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Introduction

In algebraic geometry the notion of moduli space appears very often. Heuristically speaking, a
moduli space is a kind of geometric object "parametrizing" isomorphism classes of other geometric
objects.

An example of this phenomenon appears naturally in the context of classical algebraic geometry
over an algebraically closed field K: in this case one shows that the set of subspaces of Kn of
dimension d is in bijection with an algebraic subvariety GK(n, d) of PNK , where N = ( nd )− 1, that
is called the Grassmannian variety.

Passing to scheme theory this notion can be reformulated in an abstract and more precise
fashion: if S is a base scheme a moduli space is the scheme representing a (representable) functor
F : (Sch/S)

op → (Sets), defined by some classification problem, as the one above.

In arithmetic geometry for various reasons we are especially interested in moduli spaces of
abelian varieties, that generalize the classic notion of modular curve seen as the moduli space of
elliptic curves. The first generalization is the moduli space of principally polarized abelian variety
of fixed dimension g with level N structure, for N ∈ N≥3, i.e. the scheme representing the functor
Ag,N , defined by

AN (S′) =

(A, λ, η) :

A is an abelian variety of dimesion g over S′,
λ a principal polarization of A,
η a level N structure

 / ∼=,

S-scheme S′. This scheme is widely study, since Mumford’s Geometric Invariant Theory ([12]).

The Siegel moduli space with parahoric level structure goes one more step beyond in generality.
By parahoric level structure we will mean a choice of indexes I = { 0 ≤ i0 < · · · < ir ≤ g } and for
such an object we will write I ′ = ±I+2Zg. The Siegel moduli space with parahoric level structure
is the scheme representing the functor AI,N , whose S′-valued point are 2g-periodic chains (Ai)i∈I′

of abelian schemes over S′ of dimensions g, connected by isogenies, with additional data which
corresponds to the principal polarization and a level N structure an Ai0 . This is the moduli space
in which we are interested.

Unfortunately the geometry of this moduli space is quite difficult to study, but a lot of tech-
niques have been developed in order to solve this problem. In particular the aim of this thesis is
to present one of them first introduced by A.J. de Jong in [10]. It consist of the introduction of
another scheme M loc

N (I) that has an "easier nature" as it is defined by some linear algebra data
(it is in fact a subscheme of a product of Grassmannian schemes), the so-called local model, and
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such that there exist a third scheme ÃI,N and a diagram of the form

ÃI,N
ϕ

||||

ψ

$$
AI,N M loc

N (I)

with ϕ,ψ smooth of the same relative dimension and ϕ surjective. The existence of this diagram,
called a local model diagram for AI,N , implies that AI,N is locally isomorphic in the étale topology
toM loc

N (I). Hence it gives a powerful tool in the study of local features of AI,N , as e.g. the nature
of the singularities (this is done for instance in [13]).

We will in fact show that it’s reasonable (if not easy) to find explicit local equations forM loc
N (I)

and hence étale locally for AI,N .

This thesis will be divided in two chapters:

• In the first chapter we will introduce the categorical formalism needed to talk about moduli
spaces, i.e. we will introduce the notion of representability. We will see then an elementary
criterion for the representability of a functor F : (Sch/S)

op → (Sets) and that, if S = SpecR
is affine, under some conditions this gives a procedure to introduce schemes giving their
functor of T -valued point, for T an R-algebra. We will then use this procedure to introduce
the Grassmannian scheme and the Local Model.

In order to introduce the latter we will deserve a section on a particular chain (Λi)i∈I′ of
Zp-lattices such that the standard alternating pairing on Q2g

p restrict for any i ∈ I ′ to a
perfect paring 〈·, ·〉i : Mi×M−i → Zp. We will show moreover that this construction can be
tensored giving a chain of R-lattices (Λi,R)i∈I′ endowed with "alternating" pairings, for any
Zp-algebra R.

• In the second chapter we will give the definition of the Siegel moduli space with parahoric
level stucture and we will describe the local model diagram. In this chapter the main
technical tool will be the notion of system of R-modules of type II, i.e. roughly speaking
of a chain (Mi)i∈I′ if locally free R-module of rank 2g connected by a R-linear maps and
endowed with "alternating" pairings (e.g. the chain (Λ−i,R)i∈I′) is such an object). We
obtain this notion generalizing the corresponding one of [10] from the Iwahori level structure
case (i.e. I = { 0, . . . , g }) to the general one. We will prove in particular the following
results that generalize the proposition 3.6 in [10] and that imply the surjectivity of ϕ and
the smoothness of ϕ and ψ:

Proposition. Let I be a parahoric level structure, R be a Zp-algebra and and M• a system
of R-modules of type II for I. If R is a local ring there is an isomorphism M•

∼−→ Λ−•,R.

Proposition. Let I be a parahoric level structure, R be a Zp-algebra and and M• a system
of R-modules of type II for I. Suppose that a is a nilpotent ideal of R and that there exist an
isomorphism M•⊗RR/a

∼−→ Λ−•,R/a, then we can lift it to an isomorphism M•
∼−→ Λ−•,R.

At the end we will show in some examples the procedure in order to compute local equations
forM loc

N (I). For instance in the case g = 1, I = { 0, 1 } the R-valued point of the local model
are pairs (F0,F1) of locally free submodules of R2 of rank 1 such that α(F0) ⊆ F1, where
α : R2 → R2 is the linear map associated with the matrix

(
p 0
0 1

)
. In local charts they
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correspond to the vectors
(

1
x

)
and

( y
1

)
, moreover the condition α(F0) ⊆ F1 is equivalent to

the existence of λ ∈ R such that(
p 0
0 1

)(
1
x

)
=

(
p
x

)
= λ

(
y
1

)
.

We get therefore the local equation xy = p.
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Chapter 1

Local Models

The aim of this thesis is to describe the local structure of some Siegel moduli spaces of principally
polarized abelian schemes. The moduli problem will play therefore a central role. We can express
it in a naive way: a moduli space is a "geometric object" that "parametrizes" a given class of
other "geometric objects" modulo isomorphism. This sentence is very vague, let us explain with
an example what we have in mind: in the context of Riemann surfaces it is well known that any
elliptic curve is isomorphic to a complex torus C/Λ, for Λ a lattice in C, and that one can find a
particular quotient of the complex upper-halfplane H, called modular curve, in bijection with the
set of isomorphism classes of tori (hence of elliptic curves). In this chapter we will give a precise
notion of the moduli problem and we will introduce a couple of easy examples of moduli spaces:
the Grassmannian scheme and the Local Model. We will follow as main references [5] and [4].

1.1 Representable functors

In this section we will introduce the categorical concept of representability, that generalizes this
situation in the context of schemes.

1.1.1 Let C be a locally small category (i.e. for any X, Y objects in C the class HomC(X,Y ) is a
set) and denote by C∨ the category of all contravariant functors F : Cop → (Sets). There are some
obvious, but very important, objects of C∨, namely the contravariant functors hX = HomC(−, X)
for any object X of C. The following classical lemma holds:

Lemma. (Yoneda) Let X ∈ C, F ∈ C∨. We have a bijection

HomC∨(hX , F )
∼−→ F (X),

functorial in F , given by α = (αZ)Z∈C 7→ αX(idX).

If we specialize the lemma for F = hY , where Y is another object of C, we get that the functor
h• : C → C∨ defined by X 7→ hX is fully faithful, or in other terms that we can embed the category
C into C∨. Therefore in the sequel we will not distinguish between X ∈ C and the functor hX ∈ C∨
if it does not cause any confusion; e.g. in the case C = (Sch/S) we will write X(T ) instead of
hX(T ) for any X,T ∈ (Sch/S). The set X(T ) is called the set of T -valued points of X. Note that
this notation is compatible with the Yoneda lemma in its general form: for any F ∈ (Sch/S)

∨,
T ∈ (Sch/S) we can view F (T ) as the set of morphisms of functors T → F and if F = X is a
scheme they are, as just observed, exactly the morphisms of schemes T → X.
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1.1.2 It is interesting to study the functors that, modulo isomorphisms, come from some object
X of C.

Definition. A functor F : C → (Sets) is called representable if it belongs to the essential image of
h•, or in other words if there exists an object X ∈ C and an isomorphism of functors η : hX

∼−→ F .
If such a pair (X, η) exists, then we say that it represents F or simply that X represents F .

If F is representable the pair (X, η) is unique up to a unique isomorphism: if (Y, ε) is such
another pair, then the isomorphism ε−1 ◦ η : hX → hY is an isomorphism of functors between
schemes, hence it comes from an isomorphism of schemes ϑ : X → Y , i.e. ε−1 ◦ η = hϑ. Hence X
is isomorphic to Y via ϑ and η = ε ◦ hϑ.
Example. Let C = (Sch/R) be the category of R-schemes for R a commutative ring. We define
F : (Sch/R)

op → (Sets) by F (T ) = Γ(T,OT )n for any T ∈ (Sch/R). It is known that

HomR(T,AnR) = HomR

(
R[X1, . . . , Xn],Γ(T,OT )

)
= Γ(T,OT )n,

hence AnR represents F .
This can be generalized to C = (Sch/S): AnS represent F : (Sch/S)

op → (Sets) defined by
F (T ) = Γ(T,OT )n for any T ∈ (Sch/S). Note that, by the uniqueness of the representative, we
could have defined AS to be the representative of F , once we have shown its representability. The
rest of this paragraph follows this idea: we will find a criterion of representability that will allow
us to define schemes via functors.

Note moreover that the notion of representability can be seen as a formal translation of the
naive idea of "parametrizing". In fact, if we collect the objects that we want to parametrize in such
a way to define a representable functor F , we have a scheme whose T -valued points parametrize
the objects in F (T ).

1.1.3 To state the criterion of representability quoted above, we need to study some properties
of the functors F ∈ (Sch/S)

∨. Let’s start with the Zariski sheaf property. In the following when
it does not lead to any confusion we will identify in the notations a ring with its spectrum, e.g.
we will denote the set F (SpecA) simply by F (A), for any functor F ∈ (Sch)

∨ and any ring A.

Definition. Let F : (Sch/S)
op → (Sets) be a contravariant functor. We say that F is a Zariski

sheaf if for any S-scheme T and any open cover {Ui }i∈I of T

F (T ) //
∏
i∈I

F (Ui) ////
∏
i,j∈I

F (Ui ∩ Uj),

is an exact sequence, where the arrow on the left is induced by the inclusions Ui ↪→ T , while
the two arrows on the right are induced respectively by the inclusions (Ui ∪ Uj ↪→ Ui)i,j and
(Ui ∪ Uj ↪→ Uj)i,j .

Remark 1.1.1. Let’s investigate this definition. If we write s|Y for F (ι)(s), where s ∈ F (X) and
ι : Y ↪→ X is an open inclusion, the map on the left is given by s 7→ (sk)k and the two maps
on the right respectively by (sk)k 7→ (si|Ui∩Uj )i,j and (sk)k 7→ (sj |Ui∩Uj )i,j . Hence the condition
correspond formally to the usual sheaf property for presheaves on topological spaces: these two
are in fact two instances of the more general definition of sheaf over a site.

It turns out that the condition of being a Zariski sheaf is a necessary condition for a functor
to be representable: the theorem of gluing for morphisms of schemes is equivalent to the fact that
for any scheme X, the functor hX is a Zariski sheaf.

We have moreover a corresponding notion in the affine case.
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Definition. Let F : (AffSch/R)
op → (Sets) be a contravariant functor. We say that F is a Zariski

sheaf if for any R-algebra T and any { ti }i∈I ⊆ T generating the unit ideal, or in other word such
that SpecT =

⋃
i∈I D(ti), the sequence

F (T ) //
∏
i∈I

F (Tti) // //
∏
i,j∈I

F (Ttitj )

is exact, with arrows induced by the canonical maps.

It’s easy to imagine, and not so difficult to prove, that these two definition give rise to the
same objects.

Proposition. Let F : (AffSch/R)
op → (Sets) be a Zariski sheaf. Then we can extend it in a

unique way to a Zariski sheaf F̃ : (Sch/R)
op → (Sets).

Proof. This result is the analog of the fact that to define a sheaf on a topological space it is enough
to define it on a basis of the topology. The proof of this latter verbatim extends: the uniqueness
is clear by the sheaf property and so it is enough to define for any R-scheme T

F̃ (T ) = lim←−
U⊆T

affine open

F (U) = { (sU )U : U ⊆ T affine open, sU |V = sV for any V ⊆ U } .

Since any scheme can be covered by affine schemes, it’s easy to check that F̃ is a Zariski sheaf.

1.1.4 In any category C we can give the following definition:

Definition. Let F : Cop → (Sets). A subfunctor F ′ of F is a functor F ′ : Cop → (Sets) together
with a monomorphism of functors F ′ → F , i.e. F ′(T ) ↪→ F (T ) for any S-scheme T . In this case
we will identify any F ′(T ) as subset of F (T ).

If C = (Sch/S), for a scheme S, then we can generalize the notion of open subscheme using
the embedding into the contravariant functor category, giving a well behaved definition of open
subfunctor:

Definition. Let F, F ′ : (Sch/S)
op → (Sets). We say that a morphism of functors f : F ′ → F is

an open immersion if for any morphism g : X → F , where X is an S-scheme, the functor F ′×F X
is representable, say by a scheme Y , and the base change f(X) : Y → X is an open immersion of
schemes.

Note that, even if Y is defined only up to isomorphisms, the definition of open immersion
of functors make sense: the property of being an open immersion of schemes is indeed invariant
under isomorphisms of the domain. The next result says that an open immersion F ′ → F gives
rise to a subfunctor F ′ of F ; we will say then that F ′ is an open subfunctor of F .

Proposition. Let f : F ′ → F be an open immersion of functors, then F ′(T )→ F (T ) is injective
for any S-scheme T .

Proof. We will prove that HomS(T, F ′) → HomS(T, F ) is injective; this is in fact equivalent to
our statement by the Yoneda lemma. We take therefore g, h : T → F ′ such that f ◦ g = f ◦ h = q.
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These morphisms fit in the cartesian diagram:

T

h

''

g

''

h′ ''

g′

��
F ′ ⊗F T

f(X) //

p

��

T

q

��
F ′

f // F

that defines g′, h′ using g and h respectively. Moreover f(X) is a monomorphism, as it is an open
immersion, and f(X) ◦ g′ = id = f(X) ◦ h′, hence g′ = h′ and so g = p ◦ g′ = p ◦ h′ = h.

1.1.5 Again we can give an analogous definition in the category of affine schemes over a commu-
tative ring R.

Definition. Let F, F ′ : (AffSch/R)
op → (Sets). We say that a morphism of functors f : F ′ → F

is an open immersion if for any morphism g : SpecT → F , where T is an R-algebra, the functor
F ′ ×F SpecT is representable, say by an R-scheme Y , and the base change f(T ) : Y → SpecT is
an open immersion of schemes.

Note that we don’t require that Y is affine: indeed not all the open subschemes of an affine
scheme are themselves affine. Let’s now relate this notion in (AffSch/R) with the previous for
(Sch/R).

Proposition. Let F, F ′ : (AffSch/R)→ (Sets) two are Zariski sheaves and f : F ′ → F be an open
immersion of functors. Then we can extend f to an open immersion f̃ : F̃ ′ → F̃ of functors from
(Sch/R)→ (Sets).

Proof. The existence of f̃ is guaranteed by the functoriality of the tilde construction. We need to
check that it is an open immersion. Let therefore X be an R scheme and g : X → F a morphism
of functors. Covering X by open affine subschemes Xi, we have a collection of schemes Ui, open
in Xi, and a cartesian diagram (again by functoriality of tilde and by the Zariski sheaf property)

Ui
� � ◦ //

ϕi
��

Xi

��
F̃ ′ // F̃

(1)

where the top arrow is an open immersion of schemes. Using Yoneda’s lemma we get that (ϕi)i ∈∏
i F̃
′(Ui) agree on the intersections, hence we can glue them to ϕ : U =

⋃
i Ui → F̃ ′ since F̃ ′ is a

Zariski sheaf. We get therefore a commutative diagram

U �
�
◦ //

ϕ
��

X

��
F̃ ′ // F̃

(2)

and we claim that this is a cartesian square. Let therefore S be an R-scheme endowed with the two
solid arrows h and k as below: we need to show that the dotted arrow exist, i.e. that h(S) ⊆ U ,
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as U is an open subset of X.
S

h

((
k

��

  
U �
�
◦ //

ϕ
��

X

��
F̃ ′ // F̃

(3)

Consider therefore h−1(Xi) and let (Si,j)j be an affine open cover of it. As the diagram (1) is
cartesian h(Si,j) ⊆ Ui for any i, j. It follows that h(S) ⊂ U . The commutativity of the lower
triangle in (3) follows by the definition of ϕ.

1.1.6 Also the concept of an open covering for functors can be generalized from schemes to
functors F : (Sch/S)

op → (Sets):

Definition. Let F : (Sch/S)
op → (Sets), a family { fi : Fi → F }i∈I of open subfunctors of F is

called a Zariski open covering of F if for any S-scheme X and any morphism of functors g : X → F ,
the image of the (fi)(X)’s (as morphisms of schemes) forms an open covering of X.

In this form this definition seems difficult to check as it involves any possible morphism
g : X → F , with X scheme, but fortunately the following result simplifies a lot this hard task.
For convenience we will state it only for S = SpecR affine, even though the general case can be
proved in the same way.

Proposition. Let F : (Sch/R)
op → (Sets) and { fi : Fi → F }i be a collection of open subfunctors

of F such that F (K) =
⋃
i Fi(K) for any R-algebra K that is a field. Then the family { fi }i form

a Zariski open covering of F .

Proof. Let g : X → F a morphism of functors, with X a R-scheme. Consider for any i the open
immersion (fi)(X) : Fi ×F X → X and denote by Ui its image. We have to prove that for any
x ∈ X there is an index i such that x ∈ Ui, or in other terms that the corresponding morphism
ιx : Specκ(x)→ X factors through Ui. We can now write a commutative diagram

Specκ(x)

$$

ιx

((

��

Ui //

��

X

g

��
Fi

fi // F

where the existence of the two dotted arrows is equivalent, since Fi×F X ∼= Ui. Hence we are left
to prove that the composition g ◦ ιx : Specκ(x)→ F factors through fi for some i. Now note that
by the Yoneda lemma and by the hypothesis

HomR(Specκ(x), F ) = F
(
κ(x)

)
=
⋃
i

Fi
(
κ(x)

)
=
⋃
i

HomR(Specκ(x), Fi),

hence g ◦ ιx already lies in HomR(Specκ(x), Fi) for some index i, i.e. it factors through fi.

5



1.1.7 We have all the tools now to state the criterion of representability that we will use. For
the proof we refer to [5], page 209.

Theorem. Let F : (Sch/S)
op → (Sets) a Zariski sheaf and let { fi : Fi → F }i a Zariski open

covering such that any Fi is representable. Then F is representable.

We want describe now, as final outcome of this section, a procedure to define a scheme over a
commutative ring R that represents a given functor F : (AffSch/R)

op → (Sets):

• show that F is a Zariski sheaf ;

• define a class of subfunctors Fi of F such that F (K) =
⋃
i Fi(K) for any R-algebra K that

is a field;

• show that they are open subfunctors and that they are representable in (AffSch/R).

We can indeed extend F , Fi to Zariski sheaves F̃ , F̃i : (Sch/R)
op → (Sets): F is a Zariski sheaf

by the hypothesis and the Fi’s as they are representable in the category (AffSch/R). We already
observed (cf. 1.1.5) that Fi → F extend to F̃i → F̃ and it is again an open immersion, moreover
the condition F (K) =

⋃
i Fi(K), for any R-algebra K that is a field, ensures that they give rise

to a Zariski open cover of F̃ (cf. 1.1.6). Observe moreover any F̃i is representable by an affine
scheme in the category (Sch/R): let Zi the affine scheme representing Fi in (AffSch/R), then F̃i
and hZi are two Zariski sheaves that restrict to the same Zariski sheaf on (AffSch/R), hence (by
the uniqueness of the extension) they are equal on (Sch/R).

Hence all the conditions of the above theorem are satisfied for F̃ and therefore it is representable
by an R-scheme.

1.2 Grassmannian scheme

The previous paragraph introduced the concept of representability and gave us a way to find
explicitly (following the proof of the criterion in 1.1.7) the representative of a specific class of
functors. In view of the local study of our moduli space we are interested in one such functor in
particular: the so-called local model. This is a closed subscheme of a product of Grassmannian
schemes, that we are going to introduce in this section.

1.2.1 First, we need to recall some statements about projective modules over commutative rings.
Let therefore A be a commutative ring.

Proposition. ( [11] App. B, theorem 2.5, theorem 7.12)

i. Let M be an A-module. Then M be is projective if and only if it is a direct summand of a
free A-module;

ii. Let A be a local ring. Then any finite projective module over A is free.

iii. Let M an A-module of finite presentation. Then M is projective if and only if for any
m ∈ MSpecA the localization Mm is a free Am-module.

6



By the point ii. the following definition makes sense:

Definition. Let M a projective A-module. We define rk : SpecA→ N∪{∞} to be the function
that maps p to rkAp

(Mp), where rkAp
(Mp) is the rank as free module of the localization of M at

p over the local ring Ap. We say that M has rank n if the function rk is constant with value n for
any p ∈ SpecA.

Moreover one can show that the rank function is locally constant on Spec(A):

Proposition. ([3] chapter II, section 5.2, corollary to proposition 2)
Let M a finitely presented projective A-module. Let p ∈ SpecA and Mp be free of rank d. Then

there exists f ∈ Ar p such that Mf is free of rank d.

Proposition. ([3] chapter II, section 5.2, theorem 1)
Let M a finitely generated projective module. Then it is finitely presented.

Combining the previous results we get that if M is a direct summand of An, for some positive
integer n, the quasi-coherent associated module M̃ is locally free. In fact M is projective and
finitely generated (as quotient of the finite free A-module An), hence also finitely presented. If
we localize at any prime p ∈ SpecA then Mp is a finitely presented module over the local ring
Ap, hence free (of finite rank rkAp

(Mp)). Therefore exists f ∈ Ar p such that Mf is free (of the
same rank rkAp

(Mp)) i.e. a distinguished open neighborhood D(f) of p such that M̃|D(f) is free
(of rank rkAp

(Mp)). Moreover if M has constant rank d, it follows that M̃ has constant rank d.

1.2.2 We pass now to the definition of the grassmannian functor. It generalizes the classical notion
of grassmannian variety over an algebraically closed field, i.e. the variety of linear subspaces of
Kn of dimension d.

Let R a commutative ring and let’s fix n, d two natural numbers such that 0 < d ≤ n. Define
for an R-algebra T the set

Grassn,d,R(T ) = {M submodule of Tn : M direct summand of rank d } ,

moreover if f : T1 → T2 is a morphism of R-algebras define the transition map M 7→ M ⊗T1 T2,
for M ∈ Grassn,d,R(T1). This is well defined as M ⊗T1

T2 is a direct summand of Tn2 (as direct
sum and tensor product commute, see [1] prop. 2.14) and it has again rank d (as localization and
tensor product commute, see [1] prop. 3.7).

This gives rise to a functor Grassn,d,R : (AffSch/R)→ (Sets), moreover

Proposition. Grassn,d,R is a Zariski sheaf in (AffSch/R).

Proof. Let T an R-algebra, { ti }i ⊆ T generating the unit ideal and, for any i, take Mi a direct
summand of Tnti of rank d such that Mi ⊗Tti Ttitj = Mj ⊗Ttj Ttitj as submodule of Tntitj . We
have to show that there exists a unique T -module M , direct summand of Tn of rank d such that
M ⊗T Tti = Mi, as submodules of Tnti . Note that by [1], prop. 3.5, we will identify the tensor
product of a module with its localization: e.g. the above condition becomes (Mi)titj = (Mj)titj .

First, let’s prove the existence ofM . As we observed in 1.2.1, we have anOSpecTti
-module Fi =

M̃i, locally free of rank d. Observe that by assumption X = SpecT is covered by the distinguished
open subsets Ui = D(ti) ∼= Spec(Tti) and moreover we have a collection of isomorphisms

ϕi,j = id: Fi|Ui∩Uj
∼−→ Fj |Ui∩Uj
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hence we can glue them to a sheaf F on X. This is a quasi-coherent sheaf, since X has an affine
open cover of open subsets Ui such that F|Ui = M̃i. Hence, as X is affine, F = Γ(X,F )∼. We
can therefore take M = Γ(X,F ). We only need to show that M is a direct summand of Tn of
rank d, as by the properties of quasi-coherent modules Mti = Γ(X,Ui) = Mi. Writing the sheaf
property for M̃ and T̃n and the cover {Ui }i we get the following solid diagram with exact rows:

Tn //
∏
i

Tnti
// //
∏
i,j

Tntitj

M //?�

OO

∏
i

Mi
////

?�

OO

∏
i,j

(Mi)titj

?�

OO

and the existence and injectivity of the dotted arrow follows: let m ∈M , localizing it gives rise to
a collection (mi)i ∈

∏
iMi ⊆

∏
iT
n
ti that agree when localized again in

∏
i,j(Mi)titj ⊆

∏
i,j T

n
titj ,

hence they glue to a uniquely determined m̃ ∈ Tn. Vice versa m̃ can be image of at most one
m, as any localization m̃i ∈ Mi, then they glue to a unique m ∈ M . Similary one proves the
T -linearity of the dotted map, hence we can consider M as a submodule of Tn and more precisely
the diagram suggests the explicit description

M = {m ∈ Tn : m ∈Mi as an element of the localization Tnti } .

The stalk of M at p is isomorphic to the stalk of Mi at pAti , for ti /∈ p, in particular of the
same rank d, hence it is left to prove that M is a direct summand of Tn, or equivalently that the
sequence

0→M → Tn → Tn/M → 0

splits. This follows since Tn/M is projective by 1.2.1: in fact (Tn/M)ti
∼= Tnti/Mi is finitely

presented for any i (it is a direct summand of Tnti , hence the sequence

Tnti → Tnti → Tnti/Mi → 0

is exact, where the first map is the composition of the canonical projection Tnti → Mti followed
by the canonical inclusion Mti → Tnti ; apply [3] chapter II, section 5.1, corollary to proposition 3);
moreover (Tn/M)m is free for any m ∈ MSpecA.

Now let’s prove the uniqueness: take M,M ′ such that Mti = M ′ti for any i. Consider the map
M ∩M ′ ↪→ M and consider the associated map of coherent sheaves: it induces an isomorphism
on the stalks, so it is an isomorphism itself. Indeed (M ∩M ′)ti = Mti ∩M ′ti = Mti for any i,
so (M ∩M ′)p = Mp for any p ∈ SpecT . Since the functor M 7→ M̃ is fully faithful this implies
M = M ′.

1.2.3 We look now for a Zariski open cover with representable subfunctors. Let therefore I =
{ i1 < i2 < · · · < id } ⊆ { 1, . . . , n } a choice of d indexes between n. Denote by ei the standard
generators of Tn and by EI the submodule generated by the ej ’s for j ∈ { 1, . . . , n }r I.

Define the subfunctor GrassIn,d,R of Grassn,d,R by

GrassIn,d,R(T ) = {M ⊆ Tn : M ⊕ EI = Tn } .

for any R-algebra T . Observe that if M ∈ GrassIn,d,R(T ) then it is free: the projection onto M
induces an isomorphism of T -modules M ∼= Tn/EI = 〈ēi1 , . . . , ēid〉T,ik∈I , where ēj denote the
image of the j-th standard basis vector in the quotient.
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Consider now the affine scheme

W = SpecR[Xi,j ]i=1,...,n
j=1,...d

and its closed subset WI = V (Xiα,β − δα,β)α,β=1,...,d, where δα,β is the Kronecker delta. We have
that in particular for any R-algebra T

WI(T ) = {A ∈ Mn×d(T ) : AI = 1 } ,

where AI represents the submatrix of A consisting of the i-th rows, for i ∈ I. We want to prove that
GrassIn,d,R is representable by the affine schemeWI , i.e. that GrassIn,d,R(T ) ∼= WI(T ), functorially
in T . The map is the correspondence between submodule and matrix of the coordinates of its
basis (note that any M ∈ GrassIn,d,R is free) normalized in such a way that the I-th submatrix is
the identity.

We explain now why such a normalization is possible. We may indeed without loss of generality
assume I = { 1, . . . , d }, up to reordering the ei’s. Choose a basis ofM : it has a matrix of the form
AM =

(
AI
B

)
. Consider moreover the matrix

(
AI O
B 1

)
, matrix of the inclusion M ⊕ EI ↪→ Tn: the

condition Tn = M ⊕EI is equivalent to asking that this matrix is invertible, or equivalently that
AI invertible. Up to multiplying on the right by A−1

I , operation that corresponds to a change of
the basis of M , one can take AM ∈WI(T ).

1.2.4 Note that in the previous argument the assumption AI = 1 has nothing special: we could
have taken a different invertible matrix with values in R instead of the identity and the final
outcome would have been the same scheme.

There is moreover an elegant way to avoid the choice of such a matrix: one may reformulate
what we said above as a a bijection between GrassIn,d,R(T ) and the set of n × d matrixes with
invertible I-th minor, modulo right multiplication for d × d invertible matrixes, but we will not
use this formulation: for the computations it’s important to fix a (non-canonical) choice of AI .

1.2.5 Note that varying I the covering condition holds for fields:

Grassn,d,R(K) =
⋃
I

GrassIn,d,R(K)

for any R-algebra K that is a field. In fact for any vector subspace V ⊆ Kn of dimension d any
of its associated matrixes has rank d, so we can find a subset of indexes I such that the I-th
minor is nonzero, or in other terms V ⊕ EI = Kn. It is moreover interesting to remark that
Grassn,d,R(T ) 6=

⋃
I GrassIn,d,R(T ) for general R-algebras T : in fact GrassIn,d,R contains only free

modules for any I, but in general there exist non-free projective modules in Grassn,d,R(T ).

1.2.6 Let’s now prove that we have truly defined open subfunctors

Lemma. Let A a ring. The following are equivalent:

i. f ∈ A×;

ii. f/1 ∈ A×p for any p ∈ SpecA;

iii. for any set { ti }i generating the unit ideal f/1 ∈ A×fi for any i ∈ I.

9



Proof. The implications i. ⇒ ii. and i. ⇒ iii. are clear. For ii. ⇒ i. observe that if f /∈ A×
exist m ∈ MSpecA such that f ∈ m, hence f/1 ∈ mAm = Am r A×m. By the same argument the
implication iii. ⇒ ii follows, as Ap = (Ati)pAti for any p 63 ti.

Lemma. Let T an R-algebra, M ∈ Grassn,d,R(T ) and I a collection of indexes as above. Then
there exists an affine open subset UI ⊆ Spec(T ) such that, if ϕ : T → S is a morphism of
R-algebras, then f = ϕ∗ : Spec(S) → Spec(T ) factors through UI if and only if M ⊗T S ∈
GrassIn,d,R(S)

Proof. Let { ti }i a (finite) subset of T generating the unit ideal and such that Mti is free for
any i. Let mi ∈ Tti the I-th minor of its matrix. Write mi = xi/t

ni
i , with xi ∈ T , and define

UI = D(
∏
i xi). Note that SpecS → SpecT factors through UI if and only if ϕ : T → S factors

through T∏ xi , i.e. ϕ(
∏
xi) ∈ S×. Hence by the lemma above the factorization of f is equivalent

to ϕ(xi) ∈ S×ϕ(tj)
for any i, j.

If the latter holds consider (M ⊗T S)ϕ(ti) = Mti ⊗Tti Sϕ(ti). It is free and the I-th minor of
its matrix is ϕ(mi) = ϕ(xi)/ϕ(ti)

ni ∈ S×ϕ(ti)
, hence (M ⊗T S)ϕ(ti) ∈ GrassIn,d,R(Sϕ(ti)). Since

GrassIn,d,R is representable, therefore a Zariski sheaf, M ⊗T S lies in GrassIn,d,R(S).

Vice versa suppose M ⊗T S ∈ GrassIn,d,R(S), hence free with I-th minor u ∈ S×. Note that
u = ϕ(mi) = ϕ(xi)/ϕ(ti)

ni ∈ S×ϕ(ti)
for any i, as we have that (M ⊗T S)ϕ(ti) = Mti ⊗Tti Sϕ(ti).

Hence ϕ(xi) ∈ S×ϕ(ti)
for any i. Now fix an index j, then ϕ(ti)

niϕ(xk) = ϕ(tk)nkϕ(xi) in Sϕ(tj)ϕ(tk)

for any k, hence ϕ(xi) is invertible as ϕ(xk) is so. Since {ϕ(tj)ϕ(tk) }k generates the unit ideal of
Sϕ(tj) by the lemma ϕ(xi) ∈ S×ϕ(tj)

for any i, j. This concludes the proof of the equivalence.

It follows that:

Proposition. For any choice of I the functor GrassIn,d,R is an open subfunctor of Grassn,d,R.

Proof. Consider a morphism of functors SpecT → Grassn,d,R. Via Yoneda’s lemma it corresponds
to M ∈ Grassn,d,R(T ). Note that for any R-algebra S and ϕ : T → S a morphism of R-algebras
the composition

Spec(S)→ Spec(T )→ Grassn,d,R

corresponds to the element M ⊗T S ∈ Grassn,d,R(S). As UI defined in the lemma is affine
we may apply the lemma to S = Γ(UI ,OUI ): f = ϕ∗ factors (via the identity) through UI ,
hence M ⊗T Γ(UI ,OUI ) ∈ GrassIn,d,R

(
Γ(UI ,OUI )

)
, i.e. the map UI → Grassn,d,R factors through

GrassIn,d,R. We get therefore the commutative square

UI
� � ◦ //

M⊗TΓ(UI ,OUI )

��

SpecT

M

��
GrassIn,d,R

� � // Grassn,d,R

and we need to show that it is cartesian. Let therefore S any R-algebra and ϕ : T → S morphism
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of R-algebras such that we may complete the solid diagram below

SpecS

f=ϕ∗

++

��

&&
UI
� � ◦ //

M⊗TΓ(UI ,OUI )

��

SpecT

M

��
GrassIn,d,R

� � // Grassn,d,R

or equivalently (same argument as above) M ⊗T S ∈ GrassIn,d,R(S). Therefore f factors through
UI , i.e. the dotted arrow exists and it makes the upper triangle commute. The commutativity of
the lower triangle follows by the commutativity of the rest of the diagram, since the morphism
GrassIn,d,R → Grassn,d,R is a monomorphism of functors.

1.2.7 All these properties of the functor Grassn,d.R where studied in order to apply the procedure
in 1.1.7 to find a scheme representing this functor, that we will denote by Gn,d,R. Following the
proof of the criterion of representability in [5] we can describe explicitly how Gn,d,R is obtained
by gluing affine pieces: as in 1.2.3 we start with

W = SpecR[Xi,j ]i=1,...,n
j=1,...d

∼= AndR

and WI = V (Xiα,β − δα,β)α,β=1,...,d
∼= Ad(n−d)

R , where δα,β is the Kronecker delta. This represent
the matrixes with the identity as I-th submatrix. Now define X = (Xi,j)i,j as the matrix with all
the indeterminates and for any J , set of indexes of cardinality d, denote by PJ the J-th minor of
X. Now we set

WI,J = WI ∩D(PJ) ∼= Spec

(
R[Xi,j , P

−1
J ]i,j

V (Xiα,β − δα,β)α,β

)
,

that represent the matrixes with the identity as I-th submatrix and invertible J-th minor, and
define an R. There are moreover isomorphisms

ϕI,J : WI,J
∼−→WJ,I

given by the map of R-algebras induced by the multiplication on the right of X with X−1
J . We

obtain Gn,d,R by gluing the WI ’s along the ϕI,J ’s.
One remark on this construction: as we remarked in 1.2.4 the choice of AI = 1 is completely

arbitrary and we may choose any other invertible d × d matrix. Modifying in a suitable way
the definition of WI ’s and the bijection described above (that is given in general by X−1

J XI), we
get a new construction of the Grassmannian, that mutata mutandis is the same described in this
paragraph, it gives indeed an isomorphic result.
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1.3 Chain of lattices

In this section we will introduce an important chain of Zp-lattices and we develop some of its
features necessary for the definition of local models.

1.3.1 Let g a positive integer and for i = 0, . . . , 2g define the free Zp-module

Λi = 〈p−1e1, . . . p
−1ei, ei+1, . . . e2g〉Zp ,

where { e1, . . . , e2g } is the standard basis of Q2g
p . We get therefore a sequence of inclusions

Z2g
p = Λ0 ⊆ Λ1 ⊆ · · · ⊆ Λ2g = p−1Λ0

that we can extend periodically letting Λi+2gk = p−kΛi, for any k ∈ Z. Note that in particular
Λ−i = 〈e1, . . . , e2g−i, pe2g−i+1, . . . , pe2g〉Zp for i = 0, . . . , 2g.

It is useful to observe that the inclusion ιi : Λi → Λi+1 is a Zp-linear map, for i = 0, . . . , 2g,
and that its matrix is

Ai =



1
. . .

p
. . .

1


(where p is in the (i+1)-th place) in the two given bases of Λi and Λi+1. Moreover by the periodic
definition in general ιi has matrix Ai′ , where i′ ∈ { 0, . . . , 2g − 1 } is such that i′ ≡ i mod 2g.

1.3.2 Endow Q2g
p with the standard bilinear alternating pairing 〈−,−〉, i.e. the one given by the

matrix G =
(

O J
−J O

)
, where J =

(
1

. .
.

1

)
It is interesting to restrict our pairing to the lattices

Λi described above.

Lemma. Let 0 ≤ i ≤ 2g. Λ−i = { y ∈ Q2g
p : 〈x, y〉 ∈ Zp,∀x ∈ Λi }.

Proof. Observe that 〈Λi, y〉 ∈ Zp if and only if vp(〈p−1ej , y〉), vp(〈ej′ , y〉) ≥ 0, where vp denotes the
p-adic valuation, for 0 < j ≤ i < j′ ≤ 2g. Writing y =

∑
k akek it follows that 〈ej , y〉 = ±a2g+1−j ,

for any j = 1, . . . , 2g, hence 〈Λi, y〉 ∈ Zp if and only if vp(a2g+1−j) ≥ 1 for j = 1, . . . , i and
vp(a2g+1−j) ≥ 0 for j = i+ 1, . . . , 2g, i.e. y ∈ Λ−i.

Proposition. The pairing 〈−,−〉 on Q2g
p restricts to a perfect bilinear pairing Λi × Λ−i → Zp,

its matrix in the given basis of Λi and Λ−i is again G.

Proof. The validity of the definition follows from the above lemma. Suppose 〈Λi, y〉 = 0, for
y ∈ Λ−i; the computation in the proof of the lemma shows that y = 0, i.e. the pairing is
non degenerate on the right side. Similary for the left side. Hence the two natural morphisms
Λ−i → Λ∨i := HomZp(Λi,Zp) and Λi → Λ∨−i are injective. They are visibly surjective, therefore
isomorphisms.
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1.3.3 If R is a Zp-algebra, then we can tensor all the above constructions with R, and we get
similar properties. In the rest of this section all tensor products are taken over Zp, hence we will
omit it from the notations. We define for any i ∈ Z the free R-module Λi,R = Λi ⊗R, of rank 2g.
Since the tensor product is only right exact, we don’t have in general a chain of inclusions of R
module, but we have still a sequence

· · · → Λ−2g,R → Λ−2g+1 → · · · → Λ0,R → Λ1,R → · · · → Λ2g,R → · · ·

of R-linear morphisms ιRi with matrix Ai (considered as a matrix with entries in R) and an R-linear
isomorphism εRi : Λi−2g,R

∼−→ Λi,R for any i ∈ Z, with the identity as matrix.
Also the standard pairing extends linearly to 〈−,−〉R : Λi,R×Λ−i,R → R, namely we can define

〈x⊗ r1, y ⊗ r2〉R = r1r2〈x, y〉. Note that 〈−,−〉R has again G as matrix and it is again perfect:

Λ−i,R = Λ−i ⊗R ∼= Λ∨i ⊗R = HomZp(Λi,Zp)⊗R ∼= HomR(Λi,R, R) = Λ∨i,R

where the last isomorphism follows as Λi is free.

1.3.4 By the above lemma, if F is a submodule of Λi for i = 0, . . . , 2g, then its orthogonal F⊥
is contained in Λ−i. More generally we may define for any F submodule of Λi,R its orthogonal
F⊥ := { y ∈ Λ−i,R : 〈x, y〉R = 0 for all x ∈ Λi,R }. Suppose moreover that we have a submodule G
of Λi+1,R such that ιRi (F) ⊆ G, then ιR−i−1(G⊥) ⊆ F⊥. In fact GA2g−i−1 = AiG, therefore if we
take x ∈ F , y ∈ G⊥ then

〈x, ιR−i−1(y)〉R = 〈ιRi (x), y〉R = 0,

as ιi(x) ∈ G.
Hence if we have a chain of submodules Fi ⊆ Λi such that

Λi0 // Λi1 // . . . // Λir

F0

?�

OO

// F1

?�

OO

// . . . // Fr
?�

OO

commutes, then the corresponding diagram

Λ−i0 Λ−i1oo . . .oo Λ−iroo

F⊥0
?�

OO

F⊥1
?�

OO

oo . . .oo F⊥r
?�

OO

oo

is again commutative.
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1.4 Local models

Finally we are ready to define the (symplectic) local model. Again we will use the procedure
described in 1.1.7.

1.4.1 Let i• = { 0 ≤ i0 < i1 < · · · < ir ≤ g } be a choice of indexes, that we will call parahoric
level structure. Let M loc(i•)(R) be the set of diagrams

Λi0 // Λi1 // . . . // Λir

F0

?�

OO

// F1

?�

OO

// . . . // Fr
?�

OO

where Fi is a submodule of Λi,R for any i = i0, . . . , ir, direct summand of rank g, and such that
we may complete the above diagram with the dotted arrows (that are part of the datum):

// Λ−i0 // Λi0 // . . . // Λir // Λ2g−ir
//

// F⊥0
?�

OO

// F0

?�

OO

// . . . // Fr
?�

OO

// εRir (F
⊥
r )
?�

OO

//

where the map F⊥ik+1
→ F⊥ik is the linear map induced by Fik → Fik+1

, as described in the previous
section.

Using (Fν)ν 7→ (Fν ⊗R R′)ν as connecting morphism, for R→ R′ a morphism of Zp-algebras,
we get the functor M loc(i•) : (Ring/Zp)→ (Sets).

1.4.2 It is worth for future calculations to observe that in the above definition, in the particular
case i0 = 0, the existence condition of the dotted arrow becomes F⊥0 = F0, and similarly for
ir = g it becomes εRg (F⊥g ) = Fg . This follows immediately from the following lemma:

Lemma. Let M be a finite free R-module and let N1 ⊆ N2 be direct summands of M of the same
(necessarily finite) rank. Then N1 = N2.

Proof. If we localize at p ∈ Spec(R) we get the following commutative diagram with split exact
rows

0 // (N2)p // Mp
// (M/N2)p // 0

0 // (N1)p //
?�

j

OO

Mp
// (M/N1)p ////

p

OOOO

0

and applying the snake lemma ker p ∼= coker j.
Hence ker p is a finitely generated Rp-module: in fact coker j is a quotient of (N2)p, finite free

as finitely generated (because quotient of a finite free module) and projective over the local ring
Rp.

Denote by mp the maximal ideal of Rp and by κ(p) = Rp/mp the residue field at p. Note that
since the rows are split exact if we tensor with κ(p) they remain exact, hence we get the diagram
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of κ(p)-vector spaces

0 // (N2)p ⊗ κ(p) // Mp ⊗ κ(p) // (M/N2)p ⊗ κ(p) // 0

0 // (N1)p ⊗ κ(p) //

j⊗κ(p)

OO

Mp ⊗ κ(p) // (M/N1)p ⊗ κ(p) //

p⊗κ(p)

OOOO

0

with exact rows. The projective modules (N1)p and (N2)p are free and of same rank by assumption
and therefore (N1)p ⊗ κ(p) and (N1)p ⊗ κ(p) have the same dimension. As M was finite free then
Mp ⊗ κ(p) is finite dimensional and it follows that also the vector spaces (M/N1)p ⊗ κ(p) and
(M/N2)p ⊗ κ(p) have same (finite) dimension.

Now note that the exact sequence

0→ ker(p)→ (M/N1)p → (M/N2)p → 0

is split exact, as (M/N2)p is projective; hence it remains exact after tensoring with κ(p). Therefore

0 = ker
(
p⊗ κ(p)

)
= ker(p)⊗ κ(p) = ker(p)/mp ker(p),

since p ⊗ κ(p) is a surjective linear map between vector spaces of the same dimension. Then it
follows by Nakayama’s lemma that ker(p) = 0. The equality (N1)p = (N2)p follows for any prime
p ∈ Spec(R) and this implies the equality between N1 and N2.

1.4.3 So far we introduced a subfunctor of a product of Grassmannian functors. We will see now
that this functor is represented by a closed subscheme of the corresponding product of Grassman-
nian schemes.

Proposition. For any parahoric level structure i• = { 0 ≤ i0 < · · · < ir ≤ g } the local model
M loc(i•) is a Zariski sheaf

Proof. Let R a Zp-algebra and let { fk }k ⊆ R generating the unit ideal. Take for any k a collection
of submodules (Fiν ,k)ν ∈M loc(i•)(Rfk) that agree on localizing at the element fkfh for any pair
of indexes (h, k). In the section 1.2.2 we proved that each family (Fiν ,k)k glues to a unique direct
summand Fν of rank g of Λiν ,R. Note that in particular F⊥i0 coincide with the submodule obtained
gluing the F⊥i0,k’s. It remains to show the existence of all the connecting morphisms: it follows
easily from the explicit description of the Fiν ’s as in 1.2.2, i.e.

Fiν = { f ∈ Rn : f ∈ Fiν ,k as element of the localization Rnfk } .

Let now J = (I0, . . . , Ir), where each Ik is a set of d indexes chosen between 1 and n. For any J
we define the subfunctors M loc(i•)∩

∏r
k=0 GrassIk2g,g,Zp of M loc(i•). One can show, with the same

argument as for the GrassIn,d,R’s, that they define open subfunctors and an open Zariski cover of
M loc(i•). Moreover they are representable: write UJ = WI0 × · · · ×WIr ⊆

∏r
k=0G2g,g,Zp . Later

on (see 2.5) we will show by explicit computations in some particular case (but the computations
are analogous in the general case) that for any J there exists a closed subscheme ZJ of UJ such
that M loc(i•) ∩

∏r
k=0 GrassIk2g,g,Zp

∼= ZJ as functors, where the isomorphism is the restriction
of
∏r
k=0 GrassIk2g,g,Zp

∼= UJ . We may therefore apply the criterion of representability in 1.1.7 to
show that M loc(i•) is representable by a scheme Z. More precisely, we glue finitely many closed
subschemes of the UJ ’s with the same identification that we had in the grassmannian case: hence
Z is a closed subscheme of

∏r
k=0G2g,g,Zp . In the sequel we will denote Z again by M loc(i•).
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Chapter 2

Siegel Moduli space

In this chapter we will introduce the Siegel moduli space with parahoric level structure, the
geometric object we are interested in. We will moreover introduce a powerful technique for the
study of its local structure: relating it with the local structure of the local model, introduced in
the first chapter. In the whole chapter we will follow mainly the exposition of [10] and sometimes
of [8] of the subject.

2.1 Moduli problem

Once again, as we did in the first chapter, we introduce a scheme via the definition of its functor
of points. In this section let g be a fixed positive integer, and I = { 0 ≤ i0 < i1 < · · · < ir ≤ g } a
choice of indexes, that we call a parahoric level structure.

Fixed a parahoric level structure I we need some auxiliary definitions:

• let I ′ = {±i+ 2gk : i ∈ I, k ∈ Z };

• let succ : I ′ → I ′ be the "succesive" map, i.e. succ(i) = min { j ∈ I ′ : j > i };

• given two indexes i, j ∈ I ′, let d(i, j) = |j − i|, i.e. the distance between them.

2.1.1 Let p a rational prime and N ∈ N≥3 such that p - N . Fix moreover an N -th root of unity
ζN in Q̄p and let S = SpecZp[ζN ]. In this setting for any S-scheme S′ define AI,N (S′) as the set
of equivalence classes of tuples

(
(Ai)i∈I′ , (αi)i∈I′ , (λi)i∈I′ , η

)
where:

S1 (Ai)i∈I′ is a family of abelian schemes over S′ of (relative) dimension g and such that
Ai = Ai+2g for any i ∈ I ′;

S2 (αi)i∈I′ is a chain of isogenies αi : Ai → Asucc(i) of degree pd(i,succ(i))

α−i1 // A−i0
α−i0 // Ai0

αi0 // . . .
αir−1 // Air

αir // A2g−ir
α2g−ir //

such that for any i ∈ I ′ one has that αi = αi+2g and that the composition

Ai → · · · → Ai+2g = Ai,

is the multiplication by p map;
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S3 (λi : Ai
∼−→ A∨−i)i∈I′ is a family of isomorphisms such that λi+2g = λi for any i ∈ I ′ and

such that the diagram

// A−i1 //

∼=
��

A−i0
//

∼=
��

Ai0
//

∼=
��

Ai1
//

∼=
��

// A∨i1
// A∨i0

// A∨−i0
// A∨−i1

//

is commutative, where the upper row is given by the chain (αi)i∈I′ (unless in the case i0 = 0
or in the case ir = g, where we use the identity respectively as map A0 = A−i0 → Ai0 = A0

and Ag = Air → A2g−ir = Ag), with bottom maps the dual isogenies, and such that for any
i ∈ I ′ the composition Ai ∼= A∨−i → A∨i−2g = A∨i is a polarization;

S4 η : Ai0 [N ]
∼−→ (Z/NZ)2g is a level N structure on Ai0 , i.e. an isomorphism making the

diagram
Ai0 [N ]×Ai0 [N ]

η×η ∼=
��

// µN

∼=
��

(Z/NZ)2g × (Z/NZ)2g // Z/NZ

commute, where the upper pairing is the Weil pairing on Ai0 , the lower is the standard
alternating pairing on (Z/NZ)2g and the isomorphism Z/NZ ∼−→ µN is the isomorphism
given by a mod N 7→ (ζN )a.

2.1.2 Some particular cases of the previous definition are classical. The simplest one is given by
the case I = { 0 }, this case gives rise to the usual moduli space of principally polarized abelian
varieties Ag,N , see e.g. [12]. The case I = { 0, 1, . . . , g } is called "Iwahori level structure" or
"Γ0(p)-level structure", is widely studied, see e.g. [10] and [8]; as an exercise we show that in this
special case our definition agrees with the one that one can find there. Let therefore A′I,N (S′), for
any S-scheme S′, be the set of isomorphism classes of tuples

(
(Ai)i∈I , (αi)i∈I , λ0, λg, η

)
, where

S1’ (Ai)i∈I is a family of abelian schemes over S′ of (relative) dimension g;

S2’ (αi)i∈Ir{ g } is a chain of isogenies αi : Ai → Ai+1 of degree p;

S3’ λ0 : A0
∼−→ A∨0 , λg : Ag

∼−→ A∨g are principal polarizations such that in the diagram

A0
// A1

// . . . // Ag

λg∼=
��

A∨0

λ0
∼=

OO

A∨1oo . . .oo A∨goo

the composition of all the maps, starting at any point, gives the multiplication by p map;

S4’ η : A0[N ]
∼−→ (Z/NZ)2g a level N structure on Ai0 .

[10] and [8] define the Siegel moduli space with Iwahori level structure via this functor A′I,N ,
hence we have to show that there is a bijection AI,N (S′) ∼= A′I,N (S′) functorial in S′.

From the left to the right: take the same Ai’s and isogenies and level N structure. Note
that since i0 = 0 and ir = g, by the definition of AI,N , the two maps A0 → A∨0 , Ag → A∨g are
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isomorphisms, hence principal polarizations. Using moreover the commutativity of the diagram
in S3 the condition on the composition of maps is verified.

From the right to the left: we define A−i = A∨i for any i = 1, . . . , g − 1 and we extend the
family periodically to Z letting Ai+2g = Ai; for the chain of isogenies we use the dual isogenies for
A∨i+1 → A∨i , if i = 1, . . . , g−2, the composition of the dual isogenies with the principal polarization
for A∨1 → A∨0

∼= A0, Ag ∼= A∨g → A∨g−1 and extend periodically the chain to Z. With this definition
the condition on the cyclic composition is satisfied and we get the diagram as in S3:

// A−g //

∼=
��

A−g+1
// . . . // A−1

// A0
//

∼=
��

A1

∼=
��

//

// A∨g // A∨g−1
// . . . // A∨1 // A∨0 // A∨∨1

//

where Ai → A∨∨i is the canonical isomorphism and A0
∼−→ A∨0 , Ag

∼−→ A∨g are the previously
defined polarizations. The level N structure remains the same.

2.1.3 The representability of the functor AI,N , follows from the representability of Ag,N . In [10]
de Jong shows it in the Iwahori case, let’s explain the idea of the proof. Denote as AI and Ag the
functors defined as AI,N , Ag,N without the level N structure. One proves that he morphism of
functors AI → Ag, defined on S′-valued point as the projection onto the first factor (i.e. we forget
everythig but A0 and λ0) is a representable morphism of functors, i.e. AI ×Ag X is representable
by a scheme for any S-scheme X and morphism X → Ag. As we know already that Ag,N is
representable (see [12]), then if we consider the morphism Ag,N → Ag that forgets the level N
structure, the base change AI,N = AI ×Ag Ag,N is representable by a scheme.

2.2 Formal power series

We use this section to give some commutative algebra results about formal series that we will use
later on.

2.2.1 First we give some result about formal series over a local ring.

Proposition. Let R a local ring with maximal ideal m and residue field k, then R[[X]] is again
local with maximal ideal

m̃ = (m, X) =

{
f =

∞∑
n=0

anX
n ∈ R[[X]] : a0 ∈ m

}
and residue field k.

Proof. Recall that a ring is local if and only if the complement of the group of units is an ideal
(and therefore the maximal ideal). It follows that m = RrR× and that it is enough to prove that
m̃ = R[[X]] rR[[X]]×. It is well known that

R[[X]]× =

{
f =

∞∑
n=0

anX
n ∈ R[[X]] : a0 ∈ R×

}
,

hence

R[[X]] rR[[X]]× =

{
f =

∞∑
n=0

anX
n ∈ R[[X]] : a0 ∈ m

}
= (m, X).
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Now it is an easy observation that R[[X]]/m̃ = R[[X]]/(m, X) ∼= R/m = k.

Lemma. Let R local ring with maximal ideal m and let m̃ denote the maximal ideal of R[[X]].
Then

m̃k =

{
f ∈

∞∑
n=0

anX
n : an ∈ mk−n for any n = 0, . . . k − 1

}
.

Proof. m̃k = (m, X)k = (mk,mk−1X,mk−2X2, . . . , Xk) hence the inclusion ⊇ is trivial. For the
other inclusion let f =

∑∞
n=0 anX

n ∈ m̃, then f =
∑k
i=0 biX

k−igi, with bi ∈ mi, gi ∈ R[[X]]; if we
develop the product and we reorder the terms we may take gi = 1 for any i < k, up to changing bi
with another coefficient b′i ∈ mk−i. Therefore ai = bi for i = 0, . . . , k−1 and the thesis follows.

Lemma. Let R be a local ring with maximal ideal m and let m̃ denote the maximal ideal of R[[X]].
Then there is an isomorphism of k-vector spaces

m̃k

m̃k+1
∼=

mk

mk+1
⊕ mk−1

mk
X ⊕ · · · ⊕ kXk.

Proof. From the explicit description of the powers of m above it follows that we have a surjective
map

m̃k �
mk

mk+1
⊕ mk−1

mk
X ⊕ · · · ⊕ kXk

of abelian groups with kernel m̃k+1. Hence we get the isomorphism of the statement, a priori of
abelian groups, but it’s easy to check that it respects the k-vector space structure.

2.2.2 The next results are about formal series over complete local rings. In this class of rings we
may evaluate any f =

∑∞
n=0 anX

n ∈ R[[X]] at any point x ∈ m, in fact the series
∑∞
n=0 anx

n

converges in the m-adic topology, we denote its limit by f(x).

Proposition. Let R a complete local ring with maximal ideal m and x ∈ m. If f ∈ R[[X]] is such
that f(x) = 0, then there is g ∈ R[[X]] such that f = (X − x)g.

Proof. Writing f =
∑∞
n=0 anX

n, g =
∑∞
n=0 bnX

n the statement is equivalent to the existence
of a sequence (bn)n such that a0 = −xb0 and an = bn−1 − xbn for any n > 0. As f(x) = 0,
then a0 = −xh0(x), where h0 =

∑∞
n=0 an+1X

n. Define therefore b0 = h0(x). Moreover since
h0 = a1 + Xh1, where h1(X) =

∑∞
n=0 an+2X

n, if we define b1 = h1(x), then b0 = a1 + xb1, i.e.
a1 = b0 − xb1, as required. We proceed by induction.

Note that we may interpret this result in these terms: the kernel of the evaluation at any x ∈ m
is the principal ideal generated by (X − x), hence evx : R[[X]]/(X − x)

∼−→ R.

2.2.3 The main result of this section is the following

Theorem. Let R1, R2 be complete noetherian local rings. Suppose that there exist an isomorphism
R1[[t]] ∼= R2[[s]], then R1

∼= R2

We need first a couple of technical lemmas:

Lemma. Let A,B be noetherian local rings with maximal ideals respectively m1 and m2. Let
ϕ : A → B a local homomorphism and suppose that it induces isomorphisms ϕ̄ : A/m1

∼−→ B/m2

on the residue fields and ϕ̄ : m1/m
2
1
∼−→ m2/m

2
2 on the cotangent spaces. Then ϕ is surjective.
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Proof. Consider a finite (by noetherianity) set of elements x1, . . . , xn ∈ m1 such that their image in
m1/m

2
1 form a basis of it: by Nakayama’s lemma (as m1 finitely generated) they generate m1. Let

yi = ϕ(xi), then the yi’s generate m2: in fact ϕ induces an isomorphism on cotangent spaces hence
if we consider the image of the yi’s in m2/m

2
2 they form a basis of it and therefore they generate

m2, again by Nakayama. Fix a set of representatives { 0, τi }i of A/m1. Then, since ϕ induces a
bijection on residue fields, { 0, ηi }i gives a set of representative of B/m2, with ηi = ϕ(τi). By the
completeness we may expand any element y ∈ B as y =

∑
ν∈Nn bνy

ν1
1 . . . yνnn , with bν ∈ { 0, ηi }.

Hence there exists aν such that ϕ(aν) = bν and therefore if we define x =
∑
ν∈Nn aνx

ν1 . . . xνn ,
then ϕ(x) = y.

Lemma. Let K be a field and f : Kn → Kn⊕K an injective maps. Then there exist a morphism
g = (1|a) : Kn ⊕K → Kn such that g ◦ f is an isomorphism.

Proof. As f is injective, the images of e1, . . . , en are linearly independent. We may therefore
complete them to a bases { f(e1), . . . , f(en), v + x } of Kn ⊕K, with v ∈ Kn and x ∈ K. Define
a = −v/x, hence ker g = 〈v + x〉 (since g = (1|a) has rank n or in other terms the kernel is
1-dimensional) and therefore 〈f(e1), . . . , f(en)〉 ∩ ker g = 〈0〉. Hence g

(
f(e1)

)
, . . . , g

(
f(e1)

)
are

linearly independent: it follows that g ◦ f is injective and hence by dimension considerations an
isomorphism.

Note that one can see this lemma as an instance of the more general property: any short exact
sequence of K-vector spaces, for K a field, splits.

Proof. (proposition) First note that R1 and R2 have the same residue field, that we denote k, by
2.2.1. Note moreover that by the decomposition of m̃1

n/m̃1
n+1 and m̃2

n/m̃2
n+1described above

we have that

dimk

(
mn1

mn+1
1

)
= dimk

(
m̃1

n

m̃1
n+1

)
− dimk

(
m̃1

n−1

m̃1
n

)
=

= dimk

(
m̃2

n

m̃2
n+1

)
− dimk

(
m̃2

n−1

m̃1
n

)
= dimk

(
mn2

mn+1
2

)
and by noetherianity these dimensions are finite.

Let’s consider now the map

ϕ : R1 → R1[[t]]
∼−→ R2[[s]]→ R2[[s]]/(s− x)

∼−→ R2,

where the last map is the evaluation evx for some x ∈ m. Note that ϕ is a local morphism: if
a ∈ m1 then correspond to some b+ sg ∈ m̃2, i.e. b ∈ m2, but then b+ xg(x) ∈ m2. In particular
ϕ induces a k-linear map on the cotangent spaces

ϕ̄ :
m1

m2
1

→ m1

m2
1

⊕ kt ∼−→ m2

m2
2

⊕ ks→
(
m2

m2
2

⊕ ks
)
/(s− x̄)

∼−→ m2

m2
2

,

where x̄ is the reduction mod m2
2 of x. Suppose now to be able to find an x such that ϕ̄ is an

isomorphism: the first lemma above implies the surjectivity of ϕ (as it is clear that it induces an
isomorphism on the residue fields). Let’s now consider the map induced on the associated graded
rings:

G(ϕ) : G(R1) =

∞⊕
n=0

mn1/m
n+1
1 →

∞⊕
n=0

mn2/m
n+1
2 = G(R2)
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this is an isomophism since any ϕ̄n : mn1/m
n+1
1 → mn2/m

n+1
2 is surjective (as ϕ was surjective) and

therefore an isomorphism since the two vector spaces have the same dimensions. By lemma 10.23
of [1] and the completeness of R1, R2 we conclude that ϕ is an isomorphism.

Hence the only thing missing is to find an x ∈ m2 such that ϕ̄ is an isomorphism. The existence
of this element follows by the second lemma above: in our case f is the map m1

m2
1
→ m2

m2
2
⊕ ks and if

we define x̄ = g(0, 1), then g = evx̄, so that g ◦ f = ϕ̄. Any lift x of x̄ therefore does the job.

2.3 Systems of modules

2.3.1 Let R be a ring. We introduce now the notion of system of R-modules of type II. The "II"
in the name is justified since this notion is a generalization of the corresponding one defined in
[10], where this arise as a natural name.

Definition. Let I be a parahoric level structure. A system of R-modules of type II for I is a
family (Mi)i∈I′ of locally free R-modules of rank 2g together with a chain (αi)i∈I′ of R-linear
maps

α2g−ir// Mir

αir // Mir−1

αir−1 // . . .
αi2 // Mi1

αi1 // Mi0

αi0 // M−i0
α−i0 //

and a class (〈·, ·〉i)i∈I′ of "alternating" perfect pairings 〈·, ·〉i : Mi ×M−i → R, in the sense that
〈x, y〉i = −〈y, x〉−i for any x ∈Mi, y ∈M−i, such that

i for any i ∈ I ′ there exist an isomorphism εi : Mi+2g
∼−→ Mi, compatible with the chain of

maps and the family of pairings;

ii 〈αj(x), y〉i = 〈x, α−i(y)〉j for any i ∈ I ′, j = succ(i) and x ∈Mj , y ∈M−i;

iii p coker(Mj → Mi) = 0, i.e. the R-module structure on coker(Mj → Mi) induce a well
defined module structure over R/pR, and coker(Mj → Mi) is locally free R/pR-module of
rank d(i, j), for any i ∈ I ′, j = succ(i);

iv for any i ∈ I ′ the composition Mi
α−→ . . .

α−→Mi−2g
∼= Mi is the multiplication by p map.

2.3.2 The conditions ii. and iii. in this definition deserves some more explanations.

Remark. Let i ∈ I ′ and j = succ(i). Let moreover p ∈ SpecR and consider the localization αj,p
of αj : Mj →Mi, then there are two possibilities:

• coker(αj,p) is free of rank d(i, j) over Rp/pRp, if Rp has residue characteristic p,

• αj,p is an isomorphism, if Rp has residue characteristic different from p.

In fact if the residue characteristic of Rp is different from p, then p 6= 0 in κ(p) and therefore
p ∈ R×p . Hence p coker(αj,p) = 0 implies coker(αj,p) = 0 (note that the rank condition in this
case is an empty condition), i.e. αp surjective. But in general a surjective map between finite
free modules of same rank is an isomorphism (the proof uses a Nakayama’s lemma and a splitting
exact sequences argument as in 1.4.2).

We can moreover state ii. in a slight different way using the isomorphisms λi : Mi
∼−→ M∨−i

induced for any i ∈ I ′ by the perfect pairings 〈·, ·〉i, i.e. given by x 7→ 〈x, ·〉 for any x ∈Mi.
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Lemma 2.3.1. The the condition ii. in the above definition is equivalent to the commutativity of
the following diagram

// M2g−ir
//

∼= λ2g−ir

��

Mir
//

∼= λir

��

. . . // Mi1
//

∼= λi1
��

Mi0
//

∼= λi0
��

M−i0

∼= λ−i0
��

//

// M∨ir−2g
// M∨−ir

// . . . // M∨−i1
// M∨−i0

// M∨i0
//

where the top row uses the αi’s as maps (unless if i0 = 0 or ir = g, in such a case we use the
identity respectively for the maps M0 → M0 and Mg → Mg) and the bottom row is obtained
dualizing the top one.

Proof. Take a pair i, j of consecutive indexes. The commutativity of the square

Mj

αj //

∼=λj

��

Mi

∼= λi

��
M∨−j

α∨−i // M−i

is equivalent to λi
(
αj(x)

)
= α∨−i

(
λj(x)

)
= λj(x) ◦ α−i for any x in Mj , or in other terms that

〈αj(x), y〉i = 〈x, α−i(y)〉j for any x ∈Mj , y ∈M−i.

2.3.3 By induction (or looking at the previous equivalent characterization) is trivial to drop the
hypothesis j = succ(i) in ii, as we state in the following lemma. A notational remark for the next
lemma and for the sequel: sometimes we will drop the lower indexes and we will denote by α
also the compositions of the αi’s, when it is clear from the context which is the source and which
the target of them. Some other times, to be more precise, we will use αd(i,j) for the composition
Mj → · · · →Mi.

Lemma. Let M• be a system of R-modules of type II for I. Let i, j ∈ I ′, with i < j, and let
x ∈Mj, y ∈M−i. Therefore 〈αd(i,j)(x), y〉i = 〈x, αd(−j,−i)(y)〉j.

A similar discussion holds for iii.

Lemma. Let M• be a system of R-modules of type II for I, let i, j ∈ I ′, with i < j ≤ i+ 2g and
consider the map αd(i,j) : Mj → Mi. Then p coker(Mj → Mi) = 0, i.e. the R-module structure
on coker(Mj → Mi) induce a well defined module structure over R/pR, and coker(Mj → Mi) is
locally free R/pR-module of rank d(i, j).

Proof. It’s enough to check the condition for R local and by the previous remark only in the case
of char(R) = p.

Suppose then this condition for any pair of consecutive indexes and take two arbitrary indexes
i, j of I ′ such that i < j ≤ i+ 2g and enumerate all the middle indexes: i = k0, . . . kn, . . . , kt = j;
write dn = d(i, kn).

We prove the claim by induction on n: the base case n = 1 is the assumption, suppose then
that coker(Mkn → Mk0) = Mk0/α

dn(Mkn) is free of rank dn; what we need to prove is that
coker(Mkn+1 →Mk0) = Mk0/α

dn+1(Mkn+1) is free of rank dn+1. Consider the exact sequence

0→ αdn(Mkn)

αdn+1(Mkn+1
)
→ Mk0

αdn+1(Mkn+1
)
→ Mk0

αdn(Mkn)
→ 0,
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it splits as Mk0/α
dn(Mkn) is free (of rank dn), hence projective. Note moreover that the module

αdn(Mkn)/αdn+1(Mkn+1
) is isomorphic to ᾱdn

(
Mkn/α(Mkn+1

)
)
, where ᾱ is the map induced by

α on the cokernels, hence it has dn+1 generators (possibly not linearly independent). Hence it is
a finite projective modules over a local ring, and therefore free.

So far we have shown thatMk0/α
dn+1(Mkn+1

) is free of rank at most dn+1. Let us see now why
the rank is exactly dn+1. Note that by the condition iv. of the definition of system of modules
Mk0/α

2g(Mk0+2g) = Mk0/pMk0
∼= (R/pR)2g and consider the split exact sequence

0→
αdn+1(Mkn+1

)

α2g(Mk0+2g)
→ Mk0

α2g(Mk0+2g)
→ Mk0

αdn+1(Mkn+1
)
→ 0.

By a similar argument as above αdn+1(Mkn+1)/α2g(Mk0+2g) has rank at most 2g−dn+1, but since
the middle term has rank 2g the only possibility is that the two modules on the side have exactly
rank 2g − dn+1 and dn+1 respectively.

Remark. Looking carefully at the previous proof we can write explicitly a basis for an Mi

in the case R local and char(R) = p. With the notation as in the above proof choose a set
{ η̄dn , . . . , η̄dn+1−1 } of free generators of coker(Mkn+1

→Mkn) and for any such an element choose
a lift ηk to Mh (with h the only index in I ′ such that h ≤ k < succ(h)): the images of the ηk’s in
Mi form a basis of it as free R-module.

In fact the previous proof shows that the images of the η̄k’s in coker(α2g) = Mi/pMi form a
basis of it over R/pR. Note that Mi finitely generated (direct summand of a finite free module,
hence quotient of it) and p ∈ m, where m is the maximal ideal, hence we may apply Nakayama’s
lemma to show that the images of the ηk’s in Mi form a basis of it as free R-module.
Example 2.3.2. Let’s give an explicit example of what we remarked above.

Let g = 3 and I = { 1, 2 } and assume that Mi = Mi+6 (but the assumption is not very
restrictive). We get a system of modules of the shape

→M7 = M1 →M5 = M−1 →M4 = M−2 →M2 →M1 →M−1 →M−2 → .

Let’s choose η1 ∈M1, η2, η3 ∈M2, η4 ∈M−2, η5, η0 ∈M−1 such that their reductions give a basis
respectively for coker(M2 → M1), coker(M−2 → M2), coker(M−1 → M−2), coker(M1 → M−1).
Hence M1 has a basis over R given by

{α4(η0), η1, α(η2), α(η3), α3(η4), α4(η5) } .

By the periodicity conditions in the definition of system of modules the choice of the ηk’s that we
made is a suitable choice also for all the others Mi’s. Hence the sets

{α3(η0), α5(η1), η2, η3, α
2(η4), α3(η5) } ,

{ η0, α
2(η1), α3(η2), α3(η3), α5(η4), η5 } ,

{α(η0), α3(η1), α4(η2), α4(η3), η4, α(η5) }

are bases respectively for M2, M−1, M−2.

2.3.4 In the sequel we will need some further definitions about system of modules:

Definition. Let I a parahoric level structure,M• = (Mi, αi, 〈·, ·〉i)i∈I′ and N• = (Ni, βi, [·, ·]i)i∈I′
two system of R-modules of type II for I.

A morphism M• → N• of system of R-modules of type II is a collection of R-linear maps
(ηi : Mi → Ni)i∈I′ compatible with the two pairings and the two chains of maps (and periodicity
isomorphisms).
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Remark. Note that in particular the compatibility with the periodic isomorphisms correspond
to the condition that for any i ∈ I ′ the diagram

Mi
α //

ηi

��

. . .
α // Mi−2g

∼= //

ηi−2g

��

Mi

ηi

��
Ni

α // . . .
α // Ni−2g

∼= // Ni

commutes.

Definition. Let I be a parahoric level structure, S′ a scheme. A system of OS′ -modules of type
II for I is a family (Mi)i∈I′ of locally free OS′ -modules of rank 2g endowed with a chain of maps
and alternating pairings such that locally on any affine open SpecR of S the chain give rise to a
system of R-modules of type II. A morphism of system of S′-modules is a collection of isomorphism
compatible with the chain of maps and the alternating pairings.

2.3.5 Consider the following example of system of R-module of type II.

Example. Let I be a parahoric level structure and R any Zp-algebra; consider the collection
of submodules (Λ−i,R)i∈I′ with connecting linear maps and pairings as described in 1.3. The
properties described there ensure that it gives rise to a system of R-modules of type II for I, that
we denote as Λ−•,R.

The following proposition says that if R is a local ring this is the only possible example.

Proposition. Let I be a parahoric level structure, R be a Zp-algebra and and M• a system of
R-modules of type II for I. If R is a local ring there is an isomorphism M•

∼−→ Λ−•,R.

Proof. The proof is a tricky but elementary calculation that relies on the fact that, as R is local,
any Mi is free. Let’s divide the two cases: first suppose that R has residue characteristic different
from p. In this case the αi’s are isomorphisms hence the choice of a basis of Mi0 induces a choice
of a basis on all the others Mi’s and hence a family of isomorphisms ηi : Mi → Λ−i,R compatible
with the two chains of maps. Moreover for any i ∈ I ′ the diagram

Mi
α
∼=
//

ηi

��

. . .
α // Mi−2g

∼= //

ηi−2g

��

Mi

ηi

��
Λ−i,R

α // . . .
α // Λ2g−i,R

∼= // Λ−i,R

is commutative by the condition iv in the definition of system of modules: take x ∈ Mi, it has
image ηi(px) following one side of the square and pηi(x) following the other side; they are equal
as ηi is R-linear. This proves the compatibility with the periodicity isomorphisms.

To prove that the ηi’s are compatible with the pairings it is enough to show (by condition
ii in the definition) that we may chose a basis of Mi0 such that if we endow M−i0 with the

corresponding basis via α, than 〈·, ·〉i0 has matrix G =
( O J
−J O

)
, where J =

(
1

. .
.

1

)
. By some

easy matrix computation one can show that for any perfect pairing R2g ×R2g → R it is possible
to find a change of basis η : R2g ∼−→ R2g such that the pairing has G as matrix. Let’s now fix any
basis of Mi0 and the corresponding on M−i0 , this gives two isomorphisms γi0 : Mi0

∼−→ R2g and
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γ−i0 : M−i0
∼−→ R2g. This induces via the isomorphisms a pairing R2g × R2g → R and fix η as

above. Note that the diagram

Mi0

α∼=
��

γi0
∼=
// R2g η

∼=
// R2g

M−i0
γ−i0
∼=
// R2g η

∼=
// R2g

commutes, hence η ◦ γi0 corresponds to the choice of a basis on Mi0 such that the corresponding
basis via α corresponds to η ◦ γ−i0 , hence the matrix of 〈·, ·〉i0 in this bases is G.

Let’s now discuss the case of R of residue characteristic p. The case for I = { 1, . . . , g } can be
found in [10] (proposition 3.6). The general proof is a sight generalization of this latter.

Let’s choose ηk, for k = 0, . . . , 2g − 1 as in the remark in 2.3.3. If we assume (without loss of
generality) that the chain is 2g periodic (i.e. Mi+2g = Mi and the εi’s are always the identity), it
is clear that the example 2.3.3 has nothing special: in general the images of the ηk’s via the αi’s
in the various Mi give bases of them. Moreover if the numbering of the ηk’s follows the pattern
of the example it is clear that such a choice of bases gives a sequence of 2g-periodic isomorphisms
νi : Mi

∼−→ Λ−i,R such that the α’s are compatible with the standard chain of maps on Λ−•,R,
e.g. in our special example α4(η0), α4(η5) ∈ M1 are mapped respectively to α6(η0) = pη0, and
α6(η5) = pη5, hence the matrix of α : M1 →M−1 in the two chosen bases becomes

p
1

. . .

p

 .

Let’s discuss now the compatibility of the pairings. By the condition ii. of the definition of system
of modules if we know that the matrix of 〈·, ·〉i1 is G = ( O J

−J O ), then the same hold for any other
〈·, ·〉i, hence the νi’s define an isomorphism of system of modules ν : M•

∼−→ Λ−•.
Hence it is only left to prove that we may change the choice of the ηk’s in such a way that

the matrix 〈·, ·〉i0 is G. A notational remark: in the following we will we drop not only the any
indexes from α, but also the exponent. This does not lead to any confusion: depending on the
different parahoric level structure is possible to recover the correct number of iterations needed.
We will do an exception only for α2g, that correspond to the multiplication by p.

Suppose first to have fixed a choice of the ηk’s, we get the corresponding bases on Mi0 and
M−i0 , that we denote as { v0, . . . , v2g−1 } and {w0, . . . , w2g−1 }. Write the matrix of 〈·, ·〉i0 as( C A
− tA D

)
, by B = (bi,j)i,j=0,...,g−1 the inverse of A = (ai,j)i,j=0,...,g−1 (that exists as the paring is

perfect). We will show the claim in 3 steps.

1. In this step we will change inductively η0, . . . , ηg−1 in such a way that C = O in this new
matrix.
Let C = (ck,l)k,l=0,...,g−1 and by ck the k-th row of C. Suppose that ck,l = 〈vk, wl〉 = 0 for all
k = 0, . . . ,K − 1 and l = 0, . . . , g and define

ηnew
K = ηK +

g−1∑
l,m=0

ck,lbm,l α(ηg+m).

This means that vnew
K =

( ek
B tck

)
, where ek denote the column with 1 in the k-th place, 0 else.
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Therefore for l 6= K

cnew
K,l = 〈vnew

K , wl〉 =
(
teK cK

tB
)( C A
− tA D

)(
el
O

)
= (ck − ck tB tA)el = 0

hence with this new choice of ηK we have that ck,l = 〈vk, wl〉 = 0 for all k = 0, . . . ,K and
l = 0, . . . , g.

2. Similarly as above we may change inductively ηg, . . . , η2g−1 in such a way that D = O. In this
case vnew

g+K =
(
− tB tdK

ek

)
, where dk denotes the k-th row of D.

3. In this third step we change again inductively η0, . . . , ηg in such a way that A = J , i.e. the
condition (∗)i,j is verified, where

(∗)i,j =

{
ai,j = 0 if i+ j 6= g − 1

ai,j = 1 if i+ j = g − 1
.

Suppose then that C = D = O and (∗)i,j hold for any i = 0, . . . , g − 1 and j = 0, . . . ,K − 1
and note that for L = g − 1−K

aL,j = 〈vL, wg+j〉 =

{
0 if j < L (by inductive hypothesis)
〈ηL, α2g

(
α(ηg+j)

)
〉 = p〈ηL, α(ηg+j)〉 ∈ pR if j > L

.

Hence (since A is invertible and p = 0 modulo the maximal ideal) it follows that aL,K ∈ R×.
We define therefore u = aL,K and

ηnew
i = ηi − u−1ai,jα(ηL) if i 6= L;

ηL = u−1
i ηL.

The corresponding change of coordinates has matrix
( tE O

O 1

)
, where

E =



1
...

. . .

u−1a0,L . . . 1 . . . u−1ag−1,L

. . .

1

 .

It follows that the matrix of 〈·, ·〉i0 in this new basis is(
tE O
O 1

)(
O A
− tA O

)(
E O
O 1

)
=

(
O tEA

− tAE O

)
,

hence Cnew = Dnew = O. Moreover the inductive hypothesis is equivalent to ask that

A =



0 . . . 0 a0,K . . . a0,g−1

...
...

...
...

1
... . .

. ...
...

1 . . . ag−1,K . . . ag−1,g−1
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and therefore

tEA =



0 . . . 0 a′0,K+1 . . . a′0,g−1
...

...
...

...
1

... . .
. ...

...
1 . . . a′g−1,K+1 . . . a′g−1,g−1

 ,

or equivalentely with the new choice the condition (∗)i,j is fulfilled for i = 0, . . . , g − 1 and
j = 0, . . . ,K.

This 3 steps together show that we may change the ηk still getting lifts of free generators of
the cokernels and such that with the induced basis on Mi0 and M−i0 the pairing 〈·, ·〉i0 is G.

2.3.6 The proof of the following proposition uses the same techniques used in the proof of the
proposition above, with some minor changes. We will therefore omit it. The Iwahori case is
(briefly) explained in [10].

Proposition. Let I be a parahoric level structure, R be a Zp-algebra and and M• a system of
R-modules of type II for I. Suppose that a is a nilpotent ideal of R and that there exist an
isomorphism M• ⊗R R/a

∼−→ Λ−•,R/a, then we can lift it to an isomorphism M•
∼−→ Λ−•,R.

2.3.7 We claimed that our notion of system of modules is a generalization of the corresponding
one in [10]. Let’s conclude this section showing that this is indeed the case.

Let therefore I = { 0, . . . , g } and by simplicity of notations suppose that Mi = Mi+2g, we will
show that the system M• is always isomorphic to the system given by the chain

Mg

αg // . . .
α1 // M0

λ0 // M∨0
α∨1 // M∨1

α∨2 // . . .
α∨g // M∨g

λ−1
g // Mg

extended periodically, together with the pairings [·, ·]i defined by

[x, y]i =


〈x, y〉0 if i = 0

〈x, y〉g if i = g

−y(x) if i = 1, . . . , g − 1

x(y) if i = −1, . . . ,−g + 1

and again extended periodically.
By the lemma in 2.3.2, the diagram

// Mg+1

λg+1 ∼=
��

αg+1 // Mg
// . . . // M1

α1 // M0
α0 // M−1

α−1 //

∼= λ−1

��
// M∨g−1

λ−1
g ◦α

∨
g // Mg

// . . . // M1
α1 // M0

α∨1 ◦λ0 // M∨1
α∨2 //

is commutative, moreover the compatibility with the pairing follows by the definition if the λi’s.
This shows the equivalence of the two definitions in the Iwahori case.
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2.4 Local model diagram

In this section we will finally describe the relation between AI,N and the local model introduced
in the previous chapter.

2.4.1 Let S be a base scheme andM an S-scheme.

Definition. A local model diagram for M is a diagram M ϕ←− M̃ ψ−→ Mloc, where M̃ and
Mloc are two S-schemes, ϕ and ψ two smooth morphism of the same relative dimension and ϕ
surjective (as a scheme morphism, i.e. as a map on underlying topological spaces).

The importance of this notion is the fact that it relates étale locallyM withMloc: this is very
useful ifMloc is a scheme of "easier nature" thanM, as we will see in the caseM = AI,N .

Proposition. Let M ϕ←− M̃ ψ−→ Mloc be a local model diagram for M. For any point x ∈ M
choose z ∈ ϕ−1(x) and set y = ψ(z). Suppose moreover that ÔM,x, ÔMloc,y are noetherian rings
(e.g. if bothM andMloc are locally noetherian). Then ÔM,x

∼= ÔMloc,y.

Proof. As ϕ and ψ are smooth of same relative dimension d, hence ÔM̃,z
∼= ÔM,x[[X1, . . . , Xd]]

and ÔM̃,z
∼= ÔMloc,y[[X1, . . . , Xd]] (by [6] vol.4 Prop. 17.5.3.). Hence applying inductively the

theorem in 2.2.3 we get the result.

2.4.2 Our next task is to introduce the candidate local model diagram for AI,N over the base
scheme S = SpecZp[ζn], chosen a fixed parahoric level structure I. To do that we need to associate
to an S′-valued point

(
(Ai)i∈I′ , (αi)i∈I′ , (λi)i∈I′ , η

)
∈ AI,N (S′) a system of modules of type II in

a canonical way.
Consider for any i the sheaf of OS′ -modules R1(ai)∗(Ω

•
Ai/S′

) that we call de Rham cohomology
sheaf, where ai : Ai → S′ is the structure morphism of Ai and R1(ai)∗ is the first right hyperderived
functor of (ai)∗. Write moreover H1

dR(Ai/S
′) = Γ

(
S′, R1(ai)∗(Ω

•
Ai/S′

)
)
. If S = SpecR, with R a

noetherian ring, then H1
dR(Ai/S

′) coincides with the classical definition of the algebraic de Rham
cohomology, as e.g. the one of [9]). In [10] (proposition 3.1) it is shown that if S′ = SpecR is
affine H1

dR(Ai/S
′) is a locally free R-module of rank 2g and that the Weil pairings on the chain

(Ai)i∈I induce alternating pairings on
(

H1
dR(Ai/S

′)
)
i∈I′ making it into a system of R-module of

type II. Globalizing this property we get that for S′ arbitrary the chain
(
R1(ai)∗(Ω

•
Ai/S′

)
)
i∈I′

defines a system of OS′ -modules of type II.

2.4.3 From now on we denote M loc
N (I) = M loc(I) ⊗ Zp[ζN ], where M loc(I) is the scheme in-

troduced in section 1.4. We want to use it as Mloc in a local model diagram for AI,N over
SpecZp[ζN ].

Moreover as M̃ we choose the scheme representing the following functor: for any S-scheme
S′ the set ÃI,N (S′) is the set of (isomorphism classes of) pairs (x, γ), where x ∈ AI,N (S′),
say x =

(
(Ai)i∈I , . . .

)
with (Ai)i the family of abelian schemes of dimension g, and where

γ : R1(ai)∗(Ω
•
Ai/S′

)
∼−→ Λ−• ⊗Zp OS′ . In [10] it is proved that:

Proposition. The functor ÃI,N defined above is representable by an S-scheme.

Let’s then define moreover the two morphisms of the diagram: let ϕ : ÃI,N → AI,N to be
the morphism "forgetting γ", i.e. such that on S′-valued points (x, γ) 7→ x. The definition
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of ψ is slightly more involved: let S′ = SpecR affine and consider for any i ∈ I the Hodge
submodule ωAi/S′ = Γ

(
S′, (ai)∗(ΩAi/S′)

)
of H1

dR(Ai/S
′): ωAi/S′ is a locally free direct summand

of rank g functorial in the Ai. Write γ̃ for the isomorphism induced by γ on global sections, i.e.
γ′ : H1

dR(A•/S
′)

∼−→ Λ−•,R. We define then ψ on S′-valued points for S′ affine as by the law
(x, γ) 7→

(
γ′(ωAi/S′)

)
i
. We have that

Proposition. ϕ : ÃI,N → AI,N is smooth and surjective.

Proof. The surjectivity of ϕ follows from the proposition in 2.3.5: in fact it is enough to check
the surjectivity on K-valued points for K field, see e.g. [5], section 4.3. Since any field is a
particular local ring given a point x =

(
(Ai)i∈I′ , . . .

)
∈ AI,N we may apply the proposition for

H1
dR(A•/S

′), for S′ = SpecK: therefore there exists an isomorphism of K-vector spaces of type II
γ : H1

dR(A•/S
′)
∼−→ Λ−•,K , hence a point of the form y = (x, γ) ∈ ÃI,N . By definition ϕ(y) = x.

The formal smoothness of ϕ follows from 2.3.6. Consider in fact the solid commutative square

SpecR/a
x //

_�

��

ÃI,N

ϕ

��
SpecR //

y
::

AI,n

where a be is an ideal of R such that a2 = 0. Via Yoneda lemma x correspond to a point
(x0, γ) ∈ ÃI,N (R/a) and consequently ϕ ◦ x to x0 ∈ AI,N (R/a); but by the commutativity of the
diagram it the projection of a point x1 ∈ AI,N (R). If we consider now the de Rham cohomology
system of modules corresponding to x0 and x1 we are exactly in the situation of the proposition:
we may lift γ0 to γ1 such that the point (x1, γ1) ∈ ÃI,N (R) projects to (x0, γ0). By the Yoneda
lemma (x1, γ1) correspond to the dotted arrow y and it makes the two triangles commute.

Since moreover one can show that ϕ is locally of finite presentation the formal smoothness
implies the smoothness (see [2] paragraph 8.4, theorem 8).

The following theorem ([10], theorem 2.1) proves the formal smoothness of ψ

Theorem. (Grothendieck-Messing) Let A a local artin ring, let a be an ideal of A such that a2 = 0
and X0 an abelian scheme over A/a. Then there exist an abelian scheme X over A lifting X0, i.e.
X0 = X ×SpecA SpecA/a and an equivalence of categories (note that H1

dR(X/A) is independent of
the chosen lift X of X0)(

lifts of X0 to A
)

//
(
F ⊆ H1

dR(X/A) direct summand of rank dimX

)

X ′
� // ωX′/A ⊆ H1

dR(X ′/A) = H1
dR(X/A)

.

It follows that

Proposition. ψ : ÃI,N →M loc
N (I) is smooth.

For the proof we need the following refinement of the formally smooth criterion for smoothness
(see [7], exposée III, theorem 3.1)
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Lemma. Let f : X → Y a morphism locally of finite type between locally noetherian schemes.
Suppose that for any Y ′ = SpecA, with A local artin ring and for any nilpotent ideal a of A it is
possible to fill any commutative the square of the shape

Y ′0 //

��

Y

f

��
Y ′ //

??

X

,

where Y ′0 = SpecA/a, with the dotted diagonal arrow. Then f is a smooth morphism.

Note moreover that by an inductive argument it is enough to check the above condition only
for ideals a such that a2 = 0.

Proof. (proposition) First we show that ψ is locally of finite type: it is a formal consequence of the
fact that ϕ is so. In fact the condition of being locally of finite type is stable under composition
and if f, g are morphism of schemes such that g ◦ f locally of finite type, then also f is so. We
already know that ϕ is locally of finite type and AI,N locally of finite type over SpecZp[ζN ],

hence ÃI,N is locally of finite type over SpecZp[ζN ]; therefore ÃI,N
ψ−→ M loc

N (I) → SpecZp[ζN ]
is locally of finite type hence ψ is so. Let therefore A be a local artin ring and a an ideal such
that a2 = 0. Consider the solid square

SpecA/a //

��

ÃI,N

f

��
SpecA //

99

M loc
N (I)

;

by the Yoneda lemma the top arrow correspond to a point of ÃI,N (A/a), i.e. a pair (x, γ), where
x =

(
(Ai)i∈I′ , . . .

)
∈ AI,N (A/a) and γ : H1

dR

(
Ai/(A/a)

) ∼−→ Λ−i,A/a.
The map SpecA/a → M loc

N (I) correspond to a point of M loc
N (I)(A/a) and since this map

factors trough ÃI,N then the chain of submodules (Gi) of the Λi,A/a’s correspond to the chain
of Hodge submodules of the H1

dR

(
Ai/(A/a)

)
’s. This maps factors also through SpecA, i.e. the

chain (Gi) can be lifted to a chain of submodules (Fi)i of the Λi,A.
By the Grothendieck-Messing theorem (and the proposition in 2.3.6) we may lift any Ai to Ãi

over A, γ̃ to γ : H1
dR(Ai/A)

∼−→ Λ−i,A in such a way that the Hodge submodule ωi of H1
dR(Ai/A)

correspond to Fi via γ. Moreover one can show that the fact that (Fi)i ∈ M loc
N (I) gives the

polarizations and the conditions required to make (Ai)i into a point of ÃI,N (A): we omit this
(although important) detail as goes a little bit further into the constriction of the Ai’s. The
previous discussion shows the existence of the dotted arrow and to the commutativity of the two
triangles. By the above lemma we get therefore the smoothness.

2.4.4 The outcome of all this section is that following

Proposition. AI,N
ϕ←− ÃI,N

ψ−→ M loc
N (I) is a local model diagram for AI,N . Hence AI,N and

M loc
N (I) are étale locally isomorphic in the sense of the proposition in 2.4.1.

Proof. It is left to prove only that ϕ and ψ have the same relative dimension: see the second part
of the proof of 4.6 in [10].
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2.5 Examples

In this paragraph we will do some examples to illustrate the power of the local model diagram:
the local model M loc(I) is defined by some linear algebra computations, we will show that is
possible to write explicitly local equations. These local equations hold also for M loc

N (I), hence
the previous discussion says that these are local equations (in the étale sense) for of AI,N . With
these computations we will fill moreover the missing point in the proof of the representability of
M loc(I) (see 1.4.3)

2.5.1 We begin with an easiest nontrivial example. Let g = 1, I = { 0, 1 } (i.e. we consider
a Iwahori level structure). Let’s choose the affine open chart U of Grass2,1,Zp × Grass2,1,Zp =
P1
Zp × P1

Zp such that the set of R-valued point is

U(R) =

{((
1
x

)
,

(
y
1

))
: x, y ∈ R

}
,

where we identify the matrixes with the free submodule that they define (see the paragraph 1.2
for the details on the charts).

U and M loc(I) are both subfunctors of P1
Zp × P1

Zp , hence we may see U(R) and M loc(I)(R) as
subset of P1

Zp(R)× P1
Zp(R), for R any Zp-algebra. Under this identification U(R) ∩M loc(I)(R) is

the set of diagrams
R2 α // R2

F0
//?�

OO

F1

?�

OO

with α =
(
p 0
0 1

)
, F0 =

(
1
x

)
and F1 =

( y
1

)
(the isotropic condition is trivial for submodules of rank

1, since the pairings are alternating).
Therefore the condition α(F0) ⊆ F1 is equivalent to the existence of λ ∈ R such that(

p 0
0 1

)(
1
x

)
=

(
p
x

)
= λ

(
y
1

)
,

i.e. x = λ and p = λy. In other words the condition gives for the R-valued point an equation
xy = p.

It follows that U ∩M loc(I) = V (xy − p) ⊂ A2
Zp as functors and therefore the discussion of

1.4.3 says that V (xy − p) is an open affine piece of M loc(I). If we repeat this calculations for
any different chart U of P1

Zp × P1
Zp we find other local equations and we may write explicitely the

gluing datum defining M loc(I). Obviously this is needless for the local study we are interested in.

2.5.2 The following example is studied in [13] to determine the local structure of the Siegel
modular threefold around its singularities.

Let g = 2, I = { 1 }. Hence M loc(I)(R) = {F1 ⊆ Λ1,R : α2(F⊥1 ) ⊆ F1 } . This time the inter-
esting local chart is the one where F1 is free with matrix

1 0
x y
z w
0 1

 .
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In fact F⊥1 with respect to the standard alternating pairing has matrix
−w y
1 0
0 1
z −x

 ,

hence α2(F⊥1 ) ⊆ F1 correspond to
−w y
p 0
0 p
z −x

 =


1

p
p

1



−w y
1 0
0 1
z −x

 =

=


1 0
x y
z w
0 1

(λ η
µ ε

)
=


λ −η

λx+ µy ηx+ εy
λz + µw ηz + εw

µ ε

 .

comparing the two side we get therefore the equation xw − zy + p = 0, functorially on R.

2.5.3 We give one more general example. Let g = 2, I = { 0, 2 }. Then M loc(I)(R) is the set of
diagrams of the form

R4 α // R4

F0

?�

OO

// F2

?�

OO

and such that F0,F2 are totally isotropic. Once again lets choose a local chart, namely the one
where

F0 =


1 0
0 1
x y
z w

 , F1 =


a b
c d
1 0
0 1

 .

Therefore F0 = F⊥0 if and only if

(
1 0 x z

)
1

1
−1

−1




0
1
y
w

 = 0,

i.e. w = x. Analogously F⊥2 = F2 if and only if a = d.
The condition α(F0) ⊆ F2 becomes

p 0
0 p
x y
z w

 =


p

p
1

1




1 0
0 1
x y
z w

 =


a b
c d
1 0
0 1

(λ η
µ ε

)
=


λa+ µb ηa+ εb
λc+ µd ηc+ εd

λ η
µ ε

 ;
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comparing the two side and recalling x = w and a = d we get the system of equations
x = w a = d

xa+ zb = p xc+ za = 0

ya+ xb = 0 yc+ xa = p

.

34



Bibliography

[1] M. F. Atiyah and I. G. Macdonald. Introduction to Commutative Algebra. Addison-Wesley
Pubblishing company, Inc., 1969.

[2] S. Bosch. Algebraic Geometry and Commutative Algebra. Springer-Verlag London, 2012.

[3] N. Bourbaki. Commutative Algebra, chapter 1-7. Springer-Verlag Berlin Heidelberg, 1989.

[4] D. Eisenbud and J. Harris. Introduction to the Geometry of Schemes. Springer-Verlag New
York Inc., 2000.

[5] U. Görtz and T. Wedhorn. Algebraic Geometry I. Vieweg +Teubner Verlag, 2010.

[6] A. Grothendieck. Élements de Géométrie Algébrique. Vol. 4. I.H.E.S, 1965.

[7] A. Grothendieck and M. Raynaud. Revêtements étale et groupe fondamental. Vol. 3. Société
Mathématique de France, 2003.

[8] T. Haines. “Introduction to Shimura Varieties with Bad Reduction of Parahoric Type”. In:
Harmonic analysis, the trace formula and Shimura varieties. Vol. 4. Clay Math. proc. Amer.
Math. Soc. 2005, pp. 583–642.

[9] R. Hartshorne. On the de Rham cohomology of algebraic varieties. I.H.E.S, 1975.

[10] A.J de Jong. “The moduli space of principally polarized abelian varieties with Γ0(p)-level
structure”. In: Journal of Algebraic geometry 2 (1993), pp. 667–688.

[11] H. Matsumura. Commutative ring theory. Vol. 8. Cambridge studies in advanced mathemat-
ics. Cambrige University Press, 1986.

[12] D. Mumford, J. Fogarty, and F. Kirwan.Geometric Invariant Theory (third edition). Springer-
Verlag Berlin Heidelberg, 1994.

[13] C.-F. Yu. “Geometry of the Siegel Modular Threefold with Paramodular Level structure”.
In: Proceeding of the American Mathematical Society 139.9 (Sept. 2011), pp. 3181–3190.

35



36



Erklärung

Hiermit versichere ich, dass die vorliegende Arbeit

On the Siegel Moduli Space with Parahoric Level Structure

selbstständing verfasst worden ist, das keine anderen Quellen und Hilfsmillel als die angegebenen
benutz worden sind und dass die Stellen der Arbeit, die anderen Werken - auch elektronischen
Medien - dem Wortlaut oder Sinn nach entnommen wurden, auf jeden Fall unter Angabe der
Quelle als Entlehenung kenntlich gemacht worden sind.

Essen, den 10/07/2019

Luca Mastella

37


