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Abstract  

 

Grey mould is one of the most important diseases of grapevine in the Mediterranean 

regions caused by the fungi Botrytis cinerea. Many factors are responsible for this disease 

among them, the morphology of grapes plays a crucial role in grey mould infection. The 

grapes with highly compact berries are the most susceptible to infection. The common 

methods applied to evaluate the compactness of grapes cannot apply to grapevine bunches 

from the same variety. Therefore, novel methods are used to detect compactness by image 

processing analyses such as photogrammetry for 3D model reconstruction. 

This study proposes an alternative analysis of bunch morphology and compaction 

assessment based on virtual 3D models. Seventeen Pinot Gris clones and six Pinot Noir 

clones were manually collected at harvest time, and the grey mould severity evaluation was 

carried out in the field. All the grapes were photographed at different angulations, and the 

3D model reconstruction was performed by the photogrammetry technique. Several 

measures and indexes were extracted from each bunch. Principal component analysis 

(PCA) and two multiple linear regression models (MLR) were applied to identify the 

descriptors of the clones most related to grey mould infection. The first model assessed the 

correlation between the grey mould severity and the descriptors from the 2D analysis, while 

the second model analyzed both descriptors from the 2D and 3D analysis. The 3D MLR 

presented higher performances than the 2D MLR. The R-square value (R2) and the root 

mean square error (RMSE) were compared between models. For Pinot Gris, the R2 rose 

from 0.656 to 0.838, moving from the 2D to the 3D MLR, while the RMSE decreased from 

1.713 to 1.175. In Pinot Noir, the 2D model did not provide sufficient robustness, while the 

proposed MLR estimated R2 with 0.936 value and RMSE with 0.29 value. Additional studies 

were performed by analyzing the data with graphs and statistics. Consequently, the most 

significant traits include the estimated empty volume, the width of the grape, weight, volume, 

shape, and the ratio between surface and height. 

 

Keywords: Photogrammetry, Bunch compactness, Bunch morphology, Grey mould, Optical 

sensors. 
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Chapter 1 

Introduction 

 

1.1. The Importance of Viticulture in the World and 
Italy  

Grape is one of the most important fruits globally, especially as a produced fruit crop. 

Around 50% of grapes are transformed and consumed as wine, one-third of grapes are 

used as fresh fruit, and the rest is dried (International Organisation of Vine and Wine. 

2016). 

Viticulture could be an agricultural activity that is typically more profitable per area than 

annual crops. Several cultivars of red and white grapes are grown for fresh consumption 

or for producing wines, juice, and raisins (Brunetto et al. 2020). Viticulture is the broad 

term for the cultivation, protection, and harvest of grapes where the operations are 

outdoors (Chandrasekar Venkitasamy 2019). Viticulture is possible in both subtropical 

regions and colder temperate areas. The major problem in moist subtropical regions is 

controlling diseases and it is recommended to prune to promote bud burst for continued 

growth. In a cold climate, it is required to adapt varieties to avoid the breaking of 

endogenous dormancy during the cold winter weather (Jackson 2016). 

The cultivation area of the world grapes was almost 7.5 million hectares in 2018. Five 

countries deputed about 50% of the world’s vineyards and 9% of this percentage 

belonged to Italy (705000 ha). Approximately 77.8 mt (millions of tons) of grapes were 

produced in the world in 2018 and about 57% of this number appertains to wine grapes. 

Italy was the first country as a wine producer in the world with 54.8 million hectoliters of 

wine grape production and the third country as a wine consumer with a rate of 22.4 

hectoliters in 2018. In addition, Italy had a second place as a wine exporter with a 

proportion of 19.7 million hectoliters (International Organization of Vine and Wine 

Intergovernmental Organization (OIV) 2019). 
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1.2. Importance of varieties 

1.2.1. Pinot Gris 

Pinot Gris is an important variety of wine grapes in Italy and its cultivation area is about 

25000 ha, about 3.7% of this country’s total vineyard cultivation area. The trend of growing 

this variety is increasing which has expanded its area by 35% in 5 years in Italy and made 

it the fourth Italian variety that is cultivated (International Organization of Vine and Wine 

Intergovernmental (OIV) 2017). 

According to the latest Veneto Agricoltura report related to the regional wine sector, 

there is a constant increase in the area planted with vines and wine exports (2.22 billion 

/ € in 2018) for Prosecco and Pinot Gris. This constant increase is due mostly to Pinot 

Gris (+132.6%) and another variety called Glera (+167%). PDO DELLE VENEZE is the 

most important PDO labeling for Pinot Gris grapes and wines in the Veneto region. The 

total amount of Pinot Gris grapes produced in Veneto from 2016 to 2020 is growing from 

131000 tons to 179400 tons (Veneto Agricoltura. 2019). 

About half of Pinot Gris production in the world comes from Italy, where 85% is 

concentrated in the North-East of Italy area and almost ten thousand winemakers in 

Trento Province, Veneto, and Friuli Venezia Giulia. It seems that over 31000 hectares are 

covered with Pinot Gris cultivated in Italy, of which 27000 are in the North-East of Italy 

(under the PDO delle venezie) (Unione Italiana Vini 2020) 

Pinot Gris is a white wine grape variety of the species Vitis vinifera. It is thought to be 

a mutant clone of the Pinot Noir grape; in Italy, it is known as “Pinot Grigio”. The name 

"Pinot" refers to the French word "pinecone" because the grapes grow in small pinecone-

shaped clusters. The wines produced from this grape also vary in color from a deep 

golden yellow to copper and even a light shade of pink, and it is one of the more popular 

grapes for orange wine (Robinson 1986). 

1.2.2. Pinot Noir 

Pinot Noir is another important grape variety, which its cultivated area is about 112000 

ha, in Italy and it has a growing trend in production. It is an early-budding variety that is 

sensitive to early spring frosts but is resistant to winter frosts. As a result, not only could 
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it be widely grown in European countries, such as Germany, Italy, Switzerland, Romania, 

Hungry, and Spain, but also in the vineyards of New World countries, including the United 

States, New Zealand, Australia, Chile, Argentina, and South Africa. It ripens quickly in 

warm climates. Pinot Noir grapes are susceptible to Botrytis cinerea. It has small clusters 

and very small berries that produce low yields. Although its grapes are high in sugar and 

moderately acidic, their skin is rich in polyphenols. It produces lightly colored wines that 

are popular with consumers and has a good potential for aging in barrels. It ranks as the 

world’s fourth most cultivated variety of wine grapes (International Organization of Vine 

and Wine Intergovernmental (OIV) 2017). 

 

1.3. The fungal disease  

1.3.1. Grey Mould 

Grey mould is one of the most important diseases of grapevine in temperate climates. 

Botrytis cinerea is a polyphagous saprophytic pathogen that can cause this disease in 

more than 1400 species of cultivated plants (Elad 2016). It makes massive losses in some 

fields- and greenhouse-grown horticultural crops before harvest, or even at the seedling 

stage in some hosts (Staats et al. 2005). Botrytis cinerea is responsible for significant 

economic loss in vineyards worldwide (P. A.G. Elmer and Reglinski 2006). It can make 

off-flavors, unstable color, oxidative damage, premature aging, and difficulties in 

clarification in wine. Furthermore, other pathogens like bacteria and fungi could invade 

infected clusters and exacerbate plant disease (D Molitor et al. 2011). 



 

9 

 

 

Figure 1.1. Life cycle of Botrytis cinerea on grape (Billard et al. 2011). 

 

Botrytis cinerea is known as a pathogen for many crops both pre and postharvest. It 

can develop from rotted fruit next to healthy fruit, causing the extensive breakdown of the 

commodity, and sometimes spoiling entire lots. The pathogen can progress infections at 

storage temperatures (usually 0–5°C) when fruit resistance is decreased. B. cinerea is 

the only species in the genus with a broad host range and it has two stages in its life 

cycle: the sexual and asexual stages as shown in Figure 1.1.  

The fungus exists in different forms such as mycelia, micro- and macroconidia, 

chlamydospores, sclerotia, apothecia, and ascospores, and they are dispersed by diverse 

means. In the vegetative stage, mycelium produces asexual conidia (macroconidia) and 

in undesirable environmental conditions, it produces sclerotia. Sclerotia usually germinate 

to produce mycelium or conidia, but after appropriate conditions and fertilization, they 

may germinate to produce aphotecia (teleomorph stage), containing ascospores resulting 

from meiosis but this stage is very rare.  In temperate climates, the sclerotia germinate in 
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spring as a primary source of inoculum within a crop. In addition, during winter and in 

times that are not favourable for the fungus, sclerotia and mycelium of B. cinerea survive 

within infected dead host tissues left as crop debris, plant weeds, and inside some seeds 

as primary inoculum. In perennial crops, the dead leaves, flowers, and mummified fruits 

contain masses of mycelium that can often be ideally situated within a crop canopy to 

produce conidia and initiate infections (Romanazzi and Feliziani 2014). 

B. cinerea has two infection pathways, one is related to conidia and the other one 

belongs to mycelium. Conidia infect inflorescences, young clusters, and ripening berries 

while mycelium is responsible for the berry-to-berry infection. Grape inflorescences are 

more susceptible at flowering (beginning, full, and end of flowering) than at earlier growth 

stages or at fruit swelling or berries groat-sized stages. On inflorescences and young 

grape clusters, infection severity increases with hours of wetness, and the optimal 

temperature for infection is about 20°C. Infection incidence in mature grape berries is 

higher at temperatures between 15 and 25°C than at other temperatures and increases 

with increasing hours of wetness or high relative humidity. Moreover, disease incidence 

is higher on wounded rather than on unwounded berries especially when wetness is short, 

or humidity is low (González-Domínguez et al. 2015). 

B. cinerea can infect leaves in spring, where it grows at the margin of the blade, and 

flowers that are highly susceptible, particularly dehiscent floral parts. The disease 

development in grape berries depends on the genetic structure of the pathogen 

population in summer but is also related to key factors, including climatic conditions, 

cluster architecture, and berry susceptibility. Berry infection results mostly from conidia 

germination and penetration, favored by the presence of wounds at the surface of the 

fruit, in particular insect injuries, and spread by fungal vegetative filaments (mycelium) 

from one berry to the next (Bélanger et al. 2011). 

The first observation of grey mould is in the foliage. Shoots and buds may turn brown 

and necrotic in early spring. The leaves might show large, reddish-brown patches. During 

periods of high humidity, grey mould can make leaf lesions. The fungi could affect yield 

at this stage by infecting the inflorescences and causing flower drops. However, the most 

common symptom is berry infection in late summer (Extension Service 2015). 
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Bunch rot often begins when blossoms become infected during rainfall. The pathogen 

invades the flower parts and becomes dormant until veraison. At veraison, individually 

infected berries in the cluster turn brown on white cultivars or reddish on red and black 

cultivars due to enzymes produced by the fungus and fungal invasion of the pulp. At this 

stage, fungal enzymes break down the epidermis and it easily slips off the berry. If 

temperatures are moderate, moisture is high, and wind speed is low, epidermal cracks 

will form in which fungal growth produces mycelium and spores resulting in the 

characteristic gray, velvety appearance of infected berries. The fungus can then spread 

from berry to berry causing a nested appearance of infected berries. If conditions remain 

favorable, the disease can result in a high percentage of berries being rotted and if the 

disease is severe enough to reach the rachis, the raising of infected berries can occur. 

The fungus can penetrate grape berries through wounds; it can directly penetrate 

undamaged berries after veraison. The berry skin and epicuticular wax are the main 

protection from infection. Any chemicals or cultural practices that alter these physical and 

chemical defenses will change the susceptibility of the berry to infection.  

In infected berries, cracks appear in the skin. The spores develop first in the cracks 

and then spread over the entire berry. The infection of other berries by the rapidly growing 

fungus and airborne spores contributes to the extremely rapid increase in disease 

observed after rains. Under optimal conditions, Botrytis cinerea can infect a berry, destroy 

it, and begin to produce spores in only 3 days. After infection, the berry may dry up if high 

temperatures and low relative humidity prevail (Broome J.C. 1995). 
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Figure 1.2. The first photo from left and above: Spring Botrytis infection on the leaf (Photo: L. J. 

Bettiga.), the second photo: A Botrytis-blighted flower cluster (Photo: W. J. Moller.), the third photo: 

Clusters of Botrytis spores on long stalks (conidiophores) on a berry surface (Photo: L. J. Bettiga.), the 

first photo from left and bottom: Raising caused late in the season from Botrytis infection on Riesling 

(Photo: L. J. Bettiga.), the second photo: Warm, dry weather at harvest can desiccate Botrytis-infected 

berries (Photo: L. J. Bettiga.) (Flaherty 1981). 

 

B. cinerea is unable to directly infect the cuticle of the fruit but entered the sub-stomatal 

cavity where further growth ceases due to host defense responses. Close to ripening, 

conidial infections directly penetrate the fruit cuticle. In addition to stomatal infections, 

cuticular micro-cracks have been suggested as possible infection pathways, as in grapes. 

These cracks originate from microscopic fractures on the berry surface which rapidly 

enlarge as the berry swells after rainfall near harvest thereby facilitating infection (Philip 

A G Elmer and Michailides 2007). Grey mould losses in viticulture all around the world, 

reaching 20–50% of yield losses in grapes, due to rotting of ripe bunches in the post-

harvest period. During contact with the plant, B. cinerea causes cell death by producing 

phytotoxins, cell wall degrading enzymes, and controls the host metabolism to facilitate 

colonization. The high relative humidity and moderate temperatures during the grapevine 

vegetative season favor the development of this fungal pathogen (Fedorina et al. 2022). 

Botrytis cinerea shows an extraordinary variability in phenotypic traits, because of this 
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fungal pathogen on mechanisms underlying its broad variation and adaptation capabilities 

such as mating system and sexual behavior and other sources of variation (chromosome 

number, mycoviruses, transposons, and vegetative compatibility). A Botrytis cinerea 

epidemic comprises a sequence of processes (perennation and infection, colonization, 

conidiation, and conidia dispersal), each of which is influenced by the host and the 

surrounding environmental conditions, such as temperature, rain, humidity, and wind. The 

other factors which are effective in the epidemic include cultural practices, such as 

fertilization and fungicide usage, and host factors such as tolerance and phenology (Elad 

2016). 

In addition, the presence of B. cinerea infected grapes consistently increased insect 

fecundity and attracted females to oviposit (Philip A G Elmer and Michailides 2007). 

As Pinot Gris is tight-clustered, it is highly susceptible to bunch rot. Botrytis cinerea 

can be a major constraint to high wine production for this variety in regions with high 

humidity conditions (Ferree et al. 2003). 

By monitoring environmental conditions, it is possible to determine the time of the 

epidemic of the disease. The thermal-temporal position of the epidemic of B. cinerea 

varied between seasons. The condition of low temperature and wetness during the bloom 

like high temperature and low precipitation after veraison can affect the thermal temporal 

for the late epidemic. The first effect might happen on the flowering and fruit set and 

cluster structure which is linked to the bunch rot (Daniel Molitor et al. 2016). In addition to 

climate and environmental conditions, the training system of grapes has a great effect on 

the severity of diseases such as downy mildew and bunch rot grape. In Southern Brazil, 

researchers found the training system indicated a significantly lower area under the 

incidence and severity of disease progress and intensity of downy mildew and grey mould 

(Bem et al. 2015). 
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1.4. Viticulture Management for grey mould 

1.4.1. Cultural Method 

1.4.1.1. Early Leaf Removal 

One of the effective practices for controlling grey mould is the removal of the leaves 

early in the season between flowering and veraison. This practice could decrease the fruit 

set, control yield per vine, and decrease the cluster rot. Because of removing the leaves, 

the carbon allocation to cluster sinks is reduced. Therefore, it causes less flower fertility 

and fewer berries to make a looser cluster morphology. In addition, it increases the airflow 

around the clusters and reduces cluster rot in tight-clusters varieties. However, this 

method with manual operation is expensive and it needs the available labor. For this 

problem, the application of mechanical leaf removal could have better results in saving 

cost and time. Furthermore, the application of early leaf removal in pre-bloom time could 

effectively reduce cluster rot (Vanderweide et al. 2020). This cultural practice indicates a 

major option for pathogen control in organic viticulture where fungicides are not allowed. 

The other strategy for leaf removal is using a plant growth regulator like gibberellic 

acid. The application of this hormone depends on the application time and dose, and the 

plant’s developmental stage related to the weather conditions during application. With a 

proper dose of hormone, at the full flowering stage of the plant, the application could 

cause loss of the cluster and reduce the disease severity (D Molitor et al. 2011). 

In one case study, the gibberellic acid application has been indicated to reduce berry 

number in several cultivars. Especially at flowering, it reduced bunch compactness 

(assessed as berry per cm, LDI) by 25% when compared to the control-treated, mainly 

associated with a reduction in berry number per bunch (Wegher et al. 2022). 

The studies have reported some cluster elongation with a little amount of GA3 if it was 

applied 20 days before full bloom (Ferree et al. 2003). 

The other plant growth regulator prohexadione-Ca reduces single-berry sizes and the 

number of berries per cluster, effectively reducing the disease (D Molitor et al. 2011). 
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1.4.1.2. Cultivation Of Intraspecific Varieties  

One of the approaches to decrease the severity of grey mould loss is the cultivation of 

intraspecific varieties with less sensitivity for example Carminoir (Pinot Noir x Cabernet 

Sauvignon). The disadvantage of this approach is the application of botryticides for better 

cultural measures in many regions (Daniel Molitor et al. 2018). 

1.4.2. Chemical method  

Every year, European wine growers apply 70000 tons of pesticides which cost two 

billion euros, and most of them are fungicides because fungal diseases can provide crop 

losses of up to 70%. However, European countries aim to implement a more sustainable 

approach to using plant protection products (Latouche et al. 2015). 

In the past, the strategies to control grey mould were mainly focused on applying 

fungicides, especially botryticides. The botryticides are applied in different growth stages 

(mid-bloom, before berries touch, beginning of veraison, 2–4 weeks after veraison). 

However, the efficacy of these fungicides depends on the annual meteorological 

conditions. The most effective mycelial growth inhibitor of Botrytis cinerea is Fenhexamid 

(Daniel Molitor et al. 2018). This method could not be applied to organic farms. 

1.4.3. The technologies used for controlling pests and diseases  

There are some methods for detecting and preventing the loss of pests and diseases. 

One of them is breeding which may make a resistant variety to pests and pathogens. This 

method could be complemented by genetic modification techniques (transgenesis, 

cisgenesis, and intragenesis), especially with recent technologies like Crispr Cas 9 that 

could precis the selection of desirable traits. Recent genetic studies of grapes have also 

allowed identifying gene systems of resistance or susceptibility to the most common 

pathogens like grey mould. A resistant grape cultivar to grey mould significantly increases 

resistant gene expression after inoculation with B. cinerea (Fedorina et al. 2022). 

The second method is surveillance and early detection which could accelerate solving 

the problem and prevent losses. This detection can be implied with different kinds of 

technologies varying from video imaging to artificial intelligence and they are applied to 

detect problems early before the pathogens and pests spread and cause widespread 
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damage. Many of these systems are linked to smartphones allowing farmers and other 

experts to make better decisions in the early stage of the disease. In one case study, 

hyperspectral disease detection models have been implemented using original field data 

or manually annotated data for detecting the disease in grapes (Bendel, Kicherer, et al. 

2020). 

The third method is applying new control agents or biopesticides. This method could 

control specific pests and pathogens with biological agents. One strategy is the 

bioengineering of the rhizosphere, which indicates stimulating the spread of introduced 

or local populations of beneficial microorganisms, and the creation of synthetic microbial 

communities to improve plant growth, and disease resistance. It indicated that after 

inoculation of grapes with various potential biocontrol agents (Pseudomonas oligandrum, 

Trichoderma spp., Streptomyces sp., Pseudomonas protegens), the development of 

some pathogens was suppressed, and plant growth was stimulated to grow more. In 

addition, arbuscular mycorrhizas (AM) fungal inoculation enhanced the growth of 

grapevine. Bacillus strains are known as biological bacterial agents that produce 

antifungal substances to limit the symptoms of grey mould on the leaves and reduce the 

symptoms of the disease (Fedorina et al. 2022). 

The fourth method could be precision agriculture, which makes the application of plant 

health products more accurate and precise and can reduce the number of chemical 

product applications. Precision agriculture applies data from multiple sources such as 

sensors and satellites to improve crop yields study by the spatial variation in crop yield 

and increase the cost-effectiveness of crop management strategies including fertilizer 

inputs, irrigation management, and pesticide application. 

 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/fertiliser
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/pesticide-application
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Chapter 2  
Precision Viticulture 

 

2.1. What is Precision viticulture?  

Digital agriculture and Precision Agriculture (PA) have been identified as drivers for 

placing wine production in a sustainable, economically profitable, and environmentally 

friendly context (Fastellini and Schillaci 2020). Precision viticulture (PV) is one of the most 

effective developments in viticulture. It is based on technologies that combine a global 

navigation satellite system (GNSS), onsite or aerial measurements of local microclimatic 

conditions, details of vineyard water and nutrient status, with measurements of several 

vine physiological parameters with infield sensors, satellite, and airborne remote sensing. 

These data could be corrected and then interpreted thanks to GIS software. The result 

could help with grape uniformity, which greatly affects wine quality. PV can identify 

comparatively similar areas. Some examples of PV like pruning and bud selection may 

permit growers better options to offset some of the disruption being caused by climate 

change (Jackson 2016). 

PV monitoring tools like unmanned aerial vehicles (UAVs), aircraft, satellites, and 

proximal sensors can be used together to fully interpret the monitored fields.  

The result is an operational map that can be loaded into variable-rate machines (VRT) 

to optimize field operations like fertilization, defoliation, irroration, phytosanitary 

treatments, and harvesting. In addition, a decision support system (DSS) allows 

agronomists to make better decisions at the right time and place. DSS for agriculture are 

the systems that provide information resources to contribute to farmers’ decision-making, 

by integrating various forms of information required for growing crops (Kanatas et al. 

2020). 

There are some difficulties with the application of PV techniques. The most important 

one is the costs of these technologies. The others are unclear savings costs and the lack 

of knowledge of the technicians for using these technologies (Ammoniaci et al. 2021). 
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An example of the application of PV is using early yield prediction which is an important 

parameter in gaining the best grape production and quality. Ground observation and 

manual weighing are time-consuming and frequently provide low-resolution data. By 

applying high-resolution RGB images, a representative zone of vigor variability of the 

whole vineyard acquire. To estimate the production, an unsupervised recognition 

algorithm is applied to derive the number of clusters and size. There are two advantages 

to using these methods accuracy and timesaving (S.F. Di Gennaro 2019). 

In one case study in the Chianti Classico DOCG area in Italy, with proximal sensing, a 

ground monitoring system equipped with two types of sensors to define vineyard features 

such as the plant vegetative vigor indexes (NDVI vigor index) and the canopy volumetry. 

By applying these tools, the knowledge of grapes improved, and the quality of the wine 

was achievable by selective harvest and through the pesticide calibration on the canopy 

(Sarri et al. 2015). 

 

2.2. Precision Viticulture for early detection of 
disease  

There are two branches to detect disease in the plant. The first class is invasive 

techniques involving destructive leaf sampling followed by chemical treatments after 

identifying the pathogen. The second one is non-invasive techniques to identify the impact 

of the pathogen on the physiological plant response. Most of them included sensors that 

measure temperature, reflectance, image analysis, or fluorescence and volatile organic 

compounds profiling-based technique for recognizing plant diseases (Sankaran et al. 

2010). 

2.2.1. Weather conditions and early detection  

Weather conditions frequently are one of the main factors that can make desirable 

conditions for diseases in crops such as rain or high humidity, which can provide the favor 

situation to increase the risk of fungal diseases. For predicting the problem, 

meteorological monitoring is vital to have some indication of a possible infection. There 
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are some devices for making the warning. Devices (weather stations) that can predict the 

weather condition in real-time are needed to know precisely when an infection occurs.  

In the last few years, new devices from the Internet of Things (IoT) have been used to 

obtain real-time in situ observations  (mainly meteorological). The nodes of IoT contain 

low-cost sensors to monitor meteorological phenomena such as temperature, air/soil 

humidity, wind speed, wind direction, and rainfall. There are some models to warn the 

fungal diseases like Botrytis cinerea that are related to the data coming from the IoT 

nodes in real-time and can make an alert. Compared to the traditional method, the 

chemical product would be applied during the most effective time window against grey 

mould infections.  It could make economic savings and reduce the possible impact on the 

environment (Oliver et al. 2019). 

2.2.2. Application of Remote-Sensing for early detection  

Remote sensing (RS) is a technique widely used for crop monitoring in precision 

viticulture systems and applied for the evaluation of canopy health and vigor status. 

Airborne and satellite imagery acquired during growing seasons can be used not only for 

early detection and within-season management of some crop diseases but also for the 

control of recurring diseases in future seasons (Yang 2020). 

With both passive and active radiation, the RS systems permit data acquisition ranging 

from gamma rays to microwaves. Different RS systems are applied in capturing the 

infection symptoms such as scabs and pustules, physiological responses like changes in 

pigment content and water content, and structural changes such as canopy structure and 

landscape structure (J. Zhang et al. 2019).  

2.2.3. Application of machine learning for early detection  

Machine learning (ML) is an application of Artificial intelligence (AI) aiming to create an 

autonomous system for learning and predicting features. In the agriculture landscape, ML 

is useful to predict crop features from environmental data and crops’ status. Machine 

learning is a method for predicting the disease of grapes in the early stage of the disease 

to decrease the losses to the wine producer. This method collects the two types of images 

to make a dataset to identify healthy and unhealthy plants. Image processing computer 



 

20 

 

vision and machine learning methods have been used to prevent the spread of disease 

and minimize the loss (Alessandrini et al. 2021). 

2.2.4. Application of Proximal-Sensing for early detection  

Proximal-sensing is based on the applying of ground-based moving vehicles carrying 

various types of sensors that are suitable for continuous measurements of soil or canopy 

parameters. The advantages of proximal are their high-resolution imagery, their total 

independence from external parameters and limitations, their suitability for small fields, 

and their simple application (Anastasiou et al. 2018). In one case study, two kinds of 

sensors were used sensors to catch the data such as GreenSeeker RT100 sensors 

calculating NDVI and Red/NIR indices in real-time, and ultrasonic sensors to estimate 

canopy thickness. These data evaluate the monitoring system performance regarding 

disease appearance, diffusion, and vegetative development variations due to the normal 

growing process of vines (Mazzetto et al. 2010). 

2.2.5. Application of thermal imaging 

When a stressed plant responds to the pathogen or water stress, it usually reveals by 

leaf temperature before visible symptoms appear. This temperature change could be 

evaluated by Infrared thermography (IRT) and indicated differences within individual 

leaves, plants, and crops showed the presence of disease in plants. Compared to optical, 

multispectral, and hyperspectral sensors, thermal sensors have been highlighted to be 

more effective at disease-induced early modifications. One case study sought to detect 

downy mildew on the grapevine leaves at the early stages of development using thermal 

imaging technology (Cohen et al. 2022). 

 

2.3. Grape-related technologies 

2.3.1. Scouting  

Scouting is one of the most important methods for monitoring pests and diseases. 

Scouting means a human supervising the crops. Regular scouting has been used for the 

early detection of disease before it starts to grow in a vineyard. With regular scouting and 
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analyzing the weather condition, the farmers could decide the best time to apply the 

pesticides. The scouting frequently starts when shoots are 3 – 5 and continues until 

shoots are at least 12. For scouting, it is important to consider areas that are susceptible 

to infestations such as border rows near woods, overgrown areas, tree lines, or any 

protected areas around the vineyard where leaf debris might collect. Early scouting in the 

season, especially in highly susceptible varieties or newly planted vineyards is frequently 

recommended (Bryan Hed 2016). 

Some new methods of the automatic collection of field data have been promoted to 

use in precision agriculture. Autonomous field scouting robots have recently been applied 

for some pest control. In this method, vision sensors and ranging sensors have been used 

to quantify crop statuses such as vigor, diseases, nitrogen stress, and other stresses. 

In one case study, the scouting robots applied artificial lighting. Proximal sensing can 

acquire crop information with a higher ground resolution and can extract crop shape 

information more accurately than aerial sensing. In addition to applying daytime sensing, 

nighttime sensing was used as a unique method. The research was to evaluate the 

accuracy of the shape information and spectral information of soybeans obtained by 

estimating the FVC (The fractional vegetation cover) and SPAD (The soil plant analysis 

development) values and to devise a highly accurate crop growth sensing method using 

agricultural robots and it was estimated by NDVI. This method can minimize the need for 

human intervention during crop sensing (Yamasaki et al. 2022). 

In addition to robots, there are all terrains vehicles equipped with many sensors. The 

other methods include spectroscopy, multispectral and hyperspectral imaging, chlorophyll 

fluorescence, thermography, electrical resistivity, laser imaging detection and ranging, 

and computer vision and the platforms where they are generally mounted or embedded 

for either proximal or remote monitoring (Tardaguila et al. 2021). 

2.3.2. NIRS 

Near-infrared spectroscopy is an analysis method of choice in food and agriculture with 

minimal sample preparation. In the wine industry, the most used NIR method is for the 

analysis of wine ethanol. The use of NIR for detecting fungal contamination has been 

implemented for different kinds of diseases such as grey mould and powdery mildew in 
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grapes. This method can apply for rapid assessment of contamination; however, it 

requires a reference analysis for calibration and validation such as DNA analysis which 

could not be a quick and cheap test as quantitative PCR. This method was used to predict 

the powdery mildew of grapes. The grapes with different degrees of powdery mildew were 

collected then samples were homogenized and analyzed for powdery mildew DNA 

content, and scanned by reflectance spectroscopy, over a wavelength range covering the 

visible and near-infrared (NIR) regions of the electromagnetic spectrum. The results 

indicated the correlation between the powdery mildew DNA content, and spectral 

information generally with the visual infection classification (Stummer Belinda et al. 2007). 

In one study case, to assess grape infection rapidly, the vis/NIR spectroscopy in a view 

of a grape classification directly at the checkpoint station entering the winery was applied.  

For this research, the white and red wine varieties bunches were used that were 

naturally infected with major grape diseases such as Botrytis cinerea, powdery mildew, 

and sour rot. The analyses were applied to grape to test the performance of vis/NIR 

devices to classify healthy and infected samples. The results demonstrated that optical 

devices are capable to provide useful information for better management of the 

vinification process (Tugnolo et al. 2017). 

An example of near-infrared application in the field is the detection of leaf-miner 

infestation on tomato leaves by an optical measurement system with Fourier transform 

near-infrared (FT-NIR) systems. The infested tomato leaves had lower reflectance values 

than the healthy leaves due to the disrupted leaf structure caused by leaf miners with 

increasing severity of the damage, the leaf reflectance increased while the leaf water 

content decreased (Xu et al. 2007). 

In one case study for Grapevine yellows (GY), a serious phytoplasma-caused disease 

detection in vineyards, greenhouse plants were analyzed by hyperspectral imaging and 

disease detection models (Radial-Basis Function Network). The identification of infected 

greenhouse plants was successful reaching up to 96% (Bendel, Backhaus, et al. 2020). 

Visible and near-infrared (VIS-SWIR) spectral systems can determine damages 

caused by plant diseases and pests by reflectance. This method is stable and offers 

reliable monitoring results. However, it performs weakly on early detection (J. Zhang et 

al. 2019). 
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2.3.3. Fluorescence  

Fluorescence monitoring is a method used in different aspects of research such as 

agronomy, forestry, marine environment, ecotoxicology, plant physiology, and plant 

breeding. In this method, Chlorophyll a (Chla) fluorescence can be indicated 

photosynthetic efficiency and provides information on the relationship between the 

structure and function of photosystem II (PSII) reaction center (RC) and core complexes. 

The so-called JIP-test is a means to analyze the polyphasic rise of the Chl a 

fluorescence transient and it develops to find in vivo the “vitality” of plants and the adaptive 

behavior of the photosynthetic apparatus to different stresses. This method was used for 

the analysis of plants without visible disease foliar symptoms (Esca disease) that were 

compared with those showing symptoms. This is an important wood disease that impedes 

plant water transport by clogging the xylem vessels. The pathogens grow slowly into the 

vascular tissues and aerial symptoms are visible after several years. This type of effect is 

not detectable for years, due to the long latency time of the disease. The advantage of 

application fluorescence is the alteration of the photosynthetic apparatus could be 

detected 2 months before the appearance of foliar symptoms in autumn (Christen et al. 

2007). 

For downy and powdery mildew diseases in grapes, after two weeks of infection, the 

plant starts to produce a phytoalexin which produces a UV-induced violet-blue 

fluorescence (VBF). This autofluorescent property of the stilbenoid phytoalexins, which is 

found in infected leaves, is used to detect the presence of diseases. Fluorescence sensor 

based on LED excitation and filtered-photodiode detection that is designed to work in the 

field under daylight conditions. Early detection of the disease in the field is to achieve the 

aim of precision agriculture (Latouche et al. 2015). 

For grey mould disease, 48h after inoculation, at the periphery of the lesion on leaves, 

but not inside the colonized tissue including dead cells the blue fluorescence could be 

detected. The autofluorescence response of mature grape berries to B. cinerea infection 

is used to achieve early detection. Using image analysis and edge detection over UV-

epidermal transmittance measured at 690nm, it was possible to detect botrytized berries 

as early as 3 DAI (Bélanger et al. 2011). 
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2.3.4. Colored images analysis/processing/ color space analysis  

Machine learning (ML) algorithms or deep learning (DL) algorithms are so useful for 

early disease detection. A deep convolutional neural network (DCNN) algorithm could 

identify and classify grape diseases based on multi-band leaf images. Multi-band images 

are composed of visible light wavelengths such as Red, Green, and Blue (RGB) bands. 

The proposed approach uses an image dataset of grape crops. This developed model 

can provide accuracy close to or even more significant than the accuracy obtained for 

some pre-trained models using transfer learning. It was reported one model achieved an 

accuracy of 99.34% and equal values for precision. It showed the models’ capability to 

accurately identify and classify grapes’ common diseases based on the RGB leaf images 

(Math and Dharwadkar 2022). 

There are several steps in preparing the images for disease detection including image 

acquisition, image pre-processing, image segmentation, feature extraction, and 

classification. The images captured by a camera are in RGB (Red, Green, and Blue) form, 

and a device-independent color space transformation is applied for the color 

transformation structure. 

For the preprocessing step, the images are clipped and cropped to get the interesting 

part of the images and remove disturbing elements. Then the filter is applied to smooth 

the images and image enhancement is carried out for increasing the contrast. The RGB 

images are converted into gray images. Because color images have primary colors red, 

green, and blue, it is difficult to implement the applications using RGB as their range from 

0 to 255. The segmentation can be done using various methods like otsu’s method, and 

k-means clustering. K-means clustering is used for the classification of objects based on 

a set of features into K number of classes. The classification of the object is done by 

minimizing the sum of the squares of the distance between the object and the 

corresponding cluster. Feature Extraction is important for the identification of an object. 

In many applications of image processing, feature extraction is used. Color, texture, 

morphology, and edges are the features that can be used in plant disease detection. In 

some cases, color, texture, and morphology are used as a feature for disease detection. 

It was found that morphological results could give a better result than the other features. 

Texture means how the color is distributed in the image, the roughness, and the hardness 
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of the image. It could be used for the detection of infected plant areas. After feature 

extraction, the learning database images are classified by using a neural network. These 

feature vectors are considered neurons in ANN (Khirade and Patil 2015). 

 

2.4. Compactness  

2.4.1. Compactness of berries and its effects 

One of the most important traits of grapevine is bunch compactness or bunch density 

which could affect the commercial quality of the wine. Bunch compactness refers to the 

way that how berries are arranged in the bunch and to the rate of free space between 

them. Bunch compactness relates to the morphological volume of the bunch to its solid 

component. The solid component is determined by the number of berries and their 

individual size. These two major growth stages (berry formation and berry ripening) 

largely define the final berry size. With compact bunches, grapes are more susceptible to 

diverse pests and diseases like bunch rot. Compactness in bunches could cause berry 

cracking and the leakage of juice, making free water and nutrients for fungal spores’ 

germination and mold growth. The dense berries restrict airflow between berries and 

could increase the internal temperature and humidity in the bunch. In addition, it causes 

the berries expose to the UV radiation of the sun and the berries start to generate more 

wax on the skin and make the thicker skin which could increase the production of 

phytoalexin against pathogens and reduce the effect of fungicide in the inner side of 

berries. The compactness also affects the quality of wine and reduces the crop yield which 

causes more economic losses. Bunch rot also reduces the quality of wines by generating 

off-flavors, oxidative damage, premature aging, and difficulties in clarification during the 

winemaking process. 

Berries with high compactness ripe more heterogeneously because the inner berries 

receive little direct solar radiation. There could be a relationship between solar radiation 

and relevant parameters for winemaking, including juice pH, sugar, and organic acid 

variation, amino acids, anthocyanin and flavonoids accumulation, and the synthesis of 

tannins, stilbenes, terpenes, carotenoids, and methoxypyrazines (J. Tello and Ibáñez 

2018). 
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2.4.2. Compactness and the evaluated methods  

There are several methods for evaluating the compactness of berries. Bunch 

compactness is basically analyzed by visual and qualitative methods that classify 

grapevine bunches according to their general appearance. The most used method to 

evaluate this trait is the Organisation Internationale de la Vigne et du Vin (OIV) descriptor 

code 204 for bunch density. This descriptor classifies bunches into five categories by 

considering the mobility of the berries and the visibility of the pedicels: very loose (1); 

loose (3); medium (5); compact (7) and very compact (9). This method is simple, cost-

saving, rapid, and nondestructive tools. On the other hand, it needs trained evaluators 

and an objective and continuous variable (J. Tello and Ibáñez 2018). However, there is a 

problem with this method when several evaluators are responsible for rating clusters, then 

differences between each can be an additional source of error. The other issue is that no 

population diversity can recognize if clusters have similarly compact, resulting in similar 

or identical OIV 204 scores (Underhill et al. 2020). 

For the indirect method the fact that compact bunches are less flexible than loose ones, 

has been used for the qualification of the trait. For example, the bending index was 

applied to the categories. Another method was inter-berry spacing, with loose bunches 

having more space between berries than compact ones. 

Other indirect measurements aim to determine how much space in the morphological 

volume is not actually filled by berries. The actual volume of the bunch of solid elements 

may be easily measured by the immersion of the bunch in a bucket filled with water and 

determining the amount of water displaced, following Archimedes ‘principle. However, 

the determination of the morphological volume is more complex, especially in loose 

bunches, because any modification in the natural arrangement of the berries will modify 

it. 

Recently, methods based on the analysis of two-dimensional (2D) and three-

dimensional (3D) images have been applied for the automated reconstruction of grape 

bunch architecture which could be a more precise and objective measurement of bunch 

morphological volume (J. Tello and Ibáñez 2018). 

For objective methods, there are some bunch compactness indexes for example the 

index for the number of berries or bunch mass divided by the bunch length which is the 
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most typical objective estimator for the evaluation of bunch compactness. The other index 

is calculated by dividing either the number of berries per bunch or the bunch mass by the 

sum of the length of the rachis and of its first branch. These kinds of indexes are simple, 

however, their use in some cases may be uncertain because different bunch 

morphologies can be found in some species.  

Some novel methods based on phenotyping tools like analyzing bunch images of the 

F1 population (the first filial generation plants offspring resulting from a cross-mating of 

distinctly different parental types) and determining a new compactness ratio calculated 

from the difference between the area of the bounding box (bunch length × bunch width) 

and the visible area of the bunch or estimated through the automatic analysis of RGB 

images of bunches (J. Tello and Ibáñez 2018). 

In one research, several indexes were applied to find the effective indexes to define 

the compactness of grapes. Two of them are based on the combination of six metrics 

from bunches (bunch weight, number of berries per bunch, number of seeds per berry, 

bunch length, first ramification length, and either pedicel length or number of ramifications 

per bunch, respectively). These two indexes are more suitable for inter-varietal studies 

where obtaining quantitative data is critical. Another selected index is based on two easy-

to-measure characteristics of the bunch (weight and length), and it is proposed as a fast 

estimator (J Tello and Ibáñez 2014). 

In one study, images of different red grape cultivars were taken with a color camera, 

and their bunch compactness was determined by visual inspection. A predictive partial 

least squares (PLS) model was developed to estimate bunch compactness from the 

morphological features extracted by automated image analysis. The PLS model indicated 

a capability of 85.3% for correctly predicting the rating of bunch compactness from 

different grapevine varieties. The most discriminant variables of the model were highly 

correlated with the tightness of the berries in the bunch (proportion of visibility of berries, 

rachis, and holes) and with the shape of the bunch (roundness, compactness shape 

factor, and aspect ratio) (Cubero et al. 2015). 
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2.4.3. Compactness and 3D methods  

The novel methods based on computer vision are used for Automated cluster 

compactness estimation in commercial vineyards. With a mobile sensing platform, image 

acquisition allows the user to take images in extensive vineyards, which could be 

automatically geo-referenced. This method could help to make a map showing cluster 

compactness. Also, it can help to indicate the zones with similar values for cluster 

compactness, which is important for sorting grapes before harvest. This non-invasive 

nature of the system could also enable early identification of very compact clusters to 

establish strategies against fungal diseases which could help to drive decisions on 

harvest classification or differential fungicide spraying. These kinds of methods could 

estimate wine grape cluster compactness using RGB computer vision on-the-go with 

machine learning technology under field conditions. It is so time-saving method to 

improve decision-making in precision viticulture and the wine industry (Palacios et al. 

2019). 

In recent past years, few studies have been done, applying two- or three-dimensional 

(2D or 3D) sensor systems. Automatic and semi-automatic image analysis was often used 

to extract phenotypic traits from Red-Green-Blue (RGB)-images of grapes. Compared to 

2D imaging, 3D data are fully informative and more precise. An additional dimension gives 

more important information about the shape, structure, and volume of the scanned object. 

It is required to apply the 3D data under controlled lab conditions to obtain the full 360° 

structure of the bunch (Rist et al. 2019). 

One method that is applied in research is multi-perspective imaging analysis combined 

with multivariate modeling to predict grape bunch compactness. This multivariate data 

analysis is including partial least squares, multiple linear regression, and principal 

component regression. The partial least squares model was the best performed, 

predicting bunch compactness with a high correlation coefficient of prediction. 

In this study, after harvesting and collecting the bunches of grapes, bunch wings were 

removed, and the main part of the bunch was applied to estimate the compactness. The 

grapes were imaged with two mirrors to make three perspectives. The compactness of 

bunches was scored by technicians based on the method outlined in OIV. The density of 

grapes was calculated. The descriptors such as the area and perimeter of the bunch were 
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measured, and the height and width were calculated by a small enclosing rectangle 

method. The bulk density of the grape bunch was linearly related to compactness. The 

morphological features of grape bunches and their derivative variables were digitized 

using image processing descriptors and were regressed with the measured compactness. 

The performance of the multi-perspective imaging method could be applied to automate 

the postharvest assessment of the compactness of grape bunches (Chen et al. 2018). 
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Chapter 3  
Experimental Tests 

 

3.1. Introduction 

3.1.1. The importance of non-contact grape characterization 

Today winegrowers face a lot of issues related to climate change such as changing 

weather patterns, compressed season, drought, and heat wave. On the other hand, they 

face to lack of labor and higher production costs. Therefore, it is needed to apply means 

to monitor the biophysical characteristics of grapes and analysis the management 

practices in the vineyards such as irrigation, nutrition, yield analysis, and prediction the 

diseases (Tardaguila et al. 2021). 

For example for yield analysis, each field in agriculture is not considered to be uniform, 

as generally done in conventional agriculture, it needs to manage with site-specific 

management to increase the efficiency of inputs in the fields (Santesteban 2019). In a 

vineyard with a fixed planting distance, the sampling points can be applied to individual 

vines which are geo-referenceable, and, if data collection is carried out year after year, 

historical series of important value for crop management can be obtained to carry out 

some type of differential action (site-specific management) (Arnó et al. 2009). 

Research interest shows an increasing proportion of research work in precision 

agriculture belonged to precision viticulture and this makes a high impact on increasing 

the quality of grapes and changes in the wine price (Santesteban 2019). 

An important group of technologies is those associated with remote means far from 

the ground and proximal named for close-to-the-ground sensing which acquires 

information about on-ground targets such as plants and soil. It is important to use a tool 

to obtain detailed data and information about the product that makes the best decision 

with environmentally and financially sustainable practices. Precision Viticulture tries to 

apply the technology to this sector. Some non-invasive sensing technologies such as 

LiDAR, spectroscopy, and thermography can be applied to portable sensors or mounted 

with varied platforms. For detecting diseases and pests in vineyards hyperspectral 
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imaging, multispectral imaging, computer vision, spectroscopy, and thermography are 

often used  (Tardaguila et al. 2021). 

For cluster compactness assessment, computer vision methods try to find the best 

way. Some methods are working under controlled laboratory conditions, which require 

the destructive collection of clusters in the vineyard. It is needed to apply a method for 

large-scale real-time disease monitoring under field conditions. It is important that the 

plant disease detection tool should be rapid, specific to a particular disease, and sensitive 

for detection at the early onset of the symptoms. This method also is reliable for 

diagnosing diseases and must be overcome when analyzing the great number of samples 

required. The process of computer vision includes accusing, processing, analyzing, and 

extracting the data of images to provide numerical information such as estimating and 

predicting the features of the target objects. It can be a reproducible and accurate tool to 

assess defect detection, color estimation, and shape and size analysis. In addition, with 

the application of artificial intelligence, it could be more precise (Tardaguila et al. 2021). 

3.1.2. OIV grape characterization protocols  

Morphological characteristics descriptions have a key role in the studies related to 

grapes. Because for research studies the researcher had to define the characteristics 

based on the research aims these definitions are varied. On the other hand, there were 

no uniform lists of distinctive characteristics. Therefore, OIV (International Office of the 

Vine and Wine), UPOV (International Union for the Protection of New Varieties of Plants), 

and Bioversity (formerly known as IPGRI, International Plant Genetic Resources Institute) 

decided to arrange the descriptive characteristics which they were using up to now for 

differing ends. The definition of these distinctive characteristics is done by the OIV’s 

Group of Experts. The index cards describe characteristics and make up a reference code 

common to OIV, UPOV, and Bioversity. The table of characteristics comprises not only 

characteristics distinguishing the grape varieties but also characteristics that indicate the 

agronomic aptitudes of grape varieties. 

Each characteristic is provided with an OIV number with words that correspond to a 

certain figure note. These notes are the smallest units for describing a characteristic. A 

scale from 1 to 9 is defined.  
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Qualitative characteristics should be those which show discrete discontinuous states 

with no arbitrary limit on the number of states. Quantitative characteristics are those that 

are measurable on a one-dimensional scale and show continuous variation from one 

extreme to the other. They are divided into notes from 1 to 9. Notes 1 to 3 represent a 

weak expression, while notes 7 to 9 are strong or very strong. Which parts of the scale of 

words or notes are chosen for the definition of the single states, depends on the extent of 

variation within the single characteristic and the possibility of their subdivision.  

Characteristics are recognized by visualization, measuring or weighting, DNA or 

isoenzyme analysis, or sensory observation (taste, smell). Further details are listed within 

the single characteristics. For example, statistical methods must be considered when 

observations are made over the years. The resistance of grape varieties to fungus 

diseases is to be observed under field trials over several years without the use of chemical 

plant protection. Notes 1 to 3 represent susceptibility, whereas notes 7 to 9 represent 

notes for resistance. These defining characteristics included different characteristics of 

the young shoot, shoot, woody shoot, young leaf, mature leaf, flower, Inflorescence, 

berry, bunch, yield, sugar content, rootstock, and cluster.  

In this study, some descriptive characteristics are considered related to fruit description 

to analyze the compactness of bunches. In table 3.1 these characteristics are introduced 

(Vin 2009). 
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Table 3.1 The list of the applied characteristics of grape shape from the (OIV) table.  

Characteristic Codes 

N° 

Notes Definitions 

Bunch: length (peduncle 

excluded) 

OIV 202 Very short 

to very long 

(80 mm to over 

240 mm) (1-9) 

Observation at maturity. Mean value of the largest bunches 

of 10 shoots. To be measured: distance from the uppermost to 

the lowest berry of the primary bunch. 

Bunch: width  OIV 203 Very 

narrow to very 

wide (40 mm 

to over 200 

mm) (1-9) 

Observation at maturity. Mean value of the largest bunches 

of 10 shoots. To be measured: maximum distance between the 

lateral berries of the primary bunch. 

Bunch: density OIV 204 Very 

loose to very 

dense  

(1-9) 

Observation at maturity. Examination of the largest 

bunches of 10 shoots. 1 = berries clearly separated, many 

visible pedicels; 3 = berries in loose contact with each other with 

some visible pedicels; 5 = densely distributed berries, pedicels 

not visible, berries are movable; 7 = berries not readily movable; 

9 = berries deformed by compression. 

Bunch: length of peduncle of the 

primary bunch 

OIV 206 Very short 

to very long 

(30 mm to 110 

mm) (1-9) 

Observation at maturity. Mean value of the largest bunches 

of 10 shoots. To be measured: distance from insertion point on 

the shoot to the 1st ramification of the primary bunch. There is 

a knot-like thickening on the bunch peduncle, from which a 

secondary bunch or a tendril may arise. 

Bunch: lignification of peduncle OIV 207 at the 

base only to 

more than the 

middle (1-7) 

Observation at maturity. Examination of all bunches of 10 

shoots. Lignification of peduncle = brown coloring of the 

peduncle. Remark: variable, dependent on conditions of 

maturity 

Bunch: shape OIV 208 cylindrical 

(1) conical (2) 

funnel-

shaped (3) 

Observation at maturity. Examination of the largest 

bunches of 10 shoots. Description of the bunch shape between 

3/5 and 4/5 of the axis. Wings in the upper part and the tip are 

excluded from observation. 

Bunch: number of wings of the 

primary bunch 

OIV 209 Absent to 

more than 6 

wings (1-9) 

Observation at maturity. Examination of the largest 

bunches of 10 shoots. Remarks: wings = lateral branches on 

the main axis of the primary bunch, which are clearly longer than 

the other branches.  

Berry: length OIV 220 Very short 

(8 mm) to very 

long (more 

than 28 mm) 

(1-9) 

Observation at maturity. The mean value of 30 

nondeformed and normally sized berries was taken from the 

middle part of 10 bunches (measuring unit: mm without 

decimals). 

Berry: width OIV 221 Very 

narrow (8 mm) 

to very wide 

(more than 28 

mm) (1-9) 

Observation at maturity. The mean value of 30 

nondeformed and normally sized berries was taken from the 

middle part of 10 bunches (measuring unit: mm without 

decimals). 

Berry: uniformity of size  OIV 222 Not 

uniform (1) 

Uniform 

(2) 

Observation at maturity. Examination of 10 bunches.  

Remark: variable, also dependent upon seed set (number 

of seeds/berry). 
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Berry: shape OIV 223 obolid (1) 

globose 

(2) broad 

ellipsoid (3) 

narrow 

ellipsoid (4) 

cylindric 

(5) obtuse 

ovoid (6)  

ovoid (7) 

obovoid 

(8) 

 horn-

shaped (9) 

finger-

shaped (10) 

Observation at maturity. Examination of 30 berries not 

deformed by compression taken from the middle part of 10 

bunches. 

Berry: uniformity of skin color OIV 226 Not 

uniform (1) 

Uniform 

(2) 

Observation at maturity. Examination of 3  0 berries taken 

from the middle part of 10 bunches. 

Berry: hilum OIV 229 little 

visible (1) 

visible (2) 

Observation at maturity. Examination of 30 berries taken 

from the middle part of 10 bunches. 

 

3.1.3. Review of previous methods  

The subjective evaluation method of grape compactness is, assessing the visual shape 

of grapes by the descriptor code 204 for bunch density defined by the Organisation 

Internationale de la Vigne et du Vin (OIV). The scores are defined from 1 to 9 with five 

categories. The other method is applying the density index based on the stem bending 

and there are varied categories and defined scores for it.  

Inter-berry spacing is another one that uses the distance between two randomly 

chosen berries by inserting wedges in the inter-berry space. The other close method to 

inter-berries spacing is to determine how much space in the morphological volume is not 

filled by berries. It could be done by immersion the bunch in a bucket filled with water or 

using the melted paraffin. Estimating the morphological volume of the bunch assimilates 

it to a perfect cone where length is the maximum bunch length, and radius is half of the 

widest bench width. However, this method only does not consider irregularities and it is 

not applicable to other shapes of grapes such as cylindrical. Object methods based on a 

bunch of quantitative variables. The most important estimate index for the compactness 

of a grape is the number of berries divided by the bunch length or berry number by bunch 
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mass. After some modifications to the indexes, alternative compactness indexes were 

presented. They are based on the combination of six bunch metrics, indicating many 

factors involved in determining bunch compactness. They are useful to quantify 

differences between different cultivars and between clones of a single cultivar (J. Tello 

and Ibáñez 2018). 

Table 3.2. Indexes of compactness estimation (modified table from (Tello and Ibáñez 2014)) 

Indexes Equations References 

1 BW (g) / [RL (cm) + 1RL (cm)] (Fermaud Villenave d’Orono France.) 1998) 

2 BB / [RL (cm) + 1RL (cm)] (Valdés-Gómez et al. 2008) 

3 BB/BL (cm) (Pommer et al. 1996) 

4 [ABV (mL)/MBV (mL)] × 100 (Sbpahi 1980) 

5 ABV (mL) / (RL (cm) + 1RL (cm) + 2RL (cm)) (Sbpahi 1980) 

6 BW (g) / (RL (cm) + 1RL (cm) + 2RL (cm)) (Sbpahi 1980) 

7 ABV (mL) × RB / (RL (cm) + 1RL (cm) + 2RL (cm)) (Sbpahi 1980) 

8 BW (g) × RB / (RL (cm) + 1RL (cm) + 2RL (cm)) (Sbpahi 1980) 

9 [CBV (mL) - ABV (mL)] × 100 / ABV mL (Shavrukov et al. 2004) 

10 BW (g) / BL (cm) (Sternad Lemut et al. 2010) 

11 BW (g) / MBV (mL) (Ferreira and Marais 1987) 

12 BW (g) / [BL (cm)]2 (J Tello and Ibáñez 2014) 

13 ABV (mL) / [BL (cm)]2 (J Tello and Ibáñez 2014) 

14 BB / (BL (cm) + 1RL (cm) + 2RL (cm)) (J Tello and Ibáñez 2014) 

15 BB / ∑ IL (cm) (J Tello and Ibáñez 2014) 

16 10.368 + [0.015 x BW (g)] + (0.002 × BB) [-0.443 × BL 

(cm)] + 

 (0.018 × 1RL) 

(J Tello and Ibáñez 2014) 

17 BW (g) × BB / ([BL (cm)]2 + 1RL (cm)) (J Tello and Ibáñez 2014) 

18 BW (g) × BB × (1 + SB) / ([BL (cm)]2 × 1RL (cm) × PL 

(mm)) 

(J Tello and Ibáñez 2014) 

19 BW (g) × BB × (1 + SB) / ([BL (cm)]2 × 1RL (cm) × RB) (J Tello and Ibáñez 2014) 

 
1RL: First ramification length; 2RL: Second ramification length; ABV: Actual bunch volume; BL: Bunch length; BW: Bunch weight; 

CBV: Conical bunch volume; IL: Internode length; MBV: Morphological bunch volume; BB: Berries per bunch; RB: Ramifications per 

bunch; PL: Pedicel length; RL: Rachis length; SB: Seeds per berry. 

  

In table 3.2., the indexes of the compactness of grapes that were applied in various 

studies are summarized. 

The other equation for calculating compactness is defined as the ratio of the area of 

an object to the area of a circle with the same perimeter. 

Compactness = 4π. area/perimeter 2 
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Objects with an elliptical shape, or irregular boundary rather than smooth, will decrease 

the measure. 

Compactness = perimeter 2 /4π. area (Wirth 2004). 

The recent methods, applying automatic analysis of RGB images with the 

determination of relevant bunches of compactness-related variables, such as the 

proportion of pixels in the image corresponding to berries, rachis, and holes, and a series 

of calculated variables related to the shape of the bunch, such as roundness, 

compactness shape factor and aspect ratio, a mathematical model presented the 

prediction of compactness.  

The methods with evaluated 2D image analysis and 3D scanning technologies used 

two factors visibility of rachis and holes and the compaction of the berries. The novel 

image-based technologies use different variables related to bunch architecture and highly 

related to visual bunch compactness such as the area of the bunch image covered by the 

berries, holes, and rachis and the concavity of the bunch and the intersection between 

berries (J. Tello and Ibáñez 2018). 

In recent studies, the morphological features used to characterize the shape of an 

object include the length of the major and minor axes, area (A), perimeter (P), the ratio 

between area and perimeter (AP), length (L), maximum width (MW), aspect ratio(AS), 

compactness shape factor (CSF) and roundness (RD) of the bunch, as well as the width 

at 25% (W25), 50% (W50), and75% (W75) of the length of the main axis, and proportion 

of the area corresponding to berries (AB), rachis (AR), and holes (AH) in the bunch 

(Cubero et al. 2015). 

3.1.4. Measuring the compactness for 2D (two dimensional) shape  

Compactness is one of the most important properties of a shape. The common way to 

calculate the compactness of an object is to measure the ratio of (perimeter2)/area which 

is dimensionless and minimized by a disk and depends in large part on the perimeter in 

the 2D domain. In fact, objects have noisy perimeters or enclosing surfaces, that can 

affect the measuring of compactness. In another study, the method presented alternative 

area-perimeter ratios for the measurement of the 2D shape compactness of objects, and 

it is important to evaluate the effect of external disturbance on natural objects (Bribiesca 
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2008). Some methods proposed can be grouped into four categories: area-perimeter 

measurement, reference shape, geometric pixel properties, and dispersion of elements 

of the area (Li et al. 2013). 

The suggested measurement in one study can be used to calculate compactness for 

connected and disconnected objects and is invariant under translation, rotation, and 

scaling. The method is so simple by means of the use of one equation and it varies 

continuously from 0 to 1. To measure compactness, the measures of discrete 

compactness of different objects are calculated. The measure of discrete compactness 

for 2D shapes composed of pixels is obtained and defined (Bribiesca 2008). 

Three criteria are defined to evaluate the efficiency and effectiveness of compactness 

measures. The first is robust, which means the ability to measure the compactness of any 

shape and be insensitive to uncertainty. In addition, it must be stable for a given fixed 

shape related to changes in size and spatial resolution. The second one is 

computationally efficient. And the third one is additive which means easy to compute, 

reduces computational complexity, and improves computational efficiency and 

effectiveness when used in real-world applications (Li et al. 2013). 

3.1.5. New proposed 3D approach and parameters extractions 

In some studies, the 3D methods analyze the bunch compactness based on the 

scanners or sensors by using a laser. In one study the 3D Scanner was applied to provide 

not only bunch architecture traits but also individual berry characterization by combining 

3D modeling and machine learning algorithms (Herrero-huerta et al. 2022). 

Grape bunch architecture is related to the compactness of the bunch and is mainly 

influenced by the berry number, berry size, total berry volume, and bunch width and 

length. For assessing the bunch architecture, the 3D imaging method can be applied (Rist 

et al. 2019). 

In the 3D approaches, the compactness of an object depends on the enclosing surface 

area with the volume and can be defined by the ratio(area3)/(volume2), which is 

dimensionless and minimized by a sphere and is usually described on the enclosing 

surface area in 3D. One recent method applied the measure of discrete compactness of 

3D shapes composed of voxels, related to the sum of the contact surface areas of the 
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face-connected voxels for 3D shapes. Volumetric representations are used for rigid solids 

by means of spatial occupancy arrays. Therefore, the solids are represented as 3D arrays 

of voxels which are marked as filled with matter. Some studies suggested applying 

discrete compactness which is in tight correspondence to those invasion features 

(Bribiesca 2008). 

The other method for reconstructing 3D models from processed images is 

Photogrammetry. It has high efficiency and the radiometric and geometric characteristics 

of objects with great accuracy. This method with computer vision tried to estimate the 

yield parameters in the productivity of a vineyard such as the volume, the mass, and the 

number of berries per bunch (Herrero-Huerta et al. 2015). 

 

3.2. Experimental plan  

In this study, photogrammetry techniques were used to build 3D models of several 

Pinot Gris and Pinot Noir clones. A large number of measures and indexes were extracted 

from the collected values of the 3D shape grapes. The relation between output data and 

the grape’s shape characteristics was analysed. To find which descriptors have a high 

correlation to grey mould severity, a multiple linear regression model was created. Two 

models were presented, divided into 2D and 3D descriptors. Two factors were compared 

for the models: the R-square value (R2) and the root mean square error (RMSE). The aim 

of this study was to recognize the narrow differences between the morphology of clones 

from the same varieties. 

3.2.1. Plant material and sampling  

For Pinot Gris, 105 bunches of grapes (Vitis vinifera) from 17 clones were manually 

collected in 2020 from a varietal collection vineyard in the Veneto region in Cimadolmo 

(TV). For Pinot Noir, 33 bunches of grapes (Vitis vinifera) from 6 clones were gathered in 

2021 from a varietal collection vineyard in San Michele all’ Adige in the Trentino province. 

All the Pinot grapes were collected at the “Berry ripe for harvest” phenological stage. To 

evaluate the severity of the grey mould, 150 numbers of grapes of Pinot Gris were 

sampled in each clone. Based on how much the surface of the grape was covered by 



 

39 

 

mould, the grapes were rated using a scale ranging from 0 to 3, which 0 means no 

symptoms, 1 means from 1 to 25%, 2 means from 26 to 50%, and 3 means more than 

50% having symptoms. Then, the Townsend – Heuberger (Towsend 1943) index was 

computed following Equation 1, giving a score to each clone. Therefore, Pinot Gris clones 

were classified in different levels of grey mould severity as suggested by STURGES 

(Sturges 1926) by Equation 2. The Laimburg Research Centre from San Michele all’ 

Adige assessed the Pinot Noir based on their historical data. The clones were classified 

from 0 to 10 ordered by resistance against Botrytis cinerea. 

Based on OIV standard wings, height, width, shape, and average berries weight of 

grapes were measured. The weight of the grapes was measured, and the volume was 

calculated with the water displacement method. 

𝑇𝐻 =
∑(𝑁𝑖∗𝑉𝑖)

𝑁∗𝑉
           Eq.1 

TH= Townsend – Heuberger index 

Ni= number of grapes in each class 

Vi= class of grey mould infection ranged from 0 to 3 

N= total sampled grapes 

V= highest class value 

𝐶 = 1 +
10

3
* 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑁           Eq.2 

C= Optimal class number 

N= Number of samples 

3.2.2. Image acquisition 

For image acquisition and the 3D model reconstruction, 7 ripe grapes were collected 

from each clone at the harvest time in August 2020. Applying a camera Nikon D5100 

(Nikon Corporation, Tokyo, Japan), having a focal length of 35mm, photos of each grape 

were taken. Images were acquired under laboratory conditions in a dark room lighted by 

neon and LED lights. The camera captured colored photos at 24-bit, 4928x3264 pixels of 

resolution and saved the photos in JPG format. The grapes were hanging while the 

camera was mounted to a special device built to turn around the target at a constant 

rotation speed. The device maintained 45cm between the camera and the target. The 

camera took a picture every two seconds thanks to the multi-shot function while rotating. 
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The rotation speed was set to take 33 images per rotation. The camera was mounted at 

three different positions. The first position was perpendicular to the grape’s vertical axis, 

the other two at +45° and -45° to obtain a complete representation of the grape. Totally, 

for each grape 99 images were captured. The background was excluded with a white 

panel behind the grape. The image acquisition processes can be seen in Figure 3.1. 

 

Figure 3.1. Image acquisition device, photos sequence, and final 3D virtual model. 
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Table 3.3. The table indicates the mean values extracted from the images of Pinot Gris. In column 

shape, the abbreviation includes C: cylindric shape, F: funnel shape, and CF: grapes with both shapes. In 

the TH column, the lower values mean low grey mould infections while higher values mean strong 

infections. 

  

Clone 
Samples 
number 

Wings Shape 
Weight 

(g) 
Volume 
(cm3) 

Height 
(cm) 

Width 
(cm) 

Berries 
number 

TH 

FENDIT 13-CSG 6 1.00 C 149.40 141.7 14.0 10.4 109.7 14.89 

VCR-5 6 1.00 C 166.25 163.3 12.1 8.7 97.7 13.78 

H-1 7 1.00 C 213.59 192.9 13.3 9.1 76.9 13.33 

B 10 7 1.00 C 178.89 174.3 12.4 8.1 112.7 12.67 

ERSA FVG 151 6 1.00 C 147.55 136.7 14.0 9.5 111.9 12.44 

CRAVIT ERSA 
152 

5 1.00 CF 166.54 150.0 14.4 7.4 101.9 11.56 

ISMA AVIT 513 4 1.00 CF 149.08 142.5 12.1 11.0 129.3 11.56 

ENTAV 53 7 1.00 C 172.49 157.1 12.6 8.1 98.1 11.11 

R 6 5 1.00 C 172.15 155.0 12.9 7.8 103.8 10.44 

2-15 GM 7 1.00 C 178.34 170.0 12.2 8.1 117.0 9.78 

SMA 514 7 1.43 CF 189.69 172.9 13.4 13.2 96.7 9.11 

ISV-F1 
TOPPANI 

7 1.00 C 168.80 158.6 12.2 8.1 102.2 8.44 

ENTAV 457 7 1.00 CF 186.66 180.0 14.1 7.5 101.3 8.00 

FR 49-207 7 1.00 F 234.57 221.0 15.0 6.8 109.1 7.33 

ENTAV 52 5 1.00 F 203.40 184.0 15.0 7.8 110.6 6.89 

SMA 505 7 1.00 C 161.44 155.7 12.8 7.9 101.8 6.67 

1 GM 6 1.17 F 238.00 216.7 16.3 6.9 140.4 4.44 
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Table 3.4. The table indicates the mean values extracted from the images of Pinot Noir. In column 

shape, the abbreviation includes C: cylindric shape, F: funnel shape, and CF: grapes with both shapes. In 

column Botrytis Class, resistance to the pathogen is ranged from 6 to 9 where 9 means the most resistant 

while 6 means the most susceptible.  

3.2.3. 3D model reconstruction 

Metashape 1.7.2 (Agisoft LLC) is software to build the 3D model of taken photos. It 

could make the object and spatial 3D models from motion photogrammetry of digital 

images. In this study, the software was used for the 3D models of grape images. A wood 

cube was captured and rebuilt with the grape. The wood cube was useful to dimension 

the grapes. Finally, the models were manually cleaned, deleting the noise from the 

background and the cube. Each image was saved in PLY format.  

For each image of the grape, five horizontal sections perpendicular to the grape’s 

vertical axis were extracted in CloudCompare. The surface and the whole volume of each 

grape were measured. The section cut the grape at 16.67%, 33.33%, 50%, 66.67%, and 

83.33% of the grape’s height, respectively. Two vertical sections were extracted, the first 

was positioned according to the grape’s maximum width, while the second was 

perpendicular to the first one. Sections were saved in dxf geometry format. Autocad 

2022.1 (Autodesk) was used to measure the perimeter, area, and axes length, and to 

draw the circumscribed circle of the horizontal sections. According to the grape’s 

maximum width, the second was perpendicular to the first. Sections were saved in dxf 

geometry format. In addition, the circumscribed circle of all the horizontal sections was 

drawn. The native measures were saved in an Excel file and 82 native indexes, and 103 

indexes were measured from each grape image (Table 3.5.). 

  

Clone 
Samples 
number 

Wings Shape Weight (g) 
Volume 
(cm3) 

Height (cm) Width (cm) 
Berries 
number 

Botrytis Class 

165 6 1.00 FC 405.97 131.67 12.93 8.00 93.0 7 

583 6 1.00 C 114.77 131.67 12.44 7.62 96.5 8 

667 4 1.00 C 209.73 192.50 14.71 8.04 102.6 7 

828 5 1.00 C 211.84 178.00 14.05 8.60 109.4 6 

GM-2013 6 2.00 C 171.77 148.33 13.88 10.89 115.3 9 

SMA-201 6 1.00 C 146.10 123.33 12.74 7.82  92.7 6 
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Table 3.5. The table shows all the natives and indexes measured for each grape. The first column 

indicates the abbreviation of measures and indexes. The second column named reference highlights the 

citation and “***” means which measures were proposed in this study. The “Object” column presents 

which object was measured, “H” means horizontal section, “V” means vertical sections, “3D” means the 

grape’s model, and grape means the original grape. 

Measure Reference Formula Object Description 

Natives 

 

 

 

P (Wirth 2004)  H,V Perimeter of vertical or horizontal Section 

A (Wirth 2004)  H,V Area vertical or horizontal Section 

Cm (Bribiesca 2008)  H 
Median circumference has the same area as 

the horizontal section. 

PCcirc (Li et al. n.d.)  H 
Perimeter of the smallest circumference 

containing the section 

ACcirc (Li et al. n.d.)  H 
Area of the smallest circumference 

containing the section 

øCcirc (Li et al. n.d.)  H 
Diameter of the smallest circumference 

containing the section 

Mja (Wirth 2004)  H 
Major axis is the longest line that can be 

drawn inside a horizontal section 

mna (Wirth 2004)  H 

Minor axis is the longest perpendicular line to 

the major axis that can drown thought 

each horizontal section 

D_P *** Ps - P50% H 
Difference between each section's perimeter 

and the middle section's perimeter 

D_A *** As - A50% H 
Difference between each section's area and 

the middle section's area 

H OIV  V,3D Height of grapes and vertical sections 

W OIV  V,3D 
Width of grapes (W) and vertical sections 

(Wx, Wz) 

BV *** H*Wx*Wz 3D Volume of the grape's bounding box 

BS *** BH∗Wx+H∗Wz+Wz∗Wx 3D Surface of the grape's bounding box 

3DV ***  3D 
Volume of the 3D model retrieved by 

CloudCompare 

Wgt OIV  Grape Grape weight 

AcV OIV  Grape 
Actual volume of grapes measured with the 

water displacement method 

Evol *** 3DV-ApVol 3D 

Empty volume is obtained by the difference 

between the computed and the actual 

grape's volume. 
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S ***  3D 
Surface of 3D model retrieved by 

CloudCompare 

NB ***  H 
Number of berries in the middle horizontal 

section 

CJ ***  H 
Volume of the cone containing the whole 

grape 

ABW OIV  Grape Average berries weight (g) 

BB ***  Grape Berries per grape 

Indexes 

 

 

 

AP (Cubero et al. 2015) A/P H,V 
Ratio between area and perimeter both of 

sections 

PA (Li et al. n.d.) P/A H,V 
Ratio between perimeter and area of 

sections 

EC (D. Zhang and Lu 2004) Mja/mna H Axis ratio 

Pac *** P/Cm H 
Ratio between the section perimeter and the 

area of the median circumference 

Apc *** A/Cm H 
Ratio between the area of the section and 

the perimeter of the median section 

CFS (Cubero et al. 2015) (𝑃^2/A)/π H,V 

Ratio between the horizontal perimeter and 

area, circle = 4. Higher values mean more 

compactness. 

RD 

(Li et al. n.d.), (Bribiesca 

2008; Cubero et al. 

2015) 

(4*π*A)/P H 

Ratio between the horizontal area and 

perimeter, circle has the highest value =1, 

values closer to 1 mean 

more compactness. 

Cdcm (Li et al. n.d.) A/Asc H 

Ratio between the horizontal section area 

and the area of the smallest circumference 

containing the section 

Comp (Bribiesca 2008) Cm/P H 
Ratio between the perimeter of the median 

circumference and the section's perimeter. 

A/ACisop *** A/π*(P/2π)2 H 

Ratio between the area of the horizontal 

section and the area of the circumference 

having the same section's perimeter. 

RAr (Chen et al. 2018) A/(H*W) V 

Ratio between vertical section area and the 

area of the smallest rectangle containing the 

section. 

Ps/P50% *** P/P0.5 H 
Ratio between each section's perimeter and 

the middle section's perimeter 

Aa/A50% *** A/A0.5 H 
Ratio between each section area and the 

middle section's area 

Rr (Chen et al. 2018) H/W 3D 
Ratio between the vertical section orthogonal 

dimension 
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P/B *** NB/AH0.5 H 

Ratio between the perimeter of the middle 

section and the Number of berries crossed 

by the same section 

A/B *** NB/AH0.5 H 

Ratio between the area of the middle section 

and the Number of berries crossed by the 

same section 

Cm/B *** NB/CmH0.5 H 

Ratio between the Cm of the middle section 

and the Number of berries crossed by the 

same section 

Accirc/B *** NB/ACcircH0.5 H 

Ratio between the Accirc of the middle 

section and the Number of berries crossed 

by the same section 

AS Cubero et al. 2015) Wx/H 3D 
Ratio between grapes X axis width (the 

widest) and its height 

Ef *** EVol/3DV 3D 
Ratio between the empty volume and 

computed volume 

VRr *** 3DV/BV 3D 

Ratio between the grape's volume and the 

volume of the smallest solid containing the 

whole grape 

VCr *** 3DV/π*H*(Wx/2)^2 3D 

Ratio between the grape's volume and the 

volume of the smallest cylinder containing 

the whole grape 

Rpr *** S/BS 3D 

Ratio between the grape surface and the 

surface of the smallest bounding box the 

whole grape 

Cvol *** S/V 3D 
Grape surface and volume ratio, values 

retrieved by CC, perfect cube =1. 

D OIV Wgt/AcV Grape 

Ratio between the grape's weight and 

apparent volume. Weight was measured by 

hand 

AcVH OIV 3DV/H 3D 
Ratio between the grape's apparent volume 

and height 

3DV/H *** 3DV/H 3D 
Ratio between the 3D model's volume and 

height 

SH *** S/H 3D 
Ratio between the 3D model's surface and 

height 

D_CJ_3DV *** CJ-3DV 3D 

Difference between the volume of the cone 

containing the grape and the 3D model's 

volume 

R_CJ_3DV *** CJ/3DV 3D 

Ratio between the volume of the cone 

containing the grape and the 3D model's 

volume 

S_CJ *** S/CJ 3D 
Ratio between the 3D model's surface and 

the volume of the cone containing the grape 

E_TotB *** Evol/TotB 3D 
Ratio between the grape's empty volume and 

the volume of the cone containing the grape 
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CJ_TotB *** CJ/TotB 3D 
Ratio between the volume of the cone 

containing the grape and total grape's berries 

STotB *** S/TotB 3D 
Ratio between the 3D model's surface and 

the total berries 

 

CloudCompare is an open-source and 3D point cloud processing software. 

(https://www.cloudcompare.org/main.html) that applied to making the sections from the 

images.  

For each image of the clone, the following steps were performed. 

In CloudCompare the models in PLY format were opened and zoomed on it. Then in a 

fixed vertical view of the cluster, the analysis started. For horizontal multiple cross-

sections, the mesh and then cross-section tools were selected. By changing the bounding 

box border for each side and regulating it, the x, y, and z values were measured (Figure 

3.2.). Tried not to change the original orientation of the bounding box because it was 

based on the natural gravity orientation of the grapes. And it could be possible to analyze 

the grapes in the same manner. 

 

Figure 3.2. Measuring the x, y, and z values with a bounding box border 

3.2.3.1. Extracting the horizontal Sections 

After extracting the y value, the slice cloud or mesh was determined by the cross-

section tool. When some extra points were found, for better analysis, these points were 

removed because they are noisy points from the 3D model building (Figure. 3.3.). 

https://www.cloudcompare.org/main.html
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Figure 3.3. Extracting the section  

This section cut the grape at 16.67%, 33.33%, 50%, 66.67%, and 83.33% of the 

grape’s height, respectively. To extract these five sections of the horizontal level, first, the 

Y dimension was checked and then the envelopes were extracted. (Figure 3.4)  

Saving the contour, the horizontal envelopes were prepared.  

 

Figure 3.4. Extracting the five horizontal sections.  

3.2.3.2. Extracting the vertical sections 

For extracting the vertical sections, first, the original Mesh of the grape from the table 

of content was selected then, with the cross-section tool, the X width in the box 

thickness at 0.003 was reduced, and then, in the slice box, the new cloud was created. 

The new width must contain all the grapes along the X dimension. This process was 

repeated for the Z-dimension width at 0.003 (Figure 3.5.). 

The envelopes of horizontal and vertical sections were saved in dxf extension for the 

next steps in AutoCad. The volume and surface values of the bunch of grapes were 

measured in the CloudCompare and the data were collected.  
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Figure 3.5. Extracting the vertical sections.  

3.2.4. Measurements of the sections on AutoCad 

AutoCAD (Autodesk) is a computer-aided design software. It allows you to draw and 

edit digital 2D and 3D designs quickly. After loading the horizontal cross-section file from 

CloudCompare, the picture appeared like this (Figure 3.6). Files were loaded and 

appeared in this form. By changing the point of view, it was possible to see the five cross-

sections from one side. The sections were moved to the vertical axis (Figure 3.7). 

 

Figure 3.6. Horizontal sections in AutoCad.  

 

Figure 3.7. Moving the sections.  
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When the sections were rotated, it could be important to check the first and last 

sections with the images in CloudCompare (Figure 3.8.). 

 

Figure 3.8. Rotating the sections. The order of sections from left includes the first, second, third, fourth 

and fifth sections are 16.67%, 33.33, 50%, 66.67%, and 88.33% of the grape’s height respectively. 

 

In Autocad the objects were converted into 2D (X and Y axis) flat pictures by the 

function flattened for each section. The images were made 100 times bigger and then 

scaled. For each horizontal section, the values for area and perimeter were extracted. 

Then, the longest axis in each horizontal cross-section was drawn by line command. It 

was possible to draw some lines and then choose the longest axis perpendicular to the 

longest shape axis (Figure 3.9.). 

 

Figure 3.9. The longest axis in horizontal cross-section. 

The next step was to find the smallest external circumference as seen in Figure 3.9. 

The value for the longest axis and smallest external circumference were extracted. For 

Vertical X and Z sections, the maximum height and maximum width were measured by 

the Quote tool by selecting the highest and the lowest points on the X section. This step 

was repeated to measure the distance between the most right and the most left points. 
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This way was used also for the Z section. The measures included perimeter and area 

information of each section plus the values of the max height and max width were 

collected (Figure 3.10.). 

 

Figure 3.10. Measuring the maximum height and maximum width for vertical sections. 

Finally, the number of berries for 50% of the height of the grape horizontal section of 

each image were counted. The picture shows an example of five horizontal middle 

sections of different clones. For example, in clone 1 GM 10 berries were counted and the 

section’s perimeter measured 21.53195, while for clone HAUSER-1 11 berries were 

counted, and the section’s perimeter measured 9.788377. Therefore, the value for 

descriptor berries per perimeter were 0.479907 and 1.138376 for clones 1 GM and 

HAUSER-1 respectively. (Figure 3.11. and table 3.6.). 

 

Figure 3.11. Counting the number of berries in the middle section clones 50% of the grape’s height. 

From left the images include middle section of clones 1-GM, ISV-F1-TOPPANI, SMA-514, ERSA-FVG-

151, and HAUSER-1. 
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Table 3.6. Calculation Berries/P for each clone. 

Clones Berriers/P N° of berries P (mm) 

1-GM 0,48 10,33 22,4098 

2-15-GM 0,56 11,43 18,9585 

457F 0,48 10,29 21,7272 

52-F 0,55 11,20 20,5493 

53-F 0,56 12,14 21,5908 

B-10-H 0,56 11,71 21,0977 

CRAVIT-ERSA-152 0,51 10,60 20,8928 

ERSA-FVG-151 2,95 10,67 20,0579 

F13-CSG 0,77 10,67 20,6328 

FR-49-207 0,51 11,14 21,8965 

HAUSER-1 1,14 11,14 22,2738 

ISMA-AVIT 513 0,54 11,00 20,3242 

ISV-F1-TOPPANI 0,51 10,71 21,1723 

R6-12 0,54 11,00 20,2611 

SMA-510 0,60 11,29 18,9650 

SMA-514 0,45 10,33 20,3755 

VCR-5 0,51 11,17 21,9570 

 

3.2.5. Statistical analysis 

Rstudio (version 1.2.1335 © 2009-2019 RStudio) is an integrated development 

environment (IDE) for R. It includes a console and syntax-highlighting editor that supports 

direct code execution, as well as tools for plotting, history, debugging, and workspace 

management. In the first step, Principal Component Analysis (PCA) was applied on 

natives and indexes separately to understand which variable features were the most 

effective features. It has been decided to proceed with the PCA because it is a statistical 

procedure that allowed to summarize of the information contained in large data tables by 

means of a smaller set of “summary indices” that could be more easily visualized and 

analyzed. The loadings value of each variable was compared among the first components 

explaining at least 88% of the total variance. 

In the next step, the Autocorrelation matrix was computed to detect the most auto-

correlated variable. It means to find the features that were related to each other and 

changed according to an associated one. Multiple linear models (MLR) were applied to 

assess the correlation between some variable features and the grey mould severity. The 
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variable features related to the morphology of the grape bunch demonstrated the most 

correlation with the grey mould infection risk.  

Two models were proposed in this study. The first model included only information 

considering from a bunch evaluation or 2D image analysis techniques such as height, 

width, number of berries, and section width. However, the second model included 

information from the third dimension (3D) such as the volume, the surface, the section 

axes and area, the berries, and the perimeter of the section. 

The maximum number of features that showed a significant contribution to the model 

were considered (p-value ≤0.5). Because disease severity was available as the clone 

mean, all the grapes' features were averaged among the same clone for the regression 

study. In the last step, comparing the model's square regression coefficient (R2) and the 

root mean square error (RMSE) was performed. Because the grey mould severity was 

strictly related to the compactness of the bunch, it has been considered the pattern to 

reveal which traits could describe the grape compactness. 
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Chapter 4  
Experimental Analysis 

 

4.1. Result 

4.1.1. Weather condition  

Analyzing the weather data recorded by the closest Arpav weather station during the 

vintage 2020 compared to the historical data between 1994 and 2019 years, it indicated 

the mean temperature in August and September of 2020 (24.6°C and 20.4°C 

respectively) was greater than the historical trend (22.9°C and 18.3°C respectively). In 

addition, the summer of 2020 had more precipitation than the historical trend (for instance, 

in August 2020 the total rainfall was 196.6 mm compared to the amount of 103.9 mm in 

August the historical data. Because of it, in this year (2020) summer, Botrytis cinerea had 

more suitable conditions to make infections. As can be seen in the below table. (Table 

4.1.) 

Table 4.1. Monthly mean temperature and total rainfall of 2020 vintage compared to the historical data 

recorded by the closest Arpav weather station. 

Period Value April May June July August September 

2020 Tm (°C) 9.9 18.2 21.2 24.0 24.6 20.4 

Historical data Tm (°C) 13.0 17.7 21.6 23.4 22.9 18.3 

2020 Rainfall (mm) 27.8 118.8 204.0 100.4 196.6 119.8 

Historical data  Rainfall (mm) 101.4 124.8 106.8 90.6 103.9 128.1 

4.1.2. PCA method 

In this study, the numbers were used to make the charts and tables easier to 

understand than extended names. As the PCA method was applied for the native 

measures, table 4.2. shows the three clones of Pinot Gris with numbers 4, 5, and 12 have 

the most severity class of grey mould with very high class whereas the number 8 had the 

lowest value for severity class with very low class. Between these two groups, there were 

clones classified into the high, medium, and low classes. This data was based on the 
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chart in Figure 4.1. indicates the score of grapes among the first and second PCA’s 

dimensions. The first and the second dimensions explained 33.58% and 20.10% of the 

total variance, respectively. Clones were figured from 1 to 17 to make the chart easier to 

understand. Clones were divided into five classes because it was the optimal number of 

classes resulting from Sturge’s equation. 

Table 4.2. The table assigns to each clone of Pinot Gris the number and the severity class of grey 

mould based on the scatter plot of Pinot Gris PCA grapes’ scores (Figure 4.1.) 

Number Clone Class 

4 B 10 Very High 

5 H-1 Very High 

12 VCR-5 Very High 

14 FENDIT 13-CSG Very High 

9 CRAVIT ERSA 152 High 

13 ERSA FVG 151 High 

15 ENTAV 53 High 

17 ISMA-AVIT 513 High 

2 2-15 GM Medium 

6 R 6 Medium 

10 SMA 514 Medium 

1 ENTAV 457 Low 

3 SMA 505 Low 

7 ENTAV 52 Low 

11 ISV-F1 TOPPANI Low 

16 FR 49-207 Low 

8 1 GM Very Low 
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Figure 4.1. This scatter plot presents Pinot Gris PCA grapes’ scores distributed according to 

dimension one, the horizontal axis, and dimension two, the vertical axis. The points represent all the 

grapes sampled. The numbers indicate the clone. The clone’s name and number are listed in table 4.2. 

The color indicates the severity class. Numbers 33.58% and 20.10% represent the portion of total 

variance explained by the first and the second PCA dimensions. 

 

For Pinot Noir after applying the PCA on the native measures, clone number 4 of Pinot 

Noir had the highest resistance to grey mould with very high class whereas numbers 5 

and 3 had a low resistance class against grey mould. Between these two groups, there 

were clones classified into the high, and medium classes. As verified in Pinot Gris, the 

clones of the lowest and the highest class occupied opposite corners. 
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Table 4.3. The table indicates for each clone of Pinot Noir the number and the resistance class 

against grey mould based on the scatter plot of Pinot Noir PCA grapes’ scores (Figure 4.2.) 

Number Clone Class 

4 GM-2013 Very High 

2 583 High 

6 667 Medium 

1 165 Medium 

5 SMA-201 Low 

3 828 Low 

 

 

Figure 4.2. This scatter plot presents Pinot Noir PCA grapes’ scores distributed according to 

dimension one, the horizontal axis, and dimension two, the vertical axis. The points represent all the 

grapes sampled. The numbers indicate the clone. The clone’s name and number are listed in table 4.3. 

The Colour indicates the resistance class against grey mould. The percentages 30.12% and 19.88% 

represent the portion of total variance explained by the first and the second PCA dimensions. 

4.1.3. MLR model 

Considering the 2D regression model, only the features related to 2D were assessed. 

These features were such as descriptors of shape and compactness from the images. 
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However, the 3D regression model used all 2D information and the information of section 

analysis, volume, surface, and the combination of data.  

The next step was the MLR. To describe the MLR just five descriptors were sufficient, 

and more descriptors did not make a significant effect on statistical analysis. Equations 3 

and 4 reported 2D and 3D models. When the 3D MLR replaced the 2D MLR, the 

regression changed from 0.656 to 0.838, and based on RMSE, decreased from 1.713 to 

1.175, the accuracy of estimation was enhanced.  

In these equations, Branching, and MaxW related to the presence of the wings while 

Empty volume reported the difference between the total volume inside the 3D model 

mesh and the actual volume based on the volumes of berries and rachis. Surf.H presents 

the ratio between the mesh surface and the height of the grape. MaxW0.5 and MaxW1 

show the max width of the grape at the middle and first sections closest to the peduncle 

where Max.Axis_H1 and Max.Axis_H4 represent the length of the longest axis of sections 

one and four, at 16.67% and 66.67% of the height of the grape, respectively. 

 

TH= -32.8236 * Branching –16.4542* MaxW0.5 +0.0743 *MaxW    Eq. 3 

–0.4630* Height -0.3148* MaxW1 +655184 

 

TH= -4.8797* EmpF +0.4142 *Surf.H -2.4653 *P_Berries     Eq. 4 

-0.6864*MaxAxis_H4 -3.8570 *MaxAxis_H1 +32.6925  

 

The Figure 4.3. indicates the scatter plots which demonstrate the clones among actual 

and predicted TH values, while the colour shows the class severity assigned to clones. 

The Ravaz Index was also measured as the ratio between the yield and the pruning wood 

weight, table 4.4. 
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Table 4.4. Ravaz Index is expressed as the ratio between grape yield and pruning wood weight. 

Clone Ravaz Index 

H-1 4.49 

CRAVIT ERSA 152 7.48 

FR 49-207 7.83 

ISV-F1 TOPPANI 8.19 

VCR-5 8.24 

R 6 9.12 

ENTAV 457 9.55 

ENTAV 52 10.55 

FENDIT 13-CSG 11.47 

B 10 11.68 

ERSA FVG 151 11.79 

ISMA-AVIT 513 12.14 

ENTAV 53 12.22 

SMA 505 12.84 

SMA 514 12.87 

2-15 GM 13.9 

1 GM 17.29 

 

 

 

Figure 4.3. These two scatter plots show the actual and predicted TH of 2D (a) and 3D (b) MLR of 

Pinot Gris. The black line represents the ideal regression line with a slope value of 1, while the color of 

the point is referred to as the clone severity class. 

 

For Pinot Noir, the descriptors of the 2D model did not highlight any significant from 

the MLR. Therefore, the MLR computed on the 3D descriptor included only three 

variables to avoid the overfitting of the model. As a result, the proposed MLR estimated 

an R2 of 0.936 and an RMSE of 0.297. 

(a) (b) 
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Grey mould resistance = 8.1643 *P_Berries +0.7079 *Max.Axis_H4                     Eq. 5 

    +25.1527 *Surf.CJ -30.8111 

Figure 4.4. The scatter plot displays the actual and predicted resistance against the grey mould of the 

3D MLR model of Pinot Noir. The black line shows the ideal regression line with a slope value of 1, while 

the color of the point is referred to as the clone severity class. 

 

4.1.4. Analyzing the relationship between the descriptors and severity class  

There were some descriptors that could affect the severity class of grey mould. To find 

the most effective ones in detail, the scatterplots were drawn based on the tables 4.5.  
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Table 4.5. The values of descriptors and TH value of grey mould in Pinot Gris.  

Clone TH 
Height 

(cm) 

Weight 

(g) 

APP. Vo 

(cm3)l 

Surface 

(cm2) 

Empty  

Fraction 
Surf/H 

ABW  

(g) 
N_Berries Berriers/P 

Surf/ 

Berries 

Max 

Axis1 

(mm) 

Max 

Axis 4 

(mm) 

F13-CSG 14.9 14.0 149.4 141.7 350.3 0.2 25.1 1.5 109.7 0.8 3.2 6.0 5.6 

VCR-5 13.8 12.1 166.3 163.3 331.2 0.1 27.3 1.5 97.7 0.5 3.4 5.2 5.7 

HAUSER-1 13.3 13.3 213.6 192.9 407.3 0.2 30.7 1.6 76.9 1.1 5.3 6.5 6.1 

B-10-H 12.7 12.4 178.9 174.3 328.1 0.1 26.5 1.4 112.7 0.6 2.9 6.2 5.5 

ERSA-FVG-

151 
12.4 14.0 147.6 136.7 388.9 0.2 27.8 1.4 111.9 3.0 3.5 6.8 4.8 

CRAVIT-

ERSA-152 
11.6 14.4 166.5 150.0 442.5 0.3 30.8 1.6 101.9 0.5 4.3 6.4 5.2 

ISMA-AVIT 

513 
11.6 12.1 149.1 142.5 313.5 0.1 25.9 1.3 129.3 0.5 2.4 6.4 4.9 

53-F 11.1 12.6 172.5 157.1 343.1 0.2 27.2 1.5 98.1 0.6 3.5 6.5 5.3 

R6-12 10.4 12.9 172.2 155.0 353.6 0.2 27.4 1.5 103.8 0.5 3.4 6.0 5.4 

2-15-GM 9.8 12.2 178.3 170.0 363.4 0.2 29.7 1.4 117.0 0.6 3.1 6.7 4.9 

SMA-514 9.1 13.4 189.7 172.9 430.4 0.2 32.1 1.5 96.7 0.4 4.4 7.1 5.2 

ISV-F1-

TOPPANI 
8.4 12.2 168.8 158.6 356.1 0.2 29.1 1.4 102.2 0.5 3.5 6.5 5.7 

457F 8.0 14.1 186.7 180.0 477.0 0.3 33.8 1.5 101.3 0.5 4.7 7.5 5.1 

FR-49-207 7.3 15.0 234.6 221.0 489.2 0.2 32.6 1.3 109.1 0.5 4.5 8.0 5.6 

52-F 6.9 15.0 203.4 184.0 478.6 0.2 31.9 1.4 110.6 0.5 4.3 7.7 5.3 

SMA-510 6.7 12.8 161.4 155.7 343.9 0.1 26.8 1.5 101.8 0.6 3.4 7.1 4.9 

1-GM 4.4 16.3 238.0 216.7 563.1 0.2 34.4 1.3 140.4 0.5 4.0 8.1 5.0 

 

APP.Vol: Apparent volume, ABW_g: Average Berry Weight N_Berries: number of berries, Empty Fraction: Ratio between the empty 

volume and computed volume (CC). Surf/H: 3D model surface/height. Surf/Berries: 3D model surface / total number of berries. 

Berries/P: Number of berries per section/section perimeter. Max Axis 4: Major axis horizontal section 4 (66.33% of the height starting 

from the peduncle)  Max Axis 1: Major axis first horizontal section from the peduncle. 
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Figure 4.5. These scatterplots indicate the values of descriptors as weight, height, APP.Vol, surface, 

ABW_g, and Number of berries in the y-axis related to TH value of grey mould. 
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Figure 4.6. These scatterplots indicate the values of descriptors as Empty fraction, Surf/H, Surf/Berries, 

Berries/P, Max Axis 4, and Max Axis 1 in the y-axis related to TH value of grey mould. 

 

These scatterplots indicated that the changes related to these features could be 

impressed with the TH value. These twelve descriptors did not have a high value of R2. 

As seen, R2 was between 0.07 to 0.44 for most of them. However, Max Axis 1 indicated 

more value which was 0.71 compared to the other factors. (Figure 4.5 and 4.6.) All 

descriptors had a negative correlation with TH value except the ABW_g, berries /P and 

Max Axis 4.  
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Table 4.6. The values of descriptors and severity class of grey mould in Pinot Gris. 

Class Height Weight APP. Vol ABW_g N_Berries Surface 

Very Low 16.3493 238.0000 216.6666 1.3073 140.3620 563.0736 

Low 13.8367 190.9742 179.8657 1.4285 105.0169 428.9870 

Medium 12.8546 180.0595 165.9523 1.4823 105.8576 382.4548 

High 13.2659 158.9126 146.5773 1.4421 110.2952 371.9892 

Very High 12.9339 177.0303 168.0357 1.4926 99.24988 354.2208 

APP.Vol: Apparent volume, ABW_g: Average Berry Weight   N_Berries: number of berries. 

 

Figure 4.7. The above box plots show the differences between the five severity classes of grey mould for 

each descriptor in Pinot Gris. 
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Table 4.7. The values of descriptors and severity class of grey mould in Pinot Gris. 

Class Empty Fraction Surf/H Surf/Berries Berriers/P Max Axis 4 Max Axis1 

Very Low 0.2417 34.4401 4.0115 0.4799 4.9882 8.0549 

Low 0.1944 30.8453 4.0761 0.5276 5.3456 7.3945 

Medium 0.1863 29.7217 3.6535 0.5162 5.1708 6.6222 

High 0.2145 27.9296 3.4351 1.1429 5.0543 6.5251 

Very High 0.1256 27.4030 3.6979 0.7444 5.7029 5.9675 

Empty Fraction: Ratio between the empty volume and computed volume (CC). Surf/H: 3D model surface/height. Surf/Berries: 3D 

model surface / total number of berries. Berries/P: Number of berries per section/section perimeter. Max Axis 4: Major axis horizontal 

section 4 (66.33% of the height starting from the peduncle)  Max Axis 1: Major axis first horizontal section from the peduncle.  

Figure 4.8. The above box plots show the differences between the five severity classes of grey mould for 

each descriptor in Pinot Gris. 
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Based on table 4.6 and 4.7 the values of descriptors and five severity classes of grey 

mould in Pinot Gris were analysed by the box plots (Figues 4.7. and 4.8.). It can be 

considered high differences in mean value of weight, height, Max Axis 1 and surface from 

very low to very high severity classes. In addition, it represented the trend from very low 

class to very high class in thses descriptors.  

4.1.5. Assessing the data 

In addition, the clones of Pinot Gris with different susceptibility to grey mould were 

divided into two groups to find the differences between the two group and their features. 

The clones with higher values than 10 for TH in the first group and the clones with lower 

values than 10 in the second group were arranged however the clone R6 with 10.44 was 

present in both tables. Two tables were created and the relation between the two groups 

for each feature was assessed.  

Table 4.8. The two groups of clones of Pinot Gris with high and low susceptibility to grey mould 

Clone Group 1 Samples 

number 

Wings Shape Weight 

(g) 

Volume 

(cm3) 

Height 

(cm) 

Width 

(cm) 

Berries 

number 

TH 

FENDIT 13-CSG 6 1 C 149.4 141.7 14 10.4 109.7 14.89 

VCR-5 6 1 C 166.25 163.3 12.1 8.7 97.7 13.78 

H-1 7 1 C 213.59 192.9 13.3 9.1 76.9 13.33 

B 10 7 1 C 178.89 174.3 12.4 8.1 112.7 12.67 

ERSA FVG 151 6 1 C 147.55 136.7 14 9.5 111.9 12.44 

CRAVIT ERSA 152 5 1 CF 166.54 150 14.4 7.4 101.9 11.56 

ISMA AVIT 513 4 1 CF 149.08 142.5 12.1 11 129.3 11.56 

ENTAV 53 7 1 C 172.49 157.1 12.6 8.1 98.1 11.11 

R 6 5 1 C 172.15 155 12.9 7.8 103.8 10.44 

. 

Clone Group 2 Samples 

number 

Wings Shape Weight 

(g) 

Volume 

(cm3) 

Height 

(cm) 

Width 

(cm) 

Berries 

number 

TH 

R 6 5 1 C 172.15 155 12.9 7.8 103.8 10.44 

2-15 GM 7 1 C 178.34 170 12.2 8.1 117 9.78 

SMA 514 7 1.43 CF 189.69 172.9 13.4 13.2 96.7 9.11 

ISV-F1 TOPPANI 7 1 C 168.8 158.6 12.2 8.1 102.2 8.44 

ENTAV 457 7 1 CF 186.66 180 14.1 7.5 101.3 8.00 

FR 49-207 7 1 F 234.57 221 15 6.8 109.1 7.33 

ENTAV 52 5 1 F 203.4 184 15 7.8 110.6 6.89 

SMA 505 7 1 C 161.44 155.7 12.8 7.9 101.8 6.67 

1 GM 6 1.17 F 238 216.7 16.3 6.9 140.4 4.44 
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Figure 4.9. These graphs indicate the difference between two groups of clones of Pinot Gris with high 

and low susceptibility to grey mould. In graph (a) the mean value of five factors were analyzed for two 

groups (the scale of the mean values for the weight, height, width, and volume were g, mm, mm, cm2). 

The histogram (b) reassumes the clones’ shapes by the two groups. The blue line presents group one, 

and the orange line shows group two. C: cylindric shape, F: funnel shape, and CF: grapes with both 

shapes. 
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In the graph, for the weight, volume, height, and the number of berries, group two 

showed more values in most clones than group one. Only for the width the values of group 

one showed the higher numbers. As seen in the bar charts, in group one there were seven 

cylindrical shape clones and two with both shapes whereas in group two there were four 

cylindrical shape clones, two with both shapes, and three funnel shapes which was the 

difference between the two groups. 

 

Figure 4.10. These box plots present the differences between two groups for six factors weight, volume, 

height, width, number of berries and the number of wings. 
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Table 4.9. This table shows the statistical analysis related to two groups of Pinot Gris clones. In P_value 

column, the signs mean “*” for P.value<0.05 and n.s. for for P.value > 0.05. 

Descriptor Average Standard deviation Number of bunches 

per group 

P-value 

weight 1 168.4378 19.3219 48 * 

weight 2 192.5611 26.1235 53 
 

height 1 13.0889 0.8252 48 n.s. 

height 2  13.7667 1.3457 53 
 

volume 1 157.0556 16.7902 48 * 

volume 2 179.3222 23.2465 53 
 

width 1 8.9000 1.1470 48 n.s. 

width 2 8.2333 1.8123 53 
 

number of berries 1  104.6667 13.4166 48 n.s. 

number of berries 2 109.2111 12.4179 53 
 

wings 1 1.0000 0.0000 48 n.s. 

wings 2  1.0667 0.1390 53 
 

 

Table 4.9. reported the result of the statistical analysis of the two groups with Anova 

for the non-normal distribution sample. The weight and the volume showed significant 

and meaningful differences while the differences between the other factors were not 

significant. These results were confirmed by box plots (Figure 4.10). In these box plots 

the weight, and volume represented the more variability of data for the group two than the 

group one and for most of the descriptors, the mean value of group two was more than 

mean value of the group one. 

These steps were performed for Pinot Noir clones. However, splitting the number of 

Pinot Noir bunches into two groups did not generate enough data for statistical analysis. 

 

4.2. Discussion  

Considering the OIV standard descriptors, finding a strong relationship between the 

features of Pinot clones and the severity of grey mould was unclear. Because all the 

grapes were from the same grapevine variety and very similar to each other. Most of the 

grapes were compact and cylindric without wings and just a few of them had branching 

from the main grape’s body. Therefore, it is needed to assess more details to find the 

differences between the clones.  
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The analysis with the PCA model and score plotting the result showed a diagonal trend 

crossing the second and the fourth quadrants both in Pinot Gris and Pinot Noir. This 

model was applied to native measures because indexes were defined of formulas 

between natives when the native measures were calculated from grapes. Based on the 

result, clone 1 GM of Pinot Gris indicated the lowest severity class, where whereas the 

highest severity class, belonged to FENDIT 13-CSG, VCR-5, and B 10. 1 GM that had a 

funnel shape, and some grape samples have two wings. Clone 1 GM had the highest 

values for height, width, empty volume, and branching that highlighted this clone had less 

compactness than the other clones and was less susceptible to grey mould. FENDIT 13-

CSG, VCR-5, and B 10 had a shape with one wing. They had the lowest values for height, 

the fraction of estimated empty volume, and surface. Clones FENDIT 13-CSG, VCR-5, 

and B 10 could be considered very compact grapes. This result could demonstrate that 

with high compactness and large density of grapes, the risk of grey mould increased, and 

the condition was more suitable for fungi penetration to the berries. For Ravaz index, 

however, clone 1 GM showed the highest index value, and the linear regression between 

the Ravaz index and the grey mould severity was very low (R2 = 0.15). 

The clone GM-2013 of Pinot Noir had the highest resistance to grey mould based on 

the PCA analysis. This clone had two wings and a cylinder shape. In addition, it had the 

highest number for the width and surface. Moreover, it was the second clone for the 

estimated empty volume fraction and branching. Contrary to it, clones 828 and SMA-201 

were the lowest resistant to grey mould and they were clustered with clone 667, which 

was belonged to the medium class and shows many descriptors of the middle classes. 

SMA-201 had the smallest value for the ratio between surface, height, volume, and 

berries number. Also, clone 828 had the lowest resistance to grey mould. There were 

some factors of the grape shape related to compactness that make the bunch resistant 

or susceptible to grey mould infections. The other parameters include the berry’s skin 

thickness, the chemical content of berries juice, genetic patterns, dangerous insects, and 

the environment and climate. In this study also the weather condition was suitable for 

Botrytis cinerea to make infections. 

For Pinot Gris, when the number of R2 increased in the 3D MLR, the RMSE improved 

compared to the 2D MLR. The most important variables of the 2D MLR were the width of 
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sections and the presence of branching from the main body of the grapes. For 3D 

analysis, section width and many other exciting descriptors were added. The ratio 

between the perimeter of the middle section and the berries number in the middle section 

means the portion of the section perimeter occupied by each berry. Lower values could 

mean berries were tiny and compact. For example, clone 1 GM of Pinot Gris had ten 

berries, while clone FENDIT 13-CSG had eleven ones and a smaller perimeter than clone 

1 GM. The ratio between perimeter and berries resulted higher in favour of clone 1 GM 

2.0837cm and 1.78542cm, respectively. The surface of the mesh was related to the grape 

dimension, branching, and compactness. The berries of compact grapes often tighten 

and were close to each other, while the berries of loose grapes were far from each other. 

Consequently, the contribution of each berry in compact grapes was lower to the whole 

surface than in loose ones. The ratio between surface and height was an index to 

standardize the surface of the grape dimension. In fact, measuring the surface was limited 

by the quality of images and their resolution and alignment. 

For Pinot Noir, the 2D analysis had no significant result with 2D descriptors to the MLR 

model and only three descriptors took part in the 3D MLR model. The clones of Pinot Noir 

grapes were much more different than the clones of Pinot Gris. Therefore, they showed 

significant divergence in shape, number of wings, and branching.  

In this part of the study, grape weight and volume were not so relevant to predict bunch 

compactness and grey mould severity compared to the studies related to the indexes of 

compactness (J Tello and Ibáñez 2014) and evaluation of cluster length, width, and 

elongation by the analysis of 2D images (Javier Tello et al. 2016). In these studies, the 

weight and length were used to create the indexes for estimating the bunch compactness.  

To find more detail about the relationship between the more effective descriptors for 

Pinot Gris and the severity class of grey mould the plots were designed. Among the twelve 

descriptors, the R2 value for Max Axis 1 (Major axis first horizontal section from the 

peduncle) was 0.71. In addition, the weight, height, Max Axis 1 and surface compared to 

the other factors showed a higher variability of data related to severity classes of grey 

mould that could be presented these factors were more effective in the severity of grey 

mould infection on grapes. They were more related to the morphological characteristic of 
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the grape and were based on the surface and height of the grape which showed the 

importance of these factors for the presence of the infection.  

In another analysis, the two groups of clones for Pinot Gris were created to find the 

differences between high-susceptible and low-susceptible clones of grey mould. After 

analysis of the graphs, some features such as the weight, volume, and wings in group 

two showed more values in most clones than in group one. Considering the bar charts 

related to the shape factor, in group one there were seven cylindrical shape clones and 

two with both shapes whereas in group two there are four cylindrical shape clones, two 

with both shapes, and three funnel shapes which was the difference between the two 

groups, and it could indicate the importance of the shape factor in grey mould infection. 

Regarding the result of the statistical analysis of the two groups the weight and the volume 

showed significant differences which were like the result of the graphs and confirmed the 

importance of these two factors between the two groups and enhancing the infection on 

berries.  

 

4.3. Conclusions 

The purpose of this study was to understand the factors of the grapevine morphology 

of grapevine clusters by extracting the data from the 3D reconstruction of grapes by 

photogrammetry techniques. This method compared to other methods sustainable 

pursued to make a deep analysis of bunches’ morphology comparing intra-variety clones. 

Seventeen Pinot Gris clones and six Pinot Noir clones were collected to find the most 

compact clone. The images of grapes were processed with image software. The data was 

extracted from five horizontal and two vertical sections. The PCA analysis was performed 

on the data to find the distribution trend in the behaviour of the clones to develop grey 

mould infections. Two multiple linear regression models were proposed per grapevine 

variety considering the most important descriptors from the PCA. The first model 

assessed the correlation between the grey mould severity and the descriptors from the 

2D analysis, while the second model analyzed both descriptors from the 2D and 3D 

analysis. The 3D MLR presented higher performances than the 2D MLR. In addition, 

analyzing the data with graphs and statistical results showed the importance of weight 
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and volume, and shape, besides the ratio between surface and height, empty volume, 

and width as important descriptors of compactness that could affect grey mould infection.  

The results proved the relevance of grape morphology on grey mould infection in 

grapes. Further studies should be proposed on other grapevine varieties to prove the 

importance of the descriptors selected in this trial. It is necessary to repeat this work next 

year to confirm the results based on other vintages or different grapevine varieties. 
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