2.3 implies that

φ✝OX has rank 1, hence is locally isomorphic to OB. It follows from Proposition 4.7.17
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that the generic fiber of φ is geometrically integral. Since h1♣Xb,OXb
q ✏ 0 for all closed

points b P B, again by the Base change Thm. we have that R1φ✝OX ✏ 0 and that

the generic fiber of φ has genus 0. It follows from Tsen’s Thm. 5.2.2 that φ has a

rational section which, since B is smooth, extends to a global section σ : B Ñ X. Setting

C ✏ Im♣σq, then ♣C ☎ Xbq ✏ 1 for all b P B, so from the Base change Thm. we get

that E ✏ φ✝♣OX♣Cqq is a locally free rank-2 sheaf on B. Furthermore, the canonical

morphism φ✝♣φ✝♣OX♣Cqqq Ñ OX♣Cq is surjective, hence by Proposition 5.2.4 there exists

a morphism f : X Ñ P♣Eq over B s.t. f✝OP♣Eq♣1q ✏ OX♣Cq. Since OX♣Cq is very ample

on each fiber, f is an isomorphism.

Remark 5.2.7. By the proof above, since φ✝OX ✏ OB and R1φ✝OX ✏ 0, the direct

image by φ✝ of the exact sequence 0 Ñ OX Ñ OX♣Cq Ñ OC♣Cq Ñ 0 is

0 Ñ OB Ñ E Ñ σ✝OC♣Cq Ñ 0. In particular, ♣C2q ✏ deg♣detEq.

Remark 5.2.8. Theorem 5.2.6 tells us also that any ruled surface is smooth.

Moreover, such a surface is of the form P♣Eq, and if φ is the associated morphism it holds

φ✝OP♣Eq♣1q ✕ E .

Proposition 5.2.9. Given the morphism φ : X Ñ B associated to the ruled surface X,

let F be a fiber and B Ñ C be a section. Then, the map θ : Z✂Pic♣Bq Ñ Pic♣Xq defined

by ♣n, rDs✒q ÞÑ rnC � φ✝Ds✒ is a group isomorphism, and N1♣Xq ✕ ZrCs✑ ❵ ZrF s✑.

Moreover, ♣C ☎ F q ✏ 1 and ♣F 2q ✏ 0.

Proof. First, notice that ♣C ☎ F q ✏ 1 because C and F meet transversally at a single

point, and ♣F 2q ✏ 0 because two distinct fibers do not meet.

Notice that the numerical equivalence class of F does not depend on the choice of the

fiber: this follows from the Projection formula 3.4.20. Therefore, N1♣Xq ✕ ZrCs✑❵ZrF s✑

immediately follows from the fact that ♣C ☎ F q ✏ 1.

Since θ is clearly a group homomorphism, it remains to show that it is bijective.

Taken a divisor E on X, set n ✏ ♣E ☎ F q. By the Base change Thm. 5.2.3,

M ✏ φ✝♣OX♣E ✁ nCqq is an invertible sheaf on B, and the canonical morphism

φ✝♣φ✝♣OX♣E ✁ nCqqq Ñ OX♣E ✁ nCq is bijective. Hence, OX♣nCq ❜ φ✝M ✕ OX♣Eq,
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which proves that θ is surjective.

To prove injectivity, note that nC � φ✝D ✒ 0 ñ 0 ✏ ♣♣nC � φ✝Dq ☎ F q ✏ n, which

implies n ✏ 0 and thus φ✝D ✒ 0. From the Projection formula 2.8.4, we then have that

OB ✕ φ✝OX ✕ φ✝OX♣φ
✝Dq ✕ φ✝φ

✝OB♣Dq ✕ OB♣Dq ❜ φ✝OX ✕ OB♣Dq, so D ✒ 0.

Remark 5.2.10. In the setting of the previous Proposition, let E , E ✶ be two locally free

rank-2 sheaves on B s.t. there is an isomorphism f : P♣Eq Ñ P♣E ✶q over B. Then, since

OP♣Eq♣1q and f✝OP♣E ✶q♣1q both have intersection number 1 with a fiber of φ, there is an

invertible sheaf M on B s.t. f✝OP♣E ✶q♣1q ✕ OP♣Eq♣1q ❜φ
✝M. By taking direct images, we

get that E ✶ ✕ E ❜M.

Proposition 5.2.11. Let P♣Eq be a ruled surface. Then, ♣♣OP♣Eq♣1qq
2q ✏ deg♣detEq.

Proof. If φ : X Ñ B is the morphism associated to P♣Eq, let B Ñ C be a section. Then,

by Remark 5.2.7 the thesis holds for E ✏ φ✝OX♣Cq. Taken another locally free rank-2

sheaf E ✶ on B, by the previous Remark there exists an invertible sheaf M on B s.t.

E ✶ ✕ E ❜M, hence OP♣E ✶q♣1q ✕ OP♣Eq♣1q ❜ φ✝M. Therefore, deg♣detE ✶q ✏

✏ deg♣♣detEq ❜M2q ✏ deg♣detEq � 2deg♣Mq ✏ ♣C2q � 2deg♣Mq, while ♣♣OP♣E ✶q♣1qq
2q ✏

✏ ♣♣OP♣Eq♣1q ❜ φ✝Mq2q ✏ ♣♣C � deg♣MqF q2q ✏ ♣C2q � ♣F 2q � 2deg♣Mq♣C ☎ F q ✏

✏ ♣C2q � 2deg♣Mq, and we are done.

Proposition 5.2.12. Let X ✏ P♣Eq be a ruled surface with corresponding morphism

φ : P♣Eq Ñ B. Then, there is a one-to-one correspondence

tsections σ : B Ñ P♣Eq of φ✉ Ø tL invertible sheaf on B⑤❉E Ñ L surjective morphisms✉

given by σ ÞÑ σ✝OP♣Eq♣1q. Moreover, the section σ corresponding to the sheaf L satisfies

♣σ♣Bqq2 ✏ 2deg♣Lq ✁ deg♣detEq.

Proof. Setting C ✏ σ♣Bq and E ✶ ✏ φ✝OX♣Cq, we have that E ✶ ✕ E ❜ M for some

invertible sheaf M on B, so OX♣Cq ✕ OP♣E ✶q♣1q ✕ OP♣Eq♣1q ❜ φ✝M. Applying σ✝, we

obtain that σ✝OX♣Cq ✕ L❜M, hence ♣C2q ✏ deg♣Lq � deg♣Mq. It follows that

♣C2q ✏ deg♣detE ✶q ✏ deg♣detEq � 2deg♣Mq ✏ deg♣detEq � 2♣♣C2q ✁ deg♣Lqq, and this

concludes the proof.
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Example 5.2.13. It can be shown that any locally free rank-2 sheaf on P1

K is isomorphic

to OP1

K
♣aq ❵ OP1

K
♣bq for some a, b P Z. It follows that any ruled surface over P1

K is

isomorphic to one of the Hirzebruch surfaces Fn ✏ P♣OP1

K
❵ OP1

K
♣nqq for some n P N.

Moreover, the surjection OP1

K
❵ OP1

K
Ñ OP1

K
gives a section Cn ❸ Fn s.t. ♣C2

nq ✏ ✁n.

One can also prove that, when n ➔ 0, Cn is the only (integral) curve on Fn with negative

self-intersection.

5.3 Extremal rays

Lemma 5.3.1. Let D be a divisor on a smooth projective surface X. If there exists an

ample divisor H on X s.t. ♣D ☎Hq → 0, then H2♣X,mDq ✏ t0✉ for any m large enough.

Proof. Since the divisor KX ✁mD has negative intersection with H for any m → ♣KX ☎Hq
♣D☎Hq

,

it cannot be equivalent to an effective divisor. It follows that h0♣X,KX ✁mDq ✏ 0 for m

large enough, hence h2♣X,mDq ✏ 0 by Serre duality 5.1.3.

Proposition 5.3.2. Given a smooth projective surface X, let C be an irreducible curve

on X, and let r P NE♣Xq. Then:

1. if ♣C2q ↕ 0, then rCs✑ P ❇NE♣Xq;

2. if ♣C2q ➔ 0, then rCs✑ spans an extremal ray of NE♣Xq;

3. if ♣C2q ✏ 0 and ♣KX ☎ Cq ➔ 0, then X is a ruled surface over a smooth curve, C is

a fiber of the associated morphism and ρX ✏ 2;

4. if r spans an extremal ray of NE♣Xq, either r2 ↕ 0 or ρX ✏ 1;

5. if r spans an extremal ray of NE♣Xq and r2 ➔ 0, such extremal ray is spanned by

the class of an irreducible curve.

Proof. (1) Let H be an ample divisor on X. Assume by contradiction that rCs✑ is in

the interior of NE♣Xq; then, so is rCs✑ � trHs✑ for all t small enough. Since rCs✑ has

nonnegative intersection with the class of any effective divisor, hence with any element of

NE♣Xq, it follows that 0 ↕ ♣C ☎ ♣C � tHqq ✏ ♣C2q � t♣C ☎ Hq ↕ t♣C ☎ Hq for all t small
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enough. But with (sufficiently small) t ➔ 0 we reach a contradiction, because ♣C ☎Hq → 0.

(2) We want to prove that, if rCs✑ ✏ z1�z2 with zi P N1♣Xq ❅i ✏ 1, 2, then zi P R�rCs✑.

We can write zi ✏ αirCs✑ � z✶i for some αi ➙ 0 and z✶i P N1♣Xq s.t. C ☎ z✶i ➙ 0. Hence,

from rCs✑ ✏ ♣α1 � α2qrCs✑ � z✶
1
� z✶

2
we can take intersections with C, obtaining that

♣C2q ➙ ♣α1 � α2q♣C
2q ñ ♣C2q♣α1 � α2 ✁ 1q ↕ 0, thus from ♣C2q ↕ 0 we get that

α1 � α2 ✁ 1 ➙ 0. But 0 ✏ ♣α1 � α2 ✁ 1qrCs✑ � z✶
1
� z✶

2
, so by Remark 4.4.6 we get that

z✶
1
✏ 0 ✏ z✶

2
(since they are not multiples of rCs✑, and they can’t be opposites because of

the condition C ☎ z✶i ➙ 0). This shows that zi ✏ αirCs✑, concluding the proof.

(3) By the Genus formula for curves 5.1.9, we have that ♣KX ☎Cq ✏ ✁2 and C is smooth

and rational. If H is an ample divisor on X, then ♣C ☎ Hq → 0, hence by the previous

Lemma H2♣X,mCq ✏ t0✉ for all m large enough. Since ♣C2q ✏ 0 and ♣KX ☎Cq ✏ ✁2, by

the Riemann-Roch Thm. for curves 5.1.8 we get that h0♣X,mCq ✁ h1♣X,mCq ✏

✏ m� χ♣X,OXq; in particular, h0♣X, ♣m✁ 1qCq ➔ h0♣X,mCq for m large enough. From

the exact sequence 0 Ñ OX♣♣m ✁ 1qCq Ñ OX♣mCq Ñ OC♣mCq ✕ OC Ñ 0, we get the

exact sequence 0 Ñ H0♣X, ♣m ✁ 1qCq Ñ H0♣X,mCq
ψ
ÝÑ H0♣C,mCq ✕ H0♣C,OCq ✕ K,

and the restriction map ψ is surjective by the previous observation about dimentions. It

follows that ⑤mC⑤ has no base-points: the only possible base-points are on C, but a section

s P H0♣C,mCq s.t. ψ♣sq ✏ 1 does not vanish on C. Therefore, ⑤mC⑤ defines a morphism

from X to a projective space whose image is a curve. Its Stein factorization yields a

morphism from X onto a smooth curve whose general fiber F is numerically equivalent

to some positive rational multiple of C. Since ♣KX ☎Cq ✏ ✁2, we have that ♣KX ☎F q ➔ 0,

so from the fact that F is a curve s.t. ♣F 2q ✏ 0 we obtain that ♣KX ☎F q ✏ ✁2 ✏ ♣KX ☎Cq,

hence F is rational and s.t. F ✑ C. Since R�rCs✑ is extremal and rCs✑ is not divisible

in N1♣Xq, all fibers are integral, and this concludes the proof.

(4) Let D,H be divisors on X s.t. ♣D2q ✏ 0, H is ample and ♣D ☎ Hq → 0. By the

previous Lemma, H2♣X,mDq ✏ t0✉ for m large enough, so by Proposition 3.4.16 we

have that h0♣X,mDq ➙ ♣D2q
2
m2 � O♣mq. Since ♣D2q → 0, this proves that mD is linearly

equivalent to an effective divisor form sufficiently large, hence rDs✑ P NE♣Xq. Therefore,

tz P N1♣XqR⑤z
2 → 0, H ☎ z → 0✉ ❸ NE♣Xq; since the set on the left is open, it is contained
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in the interior of NE♣Xq, hence does not contain any extremal rays of NE♣Xq, except if

ρX ✏ 1.

(5) Since r P NE♣Xq, it is the limit of a sequence tzi✉iPN in N1♣XqR. Since ❉j s.t. r☎zj ➔ 0,

there exists an irreducible curve C in X s.t. r ☎C ➔ 0. We can write zi ✏ αirCs✑�z
✶
i with

αi ➙ 0 and C ☎z✶i ➙ 0; surely, there exist α :✏ lim
iÑ�✽

αi ➙ 0 and r✶ :✏ lim
iÑ�✽

z✶i. By taking the

limit, we have that r ✏ αrCs✑� r
✶, so it holds 0 ↕ C ☎ r✶ ✏ C ☎ r✁α♣C2q ➔ ✁α♣C2q, which

implies that α → 0 and ♣C2q ➔ 0. Since R�r is extremal by hypothesis and r ✏ αrCs✑�r
✶,

we conclude that r must be a multiple of rCs✑.

Theorem 5.3.3 (Hodge Index Thm.). Given a projective surface X, let D,H be

divisors on X s.t. ♣H2q ➙ 0. Then, ♣D ☎Hq2 ➙ ♣D2q♣H2q.

Definition 5.3.4. An abelian surface is a smooth projective surface which is an (abelian)

algebraic group; the structure morphisms are regular maps.

Proposition 5.3.5. Let X be an abelian surface. Then:

1. any curve on X has nonnegative self-intersection;

2. if H is an ample divisor on X, we have NE♣Xq ✏ tz P N1♣XqR⑤z
2 ➙ 0, H ☎ z ➙ 0✉.

Proof. (1) Taken a curve C on X, then ♣C2q ✏ ♣C ☎ ♣x� Cqq ➙ 0 ❅x P X.

(2) By point (4) of the previous Proof, tz P N1♣XqR⑤z
2 → 0, H ☎ z → 0✉ ❸ NE♣Xq, so ♣❹q

holds. ♣❸q follows from (1).

Example 5.3.6. Let X be an abelian surface. By the Hodge Index Thm., the intersection

form on N1♣XqR has exactly one positive eigenvalue; therefore, when this vector space has

dim ✏ 3, NE♣Xq looks like the following picture.
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In particular, NE♣Xq is not finitely generated: indeed, every boundary point generates an

extremal ray, hence there are extremal rays whose only rational point is 0, so they cannot

be generated by the numerical class of a curve on X.

Example 5.3.7. Let X be a ruled surface with associated morphism φ. By Proposition

5.2.9, NE♣Xq is a closed convex cone in R2, so it has two extremal rays. Let F be a

fiber of φ; since ♣F 2q ✏ 0, by Proposition 5.3.2 we have that rF s✑ P ❇NE♣Xq spans an

extremal ray. Let ξ be the generator of the other extremal ray; by point (4) of the same

Proposition ξ2 ↕ 0, so we have two cases:

❼ if ξ2 ➔ 0, by point (5) of the same Proposition there exists an irreducible curve C

on X s.t. ξ ✏ rCs✑, and NE♣Xq ✏ R�rCs✑ � R�rF s✑ is closed;

❼ if ξ2 ✏ 0, by decomposing ξ in a basis ♣rF s✑, zq for N1♣XqQ as ξ ✏ az � brF s✑ we

have that a④b P Q, so we may assume that ξ is rational. However, it may happen

that no multiple of ξ can be represented by an effective divisor, in which case NE♣Xq

is not closed.

5.4 The cone theorem for surfaces

Definition 5.4.1. Given a projective K-scheme X, let D be a divisor on X. Then, for

any S ❸ N1♣XqR we define SD➙0 ✏ tz P S⑤D ☎ z ➙ 0✉, and similarly for SD↕0, SD→0 and

SD➔0.
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Theorem 5.4.2 (Cone Thm. for surfaces). Let X be a smooth projective surface.

Then, there exists a family of irreducible rational curves tCi✉iPN s.t. ✁3 ↕ ♣KX ☎ Ciq ➔ 0

and NE♣Xq ✏ NE♣XqKX➙0�
➳
iPN

R�rCis✑. Moreover, the rays R�rCis✑ are extremal, can

be contracted, and can only accumulate on the hyperplane ♣KXq
❑.

Proof. One can refer to [5], D.3.2.

Remark 5.4.3. The extremal rays R�rCis✑ can be contracted in three different ways:

❼ if ❉i s.t. ♣C2
i q → 0, by Proposition 5.3.2-(4) we get that ρX ✏ 1 and ✁KX is ample.

The contraction of R�rCis✑ is the map to a point, and X ✕ P2

K;

❼ if ❉i s.t. ♣C2
i q ✏ 0, by item (3) of the same Proposition we have that X is a ruled

surface, and Ci is a fiber of the associated morphism φ. The contraction of R�rCis✑

is φ;

❼ if ♣C2
i q ➔ 0 ❅i, it follows from the Genus formula 5.1.9 that Ci is smooth and s.t.

♣KX ☎ Ciq ✏ ♣C2
i q ✏ ✁1 for all i.

The study of the last case led to the following classical Theorem.

Theorem 5.4.4 (Castelnuovo’s Thm.). Given a smooth projective surface X, let C

be a smooth rational curve on X s.t. ♣C2q ✏ ✁1. Then, there exist a smooth projective

surface Y , a point p P Y and a morphism ε : X Ñ Y s.t. ε♣Cq ✏ tp✉; moreover, ε is

isomorphic to the blow-up of Y at p.

Proof. We will only prove the existence of such an ε; for the proof of the smoothness of

Y , we refer the avid reader to [4], Theorem V.5.7.

Let H be a very ample divisor on X. Upon replacing H with mH with m large enough,

we may assume that H1♣X,Hq ✏ t0✉. Set k ✏ ♣H ☎ Cq → 0, and define D ✏ H � kC.

Since ♣D☎Cq ✏ 0, OX♣Dq is associated to a morphism to a projective space which contracts

C and no other curve to a point. From the exact sequence

0 Ñ OX♣H�♣i✁1qCq Ñ OX♣H�iCq Ñ OC♣k✁iq Ñ 0 and the fact thatH1♣X,Hq ✏ t0✉,

we easily see by induction on i P t0, . . . , k✉ that H1♣X,H � iCq ✏ t0✉. In particular,
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for i ✏ k we get a surjection H0♣X,Dq Ñ H0♣C,OCq ✕ K: this tells us that the sheaf

OX♣Dq is generated by its global sections, hence it defines a morphism ε : X Ñ PnK which

contracts the curve C to a point p. Moreover, ε induces an isomorphism between X ∖ C

and ε♣Xq∖ tp✉.

Definition 5.4.5. A del Pezzo surface X is a smooth projective surface s.t. ✁KX is

ample.

Remark 5.4.6. If X is a del Pezzo surface, then by Kleiman’s criterion 4.5.1-(1) we

have that NE♣Xq ∖ t0✉ ❸ NE♣XqKX➔0. From the Cone Thm. for surfaces 5.4.2, it

follows that the set of extremal rays is discrete and compact, hence finite. Therefore,

NE♣Xq ✏ NE♣Xq ✏
m➳
i✏1

R�rCis✑. One can also check that if X is a ruled surface, then

it can only be isomorphic to F0 or F1.

Example 5.4.7. P2

K and a smooth cubic surface X ❸ P3

K are both del Pezzo surfaces. In

this last case, we have that NE♣Xq ✏ NE♣Xq ✏
27➳
i✏1

R�rCis✑ ❸ R7, where the Ci are the

27 lines on X.

5.5 Rational maps between smooth surfaces

Proposition 5.5.1. Given a rational map φ : X 99K Y between integral schemes with

domain U , set X ✶ ✏ Γ♣φq and let p : X ✶ Ñ X be the first projection. If X is normal and

Y is proper, then:

1. codimX♣X ∖ Uq ➙ 2;

2. X ∖ U is exactly the set of points of X where p has positive-dimensional fibers.

Proof. (1) If x is a point of codimension 1 in X, then OX,x is an integrally closed

noetherian local domain of dim ✏ 1, hence is a DVR thanks to Theorem 1.1.40. By the

local valuative criterion for properness, it follows that the generic point Spec♣K♣Xqq Ñ Y

extends to Spec♣OX,xq Ñ Y .

(2) By Zariski’s Main Theorem, p is proper and its fibers are connected. If a fiber p✁1♣xq
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is a single point, then x has a neighborhood V in X s.t. the map p✁1♣V q Ñ V induced by

p is finite; since it is birational and X is normal, it is an isomorphism. By (1), the thesis

follows.

Remark 5.5.2. A rational map from a smooth curve is actually a morphism, hence two

smooth birational curves are isomorphic. Moreover, a rational map from a smooth surface

is defined on the complement of a finite set.

Theorem 5.5.3 (Elimination of indeterminacies). Let φ : X 99K Y be a rational

map, where X is a smooth projective surface and Y is projective. Then, there exists

a birational morphism ε : X̃ Ñ X which is a composition of blow-ups of points, s.t.

φ ✆ ε : X̃ Ñ Y is a morphism.

Proof. We can replace Y with a projective space PnK , so that φ can be written as

φ♣xq ✏ ♣s0♣xq, . . . , sn♣xqq, where s0, . . . , sn are sections of the invertible sheaf φ✝OPn
K
♣1q.

Since OPn
K
♣1q is globally generated, so is φ✝OPn

K
♣1q on the domain U ❸ X of φ. In

particular, there exist two effective divisors D,D✶ in the linear system φ✝⑤OPn
K
♣1q⑤ with

no common component in U . Since by the previous Remark X ∖ U is just a finite set of

points, D and D✶ have no common component on the whole X, hence ♣D2q ✏ ♣D ☎D✶q ➙ 0.

If φ is a morphism, there is nothing to prove. Otherwise, let x be a point of X where

s0, . . . , sn all vanish, and let ε : X̃ Ñ X be the blow-up of this point, with exceptional

curve E. Since the sections s0 ✆ ε, . . . , sn ✆ ε P H
0♣X̃, ε✝Dq all vanish identically on E, let

m → 0 be the largest integer s.t. they all vanish there at order m. Taken s P H0♣X̃, Eq s.t.

div♣sq ✏ E, we can write si ✆ε ✏ s̃is
m, where s̃0, . . . , s̃n do not all vanish identically on E.

These sections define a morphism φ̃ :✏ φ✆ε : X̃ Ñ PnK which satisfies φ̃✝OPn
K
♣1q ✕ OX̃♣D̃q

with D̃ ✏ ε✝D✁mE. If φ̃ is a morphism we are done; otherwise, we iterate the previous

process. Since ♣D̃2q ✏ ♣D2q✁m2 ➔ ♣D2q and ♣D̃2q must remain nonnegative for the same

reason that ♣D2q was, the process must stop after at most ♣D2q steps.

Remark 5.5.4. This theorem was generalized by Hironaka to the case where X is any

smooth projective variety over an algebraically closed feld of characteristic 0; in this set-

ting, the morphism ε is a composition of blow-ups of smooth subvarieties.
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Corollary 5.5.5. Let φ : X 99K Y be a rational map, where X is a smooth projective

surface and Y is projective. If Y contains no rational curves, then φ is a morphism.

Proof. Let ε : X̃ Ñ X be a minimal composition of blow-ups s.t. φ̃ ✏ φ ✆ ε : X̃ Ñ Y

is a morphism. If we prove that ε is an isomorphism, then φ is a morphism. Assume by

contradiction that ε is not an isomorphism, and let E ❸ X̃ be the last exceptional curve.

Then φ̃♣Eq must be a curve, and it must be rational, which contradicts the hypothesis.

Theorem 5.5.6. Any birational morphism φ : X Ñ Y between smooth projective surfaces

is a composition of blow-ups of points and an isomorphism.

Proof. If φ is an isomorphism, there is nothing to prove. Otherwise, let y be a point

of Y where φ✁1 is not defined and let ε : Ỹ Ñ Y be the blow-up of y, with exceptional

curve E. Define f ✏ ε✁1 ✆ φ : X 99K Ỹ and g ✏ f✁1 : Ỹ 99K X; we want to show

that f is a morphism. Assume by contradiction that f is not defined at a point x P X,

i.e. that ε✁1 is not defined at φ♣xq. Then, there is a curve in Ỹ that ε maps to φ♣xq,

hence this curve must be E and φ♣xq ✏ y holds; moreover, g♣Eq ✏ tx✉. Since φ✁1 is

not defined at y and φ♣xq ✏ y, there exists a curve C ❸ X with x P C s.t. φ♣Cq ✏ ty✉.

Now, let ỹ be a point of E where g is defined, and consider the inclusions of local rings

OY,y
ϕ✝

ãÝÑ OX,x
g✝

ãÝÑ OỸ ,ỹ ❸ K♣Xq. Choose a system of parameters ♣t, vq on Ỹ at ỹ (i.e.

elements of mỸ ,ỹ whose classes in Tỹ♣Ỹ q ✏ mỸ ,ỹ④m
2

Ỹ ,ỹ
generate this K-v.s.) s.t. E is

locally defined by v, and a system of parameters ♣u, vq on Y at y with u ✏ tv. Let

w P mX,x be a local defining equation for C at x. Since φ♣Cq ✏ y, we have that w⑤u, v,

so we can write u ✏ aw and v ✏ bw for some a, b P OX,x. Since v ❘ m2

Ỹ ,ỹ
, surely b ❘ mX,x,

hence b is invertible and t ✏ u④v ✏ a④b P OX,x; since t P mỸ ,ỹ, it follows that t P mX,x.

From the fact that g♣Eq ✏ tx✉ we get that any element of g✝mX,x must be divisible in

OỸ ,ỹ by the equation v of E: this implies that v⑤t, which is absurd since ♣t, vq is a system

of parameters. This proves that f is a morphism.

Each time φ✁1 is not defined at a point of the image, we can therefore factor φ through

the blow-up of that point. For each factorization of φ as X
f ✶

ÝÑÑ Y ✶ Ñ Y we have by
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Proposition 4.7.3 an injection ♣f ✶q✝ : N1♣Y ✶qR ãÑ N1♣XqR, hence the Picard numbers of

the Y ✶ must remain bounded by ρX . Since these Picard numbers increase by 1 at each

blow-up, the process must stop after finitely many blow-ups of Y , in which case we end

up with an isomorphism.

Corollary 5.5.7. Any birational map φ : X 99K Y between smooth projective surfaces can

be factored as the inverse of a composition of blow-ups of points, followed by a composition

of blow-ups of points, and an isomorphism.

Proof. By Theorem 5.5.3 there is a composition of blow-ups ε : X̃ Ñ X s.t. φ ✆ ε is a

(birational) morphism, to which the previous Theorem applies.

Remark 5.5.8. This corollary was generalized in higher dimensions by Abramovich,

Karu, Matsuki, Wlodarczyk and Morelli: they proved that any birational map between

smooth projective varieties over an algebraically closed field of characteristic 0 can be fac-

tored as a composition of blow-ups of smooth subvarieties, inverses of such blow-ups and

an isomorphism; this is called weak factorization.

5.6 The minimal model program for surfaces

Remark 5.6.1. Let X be a smooth projective surface. From Castelnuovo’s Thm. 5.4.4

we know that by contracting exceptional curves on X one arrives eventually at a surface

X0 with no exceptional curves: such a surface is called a minimal model for X. Notice

that this process of contractions must come to an end because the Picard number of the

new surface decreases by 1 at each step thanks to Proposition 4.7.26. According to the

Cone Thm. 5.4.2, we can have two cases:

❼ either KX0
is nef,

❼ or there exists a rational curve Ci as in the theorem. This curve cannot be ex-

ceptional, hence X0 is either isomorphic to P2

K or a ruled surface, and X has a

morphism to a smooth curve whose generic fiber is P1

K.
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In particular, if X is not birational to a ruled surface, then it has a minimal model X0

with KX0
nef.

Proposition 5.6.2. Let φ : X 99K Y be a birational map between smooth projective

surfaces. If KY is nef, then φ is a morphism. If both KX and KY are nef, then φ is an

isomorphism.

Proof. Let f : Z Ñ Y be the blow-up of a point, and let C ❸ Z be an integral curve

other than the exceptional curve E. We have that f✝f♣Cq ✒ C�mE for some m ➙ 0, and

KZ ✏ f✝KY �E. From this, it follows that ♣KZ ☎Cq ✏ ♣♣f✝KY �Eq ☎ ♣f
✝f♣Cq✁mEqq ✏

✏ ♣KY ☎ f♣Cqq ✁m♣E ☎ Eq ✏ ♣KY ☎ f♣Cqq �m ➙ ♣KY ☎ f♣Cqq ➙ 0. Since any birational

morphism ψ : Z Ñ Y decomposes as a composition of blow-ups by Theorem 5.5.6, by

induction on the number of blow-ups we get that ♣KZ ☎ Cq ➙ 0 for any integral curve

C ❸ Z not contracted by ψ.

Now, by Theorem 5.5.3 there exists a (minimal) composition of blow-ups ε : X̃ Ñ X s.t.

φ̃ ✏ φ ✆ ε is a morphism. If we can show that ε is an isomorphism, then φ is a morphism.

Assume by contradiction that ε is not an isomorphism; then, its last exceptional curve E

is not contracted by φ̃, hence it must satisfy ♣KX̃ ☎Eq ➙ 0, which is absurd since it holds

♣KX̃ ☎ Eq ✏ ✁1.

If also KX is nef, then also φ✁1 is a morphism; therefore, φ is an isomorphism.

Remark 5.6.3. The previous Remark proves that if X is not birational to a ruled surface,

then it has a unique minimal model (up to isomorphism).
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The cone of curves and the minimal

model program

In this whole chapter, K will be an algebraically closed field.

6.1 Parametrizing morphisms

Proposition 6.1.1. Morphisms P1

K Ñ PnK of degree d are parametrized by a Zariski open

subset of P♣♣Symd♣K2qqn�1q; we denote this quasi-projective variety Mord♣P
1

K ,P
n
Kq.

Proof. Let f : P1

K Ñ PnK be a morphism of deg ✏ d; then, we can write f♣x, yq ✏

✏ ♣F0♣x, yq, . . . , Fn♣x, yqq, where the Fi P Krx, ysd have no nonconstant common factor in

Krx, ys. We want to show that there exist universal integral polynomials in the coefficients

of F0, . . . , Fn which vanish if and only if they have a nonconstant common factor inKrx, ys,

i.e. a nontrivial common zero in P1

K . While ♣ñq clearly holds, by the Nullstellensatz the

hypothesis of ♣ðq tells us that the ideal generated by F0, . . . , Fn in Krx, ys contains

some power of the maximal ideal ♣x, yq. This means that for some m, the linear map

♣Krx, ysm✁dq
n�1 Ñ Krx, ysm given by ♣G0, . . . , Gnq ÞÑ

n➳
i✏0

FiGi is surjective, hence of rank

m � 1. Therefore, we conclude that F0, . . . , Fn have a nonconstant common factor in

Krx, ys ðñ for any m, all ♣m � 1q-minors of some universal matrix whose entries are

linear integral combinations of the coefficients of the Fi vanish. This defines a Zariski

closed subset of the projective space P♣♣Symd♣K2qqn�1q, defined over Z.

Remark 6.1.2. With the notations of the previous proof, we have a universal morphism



80 Chapter 6. The cone of curves and the minimal model program

u : P1

K ✂Mord♣P
1

K ,P
n
Kq Ñ PnK given by ♣♣x, yq, fq ÞÑ ♣F0♣x, yq, . . . , Fn♣x, yqq.

Moreover, morphisms P1

K Ñ PnK are parametrized by the disjoint union of quasi-projective

schemes Mor♣P1

K ,P
n
Kq ✏

➜
d➙0

Mord♣P
1

K ,P
n
Kq.

Example 6.1.3. In the case of a morphism f : P1

K Ñ PnK of degree d ✏ 1, we can write

Fi♣x, yq ✏ aix�biy with ♣a0, . . . , an, b0, . . . , bnq P P2n�1

K . The condition that F0, . . . , Fn have

no common zeroes is equivalent to rk

✂
a0 . . . an
b0 . . . bn

✡
✏ 2. Its complement Z in P2n�1

K is

defined by the vanishing of all its 2✂2-minors, i.e. by the equations aibj✁ajbi ✏ 0 ❅i ✘ j.

The universal morphism u : P1

K ✂ ♣P
2n�1

K ∖ Zq Ñ PnK is given by

♣♣x, yq, ♣a0, . . . , an, b0, . . . , bnqq ÞÑ ♣a0x� b0y, . . . , anx� bnyq.

Definition 6.1.4. Let X be a closed subscheme of PnK defined by the homogeneous equa-

tions G1, . . . , Gm. Morphisms P1

K Ñ X of degree d are parametrized by the subscheme

Mord♣P
1

K , Xq ofMord♣P
1

K ,P
n
Kq defined by the equations Gi♣F0, . . . , Fnq ✏ 0 ❅i ✏ 1, . . . ,m.

Moreover, morphisms P1

K Ñ X are parametrized by the disjoint union of quasi-projective

schemes Mor♣P1

K , Xq ✏
➜
d➙0

Mord♣P
1

K , Xq.

Remark 6.1.5. We can extend this definition for any quasi-projective variety X: after

embedding X into some projective variety X, there is a universal morphism

u : P1

K ✂Mor♣P1

K , Xq Ñ X, and Mor♣P1

K , Xq is the complement in Mor♣P1

K , Xq of the

image by the second projection of the closed subscheme u✁1♣X ∖Xq.

If moreover X is defined by the homogeneous equations G1, . . . , Gm with coefficients in

a subring R of K, the scheme Mord♣P
1

K , Xq has the same property. If m is a maximal

ideal of R, let Xm be the reduction of X modulo m: this is the subscheme of PnR④m defined

by the reductions of the Gi modulo m. Since the equations defining the complement of

Mord♣P
1

K ,P
n
Kq in P♣♣Symd♣K2qqn�1q are defined over Z, Mord♣P

1

K , Xmq is the reduction

of the R-scheme Mord♣P
1

K , Xq modulo m.

Remark 6.1.6. Let X, Y be varieties over K, with X projective and Y quasi-projective.

One can show (see [3] for a reference) that K-morphisms X Ñ Y are parametrized by a

scheme Mor♣X, Y q which is locally of finite type. Fixed an ample divisor H on Y and a

polynomial P with rational coefficients, define the subscheme MorP ♣X, Y q of Mor♣X, Y q
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as the one parametrizing morphisms X Ñ Y with fixed Hilbert polynomial

P ♣mq ✏ χ♣X,mf✝Hq. Notice that MorP ♣X, Y q is quasi-projective over K, and that

Mor♣X, Y q ✏
➜

PPQrxs

MorP ♣X, Y q.

Moreover, if X is a curve, fixing the Hilbert polynomial is equivalent to fixing the degree

of the 1-cycle f✝X for the embedding of Y defined by some multiple of H.

Proposition 6.1.7. Let X, Y be varieties over K, with X projective and Y quasi-projective.

Then, there is a universal morphism u : X ✂Mor♣X, Y q Ñ Y s.t. for any K-scheme Z,

the correspondence tmorphisms Z ÑMor♣X, Y q✉ Ø tmorphisms X ✂ Z Ñ Y ✉ given by

φ ÞÑ f♣x, zq ✏ u♣x, φ♣zqq is one-to-one.

Example 6.1.8. Mor♣SpecK,Xq ✏ X, and the universal morphism u : SpecK✂X Ñ X

is the second projection.

Notation. Given a morphism f : X Ñ Y , we denote by rf s the corresponding element

of Mor♣X, Y q.

Theorem 6.1.9. Given X, Y projective varieties over K, let f : X Ñ Y be a K-morphism

s.t. Y is smooth along f♣Xq. Then, locally around rf s the scheme Mor♣X, Y q can be

defined by h1♣X, f✝TY q equations in a smooth scheme of dimension h0♣X, f✝TY q. In

particular, any irreducible component of Mor♣X, Y q through rf s has dimension at least

h0♣X, f✝TY q ✁ h1♣X, f✝TY q.

Proof. See [1], Theorem 6.8.

Corollary 6.1.10. Given X, Y projective varieties over K, let f : X Ñ Y be a

K-morphism s.t. Y is smooth along f♣Xq. If H1♣X, f✝TY q ✏ t0✉, then Mor♣X, Y q is

smooth at rf s.

Definition 6.1.11. Given X, Y projective varieties over K, let x1, . . . , xr P X and

y1, . . . , yr P Y . The morphisms X Ñ Y which map each xi to yi can be parametrized by the

fiber over ♣y1, . . . , yrq of the map ρ :Mor♣X, Y q Ñ Xr given by rf s ÞÑ ♣f♣x1q, . . . , f♣xrqq;

we denote this space by Mor♣X, Y ; xi ÞÑ yiq.
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Remark 6.1.12. At a point rf s P Mor♣X, Y ; xi ÞÑ yiq s.t. Y is smooth along f♣Xq, the

tangent map to ρ is the evaluation H0♣X, f✝TY q Ñ
rà
i✏1

♣f✝TY qxi ✕
rà
i✏1

TY,yi, hence the

tangent space to Mor♣X, Y ; xi ÞÑ yiq is its kernel H0♣X, f✝TY ❜ Ix1,...,xrq, where Ix1,...,xr

is the ideal sheaf of x1, . . . , xr in X. By the classical theorems on the dimention of fibers

and Theorem 6.1.9, locally around rf s the scheme Mor♣X, Y ; xi ÞÑ yiq can be defined

by h1♣X, f✝TY q � r dim♣Y q equations in a smooth scheme of dimension h0♣X, f✝TY q; in

particular, its irreducible components at rf s are all of dimension at least

h0♣X, f✝TY q ✁ h1♣X, f✝TY q ✁ r dim♣Y q.

Remark 6.1.13. Given a curve C and c1, . . . , cr P C, let f : C Ñ X be a morphism. By

Riemann-Roch 3.1.7, one has that dimrf sMor♣C,Xq ➙ χ♣C, f✝TXq ✏ ✁KX ☎ f✝C �

� ♣1✁ g♣Cqqdim♣Xq, and dimrf sMor
�
C,X; ci ÞÑ f♣ciq

✟
➙ χ♣C, f✝TXq ✁ r dim♣Xq ✏

✏ ✁KX ☎ f✝C � ♣1✁ g♣Cq ✁ rqdim♣Xq.

6.2 “Bend-and-break” lemmas

We now enter the world of Mori Theory: the whole story began in 1979, with Mori’s

astonishing proof of a conjecture of Hartshorne characterizing projective spaces as the

only smooth projective varieties with ample tangent bundle. The techniques that Mori

introduced to solve this conjecture have turned out to have more far reaching applications

than Hartshorne’s conjecture itself. In particular, Mori’s first idea is that if a curve

deforms on a projective variety while passing through a fixed point, it must at some point

break up with at least one rational component, hence the name “bend-and-break”.

Notation. Given a projective variety X, let C be a curve on X with irreducible com-

ponents C1, . . . , Cr, and let φ : C Ñ X be a morphism. Extending Definition 3.4.19,

we write φ✝C for the effective 1-cycle
r➳
i✏1

diφ♣Ciq, where di is the degree of φ⑤Ci
onto its

image. Note that for any Cartier divisor D on X, the Projection formula 3.4.20 implies

that ♣D ☎ φ✝Cq ✏ deg♣φ✝Dq.

Proposition 6.2.1 (Mori). Given a projective variety X, let f : P1

K Ñ X be a parametriza-

tion of a rational curve. If dimrf sMor
�
P1

K , X; 0 ÞÑ f♣0q,✽ ÞÑ f♣✽q
✟
➙ 2, then the 1-cycle
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f✝P
1

K is numerically equivalent to a connected nonintegral effective 1-cycle with rational

components passing through f♣0q and f♣✽q.

Proof. Look at [1], Proposition 7.3.

Remark 6.2.2. Thanks to Remark 6.1.13, if X is smooth along f♣P1

Kq, the hypothesis of

the previous Proposition are satisfied whenever ♣✁KX ☎ f✝P
1

Kq ✁ dim♣Xq ➙ 2.

Definition 6.2.3. A Fano variety is a smooth projective variety over K with ample

anticanonical divisor.

Remark 6.2.4. A finite product of Fano varieties is a Fano variety.

Example 6.2.5. The projective space is a Fano variety. Moreover, any smooth complete

intersection in PnK defined by equations of degrees d1, . . . , ds with
s➳
i✏1

di ↕ n is a Fano

variety.

Remark 6.2.6. A Del Pezzo surface is a Fano surface.

Proposition 6.2.7. Given a Fano variety Y , let D1, . . . , Dr be nef divisors on Y . If

E ✏
rà
i✏1

OY ♣Diq, then X ✏ P♣Eq is a Fano variety.

Proof. Set D✶ ✏ ✁KY ✁
r➳
i✏1

Di; by Proposition 4.2.4, D✶ is ample. Let φ : X Ñ Y be

the canonical map, and let D be a divisor on X associated to the invertible sheaf OX♣1q;

notice that D is nef on X since each Di is nef on Y . Then, one can show that it holds

✁KX ✏ rD � φ✝D✶. Again from Proposition 4.2.4, we can conclude that ✁KX is ample.

Theorem 6.2.8 (Miyaoka-Mori Thm.). Given a projective variety X, let H be an

ample divisor on X, and let φ : C Ñ X be a morphism from a smooth curve s.t. X is

smooth along φ♣Cq and ♣KX ☎ φ✝Cq ➔ 0. Then, for any point x P φ♣Cq there exists a

rational curve Γ on X through x that satisfies ♣H ☎ Γq ↕ 2dim♣Xq ♣H ☎ϕ✝Cq
♣✁KX ☎ϕ✝Cq

.

Proof. See [1], Theorem 7.7.
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Corollary 6.2.9. A Fano variety X is covered by rational curves of ♣✁KXq-degree at

most 2dim♣Xq.

Corollary 6.2.10. The canonical divisor of a smooth projective complex variety which

contains no rational curves is nef.

Lemma 6.2.11. Given a projective variety X and a positive integer d, let Md be the

quasi-projective scheme that parametrizes morphisms P1

K Ñ X of degree at most d with

respect to some ample divisor. Then, the image of the evaluation map νd : P
1

K✂Md Ñ X,

i.e. the set of points of X through which passes a rational curve of degree at most d, is

closed in X.

Proof. One can find it in [1], Lemma 7.8.

Theorem 6.2.12 (Bertini’s Thm.). Let X be a nonsingular closed subvariety of PnK.

Then, there exists a hyperplane H ❸ PnK not containing X s.t. the scheme H ❳ X is

regular at every point. Furthermore, the set of hyperplanes with this property forms an

open dense subset of the linear system ⑤H⑤.

Proof. Look at [4], Theorem II.8.18.

Theorem 6.2.13. If X is a smooth projective variety with ✁KX nef, then:

❼ either KX is numerically trivial,

❼ or there is a rational curve through any point of X.

Proof. Let H be a very ample divisor on X, corresponding to a hyperplane section of an

embedding of X in PNK . Set n ✏ dim♣Xq.

Assume ♣KX ☎H
n✁1q ✏ 0. For any curve C ❸ X, there exist hypersurfaces H1, . . . , Hn✁1 in

PNK of respective degree d1, . . . , dn✁1 s.t. the scheme-theoretic intersection Z ✏ X❳
n✁1↔
i✏1

Hi

has pure dimension 1 and contains C. Since ✁KX is nef, we get that 0 ↕ ♣✁KX ☎ Cq ↕

↕ ♣✁KX ☎ Zq ✏
n✁1➵
i✏1

di♣✁KX ☎Hn✁1q ✏ 0. This shows that ♣KX ☎ Cq ✏ 0 for any curve C

on X, hence KX is numerically trivial.
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Assume now ♣KX ☎Hn✁1q ➔ 0. Taken a point x of X, let C be the normalization of the

intersection of n✁ 1 general hyperplane sections through x. By Bertini’s Thm. 6.2.12, C

is an irreducible curve which satisfies ♣KX ☎Cq ✏ ♣KX ☎Hn✁1q ➔ 0. By the Miyaoka-Mori

Thm. 6.2.8, there exists a rational curve on X which passes through x.

6.3 The cone theorem

Definition 6.3.1. Let X be a smooth projective variety. An extremal ray of NE♣Xq is

said to be KX-negative if it meets N1♣XqKX➔0.

Theorem 6.3.2 (Mori’s Cone Thm.). Let X be a smooth projective variety. Then,

there exists a family tΓi✉iPN of rational curves on X s.t. 0 ➔ ♣KX ☎ Γiq ↕ dim♣Xq � 1

and NE♣Xq ✏ NE♣XqKX➙0 �
➳
iPN

R�rΓis✑, where the R�rΓis✑ are all the KX-negative

extremal rays of NE♣Xq; moreover, these rays are locally discrete in N1♣XqKX➔0.

Proof. As we saw in ➜6.1, there are only countably many families of, hence classes

of, rational curves on X. Pick a representative Γi for each such class zi that satisfies

0 ➔ ✁KX ☎ zi ↕ dim♣Xq � 1.

First, we want to show that the rays R�zi are locally discrete in the half-spaceN1♣XqKX➔0.

Let H be an ample divisor on X; noticing that N1♣XqKX➔0 ✏
↕
ε→0

N1♣XqKX�εH➔0, it is

enough to show that for each ε → 0 there are only finitely many classes zi inN1♣XqKX�εH➔0.

Indeed, if ♣♣KX � εHq ☎ Γiq ➔ 0, then ♣H ☎ Γiq ➔
1

ε
♣✁KX ☎ Γiq ↕

1

ε
♣dim♣Xq � 1q, and by

Kleiman’s criterion 4.5.1-(2) there are only finitely many such classes of curves on X.

Secondly, we want to show that NE♣Xq is equal to the closure of V ✏ NE♣XqKX➙0 �
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�
➳
iPN

R�rΓis✑. If this is not the case, since NE♣Xq contains no lines, there exists by

Lemma 4.3.8-(7) an R-divisor D on X which is nonnegative on NE♣Xq (so in particular

it is nef), positive on V ∖ t0✉ and which vanishes at some nonzero point z of NE♣Xq;

notice that z cannot be in V , hence KX ☎ z ➔ 0. Now, choose a norm on N1♣XqR s.t.

∥rCs✑∥ ➙ 1 for each irreducible curve C; notice that this is possible since the set of

classes of irreducible curves is discrete. At most by replacing D with a multiple, we can

assume (since D is positive on V ∖ t0✉) that D ☎ v ➙ 2∥v∥ ❅v P V . Moreover, it holds

2dim♣Xq♣D ☎ zq ✏ 0 ➔ ✁KX ☎ z. Since rDs✑ is a limit of classes of ample Q-divisors, and

z is a limit of classes of effective rational 1-cycles, there exist an ample Q-divisor H and

an effective 1-cycle Z s.t. 2dim♣Xq♣H ☎ Zq ➔ ♣✁KX ☎ Zq and H ☎ v ➙ ∥v∥ ❅v P V . We

may further assume that each component C of Z satisfies ♣✁KX ☎ Cq → 0 by taking 0

as the coefficient of the components that do not. Notice that the class of every rational

curve Γ on X s.t. ♣✁KX ☎Γq ↕ dim♣Xq� 1 is in V : indeed, it is either in NE♣XqKX➙0, or

♣✁KX ☎ Γq → 0 and rΓs✑ is one of the zi. This tells us that it holds ♣H ☎ Γq ➙ ∥rΓs✑∥ ➙ 1

by what we have seen above and the choice of the norm. Since X is smooth, the Miyaoka-

Mori Theorem 6.2.8 implies that 2dim♣Xq ♣H ☎Cq
♣✁KX ☎Cq

➙ 1 for every component C of Z, which

contradicts the fact that 2dim♣Xq♣H ☎ Zq ➔ ♣✁KX ☎ Zq.

Finally, we would like to show that for any I ❸ N, the cone VI ✏ NE♣XqKX➙0�
➳
iPI

R�rΓis✑

is closed. By Lemma 4.3.8-(5), it is enough to show that any extremal ray R�r in VI sat-

isfying KX ☎ r ➔ 0 is in VI . Let H be an ample divisor on X and let ε → 0 be s.t.

♣KX � εHq ☎ r ➔ 0. By the first step of this proof, there are only finitely many classes

zi1 , . . . , zin with ij P I s.t. ♣KX � εHq ☎ zij ➔ 0 for all j ✏ 1, . . . , n. Write r as the limit of

a sequence trm� sm✉m➙0, where rm P NE♣XqKX�εH➙0 and sm ✏
n➳
j✏1

λm,jzij . Since H ☎ rm

and H ☎zij are positive and H ☎r ➔ ✁1

ε
KX ☎r (with the latter that is positive by hypothesis),

the sequences tH ☎rm✉m➙0 and tλm,j✉m➙0 are bounded; by Kleiman’s criterion 4.5.1-(2) we

then have (at most after taking subsequences) that trm✉m➙0 and tλm,j✉m➙0 have limits.

Since r spans an extremal ray in VI , lim
mÑ✽

rm and lim
mÑ✽

sm must be nonnegative multiples

of r; but from ♣KX � εHq ☎ r ➔ 0 we get that lim
mÑ✽

rm must be 0. This tells us that r is a

multiple of one of the zij , hence is in VI . This concludes the proof.
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Corollary 6.3.3. Given a smooth projective variety X, let R be a KX-negative extremal

ray of NE♣Xq. Then, there exists a nef divisor MR on X, called supporting divisor for

R, s.t. R ✏ tz P NE♣Xq⑤MR ☎ z ✏ 0✉. Moreover, we have that mMR ✁KX is ample for

all m large enough.

Proof.With the notation of the previous proof, there exists a unique j P N s.t. R ✏ R�zj.

By the third step of the same proof, the cone VN∖tj✉ ✏ NE♣XqKX➙0�
➳
i✘j

R�rΓis✑ is closed,

and it is strictly contained in NE♣Xq since it does not contain R. By Lemma 4.3.8-(7),

there exists a linear form which is nonnegative on NE♣Xq, positive on VN∖tj✉ ∖ t0✉ and

which vanishes at some nonzero point of NE♣Xq, hence on R since NE♣Xq ✏ VN∖tj✉�R.

Using item (3) of the same Lemma 4.3.8, we have that the intersection of the interior of

V ✝
N∖tj✉ and the rational hyperplane R❑ is nonempty, hence it contains an integral point,

thus there exists a divisor MR on X which is positive on VN∖tj✉ ∖ t0✉ and vanishes on R;

in particular, it is nef. This proves the first statement.

Now, choose a norm on N1♣XqR and set T ✏ tz P VN∖tj✉⑤ ∥z∥ ✏ 1✉; notice that T is

compact. If we define a ✏ mintMR ☎ z⑤z P T ✉ → 0 and b ✏ maxtKX ☎ z⑤z P T ✉, then

mMR ✁ KX is positive on VN∖tj✉ ∖ t0✉ for any m → b④a, and positive on R ∖ t0✉. By

Kleiman’s criterion 4.5.1-(1), mMR ✁KX is ample for any m → b④a.

6.4 Contractions of KX-negative extremal rays

Theorem 6.4.1 (Kawamata’s base-point-free Thm.). Given a smooth complex pro-

jective variety X, let D be a nef divisor on X s.t. tD✁KX is nef and big for some positive

t P Q. Then, mD is generated by its global sections for all m large enough.

Corollary 6.4.2. Given a smooth complex projective variety X, let R be a KX-negative

extremal ray of NE♣Xq. Then:

1. there exists a contraction cR : X ↠ Y of R, with Y being a normal projective

variety;

2. if C is an integral curve on X with class in R, then there is an exact sequence

0 Ñ Pic♣Y q
c✝
RÝÑ Pic♣Xq

δCÝÑ Z, where δC♣rDs✒q ✏ ♣D ☎ Cq; moreover, ρY ✏ ρX ✁ 1.
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Proof. (1) Let MR be a supporting divisor for R; then, Kawamata’s Thm. 6.4.1 tells us

that mMR is generated by its global sections for all m large enough. Therefore, we have

an induced morphism X Ñ PnK . By taking its Stein factorization, we get a contraction

cR of R as wanted.

(2) First, notice that by definition of cR there exists a Cartier divisor Dm on Y s.t.

mMR ✒ c✝RDm. Since ♣cRq✝OX ✕ OY , by the Projection formula 2.8.4 we have that for

any invertible sheaf L on Y it holds ♣cRq✝♣c
✝
RLq ✕ L❜ ♣cRq✝OX ✕ L: this proves that c✝R

is a (split) monomorphism.

Since Im♣c✝Rq ❸ ker♣δCq clearly, it remains to show ♣❹q: let D be a divisor on X s.t.

♣D ☎ Cq ✏ 0. Proceeding as in the proof of Corollary 6.3.3, we see that mMR �D is nef

for all m large enough and vanishes only on R. It is therefore a supporting divisor for

R, hence some multiple p♣mMR �Dq also defines its contraction. Since the contraction

cR is unique, there exists a Cartier divisor Em,p on Y s.t. p♣mMR � Dq ✒ c✝REm,p.

Notice that ♣p� 1q♣mMR �Dq ✒ c✝REm,p�1, so by subtracting the former from the latter

one gets that c✝R♣Em,p�1 ✁ Em,pq ✒ mMR � D ✒ c✝RDm � D, from which we obtain

D ✒ c✝R♣Em,p�1✁Em,p✁Dmq. This proves that rDs✒ P Im♣c✝Rq; the fact that ρY ✏ ρX ✁1

immediately follows.

Remark 6.4.3. The same result holds for any KX-negative extremal subcone V of NE♣Xq

instead of R, in which case the Picard number of cV ♣Xq is ρX ✁ dim①V ②.

Remark 6.4.4. Item (2) together with the relative Kleiman’s criterion 4.7.14 imply that

✁KX is cR-ample. Moreover, we have the dual exact sequences

0 Ñ N1♣Y qR
c✝
RÝÑ N1♣XqR Ñ ①R②✝ Ñ 0 and 0 Ñ ①R② Ñ N1♣XqR

♣cRq✝
ÝÝÝÑ N1♣Y qR Ñ 0.

6.5 Different types of contractions

Remark 6.5.1. Given a smooth complex projective variety X, let R be a KX-negative

extremal ray of NE♣Xq with contraction cR : X Ñ Y . Since cR contracts all curves whose

class lies in R, we have that NE♣cRq ✏ R. Moreover, from the fact that ♣cRq✝OX ✕ OY

we have either that dim♣Y q ➔ dim♣Xq or cR is birational.
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Definition 6.5.2. Let φ : X Ñ Y be a proper birational morphism. We define the excep-

tional locus Exc♣φq of φ as the locus of points of X where φ is not a local isomorphism.

Remark 6.5.3. Given a proper birational morphism φ : X Ñ Y , set E ✏ Exc♣φq; notice

that E is closed. If Y is normal, Zariski’s Main Theorem says that E ✏ φ✁1♣φ♣Eqq,

and the fibers of φ⑤E : E Ñ φ♣Eq are connected and everywhere positive-dimensional; in

particular, codimY φ♣Eq ➙ 2. The largest open set over which φ✁1 : Y 99K X is defined is

Y ∖ φ♣Eq.

Definition 6.5.4. Given a smooth complex projective variety X, let R be a KX-negative

extremal ray of NE♣Xq with contraction cR : X Ñ Y . Then, locus♣Rq :✏ Exc♣cRq is

called the locus of R.

Remark 6.5.5. locus♣Rq is the union of all curves in X whose classes belong to R. We

can distinguish 3 cases:

❼ locus♣Rq ✏ X, dim♣Y q ➔ dim♣Xq, and cR is a fiber contraction;

❼ locus♣Rq is a divisor, and cR is a divisorial contraction;

❼ codimX locus♣Rq ➙ 2, and cR is a small contraction.

Proposition 6.5.6. Given a smooth complex projective variety X, let R be a KX-negative

extremal ray of NE♣Xq. If Z is an irreducible component of locus♣Rq, we have that:

1. Z is covered by rational curves contracted by cR;

2. if codimXZ ✏ 1, then Z ✏ locus♣Rq;

3. dim♣Zq ➙ 1

2

�
dim♣Xq � dim♣cR♣Zqq

✟
.

Proof. (1) Take x P Z; since x P locus♣Rq, there exists an irreducible curve C through

x whose class is in R. Let MR be a supporting divisor for R, let H be an ample divisor

on X, and let m be an integer s.t. m → 2dim♣Xq ♣H ☎Cq
♣✁KX ☎Cq

. By Miyaoka-Mori Thm. 6.2.8

applied to mMR �H, there exists a rational curve Γ through x s.t.

♣♣mMR �Hq ☎ Γq ↕ 2dim♣Xq ♣♣mMR�Hq ☎Cq
♣✁KX ☎Cq

. Since for m large enough mMR �H is ample,
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we get that 0 ➔ ♣♣mMR �Hq ☎ Γq ↕ 2dim♣Xq ♣♣mMR�Hq ☎Cq
♣✁KX ☎Cq

✏ 2dim♣Xq ♣H ☎Cq
♣✁KX ☎Cq

➔ m, thus

0 ➔ m♣MR ☎ Γq � ♣H ☎ Γq ➔ m. This tells us that ♣MR ☎ Γq must vanish, and ♣H ☎ Γq ➔ m;

therefore, rΓs✑ P R, so Γ is contained in locus♣Rq, hence in Z since it passes through x.

(2) If locus♣Rq ✘ X, then cR is birational and MR is nef and big. Let H be an ample

divisor on X; as in the proof of Corollary 4.6.4, for m large enough, mMR✁H is linearly

equivalent to an effective divisor D. Then, a nonzero element in R has negative inter-

section with D, hence with some irreducible component D✶ of D. Any irreducible curve

with class in R must then be contained in D✶, which therefore contains locus♣Rq; since

the other inclusion is obvious, we are done.

(3) Take x P Z, and pick a rational curve Γ in Z through x with class in R and minimal

♣✁KXq-degree. Let f : P1

K Ñ Γ ❸ X be a parametrization of Γ that satisfies f♣0q ✏ x.

Let T be a component of Mor♣P1

K , Xq passing through rf s, and let ν0 : T Ñ X be the

map t ÞÑ ft♣0q. By Remark 6.1.13, dim♣T q ➙ dim♣Xq � 1. Since each curve ft♣P
1

Kq has

the same class as Γ, it is contained in Z, hence ν0♣T q ❸ Z; moreover, for any component

Tx of ν✁1

0 ♣xq we have that dim♣Zq ➙ dim♣T q ✁ dim♣Txq ➙ dim♣Xq � 1✁ dim♣Txq.

Now, consider the evaluation ν✽ : Tx Ñ X and let y P X. If ν✁1
✽ ♣yq has dimension at

least 2, Mori’s Proposition 6.2.1 implies that Γ is numerically equivalent to a connected

effective rational nonintegral 1-cycle
m➳
i✏1

aiΓi passing through x and y. Since R is extremal,

each rΓis✑ must be in R, hence 0 ➔ ♣✁KX ☎ Γiq ➔ ♣✁KX ☎ Γq for each i ✏ 1, . . . ,m. This

contradicts the minimality of Γ with respect to the ♣✁KXq-degree.

It follows that the fibers of ν✽ have dimension at most 1. Since for any t P Tx the curve

ft♣P
1

Kq passes through x, it has the same image as x by cR; therefore, ν✽♣Txq ✏

✏
↕
tPTx

tft♣✽q✉ ✏
↕
tPTx

ft♣P
1

Kq is irreducible and contained in c✁1

R ♣cR♣xqq. This tells us

that dimx♣c
✁1

R ♣cR♣xqqq ➙ dim♣ν✽♣Txqq ➙ dim♣Txq ✁ 1, where the last inequality comes

from the fact that the fibers of ν✽ have dimension at most 1. Since the left-hand side

is equal to dim♣Zq ✁ dim♣cR♣Zqq, it follows that dim♣Zq ➙ dim♣cR♣Zqq � dim♣Txq ✁ 1;

summing with the previous inequality dim♣Zq ➙ dim♣Xq � 1 ✁ dim♣Txq, one gets that

2dim♣Zq ➙ dim♣Xq � dim♣cR♣Zqq as wanted.

Remark 6.5.7. We could have been more precise with some inequalities in the previous
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proof: for any rational curve Γ contained in the fiber of cR through x, Remark 6.1.13 tells

us that dim♣T q ➙ dim♣Xq� ♣✁KX ☎Γq, therefore it holds dim♣Zq ➙ dim♣T q✁dim♣Txq ➙

➙ dim♣Xq � ♣✁KX ☎ Γq ✁ dim♣Txq. Moreover, for any positive-dimensional irreducible

component F of a fiber of cR we would get dim♣F q ➙ dim♣Txq✁1 ➙ dim♣Xq�♣✁KX ☎Γq✁

✁ dim♣locus♣Rqq ✁ 1 ✏ codim♣locus♣Rqq � ♣✁KX ☎ Γq ✁ 1.

Definition 6.5.8. Given a smooth complex projective variety X, let R be a KX-negative

extremal ray of NE♣Xq. Then, we define the length of R as the integer

ℓ♣Rq ✏ mint♣✁KX ☎ Γq⑤Γ rational curve on X with class in R✉.

Proposition 6.5.9 (Wísniewski). Given a smooth complex projective variety X, let R

be a KX-negative extremal ray of NE♣Xq. Then, any positive-dimensional irreducible

component F of a fiber of cR satisfies dim♣F q ➙ codim♣locus♣Rqq � ℓ♣Rq ✁ 1, and F is

covered by rational curves of ♣✁KXq-degree at most dim♣F q � 1✁ codim♣locus♣Rqq.

Proof. It follows directly from the previous Remark.

6.6 Fiber contractions

Remark 6.6.1. Given a smooth complex projective variety X, let R be a KX-negative

extremal ray of NE♣Xq with contraction cR : X Ñ Y of fiber type. It follows from

Proposition 6.5.6-(1) that X is covered by rational curves contracted by cR. Moreover, a

general fiber F of cR is smooth, and ✁KF ✏ ♣✁KXq⑤F is ample thanks to Remark 6.4.4:

this tells us that F is a Fano variety.

Proposition 6.6.2. Given a smooth complex projective variety X, let R be a KX-negative

extremal ray of NE♣Xq. If the contraction cR : X Ñ Y is of fiber type, then Y is locally

factorial.

Proof. Recalling Theorem 2.1.10, to conclude is enough to show that all Weil divisors on

Y are Cartier divisors. Taken a prime Weil divisor D on Y , define c✶R as the restriction of

cR to c✁1

R ♣Yregq, and letDX be the closure inX of ♣c✶Rq
✝♣D❳Yregq. Since the Cartier divisor

DX is disjoint from a general fiber of cR, it has intersection 0 with any irreducible curve
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C of X whose class generates R. By Corollary 6.4.2-(2), rDXs✒ P ker♣δCq ✏ Im♣c✝Rq, so

there exists a Cartier divisor DY on Y s.t. DX ✒ c✝RDY . Since ♣cRq✝OX ✕ OY , by the

Projection formula 2.8.4 we get that D and DY are linearly equivalent on Yreg, hence on

Y ; this concludes the proof.

Example 6.6.3. We want to show that a projective bundle is a fiber contraction. Let

E be a locally free sheaf of rank r over a smooth projective variety Y . If X ✏ P♣Eq is

associated to the morphism φ : X Ñ Y , let ℓ be a line contained in a fiber of φ. If ξ

is the class of the invertible sheaf OX♣1q, it holds KX ✏ ✁rξ � φ✝♣KY � det♣Eqq, hence

♣KX ☎ ℓq ✏ ✁r. Noticing that a curve is contracted by φ if and only if it is numerically

equivalent to a multiple of ℓ, we conclude that R�rℓs✑ is a KX-negative extremal ray of

NE♣Xq whose contraction is φ.

6.7 Divisorial contractions

Remark 6.7.1. Given a smooth complex projective variety X, let R be a KX-negative

extremal ray of NE♣Xq whose contraction cR : X Ñ Y is divisorial. It follows from Propo-

sition 6.5.6-(2) and its proof that locus♣Rq is an irreducible divisor E linearly equivalent

to mMR ✁H for some ample divisor H; therefore, E ☎ z ➔ 0 ❅z P R∖ t0✉.

Definition 6.7.2. A scheme X is said to be locally Q-factorial if any Weil divisor on X

has a nonzero multiple which is a Cartier divisor.

Definition 6.7.3. Given a locally Q-factorial scheme X, let D be a Weil divisor on X.

For any curve C on X, we define ♣D ☎ Cq ✏ 1

m
degOC♣mDq P Q for any choice of m → 0

s.t. mD is a Cartier divisor.

Lemma 6.7.4. Let φ : X Ñ Y be a proper birational morphism between varieties, with Y

normal. If F is an effective Cartier divisor on X whose support is contained in Exc♣φq,

then it holds φ✝OX♣F q ✕ OY .

Proof. Since the statement is local on Y , it is enough to prove that H0♣Y,OY q ✕

✕ H0♣Y, φ✝OX♣F qq when Y is affine. By Zariski’s Main Theorem we have that
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H0♣Y,OY q ✕ H0♣Y, φ✝OXq ✕ H0♣X,OXq, hence if we set E ✏ Exc♣φq it holds

H0♣Y,OY q ✕ H0♣X,OXq ❸ H0♣X,OX♣F qq ❸ H0♣X ∖ E,OX♣F qq. But

H0♣X ∖ E,OX♣F qq ✕ H0♣X ∖ E,OXq ✕ H0♣Y ∖ φ♣Eq,OY q ✕ H0♣Y,OY q, where the

last isomorphism comes from the fact that Y is normal and codimY φ♣Eq ➙ 2 (which we

know from Remark 6.5.3). Therefore, the former is a chain of isomorphic spaces, hence

H0♣Y,OY q ✕ H0♣X,OX♣F qq ✕ H0♣Y, φ✝OX♣F qq.

Proposition 6.7.5. Given a smooth complex projective variety X, let R be a KX-negative

extremal ray of NE♣Xq. If the contraction cR : X Ñ Y is divisorial, then Y is locally

Q-factorial.

Proof. Let C be an irreducible curve on X whose class generates R, and let D be a prime

Weil divisor on Y . Define c✶R as the restriction of cR to c✁1

R ♣Yregq, and let DX be the closure

in X of ♣c✶Rq
✝♣D❳Yregq. Setting E ✏ locus♣Rq, by Remark 6.7.1 we have that ♣E ☎Cq ➔ 0,

so there exist integers a ✘ 0 and b s.t. aDX � bE has intersection 0 with C. By Corollary

6.4.2-(2), there exists a Cartier divisor DY on Y s.t. aDX � bE ✒ c✝RDY . By the previous

Lemma we get thatOYreg♣DY q ✕ ♣c✶Rq✝Oc✁1

R
♣Yregq

♣aDX�bEq ✕ OYreg♣aDq❜♣c
✶
Rq✝OX♣bEq ✕

✕ OYreg♣aDq, hence DY ✒ aD: this concludes the proof.

Example 6.7.6. We want to show that a smooth blow-up is a divisorial contraction.

Given a smooth projective variety Y , let Z be a smooth subvariety of Y of codimension

c, and let ε : X Ñ Y be the blow-up of Z, with exceptional divisor E. Any fiber F of

E Ñ Z is isomorphic to Pc✁1

K , and OF ♣Eq ✕ OF ♣✁1q. If ℓ is a line contained in F ,

from KX ✏ ε✝KY � ♣c ✁ 1qE we get that ♣KX ☎ ℓq ✏ ✁♣c ✁ 1q. Noticing that a curve is

contracted by ε if and only if it lies in a fiber of E Ñ Z, i.e. if and only if it is numerically

equivalent to a multiple of ℓ, we conclude that R�rℓs✑ is a KX-negative extremal ray of

NE♣Xq whose contraction is ε.

Example 6.7.7. We want to construct an example of a divisorial contraction with sin-

gular image. Given a smooth projective threefold Z, let C be an irreducible curve in Z

whose only singularity is a node. This means that in local coordinates ♣x, y, zq, the ideal

of C is generated by xy and z, hence the blow-up of Z along C is
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Y ✏ t♣♣x, y, zq, ru, vsq P A3

K ✂ P1

K ⑤xyv ✏ zu✉, which is normal and its only singularity is

the double point q ✏ ♣♣0, 0, 0q, r0, 1sq. The exceptional divisor is the P1

K-bundle over C

with local equations xy ✏ 0 ✏ z. Now, the blow-up X of Y at q is smooth. It contains the

proper transform E of the exceptional divisor of Y and an exceptional divisor Q, which is

a smooth quadric. The intersection E❳Q is the union of two lines ℓ1 and ℓ2 belonging to

the two different rulings of Q. If Ẽ Ñ E and C̃ Ñ C are the normalizations, each fiber

of Ẽ Ñ C̃ is a smooth rational curve, except over the preimages of the node of C, where

it is the union of two rational curves meeting transversally. One of these curves maps to

ℓi, the other one to the same rational curve ℓ: it follows that ℓ1 and ℓ2 are algebraically,

hence numerically, equivalent on X, so they have the same class L. Any curve contracted

by the blow-up ε : X Ñ Y is contained in Q, hence its class is a multiple of L. A local

calculation shows that OQ♣KXq is of type ♣✁1,✁1q, hence KX ☎L ✏ ✁1. We conclude that

the ray R�L is KX-negative and its (divisorial) contraction is ε (hence R�L is extremal).

6.8 Small contractions and flips

Proposition 6.8.1. Given a normal and locally Q-factorial variety Y , let φ : X Ñ Y be

a birational proper morphism. Then, every irreducible component of Exc♣φq has codimen-

sion 1 in X.

Proof. Set E ✏ Exc♣φq, and let x P E and y ✏ φ♣xq. If we identify the quotient fields

K♣Y q and K♣Xq via the isomorphism φ✝, then we can see OY,y as a proper subring of

OX,x. Taken t P mX,x ∖ OY,y, we can write its divisor as the difference of two effective

Weil divisors D✶ and D✷ on Y without common components. Since Y is locally

Q-factorial, there exists a positive integer m s.t. mD✶ and mD✷ are Cartier divisors,

hence they define elements u, v P OY,y s.t. tm ✏ u④v. Notice that v P mY,y, otherwise

we would have tm P OY,y ñ t P OY,y since the latter is integrally closed. This implies

that u ✏ tmv P mX,x ❳ OY,y ✏ mY,y. Therefore, the equations u ✏ 0 ✏ v define a

subscheme Z of Y containing y of codimension 2 in some neighborhood of y, because it

is the intersection of the codimension 1 subschemes mD✶ and mD✷. Hence, φ✁1♣Zq is

defined by tmv ✏ 0 ✏ v, i.e. by the equation v ✏ 0, so it has codimension 1 in X, which
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tells us that it is contained in E. This shows that there is a codimension 1 component of

E through every point of E, which concludes the proof.

Remark 6.8.2. Given a smooth complex projective variety X, let R be a KX-negative

extremal ray of NE♣Xq whose contraction cR : X Ñ Y is small. Then, the previous

Proposition shows that Y cannot even be locally Q-factorial.

Remark 6.8.3. Fibers of a small contraction cR : X Ñ Y contained in locus♣Rq have

dimension at least 2, so by Proposition 6.5.6-(3) we have dim♣Xq ➙ dim♣cR♣locus♣Rqqq�4.

In particular, there are no small extremal contractions on smooth threefolds.

Definition 6.8.4. Let c : X Ñ Y be a small contraction between normal projective

varieties. If KX is a Q-Cartier divisor s.t. ✁KX is c-ample, we define a flip of c as a

small contraction c� : X� Ñ Y s.t. X� is a normal projective variety, and KX� is a

Q-Cartier divisor which is c�-ample.

Proposition 6.8.5. Given a locally Q-factorial complex projective variety X, let R be

a KX-negative extremal ray of NE♣Xq whose contraction cR : X Ñ Y is small. If cR

admits a flip c�R : X� Ñ Y , then X� is locally Q-factorial with Picard number ρX .

Proof. The composition φR ✏ c✁1

R ✆ c�R : X� 99K X is an isomorphism in codimension

1, hence it induces an isomorphism between the Weil divisor class groups of X and X�.

Taken a Weil divisor D� on X�, let D be the corresponding Weil divisor on X. If C is

an irreducible curve on X whose class generates R, let r P Q be s.t. ♣♣D� rKXq ☎Cq ✏ 0,

and let m P Z be s.t. mD, mrKX and mrKX� are Cartier divisors. By Corollary

6.4.2-(2), there exists a Cartier divisor DY on Y s.t. m♣D � rKXq ✒ c✝RDY ; therefore,

mD� ✏ φ✝R♣mDq ✒ ♣c�Rq
✝DY ✁ φ✝R♣mrKXq ✒ ♣c�Rq

✝DY ✁ mrKX� is a Cartier divisor:

this proves that X� is locally Q-factorial. Moreover, φ✝R induces an isomorphism between

N1♣XqR and N1♣X�qR, hence the Picard numbers are the same.

Example 6.8.6. Starting from the Segre embedding P ✏ P1

K ✂ P2

K ❸ P5

K and the natural

projections pi : P Ñ PiK, define Y ❸ P6

K as the cone over P . Let ε : X Ñ Y be

the blow-up of the vertex of Y , with exceptional divisor E ❸ X. With the notation
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OP ♣a, bq ✏ p✝
1
OP1

K
♣aq ❜ p✝

2
OP2

K
♣bq, we have a projection π : X Ñ P which identifies X

with P♣OP ❜OP ♣1, 1qq, and E is a section. Let ℓ0 be the class of a fiber of π, let ℓ1 be the

class in X of the curve t✝✉✂tline✉ ❸ E, and let ℓ2 be the class in X of P1

K✂t✝✉ ❸ E. Then,

one can show that ρX ✏ 3 and N1♣XqR ✏
2à
j✏0

Rℓj. If hi is the nef class of π✝p✝iOPi
K
♣1q,

from the fact that OE♣Eq ✕ OE♣✁1,✁1q we get the multiplication table

☎ ℓ0 ℓ1 ℓ2
h1 0 0 1
h2 0 1 0
rEs✑ 1 -1 -1

Let C be an irreducible curve contained in X ∖ E. If C has class
2➳
j✏0

ajℓj, then we get

that a1 ✏ h2 ☎C ➙ 0, a2 ✏ h1 ☎C ➙ 0, and a0✁a1✁a2 ✏ ♣E ☎Cq ➙ 0. Therefore, since any

curve in E is algebraically equivalent to some nonnegative linear combination of ℓ1 and

ℓ2, we have that NE♣Xq ✏ NE♣Xq ✏ R�ℓ0 � R�ℓ1 � R�ℓ2, and the rays Ri ✏ R�ℓi are

extremal. Furthermore, it follows from Example 6.2.5 that X is a Fano variety, hence in

characteristic 0 all extremal subcones of X can be contracted. Now, set Rij ✏ Ri � Rj.

The contraction of R0 is π, the contraction of R12 is φ, and the contraction of R0i is

pi ✆ π : X Ñ PiK and this map must factor through the contraction of Ri. Notice that

E is contained in locus♣Riq. Let us define the fourfolds Y1 ✏ P♣OP1

K
❵ OP1

K
♣1q❵3q and

Y2 ✏ P♣OP2

K
❵ OP2

K
♣1q❵2q, and the natural maps πi : Yi Ñ PiK. Then, there is a map

X Ñ Yi which is the contraction cRi
; E is therefore the locus of Ri, and is mapped onto

the image Pi of the section of πi corresponding to the trivial quotient of the defining locally

free sheaf on Pi. We get the following commutative diagram of contractions:
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Straight arrows are divisorial contractions, wiggly arrows are contractions of fiber type,

and dotted arrows are small contractions (since ci contracts Pi to the vertex of Y ). By

Example 6.2.5 again, Y2 is a Fano variety, hence c2 is the contraction of a KY2-negative

extremal ray; notice that the latter gives an example where the inequality of Proposition

6.5.6-(3) becomes an equality (proving that the inequality is sharp). On the other hand,

one can show that the ray contracted by c1 is KY1-positive; therefore, c1 is a flip of c2.

Example 6.8.7. We want to construct an example of a small contraction with discon-

nected exceptional locus. Start from a smooth complex fourfold X✷ that contains a smooth

curve C✷ and a smooth surface S✷ meeting transversely at the points x1, . . . , xr. Let

ε✶ : X ✶ Ñ X✷ be the blow-up of C✷; the exceptional divisor C ✶ is a smooth threefold which

is a P2

K-bundle over C✷. The strict transform S ✶ of S✷ is the blow-up of S✷ at the points

x1, . . . , xr; let E
✶
1
, . . . , E ✶

r be the corresponding exceptional curves and let P ✶
1
, . . . , P ✶

r be the

corresponding projective planes that contain them, i.e. P ✶
i ✏ ♣ε✶q✁1♣xiq. Let ε : X Ñ X ✶

be the blow-up of S ✶; the exceptional divisor S is a smooth threefold which is a P1

K-bundle

over S ✶. Let Γi be the fiber over a point of E ✶
i, let Pi be the strict transform of P ✶

i , and let

L be a line in one of the P2

K in the inverse image C of C ✶. Set Ei ✏ ε✁1♣E ✶
iq.

For r ✏ 1, the picture is something like the following:
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Since the curves Γi are fibers of the P1

K-bundle S Ñ S ✶, they are all algebraically equiv-

alent in X, so they have the same class rΓs✑. If we set α ✏ ε✶ ✆ ε, one can see that the

relative effective cone NE♣αq is generated by rΓs✑, rLs✑ and rEis✑. Since the vector space

N1♣XqR④α
✝N1♣X

✷qR has dimension 2, there must be a relation of the form Ei ✑ aiL� biΓ

for any i ✏ 1, . . . , r. One can check that ♣C ☎Eiq ✏ ♣C ✶ ☎E ✶
iq ✏ ✁1 ✏ ♣C ✶ ☎ ε✝♣Lqq ✏ ♣C ☎Lq,

and also that ♣S ☎Γq ✏ ✁1. Moreover, ♣C ☎Γq ✏ 0 because Γ is contracted by ε✶, ♣S ☎Lq ✏ 0

because S and L are disjoint, and ♣S ☎Eiq ✏ 1 because S and Pi meets transversally in Ei.

It follows that ✁1 ✏ ♣C ☎Eiq ✏ ✁ai ñ ai ✏ 1 and 1 ✏ ♣S ☎Eiq ✏ ✁bi ñ bi ✏ ✁1, hence the

Ei are all numerically equivalent to L✁Γ. The relative cone NE♣αq is therefore generated

by rΓs✑ and rL✁Γs✑; since it is an extremal subcone of NE♣Xq, the class rL✁Γs✑ spans

a KX-negative extremal ray because it satisfies ♣KX ☎ ♣L ✁ Γqq ✏ ✁1. This tells us that

in characteristic 0 it can be contracted, and the corresponding contraction X Ñ Y maps

each Pi to a point and has exceptional locus
r➜
i✏1

Pi.

6.9 The minimal model program

Let X be a smooth complex projective variety. We saw in ➜5.6 that when X is a surface,

it has a smooth minimal model Xmin obtained by contracting all exceptional curves on X.

If X is covered by rational curves, this minimal model is not unique, and is either a ruled

surface or P2

K . Otherwise, the minimal model is unique and has nef canonical divisor.
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In higher dimensions, Mori’s idea is to try to simplify X by contracting KX-negative

extremal rays, hoping to end up with a variety X0 which either has a contraction of fiber

type (in which case X0 is covered by rational curves, as we saw in Remark 6.6.1) or has

nef canonical divisor (hence no KX0
-negative extremal rays). Three main problems arise:

❼ the end-product of a contraction is usually singular: this means that to continue

Mori’s program, we must allow singularities. Since most of our methods do not

work on singular varieties, different approaches are required.

❼ The singularities of the target of a small contraction are too severe, and one needs

to perform a flip. So we have the problem of existence of flips.

❼ One needs to know that the process terminates. In case of surfaces, we used that

the Picard number decreases when an exceptional curve is contracted; this is still

the case for a fiber-type or divisorial contraction, but not for a small one. So we

have the additional problem of termination of flips: do there exist infinite sequences

of flips?

The first two problems have been overcome, while the third point is still open in full

generality.

6.10 Minimal models

Definition 6.10.1. Let C be a birational equivalence class of smooth projective varieties,

modulo isomorphisms. If X, Y P C, we write Y ➝ X if there is a birational morphism

X Ñ Y ; this defines a partial order on C.

Proposition 6.10.2. Let φ : Y Ñ X be a birational morphism between varieties, with

X smooth. Then, any component of Exc♣φq is birational to a product P1

K ✂ Z, where

φ contracts the P1

K-factor. In particular, if φ is projective there exists a rational curve

contracted by φ through any point of Exc♣φq.

Proof. Let E be a component of Exc♣φq; upon replacing Y with its normalization, we

may assume that Y is smooth in codimension 1. Upon shrinking Y , we may also assume
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that both Y and Exc♣φq are smooth, and that the latter is equal to E. Taking the open

subset U0 ✏ X ∖ Sing♣φ♣Eqq of X, set V1 ✏ φ✁1♣U0q; then, Y ∖ V1 has codimension at

least 2, V1 and E❳V1 are smooth, and so is the closure of the image of E❳V1 in U0. Let

ε1 : X1 Ñ U0 be its blow-up; by the Universal property of blow-ups 3.3.6, since the ideal

of E ❳ V1 in OV1 is invertible, there exists a factorization φ⑤V1 : V1
ϕ1ÝÑ X1

ε1ÝÑ U0, where

φ1♣E ❳ V1q is contained in the support of Exc♣ε1q. If the codimension of φ1♣E ❳ V1q in

X1 is at least 2, then the divisor E ❳ V1 is contained in Exc♣φ1q. Upon replacing V1

with the complement V2 of a closed subset of codimension at least 2 and X1 by an open

subset U1, we may repeat the previous construction. After i steps, we get a factorization

φ : Vi
ϕiÝÑ Xi

εiÝÑ Ui✁1

εi✁1

ÝÝÑ . . .
ε1ÝÑ U0 as long as the codimension of φi✁1♣E ❳ Vi✁1q in

Xi✁1 is at least 2, where Vi is the complement in Y of a closed subset of codimension at

least 2. If Ej ❸ Xj is the exceptional divisor of εj and Ei,j is the inverse image of Ej in

Xi, we get that KXi
✏ ε✝iKUi✁1

� ciEi ✏ . . . ✏ ♣ε1 ✆ ☎ ☎ ☎ ✆ εiq
✝KX � ciEi �

i✁1➳
j✏1

cjEi,j, where

cj ✏ codimXj✁1
♣φj✁1♣E ❳ Vj✁1qq✁1 → 0. Since φi is birational, φ

✝
iOXi

♣KXi
q is a subsheaf

of OVi♣KViq. Moreover, since φj♣E ❳ Vjq is contained in the support of Ej, the divisor

φ✝jEj ✁E⑤Vj is effective, hence so is Ei,j ✁E⑤Vi . It follows that OY ♣φ
✝KX �E

i➳
j✏1

cjq⑤Vi is

a subsheaf of OVi♣KViq ✏ OY ♣KY q⑤Vi . Since Y is normal and Y ∖ Vi has codimension at

least 2, we get that OY ♣φ
✝KX �E

i➳
j✏1

cjq is a subsheaf of OY ♣KY q. Since on a noetherian

scheme there are no infinite ascending sequences of subsheaves of a coherent sheaf, the

process must come to an end: this tells us that φi♣E ❳ Viq is a divisor in Xi for some i,

hence E❳Vi is not contained in Exc♣φiq. Therefore, φi induces a dominant map between

E ❳ Vi and Ei, which must be birational since the fibers of φ are connected by Zariski’s

Main Theorem. Since Ei is birationally isomorphic to P
ci✁1

K ✂ ♣φi✁1♣E ❳ Vi✁1qq, where εi

contracts the P
ci✁1

K -factor, the first statement is proved.

If in particular φ is projective, by Lemma 6.2.11 we can conclude.

Corollary 6.10.3. Let X, Y be projective varieties with X smooth. If Y contains no

rational curves, then any rational map X 99K Y is defined everywhere.

Proof. Taken a rational map φ : X 99K Y , let X ✶ ❸ X ✂ Y be the graph of φ. The first
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projection induces a birational morphism p : X ✶ Ñ X. If Exc♣pq ✘ Ø, by the previous

Proposition there exists a rational curve C on Exc♣pq which is contracted by p. Since Y

contains no rational curves, C must also be contracted by the second projection, which is

absurd since C ❸ X ✂ Y . This shows that Exc♣pq ✏ Ø, so φ is defined everywhere.

Proposition 6.10.4. Let φ : Y Ñ X be a birational morphism between smooth projective

varieties. If φ is not an isomorphism, there exists a rational curve C on Y contracted by

φ s.t. ♣KY ☎ Cq ➔ 0.

Proof. Set E ✏ Exc♣φq; by Remark 6.5.3, φ♣Eq has codimension at least 2 in X, and

E ✏ φ✁1♣φ♣Eqq. Let x be a point of φ♣Eq; by Bertini’s Thm. 6.2.12, a general hyperplane

section of X passing through x is smooth and connected. It follows that by taking

dim♣Xq ✁ 2 hyperplane sections we get a smooth surface S in X that meets φ♣Eq in

a finite set containing x. Moreover, taking one more hyperplane section we get on S a

smooth curve C0 that meets φ♣Eq only at x and a smooth curve C that does not meet

φ♣Eq. By construction, ♣KX ☎ Cq ✏ ♣KX ☎ C0q. One can write KY ✒ φ✝KX � R for

some divisor R whose support is exactly E. Since the curve C ✶ ✏ φ✁1♣Cq does not meet

E, we have that ♣KY ☎ C
✶q ✏ ♣KX ☎ Cq. On the other hand, since the strict transform

C ✶
0
✏ φ✁1♣C0 ∖ φ♣Eqq of C0 does meet E ✏ φ✁1♣φ♣Eqq, we have that ♣KY ☎ C

✶
0
q ✏

✏ ♣♣φ✝KX �Rq ☎ C ✶
0
q → ♣♣φ✝KXq ☎ C

✶
0
q ✏ ♣KX ☎ C0q ✏ ♣KX ☎ Cq ✏ ♣KY ☎ C

✶q. By Theorem

5.5.3, the indeterminacies of the rational map φ✁1 : S 99K Y can be resolved, i.e. there

exists a composition of blow-ups ε : S̃ Ñ S of a finite number of points of S❳φ♣Eq which

let us obtain a morphism g ✏ φ✁1 ✆ ε : S̃ Ñ Y , whose image is the strict transform of

S. The curve C✷ ✏ ε✝C is irreducible, and g✝C
✷ ✏ C ✶; on the other hand, for C0 we can

write ε✝C0 ✏ C✷
0
�

n➳
i✏1

miEi, where the mi are nonnegative integers, the Ei are exceptional

divisors for ε (hence in particular rational curves), and g✝C
✷
0
✏ C ✶

0
.
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Since C and C0 are linearly equivalent on S, we have that C✷ ✏ ε✝C ✒ ε✝C0 ✏

✏ C✷
0
�

n➳
i✏1

miEi on S̃; hence, by applying g✝ we get that C ✶ ✒ C ✶
0
�

n➳
i✏1

mi♣g✝Eiq. Taking

intersections with KY , we get ♣KY ☎ C ✶q ✏ ♣KY ☎ C ✶
0
q �

n➳
i✏1

mi♣KY ☎ g✝Eiq. From the

previous inequality ♣KY ☎ C ✶
0
q → ♣KY ☎ C ✶q, it follows that ♣KY ☎ g✝Eiq is negative for

some i. In particular, g♣Eiq is not a point, hence it is a rational curve on Y . Moreover,

φ♣g♣Eiqq ✏ ε♣Eiq ✏ tx✉, hence g♣Eiq is contracted by φ. This concludes the proof.

Definition 6.10.5. A minimal model is a smooth projective variety with nef canonical

divisor.

Remark 6.10.6. If ♣C,➝q is as in Definition 6.10.1, Proposition 6.10.4 tells us that any

element of C with nef canonical bundle is minimal: this explains our interest for minimal

models (and the reason we call them this way). Moreover, from Corollary 6.10.3 we get

that an element of C which contains no rational curves is the smallest element of C.

Remark 6.10.7. The main problems regarding the study of minimal models are:

❼ a minimal model can only exist if the variety is not covered by rational curves;

❼ there exist smooth projective varieties which are not covered by rational curves but

that are not birational to any smooth projective variety with nef canonical bundle;

❼ in dimension at least 3, minimal models may not be unique, but any two of them

are isomorphic in codimension 1.
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