
University of Padova

Department of Mathematics “Tullio Levi-Civita”

Master degree in Computer Science

Feeding events to business
intelligence via an event bus

Master thesis

Supervisor

Prof. Tullio Vardanega

Candidate

Alessandro Cavaliere

Student ID 2076771

Academic year 2023-2024

Alessandro Cavaliere: Feeding events to business intelligence via an event bus, Master
thesis, © September 2024.

"You might not think that programmers are artists, but programming is an extremely
creative profession. It’s logic-based creativity"

— John Romero

Acknowledgements

First and foremost, I would like to express my sincere gratitude to Prof. Tullio Var-
danega, not only for his guidance and support throughout the writing of this thesis but
also for the valuable knowledge and lessons he has imparted to me.

I am deeply grateful to my parents for their unwavering financial support and the
freedom they gave me during my years of study, never asking anything of me but my
happiness and peace of mind.

I would also like to extend my heartfelt thanks to my siblings and relatives who have
consistently shown interest in my academic journey, offering their support and trust
along the way.

A special thank you goes to the friends with whom I have shared this academic journey.
I will always cherish the fun moments and adventures we have had together.
Likewise, I would like to thank all the other friends who, in one way or another, have
been part of this experience.

Lastly, I am immensely grateful to Sabrina for her unconditional support and help
throughout these years of study.

Padova, September 2024 Alessandro Cavaliere

ii

Summary

Event-driven architectures use event buses to forward business events to consumers.
Such channels witness all the stuff that’s happening in the system. The way in which
such events happen, as long as the history, is completely lost after the events have
been delivered to consumers.
The purpose of the project is to track what goes through the event buses, by logging
business events in a structured way. Such a system, commonly known as audit trail,
logs all the generated events and it provides functionalities to query the data warehouse,
in order to extract meaningful analytics and insights, as long as the history of what
happened. The ultimate goal is to provide such knowledge and features to various
business units, aiming to help them while carrying out their duties.

This document is organized as follows.
Chapter 1 introduces the concept of business intelligence and its relative process,
reviewing the state-of-the-art technologies and solutions. It then focuses on the current
situation of THRON, a Software-as-a-Service company, for what concerns business
intelligence, analyzing the current issues, limitations and opportunities in the adoption
of such an approach within the organization.
Chapter 2 shifts the focus to breaking down the core aspects of the business intelligence
process into more manageable stages. It outlines the system requirements, explains
which topics were prioritized, and provides justifications for excluding certain aspects
of business intelligence.
Chapter 3 presents the system architecture, detailing each component’s functional and
technical aspects and explaining how they address the previously identified requirements.
It also includes the testing methodologies used and an evaluation of the system’s overall
performance.
Chapter 4 ties the proposed solution back to the original objectives, addressing any
limitations and unsatisfied requirements. It also provides examples of use cases and
discusses potential ways the system can improve business intelligence in THRON,
alongside suggestions for future enhancements and new functionalities.

iii

Contents

1 Problem statement 1
1.1 Business Intelligence . 1

1.1.1 Definition . 1
1.1.2 Process . 3
1.1.3 Usage . 5
1.1.4 Technological stack . 8

1.2 Business Intelligence in THRON . 13
1.2.1 THRON platform . 13
1.2.2 Integrating BI into the platform 15
1.2.3 Gap analysis . 15
1.2.4 Additional use cases . 19

2 Addressed sub-problems 21
2.1 Primary areas of focus . 21

2.1.1 Overview . 21
2.1.2 Technical overview . 22
2.1.3 Rationale . 23

2.2 Requirements . 24
2.2.1 Data ingestion and storage . 24
2.2.2 Data access . 25
2.2.3 Summing up . 27
2.2.4 Deferred objectives . 27

3 Audit Trail Platform 30
3.1 System overview . 30

3.1.1 Ingestion . 31
3.1.2 Search and aggregation . 36
3.1.3 Export . 41

3.2 Development . 44
3.3 Testing . 45

3.3.1 Comprehensive code evaluation 45
3.3.2 Production rollout . 46

4 Retrospective 48
4.1 Resolution of individual sub-problems 48

4.1.1 BI process establishment . 48
4.1.2 Information access . 49

4.2 Coverage of use cases . 50

iv

CONTENTS v

4.2.1 Business Intelligence . 50
4.2.2 Other use cases . 51

4.3 Outlook . 52
4.3.1 Current architecture and limitations 52
4.3.2 System evolution . 53
4.3.3 Personal considerations . 54

A Features and requirements 56
A.1 Ingestion . 56
A.2 Search and aggregation . 58
A.3 Export . 59

B Data storing format experiment 61

C Alternative solutions 63
C.1 Ingestion . 63
C.2 Search and aggregation . 64
C.3 Export . 64

Glossary 65

Bibliography 68

List of Figures

1.1 The typical steps of the BI process . 3
1.2 Worldwide BI market size growth, from 2016 projected until 2029 . . . 7
1.3 Summary of the data sources grouped by category 10
1.4 Explanation of the purpose of an ETL job 11
1.5 BI software share as of 2022 . 12
1.6 Key benefits of a DAM . 13
1.7 Key benefits of a PIM . 14
1.8 Main advantages of an unified DAM and PIM 14

2.1 Example of Amazon EventBridge usage in THRON platform 22

3.1 Overview of the system and its relation with the THRON platform . . 31
3.2 C4model representation of the events ingestion component 32
3.3 Technical overview of proposed solution for events ingestion 33
3.4 C4model representation of the events search and aggregation component 37
3.5 Technical overview of proposed solution for events search and aggregation 38
3.6 C4model representation of the events export component 42
3.7 Technical overview of proposed solution for events export 43

C.1 Alternative events ingestion solution using AWS services 63

List of Tables

1.1 Summary of problems arose from the current platform state concerning BI 17
1.2 Examples of business activities that can be done using THRON platform 18
1.3 Additional use cases solvable by exploiting the BI process 20

vi

LIST OF TABLES vii

2.1 Summary of the system requirements 28

3.1 Numeric values about collected business events from production 47

4.1 Requirements tracking for BI process establishment 49
4.2 Requirements tracking for business events data access 50

A.1 Features and satisfied requirements for events ingestion 56
A.2 AWS services, features and satisfied requirements for events ingestion . 57
A.3 Features and satisfied components for events search and aggregation . 58
A.4 AWS services, features and satisfied requirements for events search and

aggregation . 59
A.5 Features and satisfied requirements for events export 59
A.6 AWS services, features and satisfied requirements for events export . . 60

B.1 Storage insights about data warehouses used for the experiment 61
B.2 Queries performance between JSON and Parquet data warehouses . . 62

Chapter 1

Problem statement

The analysis focused on the nature of the problem that necessitated the development of
an audit trail platform system. It identified the state-of-the-art solutions available at the
time and the main concerns associated with those existing solutions.

1.1 Business Intelligence

1.1.1 Definition
Business intelligence (BI) consists of a set of technology-driven processes which fo-
cuses on analyzing data to extract valuable information. Such insights can help the
board of directors, managers, and employees in making reasonable business decisions.
Organizations gather data from both internal and external sources, prepare them for
analysis, with the final aim to extract insightful knowledge. They run queries on the
elaborated data and create visual representations, such as dashboards and reports, to
make analytical results accessible for daily decision-making processes and long-term
strategic planning.

The main goal of BI processes is to enhance business decisions, allowing organizations
to boost revenue, improve operational efficiency, and build a competitive advantage
over the other competitors. To achieve this, BI combines analytics, data management,
and reporting tools with various methodologies for data management and analysis.

Many different data sources can be used to feed such a process. Such sources include
both internal (stored within the organization) and external data.
Internal data sources may include:

• Operational data: transaction records, sales data, inventory levels and pro-
duction metrics. These records can be used to monitor daily operations, track
performance, and manage resources;

• Financial data: revenue, expenses and profit margins. Such information can be
useful when analyzing financial health, creating forecasts, and managing budgets;

1

1.1. BUSINESS INTELLIGENCE 2

• Customer data: customers’ demographics, purchase history and feedback.
These records can be used to understand customer behavior, eventually improve
customer service, and enhance marketing strategies;

• Employee data: Human Resources (HR) records, performance evaluations,
payroll data. Such data can be useful to manage workforce, track productivity,
and develop HR strategies;

• Logistics and supply chain data: suppliers performance, shipment records,
order fulfillment times. This information could be needed in order to optimize
supply chain operations, improve efficiency, and reduce costs.

External sources may be:

• Market data: find market trends, competitor analysis, industry reports. These
insights may be exploited in order to understand market dynamics, benchmark
performance, and identify opportunities;

• Social media data: social media posts, likes, shares, comments. The goal
of gathering such data is to monitor brand sentiment, track social trends, and
engage with customers;

• Web data: track website traffic, user behavior analytics, and Search Engine
Optimization (SEO) metrics. The data is used to optimize online presence,
improve user experience, and drive online sales;

• Economic data: Gross Domestic Product (GDP), inflation rates, unemployment
statistics. It may be helpful to assess economic conditions, forecast trends, and
adjust business strategies.

Other data sources may include unstructured data or sensor and Internet of Things
(IoT) data.
In the first case data can be gathered from emails, customer reviews, chat logs,
images, videos, audio recordings. The goal is to provide insights which may help
while analyzing customer feedback, extracting information from multimedia contents,
improving customer relations, and monitoring brand presence.
The latter case may include sensor readings, equipment status, IoT devices’ data,
with the aim to use such information to monitor and optimize machines performance,
predictive maintenance, and operational efficiency.

Each different organization may have access to a subset of such data sources, therefore it
is important to tailor the BI process depending on the core business of the organizations
adopting it. Different firms may benefit from different insights, thus it is relevant to
recognize which of the available information is worth collecting, based on companies’
needs.

To sum up, BI includes data analytics and business analytics. The first provides
insights from raw data, aiding informed decision-making; the latter optimizes processes,
aligns strategies, and ensures solutions meet business goals, enhancing overall efficiency
and competitiveness. Predictive analytics, which consists of making predictions about
future outcomes using historical data combined with statistical modeling, data mining
techniques and machine learning, may be used as well to support organizations building
future strategies.

1.1. BUSINESS INTELLIGENCE 3

1.1.2 Process
A BI process involves several steps. The starting point is the raw data gathered from
different sources, which should be transformed into meaningful insights that support
informed decision-making.
Figure 1.1 depicts the usual steps of such a process.

Figure 1.1: The typical steps of the BI process

Data collection

The first step involves the identification of the relevant data sources, both internal
and external, that can lead to the extraction of useful information. This helps the
development of a business objective, underlying which data is needed to achieve it.
Once such sources have been identified, data gathering can take place by connecting
with the various data sources. The goal is to accumulate relevant and comprehensive
data that serves as the foundation for the subsequent analysis.

Data preparation

Once gathered, the data must be prepared for the analysis. In this step, the collected
data should be cleaned and organized with the aim of ensuring accuracy, completeness
and consistency. This sub-process may involve different activities, where the following
are the most important ones:

• Removing duplicate entries;

1.1. BUSINESS INTELLIGENCE 4

• Removing not-so-relevant records;

• Handling missing values or partial information;

• Transforming and organizing unstructured data;

• Modeling available information in a uniform manner.

Data preparation is a crucial phase, as it prepares the raw data for effective analysis
and helps in avoiding misleading results due to errors in the source data.

Data storage

This stage of the BI process entails storing all the data which has been previously
obtained and processed into a storage.
Depending upon whether data is processed or not, the naming convention for the
destination storage changes. If data is not pre-processed (i.e. the previous step does
nothing), then the storage is going to be called a data lake. A data lake is a centralized
repository designed to store, process, and secure large amounts of structured, semi-
structured, and unstructured data. It is merely a storage that stores mainly copies
of raw data. On the other hand, if data is processed, then storage is named data
warehouse. Data warehouses are systems which store cleaned and processed data,
which can then be used as a source for analytics, operational reporting, and, generally
speaking, to cover specific BI use cases. They are also optimized for query performance
and allow for efficient data retrieval.
In both cases, the resulting storage is typically centralized, facilitating easy access and
management of data, and supporting large-scale data analysis and reporting.

Data analysis

Transformed data can now be processed and analyzed in order to reveal patterns,
trends, and gather useful insights with respect to the core business of the organization.
To extract useful information from the data warehouse, many analytical approaches
and algorithms can be used.
One of the most commonly used approaches is statistical analysis, which means
investigating trends, patterns, and relationships using quantitative data. This involves
the use of descriptive statistics (summarize the main features of a dataset), inferential
statistics (analyze samplings to make predictions about larger populations), correlations
and regression analysis (identify relationships between variables), and other techniques
to extract meaningful information starting from the structured dataset.
Machine learning (ML) is also used in pattern recognition, as it allows the identification
of patterns and clusters within large datasets, revealing insights that might not be
immediately obvious. ML models can also help forecasting future trends based on
historical data.
Lastly, data mining helps in pattern discovery, predictive modeling, anomaly detection,
and classification. By using these techniques, it is possible to uncover hidden insights,
forecast future events, detect anomalies, categorize data, and analyze unstructured
data.
Many other techniques, and algorithms can be used depending on the nature of the
dataset.

1.1. BUSINESS INTELLIGENCE 5

Data visualization

Once the data has been analyzed and useful insights have been extracted, they should be
presented using visual tools such as charts, graphs, and dashboards. Such visualizations
can help to effectively show the results of the previous step to a broader audience,
including decision-makers, stakeholders, and, generally speaking, people who are not
familiar with the technological tools used in the previous steps.
Overall, this stage can enable the audience to quickly catch key insights and trends. In
such a way the found information can be communicated easily, facilitating data-driven
decisions afterwards.

Decision making

The final step involves using the visualized data insights to inform and support business
decisions. Decision-makers (executives, managers, stakeholders), use these insights to
develop strategies, optimize operations, and drive business growth by leveraging on
data-driven insights.

1.1.3 Usage

1.1.3.1 Advantages

There are various benefits when using BI to enhance a business organization. The main
advantages have already been described previously, as they are intrinsically related
with the nature of its definition and the steps of a BI process.
It is still worth it to dig deeper into them and see why firms should exploit the use of
such a process to improve their business:

• Data-driven decision making: BI allows organizations to make their decisions
based on real data and objective analysis rather than assumptions or feelings.
Therefore it enhances the accuracy and reliability of decisions, leading to better
outcomes;

• Competitive advantage: companies gain a deeper understanding of their own
organization, their market, competitors, and customers. By using such knowledge,
they can identify new opportunities, address weaknesses, and capitalize on their
strengths, with the ultimate goal of building and gaining a competitive advantage
over the main competitors;

• Strategic planning: when developing new strategies, BI allows companies to
evaluate the effectiveness of them. Furthermore, it gives the opportunity to
explore new opportunities, and align resources with the firm’s goals;

• Operational efficiency: BI can optimize business processes by identifying
bottlenecks, streamlining workflows, and reducing inefficiencies. Data-driven
process improvements lead to cost savings, increased productivity, thus enhancing
the overall operational efficiency;

• Performance monitoring: it provides real-time and historical insights into
key performance indicators (KPIs) and metrics, enabling companies to monitor
their progress toward their objectives and track performance over time. This
facilitates quick course corrections and ensures strategic alignment.

1.1. BUSINESS INTELLIGENCE 6

1.1.3.2 Disadvantages

While benefiting from BI, organizations should be aware about the risks related while
using such tools. Some cons may include:

• High initial costs: BI software can be quite pricey at first, even if the returning
value to the organizations can be felt almost immediately. Small businesses might
find that cost too high at first, therefore they tend to discard this opportunity.
To address such a limitation, organizations can consider cloud-based solutions
that can reduce the cost of implementation and maintenance, giving flexibility
and scalability to expand their solutions as needed;

• Lack of context and interpretation: the tools are designed to provide insights
based on data analysis. However, they often lack context and interpretation.
This means that final users may not be able to understand the extracted in-
sights provided without additional context. To overcome such an issue, data
visualization tools should be extensively used to provide additional context to
the data. They can also help users identify trends and patterns that may not be
immediately apparent;

• Risk of data overload: BI tools can provide users with a large amount of
data, which can be overwhelming and difficult to manage. This can lead to users
being unable to identify important insights and making poor decisions based
on incomplete information. This problem can be mitigated by investing in data
management tools (like Oracle Data Management Suite, SAP, Tableau, Microsoft
Power BI) that can help manage data effectively;

• Self-service BI: it consists of giving organizations the ability to analyze data
and create visualizations on their own, without the help of a technical team.
It can be more cost-saving, but it needs control and monitoring to prevent a
chaotic data environment and conflicting results. Conflicting data interpretations
can lead to misguided decisions and wasted resources. To establish a good BI
process, data engineering and experience in properly interpreting results are
needed. Furthermore, organizations may set up teams to curate data sets in data
warehouses in order to avoid inconsistencies;

• Lack of data governance: as stated previously, BI tools can generate a large
amount of data, which can be difficult to manage and secure. Without proper
data governance, organizations may be at risk of data breaches and other security
threats. To mitigate these risks, organizations need to establish a solid data
governance policy. This should include guidelines for data management, security,
and privacy, in addition to routine audits in order to guarantee compliance.

1.1.3.3 Importance and future perspectives

Overall, the role of business intelligence is to enhance an organization’s operations by
using relevant data. Companies that effectively use BI tools and techniques can convert
their collected data into valuable insights regarding their processes and strategies.
These insights enable better business decisions that boost productivity and revenue,
resulting in accelerated growth and higher profits.

Without BI, organizations may miss the benefits of data-driven decision-making.
Instead, executives and employees must rely on factors such as accumulated knowledge,

1.1. BUSINESS INTELLIGENCE 7

past experiences, intuition, and raw feelings for important decisions. While these
methods can yield good outcomes, they carry a higher risk of errors and missteps due
to the lack of data support.

Here are some statistics that show how much BI is used in organizations and its
perceived importance nowadays. In 2020 the global BI adoption rate was 26%1,
involving mainly well-established organizations (having more than 5000 employees).
Such statistic was expected to grow until 33%2 by the end of 2023, stating that BI
is becoming more and more widespread as time goes on. The main goal of using BI
technologies for the interviewed organizations is to develop and expand their businesses
by finding new revenue streams. Furthermore, the adoption rate increases up to 52%3

considering only software companies, which is not something unexpected, as such firms
are more familiar with the technologies involving BI.
As a result, the expected market size is going to increase widely during the next few
years. Figure 1.2 illustrates such a scenario, focusing on the BI market size worldwide.

Figure 1.2: Worldwide BI market size growth, from 2016 projected until 2029
Source: Statista

Overall, most of the organizations (almost 90%4) consider BI an essential tool for their
future development, meaning that they rely heavily on insights derived from big data.

Despite such popularity and perceived importance, most of the organizations still
struggle to exploit the insights extracted from the gathered data: 97%5 of such data is
still unused. Lastly, in 2019 the 87%6 organizations using BI are classified as having

1Business Intelligence trends 2020 | Wiiisdom
2Data and analytics trends for times of uncertainty | Gartner
3The business intelligence landascape | Sisense
4The State Of Cloud Business Intelligence, 2020 | Forbes
5The power of data-driven enterprise | AWS
6Firms’ low BI and analysis maturity | Gartner

https://www.statista.com/outlook/tmo/software/enterprise-software/business-intelligence-software/worldwide#revenue
https://wiiisdom.com/ebook/business-intelligence-trends-2020/
https://www.gartner.co.uk/en/articles/12-data-and-analytics-trends-to-keep-on-your-radar
https://www.sisense.com/whitepapers/the-business-intelligence-landscape-by-harris-poll/
https://www.forbes.com/sites/louiscolumbus/2020/04/12/the-state-of-cloud-business-intelligence-2020/
https://aws.amazon.com/it/executive-insights/content/the-power-of-the-data-driven-enterprise/
https://www.gartner.com/en/newsroom/press-releases/2018-12-06-gartner-data-shows-87-percent-of-organizations-have-low-bi-and-analytics-maturity

1.1. BUSINESS INTELLIGENCE 8

low analytics maturity, meaning that there is still a long way to go before exploiting
BI at its full potential.

To conclude, the presented statistics underline the importance of Business Intelligence
in nowadays organizations, not only from the point of view of the adoption rate, but
also from a future perspective. Still there is a long way to go, as organizations are
struggling to extract the maximum potential from this topic. The gap is set to be
covered as the time goes on though.

1.1.4 Technological stack

1.1.4.1 BI process

The BI technological stack consists of several parts, each one addressing a specific
topic of the data lifecycle according to the BI process described above. Since business
intelligence is a very widespread field, there is no single and unique technology that is
able to solve all the problems related to the process as a whole. Each step is addressing
a different sub-problem, therefore it needs to be handled by specific technologies.

This section provides an overview of the main technologies that form the backbone of
a typical BI stack. The state-of-the-art tools for each stage of the process is presented,
highlighting their functionalities, advantages, and how they contribute to the overall
effectiveness of a BI system.

Data sources

Even if that is not a step of the BI process, it is worth mentioning what are the sources
of data from which insights can be extracted. In section 1.1.1, an exhaustive list of
data sources has been provided, but only from a functional point of view.

Here is a non-exclusive list of data sources that relate to IT technologies:

• Internal databases: mainly relational databases (such as MySQL, PostgreSQL,
Oracle) where data is stored in structured tables with predefined schemas. NoSQL
databases (like MongoDB, Cassandra) are also in this field: data is stored in an
unstructured or semi-structured manner, with various data types. In both cases,
database connectors (like JDBC or ODBC) and custom APIs may be used to
extract data from such systems;

• Enterprise applications: Enterprise Resource Planning (ERP) systems (like
SAP, Oracle ERP) provide data related to business processes such as finance, HR,
and supply chain. Customer Relationship Management (CRM) systems (such as
Salesforce, HubSpot) offer customer interaction data. Customer Data Platform
(CDP) systems (like Segment, Adobe Audience Manager) help create a unified
and persistent customer database. Human Capital Management (HCM) systems
(Workday, Oracle HCM Cloud) provide features to manage an organization’s
workforce, from recruitment to retirement. Each system provides data to feed BI
through dedicated connectors, APIs or Extract Load Transform (ETL) tools;

• Cloud services: they entail cloud storage services (like Amazon S3, Google
Cloud Storage) where any kind of data (files, images, videos, logs) can be stored,
and cloud databases (such as Amazon DynamoDB, Snowflake) which offer data

1.1. BUSINESS INTELLIGENCE 9

warehouse solutions from which data can be stored. In any case, ETL tools,
APIs and cloud-native data integration tools (like Fivetran, IBM DataStage,
Snaplogic Data Integration and Automation) could be used to extract data from
such services;

• Web services: RESTful APIs (or legacy SOAP APIs) are typically used to
provide data from web applications and services. Integration tools (such as IBM
API Connect, MuleSoft Anypoint) or middlewares support data extraction from
these sources;

• Social media: most social networks offer APIs for accessing social media data.
APIs and data connectors, along with third-party tools (like Hootsuite), enable
the collection and analysis of social media interactions and trends;

• Web: web scraping (using tools like Beautiful Soup, Scrapy) is a way to extract
data from websites, while behavioral analytic tools (such as Google Analytics)
can be used to gather insights of web traffic, user behavior and user patterns;

• Machine and IoT: data coming from IoT devices and sensors, including indus-
trial machinery and smart devices, is collected using protocols like MQTT and
HTTP. Even cloud-based IoT solutions (Amazon Web Services (AWS) IoT, Azure
IoT Hub) offer solutions for managing and extracting data from IoT devices;

• External providers: public datasets and market data providers could be
relevant sources as they provide financial data about markets and other kinds of
data (depending on the core business of the organizations) that can be used to
enrich internal data. The final aim is to give more context to internal information,
in order to relate internal insights with external ones;

• Logs and events: data coming from server logs, application logs, event or
message brokers can be very helpful to manage and deeply understand companies’
systems by extracting useful information about the usage and health status of
them. Such data can be extracted using the ELK Stack (Elasticsearch, Logstash,
Kibana) or tools like Apache Splunk.

Figure 1.3 summarizes such sources of data, relating them with real-world technologies
and the macro-categories presented in section 1.1.1.

Data collection

The first step involves gathering data from different kinds of sources, as described
above. Depending on the type of data source, different technologies and methodologies
may be involved.
Generally speaking, ETL tools are pretty useful at this stage. ETL jobs are processes
that enable data warehousing and data integration, involving three main steps (extract,
transform, load) to manage and move data from source systems to a target database,
typically a data warehouse. Each step of the ETL pipeline refers to a different stage of
the BI process: Extract maps to data collection, Transform maps to data preparation
and Load maps to data storage. Since such steps are pretty common when dealing
with BI, as data is the foundation of the whole BI process, ETL tools provide an easy
and compact way to extract raw data, transform it and load structured data in one
shot.
Apache Airflow is one of the most widely-used ETL tools, as it allows users to define

1.1. BUSINESS INTELLIGENCE 10

Figure 1.3: Summary of the data sources grouped by category

workflows using directed acyclic graphs of tasks, providing a flexible and scalable way
to manage and orchestrate ETL processes. Furthermore, it integrates well with other
tools such as Apache Spark to perform data analytics. Other on-premise solutions may
be Talend and Oracle Data Integrator.
Cloud-based solutions are Amazon Glue, Amazon Data Pipeline or Azure Data Factory.
They offer the same features as on-premise solutions, but they tend to prefer data
sources that are within their own cloud environment.
RESTful APIs and database connectors are other ways to attach to data sources and
collect data. They are not really used at this stage, as ETL (or ELT) tools allow to
integrate them gracefully, without additional effort.
Figure 1.4 represents the concept of an ETL job.

Data preparation

This stage involves cleaning, transforming, and organizing data to ensure quality and
consistency.
Data cleaning tools help automate the identification of wrong records and they are also
able to perform error correction. The main tool for such a purpose is Alteryx Designer
Cloud, a data wrangling tool that uses machine learning to clean and transform data.
For what concerns transformation, Apache Spark and programming languages like
Python and R, are used to reshape data, aggregate it, and convert it into a format
suitable for analysis.
As stated previously, platforms offering ETL tools usually integrate well with such
technologies, allowing users to tailor data preparation to their needs.

1.1. BUSINESS INTELLIGENCE 11

Figure 1.4: Explanation of the purpose of an ETL job
Source: Informatica

Data storage

After preparing the raw data, now it should be saved in a structured format that
supports efficient querying and analysis.
Data warehouses like Snowflake or Amazon Redshift are optimized for analytical
queries, and they are also capable of handling large volumes of data. They store data in
a structured format, often using columnar storage techniques (such as Apache Parquet
or Apache ORC), which enhance query performance and compress data, therefore
saving storage.
Traditional databases are also used to store structured data.
Cloud storage solutions (AWS S3, Google Cloud Storage) offer scalable storage options
and they can handle unstructured data as well.

Data analysis and visualization

These phases involve applying various analytical techniques to extract insights from
the stored data and make them visible to the users. As for ETL tools, even for the last
steps of the BI process there are tools which are able to provide more functionalities in
one single platform. Such tools include the data analysis and data visualization steps.
Analytical tools let users create complex queries, perform statistical analysis, and
visualize data. They offer the possibility to create interactive and intuitive visual
representations of data.
Furthermore, such tools allow users to drag and drop data fields to create various types
of visualizations. Dashboards can be created to view key metrics and performance
indicators, enabling users to monitor business performance in real-time.
The more widespread tools are Amazon QuickSight, SAP BusinessObject, Tableau,
Microsoft PowerBI, and IBM Cognos Analytics.
Figure 1.5 presents a more exhaustive list of popular tools for these steps.
Statistical software such as R and programming languages like Python provide libraries
for advanced statistical analysis and modeling. With respect to analytical tools, they
give more flexibility with the cost of additional specific knowledge required.
Machine learning platforms (TensorFlow or cloud-based machine learning solutions)

https://www.informatica.com/gb/resources/articles/what-is-etl.html

1.1. BUSINESS INTELLIGENCE 12

Figure 1.5: BI software share as of 2022
Source: Statista

allow the application of machine learning algorithms to identify patterns, make predic-
tions, and extract hidden insights in the data.

Decision making

The last phase involves using the insights gained from the data to inform and support
executives to take business decisions. There are no standout technologies that can
support decision making at 100%, but still it is possible to work on some aspects to
exploit existing platforms.
Collaboration tools can be used to facilitate communication and share insights among
team members and stakeholders. Tools like Microsoft Teams and Slack integrate well
with BI platforms to quickly oversee key statistics of metrics derived by the previous
steps.
Eventually, decision support systems can be used as they provide frameworks for
making informed decisions by integrating data analysis and reports. The aim is to help
executives and managers to develop strategies and drive future business growth. For
this purpose, SAP BusinessObject and IBM Cognos Analytics stand out as the main
platforms that provide a tools for reporting, analytics, score carding, and monitoring
of events and metrics in one place.

1.1.4.2 Cloud-based versus on-premise solutions

Cloud-based solutions (offered by providers like AWS, Google Cloud, or Microsoft
Azure) offer scalability, flexibility, accessibility, and cost-effectiveness. They allow
you to adjust data processing capacity based on demand and budget. Additionally,
they reduce hardware, maintenance, and security costs as these are handled by the
provider. As a result, the deployment is fast, enabling businesses to start their BI

https://www.statista.com/outlook/tmo/software/enterprise-software/business-intelligence-software/worldwide#key-players

1.2. BUSINESS INTELLIGENCE IN THRON 13

projects efficiently.

On the other hand, on-premise tools need to run on owned servers. Therefore they
offer greater control and customization with respect to cloud solutions. They ensure
data availability, enhanced security, and compliance with local regulations. However,
they require more effort in installation, maintenance, and scaling, which can be costly,
complex, and more time-consuming.

Each option has its challenges and there is no single answer on which solution fits
best. Cloud-based tools may face integration issues, latency, and vendor lock-in; while
on-premise tools involve higher complexity, scalability issues, and greater responsibility
for what concerns security and backups.
Choosing the right approach depends upon the specific organization’s needs, including
volume of data, variety of data sources, and velocity with which data is collected.

1.2 Business Intelligence in THRON

1.2.1 THRON platform
THRON is a Software as a Service (SaaS) company (a company that hosts an application
and makes it available to customers over the internet), headquartered in Piazzola sul
Brenta, northern Italy. The organization specializes in the development and provision
of the THRON platform (referred also as THRON from now onward), its main product.
Such a platform is a comprehensive SaaS solution for Digital Asset Management (DAM)
and Product Information Management (PIM). As a cloud-based software, it helps
businesses centralize and optimize the management and distribution of digital assets
and product information, going over the functionalities of traditional DAM and PIM
systems.

A DAM system operates as a centralized repository for digital assets, offering several
key benefits, as explained in figure 1.6.

Figure 1.6: Key benefits of a DAM

1.2. BUSINESS INTELLIGENCE IN THRON 14

A PIM system provides a centralized location for collecting, managing, and enriching
an organization’s products information. This enables the creation of comprehensive
product catalogs that can be efficiently distributed to sales and e-commerce channels.
Figure 1.7 shows some key advantages.

Figure 1.7: Key benefits of a PIM

Many businesses use separate DAM and PIM systems, which can lead to data silos
and overall inefficiency. The THRON platform integrates these functionalities in a
unique product, allowing firms to benefit from the key points as figure 1.8 shows.

Figure 1.8: Main advantages of an unified DAM and PIM

By combining DAM and PIM capabilities, THRON provides a comprehensive integrated
solution that addresses the challenges associated with managing digital assets and
product information, therefore enhancing operational efficiency and collaboration
within organizations.

1.2. BUSINESS INTELLIGENCE IN THRON 15

1.2.2 Integrating BI into the platform
The main vision of THRON, for what concerns BI, is to generate new knowledge about
platform usage by using platform data. This process involves the collection of useful
data that should be processed and analyzed in order to obtain useful information. Such
information then should be made accessible to a wider user base, as information that
is accessible to many provides exponentially more value than the same information
being accessible only to a few.

In the context of providing a unified DAM and PIM system, THRON can apply BI in
several key areas to enhance the functionality and value of the platform.
BI can be applied to track and analyze content usage and engagement across various
channels, providing insights into the performance of different types of content and
optimizing content strategies. This may ensure the accuracy and consistency of contents
and product information, enhancing customer trust by detecting discrepancies and
monitoring changes. Additionally, BI can analyze customer behavior and preferences,
allowing for tailored marketing strategies that improve customer experience and in-
crease engagement. The same knowledge can be applied to drive future development
based on current usage.
Furthermore, it may help identify inefficiencies in process workflows, measure resource
usage, and automate routine tasks, with the goal of leading to cost savings and im-
proved productivity. It may support sales and marketing performance analysis, while
also being able to monitor usage of features.

The data retrieved through BI can be used for comprehensive reporting and dashboards,
predictive analytics, and real-time monitoring. Therefore, the organization can leverage
its data effectively, leading to more informed decisions, streamlined operations, and
enhanced customer satisfaction thanks to the gathered knowledge that can lead future
development of the product.

1.2.3 Gap analysis

1.2.3.1 Current platform BI strategy

Currently, THRON does not use business intelligence or similar processes to extract
meaningful knowledge from the platform usage.
The company faces a common challenge experienced by many businesses: while data
is generated from various sources, it is not readily usable. In this context, "usable"
refers to the ease of access rather than availability. The data is difficult to gather due
to the absence of an adequate infrastructure designed for seamless data integration
and retrieval.

As of now, collecting data involves manually querying multiple information sources,
including databases and other components of THRON infrastructure. This manual
process creates significant overhead, reducing the potential to leverage data for gener-
ating actionable insights. Such a lack of streamlined data access prevents the company
from effectively using data to drive strategic decisions and innovation.
Additionally, there is a notable gap between technical and non-technical teams. Devel-
opers, who are accustomed to work with infrastructural components, can manage the
data-related tasks easily. On the contrary, data analysts (who may not have technical
skills necessarily) and strategic direction, who require access to data for carrying

1.2. BUSINESS INTELLIGENCE IN THRON 16

over their duties, are less familiar with these technical systems. This gap results in
complex and time-consuming operations, creating a dependency between technical and
non-technical teams. As a consequence, the inconsistent usage of data due to this lack
of infrastructure, undermines its value and effectiveness, rendering the data collection
process less productive.

To address these issues, it is essential to establish a robust infrastructure that facilitates
easy and efficient data access for all stakeholders. By bridging the gap between technical
and non-technical teams and streamlining data collection and usage processes, THRON
can enhance its ability to generate and use valuable insights to reach the previously
explained goals.

Regarding external tools, there are integration with Salesforce for CRM and customer
analysis. However, specific details about these integration are not available. In terms
of cost management, since the platform is a cloud-based solution backed by AWS
infrastructure, AWS resources have been tagged for several years to provide visibility
into infrastructural costs. Despite this, it was hard to analyze and forecast expenses,
due to the lack of correlation between these costs and the usage of the THRON
platform, particularly in tracking business operations. In a SaaS environment, where
many resources are shared across various functional domains, assigning costs to specific
cost centers becomes complex. This shared-resource model complicates the efforts to
isolate and allocate costs accurately, resulting in inability to perform precise financial
analysis and forecasting.

Table 1.1 provides a comprehensive summary of all the problems listed above, along
with potential solutions.

1.2.3.2 Applying BI to the platform

Currently, there is no established process for extracting actionable insights from the
THRON platform’s data. As presented in section 1.2.3.1, data about the platform’s
usage (or coming from other sources) is not retrieved systematically. Implementing
such a procedure represents a significant opportunity for improvement.

When talking about platform usage data collection, there is no reference to User
Behavior Analytics (UBA). UBA focuses on tracking and analyzing both quantitative
and qualitative user data to gain insights in how and why users interact with a product
or website. THRON platform already incorporates tools for UBA. In contrast, the
objective for THRON, as a first step to integrate BI into its platform, is to track and
understand business operations conducted within the platform. Business operations are
defined as actions that have tangible side effects on the THRON platform concerning
a specific tenant. Examples of such business operations are presented in table 1.2.

This distinction emphasizes that the focus is on understanding actionable business
activities rather than user behavior patterns.
Moreover, the components that handle business actions, may generate new business
actions to be performed themselves. This is the typical scenario for background business

1.2. BUSINESS INTELLIGENCE IN THRON 17

Problem Description Potential solution
with BI

Data not readily usable Data is generated from
various sources, but it is
not easily accessible.

Establishment of an
infrastructure for
seamless data integration
and retrieval to support
the first stages of the BI
process.

Overhead due to manual
querying

Collecting data involves
manually querying
multiple data sources,
creating significant
overhead.

Implement automated
data integration processes
to streamline data
collection, possibly by
defining an ETL job.

Lack of streamlined data
access

There is no adequate
infrastructure designed
for seamless data
integration and retrieval.

Develop a centralized
data repository (data
warehouse) to allow for
easy data access and
retrieval.

Gap between technical
and non-technical teams

There are dependencies
and inefficiencies due to
differences in handling
data between technical
and non-technical teams.

Create user-friendly API
interfaces and tools for
non-technical teams to
access and retrieve data
in a seamless way.

Inconsistent data usage The lack of streamlined
data access prevents the
effective analysis of data
and its use for strategic
decisions.

Implement standardized
data collection and usage
processes following the
steps underlined by the
BI process.

Difficulty in analyzing
expenses

Difficulty in analyzing
and forecasting expenses
due to the lack of
cost-usage correlation.

Collect usage data, relate
it to resources and use it
to feed BI. Perform
analysis to extract
accurate allocation costs
information.

Table 1.1: Summary of problems arose from the current platform state concerning BI

1.2. BUSINESS INTELLIGENCE IN THRON 18

Business operation Description

Creation of an entity An entity (digital content, product,
product attribute, version of a content,
channel of a content, locale, etc.) has
been created.

Update of an entity An entity’s data, which was already
present, has been modified.

Deletion of an entity An existing entity has been
permanently eliminated.

Import or export of product data A list of products, along with specific
data, has been imported (exported)
into (from) the platform.

Publication of a new channel for a
digital content

A new distribution channel has been
created for a specific content.

Update of users permissions and role The roles and user permissions of a
digital asset have been edited.

Table 1.2: Examples of business activities that can be done using THRON platform

operations, such as the import or export of products. In this case, business events do
not have a one-to-one relationship with user actions. In fact, a single user action can
result in the generation of several business events. When talking about the import of
product data, several products are being imported into the platform at once. Therefore,
it may be the case that many products will be created or updated, leading to the
generation of new business events, starting from the original import operation. In such
a case, the whole series of events is called a flow. A “flow” is just a sequence of business
activities, generated by the platform, that are emitted and handled as a result of a
single action performed by the user.

Gathering and analyzing such usage data from the platform could provide valuable
benefits in several areas, including:

• Usage metrics: collect quantitative data on how often the platform’s features
are used, segmented by tenants and business actions performed;

• Usage patterns: perform analysis to determine if features are being used as
originally intended;

• Retrospective analysis: comparison of actual feature usage with initial expec-
tations to assess performance and drive future development;

• Identification of wrong platform usage: detection of incorrect or sub-optimal
use of platform functionalities;

• Trend analysis: historical tracking of tenants actions to identify usage trends
over time.

These insights can provide THRON’s executives with a deeper understanding of their
product and its usage. Such knowledge can reveal peak usage times and popular

1.2. BUSINESS INTELLIGENCE IN THRON 19

features, which is crucial for optimizing resource allocation and improving the overall
service quality. Additionally, it may help while setting product development priorities,
shaping marketing strategies, and planning business expansion.
From an economic perspective, analyzing usage data can uncover new revenue opportu-
nities. For instance, it may lead to the development of targeted advertising strategies,
the introduction of exclusive features, or the creation of subscription models that align
with user preferences. All these actions are set to maximize revenues.
Lastly, monitoring usage helps ensure compliance with terms of service and regulatory
requirements set by THRON.

In summary, establishing a system for collecting and analyzing usage data provides a
foundation for data-driven decision-making. While the specific applications of this data
are yet to be fully determined, starting with comprehensive data collection is the crucial
first step towards uncovering hidden insights and guiding the future development.

1.2.4 Additional use cases
While the integration of BI into the THRON platform is a key objective, it offers
numerous additional benefits across various departments within the company. The
process of collecting usage data in the form of performed business operations can
significantly enhance the functionality and efficiency of these departments.
Each use case relies on the capability to query stored information in an efficient and
flexible manner. From a technical standpoint, once data is collected, prepared, and
stored (through an ETL job or similar process), there are no restrictions on its potential
applications. Although BI is the primary use case, the same data can be used to
support other use cases without additional effort.
Table 1.3 shows some potential use cases where storing platform’s usage information
could be useful and powerful.

There is potential for additional informational value to be derived from this data,
which may lead to the definition of new use cases based on the insights gathered.
This flexibility and adaptability in data usage underscore the strategic importance of
integrating BI and into the THRON platform.

1.2. BUSINESS INTELLIGENCE IN THRON 20

Use case Need Description Output
required

Development Gain a
comprehensive
understanding of
THRON platform
workflows.

Resolve bugs,
conduct system
analysis,
reconstruct users
actions to
determine the
resulting changes.

Ability to query
data, eventually
from a dedicated
console.

Help desk Reconstruct
specific scenarios
to assist users
based on their
reports and
problems.

Identify affected
entities,
understand the
broader impact of
user actions.

Ability to execute
high-level queries
easily, possible
through an API
interface.

Customer success
and product
owners

Complement
front-end
behavioral
tracking tools
with information
derived from
business
operations.

Obtain
quantitative
information,
possibly
aggregated by
tenant execution.

Ability to execute
high-level queries
easily, possible
through an API
interface.

Enterprise clients Require
integration with
customer-
managed solutions
like Splunk or
Microsoft Sentinel
to track changes.

Retrieve business
events based on
criteria (time
range, user, etc.)
and generate
machine-readable
outputs (like CSV
files).

Ability to execute
high-level queries
through an API
interface, possibly
exporting the
result in different
formats.

Table 1.3: Additional use cases solvable by exploiting the BI process

Chapter 2

Addressed sub-problems

The analysis identified the specific portion of the original problem outlined above for
focused attention. It listed the requirements and related them to the corresponding sub-
problems addressed. Finally, the discussion covered the aspects that were neglected, with
justifications provided for these decisions.

2.1 Primary areas of focus

2.1.1 Overview
The primary point of focus for enhancing business intelligence in THRON is to make
potentially insightful data, collected from the usage of THRON platform, available for
further analysis.
The effort is on establishing a robust infrastructure to support the initial phases of
the BI process, namely data collection, preparation, and storage, but focusing also on
providing easy data access. This foundational work is critical to ensure that THRON’s
data is easily accessible, well-structured, and ready for subsequent analysis. It is
important to note that the focal point is just on providing access to the collected data.
The goal does not encompass data analysis itself; rather, it focuses on preparing the
data to be analyzed.

The first step in such a BI start-up strategy is to ensure that data from THRON’s
platform is accessible in an easy, straightforward manner. Currently, THRON lacks a
system for logging and accessing business operations data. This makes it challenging
to gain insights from platform business activities. Therefore, by systematically logging
business operations and creating an infrastructure to collect, prepare, and store it, this
gap is likely to be covered.

The second focus area is developing an easy, flexible method for accessing THRON’s
stored data. This involves enlarging the infrastructure’s features such that it provides
accessible interfaces such as APIs. These interfaces may enable data analysts and
other stakeholders to retrieve and use the data without needing in-depth technical
knowledge, therefore allowing the establishment of the further stages of the BI process.

21

2.1. PRIMARY AREAS OF FOCUS 22

2.1.2 Technical overview
From a technical perspective, THRON platform is designed to facilitate seamless
integration with external tracking tools, thanks to the way in which it has been
developed. The platform operates on a cloud-based architecture, supported by AWS
services, with significant emphasis on relying on a serverless infrastructure wherever
possible.

The platform relies on an event-driven architecture design pattern, where components
respond to events or state changes in an asynchronous manner. Key characteristics of
this approach include:

• Event production and consumption: producers generate events, which are
then consumed by listeners designed to process these events;

• Decoupling of components: producers and consumers are decoupled, enhanc-
ing flexibility, scalability, and fault tolerance;

• Event reaction: the system is built to react to events using publish-subscribe
or message-queue models;

• Event routing: events are transmitted through an event bus or stream that
routes them from producers to consumers.

In THRON’s case, events are generated as a result of user actions performed on the
front-end components. Each business operation, performed by a tenant, triggers the
creation of a corresponding business event. To be processed, these events must be
delivered to the appropriate consumer within the platform, which handles them by
applying the corresponding business logic.

An event bus serves as the intermediary between the event-producing components
and the event-processing components. For THRON, this intermediary is Amazon
EventBridge. THRON extensively uses it to manage the flow of business events to
custom components that consume them.
Figure 2.1 summarizes such a concept by giving an example.

Figure 2.1: Example of Amazon EventBridge usage in THRON platform

Given this setup, if the system’s business operations are converted into events managed
by Amazon EventBridge, then it essentially captures a comprehensive record of all

2.1. PRIMARY AREAS OF FOCUS 23

activities within the platform. Thus, by attaching tracking mechanisms to this event
bus, it is possible to monitor and analyze all business operations performed through
the THRON platform. In this way the ephemeral events passing through that event
bus can be collected and saved, making them available for a wider amount of time.

To effectively collect and manage this data, an ETL process is likely to be implemented.
Such an infrastructure extracts relevant data from the event bus, transforms it into
a structured and uniform format, and loads it into a centralized repository (data
warehouse). This is the critical steps, which ensures that data is prepared and stored
systematically for future use.

The final technical component involves setting up APIs that provide access to the
collected data. Such APIs should be designed to be easy to use and flexible, allowing
potential users of THRON’s data to query and retrieve it in a limited manner with
respect to their needs. This accessibility is vital for enabling THRON’s data analysts
to conduct further analysis and generate insights.

Audit Trail Platform is the name given to the system to be developed in order to
address the previously described goals. Such a name originates from the combination
of "Audit Trail" and "Platform".
The term "Audit Trail" typically defines a system that provides a detailed record of
events or transactions within a system. It is used to track, review, and verify activities
over time, and it ensures accountability, aids in troubleshooting, and user information
for each tracked activity. Although the developed system does not entirely fit this
definition, the name was chosen to indicate its purpose effectively.
The "Platform" component clearly refers to the THRON platform.
Thus, "Audit Trail Platform" denotes an audit trail system specific to the THRON
platform.

2.1.3 Rationale
Focusing on these aspects is crucial because, as of now, THRON’s data is not easily
accessible, and there are no other methods to understand platform activities. Estab-
lishing a systematic approach to data collection, preparation, storage, and availability
addresses this issue.
Furthermore, well-structured and easily accessible data is the core point to achieve
effective BI processes and strategies. Creating a solid data infrastructure enables
THRON’s data analysts to perform in-depth analyses. This, in turn, allows THRON’s
strategic direction to be informed by accurate and data-driven insights.

The presented key points are directly aligned to THRON’s needs for what concerns BI.
In fact, focusing on data infrastructure directly addresses the needs of THRON’s data
analysts, as it provides them with the tools and access necessary to conduct meaningful
analyses. This empowerment is essential for leveraging BI to gather hidden knowledge
about the platform and, therefore, drive strategic decisions.
While the presented points of attention do not directly improve BI in THRON, as BI
capabilities are not yet in place, they are critical in laying the groundwork. As a result
of this, the stage is set for future BI activities.

2.2. REQUIREMENTS 24

2.2 Requirements

This section aims to provide a comprehensive overview of the requirements that such a
system should satisfy in order to cope with the previously explained areas of interest.
Requirements are grouped differently depending upon the area in which they focus on.

2.2.1 Data ingestion and storage

R1 - Persistence storage for business events

The platform’s business events, currently ephemeral and available through Amazon
EventBridge, require a cost-effective system for storage. It is important to determine
how to save events, considering aspects such as raw data transformation, data aggrega-
tion, partitioning, and storing format. It is worth attention even the way in which the
whole process takes place, as it should adopt buffering techniques and other methods
that could make it efficient. To meet such goals it’s worth identifying and comparing
AWS ecosystem services that offer efficient and economical storage solutions.
This topic addresses the problem of inaccessible data by providing a persistent and
structured storage solution. It is going to be essential for ensuring that historical
elaborated data is retained for future analysis, which is crucial for long-term strategic
planning. Such a statement is true for any data warehouse, as persistent storage is a
fundamental requirement for any BI system.

R2 - Configurable data retention and deletion

The system must support configurable data retention and allow for the deletion of
data for tenants who are no longer clients of THRON. The storage system must enable
efficient and straightforward deletion of old customer data, therefore it is crucial to
evaluate whether the chosen data warehouse, for storing data, supports data deletion,
including associated costs and impacts on the rest of the data stored.
Such a need mitigates issues related to data management and compliance by ensuring
data can be retained or deleted as required. It is also crucial for what concerns data
hygiene, complying with regulations, and managing storage costs as unused data is
costing money without any benefit, since it cannot be used anymore. That is a common
requirement across many BI environments, as ensuring proper data management and
compliance with legal standards is a pretty ordinary need.

R3 - Independence from business events structure

Since the THRON platform evolves continuously by adding new features, new business
events may be defined to state the happening of new business operations. Therefore
the system should remain agnostic to the form of individual business events. This
means that it should not do any event-specific computation, as this creates a strong
dependency between the codebase and the particular structure of an event, limiting
the expansive power of such a system.
The system should ensure that new business events are treated as if they have always
existed by using a uniform conversion format. In addition, the chosen ETL service
must support flexible source data formats and unify them into a common structure for
allowing easy querying.
This requirement addresses the need for a flexible data infrastructure that can adapt to

2.2. REQUIREMENTS 25

evolving data sources and business events without requiring significant reconfiguration.
These premises are vital for maintaining a scalable and adaptable BI infrastructure
that can handle future data changes seamlessly. That is another important aspect in
BI, as any dynamic BI environment, where data sources and formats may change over
time, needs flexibility and high adaptability.

R4 - Openness to integration with further data sources

The system should be extensible to integrate with other sources that may contain
different kinds of events, such as informational ones (for example, an entity that has
been seen). This means that the system should enable easy inclusion of new data
sources in the ETL process. Such a service must be flexible enough to accommodate
new data sources beyond the initial business events.
This facilitates the integration of additional data sources, enhancing the comprehensive-
ness of the BI system. It is really important for future-proofing the BI infrastructure
and ensuring it can grow with the business. Even in this case, it is a universal
requirement for BI systems to ensure scalability and flexibility in data integration.

R5 - Cost and performance considerations for large data volumes

The system must consider cost and performance when dealing with large data volumes
over extended periods. It has to optimize data storage and query execution to manage
costs while maintaining performance. For each considered service, storage models
and query costs must be evaluated, also focusing on maintaining performance while
managing expenses. This addresses the need for a cost-effective and high-performance
data infrastructure.
Such a constraint is important for ensuring the sustainability and efficiency of the
BI system over time. It is a relevant topic for any BI system dealing with significant
data volumes, where ensuring manageable costs and acceptable performance are key
features.

2.2.2 Data access

R6 - Effective and flexible search functionality

The system must support effective and flexible search capabilities, allowing queries
based on partial information that should return business operations involving that
kind of information. The system should ensure that all event data is retrieved and
stored, allowing any kind of information to be searchable via APIs. Such APIs must
be developed in a way that enables flexible and detailed searches of the event data.
This improves data accessibility and usability by enabling detailed and flexible search
capabilities. Such a feature is critical for allowing users to find and use specific data
points, enhancing the overall utility of the BI system.
That is a general requirement for BI systems, as ensuring that users can efficiently
locate and use data, allow them to focus only on specific portions of the original dataset.
Thus, they are able to exploit different kinds of knowledge, by analyzing the same
dataset from different perspectives.

2.2. REQUIREMENTS 26

R7 - Search through a query console

The system should provide a console for users to perform queries using SQL, allowing
them to retrieve that from the data warehouse without knowing the event-specific
format of the original data. Such a feature could potentially leverage on an existing
service which provides such a functionality.
This enhances user accessibility and empowerment, allowing technical users (such as
developers and data analysts with technical skills) to perform data queries in the most
flexible way possible. Such a tool is common in BI environments, as it ensures that
users with varying technical skills can interact with the data seamlessly.

R8 - Search through an API Interface

The system should allow users to execute queries via a user-friendly API, abstracting
complex data warehouse interactions. This enables easy integration with external
components (such as front-end applications) through APIs, allowing non-technical
users to use the system without the burden of knowing query languages or similar
technical stuff.
The preferred way to achieve such a requirement would be by exposing APIs which
embraces the REpresentational State Transfer (REST) concepts (RESTful-like APIs).
Such a requirement improves accessibility and ease of use, enabling broader adoption
of BI capabilities which is crucial for ensuring that all users, regardless of technical
skill, can effectively use the BI system. Overall, it is another standard requirement for
modern BI systems to enhance usability and accessibility.

R9 - Exportable search results

The system should support exporting search results from APIs in various formats, such
as Comma Separated Values (CSV) and XLS (Microsoft Excel Spreadsheet). This
enables the export of search results in multiple formats for both human and machine
consumption. In the first case such a feature could be useful to perform more complex
calculations, which are not possible via APIs, using external tools. In the latter case
machines may consume such an input and perform custom-defined operations.
This increases data usability by allowing results to be exported and used in various
contexts, making it easier to perform data sharing and further analysis, both internally
and externally. It is a much-wanted feature in the BI context, as data export capabilities
are necessary for broader data utilization.

R10 - Support for aggregated data queries

The system should expose APIs to support aggregated data queries against the data
warehouse. Such a feature enables the retrieval of aggregated quantitative information,
which is particularly useful when working with large datasets. The exposed functional-
ity should provide results via file (like the export feature) or API response.
Such an improvement increases the efficiency of data analysis by providing pre-
aggregated data, reducing the load on end users. This is an essential factor when
handling large datasets efficiently and providing actionable insights. That is an usual
requirement for BI systems dealing with large volumes of data, ensuring efficient data
pre-processing and analysis.

2.2. REQUIREMENTS 27

R11 - Retrieval performance

The system should offer higher responsiveness for retrieving recent data compared
to older historical data. In particular, the system should perform fast queries when
operating with date ranges. This ensures quick access to recent data to meet user
expectations. To achieve such a result, it should optimize the data storage and retrieval
mechanisms to prioritize time-partitioned data access.
Such a need enhances user experience by providing faster access to the most relevant
and recent data, without sacrificing too much older data access. This is a key aspect
in BI systems to support real-time or near-real-time data access needs, such as making
timely decision-making based on the latest available information.

R12 & R13 - Infrastructure constraints

In order to align with THRON’s infrastructure and cloud development standards, the
system should be developed using AWS services, preferring ones that provide serverless
solutions.

2.2.3 Summing up
Table 2.1 summarizes the presented requirements. Each one is categorized depending
on its nature and the functional area it belongs to.

The outlined macro-requirements primarily focus on how information should be stored
and made available, considering factors like cost, efficiency, retrieval speed, and neces-
sary transformations. These considerations directly relate to the initial stages of the BI
process, specifically the steps of data collection, preparation, storage, and availability.
By fulfilling these requirements, the system is capable of collecting business events,
structuring them appropriately, and making them available for further consultation.
This approach aligns with THRON’s strategic goals in BI, laying the groundwork for
future advancements in such a field.

Some requirements address the depth of searchability and the exposure of information.
While still relevant for BI purposes, these elements mainly refer to secondary use cases,
which are inherently satisfied by making platform information accessible. Ensuring these
requirements guarantees the searchability of all available information at various levels
of granularity. This accessibility enables teams to leverage the provided information,
focusing on their specific areas of interest (as explained when talking about use cases).
The capability to present this data in different formats (API output like JSON content,
XLS, CSV) facilitates integration with external software, enhancing data analysis and
supporting more in-depth research. This aligns well with the system’s primary goal:
not to provide comprehensive information search functionalities within the platform
but to make the information readily available.

2.2.4 Deferred objectives
As stated above, while addressing the initial stages of the BI process, the proposed
system focuses solely on the collection, preparation, storage, and availability of data.
However, it deliberately excludes the analysis of this data.

2.2. REQUIREMENTS 28

ID Description Type Functional
area

R1 The system should collect,
transform and store ephemeral
events flowing through Amazon
EventBridge in an efficient manner.

Functional Data ingestion,
data storage

R2 The system should allow flexible
data retention and efficient data
deletion.

Functional Data storage

R3 The system ingestion logic should
not depend upon business events’
structure.

Functional Data ingestion,
data storage

R4 The system should allow easy
integration of new data sources.

Functional Data ingestion

R5 The system must rely on a
cost-effective storage service, which
guarantees also good performance
when querying for data.

Constraint Data storage

R6 The system should provide flexible
search facilities, to allow easy
retrieval of business events of
interest.

Functional Data access

R7 The system should provide a
console to perform SQL queries to
retrieve business events data.

Functional Data access

R8 The system should provide API
interfaces to allow easier access to
business events data.

Functional Data access

R9 The system should provide a way
to export search results in common
data formats.

Functional Data access

R10 The system should expose APIs to
perform data aggregations.

Functional Data access

R11 The system should provide faster
data access for recent data.

Performance Data access

R12 The system should be developed
using AWS cloud-based services.

Constraint -

R13 The system should be developed in
a serverless manner.

Constraint -

Table 2.1: Summary of the system requirements

2.2. REQUIREMENTS 29

The system is designed to make data available in a structured and uniform manner,
without delving into the extraction of insights or new knowledge from the collected
data. Data analysis and data science require specialized skills and a deep understanding
of the business context. Identifying which information is crucial and how to use it
effectively demands a higher level of expertise in business analytics, which is beyond
the scope of this project. Furthermore, THRON is in the early stages of developing
its BI capabilities for what concerns its platform. The lack of previous BI initiatives
means there is no clear direction or established framework for data usage. The focus,
therefore, is primarily on building a solid foundation that future BI efforts can build
upon.

This project aims to provide a starting point for BI at THRON. By making data
available and structured, it sets the stage for future analysis and studies. This
foundational work is crucial for any subsequent BI activities, offering a reliable dataset
from which meaningful insights can eventually be derived. As THRON’s BI capabilities
mature, there are going to be opportunities to refine and expand the system. Future
iterations can incorporate advanced data analysis, allowing the organization to gain
deeper insights and make data-driven decisions. Ensuring that data is accessible in
various formats (e.g., API output, XLS, CSV) facilitates integration with external
analytical tools. This approach allows THRON’s data analysts and business users
to leverage external software for in-depth analysis, supporting a more flexible and
adaptive BI strategy.

Chapter 3

Audit Trail Platform

The presentation covered the overall system architecture that satisfied the specified
requirements. Each component was detailed in both functional and technical terms, with
explanations provided on how each component related to the corresponding requirements.
Additionally, the description included the testing methodologies used for the system,
followed by a general evaluation of its performance.

3.1 System overview

The overall system is a new component of the THRON platform, which is in charge of:

1. Ingesting all business events generated by the platform;

2. Transforming such events’ structure into a defined standard format, allowing the
system to remain agnostic from it while still correctly managing and interpreting
them;

3. Efficiently storing the transformed events in a data warehouse; Make such data
accessible through RESTful APIs or direct queries to the data warehouse, offering
different and flexible ways to collect it.

There are 3 main macro-areas that stand out from the infrastructure of Audit Trail
Platform:

• Events ingestion: which is in charge of collecting, transforming, and storing
business events;

• Events search and aggregation: which gives access to the stored business
events in order to perform searches and aggregations;

• Events export: which provides capabilities to export search results and aggre-
gations.

The ingestion component is responsible for the initial management of business events,
focusing on executing an ETL process to efficiently load these events into the data
warehouse. This process involves extracting raw data, transforming it into a suitable

30

3.1. SYSTEM OVERVIEW 31

format, and then loading it into the storage system.
Once the data is securely stored in the data warehouse, the system provides robust
mechanisms for users to access this information through search functionalities and
aggregation operations. These features enable users to efficiently query and retrieve
the stored data for subsequent analysis phases.
Additionally, the system supports the exportation of data from the data warehouse
in widely-used formats, facilitating integration with external systems or further data
analysis outside the platform.

Figure 3.1 gives a summarized overview of the system and the way in which it operates.

Figure 3.1: Overview of the system and its relation with the THRON platform

3.1.1 Ingestion

3.1.1.1 Functional overview

The primary functions of this component are as follows:

• Event collection: each business event coming through the event bus is collected,
with buffering techniques applied prior to transformation;

• Data transformation: collected events are transformed from their original
structure into a standard format defined by a table schema. This transformation

3.1. SYSTEM OVERVIEW 32

ensures the retrieval and tagging of key information while still preserving event-
specific details. It is essential for enabling SQL-based queries on the stored
data;

• Data storage: The transformed data is stored in a structured persistence
system (data warehouse), with emphasis on efficiency in both storage format
(space optimization) and processing time (buffering techniques to prevent system
overload).

Figure 3.2 provides a detailed view of the component using a C4model representation.
The numbers on the arrows represent the flow in which operations are performed.

Figure 3.2: C4model representation of the events ingestion component

This component addresses the primary sub-problems outlined in section 2.1 by imple-
menting a standard ETL process, which is critical for data collection, preparation, and
storage in the BI workflow.

Section A.1 contains a more in-depth understanding of the satisfied requirements for
such a component.

3.1.1.2 Technical overview

Figure 3.3 shows the proposed solution, based on AWS services.

Extraction

To integrate the ingestion and historical storage of business events, a catch-all rule
has been implemented on the THRON event bus. This rule ensures that every event
transmitted through the THRON event bus is also relayed to Audit Trail Platform.

Amazon Data Firehose serves as the bridge between the event bus and the persistence
system, meaning that the previously mentioned catch-all rule ensures that all events
passing through the event bus are directed into the Firehose pipeline. The component

3.1. SYSTEM OVERVIEW 33

Figure 3.3: Technical overview of proposed solution for events ingestion

implements buffering policies to optimize data transformations and subsequent writes
to the persistence system. This enables the system to be reactive while limiting heavy
and frequent operations on the persistence layer.

Once the buffering limit is reached, the batch of business events undergoes sequential
transformation. The events are standardized and re-enter the Firehose stream, where
they are prepared for storage in the data warehouse.
Backup saves are performed to allow the storage of event batches in their raw format,
with the aim of enabling future reprocessing, if needed.

Transformation

The transformation step is critical for extracting essential information from each event
and mapping it to common, well-defined fields, ensuring that events are searchable and
enabling in-depth querying across the dataset.

For example, consider the business event represented in code block 3.1, as captured by
Amazon EventBridge.
All fields except the detail field are always present by default and contain information
provided by EventBridge. The detail field contains custom content, specifically:

• metadata : identifying information of the event;

• invoker : data about the user session during which the event was triggered;

• data : event-specific data essential for the component consuming the event,
varying depending on the event’s nature.

Handling the payload (i.e. the data field) of each event type in a specific manner
is not feasible, as it would violate requirement R3. However, mapping the payload
information is essential for guaranteeing deep searchability, needed to satisfy other use
cases (beyond BI).
Therefore, the transformation process follows this logic:

3.1. SYSTEM OVERVIEW 34

{
"version": "0",
"id": "d5907a6a-15ac-4909-e168-92e75357a1cb",
"detail -type": "PRODUCT_CREATED",
"source": "product -data",
"account": "131539925590",
"time": "2024-05-09T09:07:29Z",
"region": "eu-west -1",
"resources": [],
"detail": {

"data": {
"client": "tenant_id",
"createdAt": "2024-05-09T09:07:04.087Z",
"id": "4892b55c-539a-4cc3-8434-d3c6848515b5",
"newValue": {

"lastModifiedAt": "2024-05-09T09:07:04.087Z"
},
"oldValue": null

},
"invoker": {

"actor": "product -sync",
"client": "tenant_id",
"ip": "169.254.76.1",
"subject": "user_of_tenant",
"userAgent": "product -sync"

},
"metadata": {

"correlationId": "1-663c91fc -16def6e97974ff4834819a93
",

"createdAt": "2024-05-09T09:07:04.088020693Z",
"emittedAt": "2024-05-09T09:07:28.96615028Z",
"emittedBy": "product -data",
"id": "98474349-afa7-4510-b081-e72f1376d2cb",
"type": "PRODUCT_CREATED",
"version": 1

}
}

}

Code block 3.1: JSON representation of an event via Amazon EventBridge.

3.1. SYSTEM OVERVIEW 35

{
"id": "d5907a6a-15ac-4909-e168-92e75357a1cb",
"correlationId": "1-663c91fc -16def6e97974ff4834819a93",
"context": "pim",
"type": "PRODUCT_CREATED",
"emittedAt": "2024-05-09T09:07:28.96615028Z",
"data": "{\" client \":\" tenant_id \",\" createdAt \":\"2024-0

5-09T09:07:04.087Z\",
\"id\":\"4892b55c-539a-4cc3-8434-d3c6848515

b5\",
\" newValue \":{\" lastModifiedAt \":\"2024-05-

09T09:07:04.087Z\"},\" oldValue \":null}"
,

"dataValuesMap": {
"client": ["tenant_id"],
"createdAt": ["2024-05-09T09:07:04.087Z"],
"id": ["4892b55c-539a-4cc3-8434-d3c6848515b5"],
"newValue.lastModifiedAt": ["2024-05-09T09:07:04.08

7Z"],

},
}

Code block 3.2: JSON representation of a business event after the transformation phase.

• Fields invoker and metadata are always retrieved, relying on the standard
structure of the JSON file applicable to all events emitted by THRON;

• Fields within the data section are mapped in a raw format as key-value pairs,
preserving the original JavaScript Object Notation (JSON) nesting levels.

Code block 3.2 represents the transformation of the business event presented above.
Such a standard format ensures that key information is consistently stored while also
accommodating event-specific details. The process achieves this by storing common,
universally present information necessary for searchability, while handling and pre-
serving variable information in a semi-structured format without requiring custom
operations for each event type.

Load

Amazon S3 is used as a persistence system. Although being a general-purpose storage
service, it functions effectively as a data warehouse when storing structured data, such
as business events saved in batches via Amazon Data Firehose into a designated S3
bucket.

Data coming from such a pipeline is converted in Apache Parquet columnar format to
achieve efficiency in storing and querying such information.
Appendix B explains why such a decision has been made.
The generated files are partitioned by the date of ingestion, a critical implementation
choice that enhances the overall querying efficiency. Partitioning minimizes the amount

3.1. SYSTEM OVERVIEW 36

of data read during queries, and combined with the storing format, optimizes data
retrieval performance.

S3 lifecycle rules allow for the automatic deletion of obsolete business events (e.g., the
ones older than 3 years), keeping the data warehouse clean , containing only up-to-date
data according to THRON’s needs. However, S3 does not support data retention when
a client discontinues using the THRON platform. Since event batches are stored in
Parquet files not partitioned by tenants, modifying a Parquet file to remove specific
records is challenging. As a result, such customer data is not deleted, but excluded
from search results using SQL WHERE clauses.

Overall evaluation

This architecture, employed for executing ETL jobs, is not novel as it aligns with
standard use cases for Amazon Data Firehose. The features offered by this service are
well-suited to meet the specified requirements, as it provides extensive customization
options for each phase of the ETL process without requiring infrastructure management.
Furthermore, the integration of such a service with complementary services effectively
addresses all aspects of the ETL process, offering a robust solution for the ingestion of
business events in a flexible, autonomous, and efficient manner.

Section A.1 lists the used AWS services and the way in which their features satisfy the
requirements.
Section C.1 shows different approaches to the implementation of this component.

3.1.2 Search and aggregation

3.1.2.1 Functional overview

The primary function of this component is to provide efficient access to business event
data stored in the data warehouse. It enables users to search for and retrieve data
based on various criteria, including partial information.

The component supports two main types of searches:

• Generic search: retrieves business events that meet specific criteria;

• Aggregation: retrieves numeric and quantitative insights from historical event
records based on criteria such as time ranges.

Given the potential for large data volumes, the component delivers functionalities
asynchronously to prevent busy-wait scenarios.

These functionalities are provided through two modes.
RESTful APIs, by leveraging the concept of “job”, which is defined as the asynchronous
execution of a query against the data warehouse to perform searches or aggregations.
In this context, such APIs are exposed over the HTTP protocol, using HTTP verbs
and the job as a resource to define actions (create a job, retrieve its status and the
results) that can be performed over such a resource. Following the RESTful principles,
the actions should be performed in a stateless manner. This promotes asynchronous
communication for both the systems and clients.
SQL console, allowing the execution of custom SQL queries, providing flexibility in

3.1. SYSTEM OVERVIEW 37

searching and exploring the data warehouse. Operating in asynchronous fashion is not
required in this mode, as it is intended for manual use rather than system integration.

Figure 3.4 provides an overview of the functional components needed to implement
such a feature. The numbers on the arrows represent the sequence in which operations
are performed.

Figure 3.4: C4model representation of the events search and aggregation component

This component addresses issues identified in section 2.1. While the ingestion component
manages event storage, this component facilitates access through APIs and console
interfaces. It operates between the data storage and data analysis stages of the BI
process, focusing on data access. It simplifies interaction with the data warehouse by
providing flexible search capabilities and options for obtaining aggregated information.

By enabling targeted retrieval of specific events, this component ensures that the data
analysis phase can take place using clean, relevant data, also reducing information
overload and optimizing workstation performance for data analysts. It also handles
data cleaning and aggregation tasks, contributing to the efficiency of subsequent BI
process stages.

Section A.2 contains the list of the satisfied requirements by the features of this
component.

3.1.2.2 Technical overview

Figure 3.5 illustrates the architecture for events search and aggregation using AWS
services.

3.1. SYSTEM OVERVIEW 38

Figure 3.5: Technical overview of proposed solution for events search and aggregation

Query execution

The execution of queries is asynchronous, as running them on large datasets can take
considerable time to complete. This makes a synchronous approach more challenging,
especially when exposing APIs on the web. By choosing an asynchronous approach,
the exposed APIs can be more manageable, scalable, and efficient.

The system executes jobs, which are tasks involving data search or aggregation. A job
abstracts the concept of a query, simplifying its execution management and subsequent
result exposure. A job consists of a state (running, completed, failed) and execution
parameters (configuration, variable based on the task type). The following operations
are defined for a job:

• Creation: to launch a new job (i.e. run a query);

• Retrieve execution state: to check when the job has finished executing (i.e.
check if query has finished execution);

• Retrieve results: to get the results once the job is complete (i.e. retrieve query
results).

3.1. SYSTEM OVERVIEW 39

The system exposes these functionalities through a RESTful-like API over the HTTP
protocol. Below is an example of the RESTful endpoints provided for managing a
search job.

Create a search job

• URL: /actions/searches

• HTTP Method: POST

• Description: initiates a new search job.

• Header: authorization token

• Body: list of filters (type, key-value pairs, date time range, flow, tenant, user,
event context, etc.).

• Response: HTTP status 202 (Accepted), indicating that the job request is in
progress.

Retrieve search job status

• URL: /actions/searches/jobId

• HTTP Method: GET

• Description: retrieves the execution status of a search job.

• Header: authorization token

• Response: HTTP status 200, with the job’s current execution status.

Retrieve search job results

• URL: /actions/searches/jobId/results

• HTTP Method: GET

• Description: retrieves results of a completed search job with pagination.

• Query parameters: pagination token, page size.

• Header: authorization token

• Response: HTTP status 200, with a JSON array of business events matching
the filters and a pagination token for subsequent pages.

Under the hood, every time a request is made towards a defined endpoint, the http-
handler Amazon Lambda function is invoked. It interacts with Amazon Athena, the
SQL query engine, to perform the requested operations towards the data warehouse.

All exposed APIs are stateless, requiring the user to manage information related to
executed jobs. This allows the server to focus on abstracting the underlying complex
system and performing all operations on the data warehouse based solely on the
information contained in each individual request. Additionally, the job represents the
resource on which operations can be performed and related information retrieved. The
defined endpoints (URIs), in conjunction with the HTTP verbs used, represent the

3.1. SYSTEM OVERVIEW 40

means by which one can interact with the defined resource.
That being said, it is reasonable to assume that the exposed APIs widely adopt the
majority of the concepts on RESTful APIs, but they do not 100% conform with the
REST paradigm. An example of non-compliance is the lack of implementation of the
Hypermedia As The Engine Of Application State (HATEOAS) constraint.

The set of exposed RESTful APIs abstracts the complexities of the data’s structure,
their format and the way in which they are stored in the data warehouse, enabling
users to focus on filtering criteria rather than on how to query the data. This meets
requirements R6 and R8.
Aggregations are handled similarly to search jobs, with variations in the filters: time
range, aggregation period (daily, monthly, yearly), and event types. This directly
addresses requirement R10.

3.1.2.3 Business events metadata

Certain filters lack clear indications of valid values to be used. For example, the values
to be used on the search filter for retrieving specific types of business events is unclear,
because there is no tracking of all event types emitted by the platform. Similarly, the
key-values filter for event payloads lacks clear key definitions, as they depend on the
business event’s nature.

To maintain independence from business event types and their structures, a static
compilation of all possible event types or payload keys is unfeasible. Both the types of
business events and their payload structures can vary, making static listing impractical.

To address this, an Amazon Lambda function autonomously collects event information
and stores it in a dedicated database table. Specifically, it collects:

• Event types;

• Event payload keys, grouped by event type;

• Contexts, to determine whether the event originated from a DAM or PIM
component of THRON.

The Lambda function is triggered twice as follows:

1. A daily time-based trigger from Amazon EventBridge invokes the Lambda func-
tion, which queries the data warehouse, via Amazon Athena, for events registered
in the past day;

2. Upon query completion, an event triggers the Lambda function again. This time
it retrieves the query results, extracts the relevant information, and stores it in a
Amazon DynamoDB table.

This dual invocation approach enhances efficiency by avoiding a busy-wait state, which
would otherwise waste execution time and incur additional costs.

To facilitate access to this information, RESTful endpoints have been created to retrieve
filter values for event types, payload keys, and contexts. This enables dynamic updates
and retrieval of filter values, ensuring that users can access current information without

3.1. SYSTEM OVERVIEW 41

needing to know or understand specific event structures. This approach simplifies and
accelerates API usage, meeting requirement R6. Additionally, new events are taken
over within a day, as the system autonomously collects and updates information about
them. This mechanism not only maintains event structure independence but also
ensures transparent and autonomous management of new events, therefore fulfilling
requirement R3.

Overall evaluation

The proposed solution does not introduce novel technology, as the AWS services used
are commonly employed for constructing a RESTful API infrastructure. However, the
adoption of an asynchronous query execution model, as opposed to a synchronous
one, is less conventional. This choice, while leading to more complex infrastructure
management, enhances system efficiency in terms of execution time and cost for data
retrieval and aggregation. Moreover, it promotes scalability and flexibility.

Cost considerations are generally manageable due to the preference for asynchronous
queries to the data warehouse. The primary cost concern arises from the use of Amazon
Athena, which incurs charges based on the volume of data scanned from Amazon S3
during queries. Consequently, costs rise with the number of queries and the amount of
data retrieved. Measures such as data partitioning have been used to mitigate scanning
costs, even though they cannot completely eliminate the issue. Users of Audit Trail
Platform are responsible for these costs.

Section A.2 presents the link between AWS services and the way in which their features
satisfied the requirements.
Section C.2 contains a short overview of alternative solutions for this feature.

3.1.3 Export

3.1.3.1 Functional overview

The component is designed to allow the export of the results from search or aggregation
jobs, which are typically returned in JSON format. JSON is not ideal for further
manipulation with external tools, and pagination complicates data conversion too. To
address this, the component enables exporting results in XLS or CSV formats, which
are more meant for post-processing and integration with external tools.

Given that file generation incurs additional wait time beyond query execution, the
export feature is implemented asynchronously as well. A database table tracks export
job statuses, with each entry containing utility information and progress status. This
setup allows for status updates by various components and facilitates error tracking
during the process.

Figure 3.6 provides an overview of the functional components for the export feature.
The numbers on the arrows represent the operational flow of the feature.

This component enhances accessibility to event information by providing export capa-
bilities to obtain XLS or CSV files, facilitating integration with external systems. It
bridges data storage and analysis stages of the BI process, simplifying integration with

3.1. SYSTEM OVERVIEW 42

Figure 3.6: C4model representation of the events export component

external tools and allowing users to customize result processing, whose needs may go
beyond API capabilities.

Section A.3 contains the list of the satisfied requirements by this feature.

3.1.3.2 Technical overview

The component operates similarly to the search and aggregation component previously
described. Initially, it constructs and executes a query using Amazon Athena. Upon
query completion, it collects the results and generates an XLS or CSV output file. The
process involves potential delays from query execution and file generation, necessitating
asynchronous management to avoid busy-wait scenarios for both the system and the
user.

Figure 3.7 illustrates the export feature architecture, based on AWS services.

The functionality exposes the concept of export job, which is the combination of a
search or aggregation job with the post-processing of the results to allow the export
in different formats. Below is an example of the RESTful endpoints provided for
managing the export of a search.

Create an export job

• URL: /actions/searches/exports

• HTTP Method: POST

• Description: initiates a new export job for search results.

• Header: authorization token

3.1. SYSTEM OVERVIEW 43

Figure 3.7: Technical overview of proposed solution for events export

• Body: list of search filters (identical to those used in the search job), output
settings (file format, column configuration).

• Response: HTTP status code 202 if the request is accepted and processing is
underway.

Retrieve export job’s status

• URL: /actions/searches/exports/jobId

• HTTP Method: GET

• Description: retrieves the status of an existing export job.

• Header: authorization token

• Response: HTTP status code 200 with a body indicating the current status of
the export job. If completed, a URL to access the output file is provided.

These APIs mirror the behaviors of the exposed APIs to perform searches and aggre-
gations. The first one allows the creation of an export task, while the second one is
used to track the status of such a task.

An ad-hoc Amazon DynamoDB table tracks the execution status of export jobs. Unlike
Amazon Athena queries, where there is service which provides APIs for status retrieval,
export operations, which are system-specific operations, do not have built-in status
tracking components. The export process is asynchronous and it involves several
components to achieve its goal, therefore it requires a custom solution for status
management.

To establish an asynchronous process, the system relies on actions and callbacks. Once
the query has been issued to Athena, upon an export request, it executes autonomously,

3.2. DEVELOPMENT 44

without requiring any component to interact with it.
Upon query completion, an event is issued and it triggers the invocation of an Amazon
Lambda function which is in charge of gathering the query results and building the
output file in the desired format.
The output file is stored in the persistence layer (Amazon S3). At this stage the export
job is done and an URL is provided to download the generated file.

Overall evaluation

Requirement R10 is met through the integrated operation of all components involved
in this functionality.

Although the approach is not novel, the architecture is notably effective in handling a
complex process asynchronously. The current design also facilitates easy extension to
support additional export formats. Extending functionality is simple, as it involves
defining the logic for new formats, leveraging the existing data structure to generate
the output file.

Section A.3 shows how the used AWS services contribute to satisfy the requirements
for this feature.
Section C.3 contains a small reasoning about different approaches to implement this
functionality.

3.2 Development

The implementation of Audit Trail Platform involved a total of 7286 lines of executable
code, spread across different contexts. 1573 lines have been devoted to build the cloud
infrastructure by defining the AWS cloud resources and their configurations, while the
rest defines the business logic to expose APIs and interact with the AWS services.

The entire codebase has been entirely written in Go, a statically typed, compiled
language known for its simplicity, efficiency, and strong support for concurrency. These
features make it suitable for cloud computing.

11 external libraries were to develop the system. The most important ones are:

• AWS Cloud Development Kit (CDK):to build the cloud infrastructure;

• AWS Software Development Kit (SDK): to allow the interaction with AWS
services;

• Gin: web framework to expose RESTful APIs;

• Excelize: to generate XLS and CSV export files.

https://aws.amazon.com/cdk/
https://gin-gonic.com/
https://xuri.me/excelize/

3.3. TESTING 45

3.3 Testing

3.3.1 Comprehensive code evaluation

Code review

The entire system has been developed following the Scrum agile methodology, with
2-week-long sprints to release new features incrementally. Before releasing any feature,
the involved code underwent a rigorous review process. Features were developed in
separate Git branches and reviewed through a pull request mechanism. Each pull
request was evaluated by team members for consistency and alignment with project
objectives, critical for maintaining code quality and long-term maintainability.

Prior to initiating a pull request, code was reviewed in one-to-one sessions with the
software architect. These sessions focused on validating architectural decisions, code
patterns, and adherence to THRON’s internal policies, including AWS best practices
and Go programming language standards.

Bi-weekly back-end competence meetings held at THRON addressed significant devel-
opment topics in the field. For Audit Trail Platform, these meetings concentrated, on
a couple of occasions, on critical components and system-wide issues. Discussions often
focused on optimizing the structure of business events and determining the inclusion
of information to enhance future utility.

Static code analysis

Static code analysis involves examining source code without execution to detect poten-
tial errors, security vulnerabilities, and compliance with coding standards. Automated
tools are used to scan the codebase for syntax errors, code smells, bugs, and best
practice violations, thereby improving code quality, maintainability, and security.

In this project, golangci-lint was employed as the static analysis tool, configured to
THRON’s coding standards. It particularly focused on keeping low overall cyclomatic
complexity, good maintainability index and adhering to Go standard rules. The linter
was integrated into the CI/CD pipeline, enabling automated code quality checks for
every commit and pull request. This ensured that non-compliant code was flagged for
review prior to merging.

Unit testing

Unit testing is a technique for verifying that individual units or components of a
software application function correctly in isolation. A unit is typically the smallest
testable part of an application, such as a function, method, or class. The primary goal
is to ensure that each unit performs as expected under various conditions.

The following technologies were used to define and develop unit test:

• Local mocks: custom local mocks were created to isolate components and inject
dependencies, enabling focused testing without relying on external libraries;

• LocalStack: used to simulate an AWS cloud environment locally, ensuring that
the behavior of AWS services matched their actual behavior for accurate testing.

https://golangci-lint.run/
https://www.localstack.cloud/

3.3. TESTING 46

The verification process through unit tests achieved a code coverage of 93%, with a
total of 7258 lines of code defining unit tests logic. The total number of executed unit
tests is 412.

Particular emphasis was placed on testing the RESTful APIs. All scenarios, including
both successful and erroneous cases, were tested to ensure alignment with the OpenAPI
specification. This approach ensured high reliability and correctness of the RESTful
APIs, fulfilling requirements R6 and R8.

Integration testing

Integration testing involves combining individual units or components of a system and
testing them as a group to identify issues in their interactions and ensure they function
correctly together according to the overall system design.

Postman was used as the integration testing tool to validate the functionality and
correctness of the exposed RESTful APIs. In particular, 67 integration tests were
performed with primary focus on testing edge cases and alignment with the OpenAPI
specification.

3.3.2 Production rollout
The development of the system spanned 5 months, with the process being more efficient
than initially anticipated. By the end of the fourth month, a semi-definitive solution
was achieved. The term "semi-definitive" indicates that the ingestion phase, being the
most critical and complex component, was stable and deeply tested, while the APIs
exposure phase required additional refinements.

Given the independence of the API exposure phase from the ingestion phase, it was
thought to be productive to start collecting business events from the production
environment. The system was deployed in production with the following objectives:

• Validate the stability of the system by ensuring the correct functioning of the
ETL process;

• Provide an initial batch of collected business events to data analysts to assess if
Audit Trail Platform meets its intended practical objectives.

The production deployment was executed in two phases:

• Ingestion phase deployment: completed at the end of the fourth month of
development;

• APIs and additional functionalities deployment: executed approximately
two weeks after the ingestion phase release.

By the end of the development period, the system had been operational for about one
month. Subsequent sections review some aspects of this operational period.

https://www.postman.com/

3.3. TESTING 47

Information Numeric value

Total number of tracked business
events

896695

Distinct type of business events
collected

25

Table 3.1: Numeric values about collected business events from production

First-month feedback

During the production verification and validation period, no critical issues were detected.
As shown in table 3.1, the system ingested nearly one million business records of various
types, confirming that the designed flow met expectations and handled many types of
business events effectively.

AWS services were also equipped with monitoring probes to generate alerts for anomalies
or critical errors. No alerts were triggered during the observed period for the ingestion
phase.

Stress testing

The ingestion component showed robustness and efficiency, successfully managing
real-time delivery and burst events without errors or failures. As previously detailed,
its performance met expectations.

To verify API functionality, extensive search and aggregation jobs were executed. The
system handled these tasks without issues, even when processing large datasets, such
as full-month searches across all recorded events.

However, performance limitations were identified during testing of the export fea-
ture. While the component handled exports with smaller time windows effectively, it
struggled with exporting the entire dataset of collected business events. The failure
was attributable to insufficient RAM in the export-process sub-component, which was
unable to generate the file in-place before transferring it to Amazon S3. This issue was
temporarily resolved by increasing the memory allocation for the Amazon Lambda
function.
A long-term solution is needed to prevent similar issues during full-load exports that
span multiple years of data. Section 4.3.1 introduces a possible solution for such a
problem.

Chapter 4

Retrospective

The analysis related the proposed solution’s components to the addressed objectives and
listed any unsatisfied requirements and limitations. Examples and methods demonstrated
how use cases can be resolved and how the system could potentially enhance BI. Lastly,
the overview provided potential future enhancements for the system, along with possible
new functionalities.

4.1 Resolution of individual sub-problems

Audit Trail Platform addresses the aims set forth in chapter 2 quite closely. The system
fully addresses the identified requirements from the initial objectives analysis. Each
major component has been designed to handle a specific subset of the issues so that
the overall system can work effectively and efficiently while meeting its intended goals.

4.1.1 BI process establishment
The primary focus was to establish a process capable of tracking business-level activities
within the THRON platform. It involved creating an operational flow to record and
store business events generated by the platform.
This challenge was effectively addressed by the ingestion component. This component
successfully retrieves business events, processes them through a pipeline that applies a
series of transformations and optimizations, and stores them in a standardized format.
Such a process enables efficient storage and querying of historical business events.
The implementation of an ETL process proved to be a good choice to reach this
objective, as it aligns seamlessly with the first three phases of the BI process, ensuring
flexibility and scalability. Consequently, the ingestion component fully meets the
expectations set by the first three stages of the BI process, laying the groundwork for
subsequent analytical phases.

Table 4.1 shows how the features of the system help fulfilling the requirements regarding
the establishment of the BI process.

48

4.1. RESOLUTION OF INDIVIDUAL SUB-PROBLEMS 49

System feature Requirement fulfillment

Collect, transform, store business events
originated by the THRON platform.

R1

Apply a standard transformation to business
events to ensure flexibility and independence
without any ad-hoc manipulations.

R3

Extensible infrastructure which allows for
future integration of additional data sources.

R4

Use of a data warehouse and storage format
that ensure space efficiency without
compromising query performance.

R5

Flexible data retention with automatic deletion
of old data and semi-automatic data deletion.

R2

Use of fully managed AWS services. R12, R13
Table 4.1: Requirements tracking for BI process establishment

Regarding data retention (R2), the system cannot delete a customer’s data before the
retention period ends. This limitation partially affects compliance with the requirement.
To mitigate this, an additional patch excludes customers who have left the platform
from search, aggregation, and export results. Although not the most elegant solution,
it is the most efficient way to avoid additional costs associated with manual data
management.
In general, except for R12 and R13, the remaining requirements are functional. None
of these imposed restrictive constraints on the system’s development concerning data
access. These requirements outline a standard scenario for implementing a BI process
in the relevant phases, meaning that no constraints forced the solution’s design, as
they were aligned to standard BI process rules.
The only significant constraint, essential for the solution’s implementation, is require-
ment R12, which technically ties the solution to the AWS ecosystem.

4.1.2 Information access
After addressing the storage of business events, the next challenge was to ensure
accessible, flexible, and efficient retrieval of this information to accommodate various
use cases, including non-technical users.
To meet this requirement, the system provides multiple access methods to maximize
flexibility:

• API access: facilitates integration with external systems, enabling retrieval of
relevant information. Two modes are available:

– Generic search: allows retrieval of business operation dumps using basic
search filters;

– Aggregation: provides numerical insights over a historical period of inter-
est.

4.2. COVERAGE OF USE CASES 50

• Console access: offers expert users maximum flexibility in exploring the dataset;

• Export: enables users to export searches and aggregations in common formats,
making data accessible to external systems and non-expert users.

This range of options ensures comprehensive inclusion, allowing all user types to access
and use the information, therefore maximizing the data’s potential.

Table 4.2 illustrates how the features of the system help fulfilling the requirements
regarding data access.

System feature Requirement fulfillment

Abstract complexities such as data structure,
storage method, and query execution to allow
users to focus solely on the information they
need.

R8

Perform customized data queries to meet the
needs of more advanced users

R7

Provide data access ensuring consistent
performance and speed, regardless of the time
period queried.

R11

Perform both simple and advanced searches. R8

Aggregate data at various levels. R10

Export search and aggregation results,
facilitating the use of external tools for further
manipulation.

R9

Use of fully managed AWS services. R12, R13
Table 4.2: Requirements tracking for business events data access

No requirement imposes a strong constraint on the system. The access methods provided
are standard search functionalities, including filtering, aggregation, and exportation,
commonly found in other data access tools. Therefore, although the requirements
were derived from internal needs, they did not impose restrictive conditions on system
development, as they align with standard search tool functionalities.
As previously mentioned, the only strict constraint is R12, which technically binds the
solution to the AWS ecosystem.

4.2 Coverage of use cases

4.2.1 Business Intelligence
In the context of business intelligence, although analyzing and determining the utility
of the collected data is outside the project’s scope, let us analyze interesting insights
that can be extracted from the collected data.

4.2. COVERAGE OF USE CASES 51

From an aggregation, quantitative information can be obtained about which function-
alities were most used during the specified period. Additionally, by comparing different
time frames, usage trends of the platform’s features can be identified, providing insights
into historical usage patterns.
By observing the aggregation values, one could highlight anomalous behavior from a
client, such as an unusually high number of certain business events, which may indicate
non-compliant use of specific functionalities.
The numerical data on which features are most used by clients is particularly valuable.
It enables the strategic team to understand which functionalities are most popular and
how they are used, potentially leading to tailored pricing policies or similar strategies
based on how the platform is used.

A generic search provides qualitative information about the operations performed
by the tenants. By examining how events are logged for a particular tenant, usage
patterns of the platform’s features can be identified. This is critical for development
purposes, as it helps to guide future platform enhancements by improving workflows
based on the identified usage patterns.
Additionally, general information can be gathered about the lifecycle of entities (par-
ticularly contents and products). For example, the history of operations on a specific
entity can be reviewed to identify issues with platform usage or to study how different
clients manage various entities, in order to drive the future development efforts based
on these insights.

Overall, while aggregations are more suited to BI purposes, generic searches are more
applicable to other use cases. However, searches can still provide valuable insights, as
they offer access to a range of information that is not available when data is presented
in an aggregated form.

4.2.2 Other use cases

Development

The development team needs to monitor business events within the platform. This is
crucial for identifying potential bugs, such as event flows that do not trigger correctly
or anomalies in event handling.
It is particularly valuable when dealing with external bug reports that are difficult to
reproduce. In such cases, developers can access the historical event logs to determine
what caused the error, making the system a powerful tool for debugging.
With the web console provided by the system, developers can freely construct and
execute SQL queries to explore the database in detail, tailored to their specific needs.

Help desk

The help desk team typically assists customers when they need support or report issues
with the platform. Since customers often lack technical knowledge, they are usually
unable to provide precise information about the problem or how it occurred. This can
make it challenging for the team to diagnose the issue based on the limited information
provided.
With the system that logs all business events without omitting any details, this process
becomes more straightforward. A team member can use the API (or a dedicated

4.3. OUTLOOK 52

front-end interface) to retrieve events even starting from minimal information.
Once the target event is identified, further searches can retrieve the entire event history
of interest. This allows the team member to clearly understand what happened, making
it easier to interpret the user’s actions, which are often unclear. As a result, providing
guidance on how to resolve an issue or perform a specific operation becomes much
simpler.

Customer success and product owner

For customer success team and the product owner, whose purpose is to guide customers
in using the platform effectively and drive future development, aggregated quantitative
data on how each customer uses the platform’s features may be necessary.
By leveraging the system’s features (search, aggregation, and export), they can easily
obtain an overview of how and to what extent the platform is being used. This insight
can then inform development directions or actions aimed at enhancing the platform’s
quality and features.

Enterprise clients

External clients may require tracking the operations they perform within the platform.
Regardless of the type of tracking or the client’s objectives, it is necessary to provide
them with the ability to export recorded business events in a machine-readable format.
To meet this requirement, the export functionality is the most suitable solution. It
allows external integration systems to retrieve a dump of business operations (filtered
by specific criteria, such as a time range) and obtain the result in a machine-readable
file format, such as CSV. This enables the integration of the audit system with external
tools, therefore extending the platform’s utility and functionality.

4.3 Outlook

In conclusion, Audit Trail Platform effectively archives the business events generated
by the THRON platform and makes them accessible through various methods to a
wide range of users, each one able to use this data to address specific use cases. As
highlighted in section 4.2, these capabilities are fully aligned with the challenges and
corresponding proposed solutions discussed in chapter 2.

4.3.1 Current architecture and limitations
The system, in all its functionalities and components, has been developed using state-
of-the-art technologies, design patterns and development practices, particularly within
the AWS ecosystem and its offered services.

From a functional perspective, the system is mature, stable, and built on a well-
established architecture that does not rely on temporary solutions to address the issues
it targets. However, from a technical and implementation point of view, there are some
limitations that, while not problematic, should be considered for future development.
These primarily concern performance and overall efficiency in delivering functionalities.
These are minor implementation details, mainly related to the configuration of the
AWS services used, which could be optimized to enhance performance and reduce costs.

4.3. OUTLOOK 53

A notable example is the limitation related to the export functionality. As highlighted
in section 3.3.2, exporting large amounts of data requires allocating a significant amount
of memory since the file is generated locally. While this does not cause inefficiency, it
constitutes a challenge to cost reduction, as it necessitates higher memory allocation
for the Amazon Lambda function, leading to increased costs. A more efficient approach
would be to use Amazon S3’s streaming upload capabilities to generate and upload
the file in chunks. This method would reduce the memory required for file creation,
therefore containing related costs. Additionally, combining this feature with the use
of Go channels and Goroutines can significantly improve the efficiency of both the
generation and upload phases, which is the only aspect of the system where efficiency
has been slightly compromised.

4.3.2 System evolution

Deferred objectives

Regarding the deferred objectives outlined in section 2.2.4, it is challenging to define a
clear direction for the future development of the system. This is primarily due to the
fact that the business intelligence approach within THRON is still in its early stages.
Therefore, the initial focus should be on establishing the BI process and running it for
a sufficiently long period to assess the utility of the system and the BI process itself.

Given these premises, before going on with the development of new features and
components, it is essential for data analysts to work on an initial sample of the
collected data to understand its value and informative potential. This step is crucial for
the establishment and implementation of the subsequent stages of the BI process that
were deferred during the development of this project. Once the true potential of the
collected data is understood, it will be possible to determine the future development
direction for both the THRON platform and this system.

Features extension

In the long term, the system is designed to easily integrate new use cases, corresponding
to new methods of accessing information. Data access is centered around SQL queries,
so if there is a need to provide data in a specific format that facilitates analysis, new
RESTful APIs can be exposed, leveraging the existing infrastructure to generate the
necessary queries.

An example of this is the introduction of aggregation capabilities. Initially, the system
only supported generic searches. However, recognizing the need for quantitative
information, the system was extended to support in-place aggregations. This extension
significantly aided the early stages of analysis, as manual aggregation would have been
challenging due to limited computational resources to be used while analyzing large
amounts of data.

The primary role of Audit Trail Platform, beyond logging activities within the platform,
is to provide users with easy access to data in various ways. Therefore, any improvement
in data access should be considered and, if reasonably feasible, implemented. This
tool must be user-friendly and efficient, ensuring that anyone needing information on
business events can access it without difficulty, therefore simplifying the process for all
users.

4.3. OUTLOOK 54

4.3.3 Personal considerations
As a student, this project turned out to be interesting, challenging, and far from trivial.
The concept and basic idea are quite simple, as it can be reduced to a mere log-tracking
system. However, the development of the solution required complex reasoning on
various fronts, such as how to create the infrastructure, which AWS services to use,
and how to make each component of the system efficient.
Starting from a simple solution capable of addressing all the initially posed problems, I
mainly worked on details, sometimes even very marginal ones, to improve it step by step.
This involved an in-depth study of the operating and cost logic of the AWS services
used, trying to make the most of each individual functionality while minimizing costs.
It is not always true that the best solution is the most elegant and efficient; sometimes
the best solution is the most economical, though this depends on the application and
business context.
Another very interesting aspect concerns the system architecture, where considerable
time was spent looking for a way to promote asynchronous processing, scalability,
and flexibility in every component of the system. It was not easy to define a system
designed to scale and be asynchronous, extendable at the same.
In conclusion, this project provided the opportunity to mature both from an engineering
and development perspective. Every small problem encountered became a challenge
that allowed me to connect academic knowledge with real-world needs. This was very
important because it enabled me to experience well-known issues and address them
using technologies that represent the state of the art for distributed systems developed
on the cloud. It is a significant sign of how many theoretical and abstract notions
eventually find practical application and must be addressed daily within the IT world.

As a developer in THRON, this journey provided my first real experience working on
a reasonably complex project. Being integrated into a team context greatly aided the
design and development phases. Firstly, it allowed me to have a well-defined work
plan, which, combined with the use of the Scrum development framework, significantly
contributed to the success of the project. Frequent interactions with the software
architect, the product owner, and stakeholders allowed the system to be developed
incrementally and to solve issues as they arose. The ongoing dialogue ensured that
I always had a clear understanding of the situation, keeping development times and
deadlines in check.
Additionally, having the opportunity to discuss project-related topics and issues with
people outside the project helped me view them from different perspectives. This was
especially beneficial during the design phase, as it allowed me to learn from design
mistakes and how to address them.
The contribution of every team member to the project, even in minimal ways, proved
to be important. Sometimes it’s not necessary to reinvent the wheel; simply discussing
the problem with someone more experienced can provide new insights into both the
issue and the solution, just by looking at them from different perspectives.

From THRON’s perspective as a company, this project originated from the need to lay
the groundwork for developing a business intelligence process within the organization.
The added value that Audit Trail Platform can provide is not limited to the BI
context, but can also contribute to the improvement and simplification of the duties
carried out by various company departments. This makes the system very promising,
especially if expectations will be met once the system will be widely adopted within
the organization.

4.3. OUTLOOK 55

It is interesting to see how, starting from a very simple idea, one can end up creating
a system that, while simple in nature, has great potential for positive impact within a
whole company.

Appendix A

Features and requirements

A.1 Ingestion

Functionality BI process stage Requirements
fulfillment

Attach to the event bus
and collect business
events, applying buffering
policies.

Data collection R1, R4, R12, R13

Transform raw events
into structured ones.

Data preparation R1, R3, R12, R13

Store transformed events
into the data warehouse
in an efficient manner.

Data preparation R1 R2, R5, R11, R12,
R13

Table A.1: Features and satisfied requirements for events ingestion

56

A.1. INGESTION 57

Service Feature Requirements
fulfillment

EventBridge Fully-managed AWS
service

R12, R13

EventBridge Emitting events to any
attached component via
defined rules

R1

Data Firehose Fully-managed AWS
service

R12, R13

Data Firehose Collecting events from an
event bus defined on
Amazon EventBridge

R1

Data Firehose Allowing many different
AWS services as data
sources

R1

Data Firehose Buffering optimizations in
space and time

R1

Data Firehose Storing batches of data in
columnar format (i.e.
Apache Parquet)

R5 R11

Lambda Fully-managed AWS
service

R12, R13

Lambda Custom code to define
event-independent
transformation logic

R1, R3

Glue Fully-managed AWS
service

R12, R13

Glue Storing table schema of
transformed events

R1, R3

S3 Fully-managed AWS
service

R12, R13

S3 Low-cost object storage R1, R5

S3 Custom lifecycle rules
defined on objects

R2

Table A.2: AWS services, features and satisfied requirements for events ingestion

A.2. SEARCH AND AGGREGATION 58

A.2 Search and aggregation

Functionality BI process stage Requirements
fulfillment

Run search jobs to
retrieve events based on
specific use cases to
satisfy.

Data access (between
data storage and data
analysis)

R6, R12, R13

Run search jobs to
perform aggregations
with the aim of retrieving
numerical information.

Data access (between
data storage and data
analysis)

R10, R12, R13

Expose REST APIs to
allow external users to
query, in an asynchronous
manner, the data
warehouse seamlessly.

Data access (between
data storage and data
analysis)

R8, R12, R13

Expose a console interface
to allow advanced users
to perform any type of
query against the data
warehouse.

Data access (between
data storage and data
analysis)

R7

Table A.3: Features and satisfied components for events search and aggregation

A.3. EXPORT 59

Service Feature Requirements
fulfillment

API Gateway Fully-managed AWS
service

R12, R13

API Gateway Expose RESTful APIs for
search and aggregation

R6, R8, R10

Athena Fully-managed AWS
service

R12, R13

Athena Web-based SQL console R7

Athena Interaction with Amazon
S3 objects stored in
Apache Parquet format

R5

Athena Define custom SQL
queries against an S3
data warehouse

R6, R8, R10

DynamoDB Fully-managed AWS
service

R12, R13

DynamoDB Table to store business
events metadata

R6, R8, R9, R10

Table A.4: AWS services, features and satisfied requirements for events search and aggrega-
tion

A.3 Export

Functionality BI process stage Requirements
fulfillment

Run export jobs to search
or aggregate events based
on specific use cases to
satisfy.

Data access (between
data storage and data
analysis)

R9, R12, R13

Expose RESTful APIs to
allow external users to
export, in an
asynchronous manner,
business events from the
data warehouse.

Data access (between
data storage and data
analysis)

R9, R12, R13

Table A.5: Features and satisfied requirements for events export

A.3. EXPORT 60

Service Feature Requirements
fulfillment

API Gateway Expose RESTful APIs for
export

R9

Athena Define custom SQL
queries against an
Amazon S3 data
warehouse

R9

DynamoDB Table to store export jobs
statuses

R9

Table A.6: AWS services, features and satisfied requirements for events export

Appendix B

Data storing format experiment

An experiment was conducted with two identical ingestion pipelines, one using Apache
Parquet format to store elaborated data and the other storing data in JSON format.
The results, shown in table B.1, indicate that the Parquet data warehouse required
almost half the storage space compared to the JSON format.

Information JSON storage Parquet storage

Number of events stored 997 997

Total size 770 KB 456 KB
Table B.1: Storage insights about data warehouses used for the experiment

To assess the impact on query performance, different queries were executed, and the
results of such executions are presented in table B.2. The 5 executed queries are as
follow:

1. Given date and time range, retrieve the id and the type of the events registered;

2. Given a time range, find events by type;

3. Given a correlationId, find all the events belonging to that same flow;

4. Find all the events that originated (flow sources) other events;

5. Given a correlationId, find out the source of that particular event, if any.

61

62

Query JSON Parquet

Data
scanned

Execution
time

Data
scanned

Execution
time

1 770 KB (all) 609 ms 47 KB 574 ms

2 770 KB (all) 561 ms 16 KB 600 ms

3 770 KB (all) 1961 ms 10 KB 1907 ms

4 770 KB (all) 2705 ms 19 KB 3101 ms

5 770 KB (all) 1768 ms 9 KB 3371 ms
Table B.2: Queries performance between JSON and Parquet data warehouses

The results demonstrate that querying the Parquet data warehouse is more efficient
than querying the raw JSON data. Parquet does not only maintains, but also enhances
query performance, making it a critical tool, especially for the query phases.

Appendix C

Alternative solutions

C.1 Ingestion

Two alternative solutions were considered in addition to the implemented approach.
The first alternative also used AWS services, while the third option explored external
services.

AWS alternative solution

An alternative approach using only AWS services is shown in figure C.1.

Figure C.1: Alternative events ingestion solution using AWS services

This approach centers on Amazon Glue. It requires a rigid schema defined in the
AWS Glue Data Catalog to specify the structure of raw business events. Based
on this schema, transformations can be defined for individual fields, including type
changes, field renaming, and unnesting nested fields, resulting in a destination schema
representing the transformed business events.

For the transformation phase, Glue requires a source to extract business events. This is
facilitated by Amazon Kinesis Data Stream, which offers more source and destination
options compared to Amazon Data Firehose, which does not support Glue as a
destination. The method of attaching the stream to the event bus is analogous to the
previously presented solution.
In this setup, Glue processes the stream, applies transformation rules, and writes the
data to Amazon S3, similar to the primary solution. However, the implementation
complexities are significantly higher in this approach. The main challenge lies in the
transformation phase, as Glue lacks the flexibility of Amazon Lambda functions, which

63

C.2. SEARCH AND AGGREGATION 64

allow for a broader range of operations on input data. This limitation complicates
the mapping of event payloads, potentially resulting in a destination schema that is
dependent on the original event structure.

While Glue is more self-managed and reduces user workload, its reduced flexibility
compared to a Firehose-based pipeline diminishes its appeal. Additionally, the cost of
setting up a working environment with Kinesis Data Stream and Glue is considerably
higher than the chosen solution. The combination of reduced flexibility and higher
costs led to the decision to discard this alternative.

On-premise alternative solution

This approach involves using infrastructure and services external to the AWS ecosystem.
However, this option was not explored in detail, as it does not meet the requirements
outlined in R12 and R13.

Even if considered, this solution would have introduced significant challenges, including
complex mechanisms for performing custom transformations. Additionally, the eco-
nomic impact would have been worse than the chosen solution, as the cost of managing
external infrastructure and an ETL service would likely exceed the cost of the Amazon
Data Firehose pipeline. Furthermore, additional expenses related to data transfer
outside the AWS ecosystem would have arisen, particularly due to vendor lock-in.

C.2 Search and aggregation

Alternative solutions were not explored, as Amazon Athena is currently the only
method available for querying the S3-based data warehouse. The combination of AWS
services used to develop the RESTful API interface represents a standard practice.
Although alternative solutions could be evaluated, they are unlikely to offer significant
advantages over the chosen approach. Moving outside the AWS ecosystem for RESTful
interface development would introduce similar issues as described in section C.1.

C.3 Export

An alternative simpler method could have been a single Amazon Lambda function
executing the query, waiting for completion, and generating the export file. This
approach would have resulted in inefficiencies, higher resource consumption, and
increased costs. The selected architecture optimizes execution efficiency and cost-
effectiveness.

No alternative solutions were explored due to the constraints associated with Amazon
Athena, as discussed in section C.2.

Glossary

Agile project management methodology focused on iterative development, flexibility,
and collaboration, where teams deliver small, incremental improvements to a
product or project, allowing for rapid adjustments based on feedback and changing
requirements. 45, 67

Amazon Athena serverless query service for analyzing data stored in Amazon S3
using SQL. It supports querying of structured, semi-structured, and unstructured
data without requiring infrastructure management. Athena integrates with the
AWS ecosystem and efficiently handles complex queries. 39–43, 64

Amazon Data Firehose AWS managed service for real-time data streaming to
various destinations, such as data lakes and data warehouses. It allows an easy
and flexible implementation of ETL jobs, while also supporting automatic scaling,
data batching, compression, and encryption. 32, 35, 36, 63, 64

Amazon DynamoDB fully managed NoSQL database service provided by AWS,
designed for fast, predictable performance and seamless scalability. It supports
key-value and document data models, enabling flexible schema designs. Dy-
namoDB is optimized for handling large-scale workloads with consistent low
latency, making it suitable for high-throughput applications such as real-time
data processing, gaming, and IoT. 40, 43

Amazon EventBridge fully managed, serverless, and scalable event bus that facili-
tates integration between AWS services, SaaS applications, and custom appli-
cations. It allows events to be ingested, filtered, transformed, and delivered
with custom data attached. It supports defining multiple event buses based
on the source of the events, whether they come from AWS services or custom
applications. It uses rules to match incoming events and direct them to the
appropriate targets. Each rule can route events to multiple targets simultaneously,
either based on event patterns (events matching a certain structure) or schedules
(time-based triggers). 22, 24, 28, 33, 40, 57

Amazon Glue fully managed ETL (Extract, Transform, Load) service provided by
AWS that automates data discovery, preparation, and integration. It is used
to catalog, clean, and transform data from various sources, making it ready for
analytics or machine learning applications. 63

Amazon Kinesis Data Stream real-time data streaming service provided by AWS
that allows users to collect, process, and analyze large streams of data in real-
time. It is used for applications such as log and event data collection, real-time
analytics, and machine learning, enabling scalable data ingestion and processing.
63

65

Glossary 66

Amazon Lambda serverless computing service that executes code in response to
various events within the AWS ecosystem. It scales automatically, charges based
on compute time consumed, and is ideal for building scalable, cost-effective
applications. 39, 40, 44, 47, 53, 63, 64

Amazon S3 (Simple Storage Service) scalable object storage service provided by
AWS, designed for secure, durable, and highly available data storage. It is suitable
for use cases such as data backup, archival, and large-scale data lakes, with a
pay-as-you-go pricing model. S3 integrates with AWS services and supports
features such as versioning, lifecycle policies, and fine-grained access controls,
ensuring efficient data management and security. 35, 41, 44, 47, 53, 59, 60, 63, 65

Apache Parquet columnar storage file format optimized for large-scale data process-
ing. It provides efficient data compression and encoding, reducing data storage
size and improving query performance by minimizing the amount of data scanned.
11, 35, 57, 59, 61

C4model framework for visualizing and describing the architecture of software systems.
It consists of four levels of abstraction: Context (high-level overview), Container
(major components and their interactions), Component (detailed design within
containers), and Code (detailed class-level design), aiming to provide clear and
structured documentation of system architecture. 32

CSV file format used for storing tabular data in plain text, where each line represents
a row and values are separated by commas. It is commonly used for data import
and export between applications. 26, 27, 29, 41, 42, 44, 52

Customer success team dedicated to helping customers achieve their goals with a
company’s products or services, focusing on building long-term relationships,
providing proactive support, and driving customer satisfaction, retention, and
growth. 20, 52

Data silos isolated collections of data accessible only to specific departments or
systems, hindering information sharing and collaboration across an organization,
often leading to inefficiencies and fragmented decision-making. 14

Enterprise large-scale business or organization, typically with complex structures,
operations, and needs, often requiring comprehensive solutions and technologies
to manage processes, resources, and growth effectively. 20

Go channel concurrency mechanism in Go that allows goroutines to communicate
and synchronize by passing values between them. Channels enable safe data
sharing without explicit locking, supporting both unbuffered (synchronous) and
buffered (asynchronous) communication. 53

Goroutine lightweight, concurrent function execution in Go. It runs independently
of each other and is managed by Go’s runtime scheduler, enabling efficient
multitasking without the overhead of traditional threads. 53, 66

HATEOAS constraint of RESTful architecture that allows clients to interact with
a REST API entirely through hypermedia links provided dynamically by the
server, without requiring prior knowledge of the API structure. 40

Glossary 67

Help desk team responsible for providing technical support and assistance to users,
typically addressing IT-related issues, troubleshooting, and resolving problems
to ensure smooth operations within an organization. 20, 51

JSON lightweight data interchange format used for transmitting structured data
between a server and a client. It is easy for humans to read and write, and simple
for machines to parse, with data represented as key-value pairs. Commonly used
in web APIs and applications. 35, 39, 41, 61

OpenAPI standard specification for defining RESTful APIs, allowing developers to
describe the structure, endpoints, and operations of an API in a machine-readable
format. 46

Product owner key role in agile methodologies responsible for defining the vision of
a product, prioritizing the product backlog, and ensuring the development team
delivers features that align with customer needs and business goals. 20, 52, 54,
67

Scrum agile framework for managing complex projects, where work is divided into
short, iterative cycles called sprints. A Scrum team consists of a product owner,
Scrum Master, and development team, focusing on delivering incremental im-
provements through continuous feedback and collaboration. 45, 54

Tenant in cloud computing, a tenant refers to a single client or customer that shares
resources in a multi-tenant architecture, where multiple users or organizations
securely share the same infrastructure while keeping their data and operations
isolated. 18, 22, 24, 36, 51

Vendor lock-in a situation where a customer becomes dependent on a single vendor
for products or services, making it difficult or costly to switch to another provider
due to proprietary technologies, high switching costs, or contractual restrictions.
13, 64

XLS file format used by Microsoft Excel for storing spreadsheet data. It supports
various features such as formulas, charts, and multiple sheets, and is used for
organizing and analyzing data in a structured format. 26, 27, 29, 41, 42, 44

Bibliography

Consulted websites

Amazon API Gateway. url: https://docs.aws.amazon.com/apigateway/latest/
developerguide/welcome.html.

Amazon Athena. url: https://docs.aws.amazon.com/athena/latest/ug/what-
is.html.

Amazon Data Firehose. url: https://docs.aws.amazon.com/firehose/latest/
dev/what-is-this-service.html.

Amazon DynamoDB. url: https : / / docs . aws . amazon . com / amazondynamodb /
latest/developerguide/Introduction.html.

Amazon EventBridge. url: https://docs.aws.amazon.com/eventbridge/latest/
userguide/eb-what-is.html.

Amazon Glue. url: https://docs.aws.amazon.com/glue/latest/dg/what-is-
glue.html.

Amazon Kinesis Data Stream. url: https://docs.aws.amazon.com/streams/
latest/dev/introduction.html.

Amazon Lambda. url: https://docs.aws.amazon.com/lambda/latest/dg/welcome.
html.

Amazon S3. url: https://docs.aws.amazon.com/AmazonS3/latest/userguide/
Welcome.html.

Apache Parquet. url: https://parquet.apache.org/docs/overview/.

C4model software representation. url: https://c4model.com/.

Definition of business intelligence. url: https://www.techtarget.com/searchbusinessanalytics/
definition/business-intelligence-BI.

Disadvantages of business intelligence. url: https://www.canvasintelligence.com/
5-disadvantages-of-business-intelligence-and-how-to-avoid-them/.

ETL tools: on-premise vs cloud-based. url: https://www.linkedin.com/advice/3/
what-some-advantages-disadvantages-using-cloud-based.

Exploiting business intelligence advantages. url: https://blog.bismart.com/en/
how-do-companies-use-business-intelligence.

68

https://docs.aws.amazon.com/apigateway/latest/developerguide/welcome.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/welcome.html
https://docs.aws.amazon.com/athena/latest/ug/what-is.html
https://docs.aws.amazon.com/athena/latest/ug/what-is.html
https://docs.aws.amazon.com/firehose/latest/dev/what-is-this-service.html
https://docs.aws.amazon.com/firehose/latest/dev/what-is-this-service.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-what-is.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-what-is.html
https://docs.aws.amazon.com/glue/latest/dg/what-is-glue.html
https://docs.aws.amazon.com/glue/latest/dg/what-is-glue.html
https://docs.aws.amazon.com/streams/latest/dev/introduction.html
https://docs.aws.amazon.com/streams/latest/dev/introduction.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/Welcome.html
https://parquet.apache.org/docs/overview/
https://c4model.com/
https://www.techtarget.com/searchbusinessanalytics/definition/business-intelligence-BI
https://www.techtarget.com/searchbusinessanalytics/definition/business-intelligence-BI
https://www.canvasintelligence.com/5-disadvantages-of-business-intelligence-and-how-to-avoid-them/
https://www.canvasintelligence.com/5-disadvantages-of-business-intelligence-and-how-to-avoid-them/
https://www.linkedin.com/advice/3/what-some-advantages-disadvantages-using-cloud-based
https://www.linkedin.com/advice/3/what-some-advantages-disadvantages-using-cloud-based
https://blog.bismart.com/en/how-do-companies-use-business-intelligence
https://blog.bismart.com/en/how-do-companies-use-business-intelligence

69

Key business intelligence statistics. url: https : / / dataprot . net / statistics /
business-intelligence-statistics/.

Limitations of business intelligence. url: https://www.analyticssteps.com/blogs/
limitations-business-intelligence-bi.

The business intelligence process. url: https://www.zoho.com/creator/decode/the-
6-essential-stages-of-business-intelligence-bi.

Useful data for business intelligence and analytics. url: https://www.domo.com/
learn/article/what-kind-of-data-is-useful-for-business-intelligence-
and-analytics.

https://dataprot.net/statistics/business-intelligence-statistics/
https://dataprot.net/statistics/business-intelligence-statistics/
https://www.analyticssteps.com/blogs/limitations-business-intelligence-bi
https://www.analyticssteps.com/blogs/limitations-business-intelligence-bi
https://www.zoho.com/creator/decode/the-6-essential-stages-of-business-intelligence-bi
https://www.zoho.com/creator/decode/the-6-essential-stages-of-business-intelligence-bi
https://www.domo.com/learn/article/what-kind-of-data-is-useful-for-business-intelligence-and-analytics
https://www.domo.com/learn/article/what-kind-of-data-is-useful-for-business-intelligence-and-analytics
https://www.domo.com/learn/article/what-kind-of-data-is-useful-for-business-intelligence-and-analytics

	Acknowledgements
	Summary
	Contents
	List of Figures
	List of Tables
	1 Problem statement
	1.1 Business Intelligence
	1.1.1 Definition
	1.1.2 Process
	1.1.3 Usage
	1.1.4 Technological stack

	1.2 Business Intelligence in THRON
	1.2.1 THRON platform
	1.2.2 Integrating BI into the platform
	1.2.3 Gap analysis
	1.2.4 Additional use cases

	2 Addressed sub-problems
	2.1 Primary areas of focus
	2.1.1 Overview
	2.1.2 Technical overview
	2.1.3 Rationale

	2.2 Requirements
	2.2.1 Data ingestion and storage
	2.2.2 Data access
	2.2.3 Summing up
	2.2.4 Deferred objectives

	3 Audit Trail Platform
	3.1 System overview
	3.1.1 Ingestion
	3.1.2 Search and aggregation
	3.1.3 Export

	3.2 Development
	3.3 Testing
	3.3.1 Comprehensive code evaluation
	3.3.2 Production rollout

	4 Retrospective
	4.1 Resolution of individual sub-problems
	4.1.1 BI process establishment
	4.1.2 Information access

	4.2 Coverage of use cases
	4.2.1 Business Intelligence
	4.2.2 Other use cases

	4.3 Outlook
	4.3.1 Current architecture and limitations
	4.3.2 System evolution
	4.3.3 Personal considerations

	A Features and requirements
	A.1 Ingestion
	A.2 Search and aggregation
	A.3 Export

	B Data storing format experiment
	C Alternative solutions
	C.1 Ingestion
	C.2 Search and aggregation
	C.3 Export

	Glossary
	Bibliography

