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Abstract
In this thesis, I studied Wolf Rayet – black hole (WR–BH) binary systems by means

of the population-synthesis code SEVN. In particular, I investigated whether WR–BH bi-
naries are the progenitors of the binary black holes observed with the gravitational wave
detectors LIGO and Virgo. I focused my work on solar-metallicity systems and examined
the formation of Cyg X-3, the only WR–BH candidate known so far in the Milky Way.
I explored a 24-dimension parameter space with two possible values for the solar metal-
licity, three core-collapse supernova models and four natal kick options. For each of the
24 combinations, I generated a physically motivated population of 106 binaries with SEVN
and determined the influence of this parameter space on the evolution of WR–BH systems.

I found that ≳ 90% of the simulated merging binary black holes evolved through the
WR–BH configuration. Cyg X-3 is likely a binary black hole progenitor, with a probability
≳ 75% in the most pessimistic cases. These results are robust and are not significantly
affected by the choice of the main physical parameters (e.g. metallicity, natal kick and
core-collapse models). Furthermore, I analyzed the evolution of binaries similar to Cyg
X-3 and found that the WR–BH phase is the result of two or three mass transfer episodes.
The number and type of mass transfer processes are mainly affected by the core-collapse
supernova model, even though a final common envelope is mandatory to form the Wolf-
Rayet star in all the Cyg X-3 candidates that I considered.

My results highlight that WR–BH systems are almost a necessary evolutionary stage
to produce merging binary black holes at solar metallicity. Therefore, additional and
more accurate observations of binaries like Cyg X-3 emerge as one of the most promising
possible characterizations of binary black hole progenitors, providing unique insights to
their formation channels and to the mass transfer physics.

In the first chapter of this thesis, I introduced the possible tension between the spin
and mass distribution of X-ray binaries and binary black holes. In the second chapter I
discussed the uncertainties and possible fates of the sample of observed WR–BH binaries,
including the characterization of Cyg X-3. Also, the second chapter contains a discussion
on the current single stellar evolution theory and mass transfer models, highlighting their
limits and role in binary evolution. In the third chapter I described the code SEVN and
the choice of the initial conditions. I presented my results in the fourth chapter and drew
my conclusions in the fifth chapter.
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Chapter 1

Demography of binary black holes

The new gravitational wave era In September 2015, the detection of the first gravitational wave
event, GW150914, not only confirmed the existence of binary systems made of two stellar black holes
but also demonstrated that such systems are capable of merging via emission of gravitational waves
within a Hubble time H−1

0 [1]. In March 2020, the LIGO, Virgo and KAGRA collaboration (hereafter,
LVC ) ended the third observing run and, by November 2021, produced the third gravitational-wave
transient catalog (GWTC-3), revealing a total of ∼ 80 merging binary black holes discovered with the
gravitational wave detectors. Overall, GWTC-3 revealed ∼ 90 mergers of compact object binaries,
including also double neutron star and neutron star-black hole systems that will not be considered
in this thesis [2].

Two main evolutionary channels The formation pathways of binary black holes are an active
field of research and can be divided into two main evolutionary scenarios: isolated binary or dynam-
ically active environments. They can be investigated by analyzing the features in the distribution of
the masses, spins and related quantities: different formation channels lead to different predictions on
black hole mass, mass ratio q = M2/M1 (M1 ≥ M2), spin alignment and magnitude.

In the isolated binary evolution scenario, tidal interactions and mass transfer episodes are thought
to be so efficient to favour the production of compact objects with similar masses (q ∼ 1) [3] with
spins aligned and parallel to the orbital angular momentum [4]. Binaries that evolve in a dynamically
active environment likely undergo exchanges and hierarchical mergers, allowing for more asymmetric
masses (q ≪ 1) [5] and favoring an isotropic spin orientation [6].

Single stellar evolution prohibits the formation of black hoes in the pair-instability mass gap
∼ 60 − 120 M⊙ [7]: the existence of black holes in the gap, like the components of GW190521
(∼ 66 M⊙ and ∼ 85 M⊙ [8]), requires either a hierarchical merger history or a different modeling in
the stellar evolution (for instance, lowering the rate of the triple-α reaction can push to higher masses
the lower boundary of the mass gap [9]).

The spin magnitude of the primary (first formed) and secondary (last formed) black hole can be
related to the dominant mass transfer processes. On the one hand, X-ray binaries observations indi-
cate that the secondary black hole can be spun-up by tides [10]. On the other hand, primary black
holes formed through a common envelope are thought to be almost zero-spinning black holes because
their progenitors dissipated the angular momentum when they lost their envelope [11]. Nevertheless,
the observation of high-mass X-ray binaries with fast spinning black holes and main sequence com-
panions suggests that the current modeling and understanding of the angular momentum transport
in single and stellar binary evolution is still rather poor and needs further investigation [12]. More-
over, spins are difficult to constrain with a good precision in gravitational-wave signals (they cause
second-order effects in the gravitational waveform) and their connection to the progenitor evolution
is further challenged by the core-collapse supernova, which modifies both the magnitude and the
orientation of the spin of the new-born black hole [13].

Chapter outline In the following sections, I will present the theoretical background and observa-
tional methodology used to determine the properties of binary black holes revealed with gravitational
wave detectors (hereafter, LVC binary black holes) and of their progenitor candidates, the X-ray
binaries. Then, I will discuss the possible tension between the mass and spin distributions of binary
black holes and X-ray binaries.
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2 Demography of binary black holes

1.1 Gravitational waves

1.1.1 Theory and methods for parameter estimation

A match-filtering method The detection and characterization of the binaries observed with
gravitational waves relies on matched-filtering techniques and Bayesian analysis.

First, the signal is detected with the match-filtering technique. The detection pipeline filters the
recorded signal with waveform templates generated by numerical relativity calculations. Different
binary properties produce different waveforms, therefore a match in the signal not only reveals a
detection but allows an approximate estimate of the binary parameters.

Once the signal is detected, general-relativity models that include, for instance, spin precession
are used to refine the waveform template and the fit. Eventually, Bayesian analysis is carried out
on each data-set to derive posterior distributions of source parameters: the final best estimates are
usually the median values of the posterior distribution with uncertainty given by the 90% credible
interval.

Spin determination A black hole binary undergoing a quasi-circular inspiral is characterized by
fifteen parameters1: eight intrinsic (mass Mi and three-dimensional components of the spin vectors
S⃗i for each i-th black hole) and seven extrinsic, for the sky location and orbit orientation (right
ascension α, declination δ, luminosity distance dL, orbital inclination ι, polarization angle Φ, time of
coalescence tc and phase at the coalescence ϕc) [14].

In practice, the three spin vectors are the most difficult parameters to characterize because they
imprint a second-order effect in the waveform, requiring advanced numerical relativity calculations
to be correctly modeled. In place of the six spin vectors, the pipeline analysis fits six effective
spin parameters that are slightly easier to obtain from the observations: the two dimensionless spin
magnitudes χi, the two polar tilt angles θi, the effective spin χeff and the effective precessing spin
χp. All the values are calculated at the reference frequency of 20 Hz.

The dimensionless spin χi quantifies the amplitude of the spin by measuring how much the black
hole is close to being a Schwarzschild, non-rotating black hole (χi = 0) or to a maximally-spinning
Kerr black hole (χi = 1)

χi =
|S⃗i|c
GMi

∈ [0, 1] i = 1, 2, (1.1)

where S⃗i is the spin vector, G the gravity constant, and c the speed of light.
The two polar angles θi measure the inclination of each black hole spin with respect to the orbital

angular momentum L̂N and enter in the definition of both the effective spin χeff and the effective
precessing spin χp. The effective spin χeff measures the mass-weighted components of black hole
spins that are aligned with the Newtonian orbital angular momentum L̂N (normal to the orbital
plane)

χeff =
M1χ1 cos θ1 +M2χ2 cos θ2

M1 +M2
(1.2)

The effective precessing spin, which measures the dominant spin projected on the orbital plane,
that eventually causes the relativistic precession of the orbital plane itself

χp = max

{︃
χ1 sin θ1,

(︃
3 + 4q

4 + 3q

)︃
qχ2 sin θ2

}︃
(1.3)

where q = M2/M1 is the binary mass ratio [13].

A toy model for the main parameter estimation Beside Bayesian analysis, it is still possi-
ble to obtain order-of-magnitude estimates of the key quantities that shape the waveform, like the
masses, by simply using as toy model a circular binary that converts all the orbital energy lost into
gravitational wave radiation.

According to the theory of the general relativity, the amplitude of gravitational waves is propor-
tional to the second derivative with respect to time of the mass quadrupole moment of the compact

1The 16th parameter, orbital eccentricity, is currently neglected in the LVC analysis for computational reasons.
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source. Explicit calculation of the quadrupole moment of a circular binary relates the amplitude h of
the gravitational wave emitted to the luminosity distance dL, the gravitational wave frequency νGW

and the chirp mass M according to [15, 16]:

h =
4

dL

(︃
GM
c2

)︃5/3 (︂π νGW

c

)︂2/3

(1.4)

The chirp mass M is defined as a combination of the masses of the binary and is defined in every
time interval of the signal by the different value νGW and derivative ν̇GW of the gravitational wave
frequency, as follows

M =
(M1 M2)

3/5

(M1 +M2)1/5
=

c3

G

(︃
5

96
π−8/3 ν

−11/3
GW ν̇GW

)︃3/5

(1.5)

The chirp mass is easily obtainable from the signal analysis by Fourier-transforming the recorded
amplitude time-series into a frequency time-series, as shown in Fig. 1.1. By re-arranging the definition
of the chirp mass, it is possible to show that knowing the chirp mass puts a lower limit to the total
mass of the system

(M1 +M2)min = 43/5M ∼ 2.3 M (1.6)

The gravitational wave frequency dependence in Eq. 1.4 already encloses all the information on the
compactness of the orbit. The binary considered in the toy model is circular so its mass quadrupole
moment is symmetric under a 180◦ rotation: every half-orbit the gravitational wave produced has
the same phase. In other words, a circular binary produces a gravitational wave with frequency that
is twice the orbital frequency: νGW = 2νs.

As the binary spirals-in, the orbit tightens and the orbital frequency increases, causing a rise
also in the gravitational wave frequency and in the amplitude of the signal, according to Eq. 1.4: it
is the so-called chirp signal. The peak of the signal, both in terms of frequency and amplitude, is
reached at coalescence, when the orbital separation reaches its minimum and is just the sum of the
two Schwarzschild radii

Rcoalescence =
2G

c2
(M1 +M2) (1.7)

Using Kepler’s third law and the relation νGW = 2νs, the peak frequency of the gravitational wave
νGW,peak can be related to the total mass of the binary by

νGW,max =
1

π
√
8

c3

G (M1 +M2)
(1.8)

Coalescence to determine masses, orbital separation and luminosity distance Eq. 1.8
and 1.5 show that precise measurements on the inspiral and peak frequency provide the chirp and
total mass of the system. Measuring the peak frequency, therefore the total mass, also allows the
determination of the orbital distance at coalescence. Given that the amplitude of the gravitational
wave is the signal recorded by the detectors, it is possible to use Eq. 1.4 with the values known at
the coalescence to obtain the luminosity distance of the source.

On the one hand, assuming a cosmological model, it is possible to convert the luminosity dis-
tance into the redshift of the source. On the other hand, gravitational wave observations provide
an independent luminosity distance measurement that, coupled with electromagnetic counterpart
observations, allows an independent method to estimate the Hubble cosmological parameter H0 [17].

Gravitational waves are stretched by the expansion of the Universe, therefore it is mandatory to
use the redshift information to correct the parameters determined so far in the detector’s frame and
obtain the intrinsic ones in the source’s frame. Because of the cosmological redshift z, the observed
frequency of the gravitational wave is lower than the one emitted. The frequency-dependence enters
in the determination of the chirp mass in Eq. 1.5 and, according to Eq. 1.8, a lower peak frequency
results in an over-estimation of the source total mass. Eventually, both masses need to be reduced as

Msource
i =

Mdet
i

(1 + z)
i = 1, 2 (1.9)
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Figure 1.1: Signal detection of GW150914 [1]. Top: amplitude time-series. Bottom: frequency time-series.

GW150914-like binaries It is possible to apply the above formulas to get an order-of-magnitude
estimate of any binary detection. For instance, the Bayesian analysis of the signal of GW150914
reported in Fig. 1.1 revealed two black holes of masses M1 = 35.6+4.7

−3.1 M⊙ and M2 = 30.6+3.0
−4.4 M⊙

at redshift z = 0.09+0.03
0.03 within 90% confidence intervals [14]. Using Eq. 1.9, the masses revealed

in the detector frame where about 10% heavier, respectively M1 ∼ 39 M⊙ and M1 ∼ 33 M⊙. The
corresponding chirp mass was M ∼ 30M⊙ and the total mass M ∼ 70 M⊙, meaning that at the
coalescence the binary had a radius of only Rcoalescence ∼ 200 km and produced a peak gravitational
wave at νGW,peak ∼ 300 Hz. The binary had a luminosity distance of dL = 410 Mpc and the
gravitational wave was detected with an amplitude of h ∼ 10−21 Hz−1/2.

Sensitivity, biases and future perspectives According to Eq. 1.4, the farther the sources are,
the lower the amplitude of the gravitational wave that reaches the detector. To have a quantitative
comparison it is useful to use as proxy-source a binary neutron star: the limits on its equation of
state impose that a single neutron star has at maximum a mass of ∼ 3 M⊙, therefore the binary chirp
mass is well-defined and doesn’t exceed M ∼ 2.6 M⊙ [19]. Fig. 1.2 reports the sensitivity curves
of the LIGO and Virgo interferometers and the end of the third observing run O3, highlighting how
the worst sensitivity of Virgo at the high frequency (mainly caused by the photon shot noise) limits
the maximum observable distance of the binary neutron star by a factor of 2 when compared to the
performances of LIGO [2].

In terms of binary black holes, a source like GW150914 that peaks at ν ∼ 300 Hz could be
observed by the LIGO interferometers with sensitivity of h ∼ 10−23 Hz−1/2 up to a luminosity
distance of dL ∼ 1.6 Gpc: the binary can now be observed in a volume of space ∼ 64 times bigger.
The observable volume is maximum for binaries that merge close to the best sensitivity range at
∼ 100 − 200 Hz, that, according to Eq. 1.8 are likely binaries composed of heavy black holes with
a total mass M1 + M2 ∼ 60 − 100 M⊙: the gravitational wave detectors are biased towards the
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Figure 1.2: Sensitivity curves (left) and binary neutron star observational probability density (right) of
the LIGO and Virgo interferometers during the third observing run O3. The lower sensitivity of Virgo for
ν ≳ 150 Hz limits the observable volume, especially for the lighter sources like the binaries of neutron stars
[2].

Figure 1.3: Example of the possible sensitivity curves (left) and instrumental horizons (right) of the planned
third generation interferometers Einstein Telescope and Cosmic Explorer. Unlike the advanced LIGO inter-
ferometer, Einstein Telescope and Cosmic Explorer will detect binary black holes well-beyond redshift z ∼ 2
[18].

observation of heavy binary black holes.
Third generation gravitational wave detectors, like the planned Einstein Telescope and Cosmic

Explorer, will be at least one order of magnitude more sensible than advanced LIGO and Virgo at
design sensitivity, allowing to probe binary compact object mergers beyond redshift z ∼ 2. As shown
in Fig. 1.3, the maximum observable distance depends on source mass and interferometers’ sensitivity,
that ultimately depends on its design (Fig. 1.3 is only one of the proposed designs, but is representative
of the goals of the project) [18]. Again, Eq. 1.4 underlines how the detection improvement is mainly
for binary black holes: their heavier mass produces stronger amplitude signals than binary neutron
stars, making them visible even at high redshift.

1.1.2 Observed distributions of mass and spin
Merger rate densities and posterior distributions The parameter distributions of the ob-
served gravitational wave sources are usually expressed either in terms of cumulative density functions
(CDFs) or in terms of merger rate densities (MRDs), the latter being the number of sources that
merge in a co-moving volume and in a given time range. Both distributions are derived as posterior
distribution functions (PDFs) p(θ) of some parameter θ in the framework of an hierarchical Bayesian
analysis, that accounts for the observational biases and fits the hyper-parameters Λ for the intrinsic
population properties. From a theoretical perspective, the hyper-parameter fits are one of the most
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fundamental information to extract from the observations: their values can be directly compared
with the predictions of the population-synthesis codes, discriminating between the different models
proposed for the formation of the compact object merges [13, 20].

The astrophysical PDF of the source parameter θ is calculated averaging the prior distribution of
the source π(θ|Λ) over the population hyper-parameters Λ

p(θ) =

∫︂
π(θ|Λ) p(Λ|d⃗) dΛ (1.10)

The prior π(θ|Λ) is the intrinsic distribution of the source parameter θ for a given set of hyper-
parameters Λ. The hyper-posterior p(Λ|d⃗) indicates the most probable values for the hyper-parameters
Λ given the observed data vector d⃗. Intuitively, the hyper-posterior could be a Gaussian that shifts
and tightens around the true values of the hyper-parameters the more data are collected i. e. the
more the data are representative of the population of interest.

To be more clear, it is possible to consider as an example a posterior distribution of the primary
mass p(M1) similar to the one shown in the left-hand panel of Fig. 1.4. A reasonable choice for the
prior could be a power-law (possibly related to the power-law of the initial mass functions of the stars
[21]) plus a Gaussian N (µ, σ) centered in µ with dispersion σ (to indicate possible over-densities)

π(M1|α, µ, σ) ∝ M−α
1 N (µ, σ) (1.11)

The three hyper-parameters Λ⃗ = (α, µ, σ) will be then determined by the fit to the data. Since
population-synthesis codes too can predict the intrinsic distribution of the primary masses p(M1),
it is possible to reject the results and the corresponding underlying assumptions of the ones that,
for instance, predict a Gaussian peak in a different position than the one obtained from the hyper-
parameter fits.

According to Bayes theorem, the hyper-posterior p(Λ|d⃗) is proportional to the hyper-likelihood
L(d⃗|Λ) an to the hyper-prior π(Λ)

p(Λ|d⃗) ∝ L(d⃗|Λ) π(Λ) (1.12)

The hyper-prior π(Λ) indicates the prior beliefs on the hyper-parameters Λ and usually is assumed
to be uniform and non-informative. The hyper-likelihood L(d⃗|Λ) is the key quantity determined by the
data and accounts for the observational biases. Assuming that the number of detected gravitational-
waves Ndet is related to the intrinsic number of events through a Poisson statistics, the hyper-
likelihood can be modelled as

L(d⃗, Ndet|Λ) ∝ NNdet e−Nξ(Λ)
Ndet∏︂
i=1

∫︂
L(di|θ) π(θ|Λ) dθ (1.13)

The product NNdet e−Nξ(Λ) encodes the information on the observational biases and detection
efficiency. In fact, N indicates the expected number of mergers over the observation period while ξ(Λ)
is the fraction of mergers that are detectable for the population characterized by hyper-parameters Λ.
NNdet e−Nξ(Λ) is strongly influenced by the dimension of the co-moving time-volume ⟨V T ⟩ explored
by the detector, namely the instrumental horizon integrated for the observation time.

The single-event likelihood L(di|θ) is usually obtained via importance sampling from a default
prior πdef(π). Therefore, the integral of the prior π(θ|Λ) over the single-event likelihood L(di|θ) can
be evaluated averaging over the posterior samples∫︂

L(di|θ) π(θ|Λ) dθ ≈ ⟨ π(θ|Λ)
πdef(π)

⟩ (1.14)

Primary mass spectrum For each binary source, the primary mass is defined as the most massive
compact object. The differential merger rate density of the primary mass observed at the end of O3b
is a power-law with slope α = 3.5+0.6

−0.56 with a Gaussian peak centered in M1,µ = 34+2.6
−4.0 M⊙. GWTC-

3 contains more low-mass system than GWTC-2, causing a steeper decline in the power law at higher
masses and reducing the mass of the 99th percentile, now at ∼ 44 M⊙ and not at ∼ 60 M⊙ as it was
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Figure 1.4: Differential merger rate density (left) and cumulative density function (right) of the primary
mass of the binary black holes detected with the gravitational waves. In blue the posterior distributions
obtained with GWTC-3, in grey the ones obtained with GWTC-2. The thick solid lines denote the median
values and are surrounded by the 90 % credible intervals.The vertical grey band on the differential merger
rate indicates the 90 % credible interval for the mean of the Gaussian peak [13].

in GWTC-2. There are strong over-densities at ∼ 10 M⊙ and ∼ 35 M⊙ that may reflect properties
of the astrophysical environment but that are still under investigation.

Even though the region ≳ 70 M⊙ is still weakly explored, there is no strong evidence for or against
an upper mass gap, at least up to ∼ 75 M⊙. Still, a similar finding challenges the existence of the
pair-instability mass gap (∼ 60 − 120 M⊙ [7]): either the single stellar evolution models need to be
corrected [9] or the formation in dynamically active environments is required [5]. On the other hand,
there is still mild support for a lower-mass gap between ∼ 3 M⊙ and ∼ 5 M⊙, potentially due to the
physics of core-collapse supernovae and in agreement with the dearth of compact objects observed in
nearby X-ray binaries [22].

Spin distribution At the end of the third observing run, the black hole population exhibits a
preference for low-spinning black holes χ ≲ 0.4, with a peak distribution at χ ∼ 0.2 and a long
tail at higher values. Separate analysis of the fastest (χA) and slowest (χB) spinning components
of the binary revealed that the rapid-spinning components are still quite slow χA ∼ 0.4 while the
slow-spinning ones are concentrated below χB ∼ 0.2, as expected. Posterior distributions for the spin
magnitudes are shown in Fig. 1.5.

As shown in the left-hand panel of Fig. 1.6, the effective spin parameter χeff distribution is
consistent with a Gaussian centered in χeff,µ = 0.06+0.04

−0.05, indicating either very low spin magnitudes
or spins misaligned with the orbital angular momentum. In particular, the distribution extends
to negative effective spins χeff < 0, suggesting the existence of polar angle tilts θ ≥ 90◦ i. e.
black holes anti-aligned with the orbital angular momentum that likely formed in dynamically active
environments. This evolutionary scenario is consistent also with the flatter and more isotropic-
oriented distribution of the tilt angles shown in the right-hand panel of Fig. 1.6.

Data from GWTC-3 exhibit a mild anti-correlation between the effective spin parameter χeff and
the mass ratio q, as shown in the left-hand panel of Fig. 1.7. If confirmed, the anti-correlation would
challenge the usual evolutionary pathways for binary black hole progenitors, indicating that field
binaries formed with q ∼ 1 do not have spins aligned with the orbital angular momentum (χeff ∼ 1),
because either the tides and mass transfer are not so efficient or there is some additional and yet
unknown effect, like a third-body perturbation [23].

So far the LVC analysis has been carried out assuming the same spin distribution at all masses,
even though the low-mass binaries dominate the sample and seven high-mass binaries make up ∼ 70%
of the moderate spins. A more refined analysis compared the spin component aligned with the orbital
angular momentum |sz| with the chirp mass of each binary. The result is shown in the right-hand panel
of Fig. 1.7. All the binaries are consistent with spins misaligned with the orbital angular momentum
(|sz| = 0) even tough there are over-densities in the chirp mass distribution: if confirmed by further
detections it would challenge the correlations predicted by the hierarchical formation scenario. The
large spread of the high-mass binaries M ≳ 30 M⊙ with respect to the low-mass ones is consistent
with having a large number of detections at low masses and fewer at high masses: at the moment it
is not possible to reject or confirm an aligned spin magnitude dependence with the chirp mass.
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Figure 1.5: Left: Spin magnitude (χ) posterior distribution of all the merging black holes in GWTC-3 (gray)
compared to the 90 % credible intervals for GWTC-2 (in blue). Right: Separate posterior distributions within
90 % credible bounds of the fastest (χA, in blue) and slowest (χB , in green) black holes in the binary. The
new observations indicate a preference for slow-spinning black holes χ ≲ 0.4, with a fast-spinning component
still rather slow χA ∼ 0.4 [13]

Figure 1.6: Left: Gaussian posteriors of the effective spin χeff of all the merging black holes in GWTC-3
(gray) compared to the 90 % credible intervals for GWTC-2 (blue). Right: Posterior distribution of the polar
angle θ of all the merging black holes in GWTC-3 (gray) compared to the 90 % credible intervals in GWTC-2
(blue) [13].

Figure 1.7: Left: Effective spin χeff anti-correlating with the mass ratio q. Black points mark the median
of the PDF obtained using an informed prior where mean and standard deviation of the Gaussian posterior
of χeff were allowed to evolve with q. Blue shaded areas indicate the 90 % credible intervals for each median
point. Right: Spin component parallel or anti-parallel to the orbital angular momentum vector s⃗z as a
function of the binary chirp mass. Light (dark) shaded areas indicate 90 % (50 %) credible intervals [13].
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1.2 X-ray binaries

1.2.1 X-ray binaries hosting a black hole

The best way to observe a black hole X-ray binaries that host a black hole and a massive
star are currently the best observational candidates as binary black hole progenitors: not only such
systems are already in a binary configuration but the accretion onto the compact object powers an
X-ray emission that allows us to observe them [24]. The possibility to observe them is precisely the
key property of X-ray binaries: even though ∼ 70% of massive stars are born in binary systems [25],
most black holes are quiescent and can be observed only with accurate measurements of their radial
velocity or proper motions [26]. Isolated black holes, that could dynamically exchange with a binary,
are even more difficult to observe and currently the best detection technique for them is microlensing
[27].

LMXBs and HMXBs The mass of the non-degenerate donor star and the type of accretion
determine two sub-classes of X-ray binaries hosting a black hole: low-Mass X-ray binaries (LMXBs)
and high-mass X-ray binaries (HMXBs). LMXBs typically host low-mass stars ≲ 2− 3 M⊙ that fill
their Roche lobe. In contrast, HMXB donors are more massive stars ≳ 5 M⊙ that typically do not fill
their Roche lobe but become wind-fed systems. Up-to-date, about ∼ 30 X-ray binaries are estimated
to host a black hole [28].

Spectral energy distribution in the X-rays The X-ray spectral energy distribution of an X-ray
binary is dominated by the emission of the accretion disk surrounding the compact object. A classic
Shakura-Sunyaev accretion disk around a stellar-sized compact object emits most of its photons in the
UV/soft X-ray regime ∼ 102 − 104 keV with an X-ray luminosity LX ≳ 1037 erg s−1, has an effective
radiation temperature of ∼ 107 − 108 K and produces a thermal multi-color black-body continuum
[29]. Usually, accretion disks are surrounded by a corona of hot thermal electrons: photons in the low
energy tail of the disk thermal emission (soft optical/UV) that encounter the corona suffer multiple
inverse Compton scatterings (i. e. suffer a thermal Comptonization) and are re-emitted in the form of
a hard X-ray power-law spectrum. Part of the X-ray power-law radiation is directly emitted towards
the observer at infinity but another part is re-emitted back to the accretion disk, reprocessed by it
and eventually reflected at the infinity.

The X-ray photons reprocessed by the corona are more energetic than the ones originally produced
in the accretion disk and see the disk as a slab of cold gas, interacting with it mainly through Compton
scattering and photoelectric absorption followed by fluorescent line emissions. On the one hand, the
energy dependence of the photoelectric absorption favours the absorption of the soft X-rays, causing
a down-scaling in the corresponding region of the reflected continuum. One other hand, the hard
X-rays are Compton-scattered back, thus reflected towards the observer at the infinity, except for the
ones more energetic than ∼ 20− 30 keV, which suffer Compton recoil. Overall, the X-ray continuum
due to reflection is characterized by a hump at ∼ 20 keV and by the fluorescent lines emitted by the
ionized heavy elements, mainly iron. The 6.4 keV line of the Fe Kα line is the strongest fluorescent
line and is caused by the absorption of an incident photon with energy larger than 7.1 keV, as shown
in the right-hand panel of Fig. 1.8.

The X-ray continuum seen by an observer at infinity can be divided into soft and hard X-ray
regimes, respectively below or above 10 keV. The soft X-ray spectrum is dominated by the thermal
continuum of the disk and exhibits a multi-color black body shape peaked at ∼ 2 keV. The hard
X-ray spectrum is determined by the radiation reprocessed by the hot corona: the hard power-law
of the photons directly emitted from the corona is modulated by the hump at ∼ 20 keV and the
fluorescence emission lines caused by the additional reflection on the accretion disk, as shown in the
left-hand panel of Fig. 1.8 [30].

1.2.2 Measuring the properties of X-ray binaries

Masses, period and inclination Inspection of the radial velocity and X-ray light curves provides
essential information to characterize the orbital properties of X-ray binaries. The orbital period can
directly be obtained from the periodicity of the light and velocity curves and often is the most-
accurate orbital parameter. The mass estimate of the compact object is less precise and relies on the
determination of other uncertain quantities, like the companion mass, binary mass ratio, inclination
and distance.
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Figure 1.8: Left: Sketch of the dominant components in the spectral energy distribution of an X-ray binary.
In the soft X-rays, the emission is dominated by the thermal continuum of the disk, visible as a multi-color
black-body peaked at ∼ 2 keV. In the hard X-rays, the radiation reprocessed by the corona is either directly
emitted towards the observer as a power-law or is reflected by the disk, causing a hump at ∼ 20 keV and
the strong fluorescent Fe Kα line at 6.4 keV. Credit: J. Miller Right: Montecarlo simulation of the X-ray
spectrum reflected by a cold slab of gas. An incident power-law radiation (dashed line) is damped in the soft
X-rays, exhibiting strong fluorescent lines and a hump before the cut-off due to Compton recoil [30].

The dynamical method is the most robust and common procedure to determine the mass of an
object in a binary system. Its application is limited to the systems that satisfy three conditions: the
companion star is visible in the optical/near-infrared band, single spectral lines can be identified in its
optical/near-infrared spectrum (resolving power λ/∆λ ≳ 1500), at least one photospheric absorption
line can be used as a proxy for the orbital motion. Therefore, the dynamical method cannot be
applied to distant X-ray binaries (not enough resolving power), to systems with a companion not
visible in the optical/near-infrared band and, most importantly, to systems subject to outbursts or
strong stellar winds. These limitations prevent the application of the dynamical mass determination
to many HMXBs. For instance, as explained in Sec. 2.3, the strong winds of the Wolf-Rayet star
coupled with the X-ray variability of the compact object caused the revision of several important
dynamical mass measurements in the Wolf -Rayet – black hole binaries [31].

Alternative techniques for the mass measurement are available but still require a good calibration,
as for the case of the scaling relations with the X-ray spectral and timing properties in presence of
quasi-periodic oscillations [32].

According to the dynamical method, the spectral lines that trace the orbital motion are used to
build the velocity curves and extract the orbital period Porb and the radial velocity semi-amplitude
Kc of the companion star. Kepler’s third law corrects the measures for the inclination angle i and
the mass ratio q = Mc/MBH and couples them into the mass function f(M): a non-linear expression
relating the masses of the companion star Mc and of the compact object MBH:

f(M) =
K3

cPorb

2πG
=

M3
BH sin3 i

(MBH +Mc)2
=

M3
BH sin3 i

(1 + q)2
(1.15)

The above formula is for a circular binary: a reasonable assumption for a system that likely al-
ready had time to circularize, given that its X-ray emission is the result of a mass-transfer process.
Eventually, the mass of the black hole in the binary can be determined with further assumptions
and measurements on the mass ratio q (or, alternatively, on the companion mass Mc) and on the
inclination of the system i.

The mass ratio can be determined assuming a spherically symmetric star that fills its Roche lobe in
a tidally locked system. Under these conditions, the rotational broadening (V sin i) of the absorption
lines in the stellar photosphere can be related to the mass ratio q of the system [33]

V sin i

Kc
∼ 0.462 q1/3(1 + q)2/3 (1.16)
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The measurement of q is not always feasible and usually leads to under-estimate its value. The
main uncertainty arises from the assumption of spherical symmetry in a Roche lobe filling system
that, on the contrary, has tidal distortions. Moreover, the rotational broadening is usually of ∼
30− 120 km s−1 and requires a very large resolving power λ/∆λ ≳ 5000 to be measured, limiting the
determination of q only to the nearest binaries.

For many systems, including the HMXBs that are not filling their Roche lobe, the mass function
is not calculated with the mass ratio but with the companion mass. Fits on the stellar spectrum or
mass-luminosity relations can provide the mass of the companion star. Usually the mass-luminosity
relations are empirically obtained either by calibrations on synthetic spectra based on single stellar
evolution models or by extrapolating the star properties from their position in the color-magnitude
diagram (see Sec. 2.1.2 for an example of a mass-luminosity relation for the Wolf-Rayet stars). The
methodology requires a good modelling of stellar photospheres and optical/infrared emissions. How-
ever, strong winds and mass transfer events that expose the inner layers of the star or super-Eddington
accretion onto the compact object may change the optical/infrared properties of the X-ray binary,
leading to an uncertain estimate of the mass of the non-degenerate star [34].

The inclination angle i is usually obtained fitting the optical/near-infrared light curves with syn-
thetic ellipsoidal models. Assuming that the companion star is filling its Roche lobe, tidal deforma-
tions of the star surface are expected to modulate the light curve profile and the amplitude of the
modulation can be linked to the inclination angle. The light curve modulation can be affected by
many sources of error (outburst, winds, etc.) and requires a very complex modeling, resulting in
inaccurate determinations of the inclination angle. A similar, uncertain, result can be obtained also
assuming that the inclination of the black hole high energy jet is the same of the binary: observations
on the MAXI J1820+070 X-binary showed that spin-orbit misalignments can be ≳ 40◦ [35]. Unless
the system is an eclipsing binary, its inclination angle is poorly constrained and, given the cubic
dependence in the mass function of Eq. 1.15, provides the biggest source of uncertainty in the black
holes mass determination [24].

HMXBs usually do not fill their Roche lobe and power the accretion through strong stellar winds:
not only the method just described would provide very uncertain determinations for the inclination
angle and companion mass but it would result in a very imprecise measure of the black hole mass.
Therefore, the mass of the compact object in HMXBs is usually the result of a multi-parametric fit
to the radial velocity curve and to the optical/near-infrared and X-ray light curves. The distance of
the source is one of the parameters included in the multi-parametric model and the fit result is very
sensible to it. For instance, recent radio astrometric distance measurements re-defined Cyg X-1 as a
system hosting an O-type star of ∼ 40 M⊙ with a black hole of ∼ 21 M⊙, making it the most massive
black hole detected so far in an X-ray binary [36].

Spin Two techniques are generally used to measure the spin of black holes and require a fit to the
X-ray spectrum of the accretion disk, either on the continuum or on the Fe Kα lines (see Sec. 1.2.1
for a more detailed description of the X-ray spectral energy distribution). Both methods assume
a geometrically thin and radiatively efficient disk, with emission that terminates at the innermost
stable circular orbit (ISCO) [37].

The Fe Kα line at 6.4 keV is a very strong fluorescent line produced by the X-ray radiation
reflected from the accretion disk. In principle the line is very narrow but it is broadened by the
Doppler effect, due to the disk rotation, and by the gravitational redshift, due to the vicinity to the
black hole. Fast spinning Kerr black holes have an ISCO that is both closer to the black hole and
more rapidly rotating, enhancing the gravitational redshift and the Doppler shift, respectively. As
shown in the left-hand panel of Fig. 1.9, the spin of the black hole can be reconstructed by carefully
fitting the broadening of the Fe Kα line in the reflected X-ray spectrum.

The fit to the reflection spectrum has the great advantage of being a relative measurement. More-
over, the spin determination can be carried out without knowing a priori the black hole mass, its
distance and accretion rate, allowing the spins to be inferred in many systems with poorly constrained
black hole masses [28]. On the contrary, the emissivity and ionization of the disk need to be already
modeled to provide a good fit. Reflection spectra are also very sensitive to the inner disk inclination,
although this information can be extracted by the same fit used for the Fe Kα line.
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Figure 1.9: Example of the black hole spin measurement from fits to the Fe Kα line (left) or to the X-ray
hard continuum (right) of the candidate X-ray binary GRS 1915+ 105. The Fe Kα fluorescent line causes
the absorption at ∼ 7 keV in the right-hand panel and results in a strong, broadened emission centered at
6.4 keV in the left-hand panel. The spectrum on the left is obtained with NuStar while the one on the right
with RXTE [38].

Spin determination through the fit of the hard continuum relies again on having an ISCO of the
disk closer to the black hole for high spin values. The thermal emission of the disk can be modeled as a
multi-color black-body, where each anulus emits as a thermal black-body with radiation temperature
T ∝ r−3/4 hotter for anuli closer to the black hole. Fast rotating black holes have accretion disks with
ISCO very close to the black horizon that, being hotter, shift the peak of the multi-color emission
towards higher energies: fitting the absolute shift in the flux emitted in the hard X-rays results in
the spin determination, as shown in the right-hand panel of Fig. 1.9.

The method has many drawbacks, the main one being its necessity to fit the absolute flux shift in a
region where the emitted flux is strongly influenced also by the hard power-law emitted by the corona
(see the left-hand panel of Fig. 1.8 for a comparison): the choice of the hard component strongly
impacts the spin value. Further sources of uncertainty come from the a priori knowledge of the inner
disk inclination (in particular, the delicate assumption of spin and orbital angular momentum aligned
[35]), atmospheric scattering corrections and, most importantly, mass and distance of the black hole,
required to have an accurate model for the absolute flux emitted by the disk [37].

1.3 Tensions in the underlying populations

Up-to-date, one of the most detailed analysis of the mass and spin distribution of the underlying
binary black hole populations was carried out in 2021 by Fishbach & Kalogera [28] and compared the
data of 44 binary black holes of the GWTC-2 catalogue with the only X-ray binaries with a reliable
mass or spin measurement: 3 HMXBs and 29 LMXBs, of which only 20 have a reliable mass (see
Sec. 1.2.2 for a discussion on the main uncertainties in the X-ray parameter estimation). This study
included as HMXBs the X-ray binaries with O-type donor star LMC X-1, M33 X-7 and Cyg X-1,
excluding the Wolf-Rayet – black hole binaries like NGC 300 X-1 or IC 10 X-1 because they have a
less reliable mass measurements [31] (see the discussion in Sec. 2.3). Even though the binary black
hole sample is limited to GWTC-2 [39], it is reasonable to expect that the same conclusions can be
obtained using the GWTC-3 data, as discussed in Sec. 1.1.2. In contrast, the limited sample of X-ray
binaries with reliable mass and spin measurements causes the largest uncertainties.

1.3.1 Similarities in the mass distribution

The mass distribution of the primary (more massive) black hole of the LVC binary black holes seems
compatible with the mass distribution of the black holes in LMXBs and HMXBs, once the corrections
for gravitational wave selection effects and similar mass pairing are taken into account. If confirmed,
the relation would indicate that X-ray binaries hosting a black hole could be the progenitors of the
binary black hole mergers. However, the small sample of X-ray binaries with reliable mass mea-
surements (∼ 20) is affected by a large Poisson uncertainty, possibly hiding inconsistencies in the
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Figure 1.10: Observed cumulative distribution function (CDF) of the observed HMXBs (blue, left-hand
panel) and LMXBs (pink, right-hand panel) compared with the CDFs (orange bands) expected if the X-ray
binaries share the same primary black hole mass distribution as the primaries of the LVC binary black holes,
once it is corrected for selection effects (green line). In the left-hand panel, the purple bands show the original
observed CDF for binary black holes not yet corrected for observational effects. In the right-hand panel, the
green bands show the CDF extracted from the sub-sample of the LVC binary black holes with secondary mass
< 8 M⊙. Dark (light) shaded areas delimit 50 % (90 %) credible intervals [28]
.

underlying populations. Moreover, observational selection effects on the X-ray binaries are not ac-
counted for and may further change the degree of consistency.

The left- and right-hand panel in Fig. 1.10 show the agreement between the cumulative distri-
bution functions (CDF) of the primary black hole population underlying in the gravitational wave
observations and the CDFs for the black hole population underlying in the HMXBs and LMXBs,
respectively. The observed CDF of the 44 black hole primaries considered in the GWTC-2 (purple
bands in the left-hand panel of Fig. 1.10) is corrected for the observational selection effects that favour
the detection of gravitational waves produced by heavy black holes (see Sec. 1.1.1). The corrected
posterior CDF (green line in the left-hand panel of Fig. 1.10) is indeed shifted towards lower masses
and describes the intrinsic primary mass distribution of the black holes detected by the LVC.

The observed CDFs of HMXBs and LMXBs (the blue and pink dashed lines in the left- and
right-hand panels of Fig. 1.10, respectively) cannot be directly compared with the intrinsic CDF of
the primary black hole masses. The considered sample of HMXBs and LMXBs with reliable mass
estimates contains, respectively, only 3 and 20 black holes: their CDFs are dominated by Poisson
uncertainties if they are extracted from the same intrinsic population of binary black holes. To ac-
count for Poisson noise, many sets of 3 or 20 black holes are randomly extracted from the intrinsic
binary black hole distribution (the green line already found). Each set is then used to build a CDF.
Subsequently, all the extracted CDFs of 3 (20) black holes are put together to reconstruct a CDF
representative of the black holes in HMXBs(LMXBs) than will become primary black holes in the
binary black hole systems detected with gravitational waves (orange bands in both the panels of
1.10). The extracted CDFs have very large credible intervals, as expected from the huge Poissonian
noise acting on the limited sample of the X-ray binaries.

On the one hand, the left-hand panel of Fig. 1.10 shows that the observed mass distribution of black
holes in HMXBs (blue) is compatible within 50 % credible intervals with the distribution expected if
the black holes of the HMXBs become the primaries of the LVC binary black holes (orange). On the
other hand, the right-hand panel of Fig. 1.10 shows that LMXBs seem to have an observed black hole
mass distribution (pink) too much shifted towards lower masses with respect to the one expected from
being a progenitor of the LVC binary black holes (orange). However, the discrepancy is removed if
the expected CDF is not extracted from all the 44 binary black holes but only from the binaries with
light secondary black holes M2 < 8 M⊙ (green bands). The selection of the sub-sample of binaries is
justified because isolated binaries seems to favour the production of compact remnants with similar
masses and the LMXBs already host a low-mass secondary ≲ 2−3 M⊙. Even though secondary stars
so light will unlikely produce black holes up to 8 M⊙, the agreement in the CDFs could suggest that
possible differences in the LMXBs and binary black hole masses may be caused by the mass of the
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secondary star and not by the mass of the primary black hole [28].

Figure 1.11: Left: cumulative distribution function (CDF) of primary and secondary black hole spins
detected with gravitational wave detectors in GWTC-2 (orange) compared with the ones of LMXBs (pink)
and HMXBs (blue). The black lines show the prior beta distribution used for the fits. The spin distribution
of the binary black holes is in tension with the ones inferred from the X-ray binaries. Right: Posterior
distributions of the fraction of binary black holes that could have evolved from a HMXB-like configuration.
The more the primary spin is aligned to the orbital angular momentum (smaller σcos θ values, see Sec. 1.3.2
for more detail) and the more the HMXB configuration is irrelevant in the underlying population [28].

1.3.2 Strong tension in the spin distribution

The spin distribution of the black holes detected with the gravitational waves (including both pri-
mary and secondary black holes) seems to be in tension with the spin distribution of the black holes
detected in X-ray binaries, as visible in the left-hand panel of Fig. 1.11. The LVC binary black
holes appear to host slowly spinning black holes, whereas both the LMXBs and HMXBs contain fast
rotating black holes. Beta distribution fits to the observed spins of the LMXBs (pink) and HMXBs
(blue) denote that the two types of X-ray binaries have spin distributions consistent within 90 %. A
single beta distribution fitted to the LMXBs and HMXBs altogether exhibits a disagreement at the
99.9 % level with the spin distribution of the LVC binary black holes (orange).[28]

The three HMXBs considered here (LMC X-1, M33 X-7 and Cyg X-1) host very fast spinning
black holes χ ≳ 0.8: if they produce a binary black hole in the isolated binary evolution scenario, it
is likely that mass transfer and tidal locking will align the spins to the orbital angular momentum of
the binary [4]. Nevertheless, supernova kicks may still cause a tilt in the spin orientation. Overall,
the toy model usually adopted for the tilt angles θ is a half-Gaussian in cos θ, peaked at aligned
spins cos θ = 1 with some standard deviation σcos θ: the larger the tilt angle, the larger the standard
deviation [40].

It is possible that a sub-population of binary black holes has evolved through a HMXB-like
configuration; Bayesian inference methods can be used to put upper limits to the fraction of binary
black holes belonging to it. One of the input parameters of the inference method is the effective spin
χeff i. e. the mass-weighted component of the spins aligned to the orbital angular momentum (see
Eq. 1.2). Determining the upper limits in the sub-population weight means assuming that the χeff

is mainly determined by the spin of the primary black hole. Therefore, a black hole binary coming
from a HMXB-like configuration will be modeled with secondary spin narrowly peak around zero and
primary spin distributed with the half-Gaussian in cos θ.

The right-hand panel in Fig. 1.11 shows the results of three possible estimates of the sub-population
weight allowing for three different maximum tilts of the primary spin: no tilt (σcos θ = 0), ≲ 12◦ tilt
(σcos θ = 0.2) or ≲ 30◦ tilt (σcos θ = 0.5). The more the primary spin is forced to be aligned, the less
the HMXB configuration is relevant in the formation history of the binary black hole. The fraction
of binaries belonging to the sub-population of HMXB-like binaries is only < 19% for aligned spins,
growing to < 30% for slightly tilted spins (σcos θ = 0.2) and up to < 48% for mildly tilted spins
(σcos θ = 0.5).

The evolutionary mechanisms necessary to create a rapidly spinning primary in a system that
forms a binary black hole merging within a Hubble time are still under investigations. One of the
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proposed channels involves a stable mass transfer event from a main sequence donor to a main
sequence accretor. If the angular momentum transport is inefficient inside the star and the mass
transfer can remove its envelope tidally-locking the system, a lot of the angular momentum can be
maintained in the core of the donor star. After a similar mass transfer, the donor will rapidly become
a Wolf-Rayet star and eventually produce a fast spinning black hole [12]. Population synthesis studies
coupled with detailed stellar evolution models showed that only ≲ 12% of the HMXB binaries formed
in this way had the right combination of parameters to evolve into a black hole binary that merges
via gravitational wave emission within a Hubble time. Overall, only ≲ 20% of the merging binary
black holes seem to undergo this kind of evolution, in agreement with the upper limit of ≲ 30% found
for slightly tilted spins [41].





Chapter 2

Wolf-Rayet – black hole binaries

An intermediate evolutionary stage The systems composed of two massive stars are the best
possible progenitors for the LVC binary black holes, if the stars are massive enough to form a black
hole (MZAMS ≳ 15 − 25 M⊙ at solar metallicity, according to single stellar evolution [42]) and if
their orbit is tight enough to undergo at least one mass transfer episode. 82 O-type stars with mass
∼ 15− 60 M⊙ observed in six Galactic open clusters revealed that 70% of the massive stars are born
in binaries, close enough to allow for mass transfer interaction [25].

Population-synthesis studies suggest that at least one mass transfer episode is necessary to shrink
the orbit of the progenitor binary star and allow the coalescence of the two final black holes within
a Hubble time [43]. While it is difficult to predict the type of mass transfer and the fate of the
binary, because they strongly depend on the orbital separation and stellar evolution details as shown
in Fig. 2.1, it is likely that mass transfer and strong stellar winds will strip the hydrogen envelope of
a massive star and produce a Wolf-Rayet star. Therefore, if the right conditions are met, a binary
evolves into a black hole – Wolf-Rayet system and could become visible as an X-ray binary, since the
strong winds of the Wolf-Rayet star can power the black hole accretion disk formation and emission.

Chapter outline This chapter reviews the theory of single stellar evolution and the main mass
transfer processes (wind-fed accretion, Roche lobe overflow, and common envelope) to better under-
stand the evolution of Wolf-Rayet – black hole binaries. I will report the observed properties of the
known Wolf-Rayet – black hole systems, discussing the main issues in parameter estimation. Finally,
I will describe the Cyg X-3 system: the only known Galactic Wolf-Rayet – black hole binary.

Figure 2.1: 70% of O-type stars will be part of a binary with initial period < 1500 days and will undergo
at least one mass transfer process. The type of mass transfer and the fate of the binary will depend on the
details of single stellar evolution and on the orbital separation [25].

17
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2.1 Wolf - Rayet stars

2.1.1 Spectral classification of a Wolf-Rayet star

Peculiar properties Wolf-Rayet (WR) stars are named after the French astronomers Charles Wolf
and Georges Rayet that in 1867 first discovered three stars in the Cygnus constellation with strong and
broad emission lines. More than a century after, a few hundreds of Wolf-Rayet stars were discovered
in the Milky Way, ∼ 40% of which are part of binary systems.

Stellar spectra usually exhibit a continuum with narrow absorption lines. Generally, the hot
radiation coming from the interior is absorbed by atoms and molecules in a cooler stellar photosphere
(Teff ≲ 60 kK in the hotter O-type stars). In contrast, the photosphere of Wolf-Rayet stars is much
hotter (Teff ∼ 60 − 100 kK) and hosts many heavy elements, often ionized (like He, N, C or O).
The atoms and ions in the photosphere strongly interact with the energetic photons coming from the
interior: they produce recombination and fluorescence emission lines (visible in the UV, optical and
near-IR bands) while efficiently absorbing the momentum of photons via multiple-scatterings. The
net effect is the production of a very dense and strong wind (Ṁ ∼ 10−4− 10−5 M⊙ yr−1) with broad
emission lines of elements and ions usually absent in other stellar spectra.

Classification and evolutionary sequence The spectrum of Wolf-Rayet stars is their distinctive
feature and is used to classify them on the basis of the presence and abundance of peculiar elements
in the photosphere. The most important lines adopted for the classification are reported in Tab.
2.1 and characterize the three sub-types: WN (strong lines of helium and nitrogen), WC (strong
lines of helium, carbon and less prominent lines of oxygen) and WO (strong lines of oxygen and less
prominent lines of helium and carbon). The WN stars can be further divided into two subfamilies
on the basis of their surface hydrogen abundance XH : WNL (late) if XH ≳ 0.5 or WNE (early) if
XH ≲ 0.5. In contrast, WC and WO stars lack hydrogen lines: it is probable that they lost the
external envelope because of stellar winds or as a result of mass transfer.

The helium, nitrogen, carbon and oxygen detected in the photosphere were produced by the CNO
cycle and triple-α reactions of H- and He-burning, respectively. Usually these elements can reach the
photosphere only as a result of dredge-up events, but their abundance is lower than the one detected
in Wolf-Rayet stars. Recalling that the hydrogen envelope is either small or depleted, it is likely that
the observed types of Wolf-Rayet stars are part of an evolutionary sequence of massive stars: the
external layers are progressively removed and expose the more metal-rich ones. According to this
interpretation, the evolution would proceed as

WNL → WNE → WC → WO

Type II and Ib/c supernovae Wolf-Rayet stars that explode with little (WN) or no hydrogen
envelopes (WC,WO) are likely the progenitors of, respectively, the Type II and Type Ib/Ic core-
collapse supernovae. The stronger hints come from the observations of supernova light curves: Type
II supernovae exhibit hydrogen lines, Type Ib lack hydrogen but exhibit He and Type Ic lack both
hydrogen and helium [44–46].

WR type Elements Wavelength λ of the strongest lines

WN
He I-II 2.058 µm [He I]

N III-V 1640 Å, 4686 Å, 5412 Å, 1.012 µm, 2.189 µm [He II]

WC
C III-IV 4650 Å, 5696 Å [C III]

O III-V 1550 Å, 5548-51 Å, 5801-12 Å, 2.08 µm [C IV]

WO
C IV 3811-34 Å [O VI]

O V-VI

Table 2.1: Main UV, optical and near-IR emission lines used for the spectral classification of Wolf-Rayet
stars [44, 47]
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Figure 2.2: Left: Mass-luminosity relations for chemically-homogeneous massive stars with fixed hydrogen
abundance XH . The black crosses indicate the computed stellar models, the dashed red lines the fits for
hydrogen-core burning stars with different XH , the solid red line indicates pure-He stars (XH = 0) burning
helium in their cores [48]. Right: Mass loss rates dependent only on the metallicity as in Vink et al. [49] (red
solid lines) or also on the Eddington factor as in Gräfener & Hamann [50] (blue solid lines). The simplified
model of Vink et al. strongly underestimates the mass lost by low-metallicity stars close to the Eddington
limit Γe ∼ 1. The red dashed line indicates a model not considered in this thesis [50].

2.1.2 Mass determination of a Wolf-Rayet star
Dynamical masses The mass of the Wolf-Rayet stars that are member of a binary system with
a non-degenerate companion can be determined with the dynamical method described in Sec. 1.2.2.
The largest uncertainties come from binary inclination, thus, observations in eclipsing binaries (for
which the nearly edge-on orientation better constraints the inclination) allow the most precise mass
determinations. Dynamical measurements revealed that WC stars are lighter than the WN ones,
supporting the evolutionary sequence of Wolf-Rayet stars described in Sec. 2.1.1: WC are limited to
MWC ∼ 9− 16 M⊙ while WN extend to MWN ∼ 10− 83 M⊙ [44].

Isolated Wolf-Rayet stars and Wolf-Rayet stars with a degenerate companion The dy-
namical method cannot be used for stars with a degenerate companion (like a neutron star or a black
hole) or for the isolated ones. Furthermore, the dense stellar wind of Wolf-Rayet stars prohibits
reliable measurements of the surface gravity from the photospheric lines.

The only method left relies on the theory of stellar evolution. Detailed calculations can relate
the mass of a star in a given evolutionary stage to its expected observable properties, including its
luminosity. If the distance and age of the Wolf-Rayet star are known (for instance for Wolf-Rayet
stars in star clusters), it is possible to reconstruct its intrinsic luminosity. Thus, to determine the mass
of an isolated Wolf-Rayet star it is sufficient to measure its luminosity and adopt a mass-luminosity
relation obtained from theoretical calculations. It is important to note that the mass-luminosity
relations strongly depend on stellar evolution assumptions and need to be carefully calibrated, for
instance with Wolf-Rayet stars in binary systems whose mass is already known from dynamics [51].

Upper mass-luminosity relation The luminosity of a star depends on the nuclear reactions
acting in the core of the star and, thus, on the chemical composition. In general, stars that are
not chemically-homogeneous and have a mean molecular weight higher in the core and lighter in the
surface. However, considering a homogeneous star allows to put an upper limit on the mass related
to a given luminosity: if the core is lighter (because of the chemical homogeneity imposed) more mass
is required to produce the same luminosity.

The left-hand panel of Fig. 2.2 shows the quadratic dependence of the luminosity on the mass of
chemically-homogeneous stars. The same massive star is more luminous if the core is heavier, with a
linear dependence of the luminosity on the hydrogen abundance XH : a lower hydrogen content in the
large convective core implies a higher mean molecular weight, thus, higher surface luminosity [48].

2.1.3 Stellar winds of massive stars
Metallicity dependence O, B and Wolf-Rayet stars are massive and hot stars with Teff ≳ 12 kK
that emit the bulk of photons in the UV regime and suffer line-driven winds. The radiation com-
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ing from the star interior is so energetic that ionizes metals1 like C, N, O, Ne, Si, S and Fe in the
photosphere. Ions absorb the momentum of the impinging photons and are accelerated. Since ions
are moving in a plasma, they share their momentum with nearby nuclei and electrons and undergo
multiple scatterings, with the net effect of accelerating the whole gas. High temperatures and metal
content favour the production of ions, increasing the amount of momentum absorbed and mass lost.

In 2001, Vink et. al. [49] carried out Monte Carlo simulations on a grid of 540 models of O and
B main sequence stars, quantifying the dependence of the mass loss rate Ṁ on the metallicity Z and
effective temperature Teff as

Ṁ ∝ Z0.85 vp∞ p =

{︄
−1.23 Teff ≳ 25 kK

−1.60 12 kK ≲ Teff ≲ 25 kK
(2.1)

where v∞ is the terminal velocity of the wind, reached when the gas is far enough from the star
that is no more accelerated by the radiation field. The mass loss rate depends also on the stellar mass
and luminosity; although with slightly different exponents for the different temperature ranges, the
order-of-magnitude dependence is Ṁ ∝ L2.2M−1.3.

In 2000, Nugis & Lamers [51] observed 34 WN and 30 WC stars in the Milky Way and expressed
the mass-loss rate for Wolf-Rayet stars as a function of metal (Z) and He (Y ) mass fractions

Ṁ ∼ 1.0× 10−11 (L/L⊙)
1.29 Y 1.7 Z0.5 M⊙ yr−1 (2.2)

In 2005, Vink & de Koter [52] carried out further Monte Carlo simulations and demonstrated that
line-driven winds in O, B and Wolf-Rayet stars are, instead, strongly sensible to multiple absorption
and re-emission of Fe lines and, in metal poor environments, also of C, N and O lines. Following this
result, Costa et al. [9] developed an updated prescription for Wolf-Rayet stellar winds. They adopted
revised mass-loss fits extracted by Sander et al. [53] from observations on Galactic WC and WO stars
and accounted for the dependence on the iron mass fraction XFe with two multiplicative factors for
WN and WC stars, calibrated on fits to WN and WC models calculated in 2015 by Vink et al. [54]

Ṁ = fWR 10−8 (L/L⊙)
0.68 M⊙ yr−1 fWR =

{︄
−1 + 1.9 tanh [0.58(logXFe + 1)] WN
−0.3 + 1.2 tanh [0.5(logXFe + 0.5)] WC

(2.3)

In fact, in 2022 Sander et al. [55] adopted a self-consistent description for the atmosphere of WN
stars and derived theoretical mass-loss rates less efficient than the ones found by Nugis & Lamers.
Sander et al. argued that C and O are not so much relevant to power Wolf-Rayet stellar winds as Nugis
& Lamers assumed: including, as Nugis & Lamers did, C and O abundance in the metallicity-term
causes unrealistically high mass-loss rates. Moreover, comparing stellar evolution models evolved with
MESA with different stellar winds prescriptions, Sander et al. noted that metal-rich Wolf-Rayet stars
(down to 0.1 Z⊙) evolved with Nugis & Lamers winds ended almost with the same masses regardless
of the metallicity.

Eddington factor dependence Hot stars like the O,B and the Wolf-Rayet have radiative external
envelopes: the radiation pressure of the energetic photons produced in the core pushes on the free
electrons, that interact via Thomson scattering and efficiently transport energy outwards. However,
the radiation pressure can be so strong to overcome the self-gravity of the star: the external layers are
no more in hydro-static equilibrium and are pushed away. The mass expelled changes the observed
luminosity and the star becomes a variable; a luminous blue variable (LBV) if the original stars were
of the O or B types.

Assuming that the pressure gradient of the star is due only to the Thomson scattering (with
opacity k), the self-gravity of the star cannot support the hydro-static equilibrium if the luminosity
L exceeds the Eddington one LEdd. The maximum permitted luminosity L = LEdd defines the
Eddington limit Γe

Γe =
L

LEdd
=

Lk

4πcGM
(2.4)

1In astronomy, metals indicate elements heavier than He and their total mass fraction is expressed as metallicity Z.
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The Eddington factor for a fully ionized plasma is given by

Γe = 10−4.813 (1 +XH) (L/L⊙) (M⊙/M). (2.5)

The surface abundance of hydrogen XH is known from spectroscopic observations. Measuring
the intrinsic luminosity and adopting the mass-luminosity relations, as described in Sec. 2.1.2, it is
possible to recover the Eddington factor of the observed stars.

Stars that approach and overcome the Eddington limit Γe ≥ 1 have enhanced mass loss and are
likely the progenitors of the Wolf-Rayet stars, as discussed in Sec. 2.1.4. In fact, the evolution close to
the Eddington limit, coupled with multiple scatterings in the winds, could explain the strong stellar
winds of the Wolf-Rayet stars. In 2008, Gräfener & Hamann [50] used detailed and self-consistent
modeling of non-LTE atmospheres and winds of WNL stars to compute the expected mass loss rates.
A rough fit [45] to their relations underlines a continuity to the 2001 models of Vink et al.

Ṁ ∝ Zα α =

{︄
0.85 Γe < 2/3

2.45− 2.4 Γe 2/3 ≤ Γe ≤ 1
(2.6)

Gräfener & Hamann found that the metallicity-dependence of Eq. 2.1 is enhanced for stars closer
to the Eddington limit. As shown in the right-hand panel of Fig 2.2, not accounting for the depen-
dence on Γe results in a severe underestimation of the mass loss rates, especially at lower metallicities.

Vink et al. in 2011 [56] re-calculated the mass loss rates on models of massive and very massive
stars (40− 300 M⊙) including a dependence on the Eddington factor, finding{︄

Ṁ ∝ M0.68 Γ2.2
e 0.4 ≲ Γe ≲ 0.7

Ṁ ∝ M0.78 Γ4.77
e Γe ≳ 0.7

(2.7)

2.1.4 Evolution of a massive star into a Wolf-Rayet
In this section I will discuss the evolution of the massive stars, focusing on the conditions that favor
the creation of the Wolf-Rayet ones. I considered only stars with initial masses MZAMS ≥ 20 M⊙,
massive enough to likely produce a black hole in place of a neutron star after the core-collapse
supernova (see Sec. 3.1.4), and with MZAMS ≤ 100 M⊙, to avoid the discussion of the pair-instability
supernovae that form at Z = 0.002: the work of this thesis only focuses at solar metallicity Z ∼ 0.02
where this phenomenon is not relevant [7]. I will refer to the evolutionary tracks shown in Fig. 2.3
and 2.4 that I generated with the population-synthesis code SEVN [43] interpolating the output tables
of the PARSEC stellar evolution code [9, 45] (further details in Sec. 3.1). The scope of this section is
to provide a self-consistent reference to the work carried out in this thesis and presented in Sec. 4.

Wolf-Rayet stars with PARSEC and SEVN The PARSEC stellar evolution code classifies Wolf-Rayet
star sub-types WNL,WNE and WC according to the surface abundance of many elements (hydrogen,
helium, carbon, nitrogen, oxygen and iron) at different metallicities. For instance, at solar metallicity,
the surface hydrogen fraction of WNL is XWNL ≤ 0.3 while WNE and WC are consistent with no
hydrogen XWNE = XWC = 0. In contrast, SEVN considers a star as a Wolf-Rayet imposing a condition
only on the total hydrogen mass fraction, requiring that XH ≤ 0.022. Stars with so little hydrogen
are interpolated with different evolutionary tables, often indicated as pure-He tables. Pure-helium
tracks are computed with PARSEC starting from a helium zero age main sequence (He-ZAMS) i. e.
a star obtained removing the hydrogen envelope to a normal star at the beginning of the core-He
burning phase [43].

The stellar winds adopted to generate with PARSEC the interpolating tracks for massive stars
account for the dependence on both metallicity and the Eddington factor (see Sec. 2.1.3 for more
details). While mass loss rates of the blue super giants (BSG) and LBVs follow Vink et al. [49] and
Gräfener & Hamann [50] (Eq. 2.6), Wolf-Rayet stellar winds follow different prescriptions for different
classifications: stars evolved from He-ZAMS have winds from the work of Nugis & Lamers (Eq. 2.2)
while Wolf-Rayet stars evolved from usual ZAMS implement the mass loss rates described by Costa

2In particular, SEVN computes the condition with respect to the helium mass fraction: a star in SEVN becomes a
Wolf-Rayet if MHe > 97.9% Mtot (Iorio et al. in preparation).
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et al. [9] and based on the observations of Sander et al. [53] (Eq. 2.3). Even though winds of Nugis
& Lamers likely need to be revised (as discussed in Sec. 2.1.3), they were adopted in pure-He stars
because their mass loss rates were higher than the ones from Costa et al. , thus avoiding the pro-
duction of Wolf-Rayet stars too light and long lived with respect to what is expected from standard
stellar evolution (for instance, they produced a 2 M⊙ Wolf-Rayet star from a 8 M⊙ one, see Iorio et
al. for more details).

In this thesis I will classify a star as a Wolf-Rayet following PARSEC, thus requiring that its surface
hydrogen is XH ≥ 0.3. Under this assumption, the Wolf-Rayet sample will not be limited to the
pure-He stars identified by SEVN (representative of WC and WO sub-types) but will also include
spectroscopic Wolf-Rayet stars that are still able to retain a small H-envelope (representative of
WNL and WNE sub-types). Nevertheless, with this approach the minimum mass needed to produce
a Wolf-Rayet star is higher with respect to other known works in the literature. In particular, the
threshold found interpolating PARSEC tracks with SEVN is ∼ 5− 10 M⊙ higher than the one obtained
with another popular stellar evolution code, FRANEC [46]. The main differences are in the amount
of core overshooting3 in the central H-burning phase (0.2 Hp in FRANEC and 0.5 Hp in PARSEC) and
in the threshold to classify a star as a Wolf-Rayet (XH ≤ 0.4 in FRANEC and XH ≤ 0.3 in PARSEC).
Given that Wolf-Rayet stars evolve with increased depletion of the hydrogen envelope, the XH ≤ 0.4
condition in FRANEC allows to form Wolf-Rayet stars earlier than in the PARSEC tracks interpolated by
SEVN. In particular, FRANEC lowers the minimum initial mass required to form a Wolf-Rayet at solar
metallicity to MZAMS ∼ 30 M⊙, while the PARSEC tables interpolated by SEVN require a minimum
mass of MZAMS ∼ 40 M⊙.

Stellar evolution timescales In this paragraph, I briefly recall the main timescales driving single
stellar evolution [57]. The time required for a star to react to a perturbation will determine not only
its evolution but, if the star is a member of a binary system, will also influence the stability and
efficiency of mass transfer (further details in Sec. 2.2).

Stars are self-gravitating objects of hot plasma that remain in hydro-static equilibrium throughout
their life: the internal pressure gradient of gas and photons is balanced by the self-gravity. According
to the virial theorem, perturbations of the hydrostatic equilibrium occur on the dynamical timescale

τdyn ≃
√︃

R3

GM
≃ 30

(︃
R

R⊙

)︃3/2 (︃
M⊙

M

)︃1/2

minutes (2.8)

The energy released by nuclear reactions is radiated from the surface and maintains the star in
thermal equilibrium with Tcore ≈ const. When the nuclear fuel is exhausted, the lower pressure gra-
dient of the plasma causes a contraction of the star, in order to maintain the hydrostatic equilibrium.
Part of the gravitational energy is radiated away but part of it heats up the interior, until it reaches
the critical temperature to ignite heavier elements. The contraction is quasi-static and maintains
the hydrostatic equilibrium. However, since a part of the energy produced by the contraction is not
radiated away but heats up the interior, the process happens outside thermal equilibrium and occurs
in a thermal timescale (also known as Kelvin-Helmholtz timescale)

τth ≃ GM2

RL
≃ 15

(︃
M

M⊙

)︃2 (︃
R⊙

R

)︃(︃
L⊙

L

)︃
Myr (2.9)

Aside from central exhaustion, local fluctuations in the core temperature or similar perturbations
due to mass transfer, a star evolves in thermal equilibrium. However, the dominant evolutionary
timescale is the nuclear timescale and quantifies the time required to burn all the nuclear fuel for a
given element. The longest nuclear timescale is the one for the burning of the hydrogen, the most
abundant element (∼ 70 % of the stellar mass), and provides an order-of-magnitude estimate for the
stellar lifetime

τnuc ≃ 10

(︃
M

M⊙

)︃(︃
L⊙

L

)︃
Gyr (2.10)

3According to the mixing-length-theory, the mean free path lc = ΛcHp of the convective bubbles that overshoot
into the upper radiative envelope can be parameterize as a fraction Λc of the pressure scale height Hp [45].
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Figure 2.3: Hertzsprung-Russell diagrams with the single stellar evolution of massive stars at two different
metallicities. The symbols indicate the different burning stages: beginning of core H burning i. e. ZAMS
(filled circle), beginning of H shell burning (empty diamond), beginning of the core He burning (empty star)
possibly as a Wolf-Rayet (filled star), beginning of He shell burning (empty square) possibly as a Wolf-Rayet
(filled square), end of the CO burning (empty circle). At solar metallicity (Z = 0.02, left panel) Wolf-Rayet
stars can be produced by stars with MZAMS ≳ 40 M⊙ while at metallicity one order-of-magnitude lower
(Z = 0.002, right panel) stellar winds are quenched and even stars with MZAMS ∼ 100 M⊙ cannot become
Wolf-Rayet stars. I generated the tracks with the population-synthesis code SEVN [43], that interpolates the
tables produced with the PARSEC stellar evolution code [45] (more details on the codes in Sec. 3.1).
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Figure 2.4: Left: Time evolution of the mass of the stars (solid lines) and their He cores (dashed lines) at
solar metallicity. The symbols indicate the different burning stages, as explained in Sec. 2.1.4. Right: Mass
of the star and of their He and CO cores at the pre-SN stage, here coincident to the end of the CO burning.
At solar metallicity stellar winds strongly reduce the core sizes of stars with MZAMS ≳ 30 M⊙, transforming
them into Wolf-Rayet for MZAMS ≳ 40 M⊙. At lower metallicity the cores and the stars are larger and they
only reduce in stars with MZAMS ≳ 70 − 100 M⊙ that evolve too close to the Eddington limit. I generated
both panels with the population-synthesis code SEVN [43], that interpolates the tables produced with the
PARSEC stellar evolution code [45] (more details on the codes in Sec. 3.1).
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Stellar evolution from the ZAMS to the end of the CO burning Stars begin their life in
the Zero Age Main Sequence (ZAMS, filled circles) when their cores have temperatures Tcore ≳ 107

K high enough to ignite hydrogen in the core. The evolution proceeds in the main sequence (MS)
phase until the central hydrogen is exhausted [57].

During core H-burning, stars satisfy the empirical mass-luminosity relation L ∝ M3. Recalling
that the nuclear timescale τnuc required to burn hydrogen is an approximate estimate of the stellar
lifetime, the mass-luminosity relation of the MS substituted into the definition of the nuclear timescale
of Eq. 2.10 results in τnuc ∝ M−2: the more massive the star, the larger the luminosity caused by
more efficient and rapid nuclear reactions, thus, the shorter the lifetime. For instance, the left-hand
panel of Fig. 2.4 illustrates that, at solar metallicity, stars with MZAMS ∼ 20 M⊙ live for ∼ 8 Myrs,
in contrast to more massive stars of MZAMS ∼ 100 M⊙ that survive only for ∼ 3 Myrs. Also, both
stars have lifetimes much shorter than the Sun (∼ 10 Gyr).

The stars considered here are so massive that, during the MS, they burn hydrogen in a large
convective core surrounded by a radiative envelope. In the final stages of the core H-burning, the
energy released diminishes and lowers the radiation pressure. To maintain the hydrostatic and ther-
mal equilibrium, the core contracts and heats up again: the nuclear reactions increase again the
luminosity produced and the surface effective temperature, thus, the star exhibits a left-ward hook
in the Hertzsprung-Russell (HR) diagram (see Fig. 2.3).

At the end of the core H-burning phase, the star is so contracted that the hydrogen shell sur-
rounding the core is hot enough to ignite (empty diamonds). According to the mirror principle, if the
layers below a burning shell contract then the layers above will expand. Stars with MZAMS ≳ 20 M⊙
have a core too massive to maintain thermal equilibrium without a central burning, therefore, in
the H-shell burning phase the star undergoes a core contraction and envelope expansion in a ther-
mal timescale. Recalling Eq. 2.9 and Eq. 2.10, the thermal timescale is orders of magnitudes faster
than the nuclear timescale: massive stars that burn hydrogen in their shells move so rapidly in the
color-magnitude diagram during this phase that they are very unlikely to be observed, causing the
so-called Hertzsprung-gap (HG).

When the contraction heats up the core beyond Tcore ≳ 108 K, helium is ignited (empty stars).
In theory, at this point the envelope has expanded and cooled so much that becomes convective and
causes the star to evolve along the Hayashi line4. In reality, very massive stars will evolve close to the
Eddington limit (black line in Fig. 2.3), while the more metallic ones will suffer strong winds: in both
cases, the net effects are depletion of the more external layers and exposition of the more internal
and hot ones. Therefore, more massive and metallic stars will keep evolving in the blue region of the
HR diagram and will eventually lose all the external hydrogen envelope, starting core-He burning as
Wolf-Rayet stars (filled stars).

For instance, as shown in Fig. 2.3, a MZAMS ∼ 20 M⊙ star at solar metallicity Z = 0.02 will
start to burn helium in its core with an effective temperature of Teff ∼ 4 kK, much cooler than the
Teff ∼ 10 kK of the same star with metallicity Z = 0.002. Low-metallicity stars have quenched stellar
winds that allow the star to retain and burn more mass: the core evolution is so fast that the external
layers of the star are only slightly modified by the winds and survive beyond the Eddington limit (for
instance, comparing the left- and right-hand panels of Fig. 2.3 it is evident that the markers of the
burning stages are closer and in hotter positions for the less metallic stars). In contrast, stellar winds
and instability near the Eddington limit strongly influence the evolution of stars with solar metallicity
and MZAMS ≳ 35−40 M⊙ (left-hand panel of Fig. 2.3 and right-hand panel of Fig. 2.4): the external
layers are so much depleted that stars with MZAMS ≳ 40 M⊙ rapidly become Wolf-Rayet stars after
a brief phase as LBV. Mass loss also limits the growth of the He and CO cores: solar metallicity stars
at the pre-supernova (pre-SN) stage have cores and total masses up to ∼ 30 M⊙, lighter with respect
to the stars evolved at Z = 0.002. While low-metallicity stars are mostly affected by instability at
the Eddington limit and the effect is relevant only for massive stars MZAMS ∼ 70 − 100 M⊙, solar-
metallicity stars lose most of their mass by winds and the ones with MZAMS ≳ 40 M⊙ will explode
as Wolf-Rayet stars of MWR ∼ 15 − 20 M⊙. In contrast, mass loss is so irrelevant in single stellar
evolution of low-metallicity stars that even stars up to ∼ 100 M⊙ do not form Wolf-Rayet stars at
Z = 0.002.

4The Hayashi line is an almost vertical line typical of stars dominated by convective energy transport that can carry
outward a wide range of luminosity for a given temperature with small variations in the super-adiabatic gradient.
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Stars that reach the core He-burning phase then evolve just in ∼ 105 yrs towards a series of
contractions and expansions where helium starts to burn in the shell (squares, filled if the stage is
reached as a Wolf-Rayet or empty otherwise) and then CO starts to burn in the core, similarly to the
evolution during the H-burning. SEVN stops the evolution of the star at the end of the CO-burning
(empty circles) because the burning cycles of the heavier elements require detailed modelling of the
star interior and occur in just few days. The supernova explosion and compact remnant properties
are then calculated as a function of the mass of the CO core, as explained in Sec. 3.1.4.

2.2 Mass transfer theory

2.2.1 Conservative and non-conservative mass transfer

The angular momentum L of a binary system with circular orbit (for simplicity) of radius a is

L = µa vorb =
M1M2

M1 +M2

√︁
G (M1 +M2) a (2.11)

where reduced mass µ and orbital velocity vorb are functions of the stellar masses M1 and M2

µ =
M1M2

M1 +M2
vorb =

√︃
G (M1 +M2)

a
(2.12)

Conservative case If the orbital angular momentum L and the total mass of the system M1+M2

remain constant, the mass transfer is conservative. In this scenario, the relation of Eq. 2.11 becomes

a (M1M2)
2
= const (2.13)

and is showed in the left-hand panel of Fig. 2.5. A system with primary M1 ≥ M2 that transfers
mass to the secondary M2 shrinks its orbit until M2 ∼ M1: when the accreting star becomes more
massive than the donor, the orbit widens again.

Non-conservative case Binaries can lose angular momentum and mass, for instance because of
friction with the surrounding medium and because secondary stars are not able to accrete all the mass
lost by the donors, respectively. Variations in the total angular momentum and mass of the system
determine a non-conservative mass transfer and complicated models to determine the variation of
the semi-major axis. From a qualitative point of view, Eq. 2.11 indicates a direct proportionality
between orbital angular momentum and semi-major axis: the orbit shrinks if angular momentum
is lost. Instead, Eq. 2.12 suggests that less massive binaries have lower orbital velocities: energy
conservation requires that the orbit widens [58].

Real binaries probably undergo non-conservative mass transfer episodes in which mass loss domi-
nates over orbital angular momentum loss. A binary mainly loses mass because of the combined effect
of isotropic mass loss of the primary (especially through stellar winds or common envelope episodes,
see Sec. 2.2.2 and Sec.2.2.4) and limited accretion of the secondary.

Eddington limited accretion According to the virial theorem, a star in hydrostatic equilibrium
that accretes mass converts part of its gravitational energy into radiation. In particular, the mass M
accreted over a timescale τ at rate Ṁacc = M/τ produces an accretion luminosity Lacc of

Lacc =
GMṀacc

R
(2.14)

Imposing hydrostatic equilibrium requires that the accretion luminosity does not overcome the
Eddington luminosity of Eq. 2.4. The condition on the luminosity Lacc ≤ LEdd becomes an upper
limit to the maximum accretion rate allowed to maintain hydrostatic equilibrium

Ṁacc ≤ ṀEdd =
4πcR

k
. (2.15)

where k is the scattering opacity, c the speed of light and R the stellar radius.
The accretion rate is mainly limited by the star’ size (ṀEdd ∝ R): only the larger stars can

accrete rapidly a lot of mass. Eddington limited accretion strongly reduces mass accretion rates onto
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Figure 2.5: Left: Conservative mass transfer from M1 to M2 first shrinks the semi-major axis of the orbit
a and then, when the secondary star becomes more massive than the primary M2 ≥ M1, the orbit widens
(see Eq. 2.13). Right: Orbital plane section of the equipotential curves of the Roche potential in the frame
co-rotating with the binary. The Roche lobe is the black thick line containing the Lagrangian point L1 [60].

compact objects to almost negligible quantities (ṀEdd ∼ 10−8 M⊙ yr−1 for a neutron star with radius
R ∼ 10 km). How common super-Eddington accretion is in X-ray binaries is still a matter of debate
and is not the focus of this thesis [59].

2.2.2 Wind-fed binaries

Stellar winds cause an isotropic spread of the mass lost by the primary M1, thus, it is reasonable
to consider the secondary star M2 as orbiting in a gas cloud. If the orbital velocity vorb is small
compared to the wind velocity vw ≫ vorb, accretion can be assumed spherical and described with the
Bondi-Hoyle formalism [61]: the average mass accreted over an orbital period by the secondary is

⟨M2
̇ ⟩ = 1√

1− e2

(︃
GM2

v2w

)︃2
αw

2a2
1

(1 + v2)
3/2

M1
̇ , (2.16)

where e is the eccentricity, a the semi-major axis, αw ≈ 1.5 an efficiency constant, v is the ratio
of the orbital velocity vorb (calculated as in Eq. 2.12) and the wind velocity vw (calculated as the
relative motion of the gas particles with respect to the secondary, proportional to the escape velocity
with proportionality constant βw ≈ 0.5− 7)

v =
vorb

vw
v2w = 2βw

GM1

R1
(2.17)

Line-driven winds are one order-of magnitude faster than orbital velocities (vw ∼ 1000 km/s and
vorb ∼ 400 km/s [47]): the v term in Eq. 2.16 can be neglected and the average mass accreted becomes

⟨M2
̇ ⟩ ∝

(︃
vorb

vw

)︃4

M1
̇ (2.18)

The mass accretion rate scales as the fourth power of the velocity ratio; thus the efficiency of wind
accretion is generally low: even enhanced mass loss of the primary Ṁ1 ∼ 10−4 M⊙ yr−1 results in
negligible accretion rates Ṁ2 ∼ 10−8 M⊙ yr−1. Nevertheless, similar accretion rates are close to the
ones allowed by Eddington-limited accretion onto compact objects (see Sec. 2.2.1) and, even if small,
are sufficient to power the formation and emission of the accretion disks in many X-ray binaries.
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2.2.3 Roche lobe overflow
The Roche potential In the frame co-rotating with the binary, the sum of the gravitational and
centrifugal potential is called Roche potential and its equipotential curves are shown in the right-hand
panel of Fig. 2.5. The potential wells of the stars become drop-shaped because of the orbital motion
and are called Roche lobes. In order to describe them, in 1983 Eggleton [62] introduced the Roche
lobe radius RL as the radius of a sphere with volume equivalent to the one enclosed by a Roche lobe

RL =
0.49 q2/3

0.6 q2/3 + ln
(︁
1 + q1/3

)︁ a, (2.19)

where a is the semi-major axis of the system and q = M1/M2 (q = M2/M1) is the ratio between
the mass of the star belonging to the lobe M1 (M2) and its companion M2 (M1). The formula
is obtained assuming circular and synchronized orbit, a condition often true for mass-transferring
systems where tight orbits are rapidly circularized and synchronized by tides.

Stability of the Roche lobe overflow When a star expands beyond its Roche lobe (for instance
because of stellar evolution or because the orbit shrinks), the layers outside the Roche lobe are no
more bound to the star’s potential well and can either be lost by the binary or accreted by the
companion in the so-called Roche lobe overflow (RLO) process. The stability and efficiency of the
RLO are still poorly understood and provide an active field of research because they depend on many
factors, like the presence of a convective or radiative envelope and a core more or less prominent
(both determine the response of the star to the removal of the external envelope) or the possibility
that the mass is transferred also from the external atmosphere of the star and outflows from the outer
Lagrangian point of the donor (both determine the mass loss rate) [63].

A star that loses its external layers needs to re-adjusts its dimension in order to return to an
equilibrium state. If the new equilibrium is achieved with a stellar radius still larger than the Roche
lobe radius, the star will keep losing its outer layers in an unstable runaway that will lead the system
to a common envelope (see Sec. 2.2.4). In contrast, if the star returns to the equilibrium state inside
the Roche lobe, the RLO ends in a stable way. In this case, stellar evolution may stimulate further
expansion (for instance, during the Hertzsprung-gap phase or by igniting the core He-burning, as
described in Sec. 2.1.4): the star can undergo a series of stable RLOs and transfer a large amount
of mass. For instance, Hurley et al. [58] proposed that stable RLO would lead to a mass loss rate
scaling as the amount of Roche lobe overfilling

Ṁ1 ∝
[︃
ln

(︃
R1

RL,1

)︃]︃3
(2.20)

RLOs can be unstable over dynamical or thermal timescales, if the mass loss perturbs the hydro-
static or thermal equilibrium, respectively (see Sec. 2.1.4). As suggested by Webbink in 1984 [64],
the (in)stability can be studied assuming that the radius is only a function of the mass R ∝ Mζ and,
thus, comparing the logarithmic variation of the Roche lobe (ζL) with the one induced in the stellar
radius over the dynamical5 (ζad) or thermal (ζth) timescale

ζL =
d ln rL
d lnM

ζad =

(︃
d lnR

d lnM

)︃
ad

ζth =

(︃
d lnR

d lnM

)︃
th
. (2.21)

The most rapid variation determines the dominant perturbation timescale, thus the reference
mass-radius exponent ζ∗ = min{ζad, ζth} that, once compared to the Roche lobe variation ζL, defines
a Roche lobe overflow to be {︄

stable ζ∗ ≥ ζL

unstable ζ∗ ≤ ζL
(2.22)

Inequality signs are a consequence of the negative denominators: the variation of the Roche lobe
radius is referred to stars that are losing mass (d lnM ≤ 0). As a reference, the left-hand panel of
Fig. 2.6 shows a qualitative comparison between mass transfer episodes that are stable (ζ∗ ≥ ζL, S
point), unstable on a thermal timescale but stable on the dynamical one (ζth ≤ ζL ≤ ζad, T point)
or unstable on a dynamical timescale (ζad ≤ ζL, P point).

5The subscript “ad” of ζad indicates that dynamical perturbations act so rapidly that can be modelled as adiabatic
processes.



28 Wolf-Rayet – black hole binaries

Figure 2.6: Left: Examples of the RLO (in)stability scenarios for a 2M⊙ binary with fixed donor mass-
radius exponents (ζad = 1.5 and ζth = ζeq = 0.25, illustrated by the dashed and dotted lines, respectively).
Different donor masses determine different Roche lobe radii (solid line, Eq. 2.19), thus the same adjustment
to the mass loss (ζ∗) might determine a RLO stable (ζ∗ ≥ ζL, S point), stable on the dynamical timescale but
unstable on the thermal one (ζth ≤ ζL ≤ ζad, T point) or unstable also on the dynamical timescale (ζad ≤ ζL,
point P) [59]. Right: Adiabatic variation of the stellar radius as a function of the mass lost (R0 and M0 are
the values before mass loss). Solid lines: condensed polytropes with growing core sizes (from top to bottom
qcore=0.10, 0.25, 0.50, 0.75). Dotted line: complete polytrope, models a fully convective star with n = 3/2.
Dashed lines: Roche lobe radii for different initial mass ratios (from top to bottom qi = Mdon/Macc = 1, 2, 3).
A convective star may avoid a dynamically unstable RLO if it has a prominent core qcore ≫ or it has a
companion with similar mass q ∼ 1 [65].

Role of stellar envelope, core size and mass ratio The convective or radiative nature of the
envelope strongly affects the re-adjustment in the stellar structure after the removal of an external
layer, eventually determining stability and efficiency of the RLO. Radiative envelopes have a steep
density gradient that prevents the onset of convection: the pressure exerted by the outer layers is so
small that, once they are removed, the star almost does not need to expand to restore the equilibrium.
Thus, stars with radiative envelopes have final radii usually lower than the initial ones (ζad ≫ 0) and
will likely undergo stable RLOs. Convective envelopes, on the contrary, have an adiabatic structure
that almost restores the initial radius via adiabatic expansion (ζad ≲ 0): similar stars will likely still
overfill their Roche lobe after their re-adjustment and will enter unstable RLO [59] .

Stars that have a convective envelope and a central core or that are fully convective have been
often modelled with condensed or complete polytropes6, respectively, because of limited computa-
tional power. In 1987, Hjelliming & Webbink used polytropic models to study RLO instability on the
dynamical timescale, finding that the core, when is present, increases the convective efficiency of the
external envelope: stars lose more energy and reduce their radius as shown in the right-hand panel of
Fig. 2.6, likely avoiding an unstable RLO. As a star evolves, this effect becomes more important: the
core grows in size and mass fraction because of the advanced nuclear burnings and of the removal of
the external layers (caused by stellar winds and previous mass transfer episodes) [65] .

The binary mass ratio q is another factor influencing the RLO stability, since it enters the Roche
lobe radius definition of Eq. 2.19. As shown in the right-hand panel of Fig. 2.6, a donor star M1

much more massive than the companion M2 (q = M1/M2 ≫ 1) transfers a lot of mass and causes a
rapid expansion of the companion potential well, thus shrinking its own Roche lobe and facilitating
the onset of an unstable RLO. In contrast, stars with similar masses have similar Roche lobes with
sizes modulated by the semi-major axis: assuming, as a reference, a conservative mass transfer as
the one shown in the left-hand panel of Fig. 2.5, systems with q ∼ 1 have negligible changes in the
semi-major axis extent, thus in the Roche lobe sizes.

6Convective envelopes, or full stars for the complete polytrope case, were modelled with a polytropic index n = 3/2.
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Many works in the literature started from the above considerations to obtain models and thresholds
that could numerically determine whether or not a binary system would enter a stable or unstable mass
transfer. Similar models often are too much simplified and calibrated on old stellar tracks (or even
to polytropes) but provide a fast and easy-to-implement method to calculate the RLO (in)stability
in population-synthesis codes. For instance, many codes (including the one adopted in this thesis,
SEVN [43]) derived part of their mass transfer prescriptions from the formalism suggested by Hurley
et al. for the BSE code [58]. These codes assume a one-to-one correspondence between the burning
stage, the radiative/convective nature of the envelope and the core size, starting a RLO unstable on
the dynamical timescale when the mass ratio q = Mdonor/Maccretor is larger than a given threshold
qcrit, calibrated with stellar evolution models and function of the core size qcore = Mcore,donor/Mdonor

q ≥ qcrit (qcore) (2.23)

Recent studies pointed out that there is not an unique correlation between the burning stage, the
extent of the radiative/convective envelope, the core size and the RLO stability [66]. Moreover, many
of the values for the qcrit and mass loss rates (like the one of Eq. 2.20) were obtained from old stellar
tracks (or polytropic models) that did not properly model the more massive stars: an updated and
corrected modelling of the mass transfer that accounts for up-to-date stellar evolution is required.

2.2.4 Common envelope
A key-process in binary evolution Stars that enter an unstable RLO (see Sec. 2.2.3), collide7

or are part of a contact binary8 will likely share a part or all of their envelopes (if present) and enter
in a common envelope (CE) configuration. Friction due to stellar cores orbiting around each other
in a medium denser than the interstellar one causes orbital orbital angular momentum and energy
losses: the orbit shrinks while the gas heats up and eventually is dispersed. Depending on the initial
orbital energy, envelope potential energy and efficiency in the energy and angular momentum transfer,
binaries can either spiral-in and merge or be able to eject the common envelope: in the latter case,
only the nuclei survive and the orbit tightens.

Common envelope processes shrink efficiently the orbits and are determinant to form tight compact
object binaries that can merge via emission of gravitational waves within a Hubble time [43]. However,
only systems with the right combination of stellar and orbital properties can survive to common
envelopes events. For instance, the orbit must be wide enough not to merge too rapidly and both
stars should have a well-developed core: the latter condition prevents the core mass to be transferred
into the common envelope and allows the star to survive as a self-gravitating object. A summary of
the main formation channels and outcomes of the CE evolution is shown in Fig. 2.7.

It is important to point out that evolution through a CE phase efficiently removes the hydrogen
envelope of one or both stars. Therefore, common envelope is a key-process to form Wolf-Rayet stars
and its role will be further discussed in the results of this thesis, presented in Sec. 4.

αλ formalism The most widely adopted description for common envelope processes was proposed
by Webbink in 1984 [64]. He assumed that the orbital energy is the only energy source to power the
envelope removal, modelling the energetic balance with two adimensional parameters: α and λ.

The α parameter indicates the fraction of orbital energy Eorb used to eject the common envelope

∆Eorb = α (Eorb, f − Eorb, i) = α
GMc,1Mc,2

2

(︃
1

ai
− 1

af

)︃
, (2.24)

where Mc,1 and Mc,2 are the two core masses and ai and af are the initial and final semi-major
axis, respectively . Because of friction, the orbit shrinks, thus af < ai and ∆Eorb ≤ 0.

The λ parameter is related to the common envelope concentration: small values of λ indicate
concentrated envelopes, more difficult to eject. In particular, λ is related to the envelope binding
energy of the single stars through dimensional considerations

Eenv = −G

λ

(︃
menv,1M1

R1
+

menv,2M2

R2

)︃
(2.25)

where R, M e menv are respectively radius, total and envelope mass of each star at the CE onset.
7Collisions occur for two stars larger than the orbital separation at periastron R1 +R2 > (1− e) a.
8Contact binaries form when both stars overfill their Roche lobes R1 ≥ RL,1 and R2 ≥ RL,2.
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Figure 2.7: Possible initial and final common envelope configurations. The two stars are represented with
cores (blue for the primary, black for the secondary) and envelopes (orange) but it could also be that one of
the two stars has not yet developed a core (e. g. a MS star), is already envelope-stripped (e. g. a Wolf-Rayet
star) or is a compact object (e. g. a black hole). A binary may enter a CE after an unstable RLO, a collision,
or after being a contact binary. The H-rich envelope of one or both stars are shared and if at least one of the
stars does not have a core, the two are merged. In contrast, the two nuclei (or a nucleus/Wolf-Rayet star and
a compact object) could survive the spiral-in if the initial orbit is wide enough to eject the envelope, heating
the gas through friction. The scheme is inspired by figure no. 7 of Mapelli [67] and implements the standard
cases for common envelope evolution. The SEVN version adopted in this thesis, however, avoids the creation of
over-contact binaries in order to reproduce the observed neutron stars merger rates (see Sec. 3.1.3 and Iorio
et al. in preparation).
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Figure 2.8: Comparison of final outcomes for the same initial binary population evolved with the COSMIC
population-synthesis code [68] (left) and with the MESA stellar evolution code, which also implements modules
for binary evolution [69] (right). Each row shows the initial period as a function of the initial mass ratio
for H-rich donors of M = 25 M⊙ (top) and M = 40 M⊙ (bottom) at sub-solar metallicity Z = 0.00142.
On-the-fly stellar and binary evolution carried out in MESA suggests that only a restricted parameter space
region successfully forms binary black holes (BBHs), in contrast with results from population-synthesis codes.
MESA BBHs formed mainly through stable RLO, whereas CE evolution dominated for COSMIC BBHs [70].

Imposing that the orbital energy lost by the system equals the common envelope binding energy
(∆Eorb = Eenv), the system final semi-major axis is a function of the α and λ parameters

1

af
=

1

αλ

2

Mc,1Mc,2

(︃
menv,1M1

R1
+

menv,2M2

R2

)︃
+

1

ai
(2.26)

The direct proportionality af ∝ αλ indicates that binaries with more chances of survival are the
ones that have poorly concentrated envelopes and efficiently converted the orbital energy into heat.

Even though the αλ formalism is easy-to-implement and widely adopted in population-synthesis
codes, there is general consensus in the literature that it needs to be updated with a more detailed
and self-consistent treatment of stellar and binary evolution [63]. Many observed systems suggest
that likely α > 1, meaning that additional forms of energy need to be considered to eject the common
envelope [67]. Moreover, current implementations adopt λ values obtained from fits to various stellar
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evolution models even though a self-consistent calculation should be preferred. In particular, fits to
single stellar evolution tracks do not account for changes in the binding energy due to mass transfer
events and their result are sensitive to the internal energy sources considered. For instance, Marchant
et al. [63] pointed out that fits from Claeys et al. [71], widely implemented in population-synthesis
codes (including the one adopted in this thesis, SEVN, see Sec. 3.1.3), underestimate the binding
energy of stars that frequently enter a common envelope, like Hertzsprung-gap stars, overestimating
the number of systems that survive to it and, eventually, merge as binary black holes.

Gallegos-Garcia et al. [70] further demonstrated that, at least for H-rich donor stars, current
prescriptions for entering an unstable RLO and surviving the common envelope may overestimate
the binary black hole merger rates by a factor ∼ 5− 500, favouring too much the formation through
common envelope evolution in systems that, instead, likely evolve through stable RLOs (see Fig. 2.8).

2.3 Observed candidates of Wolf-Rayet – black hole systems

2.3.1 Overview of WR–BH properties and fates

We know of only seven candidate Wolf-Rayet – black hole binaries (hereafter, WR–BH): their main
parameters and uncertainties are listed in Tab. 2.2 [72]. General properties of WR–BH systems are
presented in this section, while in the next ones I will discuss the characterization of each system.

Masses and periods As explained in Sec. 1.2.2 and Sec. 2.1.2, X-ray light curves and UV, optical,
near-IR spectra are the main tools used to characterize stellar and binary properties. While they
provide precise estimates of the orbital period, the masses are often so poorly constrained that it is
not possible to determine whether some compact objects are neutron stars or black holes, although
further X-ray observations suggest a mild preference for a black hole in Cyg X-3 and IC10 X-1.

Spectroscopic analysis ensured the Wolf-Rayet nature of the companions in Cyg X-3, IC10 X-1,
NGC300 X-1 and M101 ULX-1. In contrast, CXOU J123030.3+413853, CXOU J004732.0-251722.1
and CG X-1 are more uncertain as WR–BH binaries and their classification is based only X-ray
measurements, since spectroscopic observations were not available. Moreover, the uncertain candi-
dates belong to starburst galaxies, further supporting the possibility of being at least high-mass X-ray
binaries (HMXBs, see Sec. 2.3.2, 2.3.3, 2.3.4 for a detailed discussion on the single system properties).

Host galaxy Name
MBH MWR P tGW Z d

[M⊙] [M⊙] [hours] [Gyr] [Z⊙] [Mpc]

Milky Way Cyg X-3 3-10 a 8-14 a 4.8 b 0.02 0.92 0.00741

IC 10 IC10 X-1 - c 17-35 d 34.9 e 3.5 0.22 0.70

NGC 300 NGC300 X-1 13-21 f 15-26 g 32.8 f 2.9 0.19 2.02

NGC 253 CXOU J004732.0-251722.1 - - 14.5 h 0.3 0.24 3.0

Circinus CG X-1 - - 7.2 i 0.05 0.10 4.2

M101 M101 ULX-1 8-46 j 17-19 j 196.8 j 348 0.17 6.9

NGC 4490 CXOU J123030.3+413853 - - 6.4 k 0.04 0.23 8.55

a [47] b [73] c [31] d [74] e [75] f [76] g [77] h [78] i [72] j [79] k [80]

Table 2.2: Properties of the seven WR–BH candidates. Table inspired by [72]. Masses and periods are
extracted from papers referenced with the superscripts and discussed in Sec. 2.3.2, 2.3.3, 2.3.4. tGW is an
order-of-magnitude estimate for the merger time via gravitational-wave emission and is calculated with Eq.
2.27 assuming the same observed period and M1,BH = M2,BH = 10 M⊙, given the uncertainties in the mass
determination discussed in Sec. 2.3. Distances and metallicities refer to the host galaxies as in [81] for all
binaries except for Cyg X-3: its distance is taken from [82] and is used to infer the local metallicity from the
Milky Way metallicity gradient [83], as explained in Sec. 2.3.2.
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Fates Even though the mass estimates are quite uncertain, all the considered Wolf-Rayet stars are
massive enough to collapse into a black hole: the observed WR–BHs are likely progenitors of binary
black holes (see Sec. 2.1.4). Using the formula derived in 1964 by Peters [84], it is possible to obtain
an order-of-magnitude estimate for the time needed to merge via GW emission tGW:

tGW =
5

256

c5 a4 (1− e2)7/2

G3 M1 M2 (M1 +M2)
, (2.27)

where G is the gravitational constant, c is the speed of light, and a is the semi-major axis. For
simplicity, it is reasonable to assume that the orbital period of the binary black hole will be similar
to the one observed in the WR–BH configuration (simulated systems discussed in Sec. 4 show that
the WR–BH period is indeed little affected by the supernova kick and remains almost identical when
a binary black hole forms). Following [72], the reference compact object binary is assumed to have
circular orbit (eccentricity e = 0), secondary BH of M2,BH ∼ 10 M⊙ produced by the WR and
primary BH of M1,BH ∼ 10 M⊙. Such masses are probably smaller than the real ones but allow
to obtain an upper boundary for tGW. Under these assumptions, WR–BH systems need to have a
period P ≲ 10 days (a ≲ 20 R⊙) in order to merge within a Hubble time. By comparing this value
with the ones reported in the Table 2.2, all binary systems formed with characteristics similar to the
observed WR–BH candidates could produce a merging binary black hole observable today, with the
exception of systems like M101 ULX X-1, that are too wide to merge within a Hubble time. However,
these are only approximated conclusions because the approach adopted here neglects the impact of
any possible natal kicks.

2.3.2 Cyg X-3

Cyg X-3 is the only known WR–BH candidate in the Milky Way: being at almost solar metallicity,
it will become a case-study binary in this thesis work and its possible evolutionary pathways will
be discussed in Sec. 4. Hereafter, I will present the key observations that characterize Cyg X-3,
highlighting the ones that will be used as fiducial model in this thesis.

Distance X-ray and sub-millimetric observations revealed that Cyg X-3 has a nearby Bok globule
located 15.6" away from the binary, as shown in the left-hand panel of Fig. 2.9. This Cyg X-3 “little
friend ”, as it is sometimes called, is a cloud of gas and dust of ∼ 2− 24 M⊙ with ∼ 0.2 pc diameter
and is associated with a star-forming region. Observations of the 1.3 mm CO line revealed a velocity
shift of −47.5 km/s. Since the cloud belongs to the Galactic plane, it is reasonable to assume that the
Doppler shift is dominated by rotational velocity. However, the Bok globule is close to the Perseus
arm and there have been evidences of anomalous motion of objects in that region. Thus, McCollough
et al. [82] used a Bayesian tool that could account for errors in the estimated kinematic distances,
finding that the Bok globule has 62 % of probability of being at dBok = 6.08 ± 0.64 kpc and 38 %
probability of being at dBok = 7.85± 0.6 kpc.

X-ray light curves of this Bok globule exhibit the same period modulation of Cyg X-3 but are
shifted in phase by ∆ϕ = 0.56, suggesting that X-ray photons emitted by the binary are scattered by
the dust cloud towards the observer. The small angular separation between the Bok globule and Cyg
X-3 coupled with the observed time delays allow us to use geometrical arguments to determine the
distance of Cyg X-3. Using the previously determined relative distance of the Bok globule of dBok =
6.08±0.64 (7.85±0.6) kpc , McCollough et al. found that Cyg X-3 is distant 0.82±0.09 (0.77±0.07)
kpc from the Bok globule and dCyg X−3 = 7.41± 1.13 (10.16± 1.21) kpc from the observer. The first
estimate relies on the most probable value for the Bok globule’s distance, therefore can be used as
reference value for the Cyg X-3 distance

dCyg X−3 = 7.41± 1.13 kpc (2.28)

Assuming that the supernova explosion that formed the compact object of Cyg X-3 occurred
∼ 1 − 5 Myrs ago (average lifetime of a Wolf-Rayet, see Sec. 2.1.4) and that Cyg X-3 originally
formed in that Bok globule, the relative distance of ∼ 1 kpc suggests a natal kick of 190-980 km/s.
Both distances and natal kick estimates are consistent with independent calculations in the literature,
although the work of McCollough et al. provides the most precise distance determination.
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Metallicity In 2018 Lemasle et al. [83] used distances and metallicities of twenty-five Cepheids
from the Gaia Data Release 2 to estimate the Milky-Way metallicity gradient, finding the relation

[Fe/H] = −0.0447 dGal + 0.3522 (2.29)

where dGal is the Galactocentric distance expressed in kpc units.
Assuming, as Lemasle et al. [83], that the Sun has a Galactocentric distance of d⊙,Gal = 7.94

kpc and recalling, as McCollough et al. [82], that Cyg X-3 lies on the Galactic plane (l = 79.84◦, b =
+0.70◦) with relative distance to the Sun of dCyg X−3 = 7.41±1.13 kpc, I used trigonometric relations
to infer the Galactocentric distance of Cyg X-3 as dCyg X−3,Gal = 9.85 kpc. At this distance, the
metallicity of the Milky-Way estimated through the gradient of Eq. 2.29 as [Fe/H] = -0.088.

Assuming that the metallicity distribution of the Sun is universal [85], the [Fe/H] metallicity of
any star can be converted into metal mass fraction Z with the relation

[Fe/H]∗ = log(Z/X)∗ − log(Z/X)⊙, (2.30)

where X is the hydrogen mass fraction. For a star at the Galactocentric distance of Cyg X-3, the
metal content is thus

ZCyg X−3 = 0.916 Z⊙ (2.31)

This metallicity is the one reported in Tab. 2.2 for Cyg X-3 and is very similar to the solar one,
given that both the Sun and Cyg X-3 have almost the same Galactocentric distance. In particular,
assuming standard solar metallicity of Z⊙ = 0.02 implies ZCyg X−3 = 0.018 while using updated
determinations from Caffau et al. [86] Z⊙ = 0.015 indicate ZCyg X−3 = 0.014.

Period Cyg X-3 light curves and spectra exhibit a strong modulation of 4.8 hours (∼ 4h48m). In
particular, Singh et al. [73] obtained very accurate values for period P and period derivative Ṗ from
parabolic fits to X-ray light curves

PCyg X−3 = 4h47m32.735s ± 0h0m0.008s (2.32)

Ṗ /PCyg X−3 = (1.05± 0.04)× 10−6 yr−1 (2.33)

As pointed out by Zdziarski et al. [87], the period of Cyg X-3 is unusually short for an HMXB and
suggests a past spiral-in episode, likely due to a common envelope (see Sec. 2.2.4). This interpretation
is supported also by the results of this thesis, as discussed in Sec. 4.

Masses So far only IR spectra are available for Cyg X-3: since the binary lies on the Galactic
plane, strong interstellar absorption prevented the observation of optical and UV counterparts [47].
The spectra revealed the presence of strong He I and He II lines, classifying the Wolf-Rayet star as
a WNL sub-type (see Tab. 2.1).

As explained in Sec. 1.2.2 and Sec. 2.1.2, it is possible to use a mass-luminosity relation to de-
termine the mass of a Wolf-Rayet star and then couple this information with period and maximum
amplitude of the radial velocity curve to obtain the dynamical mass of the companion compact object.
Zdiarski et al. [87] used IR spectra extracted by Hanson et al. [88] and mass-luminosity relations for
WN stars calibrated by Nugis & Lamers [51] to estimate a Wolf-Rayet mass of MWR = 10.3+3.9

−2.8 M⊙
and a compact object mass of MC = 2.4+2.1

−1.1. However, Koljonen & Maccarone [47] pointed out that
the spectra of Hanson et al. [88] were taken in an outburst state, where the variability of 2.058 µm
He I absorption line (used to extract the radial velocity curve) was not tracing the orbital motion
of the Wolf-Rayet star, but, instead, reflected the ionization structure of the wind. Similar misinter-
pretations occurred also for NGC 300 X-1 and IC 10 X-1 and caused a revision of their masses, as
explained in more detail in the next section (Sec. 2.3.3).

In 2017, Koljonen & Maccarone [47] extracted new IR spectra of Cyg X-3 and re-estimated
its compact object mass. Assuming a distance of dCyg X−3 = 7.41 ± 1.13 (10.16 ± 1.21) kpc from
McCollough et al. [82], they estimated the absolute K-band magnitude to be MK = −4.2±0.4 (−4.9±
0.3) mag and used the PoWR non-LTE atmosphere models for WN stars [89] to derive a corresponding
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luminosity of log(LWR/L⊙) = 5.32 ± 0.16 (5.59 ± 0.12). Gräfener et al. [48] extracted the mass-
luminosity relations for non-homogeneous core-He burning stars showed in the left-hand panel of
Fig. 2.2 from stellar models also based on PoWR. Thus, Koljonen & Maccarone self-consistently used
the Gräfener et al. mass-luminosity relations and determined the Wolf-Rayet masses to be MWR =
8−10 (11−14)M⊙. The corresponding mass loss of Ṁ = (0.4−1.3)×10−5 ((0.6−2.0)×10−5)M⊙ yr−1

is extracted from the PoWR models and then corrected for wind clumping. Overall, the Wolf-Rayet
mass is consistent with the one found by Zdiarski et al. [87] and, accounting for the possible errors
in the distance estimates of McCollough et al. [82], can be conservatively assumed to be

MWR, Cyg X−3 = 8− 14 M⊙ (2.34)

As previously pointed out and further discussed in the next section, the strong helium lines in
the IR spectrum are not reliable tracers of the orbital motion but rather reflect variability in the
Wolf-Rayet winds. Therefore Koljonen & Maccarone adopted a different strategy to determine the
mass of the compact object in Cyg X-3. They assumed that all the isotropic wind flowing past the
accretion radius of the compact object racc is accreted

Ṁacc ≈
πr2acc
4πa2

Ṁ, (2.35)

where the semi-major axis a is determined from Kepler’s third law and the accretion radius racc
is a function of the relative wind velocity at the location of the compact object vrel

a =
3

√︃
P 2 G (MWR +MC)

4π
racc ∼

2GMC

v2rel
(2.36)

Back-substituting a and racc into Eq. 2.35 results in

Ṁacc ≈ 0.0176×
(︃
1000 km/s

vrel

)︃4 (︃
4.8 hrs

P

)︃4/3
M2

C

(MWR +MC)2/3
Ṁ (2.37)

Assuming that only the wind confined within the orbit falls to the compact object racc < a implies,
according to Eq. 2.35, that only <1/4 of all the mass lost by the Wolf-Rayet Ṁ is accreted. This
assumption, coupled with the well-know period of P = 4.8 hrs [73] and the previously estimated
Wolf-Rayet mass loss rates of Ṁ = (0.4− 2.0)× 10−5 M⊙ yr−1 [47] reduces Eq. 2.37 into a relation
between the two masses and the relative wind velocity vrel, shown in the right-hand panel of Fig. 2.9.

vrel is determined by the wind terminal velocity vinf and orbital velocity vorb through v2rel =
v2inf + v2orb. PoWR atmosphere models predict a terminal wind velocity of vinf ≈ 700 − 800 km/s. In
contrast, the orbital velocity is less precise vorb ≈ 300− 750 km/s due to the large uncertainty in the
orbital inclination i ≈ 30◦ − 70◦. Overall, the wind relative velocity at the compact object location
is not higher than vrel ≲ 750 − 1000 km/s, implying a compact object with mass MC ≲ 5 − 10 M⊙
(see the right-hand panel of Fig. 2.9).

Black hole or neutron star? The maximum allowed mass for a neutron star lies is MNS,max ∼
2.5 − 3 M⊙, according to theoretical studies on the equation of state and observations of double
neutron stars and pulsars [19]. Therefore, in principle, the compact object in Cyg X-3 could be either
a black hole or a neutron star. However, Zdiarski et al. [87] pointed out that the X-ray and radio
spectra in the hard and soft state of Cyg X-3 resembled the ones of X-ray binaries that are known
to contain a black hole. Even though they found a dynamical mass range in between a neutron star
and a black hole MC = 2.4+2.1

−1.1 (adopting the unreliable He I absorption lines, though), they argued
that the aforementioned circumstantial evidences were sufficient to support the black hole nature of
the compact object.

Further evidence for the black hole hypothesis comes from the study of Antokhin et al. [90].
They obtained a more precise estimate of the inclination i = 29.5◦ ± 1.2◦ that further supports the
MC ≲ 10 M⊙ upper limit. Moreover, assuming a smooth Wolf-Rayet wind, they propose a compact
object mass of MC ≈ 7.2 M⊙ even though they recognize that, due to the many uncertainties in the
wind modelling, the neutron star hypothesis cannot be completely ruled out.

In this thesis, I will follow the black hole hypothesis and, since SEVN sets the maximum neutron
star mass to be MNS,max = 3 M⊙ [43], the mass of the compact object in Cyg X-3 will be hereafter
considered to lie in the range

MBH, Cyg X−3 = 3− 10 M⊙ (2.38)
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Figure 2.9: Left: Gray-scaled X-ray image of Cyg X-3 and its “little friend”. The PSF of Cyg X-3, centered
at (α ≈ 26h, δ ≈ 30◦), was subtracted. Sub-millimetric contours of the CO line at −47.5 km/s are overlaid,
in green if positive and magenta if negative. The Bok globule is identified by the denser green contours
superimposed to the bright X-ray blob on the left of Cyg X-3 [82]. Right: Possible compact object masses
MC as a function of Wolf-Rayet masses MWR with descreasing values of relative wind velocities at the location
of the compact object vrel. The most probable values of MWR = 8 − 14 M⊙ and vrel ≲ 750 − 1000 km/s
favour a compact object with mass MC ≲ 5− 10 M⊙, most likely a black hole [47].

A wind-fed system Given the well-known period of P = 4.8 hours and considering a Wolf-Rayet
star of MWR = 8 − 14 M⊙ with a black hole companion of MBH = 3 − 10 M⊙, the total mass of
Cyg X-3 is Mtot = 11 − 24 M⊙ and, according to Kepler’s third law, results in a semi-major axis
of a ∼ 3 − 4 R⊙. From Eq. 2.19, the Roche Lobe radius would be of ∼ 2 − 2.5 R⊙, small enough
to be exceeded by the Wolf-Rayet radius (Wolf-Rayet stars typical have Sun-like radii). However,
Koljonen & Maccarone [47] recalled that population-synthesis results obtained by Lommen et al. [91]
indicated that systems like Cyg X-3 have a negligible probability to be observed in the Roche lobe
overflow configuration and, even if the system would go through an active RLO phase, this would
last for ≪ 100 yrs. Therefore, Cyg X-3 is reasonably considered a wind-fed system, a configuration
that will be consistent also with the results of this thesis, presented in Sec. 4.

2.3.3 IC10 X-1, NGC300 X-1 and M101 ULX-1

IC10 X-1 Clark & Crowther [74] analyzed the optical spectra of IC10 X-1, finding one of the most
luminous WNE Wolf-Rayet stars. Fits of non-LTE atmosphere models characterized the Wolf-Rayet
star with a luminosity log(LWR/L⊙) ∼ 6.05, mass loss rate Ṁ ∼ 4 × 10−6 M⊙ yr−1, terminal wind
velocity vinf ∼ 1750 km/s and effective temperature Teff ∼ 85 kK. Adopting the mass-luminosity
relation for H-free Wolf-Rayet stars of Schaerer & Maeder [92], Clark & Crowther estimated a mass
of MWR = 17−35M⊙ with a more probable value at ∼ 35M⊙. They also suggested that the observed
deep X-ray eclipses support an almost edge-on system, with inclination angles close to i ∼ 90◦.

Silverman & Filippenko used optical spectra to calculate an orbital period of P = 34.93 ± 0.04
hours, in agreement with the periodic variability exhibited by X-ray light curves. They used the pe-
riodic shift of the He II λ = 4686 Å emission line with respect to the [O III] λ = 5007 Å nebular line
to measure the dynamical mass of the compact object. The resulting mass function (see Sec. 1.2.2)
provided a minimum compact object mass of MBH,min = 23.1± 2.1 M⊙ assuming MWR = 17 M⊙ or
MBH,min = 32.7±2.6 M⊙ if the largest and most probable mass for the Wolf-Rayet star is considered
MWR = 35 M⊙. Overall, a mass estimate of MBH ∼ 21− 35 M⊙ indicated that the compact object
in IC10 X-1 was one of the most massive stellar black holes known at the time.

In theory, radial velocity curves are extracted with emission lines formed in the wind region that
is shielded by the Wolf-Rayet star. When the Wolf-Rayet star is in superior conjunction (ϕ = 0), the
emitting portion of the wind expands away from the observer and should cause the maximum redshift.
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Figure 2.10: Left: Standard model for the formation of emission lines in WR–BH binaries. Atoms ionized by
the X-ray radiation of the compact object accretion disk emit UV/optical/IR lines in the cooler region of the
Wolf-Rayet wind: the one shielded by the Wolf-Rayet star itself. The emission has maximum redshift when
the Wolf-Rayet star is in superior conjunction (ϕ = 0), no Doppler shift in quadrature (ϕ = 0.25, 0.75) and
maximum blueshift in inferior conjunction (ϕ = 0.5), as depicted by Laycock et al. [31]. Right: Alternative
model for the formation of He II emission lines that could justify the ∆ϕ = 0.3 phase offset observed in NGC
300 X-1. The He II lines could form in the extended accretion stream that lags behind the black hole and
channels the atoms to the accretion disk, where it forms a hot-spot [76].

At quadrature (ϕ = 0.25 and ϕ = 0.75) the wind shielded sector is orthogonal to the observer and the
line should exhibit no Doppler shift. Eventually, when the WR is in inferior conjunction (ϕ = 0), the
shielded region is directed towards the observer and the lines should be at maximum blueshift. This
last configuration is depicted in the left-hand panel of Fig. 2.10 and, for edge-on systems, corresponds
to the eclipse of the accretion disk and the deepest dip in the X-ray light curve.

Laycock et al. [93] compared the radial velocity curves of Silverman & Filippenko with 10-year
X-ray ephemeris data, finding an offset of ∆ϕ = 0.25. The result revealed that the He II λ = 4686
Å line was not tracing the orbital motion of the Wolf-Rayet star, given that it showed maximum
blueshift at quadrature where, instead, the Doppler shift is supposed to be zero. There is not yet
an alternative model for the He II λ = 4686 Å line formation, but it is likely due to the interaction
between the Wolf-Rayet wind and the black hole wind and radiation fields. Laycock et al. [31] argue
that, because of this, it is not possible at the moment to obtain a reliable dynamical mass estimate
for the compact object in IC10 X-1. While they suggest that the compact object could be so light to
be even a neutron star, Steiner et al. [94] studied the X-ray continuum to extract the compact object
spin (a ≳ 0.7) and supported the black hole hypothesis. In fact, Steiner et al. pointed out that IC10
X-1 X-ray phase shifts and eclipses duration are similar to the ones of M33 X-7, an eclipsing HMXB
in the Local Group composed of a ∼ 70 ∼ O star and a ∼ 15 M⊙.

NGC 300 X-1 NGC 300 X-1 shares many similarities with IC 10 X-1: both have an orbital period
of ∼ 30−35 hours, Wolf-Rayet star mass of 15−35 M⊙ and, most importantly, compact object mass
revisited, because the previous determinations with He II emission lines turned out to be unreliable.

Crowther et al. [77] characterized the Wolf-Rayet in NGC 300 X-1 from fits to the optical spec-
tra, obtaining luminosity log(LWR/L⊙) ∼ 5.92, mass loss rate Ṁ ∼ 5 × 10−6 M⊙ yr−1, terminal
wind velocity vinf ∼ 1300 km/s and effective temperature Teff = 65 kK. As for IC10 X-1, the
authors adopted mass-luminosity relations of Schaerer & Maeder [92], finding a best-fit mass of
MWR = 26+7

−5 M⊙. However, since the calibration of the absolute visual magnitude could have been
contaminated by nearby sources and altered the fit results, the authors also propose a corrected lu-
minosity of log(LWR/L⊙) ∼ 5.57 implying a spectroscopic mass of MWR = 15+4

−2.5 M⊙. Unlike IC10
X-1, NGC300 X-1 does not exhibit eclipses and geometric arguments indicate an inclination angle
of i = 60◦ − 75◦. Adopting these inclination angles and both Wolf-Rayet mass estimates into the
mass function extracted from He II λ = 4686 Å line, Crowther et al. estimated a black hole mass of
MBH ∼ 14− 23 M⊙.
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Binder et al. [76] calculated updated X-ray ephemeris and extracted UV spectra that exhibited a
strong He II λ = 1640 Å emission line. They combined them with the Doppler shifts of the He II
λ = 4686 Å line obtained by Crowther et al. [77], finding that the resulting radial velocity curve was
shifted by ∆ϕ = 0.3 with respect to the X-ray light curve: He II lines were not reliable tracers of the
orbital motion also in NGC 300 X-1, as Laycock et al. [93] already found in IC10 X-1. Binder et al.
find that the UV He II λ = 1640 Å line luminosity seems to be correlated with the visibility of the
accretion disk, being brighter when the disk is observable (ϕ ∼ 0−0.25) and dimmer when the disk is
partially hidden by the Wolf-Rayet star (ϕ ∼ 0.5). The correlation seems to support the alternative
formation scenario for He II emission lines depicted in the right-hand panel of Fig. 2.10. According
to this alternative mechanism, UV and optical He II emission lines are not formed in the shielded
region of the Wolf-Rayet wind but, instead, in the shocked regions within the accretion stream and,
eventually, in hot spots on the accretion disk. In particular, the accretion streams usually lag behind
the black hole and are more extended than the accretion disk, possibly explaining the offset in the
He II lines.

In contrast, the weaker C IV λ = 1550 Å line provides a radial velocity curve that likely traces
the orbital motion of the Wolf-Rayet star, with a phase offset consistent with zero ∆ϕ = 0.03± 0.03.
Binder et al. coupled this radial velocity curve to their precise determination of the orbital period
P = 32.7921 ± 0.0003 hours to estimate the compact object mass. In particular, they found a mass
of MBH = 17 ± 4 M⊙ assuming the best-fit Wolf-Rayet mass of MWR = 26+7

−5 M⊙ from Crowther
et al. [77]. Similarly, the second best-fit value of MWR = 15 M⊙ reduced the compact object mass
to MBH = 13 M⊙. Assuming a black hole mass of MBH = 17(12) M⊙, Binder et al. used Kepler’s
third law to find an orbital separation of a = 18.2 (15.8) R⊙, that, coupled with the corresponding
Wolf-Rayet radii of RWR = 7.2 (4.8) R⊙, imply a Roche lobe filling factor of RWR/RL = 0.95(0.77):
NGC 300 X-1 is unlikely undergoing a RLO and, instead, is a wind-fed system. The estimate on the
Wolf-Rayet radii comes from fits with PoWR non-LTE atmospheres [89] to UV spectra, resulting in a
WNE classification with higher estimate for the Wolf-Rayet mass loss rate Ṁ ∼ 4× 10−5 M⊙ yr−1.

M101 ULX-1 Ultraluminous X-ray sources (ULXs) have luminosity LX ≳ 1039 erg s−1 and are
usually interpreted either as an intermediate black hole MIMBH ≳ 100 − 1000 M⊙ accreting below
the Eddington limit (see Sec. 2.15) or as a neutron star or stellar mass black hole with ongoing
super-Eddington accretion. M101 ULX-1 is classified as ultraluminous X-ray source because it was
discovered with a luminosity of LX ≈ 3× 1039 erg s−1.

In 2013, Liu et al. [79] were able to characterize the system components by extracting an optical
spectra when the source was in its low state: in fact, similar sources in the high state have optical
emission dominated by the accretion disk and cannot be used to detect emission lines from non-
degenerate stars. The spectra of Liu et al. revealed a large orbital period of P = 8.2 days and
confirmed that the system is composed of a Wolf-Rayet star and a stellar-sized black hole. Fits of non-
LTE atmospheres characterized the Wolf-Rayet to be a WN sub-type with luminosity log(LWR/L⊙) ∼
5.73, mass loss rate Ṁ ∼ 2 × 10−5 M⊙ yr−1, terminal wind velocity vinf ∼ 1300 km/s and effective
temperature Teff = 48 kK. The fit estimated also a mass of MWR = 17.5 M⊙, in agreement with the
MWR = 19 M⊙ mass obtained adopting the mass-luminosity relations of Schaerer & Maeder [92].

Liu et al. used the strong He II λ = 4686 Å line to extract the radial velocity curve and found a
lower limit for the compact object mass: MBH,min ∼ 4.5 M⊙ for an edge-on system. While this result
provides dynamical evidence for a black hole, the orbital inclination is not constrained and does not
allow more detailed estimations of its mass. Therefore, similarly to the procedure used by Koljonen et
al. [47] for Cyg X-3 and explained in Sec. 2.3.2, Liu et al. estimated the mass of the black hole imposing
that it is sufficient to produce the observed accretion luminosity LX ∼ 3 × 1038 erg s−1. Different
accretion efficiencies η and different black hole rotational velocities result in different minimum black
hole masses. Therefore the authors considered two extreme cases: a Schwarzschild black hole with
low accretion efficiency η = 0.06, or a maximally spinning Kerr black hole with η = 0.42. Liu et al.
found that in the first case a minimum mass of ∼ 42 M⊙ is required while, in the latter case, a much
lower minimum mass of ∼ 8 M⊙ is sufficient to match the luminosity. Overall, the black hole seems
to be MBH,min ≳ 8− 42 M⊙.

The authors further argue that a black hole in the ∼ 20− 30 M⊙ range should be more probable,
but they base their reasoning on the comparison with the masses of IC 10 X-1 and NGC 300 X-1
black holes, at that time not yet revised for the errors introduced by the He II - derived velocity
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curve (as discussed in the previous paragraphs and in [31, 76]). Therefore, in Tab. 2.2 I reported the
minimum black hole masses to provide an order-of-magnitude estimate.

2.3.4 CXOU J123030.3+413853, CXOU J004732.0-251722.1 and CG X-1
Three uncertain candidates CXOU J123030.3+413853, CXOU J004732.0-251722.1 and CG X-
1 are WR–BH candidates only from the analysis of their X-ray variability: no UV, optical or IR
spectrum are yet available [72]. All three sources have peak luminosity of LX ∼ 1038 − 1040 erg s−1

that allows them to be classified as ULXs.
The period of the X-ray light curves is assumed to be the orbital period as is the one reported

in Tab. 2.2, although there is no independent evidence that this assumption is correct. The three
candidates belong to three starburst galaxies with star formation rates of ∼ 2−4M⊙ yr−1, supporting
the possibility that they are at least HMXBs [81].

Evidences for WR–BH binaries The WR–BH classification is based on the detection of slow
rises and fast decays in the X-ray light curve. Similar modulations are present also in the light curve of
Cyg X-3 and are usually interpreted as regions of stronger and lighter interaction between the ionized
matter of the Wolf-Rayet winds and the X-radiation produced by the accretion disk, respectively
[72]. Moreover, the elevated X-ray luminosity of the three candidates supports a black hole compact
object, given that a neutron star should, instead, accrete above the Eddington limit (see Sec. 2.15).





Chapter 3

Models and simulations with SEVN

Chapter outline In this chapter I will describe the population-synthesis code SEVN adopted in
this thesis, discussing its most relevant options and modules with particular attention to the models
of core-collapse supernova and kicks explored in this work. I will then explore the assumptions,
initial conditions and parameters adopted to simulate 24 representative populations of binaries, each
containing 106 systems.

3.1 SEVN: a population-synthesis code

3.1.1 Code properties

The code SEVN (acronym for Stellar EVolution for N-body simulations) is a population-synthesis
code written in C++ able to calculate the evolution of a large number of single stars or binary systems in
a short amount of time (∼ 106 binary systems are evolved in ∼ 12 hours) [43]. Like other population-
synthesis codes available in the literature, SEVN can be used to simulate a population of stellar objects
and understand their properties.

A fast tool for simulations Properly evolving two stars in a binary system is computationally
expensive because it would require to solve on-the-fly the system of differential equations determining
the stellar structure. Similar calculations can be carried out by the MESA stellar evolution code,
but allow to simulate only ≲ 5 systems per day on a single CPU [69]. In contrast, population-
synthesis codes evolve the stars by means of pre-computed fitting formulas or evolutionary tables.
This approach, coupled with analytic and semi-analytic prescriptions for binary evolution and with an
adaptive time-step scheme, allows to speed up the calculations, at the expense of physical accuracy.
The possibility to rapidly simulate a large number of systems is crucial to study the demography of
LVC binary black holes: only ≲ 0.01 % of a statistically motivated initial binary population merges
via gravitational wave emission within a Hubble time [43].

Stellar evolution with interpolation tables Many population-synthesis codes, like MOBSE [3],
STARTRACK [95] and COSMIC [68], implement stellar evolution through updates to BSE fitting formulas
[96]. These fits are based on stellar evolution tracks computed in 1998 by Pols et al. [97], even though
our knowledge of massive star evolution has changed significantly since 1998 [63, 98]. In addition,
these fitting formulas are extremely difficult to update in order to match new evolutionary tracks.

In contrast, SEVN does not use fitting formulas but evolves the stars interpolating a set of pre-
computed evolutionary tracks: this approach makes SEVN more flexible and easier to update with the
latest stellar evolution results.

The PARSEC tables Currently, SEVN implements evolutionary tables calculated with MESA (also
known as MIST isochrones [99]) and with PARSEC [9, 45]. The default tables and the ones used in
this thesis are the PARSEC ones, calibrated for massive stars and calculated with a grid of models
spanning 2.2 M⊙ ≤ MZAMS ≤ 350 M⊙ and 0.0001 ≤ ZZAMS ≤ 0.04. I used these tracks to generate
the Hertzsprung-Russell diagrams in Fig. 2.3. Stellar winds prescriptions for massive stars described
in Sec. 2.1.3 were implemented according to the input physics assumptions discussed in Sec. 2.1.4 [9,
45].
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Figure 3.1: Schematic representation of star interpolation carried out by SEVN. Original four evolutionary
tracks obtained from a stellar evolution code, like PARSEC or MESA, are represented by the four coloured circles.
For didactic purposes, stars on the top (cyan and black circles) are assumed to be more massive and to lose
mass more rapidly than stars on the bottom (blue and pink circles), with the more metallic one (black circle)
losing even more mass. SEVN interpolates a star with desired initial masses and metallicity (M(t1), Z(t1))
falling within the depicted region by weighting the properties of the four closest tracks, as explained in Sec.
3.1.1. The weighted interpolation is repeated at each evolutionary time-step ti. I created the scheme following
the description provided in Iorio et al. in preparation.

Interpolation method As explained in Sec. 2.1.4, stellar properties are determined mainly by
mass and metallicity, thus, each evolutionary track can be identified with the values at the ZAMS
(MZAMS, ZZAMS). It is possible to represent different stellar track in a three-dimensional space
(M,Z, t) like the one depicted in Fig. 3.1: at each time t, a point in the (M,Z) plane represents
a star with a one-to-one association with its other properties (luminosity, effective temperature, etc.).

The PARSEC tracks are not calculated for every possible combination of stellar parameters but
only for representative ones, providing a reference grid in the (M,Z) plane for each evolutionary
stage. If, as it often happens, SEVN needs to evolve a star with intermediate properties with respect
to the provided tracks, the code will interpolate the star by means of weighted average of the closest
four tracks in the (M,Z) plane. For instance, to evolve a MZAMS = 33 M⊙ star at ZZAMS = 0.015
metallicity, not directly generated by PARSEC, SEVN will interpolate its initial properties from the
closest available PARSEC tracks: MZAMS = 32 M⊙ and MZAMS = 34 M⊙ at ZZAMS = 0.014 and
ZZAMS = 0.017.

3.1.2 Stellar phases

Macro phase p: SEVN identifies three macro-phases p to indicate that a star already formed a H,
He or CO core [43]. The macro-phase division is used as a proxy for the internal structure of the
star, allowing to match the same structure in the interpolating tracks. In fact, at each evolutionary
time it is possible to calculate the percentage of macro-phase time already elapsed and select only
interpolating tracks at the same evolutionary stage (e.g., at 10% of the He phase). A match in the
lifetime percentage is required also when SEVN needs to change the interpolating tracks, for instance
because the star becomes a Wolf-Rayet or loses mass after a mass transfer episode.

BSE phases: SEVN implements many classifications to account for the stellar properties, burning
stages and binary processes, as explained in more detail in Iorio et al. in preparation. Here, I will
discuss only the classification presented by Hurley et. al [58], since SEVN implements the main binary
evolution processes as described in the aforementioned paper, with some minor changes (see next
section Sec. 3.1.3).

I will limit the discussion to the phases reported in Tab. 3.1, that are the only phases regarding
evolution and mass transfer of the massive stars considered in this thesis (for instance, I will neglect
white dwarfs). Moreover, BSE phases 6 and 9 reported in the previous version of SEVN [43] are re-
absorbed in, respectively, phases 5 and 8 in the updated version of SEVN that I used in this thesis
and that is discussed in Iorio et al. in preparation.
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Stellar phase Burning p Condition BSE phase qcrit

Main sequence H-core H MZAMS ≥ 0.7 M⊙ 1 3.0

Hertzsprung-gap H-shell He fconv < 0.33 2 4.0

First giant branch H-shell He fconv ≥ 0.33 3 Equation 3.2

Core He burning He-core He fconv < 0.33 4 3.0

Asymptotic giant branch He-shell CO fconv ≥ 0.33 5 Equation 3.2

Wolf-Rayet He-core He MHe > 0.979 M 7 3.0

Wolf-Rayet He-shell CO MHe > 0.979 M 8 0.784

Table 3.1: Stellar evolution phases with their equivalent nuclear burning and SEVN macro-phase p used for
interpolation (Sec. 3.1.1). Stars are also classified with their equivalent BSE phase [58], imposing a condition
on the fraction of convective envelope with respect to the total envelope mass fconv = Mconv/Menv or on
the total helium mass fraction MHe/M . For each BSE phase of the donor star, SEVN associates a critical
donor-to-accretor mass ratio qcrit that, if overcome, triggers a Roche lobe overflow unstable on the dynamical
timescale.

Stars are classified as main sequence (BSE phase = 1) only if their initial mass is MZAMS ≥ 0.7 M⊙,
sufficient to have a radiation-dominated envelope. During the following H-shell burning phase, the
hydrogen envelope expands and eventually becomes fully convective (see Sec. 2.1.4 for more details).
Considering the mass fraction of the convective over the total envelope mass fconv = Mconv/Menv,
the BSE classification distinguishes Hertzsprung-gap stars (fconv < 0.33, BSE phase = 2) from first
giant branch stars (fconv ≥ 0.33, BSE phase = 3). Once He-burning starts, the convective envelope
fraction further discriminates between stars burning He in their cores (fconv < 0.33, BSE phase = 4)
or in shells (fconv ≥ 0.33, BSE phase = 5).

The BSE classification is based on the stellar evolution tracks of Pols et al. [97], where the difference
between the two classes was more evident than in the massive stars considered here. For instance, in
the HR diagrams shown in Fig. 2.3, the start of the H-shell burning phase is in reality depicted with
BSE phase = 3, since the marker was almost coincident with the, not shown, marker for BSE phase =
2: the evolution is so fast that the envelope becomes rapidly convective.

Once a star ignites central helium, SEVN checks whether the helium mass fraction is larger than
97.9% of the total mass of the star: if that is the case, the star becomes a Wolf-Rayet. As already
explained in Sec. 2.1.4, SEVN evolves Wolf-Rayet stars with pure-He stars, interpolating them from a
dedicated set of tables. Pure-He stars, similarly to “normal” H-rich stars, evolve through an equivalent
main sequence and Hertzsprung-gap phase characterized by helium burning in the core and in the
shell, respectively. A pure-helium star at the beginning of its main sequence is obtained artificially
removing the hydrogen envelope to a “normal” star in the moment it starts the core-He burning.
The resulting pure-He ZAMS star is then evolved with standard stellar evolution prescriptions and
provides one of the interpolating tracks in the pure-He tables.

I remind that, as discussed in Sec. 2.1.4, in this thesis I will overcome the BSE phase classification
and consider as Wolf-Rayet stars also the ones that are not yet pure-helium (representative of WC
and WO sub-types) but are still able to retain an external hydrogen layer, with superficial hydrogen
abundance Hsup ≥ 0.3 (representative of WNL and WNE sub-types). I will be able to carry on this
more physically-motivated and detailed analysis only because I will use PARSEC tables: unlike other
interpolation tables, the PARSEC ones provide superficial abundances.

3.1.3 Mass transfer

Roche lobe overflow stability criterion As anticipated in Sec. 2.2.3, Roche lobe overflow sta-
bility depends on the donor-to-accretor mass ratio q = Md/Ma and helium core prominence in the
donor star MHe,d/Md. Following BSE prescriptions suggested by Hurley et al. [58], SEVN triggers a
Roche lobe overflow unstable on the dynamical timescale whenever the binary mass ratio is larger
than a critical value qcrit, function of the core mass ratio
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q ≥ qcrit(MHe,d/Md) (3.1)

The adopted qcrit values, reported in Tab. 3.1, were calculated with fits to stellar models produced
in 1998 by Pols et al. [97], except for models on the giant branch (BSE phase = 3) and asymptotic
giant branch (BSE phase = 5), whose qcrit

qcrit = 0.362 +
1

3
(︂
1− MHe,d

Md

)︂ . (3.2)

are calibrated on the models of condensed polytropes by Hjellming & Webbink [65], as already
discussed in Sec. 2.2.3.

Stable Roche lobe overflow If q < qcrit, SEVN triggers a Roche lobe overflow that is stable on the
dynamical timescale. Since the donor star retains only the mass within its Roche lobe radius RL,d,
stellar winds and tides in this phase are calculated adopting RL,d as an equivalent stellar radius. The
real donor stellar radius Rd is, instead, only used to calculate the mass loss rate with an updated
version of the prescriptions of Hurley et al. [58]

Ṁd,nuc = F (Md)

(︃
ln

Rd

RL,d

)︃3

M⊙ yr−1 (3.3)

where the normalization factor F (Md) for the massive donors considered in this thesis is calibrated
to allow stable mass-transfer (see Iorio et al. in preparation) and is given by

F (Md) = 3× 10−6 [min (Md, 5.0)]
2 ×

{︄
max

(︂
Md,env

Md
, 0.01

)︂
BSE phase = 2

1 others

Eq. 3.3 indicates mass loss rates for Roche lobe overflows stable on the nuclear timescale. How-
ever, as already discussed in Sec. 2.2.3, stars losing their external envelopes may exit their thermal
equilibrium, undergoing a Roche lobe overflow stable on the dynamical timescale but unstable on the
thermal one. If this is the case, the mass loss rate expected by Eq. 3.3 cannot exceed the order-of-
magnitude mass loss rate caused by the star instability

Ṁd,nuc ≤ Ṁd,max (3.4)

Depending on the stellar type, the maximum mass-loss rate is estimated with a dynamical or
thermal timescale following Hurley et al. [58] prescriptions. In particular, giant stars with a core-
envelope separation will be thermal-limited while main sequence stars and Wolf-Rayet stars that did
not yet developed a CO core will be dynamical-limited

Ṁd,max =

{︄
Ṁd,KH = Md

τd,KH
BSE phase = 2,3,4,5,8

Ṁd,dyn = Md

τd,dyn
BSE phase = 1,7

(3.5)

The respective timescales are calculated as function of the donor envelope mass Menv and total
mass M , radius R and luminosity L

τKH = 107
MMenv

RL
yr τdyn = 5.05× 10−5

√︃
R3

M
yr (3.6)

Once the donor mass loss rate is established Ṁd, the mass accreted by the companion Ṁa is
calculated as a fixed fraction fMT of it

Ṁa = fMTṀd fMT ∈ [0, 1] (3.7)

The fiducial accreted fraction is fMT = 0.5 and is the value adopted in this thesis. The accretion
rate calculated with Eq. 3.7 is limited by the Eddington one for accreting compact objects, like
neutron stars and black holes1. Moreover, SEVN does not accrete mass onto Wolf-Rayet stars because
their winds are assumed to be so strong to rapidly remove any additional layer deposited on their
surfaces (see Iorio et al. in preparation).

1Eddington limited accretion is imposed also for compact objects that are member of a wind-fed system, where
accretion is calculated with Eq. 2.18.
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Common envelope Usually binaries enter a common envelope evolution if there is an over-contact
binary, a collision at periastron or the donor undergoes an unstable Roche lobe overflow (see Sec.
2.2.4). However, unlike the previous version of SEVN [43] and many BSE-derived codes, the SEVN
version adopted in this thesis does not form over-contact binaries with both stars filling their Roche
lobe simultaneously because, as explained in the previous paragraph, the Roche lobe overflow routine
considers the Roche lobe radius as an equivalent stellar radius. A similar assumption is necessary to
explain the neutron stars merger rates: without it, too many systems would enter a common envelope
evolution and merge prematurely (see Iorio et al. in preparation). For the same reason, in this thesis
I allowed for collisions only outside the Roche lobe overflow. Apart from this, SEVN routines for
common envelope used the standard assumptions and adopt the αλ formalism of Webbink et al. [64].

Following BSE [58], SEVN merges donor stars that enter a dynamically unstable Roche lobe overflow
without a well-defined core-envelope separation: it is the case of main sequence and Wolf-Rayet stars
that did not yet developed a CO core (BSE phase = 1,7). In contrast, donors with a core (BSE phase
= 3,4,5,8) enter the routine for the common envelope evolution: with the right orbital separation the
stars could survive in a tighter orbit (see Sec. 2.2.4).

Stars in the Hertzsprung-gap phase (BSE phase = 2) are developing a He core but it is not yet
clear if the core-envelope gradient is sufficiently large to allow core survival and envelope ejection in
case of a common envelope. Therefore, SEVN implements two possible scenarios: an optimistic one
where the Hertzsprung-gap star could enter and survive the common envelope and a pessimistic one
where the star merges whenever mass transfer becomes dynamically unstable.

When a merger occurs, either because both stars still overfill their Roche lobe in the final config-
uration or because the donor star lacks a well-developed core, the resulting star has final core given
by the sum of the two original cores Mcore,merger = Mcore,d+Mcore,a. Moreover, since the system was
not able to eject the common envelope, SEVN assumes that all the mass is retained, thus the merger
product has final mass given by the sum of the original masses Mmerger = Md +Ma.

3.1.4 Core-collapse supernovae

SEVN carries on stellar evolution only up to the end of the CO burning, using the CO core mass to
calculate the fate and mass of the compact object produced after a core-collapse supernova (CCSN).
Therefore, the end of the CO phase will be hereafter denoted improperly as pre-SN phase and will be
used to calculate values that should be calculated at the onset of the collapse, like the compactness
in Eq. 3.10. Among the CCSN models implemented in SEVN, I will here discuss the three adopted in
this thesis, indicated as rapid, delayed and compactness.

Rapid and delayed Rapid and delayed models are based on calculations carried out by Fryer et
al. [100]. They used pre-computed fitting formulas to estimate the final CO and FeNi core of pre-SN
stars and computed the corresponding compact object masses with the STARTRACK [95] population-
synthesis code, adopting two explosion models. Recalling that in CCSNe the external layers collapse
to the proto-compact object, bounce back and then expand again in a neutrino-driven explosion, Fryer
et al. distinguished between rapid and delayed explosions for shocks revived, respectively, before and
after ∼ 250 milliseconds from the collapse.

As shown in the left-hand panels of Fig. 3.2, the more delayed is the explosion and the more
difficult is to eject the collapsing mass, favouring the formation of heavier compact objects. The
aforementioned figures also highlight a piece-wise trend of the mass of the compact object as a function
of the ZAMS mass, especially for the rapid model: for instance, stars with MZAMS ∼ 23 − 25 M⊙
form compact objects ≳ 10 M⊙ heavier than stars with similar initial masses (MZAMS ∼ 20 M⊙
or MZAMS ∼ 26 M⊙). Abrupt jumps in the compact remnant mass reflects its strong sensitivity
on the CO core mass. In fact, the baryonic compact object masses Mrem,bar = Mproto + Mfb are
calculated as the sum of the proto-compact object mass Mproto and the fallback mass Mfb, both
dependent on the CO mass but through different combinations (see Fryer et al. [100] for the set of
equations). The complicated dependence on the CO core mass is removed for MCO ≥ 11 M⊙, where
Fryer et al. assume that all the mass falls back, causing the baryonic compact remnant mass to be
simply the pre-SN mass Mrem,bar = Mpre−SN. As shown in the right-hand panel of Fig. 2.4, at solar
metallicity only stars with MZAMS ≳ 40 M⊙, have MCO ≳ 11 M⊙: stars with lower initial mass have
a limited CO growth because of the strong stellar winds (see Sec. 2.1.4 for more details). So far, the
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Figure 3.2: Compact object masses for rapid (red), delayed (black) and compactness (blue) CCSN models
implemented in SEVN for the two solar metallicities adopted in this thesis: Z = 0.02 (top) and Z = 0.015
(bottom). Left: Gray thick line shows the pre-SN mass as a function of the initial progenitor mass MZAMS.
The compactness model produces relatively heavy black holes even from light progenitors, without the abrupt
jumps exhibited by the rapid model and the strong sensibility on the CO mass also shown by the delayed
model. Right: PDFs of the compact object masses obtained simulating with SEVN 104 stars extracted from a
Kroupa initial mass function (see Sec. 3.2). The limited sample caused the non-physical gaps at Mrem ∼ 11M⊙
for Z = 0.02 and the less dense points in the left-hand panel towards higher masses. In contrast, the rapid
model reproduces the putative low-mass gap Mrem ∼ 2−5 M⊙ [22]. Black dashed line at 3 M⊙ discriminates
between neutron stars and black holes [19].

methodology to calculate the baryonic compact remnant mass according to the rapid and delayed
model can be schematized as

Mrem,bar =

{︄
Mpre−SN MCO ≥ 11 M⊙

Mproto(MCO) +Mfb(MCO) MCO < 11 M⊙
(3.8)

Recently, Zevin et al. [101] corrected a typo in the prescriptions adopted by Fryer et al. [100] to
account for neutrino losses, finding that they carry away 10 % of the iron core mass (not 10 % of
the total baryonic mass, as was incorrectly reported by Fryer et al. ). Thus, accounting also for the
baryonic-to-gravitational mass conversion, SEVN calculates the final gravitational compact remnant
mass Mrem as in Iorio et al. in preparation

Mrem = max

{︄√︁
1 + 0.3 Mrem,bar − 1

0.15
,Mrem,bar − 0.5 M⊙

}︄
(3.9)
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Figure 3.3: Explodability (white) and implodability (blue) probability distribution functions for the com-
pactness parameter ξ2.5 extracted by Patton & Sukhbold [106]. SEVN randomly draws a threshold compactness
ξC from the explodability distribution [104].

Compactness The compactness model is based on the compactness parameter ξ2.5 introduced by
O’Connor & Ott [102] to describe the ratio between a reference mass (2.5 M⊙ here) and the radius
that encloses such mass at the onset of the core-collapse

ξ2.5 =
2.5

R(2.5 M⊙)
(3.10)

Limongi & Chieffi [103] used their FRANEC stellar evolution code to probe the strong correlation
between the compactness parameter and the CO mass at the onset of the core-collapse, finding that
it was not significantly affected by stellar rotation. Mapelli et al. [104] interpolated the same FRANEC
models to extract a fitting formula implementable in population-synthesis codes

ξ2.5 = 0.55− 1.1

(︃
1M⊙

MCO

)︃
(3.11)

Indeed, at the end of the CO burning, SEVN uses this formula to extract the compactness pa-
rameter of the star ξ∗. However, studies like the one carried out Ertl et al. [105], showed that there
is not a one-to-one correlation between a given compactness value and the possibility that the star
successfully explodes as a CCSN or fails and the upper layers directly fall back to the proto-compact
object. In particular, Patton & Sukhbold [106] used hydrodynamics calculations and extracted the
probability distribution shown in Fig. 3.3 to determine the explodability of a star given its com-
pactness. Therefore, in the compactness model, SEVN randomly draws a compactness value from the
explodability distribution of Patton & Sukhbold (the white filled one in Fig. 3.3) and uses it as a
threshold ξc: if the star is more compact it collapses forming a black hole (ξ∗ > ξc) otherwise it
explodes and produces a neutron star.

While the neutron star mass is randomly assigned according to the observed distribution of neu-
trons stars in binary systems [104], the baryonic black hole mass is derived similarly to Fryer et al.
[100] but substituting the role of the CO core with the He core

MBH,bar = MHe + fH(Mpre−SN −MHe), (3.12)

where fH ∈ [0, 1] is the fallback parameter and accounts for the hydrogen mass retained in the
compact object. Even though the fiducial SEVN model (and the one adopted in this thesis) adopts
fH = 0.9, Eq. 3.12 underlines that for a collapsing Wolf-Rayet star the baryonic black hole mass is
precisely the pre-SN mass Mpre−SN = MHe. Finally, SEVN uses Eq. 3.9 to account for neutrino losses
and to convert the baryonic compact remnant mass into the gravitational one.

Regardless of the explosion/implosion mechanism, SEVN will always classify a compact object as a
black hole (neutron star) if its mass is higher (lower) than the maximum mass allowed for a neutron
star MNS,max = 3 M⊙ [19, 43], indicated with a black dashed line in the panels of Fig. 3.3.

Model comparison Fig. 3.10 highlights the main differences in the CCSN models: even though
the figures are built for the solar metallicity adopted in this thesis, the features and trends are
characteristic of the models. I obtained the panels simulating with SEVN 104 stars up to MZAMS =
100 M⊙, thus forming black holes only up to ∼ 21 (26) M⊙ (the higher the metallicity, the more
efficient the stellar winds and the lighter the compact remnants).

Looking at the left-hand panels, the compactness model not only produces more massive compact
objects but allows their formation from progenitors down to MZAMS ∼ 13 M⊙, whereas the delayed
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model stopped at MZAMS ∼ 20 M⊙ and the rapid model at MZAMS ∼ 25 M⊙. If Fryer et al. [100]
models produce a discontinuous distribution in the compact remnant masses due to the complicate
dependence on the CO mass, the randomness introduced in the compactness model allows stars with
MZAMS ∼ 13 − 20 M⊙ to produce a black hole or a neutron star. However, since the explodability
distribution of Fig. 3.3 is shifted towards lighter masses, the compactness model favours the production
of black holes for progenitors in this intermediate region. Discrepancies between the three models
vanish for MZAMS ≳ 40 M⊙, i. e. for exploding Wolf-Rayet stars of ≳ 10− 15 M⊙ (see also the right-
hand panel of Fig. 2.4). Such massive stars always implode and have CO core mass MCO ≳ 11 M⊙,
thus the only mass lost in the CCSN is the one carried away by neutrinos according to Eq. 3.9.

The right-hand panels highlight over-densities and gaps in the compact-object mass distribution.
The rapid model does not produce compact objects with Mrem ∼ 2 − 5 M⊙, in agreement with the
putative low-mass gap suggested by observations carried out in the Galaxy [22]. In contrast, the
delayed model shows a continuous distribution of compact objects. Finally, the compactness model
produces an even larger low-mass gap between MZAMS ∼ 3 − 8(10) M⊙ for stars with metallicity
Z = 0.015 (0.02). This gap is produced by stars with MZAMS ≲ 13 M⊙ that are too light to collapse,
therefore they explode and form a neutron star.

3.1.5 Supernova kicks

Natal kicks After a supernova event, the resulting compact object receives a natal kick formed
by the combination of a Blaauw kick and a supernova kick. The first one, proposed by Blaauw in
1961 [107], is a ≲ 50 km/s kick acting on the binary center of mass and is caused by asymmetries
in the mass lost by the system as a whole [108]. Instead, the supernova kick is the one received
directly by compact objects formed after successful supernova explosions and, similarly, is caused by
asymmetries in the (baryonic or neutrino) mass ejection.

Many efforts have been put in deriving a representative distribution of compact object natal kicks
from observations, but still none of the proposed models seems to offer a complete picture. Hobbs et
al. [109] measured the proper motions of 233 Galactic pulsars, among which 56 young pulsars, finding
that the velocity distribution of the latter can be modelled with a one-dimensional Maxwellian with
root-mean-square of σ = 265 km/s. In contrast, Verbunt et al. [110] adopted updated measurements
and Bayesian analysis to argue that pulsar velocities follow a bimodal Maxwellian distribution with
peaks at 120 and 540 km/s. More recently, Atri et al. [111] studied proper motions of 16 black holes
in X-ray binaries, finding that their velocity distribution is described with a Gaussian curve with
mean at 107 km/s: a probability distribution function (PDF) very similar to the low-velocity peak
indicated by Verbunt et al. [110].

SEVN includes both Blaauw and supernova kicks into its natal kick calculation. In the next
paragraphs, I will discuss the supernova kick models that I adopted in this thesis and that are
derived from the hobbs pure, hobbs and unified options available in SEVN (for the implementation of
Blaauw kicks see Iorio et al. in preparation).

Hobbs pure Following the observations of Hobbs et al. [109], the hobbs pure option draws a
random supernova kick from a one-dimensional Maxwellian curve with root-mean-square σ as free
parameter. The default value σ = 265 km/s reproduces the observed pulsar velocity distribution.
In this thesis, also σ = 70 km/s will be considered for this option, since it is the root-mean-square
correspondent to a Maxwellian curve with median in 107 km/s that can reproduce the distribution
of black hole supernova kicks found by Atri et al. [111].

Hobbs The hobbs option draws a random kick fσ from a one-dimensional Maxwellian as in the
hobbs pure option, but scales it accounting for the fraction ffb = Mfb/(Mrem − Mproto) of matter
falling back to the proto-compact object.

vkick,h = fσ (1− ffb) (3.13)

The fallback parameter adopted here ffb accounts for the mass ejected in the supernova explosion
and for the neutrinos losses. In particular, ffb is calculated with the gravitational compact remnant
mass of Eq. 3.9 and is sensible to the baryonic compact remnant mass. The latter is obtained through
a different fallback parameter, that, depending on the CCSN model, is a function of the CO mass or
is fixed a-priori.
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Unified Giacobbo & Mapelli [112] introduced an alternative model to describe supernova kicks
through linear momentum conservation, calculating the kick velocity with

vkick,un = fσ
Mej

⟨Mej⟩
⟨MNS⟩
Mrem

(3.14)

As in the hobbs option, the kick is drawn from a Maxwellian distribution (fσ) and then down-
scaled to account for the mass lost in the supernova explosion. Here, an argument based on linear
momentum conservation suggests that the natal kick should scale with M−1

rem. Similarly, the linear
scaling with the mass of the ejecta Mej is the simplest way to account for the fact that natal kicks
originate from asymmetries in the ejecta [113]. This approach has two main advantages: it works for
both neutron stars and black holes and it naturally accounts for the low natal kicks originating from
stripped and ultra-stripped supernovae, according to recent models [114].

The ejected mass Mej = Mpre−SN−Mrem is calculated as the difference between compact remnant
and pre-SN mass. As for the hobbs option, SEVN uses as compact remnant mass Mrem the gravitational
one, obtained after the neutrino losses and calculated with Eq. 3.9. However, unlike hobbs, the unified
model makes an exception for black holes formed with the compactness CCSN and fallback fH = 1:
only for this case, it assumes that the supernova kick is quenched and sets it to zero.

In eq. 3.14, ⟨Mej⟩ and ⟨MNS⟩ are two factors of normalization, corresponding to the average mass of
the ejecta and to the average neutron star mass, respectively. They are calibrated at Z = 0.02 in order
to reproduce the natal kick distribution of Hobbs et al. [109]. For the CCSN models considered here,
the calibrated average values are: ⟨MNS⟩ = 1.27 M⊙ and ⟨Mej⟩ = 10.9 M⊙ if rapid, ⟨MNS⟩ = 1.36 M⊙
and ⟨Mej⟩ = 10.45 M⊙ if delayed and ⟨MNS⟩ = 1.33 M⊙ and ⟨Mej⟩ = 10.45 M⊙ if compactness (see
Iorio et al. in preparation).

3.1.6 Orbital parameters after a supernova

Mass loss always modifies the orbit After a supernova explosion, a binary system always loses
mass (at least the one carried away by neutrinos, see Eq. 3.9) and this results in a kick on the center
of mass (the Blaauw kick, see Sec. 3.1.5). Following Hurley et al. [58] prescriptions for BSE, SEVN
assumes that the supernova explosion is instantaneous and does not change the separation between
the two orbiting objects, thus, a change in the total mass of the binary system modifies its semi-major
axis and eccentricity. Of course, the new orbital parameters will show larger differences with respect
to the old ones if the resulting compact object receives also a supernova kick. In particular, this is the
case of all the systems simulated in this thesis: I chose fH = 0.9 for the compactness CCSN model
and remind that rapid and delayed models always allow a kick (see Sec. 3.1.5).

Routine for parameter determination The routine adopted by SEVN is the same as described
in Appendix A2 of Hurley et al. [58]. Here, I summarize the main assumptions.

First of all, SEVN calculates the new compact object relative velocity vn summing up Blaauw
and supernova kick (if present) magnitudes. The supernova kick is randomly extracted according to
one of the models described in Sec. 3.1.5 and then is projected according to an uniform probability
distribution over all solid angles. Moreover, the routine randomly calculates also the position in the
orbit where the compact object formed, with Kepler’s second law suggesting that is more probable
that the supernova occurred in the apocenter. The explosion position eventually determines the
compact object separation r from the companion. Assuming that the supernova is instantaneous,
thus r is not modified, the new semi-major axis an is determined by the new relative velocity and
reduced total binary mass Mb = Mrem +Mcompanion

v2n = GMb

(︃
2

r
− 1

an

)︃
(3.15)

Assuming that the specific orbital angular momentum is conserved throughout the explosion, the
new semi-major axis determines also the new eccentricity en

GMban(1− e2n) = |r⃗ × v⃗n|2 (3.16)
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Figure 3.4: Schematic representation of the 24 combinations of the parameter space explored in this thesis.
Each set explores binary black hole formation assuming a solar metallicity value (Z = 0.02 or Z = 0.015),
core-collapse model for the supernova explosion (rapid, delayed or compactness, see Sec. 3.1.4) and supernova
kick prescription (hobbs pure, hobbs or Unified, see Sec. 3.1.5). Kick velocities are generally drawn from a
Maxwellian with root-mean-square σ = 265 km/s following the pulsar proper motions observed by Hobbs et
al. [109]. For comparison and only for kicks drawn from a pure Maxwellian (hobbs pure), I also tested the
option with lower kick values extracted from a Maxwellian with σ = 70 km/s, representative of the black hole
proper motion observed by Atri et al. [111].

3.2 Initial conditions
In this thesis, I generated 24 sets of 106 representative binary populations to explore some of the
most relevant sources of uncertainties in their evolution (e. g. metallicity, core-collapse supernova and
kick models).

3.2.1 Parameter space
Explored All combinations of parameters and models explored in the simulated sets are reported
in Fig. 3.4: each set is defined with a metallicity, CCSN and kick model.

I chose to explore two slightly different possible values of the solar metallicity because, even if
Z = 0.015 is the more accurate calibration [86], Z = 0.02 is still the standard one adopted in the
literature, therefore it allowed me to carry on a more self-consistent comparison with previous results.
Moreover, PARSEC tables are generated with tracks at Z = 0.02 and Z = 0.014 for “normal” stars
and tracks at Z = 0.02 and Z = 0.01 for pure-He stars. Therefore, choosing Z = 0.02 allows to in-
terpolate only in the masses while choosing Z = 0.015 requires SEVN to interpolate stellar properties
both weighting the nearest tracks in mass and metallicity (see Sec. 3.1.1 for more details on SEVN
interpolation method).

As shown in Fig. 3.2 and discussed in Sec. 3.1.4, the rapid, delayed and compactness models
for core-collapse supernovae are very different in the assumptions and compact remnant masses.
Choosing one model or another will significantly affect the binary black hole demography and their
evolutionary channels. Therefore, I adopted all the three models to probe their effect and test if,
nevertheless, some features were common.

Eventually, in Sec. 3.1.5 and 3.1.6 I showed that there is not an unique model for supernova kicks
and that different kick magnitudes affect the binaries orbital properties after the supernova event,
determining their survival as bound systems and the possibility to merge via gravitational wave
emission within a Hubble time. I compared the unified, hobbs and hobbs pure options to study the
impact of different kick models, also considering different values for the σ parameter (see Fig. 3.4).

Fixed Mass transfer prescriptions also significantly affect the binary black hole demography. As
already discussed in Sec. 2.2.3 and 2.2.4, current models need to be revised and are probably too
much simplified and imprecise to describe a process so complex. Knowing that, I chose not to ex-
plore also this parameter space and instead I adopted the fiducial settings that were tuned in SEVN to
reproduce the merger rates observed by the LIGO-Virgo Collaboration (see Iorio et al. in preparation).
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For the common envelope evolution, the fiducial αλ prescription adopts α = 5 and λ from fits of
Claeys et al. [71]. I point out that, even though Claeys et al. report different λ values for different
evolutionary stages, they do not provide a fit for pure-He stars: for them, SEVN adopts λWR = 0.5.

For Hertzsprung-gap stars donors entering an unstable Roche lobe overflow, I adopted the pes-
simistic option anticipated in Sec. 3.1.3: I assumed that the core-envelope separation is not yet
well-defined, preventing similar stars to possibly survive a common envelope, thus, merging them
with the companion. A similar assumption follows the results of Gallegos-Garcia et al. [70] (see Fig.
2.8), which pointed out that current population-synthesis codes are likely over-estimating the number
of binary black holes formed from H-rich donor stars that survived a common envelope evolution.

Eventually, I point out that I evolved non-rotating stars: both the initial spins were set to zero
and the PARSEC tables adopted were obtained from non-rotating stars.

3.2.2 Generating binary sets
Reproducibility According to the SEVN formalism, each set of binary systems is evolved according
to an a-priori defined supernova kick model. The input is a list of binaries, each with specified initial
conditions: initial metallicity, mass, spin and core-collapse supernova model; binary initial semi-major
axis, eccentricity and random seed. In particular, the random seed is used to draw the natal kick and
allows to reproduce the same simulated system, extracting the same random kick from a pre-selected
Maxwellian.

In this thesis, I used the IC4popsyn package developed by Nicola Giacobbo 2 to generate the initial
set of binaries with the formalism required by SEVN inputs and adopting the initial distributions
described in the next paragraphs. To allow a better comparison between sets characterized with
different models, I generated only once the list of initial conditions for the 106 binaries, later changing
only the values of metallicity or core-collapse model. By doing so, I made sure to evolve always the
same binary population (i. e. same initial masses for the same semi-major axis, eccentricity, period
and random seed), only under different conditions for metallicity, CCSN or kick model.

Initial masses I generated the masses of the primary stars M1 ≥ M2 following the Kroupa [21]
Initial Mass Function (IMF), limited to the massive stars that could be black hole progenitors

ξ(M1) ∝ M−2.3
1 M1 ∈ [10, 150] M⊙ (3.17)

I chose the lower boundary of M1,min = 10 M⊙ as a compromise between the need to simulate
stars with MZAMS ≲ 25 M⊙, able to accrete mass from the companion and form a black holes, and
the need to obtain secondaries included in the PARSEC tables, i.e. with M2 > 2.2 M⊙ (see Sec. 3.1.1).

I obtained the distribution of the secondary masses ξ(M2) from the primary ξ(M1) and mass ratio
ξ(q) distributions, where q = M2/M1. In particular, I adopted the distribution proposed by Sana et
al. [25] that was derived from binaries containing O-type stars sampled in six Galactic open clusters

ξ(q) ∝ q0.1 q ∈ [0.1, 1] (3.18)

ξ(M2) = ξ(M1) ξ(q) M2 ∈ [1 M⊙,M1] (3.19)

Periods and eccentricities I used the distributions from Sana et al. [25] to generate the initial or-
bital period P . In particular, I adopted their PDF for the logarithmic orbital periods P = log(P/days)

ξ(P) ∝ P−0.55 P ∈ [0.30, 5.5] (3.20)

I followed the prescriptions of Moe & Di Stefano [115] and set P = 2 days (P = log(P = 2) = 0.3)
as the lower limit for the period distribution, assuming that binaries with shorter period already
circularized. In fact, Moe & Di Stefano showed that there is a complex correlation between the
mass ratio q, period P and eccentricity e of early-type binaries containing O-type and B-type main
sequence stars. Even though I assumed that q and P distributions are independent for simplicity, I
tried to account for it correlating P and e following their suggested prescription

ξ(e(P )) ∝ 1− (P/days)−2/3 P ≥ 2 days (3.21)

2https://github.com/GiacobboNicola/IC4popsyn

https://github.com/GiacobboNicola/IC4popsyn




Chapter 4

Results

Chapter outline In this chapter I will present the results of the 24 simulation sets, each composed
of 106 binaries, that I simulated with the population-synthesis code SEVN according to the assumptions
described in Sec. 3.2. I will probe the role of Wolf-Rayet–black hole systems (hereafter, WR–BHs) as
progenitors of binary black holes (BBHs) and, in particular, as progenitors of BBHs that can merge
via emission of gravitational waves within a Hubble time (GW–BBHs). I will discuss the impact of
the parameter space on the results, in particular the role of metallicity Z, core-collapse supernova
and natal kick models.

I will explore in detail the evolution of Cyg X-3: the only known WR–BH candidate in the Milky
Way. To identify a Cyg X-3 candidate, I adopted the measurements obtained by Koljonen et al. [47]
discussed in Sec. 2.3.2: Wolf-Rayet mass of MWR = 8−14 M⊙, black hole mass of MBH = 3−10 M⊙
and period of P = 4.5− 5.1 hours. Even though the period was accurately measured to be P = 4.8
hours with a millisecond precision, I arbitrarily set an interval of ±0.3 hours to be sure to sample
enough representative systems with properties similar to Cyg X-3.

4.1 WR–BHs as BBHs and GW–BBHs progenitors at Z⊙

In Tab. 4.1 I reported the results of all the simulations carried out in this thesis, grouping them
according to the supernova kick model; from top to bottom: hobbs pure (with Maxwellian root-mean-
square σ of 70 and 265 km/s, respectively, for the first two tables), hobbs and unified (both with
σ = 265 km/s).

4.1.1 WR–BHs: a key intermediate configuration
Almost a necessary phase to form GW–BBHs The results collected in Tab. 4.1 indicate that
BBHs and GW–BBHs are rare at solar metallicity: only ∼ 0.01 − 10% of the simulated systems
form binary black holes and the fraction is even lower for the BBHs that merge via emission of
gravitational waves within a Hubble time, being less than ≲ 0.01% (with dips of only ∼ 0.001% for
some combinations of the parameter space).

My results show that nearly all the progenitors of BBHs and GW–BBHs must have become
WR–BH systems at some point in their life. In fact, considering all the runs together, more than
≳ 70% of BBHs and ≳ 90% of GW–BBHs formed after a WR–BH configuration. These values are a
conservative lower boundary determined by some sets, but Tab. 4.1 highlights that almost 100% of
the binaries in both categories evolved through the WR–BH phase.

A robust result Even though the production efficiency of the systems of interest changes for
different combinations of metallicity, CCSN and kick models, the fraction of BBHs and GW–BBHs
evolved through a WR–BH phase is almost constant. Therefore, regardless on the combination of
parameters adopted here, WR–BH binaries emerge as a fundamental and necessary intermediate
configuration to produce BBHs and GW–BBHs at solar metallicity.

4.1.2 Cyg X-3: a GW–BBH progenitor
Cyg X-3 fate The key role of WR–BH systems as progenitors of GW–BBHs is supported also by
the fate of Cyg X-3. In fact, according to the models adopted in this work and reported in Tab. 4.1,
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Cyg X-3 is expected to evolve producing a GW–BBH with a ≳ 75% probability.
The result is robust within the parameter space explored, even though our probability estimate is

only indicative and strongly affected by the low number of samples, eventually caused by the limited
period window (only ∆P ∼ 40 minutes) adopted to classify a system as Cyg X-3. Because of the low
statistics (only two candidates, none of which merges), I excluded from the above percentage the set
with Z = 0.02, delayed CCSN and hobbs pure with σ = 265 km/s model, even though I recognize
that the delayed model disfavours the formation of Cyg X-3 candidates due to a selection effect in
the primary black hole mass (for a more detailed discussion see Sec. 4.4.2).

A proxy for WR–BHs role? In the next sections, Cyg X-3 will be used as a proxy to study in
detail the formation channels of WR–BH systems as GW–BBHs. Even though Cyg X-3 properties
will reproduce a sub-population of GW–BBHs (see Sec. 4.4), its evolution will not represent all
WR–BH systems forming a BBH or a GW–BBH. In fact, Cyg X-3 relevance changes with different
combinations of the parameter space and is of ∼ 1− 0.0001% and ∼ 1.5− 35% for WR–BHs forming
BBHs and GW–BBHs, respectively.

4.2 Properties of BBHs and GW–BBHs

4.2.1 Progenitors

Figures 4.1, 4.2, 4.3 and 4.4 show the probability distribution functions of primary mass M1,ZAMS,
secondary mass M2,ZAMS, mass ratio qZAMS = M2,ZAMS/M1,ZAMS and semi-major axis aZAMS at
ZAMS for BBHs and GW–BBHs progenitors undergoing a WR–BH evolution. Here and in the
following sections, I will indicate with the subscript 1 (2) all the quantities referred to the primary
(secondary): the star initially more (less) massive and that, usually, becomes the progenitor of the
black hole (Wolf-Rayet star) in the WR–BH configuration.

BBHs BBH progenitor properties follow almost the same original distribution used to generate the
initial conditions (see Sec. 3.2). The PDFs are compatible throughout the whole explored parameter
space, except for systems evolved with supernova kicks drawn from a pure Maxwellian distribution
(hobbs pure option) similar to the one of Hobbs et al. [109] (see Sec. 3.1.5). This kick model favours
high kicks, thus breaking initially wide aZAMS ≳ 104 R⊙ and asymmetric systems qZAMS ≲ 0.2,
allowing only binaries with secondaries M2,ZAMS ≲ 90 M⊙. Similar strong kicks allow to survive only
few black holes in a bound orbit, thus producing the lowest number of BBHs for any combination of
metallicity and CCSN model (Tab. 4.1).

GW–BBHs The PDFs of GW–BBH progenitors are more sensible to the parameter space, even if
they also exhibit some common features: GW–BBHs formed through WR–BHs need to start their
evolution from an orbit with initial semi-major axis aZAMS ∈ [30, 2× 104]R⊙ (see Fig. 4.4).

GW-BBHs formed with the hobbs pure option have progenitor PDFs almost identical to the ones
of BBHs for both metallicities and almost for all CCSN models. The only relevant difference affects
systems evolved with the compactness CCSN model: the PDFs obtained with the compactness model
are more peaked towards lower primary and secondary ZAMS masses (see Fig. 4.1 and 4.2, respec-
tively), favouring the formation of GW–BBHs from systems with initial similar masses (qZAMS ∼ 1,
see Fig. 4.3). The low-mass shift is intrinsic in the compactness model: as explained in Sec. 3.1.4,
this CCSN option forms black holes also from MZAMS ∼ 13 − 20 M⊙, a range where, instead, rapid
and delayed models produce neutron stars because of the lighter CO cores (as shown in the left-
hand panels in Fig. 3.2). Nevertheless, this difference vanishes adopting as compactness parameter
of ξ2.5 = 0.4 instead of the fitting formula of Eq. 3.11.

The qZAMS ∼ 1 preference in the GW-BBH progenitors is present also with the hobbs and unified
kick options for all the CCSN models; selecting secondaries with initial mass M2,ZAMS ≲ 60−100 M⊙.
In particular, the ZAMS mass of the possible progenitor of the Wolf-Rayet star in WR–BH systems
seems to be well-constrained as M2,ZAMS ∈ [20 − 60] M⊙, even thought the slightly less efficient
stellar winds at Z = 0.015 or the compactness option allow a higher-mass tail up to ≲ 100 M⊙. In
contrast, the mass of the possible progenitor of the primary black hole is well-constrained only for
the unified option, that strongly favours the formation of GW–BBHs from symmetric systems and
therefore limits the primary mass to the same mass range as the secondary (M1,ZAMS ∈ [20−60] M⊙).
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Metallicity Z = 0.02 Z = 0.015

CCSN model Rap Del Com Rap Del Com

Natal kick model Hobbs pure (σ = 70 km/s)

BBHs 5626 5248 18425 10350 7564 27740

after a WR–BH 100% 100% 100% 99% 99% 100%

GW–BBHs 207 171 949 418 282 1287

after a WR–BH 207 171 948 418 281 1285

Cyg X-3 candidates 14 8 76 16 10 18

becoming GW–BBHs 14 6 76 16 9 18

Natal kick model Hobbs pure (σ = 265 km/s)

BBHs 166 156 727 416 260 1420

after a WR–BH 100% 100% 100% 99% 99% 100%

GW–BBHs 34 21 221 101 67 392

after a WR–BH 34 21 221 101 67 392

Cyg X-3 candidates 4 2 29 6 4 7

becoming GW–BBHs 4 0 23 5 3 7

Natal kick model Hobbs

BBHs 44307 35029 96557 55986 45701 109935

after a WR–BH 100% 100% 96% 92% 96% 94%

GW–BBHs 70 108 271 230 173 201

after a WR–BH 70 108 257 225 168 189

Cyg X-3 candidates 15 6 70 19 12 22

becoming GW–BBHs 15 5 70 19 9 22

Natal kick model Unified

BBHs 55655 46373 142613 71016 61257 157671

after a WR–BH 90% 95% 68% 87% 88% 69%

GW–BBHs 45 62 246 74 76 177

after a WR–BH 45 57 244 73 73 177

Cyg X-3 candidates 16 7 70 19 9 22

becoming GW–BBHs 16 6 70 19 9 22

Table 4.1: Simulation results for each set of 106 binaries generated with a different combination of metallicity,
CCSN and kick models. The results are grouped by kick model, with abbreviated CCSN names. From top
to bottom: hobbs pure with σ = 70 km/s; hobbs pure, hobbs and unified with σ = 265 km/s (see Sec. 3.2).
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Figure 4.1: PDFs of primary masses M1,ZAMS at ZAMS for systems that will become BBHs (empty his-
tograms) or GW–BBHs (filled histograms) after a WR–BH at Z = 0.02 (left) or Z = 0.015 (right) for different
CCSN models (rapid, red dashed line; delayed, black dotted line; compactness, blue solid line) and supernova
kicks (from top to bottom: hobbs pure with σ = 70 km/s or σ = 265 km/s; hobbs or unified with σ = 265
km/s).
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Figure 4.2: PDFs of secondary masses M2,ZAMS at ZAMS for systems that will become BBHs or GW–
BBHs after a WR–BH for different metallicities Z, CCSN models and supernova kick options (see Fig. 4.1
for line-styles and colours).
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4.2.2 WR–BH phase

In this section, I will characterize WR–BH systems that are progenitors of BBHs and GW–BBHs
by discussing their properties at the beginning of the WR–BH configuration. In some cases, I will
discuss separately the evolution of systems where the Wolf-Rayet starts the WR–BH evolution with a
H-rich envelope, thus is WN-like (0 < Hsup ≤ 0.3), or it is already a pure-helium star similar to WC
and WO sub-types, hereafter collected under the shorter WCO subscript (see Sec. 2.1.4 and 3.1.2 for
more detailed information on the Wolf-Rayet star classification adopted in this thesis).

Black hole masses Fig. 4.5 shows the PDFs of black holes at the beginning of the WR–BH phase.
The mass of the lightest black holes depends on the CCSN model adopted, as already discussed in
Sec. 3.1.4: the rapid model does not allow MBH < 5 M⊙ while the delayed and compactness options
form black holes down to the 3 M⊙ threshold, set to distinguish neutron stars from black holes.
In contrast, metallicity affects the maximum black hole mass because less metallic stars have less
efficient stellar winds, thus, are able to retain more mass.

For all supernova kick and CCSN models, the maximum black hole mass for BBHs is well-defined
and is only affected by the metallicity, being MBH,max ∼ 25 M⊙ at Z = 0.02 and MBH,max ∼ 35 M⊙
at Z = 0.015. While the PDFs for BBH progenitors are all alike, the ones for GW–BBH progenitors
indicate that some combinations of the parameter space slightly favour different black hole masses.
In particular, PDFs for GW–BBHs progenitors reduce the maximum black hole mass in the WR–BH
phase of ∼ 5 M⊙ for both metallicities. Moreover, systems evolved with the compactness CCSN
model are less likely to form primary black holes with mass ∼ 10 − 15 M⊙ (∼ 15 − 20 M⊙) for
Z = 0.02 (Z = 0.015) and, if evolved with the unified kick model, completely lack black holes above
these thresholds.

In general, the production of black holes ≲ 35 M⊙ is reasonable at solar metallicity, where the
effect of stellar winds is still relevant (see Fig. 2.4 for a comparison with Z = 0.002). The slightly
lighter black holes found in systems that will merge via gravitational wave emission within a Hubble
time may indicate that similar systems evolved in tighter orbits and that their progenitor stars
underwent at least a mass transfer episode as donor. For instance, the discussion carried out in Sec.
4.4 will confirm that this is the case at least for binaries like Cyg X-3.

Two WR–BHs families for WN and WCO Wolf-Rayet stars Figures 4.6, 4.7 and 4.8 show
mass MWN, semi-major axis aWN−BH and Roche lobe filling fraction RWN/RL,WN, respectively, for
WR–BH systems born with a H-rich Wolf-Rayet star that is WN-like. These stars are not yet mod-
elled as pure-helium and are a mixture of H-core, H-shell and He-core burning stars (BSE phases = 1,
2, 3, 4 according to the classification explained in Sec. 3.1.2). Similarly, Fig. 4.9, 4.10 and 4.11 show
mass MWCO, semi-major axis aWCO−BH and Roche lobe filling fraction RWCO/RL,WCO for WR–BH
systems born with WC- and WO-like Wolf-Rayet stars, modelled with pure-helium tracks.

WN-like stars in BBH progenitors are distributed among a wide range of masses MWN ∼ 8−60M⊙,
with a different lower minimum cutoff at ∼ 25 M⊙ only for the model with the stronger kicks (hobbs
pure with a σ = 265 km/s Maxwellian root-mean-square). In contrast, WC- and WO-like stars in
BBH progenitors are always lighter than MWCO ≲ 30− 40 M⊙, also reaching lower minimum masses
of ∼ 5 M⊙. Even though the WN → WCO evolution (see Sec. 2.1.1) could, in part, explain the
lighter WCO stars, the mass difference seems to be correlated also with other binary properties.

For instance, there are no BBH progenitors with a WN-like Wolf-Rayet star with a WN–BH orbit
tighter than amin,WN−BH ∼ 50 − 100 R⊙, whereas BBH progenitors with a pure-helium star form
also with semi-major axis comparable to Wolf-Rayet star radii amin,WCO−BH ∼ 1 R⊙. The very close
orbits of WCO–BH systems coupled with the fact that WCO Wolf-Rayet stars lack an hydrogen enve-
lope suggest that their WR–BH configuration has been reached at least after one common envelope.
In contrast, it is likely that WN–BH binaries did not form after a common envelope evolution because
most of their donors lack a prominent He core (see Sec. 3.1.3).

Many WN-like stars considered here exhibit Roche lobe filling fractions well-beyond RWN/RL,WN >
1, suggesting that they are losing their hydrogen envelope as a consequence of a stable Roche lobe
overflow1. In contrast, WC- and WO-like Wolf-Rayet stars are more compact and are less likely to

1Roche lobe overflow routines in SEVN use the stellar radius only for stellar wind calculations. The radius adopted
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start the WR–BH evolution with a Roche lobe overflow. Nevertheless, the PDFs shown in Fig. 4.8
and 4.11 indicate that the majority of all Wolf-Rayet stars considered here is not overfilling its Roche
lobe: at most, they are powering a wind-fed accretion.

WN–BHs as GW–BBHs progenitors only with final eccentricity eBBH ∼ 1 A similar
discussion can be carried out also for WR–BH systems that are GW–BBH progenitors: their PDFs
follow closely the distribution of BBH progenitors, with two major differences. The first relevant
one highlights the need for relatively tight orbits to allow the merger via gravitational-wave emission
within a Hubble time: only WR–BH systems born with aWR−BH ≲ 103 R⊙ are likely to merge
(Figures 4.7 and 4.10). Wider or similar binaries require either a large eccentricity (see Fig. 4.12) or
massive black holes in order to shorten the time required to merge, as indicated by Eq. 2.27.

Such restrictive conditions determine the second difference in the PDFs: almost none of the sys-
tems born with WN-like Wolf-Rayet stars is a GW–BBH progenitor if it is evolved with supernova
kicks re-scaled for fallback (hobbs model) or compact object and ejecta masses (unified model).

As shown in Fig. 4.7, WR–BH systems born with a WN-like star produce a BBH only if they have
initial semi-major axis aWN−BH ≳ 50−100 R⊙, thus becoming GW–BBHs only if at the beginning of
the WN–BH phase have aWN−BH ∼ 102 − 103 R⊙. As anticipated, only massive systems will merge
within a Hubble time from similarly large semi-major axis: in fact, only WN–BH binaries born with
MBH ∼ 10 − 30 M⊙ and MWN ∼ 15 − 50 M⊙ will produce GW–BBHs. However, hosting massive
objects is not sufficient to shorten the time required to merge via gravitational wave emission from
orbits so wide: all the simulated WN–BH systems that become GW–BBHs have eBBH ∼ 1.

The need for highly eccentric orbits is even more evident in systems evolved with damped kicks:
WN–BH binaries are the only systems in the eBBH ∼ 1 bin of Fig. 4.12 for GW–BBHs for the
unified model with rapid CCSN at Z = 0.02 and hobbs model with compactness CCSN at both
metallicities. Following Sec. 3.1.6, high-velocity kicks can be randomly projected into a wide range
of orbital velocities and are more likely to ionize the binary or produce high eccentric post-supernova
orbits, explaining the larger number of WN–BH binaries that could become GW–BBH when evolved
with the hobbs pure option.

In contrast, WC- and WO-like Wolf-Rayet stars with a black hole companion are allowed to form
in tighter orbits, thus, are less affected by supernova kicks. Systems born with semi-major axis down
to aWCO−BH ∼ 1 R⊙ are more likely to produce GW–BBHs, therefore they extend the range of the
possible progenitors to lower masses: MBH ≳ 3 M⊙ and MWCO ≳ 5 M⊙.

Observability in the WR–BH configurations WR–BH binaries that are BBH and GW–BBH
progenitors evolve for ∼ 2.5 − 15 Myr before reaching the WR–BH configuration. As shown in Fig.
4.13, there is not a well-defined duration for the WR–BH phase of BBH progenitors: they could last
from ∼ 10 years to ∼ 1 Myr. Only binaries evolved with the stronger kicks (hobbs pure option with
σ = 265 km/s) spend at least ≳ 5×103 years in the WR–BH configuration. This is also the minimum
duration required to become GW–BBHs from the WR–BHs phase and is a lower boundary common
to all the simulated sets, further indicating that the few black holes to survive in a bound orbit in the
hobbs pure option with σ = 265 km/s occupy the same parameter space of GW-BBH progenitors.

As shown in Fig. 4.14, GW-BBH progenitors that are visible as WR–BHs for ∼ 5 × 103 − 106

years have initial orbital periods of ∼ 1 hour − 10 years. In particular, WCO–BH binaries exhibit
bimodal period distributions similar to the ones of Fig. 4.14, with preference for systems with initial
periods of few hours or few months. In contrast, WN–BH binaries are limited by the wide orbits to
have periods ≳ 10−1 years, enhancing the peak at higher periods.

Overall, this work suggests that WR–BH binaries with orbital periods ≲ 10 years could be GW–
BBH progenitors, with higher probability for WR–BHs with periods shorter than a few days but
not shorter than about one hour (otherwise the binary would collide and merge prematurely). This
further supports the discussion carried out in Sec. 2.3. In fact, six out of the seven WR–BH observed
candidates have periods of ∼ 5 − 35 hours and will likely become GW–BBH progenitors. Instead,
the fate of M101 ULX-1 remains uncertain because it has a period of ∼ 8 days that falls in a region
where being a GW–BBH progenitor depends on the kick model adopted: the hobbs pure model allows
it while kicks damped with hobbs and unified options avoid a similar fate.

in Fig. 4.8 and 4.11 is not physical and is only a proxy for systems with active Roche lobe overflows (see Sec. 3.1.3).
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Figure 4.5: PDFs of black hole mass MBH at the beginning of the WR–BH phase for systems that will
become BBHs or GW–BBHs after a WR–BH for different metallicities Z, CCSN models and supernova kick
options (see Fig. 4.1 for line-styles and colours).
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Figure 4.6: PDFs of masses of Wolf-Rayet WN-like stars MWN at the beginning of the WR–BH phase for
systems that will become BBHs or GW–BBHs after a WR–BH for different metallicities Z, CCSN models
and supernova kick options (see Fig. 4.1 for line-styles and colours).
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Figure 4.8: PDFs of Wolf-Rayet Roche lobe filling R/RL at the beginning of the WN–BH phase for sys-
tems that will become BBHs or GW–BBHs after a WR–BH for different metallicities Z, CCSN models and
supernova kick options (see Fig. 4.1 for line-styles and colours). Bins are R/RL = 1 wide: most of WR–BH
systems are not filling their Roche lobe. The stellar radius adopted is only a proxy for systems with active
Roche lobe overflows (see Sec. 3.1.3).
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Figure 4.9: PDFs of masses of Wolf-Rayet WC- and WO-like stars MWCO at the beginning of the WR–BH
phase for systems that will become BBHs or GW–BBHs after a WR–BH for different metallicities Z, CCSN
models and supernova kick options (see Fig. 4.1 for line-styles and colours).
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Figure 4.11: PDFs of Wolf-Rayet Roche lobe filling R/RL at the beginning of the WCO–BH phase for
systems that will become BBHs (empty histograms) or GW–BBHs (filled histograms) at Z = 0.02 (left) or
Z = 0.015 (right) for different CCSN models (rapid, red dashed line; delayed, black dotted line; compactness,
blue solid line) and supernova kicks (from top to bottom: hobbs pure with σ = 70 km/s or σ = 265 km/s;
hobbs or unified with σ = 265 km/s). The stellar radius adopted is only a proxy for systems with active
Roche lobe overflows (see Sec. 3.1.3).



4.2 Properties of BBHs and GW–BBHs 69

10−1

100

101

P
D

F

Hobbs pure, σ = 70 km/s

Z = 0.02
Hobbs pure, σ = 70 km/s

Z = 0.015

10−1

100

101

P
D

F

Hobbs pure, σ = 265 km/s Hobbs pure, σ = 265 km/s

10−1

100

101

P
D

F

Hobbs Hobbs

0.00 0.25 0.50 0.75 1.00
eBBH

10−1

100

101

P
D

F

Unified

0.00 0.25 0.50 0.75 1.00
eBBH

Unified

Rapid, BBH

Rapid, GW-BBH

Delayed, BBH

Delayed, GW-BBH

Compactness, BBH

Compactness, GW-BBH

Figure 4.12: PDFs of final eccentricity eBBH of BBHs or GW–BBHs after a WR–BH for different metallicities
Z, CCSN models and supernova kick options (see Fig. 4.1 for line-styles and colours).
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These simulations could also explain the limited sample of observed WR–BH candidates. Recalling
that we are already considering WR–BHs with the shortest periods allowed to avoid coalescence, the
majority of them under-fill their Roche lobe (see the discussion in the previous paragraphs on Fig.
4.8 and 4.11): even if, in principle, these systems could be observed because they have periods of
hours or days, they are likely wind-fed systems with accretion inefficient to make them visible as
X-ray binaries. Moreover, the systems considered here exist only for ∼ 2.5− 15 Myr before becoming
BBHs (harder to detect), spending only ∼ 0.01 ∼ 6% of their life in the WR–BH configuration in the
most optimistic case, in which they are GW–BBH progenitors.

4.2.3 Compact remnants
In this section, I will discuss the configuration of BBHs and GW–BBHs after the Wolf-Rayet star
explodes and forms the secondary black hole. In particular, I will denote as primary M1,BH and
secondary M2,BH black hole mass the ones formed from the star with the highest (M1,ZAMS) and
lowest (M2,ZAMS) ZAMS mass, respectively.

Preference for equal mass systems qBBH ∼ 1 Similarly to other works in the literature [3], Fig.
4.17 highlights that BBHs formed in isolated environments are more likely to be equal-mass binaries.
Nevertheless, many systems exhibit mass ratios qBBH = M2,BH/M1,BH > 1, further supporting the
hypothesis that similar binaries underwent at least one mass transfer episode (other evidences were
already presented and discussed in Sec. 4.2.2). In particular, GW–BBHs evolved with the compactness
model more likely host asymmetric mass systems because this CCSN option allows to form black holes
lighter than the ones produced with the rapid and delayed models, as discussed in Sec. 3.1.4.

As a consequence, primary and secondary black hole masses shown in Fig. 4.15 and 4.16 lie in
similar same mass ranges and do not exhibit relevant differences among BBHs and GW–BBHs, except
for the presence of more massive systems at lower metallicities (where stellar winds are less effective,
see Sec. 2.1.3): M1,BH ∼ 3−25(32)M⊙ and M2,BH ∼ 3−20(28)M⊙ for Z = 0.02(0.015). These ranges
do not change significantly depending on the assumed parameters, especially for primary black hole
masses, even though the unified kick model seems to favour the formation of lighter compact objects
≲ 20 M⊙. In general, the unified and hobbs models produce, on average, also lighter secondaries.

As already discussed for the WN–BH fate in Sec. 4.2.2, these models produce kicks with magnitude
often insufficient to significantly shrink the orbit of wide systems, thus favouring the formation of
GW–BBHs only from binaries with orbits already tightened by mass transfer episodes. In particular,
the closest orbits are the ones formed after common envelope episodes and the discussion on WCO–BH
binaries suggested that these systems are indeed formed after a this process.

The role of eccentricity The final semi-major axis distribution shown in Fig. 4.18 is almost
identical to the one obtained at the beginning at the beginning of the WR–BH phase (considering
Fig. 4.7 and 4.10 altogether). Therefore, the orbital separation is not strongly affected by the WR–BH
evolution: WR–BH binaries do not undergo significant mass transfer episodes, even the few WN–BH
that start in a Roche lobe overflow phase (see Fig. 4.8). Without a significant orbital change, WR–BH
systems that are born in wide orbits ∼ 102−103 R⊙ and evolved with damped supernova kicks (hobbs
and unified models) can become GW–BBHs only if they become very eccentric eBBH ∼ 1 after the
second supernova event.

As anticipated in Sec. 4.2.2 for WN–BH systems, SEVN routines are more likely to produce high
eccentric orbits for high-energy supernova kicks. The randomness introduced by these routines shifts
towards eBBH ∼ 1 the eccentricity PDFs for BBHs obtained with the hobbs pure kicks, visible in Fig.
4.12. In contrast, binaries formed with damped kick options, as the hobbs and unified ones, do not
significantly change their eccentricity with the supernova explosion. Given that most of WR–BHs
evolve in circular orbits, the eccentricity PDFs for these kick options indeed favour the production
of circular BBHs. However, the PDFs of GW–BBHs highlight the strong eccentricity dependence
on the merging time (tGW ∝ (1 − e2), Eq. 2.27) and show an additional and almost isolated peak
at eBBH ∼ 1. This bi-modality is present also in the GW–BBH eccentricity distribution for the less
energetic hobbs pure kicks, the ones obtained from a Maxwellian with a root-mean-square of σ = 70
km/s.
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Figure 4.15: PDFs of primary black hole masses M1,BH (formed from the initially more massive star
M1,ZAMS ≥ M2,ZAMS) for BBHs or GW–BBHs evolved through a WR–BH for different metallicities Z, CCSN
models and supernova kick options (see Fig. 4.1 for line-styles and colours).
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M2,ZAMS ≤ M1,ZAMS) for BBHs or GW–BBHs evolved through a WR–BH for different metallicities Z, CCSN
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Figure 4.17: PDFs of final mass ratio qBBH = M2,BH/M1,BH for BBHs or GW–BBHs evolved through a
WR–BH for different metallicities Z, CCSN models and supernova kick options (see Fig. 4.1 for line-styles
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Figure 4.18: PDFs of final semi-major axis aBBH of BBHs or GW–BBHs evolved through a WR–BH for
different metallicities Z, CCSN models and supernova kick options (see Fig. 4.1 for line-styles and colours).
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4.3 Cyg X-3 as a GW–BBH progenitor at Z=0.015
In Sec. 4.2, I extensively discussed the statistical properties of BBHs and GW–BBHs, concluding
that they are reasonably well-defined in the parameter space explored. In particular, CCSN and kick
models influence the PDFs more than choosing Z = 0.02 or Z = 0.015: the only difference in the
lower-metallicity systems is that they host heavier stars at later times, because of the less efficient
winds. Therefore, I will focus hereafter on the evolution at Z = 0.015, that is more representative of
the true solar metallicity according to the measurements of Caffau et al. [86].

In this section, I will focus on the properties of Cyg X-3 candidates that are GW–BBH progenitors:
they represent more than ≳ 75% of all Cyg X-3 candidates; all of them for the majority of the
parameter space explored (see Tab. 4.1). I will discuss their role in the sub-populations of GW–BBHs
binaries that emerge from the simulations. I will show the orbital properties of these systems at the
ZAMS (Fig. 4.19 and 4.20), at the beginning of the WR–BH phase (Fig. 4.21 and 4.22) and as BBH
(Fig. 4.23 and 4.24). Eventually, I will propose a synoptic comparison of the evolutionary stages for
the fiducial kick model (Fig. 4.25) that will be adopted in the next section (Sec. 4.25).

4.3.1 Cyg X-3 progenitors
Similar initial masses As shown in Fig. 4.19 and 4.20, Cyg X-3 progenitors that will become GW–
BBHs have ZAMS masses well-defined across the whole parameter space: M1,ZAMS ≈ M2,ZAMS ∼
30 − 40 M⊙. Even though the restricted mass range is a consequence of the boundaries adopted to
classify a system as a Cyg X-3 candidate (MWR = 8− 14 M⊙ and MBH = 3− 10 M⊙, see Sec. 2.3.2),
the ZAMS properties of Cyg X-3 fall in the most likely region to become a GW–BBH.

Short initial periods In contrast, the initial orbital separation of Cyg X-3 systems that will
become GW–BBHs is not always representative of the most likely initial condition for GW–BBH
progenitors. However, both GW–BBH and Cyg X-3 binaries evolve from orbits with semi-major axis
aZAMS ∼ 101 − 103 R⊙ and host massive stars M1,ZAMS + M2,ZAMS ≳ 60 M⊙, thus, their initial
period ranges from a few days to a few years (see Fig. 4.19).

4.3.2 Cyg X-3 and GW–BBH sub-populations
Cyg X-3 represents a physical sub-population Fig. 4.21 and 4.22 illustrate the beginning
of the WR–BH phase for systems that will become BBHs and GW–BBHs, highlighting Cyg X-3
candidates that will form a GW–BBH.

Cyg X-3 candidates cluster in Fig. 4.21 and 4.22 because of the restrictive conditions imposed
to classify them: MBH = 3 − 10 M⊙, MWR = 8 − 14 M⊙ and PWR−BH = 4.5 − 5.1 hours (see Sec.
2.3.2). Nevertheless, they show the same properties as a sub-population of GW–BBHs progenitors
that is present in every combination of the parameter space. This sub-population also clusters at
PWR−BH ∼ 5 hours but allows to host more massive objects and includes total binary masses of
∼ 20−30 M⊙. Looking in more detail at Fig. 4.22, similar systems host a combination of black holes
with masses MBH ∼ 3− 10 M⊙ and Wolf-Rayet stars with MWR ∼ 10− 20 M⊙.

Fig. 4.21 indicates that this sub-population is separated from other two sub-populations. However,
these latter clusters are present only for some combinations of the parameters space, suggesting that
the sub-population of systems with properties similar to the Cyg X-3 candidates has indeed well-
defined properties.

Other sub-populations of GW–BBHs Systems evolved with the compactness CCSN model are
allowed to form black holes from lighter progenitors than the ones required for the rapid and delayed
options (see Sec. 3.1.4). Therefore, only the compactness model forms a second sub-population of
binaries that have still short orbital periods (only few hours) but total binary mass of ∼ 10− 15 M⊙.
In fact, if the black hole masses are still in the MBH ∼ 3− 10 M⊙ range, the Wolf-Rayet stars have
masses MWR ≲ 10 M⊙, with few and rare exceptions (see the first two columns of Fig. 4.22). These
stars will keep losing mass and eventually become so light to form a neutron star in place of a black
hole according to the rapid and delayed CCSN models.

The last sub-population of GW–BBH progenitors has large orbital periods ≳ 1 day and wider
orbits aWR−BH ≳ 10 R⊙. While binaries with properties similar to the other two sub-populations
could only become GW–BBH systems (if the Wolf-Rayet star formed a black hole and not a neutron
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star) because their orbit was already tight, this sub-population shares the same parameter space as
BBHs: the larger orbit does not guarantee that if a BBH forms it will merge via gravitational wave
emission within a Hubble time.

The magnitude of the second supernova kick and the final eccentricity strongly determine whether
similar systems will be able to become GW–BBHs or remain BBHs. As already discussed in Sec. 4.2,
the hobbs pure option causes a larger variability in the kick magnitude and final orbital properties:
it allows more systems with many different properties to become GW–BBHs and explains the wide
scattering in the binary properties. Of course, the kicks should not be too much energetic in order
not to disrupt the BBH, as shows the paucity of bound BBHs survived to the high magnitude of kicks
generated with hobbs pure option and σ = 265 km/s Maxwellian root-mean-square.

In contrast, hobbs and unified kick models produce lower kicks and only few, if none, of the wide
WR–BH binaries will become GW–BBHs. In this case, systems evolved with the rapid and delayed
CCSN models have a higher probability to become GW–BBHs: starting from the same pre-SN mass,
these CCSN options form lighter compact remnants with respect to the compactness model and,
according to the kick routines described in Sec. 3.1.5, lighter compact objects are more likely to
receive strong kicks.

4.3.3 Compact object binaries produced by Cyg X-3 progenitors
Slightly wider orbits Wolf-Rayet stars at solar metallicities suffer strong stellar winds and de-
crease their mass, eventually exploding in a supernova event. The significant mass loss occurred from
the beginning of the WR–BH phase (∆M ≲ 5 M⊙) causes wider orbits (see Sec. 2.2) and longer or-
bital periods. However, a comparison between the compact remnant orbital properties (Fig. 4.23) and
the orbital properties at the beginning of the WR–BH phase (Fig. 4.21) highlight almost negligible
changes, with semi-major axis wider of only few solar radii and orbital periods few hours longer.

A significant mass change Aside from the eccentricity change already discussed in Sec. 4.2.3, the
major difference in the orbital properties of the resulting compact binary system is the lighter binary
mass (see Fig. 4.24). The variation is strongly dependent on the CCSN model: if the black holes
formed with the compactness model retain ∼ 90% of their pre-SN mass, the ones produced with the
rapid and delayed models are ≲ 5−10 M⊙ lighter than their Wolf-Rayet progenitors at the beginning
of the WR–BH configuration.

Sub-populations and Cyg X-3 The three sub-populations identified in the previous section Sec.
4.3.2 can still be identified but with a less clear separation. The most mixed populations are the
ones generated with the hobbs pure kick and rapid or delayed CCSN models: for these options the
black hole mass and orbit strongly depend on minimal variations in the natal kick and CO mass
(see Sec. 3.1.4). In contrast, damped kicks coupled with the compactness CCSN model preserve at
most the orbital properties of the pre-SN stage. Nevertheless, it seems that even for these kicks, the
sub-populations are well-separated only in the WR–BH configuration, becoming more mixed in the
compact remnant phase and indistinguishable in the ZAMS stage, as shown in the synoptic view of
Fig. 4.25.

The BBH masses of Cyg X-3 candidate systems remain a representative low-mass limit of the sub-
population identified in the previous section. However, the possible configurations and, in particular,
the mass of the black holes produced by the Wolf-Rayet star M2,BH, strongly depend on the CCSN
model adopted: M1,BH ∼ 5 − 7 M⊙ and M2,BH = 5 − 10 M⊙ for the rapid, M1,BH ∼ 3 − 5 M⊙
and M2,BH = 3 − 5 M⊙ for the delayed and M1,BH ∼ 5 − 8 M⊙ and M2,BH = 8 − 13 M⊙ for the
compactness. Once again, the larger mass of the secondary black hole is a proxy for at least one mass
transfer in the binary evolution, as is indeed the case for Cyg X-3 systems (see the discussion in the
next section Sec. 4.4).
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Figure 4.19: Orbital properties at ZAMS of BBHs (grey-scaled histogram) and GW–BBHs (coloured his-
togram) evolved through a WR–BH configuration compared with the progenitors of Cyg X-3 that will become
GW–BBHs (cyan dots). The panels explore the parameter space at Z = 0.015 for different supernova kicks
(from top to bottom: hobbs pure with σ = 70 km/s; hobbs pure, hobbs or unified with σ = 265 km/s) and
CCSN models (from left to right: rapid, delayed or compactness). Black diagonal lines indicate orbital periods
of 1 year, 1 day or 1 hour.
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Figure 4.20: ZAMS masses of primary M1,ZAMS and secondary M2,ZAMS progenitors of GW–BBHs (his-
togram) evolved through a WR–BH configuration compared with the progenitors of Cyg X-3 that will become
GW–BBHs (cyan dots). The panels explore the parameter space at Z = 0.015 for different supernova kicks
(from top to bottom: hobbs pure with σ = 70 km/s; hobbs pure, hobbs or unified with σ = 265 km/s) and
CCSN models (from left to right: rapid, delayed or compactness). Black diagonal line indicates equal mass
systems qZAMS = M2,ZAMS/M1,ZAMS = 1.
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Figure 4.21: Orbital properties at the beginning of the WR–BH phase for BBHs and GW–BBHs progen-
itors compared with the ones for Cyg X-3 candidates that will become GW–BBHs. The panels explore the
parameter space at Z = 0.015 for different supernova kicks and CCSN models, as in Fig. 4.19. Black diagonal
lines indicate orbital periods of 1 year, 1 day or 1 hour.
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Figure 4.22: Mass of Wolf-Rayet stars MWR and black holes MBH at the start of the WR–BH phase for
all GW–BBHs progenitors and only for GW–BBH progenitors evolved as Cyg X-3 candidates. The panels
explore the parameter space at Z = 0.015 for different supernova kicks and CCSN models, as in Fig. 4.20.
Black diagonal line indicates equal mass systems q = MWR/MBH = 1. The bin width is 1 M⊙ for MBH and
2 M⊙ for MWR.
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Figure 4.23: Orbital properties after the second supernova of GW–BBHs evolved through a WR–BH
configuration compared with the ones of Cyg X-3 candidates that become GW–BBHs. The panels explore
the parameter space at Z = 0.015 for different supernova kicks and CCSN models, as in Fig. 4.19. Black
diagonal lines indicate orbital periods of 1 year, 1 day or 1 hour.
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Figure 4.24: Masses of primary M1,BH and secondary M2,BH black holes of GW–BBHs evolved through a
WR–BH configuration compared with compact remnants of Cyg X-3 that became GW–BBHs. The panels
explore the parameter space at Z = 0.015 for different supernova kicks and CCSN models, as in Fig. 4.20.
Black diagonal line indicates equal mass systems qBBH = M2,BH/M1,BH = 1.
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Figure 4.25: ZAMS (top), beginning of WR–BH phase (middle) and compact remnant configurations
(bottom) for Cyg X-3 fiducial model: unified kick and solar metallicity Z = 0.015. Orbital properties of
BBHs (grey-scaled histogram) and GW–BBHs (coloured histogram) undergoing a WR–BH evolution are
compared to the ones of Cyg X-3 candidates that will become GW–BBHs (cyan dots) for the three CCSN
models explored (from left to right: rapid, delayed or compactness).
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4.4 Cyg X-3 evolution
In this section I will explain in detail the evolutionary processes and orbital properties that allow
Cyg X-3 candidates to become GW–BBHs. I will focus on the formation channels for the fiducial
model (Z = 0.015, unified kick model and compactness CCSN option), discussing its validity. I
will compare these evolutionary channels with the ones for the rapid and delayed CCSN models,
illustrated in Appendix A.

4.4.1 The fiducial model
Metallicity In Sec. 4.2 I showed that choosing Z = 0.02 or Z = 0.015 does not significantly change
the PDFs for BBHs and GW–BBHs: the only difference is in the stellar wind efficiency and causes up
to a ∆M ≲ 5 M⊙ shift in the stellar and black hole masses. Therefore, in Sec. 4.3 I chose Z = 0.015
as the representative solar metallicity (as also suggested by Caffau et al. [86]) and studied the impact
of CCSN and kick models.

Kick The discussion carried out in Sec. 4.3 showed that kicks generated with the hobbs pure option
are often too much energetic to represent the evolution of binaries hosting black holes. In contrast,
the down-scaling of the kick magnitude adopted in the hobbs and unified models are more physically
motivated and do not strongly modify the orbital properties, as expected. Even if systems evolved
with the unified and hobbs models exhibit similar properties and both models account for the mass
that falls back onto the compact object, I will choose as fiducial the unified kick option because
it re-scales the kick magnitude also with the compact object mass, thus, follows a more accurate
description of the linear angular momentum conservation (see Sec. 3.1.5).

CCSN The rapid and delayed CCSN models determine the compact object mass by means of
piece-wise functions that strongly depend on the CO mass of the progenitor star (see Sec. 3.1.4).
As shown in Fig. 3.2 and discussed in Sec. 4.2 and Sec. 4.3, black holes formed in this work often
have progenitors with pre-SN mass Mpre−SN ∼ 7− 20 M⊙, thus falling in the range where the rapid
and delayed models differ the most from the compactness model. In particular, similar progenitors
evolved with the first two CCSN options form black holes up to ∼ 15 M⊙ lighter than the ones
formed with the compactness model. Moreover, the rapid and delayed models have higher chances
to form neutron stars rather than black holes from pre-SN masses in the aforementioned mass range.
Therefore, even though the compactness model favours the formation of heavier compact objects (see
Fig. 4.25) and, in particular, of black holes, I will choose it as the fiducial CCSN model.

4.4.2 A mass-transfer driven evolution
Initial masses The discussion carried out in Sec. 4.3.1 and referred to Fig. 4.20 indicated that Cyg
X-3 progenitors have similar initial masses of MZAMS ∼ 30−40 M⊙ across the whole parameter space
explored. The 22 Cyg X-3 candidates of the fiducial model considered here and shown in Fig. 4.26
are no exception to this and formed with primary stars M1,ZAMS only ≲ 5 M⊙ more massive than
the secondaries M2,ZAMS (empty circles).

A necessary first mass transfer All Cyg X-3 candidates of the fiducial model enter a Roche lobe
overflow episode while the secondary star is still in the main sequence phase. However, the stability
of the RLO is strongly affected by the possible combinations of the initial semi-major axis, primary
mass and, most importantly, mass ratio.

Binaries born in tight orbits with semi-major axis aZAMS ≲ 102 R⊙ are the ones where the
primary fills sooner its Roche lobe and enters the RLO routine only after ∼ 4 − 4.5 Myr from the
ZAMS configuration. Donor stars are still in the main sequence phase and, having masses similar
to their companions, the RLO begins as a stable one (q ≤ qcrit, see Sec. 3.1.3). Fig. 4.26, 4.27 and
4.28 show that nine Cyg X-3 candidates have these orbital properties: seven of them undergo a stable
RLO (blue dashed lines) while the other two will, at some point, transform the stable RLO into a
common envelope evolution (red dashed lines while in the stable RLO phase and dotted red lines in
the CE).

The systems that terminate the stable RLOs are the ones born with the most asymmetric mass
ratios qZAMS = M2,ZAMS/M1,ZAMS ∼ 0.85 − 0.9, lighter secondaries and primary stars that rapidly
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evolve from the start of the H-shell burning (BSE phase = 2, see Tab. 3.1) to the beginning of the
core-He burning (BSE phase = 4), avoiding the interpolation through the late phase of the H-shell
burning (BSE phase = 3).

In contrast, systems that start with more similar and heavier masses qZAMS ∼ 0.9−0.93 have more
efficient stellar winds: at the beginning of the RLO, the primary is lighter than the ones previously
described, with a mass lower than M1,ZAMS ≲ 35 M⊙. Less massive stars evolve more slowly (see
Sec. 2.1.4) and with different properties, causing these primaries to be interpolated by SEVN through
the last part of the H-shell burning (BSE phase = 3) and, thus, entering an unstable RLO. In fact,
according to Tab. 3.1, the criterion q ≥ qcrit to enter an unstable RLO only depends on the BSE phase
and, only for late H-shell burning stars, qcrit is lowered to account for the formation of a significant
He core.

A similar finding further confirms what was extensively discussed in Sec. 2.2: the current mass
transfer routines implemented in population-synthesis codes need to be revised. However, regardless
of the problems in current mass transfer models, the simulations clearly highlight that a first mass
transfer event is fundamental to produce a Cyg X-3 candidate that can become a GW–BBH: the
primary main sequence star needs to fill its Roche lobe and transfer mass to the secondary in a stable
or unstable process, eventually resulting in a Wolf-Rayet star (light-grey filled squares).

Systems in wider initial orbits aZAMS ∼ 100− 3000 R⊙ can also become Cyg X-3 progenitors but,
evolving in wider orbits, they can enter the RLO phase only when the primary has already expanded
its radius after the core-He burning stage: all these primaries overfill their Roche lobe while in the
Hertzsprung-gap phase. Similarly to the tightest systems, the binaries with more asymmetric mass
ratios and lighter secondaries (M2,ZAMS ∼ 26− 28 M⊙) rapidly evolve through the core-He burning
phase, skipping the late H-shell burning and terminating a stable RLO. In contrast, heavier and more
symmetric systems have primaries that are interpolated through the giant branch phase and enter a
common envelope.

Overall, the CE evolution does not modify the secondary, well-constrained with a mass of M2 ∼
30 − 35 M⊙, but removes the hydrogen envelope of the primary and produces a Wolf-Rayet star
with mass M1,WR ∼ 14− 15 M⊙, equal to the He-core mass of the progenitor, which was initially of
M1,ZAMS ∼ 33 M⊙. While the unstable RLO is short-lived and lasts only 0.005 − 0.2 Myrs, stable
mass transfer occurs on a longer timescale of ∼ 1 Myr (with the exception of the stable mass transfer
initiated by Hertzsprung-gap stars, which become core-He burning Wolf-Rayet stars in ≲ 0.5 Myrs).

Moreover, stable RLOs allow the secondary to accrete ∼ 7 − 10 M⊙ but produce stars lying in
different mass ranges. If the primary overfills its Roche lobe as a main sequence star with M1 ≳ 35M⊙
it will produce a Wolf-Rayet with M1,WR ∼ 12−14 M⊙ and the secondary M2 ≳ 30 M⊙ will become
a main sequence star of M2 ∼ 37 − 45 M⊙. In contrast, primaries entering the stable RLO as
Hertzsprung-gap stars are already lighter M1 ∼ 28 − 32 M⊙ and will produce Wolf-Rayet stars of
only M1,WR ∼ 9 − 12 M⊙, with main sequence companions of only M2 ∼ 32 − 36 M⊙. Overall, at
the end of the first mass transfer, binaries undergoing stable RLOs retain more mass with respect to
the systems produced through common envelope evolution, but host lighter Wolf-Rayet stars.

The secondary mass Fig. 4.26 highlights that all Cyg X-3 candidates enter the WR - BH config-
uration as a result of a CE evolution. At least for GW–BBHs belonging to the same sub-population
of Cyg X-3 (see Sec. 4.3), this evolution confirms the hints discussed in Sec. 4.2.2: the Wolf-Rayet
star in the WR–BH configuration (dark-grey circle) is the result of a common envelope evolution, at
the end of which the primary star explodes forming the black hole (black-filled star). In particular,
only systems that start a CE with a black hole progenitor mass of ∼ 8− 10 M⊙ and secondary mass
of ∼ 26 − 35 M⊙ have the right properties to become WR–BH systems that could be classified as
Cyg X-3 candidates (MBH = 3− 10 M⊙ and MWR = 8− 14 M⊙, see Sec. 2.3.2).

Primary stars evolved though a first common envelope or through a stable RLO from a Hertzsprung-
gap donor already form with these properties: after ∼ 0.5 Myr they undergo a common envelope and
reach the Cyg X-3 configuration. In contrast, binaries that entered a completely stable RLO with
main sequence primaries produced secondaries that are too massive. Therefore, only these binaries
require a third mass transfer process (a stable RLO from the secondary) to become Cyg X-3 pro-
genitors. As shown in Fig. 4.28 these systems exit the first stable RLO as wind-fed binaries with a
secondary star that is already filling its Roche lobe more than 50%: in ≲ 0.2 Myr it overfills its Roche
lobe remaining a main sequence star and loses up to ≲ 15 M⊙. Since the accretor is a Wolf-Rayet
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star, its strong stellar winds are assumed to efficiently eject the mass incoming from the donor, thus,
no mass is accreted and the orbit widens (even though it remains close to ∼ 100 R⊙).

Mass transfer and Cyg X-3 sub-families Even though most of the primaries start with M1,ZAMS ∼
35− 40 M⊙, the ones undergoing only common envelope evolution lose less mass than the ones that
went through two stable RLOs: the first produce primary black holes with M1,BH ∼ 6.3 − 7.5 M⊙
while the latter M2,BH ∼ 5− 6.2 M⊙. Similar differences in the formation channels and final proper-
ties are visible also in the systems evolved with rapid and delayed CCSN models in Fig. A.1 and A.2.
In particular, the delayed model forms neutron stars instead of black holes for the systems undergo-
ing stable RLOs and, therefore, identifies as Cyg X-3 candidates only the systems undergoing two
common envelopes. Similar results are obtained also varying metallicity and supernova kick models,
even though the higher metallicity binaries Z = 0.02 show a more uniform spread in the compact
object masses (see Sec. 4.3).

Even though systems undergoing two common envelopes, or two RLOs and one common envelope
seem to form two sub-families with distinguishable evolutionary pathways, it is possible that it is
only a consequence of the current approximate mass transfer models. For instance, the three systems
that entered the first stable RLO as Hertzsprung-gap donors could either form a third sub-family
or highlight that a rigid classification in the evolutionary scenario is not meaningful with current
models. In fact,they evolve through only one stable RLO and one common envelope, starting from
lighter ZAMS masses and populating both black hole families.

4.4.3 Observable properties
A portion of the WR–BH phase Fig. 4.29 shows that Cyg X-3 candidates are observable
as Cyg X-3 ≲ 0.2 Myr after the formation of the WR–BH configuration. They last in the Cyg
X-3 configuration for a variable amount of time ∼ 0.01 − 0.1 Myr (black thick lines), depending
on whether they satisfy the Cyg X-3 conditions starting from the lower or upper bound in the
period range adopted PWR−BH = 4.5− 5.1 hours. In fact, these candidates start the WR–BH phase
with a period of Pi,WR−BH ∼ 2.5 − 4.7 hours and then increase it as the Wolf-Rayet stellar winds
disperse mass. Binaries born in tight orbits aZAMS ≲ 100 R⊙ maintain shorter periods and end the
WR–BH configuration with Pf,WR−BH ∼ 5 − 6 hours after 0.4 Myrs. In contrast, wider systems
aZAMS ∼ 100−3000 R⊙ evolve for additional 0.1 Myrs and reach final periods of Pf,WR−BH ∼ 7−8.5
hours.

Wind-fed systems Fig. 4.30 illustrates the Roche lobe filling fraction of the Wolf-Rayet star
member of the WR–BH phase as it loses mass due to its strong stellar winds. As reported in the
previous section Sec. 4.4.2, WR–BH systems considered here are all formed after a common envelope.
Fig. 4.27 shows that the orbit at the end of the CE phase has semi-major axis of only a ∼ 2− 4 R⊙,
comparable to the Wolf-Rayet radius. Therefore, WR–BH systems start as powerful wind-fed systems
with a Wolf-Rayet filling its Roche lobe ∼ 80%. As the WR star evolves, it loses mass, reduces its size
and widens the orbit, eventually decreasing the Roche lobe filling fraction. When the systems become
visible as Cyg X-3 (MWR = 8 − 14 M⊙), the Wolf-Rayet is still powering the black hole accretion
disk through wind mass losses, even if less efficiently because it is now filling only ∼ 60− 80% of its
Roche lobe.
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Figure 4.26: Mass of the primary star as a function of the secondary star for the Cyg X-3 candidates evolved
with the fiducial model: Z = 0.015, unified supernova kick and compactness CCSN. Starting from the ZAMS
(empty circles), the primaries enter a stable mass transfer (dashed thick lines) that either remains stable
(blue line) or becomes unstable (red line) and results in a common envelope (dotted red line). The primaries
become Wolf-Rayet stars (light-grey squares) and the secondaries enter a second RLO (solid thick lines), again
stable (blue) or unstable (red). After a necessary common envelope, the secondaries become Wolf-Rayet stars
(dark-grey dots) and the primaries form a black hole (black stars). At the end of the WR–BH phase, also the
secondary forms a black hole (yellow star) and a BBH is born (small black dots). Thin lines mark the phases
without active mass transfer and are coloured according to the initial semi-major axis, visible in Fig. 4.27.
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Chapter 5

Conclusions

In this thesis, I simulated 24 sets of physically motivated binary populations, each containing 106

systems, by means of the population-synthesis code SEVN (see Sec. 3.2). Each set was characterized
by a different combination of the 24-dimension parameter space explored and included two possible
values for the solar metallicity (Z = 0.02 and Z = 0.015), three core-collapse supernova models
(rapid, delayed and compactness) and four supernova kick options (hobbs pure with Maxwellian root-
mean-square of σ = 70 km/s; hobbs pure, hobbs and unified with σ = 265 km/s), described in Sec.
3.1. The primary aim of this work was to study how this parameter space influences the role of
Wolf-Rayet–black hole binaries (WR–BHs) as progenitors of the binary black holes (BBHs) that have
been observed with the LIGO and Virgo gravitational wave detectors (see Sec. 1). The secondary
aim was to characterize the evolution of the only WR–BH candidate observed as X-ray binary in the
Milky Way, Cyg X-3, and understand if it could be a proxy for BBH mergers (see Sec. 2).

I found that at solar metallicity ≳ 90% of the BBHs merging within a Hubble time via gravita-
tional wave emission have evolved through a WR–BH configuration. A similar fate is common also
to ≳ 75% of the Cyg X-3 candidates found in my simulations (see Tab. 4.1). Moreover, Cyg X-3
systems became a reliable proxy to trace the evolution of at least one sub-population of BBH mergers:
those with final total binary mass of ∼ 10 − 30 M⊙, semi-major axis ≲ 10 R⊙, and orbital period
ranging from a few hours to a few days (see Sec. 4.3). These results are robust and independent on
the combination of metallicity, core-collapse or supernova kick model assumed.

Binaries similar to Cyg X-3 reach the WR–BH configuration after one common envelope evolution
and one or two previous additional stable mass transfer events. Usually, the aforementioned processes
are either a common envelope or a stable Roche lobe overflow (RLO) started by the star initially more
massive, with the possibility that the first stable RLO leaves a companion star still too much massive
and forces it to start a second stable RLO to reduce its mass before the final common envelope.

The occurrence and type of mass transfer events prior to the last common envelope depend on the
parameters assumed, but are more sensible to the core-collapse supernova model. In fact, some of the
assumed core-collapse supernova models favour the formation of neutron stars in place of black holes
and cause some of the Cyg X-3 systems to become neutron star - black hole binaries, with properties
similar to the ones found by Belczynski et al. [116]. However, the current models implemented in
population-synthesis codes to determine the stability of RLO events have proven to be inadequate
and need to be revised, as already highlighted by many authors in the literature including Gallegos-
Garcia et al. [70].

This work highlights that, at solar metallicity, WR–BH binaries are a necessary configuration
to produce BBH mergers, characterizing their last evolutionary stage prior to the second black hole
formation. Most of the short period period WR–BH binaries (P ≲ 10 hours) are visible as wind-fed
X-ray binaries. Binaries with wider orbits, hosting mostly H-rich Wolf-Rayet stars, could be detected
also in the RLO configuration. Nevertheless, systems with a ≳ 10 R⊙ not only are unlikely to undergo
significant mass transfer and be visible as X-ray binaries, but could also become BBH mergers only
if they received supernova kicks energetic enough to produce highly eccentric orbits (see Sec. 4.3.2).

Overall, the results that I obtained in this thesis underline that further and more accurate ob-
servations of WR–BH binaries at solar metallicity are expected to provide useful insights in the

93



94 Conclusions

characterization of the progenitors of BBH mergers. In particular, accurate measurements of the
spins of Wolf-Rayet stars could improve the mass transfer models and possibly solve the tension high-
lighted by Fishbach & Kalogera between the spin distribution of X-ray binaries and BBHs observed
by the LIGO-Virgo Collaboration [28].



Appendices

95





Appendix A

Alternative models for Cyg X-3
evolution

Fig. A.1 and A.2 illustrate the evolutionary pathways of Cyg X-3 candidates that form a GW–BBH
according to the rapid or delayed CCSN model, respectively. These systems are evolved assuming the
fiducial metallicity Z = 0.015 and supernova kick unified and serve as a comparison with the fiducial
compactness model shown in Fig. 4.26.
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Figure A.1: Mass of the primary star as a function of the secondary for the Cyg X-3 candidates evolved with
the fiducial metallicity (Z = 0.015) and kick model (unified) but adpoting the rapid CCSN. Starting from
the ZAMS (empty circles), the primaries enter a stable mass transfer (dashed thick lines) that either remains
stable (blue line) or becomes unstable (red line) and results in a common envelope (dotted red line). The
primaries become Wolf-Rayet stars (light-grey squares) and the secondaries enter a second RLO (solid thick
lines), again stable (blue) or unstable (red). After a necessary common envelope, the secondaries become
Wolf-Rayet stars (dark-grey dots) and the primaries form a black hole (black stars). At the end of the WR–
BH phase, also the secondary forms a black hole (yellow star) and a BBH is born (small black dots). Thin
lines mark the phases without active mass transfer and are coloured according to the initial semi-major axis,
with a colour coding similar to Fig. 4.27.
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Figure A.2: Mass of the primary star as a function of the secondary for the Cyg X-3 candidates evolved with
the fiducial metallicity (Z = 0.015) and kick model (unified) but adpoting the delayed CCSN. Starting from
the ZAMS (empty circles), the primaries enter an unstable Roche lobe overflow (red thick dashed lines) that
results in a common envelope (red dotted line). The primaries become Wolf-Rayet stars (light-grey squares)
and the secondaries enter a second unstable Roche lobe overflow (red thick solid lines) ending in a common
envelope. The secondaries become Wolf-Rayet stars (dark-grey dots) and the primaries form a black hole
(black stars). At the end of the WR–BH phase, also the secondary forms a black hole (yellow star) and a
BBH is born (small black dots). Thin lines mark the phases without active mass transfer and are coloured
according to the initial semi-major axis, with a colour coding similar to Fig. 4.27.





Appendix B

Acronyms

BBH Binary black hole

BH Black hole

CCSN Core-collapse supernova

CDF Cumulative density function

CE Common envelope

GW Gravitational wave

GW–BBH Binary black hole that will merge via GW emission within a Hubble time

HG Hertzsprung - gap star

HMXB High-mass X-ray binary

HR diagram Hertzsprung-Russell diagram

LBV luminous blue variable

LMXB Low-mass X-ray binary

LTE Local thermodynamic equilibrium

LVC LIGO-Virgo collaboration

ISCO Innermost circular orbit

MRD Merger rate density

PDF Probability density function

RLO Roche lobe overflow

SN Supernova

WC, WCO, WO Sub-types of Wolf-Rayet stars without hydrogen spectral lines

WN, WNE, WNL Sub-types of Wolf-Rayet stars with hydrogen spectral lines

WR Wolf-Rayet star

WR–BH Binary composed of a Wolf-Rayet and a black hole

ZAMS Zero age main sequence star
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