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Introduction: 

Tensor Regression and the role of assets interconnections in equity pricing 

We live in challenging and interesting times; and it is indeed during these times that we start to 

discover how much more complex than expected the world is. Furthering one’s knowledge of 

the complexity of the world around him or her makes it clear that the challenge requires 

appropriate instruments to explore the overwhelming abundance of information and data that 

can be gathered. Indeed, taking the new terrible calamity of Covid-19 as an example, data and 

exploration of it is the only way to face such new challenges. However, researches and scholars 

are often limited by several factors, including but not limited to: 

-higher dimensional data; 

-instruments to analyze efficiently the higher dimensional data; 

Let us take a step back and think of why one should be concerned of exploring higher 

dimensional data and give a preliminary definition. 

What we try to do when studying a phenomenon is reduce it to its essential parts, so that we 

can focus on what really matters; in a line, we build a model to describe the phenomenon. 

However, how informative the data is depends on several factors, especially the hidden links 

within the data. Typically, when considering the word “data”, we think of a matrix or a vector 

and how the data within the matrix can be exploited to predict the behavior of the variables 

through the model. It is intuitive then to see that if we could “upgrade” the dimensions of the 

data, we could find new connections that previously could not be found. On the other hand, we 

also need the actual instruments to analyze such higher dimensional data. Indeed, this is the 

problem given by cutting-edge technological innovations such as Machine Learning, a field in 

which Tensors are the obvious choice. The aim of this work is to apply such data structures to 

price equity instruments. The reason why we do not want to use the usual instruments is because 

tensors are not feasibly treated by them; the only way would be to reduce their dimensions until 

one obtains matrices but then the interconnections among data are destroyed. This nullifies the 

effort.  

Furthermore, whenever one speaks of instruments, he or she usually refers to actual tools but 

that is not the whole story. What really matters to understand the increasing complexity of the 

reality in which humanity lives is to develop some “cross-subject skills and competences”. This 

is a kind of mantra that I repeat to myself every day. It is not enough to have teams with several 

incredibly skilled people without some overall general knowledge. I think that the best way to 
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explain my point is with an example: suppose that a development team is working on an 

innovative app for smartphones. There will be people devoted to the commercialization of the 

app and some others that will be devoted to the actual development. In my opinion, now days 

we cannot expect people from commercial to not have some degree of understanding of what 

programming is; at the same time, we cannot expect programmers to have little to no 

understanding of the economics behind a product. As it usually is in life, the answer is in the 

middle: developing some knowledge, even superficial, of other subjects is crucial, it is the key 

to the future, when the walls between subjects that we thought separate become thinner and 

thinner. Indeed, I tried to abide to this idea and decided to expand my horizons beyond what 

my course has thought me and enriching my background with several IT and quantitative skills. 

Thanks to the way the study plan could be organized, I was able to attend some courses from 

the Mathematical Engineering degree which were:  

1. Scientific Computing and Object-Oriented Programming (or SCOOP in short); 

2. Stochastic Methods for Finance (or SMF in short); 

3. Systems Identification and Data Analysis (out of plan, SIDA in short); 

I also attended another “out of plan” course from the Economics and Finance degree which was 

Banking: Advanced Risk Management. 

SCOOP was crucial in the development of the skills needed for this work because it thought 

me the basics of Machine Learning, Object-Oriented Design and Programming, Algorithms and 

Data Structures. SMF gave me a lot of insight over the advanced equity pricing models and the 

mathematics to pick up where I left off during my courses. SIDA provided me with a 

comprehensive overview of the fields of Statistics, especially when it comes to the math behind 

Machine Learning models. Finally, Banking: Advanced Risk Management was especially 

useful for the intensive course in Technical Analysis which shed light over the tools and 

strategies used in the industry. With such a strong backbone, added to the already strong 

background in Finance and Economics, I decided to approach the concept of Tensors and apply 

it to the American stock market, in particular the 100 biggest companies in the Standard and 

Poor’s 500 equity index, where biggest stands for the highest market capitalization.  

For what concerns the applicative part of the thesis, I chose to use the Python programming 

language, both for its interpretability and clearness but mostly because it is incredibly easy to 

find free (or extremely cheap) resources online to learn it. The majority of the pre-processing 

and data gathering has been done on my laptop, using PyCharm as text editor; the following 

will be a list of specs of my machine: 
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- CPU: Intel(R) Core(TM) i5-7300HQ CPU @ 2.50GHz 

- GPU: NVIDIA GeForce GTX 1050 2 GB 

- RAM: Samsung 8 GB 

- Storage: HDD 1 TB 

- OS: Windows 10 

Due to the low power of these components and the high computational requirements, the model 

build-up and computations were performed on the Google Colaboratory online service. It 

provides remote access to more powerful hardware than mine, while working in an interactive 

online Python notebook, all free of charge. There is also a premium version which, however, 

requires a subscription but thankfully I did not need one. It is a very useful virtual environment 

that comes with several third-party libraries already installed, especially TensorFlow. The latter 

is the free open-source library that Google developed and maintains to allow anyone to get 

started in the field of Machine Learning but also to provide a powerful tool for researches all 

around the globe. As the name suggests, the library is built upon Tensors but I did not use it; I 

decided to use another one called TensorLy, which I find more intuitive and easy to use.  

The outline of this work will be as follows: Section 1 will give some background on these 

topics, together with some reviews of the literature considered, Section 2 will provide some 

Tensor mathematics and algebra, Section 3 will describe the data that has been used, Section 4 

will be devoted to the description of the algorithms used to obtain the final model, Section 5 

will present the results and draw some conclusions.   
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Section 1: Background and Literature Review 

I will start with some consideration over what is stated by the theory, especially the debate 

between the Efficient Market Hypothesis and the more recent findings in Behavioural Finance. 

In reviewing such topics, I will also explain the benefits of addressing these issues with tensor 

regression and other more complicated models. Indeed, stock movements are highly affected 

by the information available; the EMH states that there are several agents in the market that 

behave rationally, which means that changes in the price of stocks is driven only by 

“unemotional” determinants, namely changes in fundamental value. The agents are constantly 

updating their beliefs about the future value of their stocks which explains changes in prices; 

however, agents disagree on their forecasts so the stocks exhibit volatility, but still its value 

oscillates around the fundamental value. On the other hand, empirical evidence shows that not 

all agents are rational and stock prices can greatly differ from their intrinsic values, even for 

long periods of time; prices do not follow a random walk [Lo and MacKinlay 1988]. Recent 

behavioral finance studies have attributed the non-randomness of stock movements such as 

overreactions to unfavorable news to investors’ cognitive and emotional biases [Long et al. 

1990; Shleifer and Vishny 1997]. Regardless, both agree on the fact that information plays a 

vital role. This leads to the intuitive idea that having tools that capture the heterogenic 

information are desirable; Qing Li et ot.[2009] have addressed this topic in their work “A 

Tensor-Based Information Framework for Predicting the Stock Market”. They performed their 

analysis on the 100 most successful Chinese companies. Indeed they mention the statistical 

significance of sentiments, news sources, even Twitter messages, which all affect the agents’ 

decisions and thus propose a model to exploit the information conveyed in these mediums and 

how they interact with more quantitative data, as it has been studied in great detail by Frank 

and Antweiler [2004], Schumaker and Chen [2009b], Li et al [2014a, 2014b] and many others. 

However, very few works describe the joint effects of both quantitative and qualitative 

information sources. After all, it all boils down to analyzing non-linear connections among data, 

since linearity has been analyzed countless times, starting with the crucial work of Fama and 

French [1993]. Nowadays, there are several tools that capture the non-linear relationships 

among data, Tensors for example, but also Neural Networks and Machine Learning based 

models in general. Many of these tools were discovered several decades ago, for example the 

usage of Artificial Neural Networks dates back to something like 1994, as shown by Hsiao-

Tien Pao [2008]. He was able to show that ANNs are able to outperform multiple regression 

analysis when it comes to predict debt ratios, or more in general funding decisions made by 

firms in Taiwan, during the period between 2000 and 2005. He used as reference several papers 
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that applied the Machine Learning methodology, and Neural Networks in particular, to address 

modeling issues in engineering problems back in 1994. His findings are consistent with the 

previous theory that essentially traces back to Myers [1977] regarding funding decisions of 

firms. Furthermore, Tensors can help in tracking some aspects that are usually discarded due to 

the assumption that all relationships in data are linear: such relationships are the so called 

network effects. In fact, Abalfazl Zareei [2019] showed how risk in portfolios can be originated 

from some underlying network structure, usually not captured by standard models. He estimates 

a VAR model and a star-like network structure where it is shown how diversification benefits 

are lower when there is some asymmetry in the network structure; indeed, the benefits reach 

the lowest point in the star-like case, which international markets and even U.S. industries have. 

Another remarkable work that stresses the usefulness of networks in capturing effects that 

established instruments cannot capture is contained in Andrea Buraschi and Paolo Porchia 

[2012]. They build up several models using several types of both symmetric and asymmetric 

networks, showing that, under imperfect information, the fact that a firm that occupies a more 

central position in the network, or network-centrality, is priced in the cross-section even after 

controlling for French and Fama factors. The effect of cross-sectional momentum was captured 

thanks to networks. 

Furthermore, one has to mention that the usefulness of such models is greatly penalized by the 

high computational time needed to train a machine and the problem of scalability. Many times 

it becomes a burden to create a neural network because the number of parameters to estimate 

can get incredibly high incredibly fast; this hurts performance and requires powerful machines 

to obtain good results, all the while reducing generalizability due to the scarcity of data. Tensors 

are fundamental in building up the most complicated models specifically because their very 

nature allows to reduce immensely the computational taxation. I will develop further in Section 

2 the next consideration but when thinking of a matrix, we usually think of it as a table; In linear 

algebra, a matrix is an linear object that can be multiplied on both sides; Tensors are linear 

objects that can be multiplied on additional sides, thus giving more freedom when creating the 

layers for Neural Networks, reducing the number of parameters to be estimated, the time 

required to train the model and giving overall advantages. 

Such increases in dimensions are especially useful when modelling complex structures when 

both the number of samples and the number of features is so high that vectors and matrixes 

cannot capture the entirety of the phenomenon. A clear example is definitely the work of  Dean 

P. Foster, Mark Liberman and Robert A. Stine[2013]. They use several methods to convert text 

into data which can be fed to the machine and understood by the model. In order to obtain good 
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predictors, they use several strategies that involve the use of conventional instruments but had 

a lot of data to work with. A better strategy that works extremely well even on small samples 

take advantage of the tensor data structure, as in the work of Deng Cai, et ot. [2009]: Support 

Tensor Machines for Text Categorization. In their work, the authors compare the performance 

of the method that they developed to categorize text with other existing methods. They obtained 

better performances in terms of better predictions, especially in small samples, compared to 

usual ways. One could argue that the tasks at hand were different, since featuring text is very 

different from text categorization, but the analogy still holds because Tensors can be used to 

store features, not only to speed up calculations. Furthermore, it is a common task in Natural 

Language Processing and Feature Extraction from Text problems to look for ways that preserve 

the meaning of the documents. The idea is that one could naively count the number of words in 

a document and the associated word frequency, store it in a dictionary and then perform 

whatever analysis has to be done. This of course preserves the meaning of single words but not 

of entire periods or phrases. This means that the overall meaning of the document is destroyed 

since meaning also comes from semantics and lexicon, not only the frequency of the word in 

the text. A natural extension of this concept is to include “embeddings” instead of single words. 

However, the limit here is that a single embedding does not account for every possible one, thus 

forcing repetitions, which is wasteful in terms of more memory needed and duplicative 

information. With Tensors this problem is non-existent because the higher dimensionality 

allows storage and manipulation of data in ways previously unachievable. I will continue now 

with the analysis of the Mathematics and Algebra behind tensors.   
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Section 2: Tensor Mathematics and Algebra 

In this section I want to give some more quantitative background on the topic of Tensors and at 

the same time provide some explanation on how to use this formalism to deal with problems. 

In this section I was largely inspired by the work of Justin C. Feng in his The Poor Man’s 

Introduction to Tensors, which was of great help to understand really complicated concepts due 

to the less formal way of explaining them. I should point out that this does not want to be a 

comprehensive review of the topic but just some starting point for the much broader concept of 

Tensors. After the Mathematics behind Tensors, I will continue by reviewing the common 

procedures on the topic that greatly helped me in the learning process. In this sense, I will follow 

the work of Kolda and Bader [2009]. It is by all means the most influential paper that I could 

find, cited by almost every other author that I have read. Indeed, it can be considered the “go-

to” reference. What has really helped me understand this object was the definition provided by 

Justin C. Feng: “Tensors are objects that eat out something else and spit out scalars”. It is, of 

course, a very informal definition as I was mentioning earlier, but it made the idea stick in my 

mind because it immediately made it clear. The fact that Tensors give back scalars is of 

fundamental importance, in the sense that they behave as if they were scalars; and indeed scalars 

are very easy to manipulate, they are not subject to coordinate transformations, they are 

immediately interpretable and understandable, they make very tedious and long computations 

very easy. However, Tensors have the advantage of retaining much more information rather 

than a single number. Let us take a step back and proceed accordingly. In order to make it as 

clear as possible, I will start from more general concepts which are well established in linear 

algebra and then proceed onwards and link them with Tensors. The first thing to say is that all 

the geometry that I will discuss further in the text is in a space that respects the Euclidean rules. 

For now on, I will only refer to this concept as Euclidean space. I should also add that the 

assumption is maintained even when I try to build up my regression model. In my opinion, it is 

much easier to understand something if one has a firm grasp of the central ideas and then move 

on to the details and particular cases. To summarize in one paragraph (which also makes a little 

clearer the description of Tensors that I used a few lines ago):  

“Tensors are mathematical constructs that eat a bunch of vectors and spit out a scalar. The main 

principle in Tensor analysis is that they are unaffected by coordinate transformations. This 

means that any equation written in Tensor form is valid in any coordinate system”. 

This looks very trivial; but indeed it is the only thing that one has to keep in mind. Of course 

there are other details that I have skipped, such as the fact that Tensors are linear maps and also 

that they can “eat” other things called dual vectors, but I will explain everything further down 
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the way. One thing to always keep in mind is that the index placement in Tensors is of 

fundamental importance. Since the order of dimensions increases, we need some way to identify 

each dimension. This is true also when considering vectors or matrixes. In order to identify the 

objects stored into them, we use indexes. However, we need to make an important difference 

which is between raised indexes and lowered indexes. They just refer to the position of the 

index with respect to the symbol used to identify a Tensor. For example:  

𝑣𝑖   (2.1) 

In this case, “i” would be a raised index. Unless otherwise specified, exponents will not be 

signs of exponentiation but rather raised indexes. Of course it can be done for matrices as 

well. Speaking of matrices, one element that is crucial to the topic is the so called Kronecker 

delta; it is just the components of the identity matrix and it will be indicated by the following 

symbol: 𝜕𝑗
𝑖 . In this case, it will indicate a squared ixj matrix; if both i and j are superscripts or 

subscripts, it will indicate an element of the matrix. I am putting so much effort into this part 

because this brings me to a fundamental concept: the Einstein summation convention. It is 

immediately summed up in a short sentence:  

Any time there is a lowered and a raised index, written with the same symbol, a summation is 

implied. 

So for example: 

𝑀𝑗
𝑖𝑣𝑗 (2.2) 

means that the matrix M is multiplied on the left of the vector v. By Einstein summation 

convention a sum over the index j is implied. I can also make the summation explicit: 

∑𝑀𝑗
𝑖

𝑛

𝑗=1

𝑣𝑗 
 

(2.3) 

This becomes very useful in the realm of Tensors, because there will be almost every time a 

pair of indexes over which one can sum and simplify equations. 

As promised previously, I will start from more familiar concepts in linear algebra and then 

continue towards Tensors.  

The most elementary linear object that I can think of is a vector. Later on, it will become very 

clear that a vector can be considered a particular case of Tensor. We are all acquainted with the 

concept of a vector: a structure that stores data in each positon, it can be a column or a row and 

it has dimensions 𝑖 × 1 (in case of a row vector) or 1 × 𝑗 (in case of a column vector). In 
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computer science, a vector is basically an array that has only 1 dimension. Here I propose a 

different way to think of vectors, borrowing notation from physics: a vector is a directional 

derivative. 

For example: 

𝑣⃗  ∙ ∇⃗⃗⃗𝑓(𝑥𝛼) =  𝑣𝑖
𝛿𝑓

𝛿𝑥𝑖
 

(2.4) 

where 𝑥𝛼 represent the Cartesian coordinates in Euclidean space. In Einstein convention, the 

index i in the partial derivative is considered lowered. Removing f, I obtain the directional 

derivative operator. Suppose i is in range of 1 to 3: 

𝑣⃗ ∙ ∇ ⃗⃗⃗⃗ =  𝑣𝑖
𝜕

𝜕𝑥𝑖
   

(2.5) 

 

  ↔  

  

𝑣⃗ ∙  ∇ ⃗⃗⃗⃗ =  𝑣1
𝜕

𝜕𝑥1
+ 𝑣2

𝜕

𝜕𝑥2
+ 𝑣3

𝜕

𝜕𝑥3
 

(2.6) 

 

Now I can rewrite the vector v explicitly using orthogonal unit vectors  𝑒𝛼̂: 

𝑣⃗ =  𝑣𝑖𝑒𝑖̂ (2.7) 

 

↔ 

𝑣⃗ =  𝑣1𝑒1̂ + 𝑣
2𝑒2̂ + 𝑣

3𝑒3̂ (2.8) 

Looking at the previous example, it appears clear that partial derivatives can be thought of as 

basis vectors, that is why I claim that vectors can be considered directional derivatives. I should 

also mention that the basis of partial derivatives is the coordinate basis. 

The last thing to say to prove that a vector is a directional derivative operator is that such 

operator contains the same information contained in the explicit components of the vector. If I 

use the trivial function f(x) = 𝑥3 (where 3 is an index, not an exponent) and feed it to the 

directional derivative operator:  
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𝑣 ∙ ∇⃗⃗⃗𝑥3 = 𝑣𝑖
𝜕𝑥3

𝜕𝑥𝑖
= 

= 𝑣1
𝜕𝑥3

𝜕𝑥1
+ 𝑣2

𝜕𝑥3

𝜕𝑥2
+ 𝑣3

𝜕𝑥3

𝜕𝑥3
 

 

(2.9) 

Coordinates are independent of each other, so the partial derivative for i ≠ j is zero, while it is 

equal to one for i = j. This means that I can write: 
𝜕𝑥𝑖

𝜕𝑥𝑗
= 𝜕𝑗

𝑖 where delta is the Kronecker delta. 

The previous equation becomes then: 

𝑣⃗ ∙  ∇⃗⃗⃗𝑥3 = 𝑣𝑖𝜕𝑖
3 = 𝑣3 (2.10) 

This means that all I have to do to pick out a component of a vector is feed the corresponding 

coordinate to the directional derivative operator, in fact I could define the components of the 

vector in the following way:  

𝑣𝑖 ∶=  𝑣⃗ ∙  ∇⃗⃗⃗𝑥𝑖 (2.11) 

Now I will drop the arrow to be remark that v is not a vector but an operator so now I can write: 

𝑣𝑖 = 𝑣(𝑥𝑖) (2.12) 

where the right-hand side is the directional derivative operator acting on the coordinate 𝑥𝑖. 

These are some important building blocks and I will provide some more in the following lines, 

starting from the dot product. I can define the latter as: 

𝑢 ∙ 𝑣 =  𝜕𝑖𝑗𝑢
𝑖𝑣𝑗 (2.13) 

where delta is the Kronecker delta and it is equal to one for i=j and zero otherwise. Indeed the 

dot product is a particular case of the more general inner product, which can be written in terms 

of a quantity that we define as the metric. If I call such quantity 𝑔𝑖𝑗: 

〈𝑢, 𝑣〉 =  𝑔𝑖𝑗𝑢
𝑖𝑣𝑗 (2.14) 

Since inner products are symmetric, we require the existence of an “inverse metric” defined as 

the solution to: 

𝑔𝑖𝑘𝑔𝑘𝑗 = 𝜕𝑗
𝑖 (2.15) 

From this, it appears clear that the metric in Cartesian coordinates in a Euclidean space is just 

the Kronecker delta. Before moving on, I want to remind the properties of the inner product: 

given the vectors p, u and v and scalar a, we define the inner product between two vectors on 

the following four properties: 

I. 〈𝑢 + 𝑝, 𝑣〉 =  〈𝑢, 𝑣〉 + 〈𝑝, 𝑣〉 (2.16) 
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II. 〈𝑎𝑢, 𝑣〉 = 𝑎〈𝑢, 𝑣〉 (2.17) 

III. 〈𝑢, 𝑣〉 =  〈𝑣, 𝑢〉 (2.18) 

IV. 〈𝑣, 𝑣〉  ≥ 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣    (2.19) 

The meaning behind the metric is immediately grasped when we start to talk about the basis 

vectors and how they are subject to the same rules that define the inner product. Recall that  

𝑣 = 𝑣𝑖𝑒𝑖 (2.20) 

which means that I can always write a vector as the product of its components by the i linearly 

independent basis vectors. I am assuming neither that they are orthogonal nor that they are of 

unit length. Since the basis vectors are indeed vectors, I can take their inner product and obtain 

the following: 

𝑔𝑖𝑗 = 〈𝑒𝑖, 𝑒𝑗〉 (2.21) 

which is the metric tensor. Thus metric components are just inner products between basis 

vectors: 

𝑔𝑖𝑗 = 〈
𝜕

𝜕𝑥𝑖
,
𝜕

𝜕𝑥𝑗
〉 (2.22) 

This digression was necessary to deliver the punchline that the metric/inner product can be 

thought of as a linear machine that eats two vectors and spits out a scalar, which closely 

resembles the initial definition given of a tensor. Now that I have defined vectors, I will take 

some time to introduce covariant vectors, or dual vectors, as I will refer to them in this way.  

The best way to describe them is by taking into account their duality with vectors; indeed you 

could think of dual vectors as elements that take vectors and give back scalars, just as vectors 

take dual vectors and give back scalars. One can be very confused by the apparent ambiguity 

but the real difference comes in the coordinate basis. In fact, the natural set of coordinate basis 

for dual vectors are differentials, while partial derivatives are the natural set of coordinate basis 

for vectors. This means that I can write a dual vector as: 

𝑤 = 𝑤𝑖𝑑𝑥
𝑖 (2.23) 

The reason why this is true comes from the differential of a function, which is an example of a 

dual vector. The differential is defined as: 

𝑑𝑓 ∶= 
𝜕𝑓

𝜕𝑥𝑖
𝑑𝑥𝑖  (2.24) 

The components of the differential are just the components of the gradient of the function. Now 

I can combine everything seen so far in just three equations: 
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𝑣 =  𝑣𝑖
𝜕

𝜕𝑥𝑖
    (2.25) 

𝑤 = 𝑤𝑖𝑑𝑥𝑖 (2.26) 

〈𝑣, 𝑤〉 =  〈𝑤, 𝑣〉 = 𝑤𝑖𝑣𝑖 = 𝑣
𝑖𝑤𝑖 (2.27) 

Substituting 2.25) and 2.26) in 2.27) one obtains: 

〈𝑑𝑥𝑗 ,
𝜕

𝜕𝑥𝑖
〉 = 〈

𝜕

𝜕𝑥𝑖
, 𝑑𝑥𝑗〉 = 𝜕𝑗

𝑖 (2.28) 

 

Finally, I will give the exact definition of a tensor but most importantly I will deliver some 

further consideration to the principle that the value of a scalar function at a point is unaffected 

by coordinate transformations. This is because coordinates are just labels that we give to points 

in space. A remark is necessary: this is true for scalar functions, which are functions of points, 

not coordinates. This means that a coordinate transformation can change how a scalar function 

depends on coordinates but the dependence on points remains unaffected. This then relates to 

vectors when we consider the fact that vectors are geometric quantities. For instance, they have 

order and magnitude, borrowing definitions from physics, and how we represent them depends 

on coordinates. However, they are just labels, geometry does not care how we call points in 

space. Intuitively, this means that coordinate transformations cannot change the meaning of an 

inner product or a directional derivative; they both act on a function and yield scalars but the 

value of a scalar in a point should not depend on the coordinates that we use. On the other hand, 

the values of vectors and vector components and the values of the gradient components do 

change. This is what is really interesting: how do components of vectors change under 

coordinate transformations? 

To answer this question, we can take a function 𝑦𝛼(𝑥𝛼) which we assume to be invertible so 

that we can write 𝑥𝛼(𝑦𝛼). I am using the Greek letters to indicate the new coordinates, while I 

will use Latin letters to indicate the old coordinates. Taking derivatives of these two functions 

(the quantities 
𝜕𝑥𝑗

𝜕𝑦𝛽
 and 

𝜕𝑦𝛽

𝜕𝑥𝑗
 respectively), I find the transformation matrices and then the chain 

rule tells me that they are related in the following way: 

𝜕𝑥𝑖

𝜕𝑦𝛼
𝜕𝑦𝛼

𝜕𝑥𝑗
=
𝜕𝑥𝑖

𝜕𝑥𝑗
= 𝜕𝑗

𝑖 (2.29) 

 

𝜕𝑦𝛼

𝜕𝑥𝑖
𝜕𝑥𝑖

𝜕𝑦𝛽
=
𝜕𝑦𝛼

𝜕𝑦𝛽
= 𝜕𝛽

𝛼 (2.30) 
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The last equality in both (2.29) and (2.30) comes from the fact that coordinates are independent 

of each other. Furthermore, the chain rule tells us that the gradient behaves as: 

𝜕𝑓

𝜕𝑦𝛽
=
𝜕𝑥𝑗

𝜕𝑦𝛽
𝜕𝑓

𝜕𝑥𝑗
 (2.31) 

 

Since the gradient forms the components of the dual vector, the following law of transformation 

for the components of the dual vector is suggested: 

𝑤𝛽 =
𝜕𝑥𝑗

𝜕𝑦𝛽
𝑤𝑗 (2.32) 

Then, if v is a vector, the value of 𝑤(𝑣) = 𝑤𝑖𝑣
𝑖, being it a scalar, cannot be affected by a 

coordinate transformation, which suggests that the transformation law for a vector must be 

opposite to the transformation law of the dual vector. Indeed: 

𝑣𝛼 =
𝜕𝑦𝛼

𝜕𝑥𝑖
𝑣𝑖 (2.33) 

 

𝑤(𝑣) = 𝑤𝛼𝑣
𝛼 =

𝜕𝑥𝑗

𝜕𝑦𝛼
𝑤𝑗
𝜕𝑦𝛼

𝜕𝑥𝑖
𝑣𝑖 =

=
𝜕𝑥𝑗

𝜕𝑦𝛼
𝜕𝑦𝛼

𝜕𝑥𝑖
𝑤𝑗𝑣

𝑖 = 𝜕𝑗
𝑖𝑤𝑗𝑣

𝑖

= 𝑤𝑗𝑣
𝑖 

 

(2.34) 

 

𝑤𝛼𝑣
𝛼 = 𝑤𝑖𝑣

𝑖 (2.35) 

Also inner products are invariant under coordinate transformations, which means that also the 

metric tensor must have its own transformation law. Not only that, but the requirement is also 

that there exist an inverse tensor metric since the inner product is commutative. Indeed: 

𝑔𝛼𝛽 =
𝜕𝑥𝑖

𝜕𝑦𝛼
𝜕𝑥𝑗

𝜕𝑦𝛽
𝑔𝑖𝑗 (2.36) 

 

 

𝑔𝛼𝛽 =
𝜕𝑦𝛼

𝜕𝑥𝑖
𝜕𝑦𝛽

𝜕𝑥𝑗
𝑔𝑖𝑗 (2.37) 
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At this point, I can finally give a proper definition of a tensor: 

A tensor is a linear map that acquires vectors and/or dual vectors and gives as result scalars. 

By linear map, I mean that the tensor must be a linear function of what it acquires, it is linear 

in each of its arguments and also vanishes if it is fed a vector or a dual vector of zeros. The 

latter is a less formal way of saying that a tensor is a homogenous function (of degree one). 

These conditions imply that a tensor that acquires only one vector v and only one dual vector 

w must have the following form: 

𝑇(𝑤, 𝑣) = 𝑇𝑗
𝑖𝑤𝑖𝑣

𝑗 (2.38) 

For T(w,v) to be a scalar, it must be that its components transform in following way: 

𝑇𝛽
𝛼 =

𝜕𝑦𝛼

𝜕𝑥𝑖
𝜕𝑥𝑗

𝜕𝑦𝛽
𝑇𝑗
𝑖 (2.39) 

At this point, there is a clear pattern emerging from the equations, which is that raised indices 

of tensors transform like vector indices while lowered indices transform like dual vector indices. 

I will introduce now another important concept, which is the rank of the tensor. It is basically 

the number of vectors and dual vectors that the tensor acquires. In fact, scalars can be considered 

rank-0 tensors, vectors can be considered rank-1 tensors and matrices can be viewed as rank-2 

tensors. There is no upper limit to the number of vectors and dual vectors that a tensor can 

acquire. 

Now I will remark the reason why I decided to go through all of this explanation: 

Tensor equations look the same in all coordinate systems. 

As an example, we can consider the following equation: 

𝐺𝑗
𝑖 = 𝛾𝑇𝑗

𝑖 (2.40) 

where gamma is just a constant and G and T are rank-2 Tensors. Transforming the coordinates: 

𝑇𝛽
𝛼 =

𝜕𝑦𝛼

𝜕𝑥𝑖
𝜕𝑥𝑗

𝜕𝑦𝛽
𝑇𝑗
𝑖    (2.41) 

𝐺𝛽
𝛼 =

𝜕𝑦𝛼

𝜕𝑥𝑖
𝜕𝑥𝑗

𝜕𝑦𝛽
𝑇𝑗
𝑖 (2.42) 

𝜕𝑦𝛼

𝜕𝑥𝑖
𝜕𝑥𝑗

𝜕𝑦𝛽
𝐺𝑗
𝑖 = 𝛾

𝜕𝑦𝛼

𝜕𝑥𝑖
𝜕𝑥𝑗

𝜕𝑦𝛽
𝑇𝑗
𝑖 (2.43) 

𝐺𝛽
𝛼 = 𝛾𝑇𝛽

𝛼 (2.44) 
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Having defined some basics in terms of Tensor Algebra, it is now the case to move forward and 

describe some properties of Tensor Calculus. The latter is a little bit trickier because, counter-

intuitively, partial derivatives of tensors do not transform like tensors. To show this claim, 

consider the following quantities:  

𝐴𝑗
𝑖 ≔

𝜕𝑣𝑖

𝜕𝑥𝑗
 (2.45) 

And then the counterpart in the coordinates 𝑦𝛼: 

𝐴𝛽
𝛼 =

𝜕𝑣𝛼

𝜕𝑦𝛽
 (2.46) 

If 𝐴𝑗
𝑖 and 𝐴𝛽

𝛼 are components of a tensor, they would be related by a tensor transformation law, 

as it was for the following: 

𝑇𝛽
𝛼 =

𝜕𝑦𝛼

𝜕𝑥𝑖
𝜕𝑥𝑗

𝜕𝑦𝛽
𝑇𝑗
𝑖 (2.47) 

However, this is not the case, in fact if I plug the formula 𝑣𝛼 =
𝜕𝑦𝛼

𝜕𝑥𝑖
𝑣𝑖 into 𝐴𝛽

𝛼, I get: 

𝐴𝛽
𝛼 =

𝜕

𝜕𝑦𝛽
(
𝜕𝑦𝛼

𝜕𝑥𝑖
𝑣𝑖) = 

=
𝜕𝑥𝑗

𝜕𝑦𝛽
𝜕

𝜕𝑥𝑗
(
𝜕𝑦𝛼

𝜕𝑥𝑖
𝑣𝑖) =  

𝜕𝑥𝑗

𝜕𝑦𝛽
𝜕𝑦𝛼

𝜕𝑥𝑖
𝐴𝑗
𝑖 +

𝜕𝑥𝑗

𝜕𝑦𝛽
𝜕2𝑦𝛼

𝜕𝑥𝑗𝜕𝑥𝑖
𝑣𝑖 

 

 

(2.48) 

 

The formula above looks very similar to the tensor transformation law but there is an additional 

component. We could place constraints on the function 𝑦𝛼(𝑥𝛼) to make the second derivative 

of y equal to zero, but it is better to look for some correction term so that we do not need to add 

constraints. One way to do it is to construct a new derivative operator that reduces to the usual 

partial derivative in Cartesian coordinates. Since the term that we want to eliminate depends on 

v, we would like something that depends on v and that makes the additional term vanish when 

we derive. This leads to the definition of the so called covariant derivative which acts on v in 

the following way: 

∇𝑗𝑣
𝑖 =

𝜕𝑣𝑖

𝜕𝑥𝑗
+ Γ𝑗𝑘

𝑖 𝑣𝑘 (2.49) 

Capital gamma stands for the so called connection coefficients. The trick is that the connection 

coefficients do not transform as tensors, instead they transform as: 
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Γ𝛽𝛾
𝛼 = (

𝛿𝑦𝛼

𝛿𝑥𝑖
𝛿𝑥𝑗

𝛿𝑦𝛽
𝛿𝑥𝑘

𝛿𝑦𝛾
)Γ𝑗𝑘

𝑖 − (
𝛿𝑥𝑗

𝛿𝑦𝛽
𝛿2𝑦𝛼

𝛿𝑥𝑗𝛿𝑥𝑖
)
𝛿𝑥𝑖

𝛿𝑦𝛾
 (2.50) 

It is immediate to notice how the negative term is exactly what we need to make the additional 

term in the tensor derivative formula disappear. All that is needed is that Γ𝑗𝑘
𝑖 = 0. Everything 

can be generalized to an arbitrarily high number of correction terms, in fact I will present the 

covariant derivative formula for a rank-3 tensor: 

∇𝑘𝑄
𝑖𝑗𝑙 =

𝛿𝑄𝑖𝑗𝑙

𝛿𝑥𝑘
+ Γ𝑘𝑚

𝑖 𝑄𝑚𝑗𝑙 + Γ𝑘𝑚
𝑗
𝑄𝑖𝑚𝑙 + Γ𝑘𝑚

𝑙 𝑄𝑖𝑗𝑚 (2.51) 

So far, I have only defined the covariant derivative in the case of vectors, now I must define the 

covariant derivative for dual vectors, which I expect to be as: 

∇𝑘𝑤𝑖 =
𝛿𝑤𝑖
𝛿𝑥𝑘

+ 𝐶𝑘𝑖
𝑗
𝑤𝑗 (2.52) 

Recall that the quantity 𝑣𝑖𝑤𝑖 is a scalr. The covariant derivative acting on a scalar is just the 

partial derivative: 

∇𝑘(𝑣
𝑖𝑤𝑖) =

𝜕(𝑣𝑖𝑤𝑖)

𝜕𝑥𝑘
= 𝑤𝑖

𝜕𝑣𝑖

𝜕𝑥𝑘
+ 𝑣𝑖

𝜕𝑤𝑖
𝜕𝑥𝑘

 (2.53) 

where the product rule has been used in the second equality. Now a good definition for a 

derivative operator should respect the Leibniz rule, so I want the covariant derivative for dual 

vectors to be consistent with the following equation: 

∇𝑘(𝑣
𝑖𝑤𝑖) = 𝑣

𝑖∇𝑘𝑤𝑖 + 𝑤𝑖∇𝑘𝑣
𝑖    (2.54) 

 

From which I can derive the following: 

∇𝑘(𝑣
𝑖𝑤𝑖) − ∇𝑘(𝑣

𝑖𝑤𝑖) = 𝑤𝑖Γ𝑘𝑗
𝑖 𝑣𝑗 + 𝑣𝑗𝐶𝑘𝑗

𝑖 𝑤𝑖 = 0    (2.55) 

For the latter to be true, I require that Γ𝑘𝑗
𝑖 = −𝐶𝑘𝑗

𝑖 , which gives me the formula for the covariant 

derivative of dual vectors: 

∇𝑘𝑤𝑖 =
𝜕𝑤𝑖
𝜕𝑥𝑘

− Γ𝑘𝑖
𝑗
𝑤𝑗 (2.56) 

Then, as before, one can infer the next terms for higher ranks.  
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What should be clear now is that the covariant derivative of a tensor transforms as a tensor, 

which means that we can write derivatives in a form that looks the same in all the coordinate 

systems. 

Now that I have given some introductory notions on tensors, I will proceed and review several 

methodologies for their manipulation. The majority of what I am going to expose in the next 

lines is available on the paper by Tamara G. Kolda, Brett W. Bader. [2009]. As I mentioned 

earlier, this was a fundamental starting point for this work because the authors did a tremendous 

job in acquiring and storing in one single paper the various methodologies, giving a 

comprehensive view of the topic. Also some pictures and examples are borrowed from the same 

paper.  

Now I will be a little more formal, because the topic requires it. A tensor is a multidimensional 

array. More formally, an N-way or Nth-order tensor is an element of the tensor product of N 

vector spaces, each of which has its own coordinate system. The usability of tensor is extensive 

and several authors have taken advantage of them. Fields such as psychometrics and 

chemometrics have been the first to use them and since then a great deal of interest spawned 

among several other communities, such as the signal processing one, or the data mining field 

of research. For a complete overview for the literature, there is an extensive list of papers, theses 

and books in the references section of Kolda and Bader [2009], even of older publications which 

are hard to find. Another preliminary remark to make is that now I will provide some additional 

notation, so that I can switch to something less heavy and more readable with respect to what I 

have used so far. Starting from the very definition, every tensor has an order (or rank, in some 

papers) which is just the number of dimensions that it has. Even scalars can be considered 

particular cases of tensors, because they are rank-0 tensors. In the following lines, I will use the 

boldface lowercase letter to indicate vectors (or rank-1 tensors), capitalized boldface letters for 

matrixes (or rank-2 tensors, even though an order-2 tensor would be more appropriate, to avoid 

confusion with the concept of the maximum number of linearly independent columns of a 

matrix) and higher-order tensors will be directly specified. 

Scalars are denoted by lowercase letters, e.g., “a”. The i-th entry of a vector a is denoted by an, 

element (i, j) of a matrix A is denoted by 𝑎𝑖𝑗, and element (i, j, k) of a third-order tensor X is 

denoted by 𝑥𝑖𝑗𝑘. Indices typically range from 1 to their capital version, e.g., i = 1,...,I. The nth 

element in a sequence is denoted by a superscript in parentheses, e.g., A(n) denotes the n-th 

matrix in a sequence. Subarrays are just subsets of indexes. The classical example is a column 

or a row for a matrix. Fibers are a little bit trickier, because they are defined by fixing every 
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index but one and are the higher order equivalent of matrix rows and columns. Slices are the 

two-dimensional sections of a tensor, defined by fixing all but two indexes. As it is possible for 

a matrix or a vector, one can compute the norm of a tensor by summing the squares of all of its 

elements and then taking the square root of the result. Squaring the norm is equal to computing 

the inner product of a tensor with itself. From now on I will refer to the number of dimensions 

as order of the tensor, because I will introduce the nth order rank-1 tensor: 

𝑿 =  𝑎1  ∘  𝑎2 ∘ ···∘  𝑎𝑁    (2.57)   

So, for example X = a ◦ b ◦ c is a third-order rank-one tensor.  

 

Fig. 1 fibers for each mode of a 3-way Tensor (Kolda and Balder [2009]) 

 

 

Fig. 2 slices of a 3-way tensor (Kolda and Balder [2009]) 

 

Another property that tensors can have is symmetry, which can be total or partial, according to 

the number of modes. If all the modes are symmetric then the symmetry is defined as 
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supersymmetry while if two or more modes are symmetric then it is just called symmetry. The 

property of supersymmetry is of three way tensors and is found when any permutation of the 

indexes does not impact the elements of the tensor. A tensor can also be diagonal, if the elements 

on the diagonal are different from zero. It is best explained with a picture\:  

 

Fig. 3 Superdiagonal 3-way Tensor (Kolda and Balder [2009]) 

 

𝐴 𝑡𝑒𝑛𝑠𝑜𝑟 𝑋 𝜖 𝑅𝐼1𝑥𝐼2𝑥…𝑥𝐼𝑘  𝑖𝑠 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑖𝑓 𝑥𝑖1𝑖2…𝑖𝑘 ≠ 0 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑖1 = 𝑖2 = ⋯ = 𝑖𝑘 

There is also the process of matricization, also known as unfolding or flattening, where the 

elements of the tensor are rearranged into a matrix. This can be done for any order tensor. The 

notation is a bit clunky so an example best describes this element. Tensor element (𝑖1, 𝑖2,...,𝑖𝑁) 

maps to matrix element (𝑖𝑛, j), where: 

𝑗 = 1 +∑(𝑖𝑘 − 1)𝐽𝑘  𝑤𝑖𝑡ℎ 𝐽𝑘 = ∏ 𝐼𝑚

𝑘−1

𝑚=1
𝑚≠𝑛

𝑁

𝑘=1
𝑘≠𝑛

 (2.58) 

The concept is easier to understand with an example. Let the frontal slices of the tensor X ∈

𝑅3×4×2 be 

𝑋1 = (
1 4 7 10
2 5
3 6

8 11
9 12

)  𝑎𝑛𝑑 𝑋2 = (
13 16 19 22
14 17
15 18

20 23
21 24

) 

Then the three mode-n unfoldings are: 

𝑋(1) = (
1 4 7 10 13 16 19 22
2 5
3 6

8 11 14 17 20 23
9 12 15 18 21 24

) 

𝑋(2) = (

1 2
4 5

3 13 14 15
6 16 17 18

7 8
10 11

9 19 20 21
12 22 23 24

) 
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𝑋(3) = (
1 2 3 4 5 … 8 9 10 11 12

13 14 15 16 17 … 20 21 22 23 24
) 

Of course there is also the process of vectorizing a tensor, which is very intuitive, after having 

seen the process of unfolding. 

As it is done for matrixes and vectors, also tensors can be multiplied together. The mindset to 

have is the same of matrix multiplication: we are used to think of matrices as linear operators 

that can be multiplied either on the right or on the left, provided that dimensions agree; with 

tensor we have the same thing but now there are other ways to interact with this linear object 

and that is why we speak of n-Mode product. According to the mode in interest, the product is 

defined as the following: 

(𝑋 ×̅𝑛  𝑣)𝑖1…𝑖𝑛−1𝑖𝑛+1…𝑖𝑁 = ∑ 𝑥𝑖1𝑖2…𝑖𝑁𝑣𝑖𝑛

𝐼𝑛

𝑖𝑛=1

 (2.59) 

This concept is crucial when considering the change of basis in the case when a tensor defines 

a multilinear operator.  

A fundamental concept in linear algebra is the fact that matrix multiplication has been defined 

in several ways according to the purpose. That is why we speak of Kronecker, Khatri-Rao and 

Hadamard products, which I will briefly define, before moving on.  

The Kronecker product is defined as 𝐴⨂𝐵 where A is IxJ and B is KxL. The result is a matrix 

of dimensions (IK)x(JL). An example should clarify everything: 

𝐴⨂𝐵 = (

𝑎11𝐵 𝑎12𝐵
𝑎21𝐵 𝑎22𝐵

⋯
𝑎1𝐽𝐵
𝑎2𝐽

⋮ ⋱ ⋮
𝑎𝐼1𝐵 𝑎𝐼2𝐵 ⋯ 𝑎𝐼𝐽𝐵

) = 

= (𝑎1⨂𝑏1  𝑎1⨂𝑏2  ∙∙∙  𝑎𝐽⨂𝑏𝐿−1 𝑎𝐽⨂𝑏𝐿)    

 

 

(2.60) 

Then there is the Khatri-Rao product, or “matching columnwise” Kronecker product. Given 

matrices 𝐴 ∈ 𝑅𝐼𝑥𝐾 𝑎𝑛𝑑 𝐵 ∈ 𝑅𝐽𝑥𝐾 then the Khatri-Rao procudt is denoted by 𝐴⨀𝐵. The 

resulting matrix will have dimensions (IJ)xK: 

𝐴⨀𝐵 = (𝑎1⨂𝑏1 𝑎2⨂𝑏2… 𝑎𝐾⨂𝑏𝐾) (2.61) 

There is a particular case when the Khatri-Rao and the Kronecker products are equal, and that 

is when the matrices are vectors. Finally, the Hadamard product is the elementwise matrix 

product. Given matrices A and B, both of size IxJ, the Hadamard product is denoted as A*B 

and the result is: 
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𝐴 ∗ 𝐵 = 

(

 

𝑎11𝑏11
𝑎21𝑏21

𝑎12𝑏12
𝑎22𝑏22

⋯
𝑎1𝐽𝑏1𝐽
𝑎2𝐽𝑏2𝐽

⋮ ⋱ ⋮
𝑎𝐼1𝑏𝐼1 𝑎𝐼2𝑏𝐼2 ⋯ 𝑎𝐼𝐽𝐵𝐼𝐽)

  

 

(2.62) 

Since the main difficulty of using Tensors is the potential higher dimensionality of problems, 

many times it is mandatory to use a dimensionality reduction technique. There are 

fundamentally two main tensor decompositions: the CP and the Tucker decomposition. CP 

stands for CANDECOMP/PARAFAC, which themselves stand for Canonical (CAN) 

Decomposition (DECOMP) and Parallel (PARA) Factors (FAC) and the Tucker decomposition 

from the scholar who formalized it. They both have strengths and weaknesses and the choice 

of which to use, as usual, comes down to the objective that the user is pursuing. It will become 

clearer as I explain further down the line; for what concerns this work, I have used the Tucker 

decomposition, which is why for the sake of completeness, I will speak about the CP 

decomposition without going too much into detail and then move on to the Tucker 

decomposition.  

 

Fig. 4 CP Decomposition of a 3-way tensor (Kolda and Balder [2009]) 

 

The CP decomposition factorizes a tensor into a sum of order-1 (or rank-1) tensors. For 

example: 

𝑋 ≈ [[𝐴, 𝐵, 𝐶]] ≡  ∑𝑎𝑟 ∘ 𝑏𝑟 ∘ 𝑐𝑟
𝑅

𝑟=1

 

 

(2.63) 

which is true for a three-way tensor (but it can be generalized to an nth-order tensor, it is just a 

matter to take into account all dimensions).  

An exact (and ideal) CP decomposition would be the rank decomposition. Indeed, in analogy 

with the rank of a matrix, the rank of a tensor is the smallest number of rank-1 tensors that 

generate X as their sum. The exact decomposition is when R (the upper limit of the sum) = 

rank(X). The main difference with respect to the rank of a matrix is that a tensor can have a 
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different rank over ℝ and ℂ. However, the main issue with finding the rank of a tensor is that 

the problem is NP-hard, therefore there is no specific algorithm to calculate it. In fact several 

ranks have been empirically determined and the tables of fig.5 and fig. 6 below report some of 

them: 

 

Fig. 5 maximum ranks for some specific tensors as in Krustal (1989) and J’JaJ’a (1984) 

 

 

Fig. 6 Typical rank by tensor size as in Ten Berge (2000), Kruskal (1983), Ten Berge (1991), Ten Berge and 

Kiers (1999) 

What is done in practice is basically trying to fit several rank-R decompositions and picking the 

best. The nice thing about the CP decomposition is that it benefits of the uniqueness property. 

We will see that the Tucker decomposition is not unique but I will explain later why I preferred 

it. The uniqueness of the decomposition is a nice property to have with respect to the matrix 

case, since the matrix decomposition is often not unique. In fact, if we consider a matrix Y, its 

Singular Value Decomposition (of which the CP is the equivalent for tensors) or SVD is: 

𝑌 =  𝐴𝐵𝑇  =  ∑𝑎𝑟

𝑅

𝑟=1

° 𝑏𝑟 
 

(2.64) 

where A = UΣ and B=V. I can write Y=UΣ𝑉𝑇. It is equally valid to choose some B=V𝑃 and 

A=UΣ𝑃 with P being an orthogonal, squared matrix. So the only reason why we have a unique 
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SVD for a matrix is because we impose the orthogonality constraint but it is not necessary in 

principle. Instead the unique CP decomposition is available under much weaker conditions. The 

exception is when considering the elementary indeterminancies of scaling and permutation of 

the rank-1 tensors. The first one refers to the fact that for any RxR permutation matrix the CP 

stays the same, the second deals with the fact that, as long as the scaling factors of the rank-1 

tensors sum up to one, the CP is unique for that specific tensor. On the other hand, one may 

notice that all of this conditions are sufficient but not necessary to the existence of the CP 

decomposition; several authors have faced the problem and provided necessary conditions, all 

of which can be found in the paper by Kolda and Bader [2009]. One of the weaknesses of the 

CP is that there may not be a best rank-k approximation of a tensor. For matrices, one can 

always find the best rank-k approximation of the matrix A, which will be the matrix that 

minimizes the norm of the following difference: 

||𝐴 − 𝐵|| (2.65) 

it can be shown that the result is the matrix B which is composed by the first k factors of the 

SVD of A, where k is the rank of A. This is not true for tensors and that is why there could be 

degenerate tensors. Now I will indicate the problem of computing the CP decomposition and 

then I will indicate an algorithm to compute it. Again, I have not used it but for the sake of 

completeness, I will decided to talk about it. 

Let X 𝜖 𝑅𝐼𝑥𝐽𝑥𝐾 be a tensor of order three. The goal is to find the R rank-1 tensors that best 

approximate X, in other words: 

min
𝑋̂
||𝑋 − 𝑋̂||  𝑤𝑖𝑡ℎ 𝑋̂ ==∑𝜆𝑟𝑎𝑟 ∘ 𝑏𝑟 ∘ 𝑐𝑟 = [[𝝀; 𝑨, 𝑩, 𝑪]]

𝑅

𝑟=1

    

 

 (2.66) 

where lambda is a normalizing vector, since it is very common to let all the vectors have length 

equal to 1. As mentioned before, there is no unique way to compute the CP, but the leading and 

most used technique is to use the ALS method or Alternating Least Squares. It is called 

Alternating because it is very hard to find all three components simultaneously, so what is done 

is fixing two of the components and then finding the other in each iteration. For example, fixing 

A, the problem becomes: 

min
𝐴̂
||𝑋(1) − 𝐴̂(𝐶 ⊙ 𝐵)𝑇||𝐹    (2.67) 
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which is just the linear least squares problem. In the minimization problem,  𝐴̂ = 𝐴 ∙ 𝑑𝑖𝑎𝑔(𝐴) 

and 𝑋(1) just refers to the first frontal slice of the original tensor. The optimal solution is given 

by: 

𝐴̂ = 𝑋(1)[(𝐶⨀𝐵)
𝑇]† (2.68) 

which can be rewritten as: 

𝐴̂ = 𝑋(1)(𝐶⨀𝐵)(𝐶
𝑇𝐶 ∗ 𝐵𝑇𝐵)† (2.69) 

due to the property of the form of the Khatri-Rao pseudo-inverse matrix. After this, the same is 

done for all the other matrices, until some conditions are met, such as maximum number of 

iterations, little to no improvement in the objective function, and others. The advantage is that 

during each iteration the pseudo-inverse that has to be computed is of a squared matrix instead 

of a IJxK matrix. Be aware, however, of numerical ill-conditioning, which can lead to 

unexpected results. Finally, A can be recovered by multiplying on the left the inverse of the 

diagonalization of the vector 𝜆. In other words, let 𝜆 = ||𝑎𝑟̂|| 𝑎𝑛𝑑 𝑎𝑟 =
𝑎𝑟̂

𝜆𝑟
 for r=1, … , R. The 

literature has tried to find alternative ways to the computation of the CP decomposition, trying 

to avoid the usage of ALS, but it still remains the best way. The following is the algorithm to 

compute the CP decomposition of an N-way tensor: 

 

Fig. 7 CANDECOM/PARAFAC through Alternating Least Squares algorithm from Kolda and Balder [2009] 

Now I will move on to talk about the Tucker Decomposition and it will be immediately clear 

why I chose this approach instead of the CANDECOMP/PARAFAC. The Tucker 

decomposition is known under many names but it is a form of higher order Principal 

Component Analysis (or HO-PCA). It decomposes a tensor into a core tensor and as many 

matrices as there are modes, since the core tensor is multiplied (or transformed) by a matrix for 

each mode. The typical Tucker decomposition look like the following: 
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𝑋 ≈ 𝐺 ×1 𝐴 ×2 𝐵 ×3 𝐶

=∑∑∑𝑔𝑝𝑞𝑟𝑎𝑝 ∘ 𝑏𝑞 ∘ 𝑐𝑟 = [[𝑮; 𝑨, 𝑩, 𝑪]]

𝑅

𝑟=1

𝑄

𝑞=1

𝑃

𝑝=1

 

 

(2.70) 

G is the core tensor while A, B and C are the matrices corresponding to the first, second and 

third mode, respectively. A, B and C are also called factor matrices and can be thought as the 

principal components of each mode while the core tensor and its entries show the level of 

interaction between different components.  

 

Fig. 8 Tucker decomposition (Kolda and Balder [2009]) 

It is clear now that the Tucker decomposition was an obvious choice since the scope of this 

work was to find how several sources of information interact with each other when pricing 

equity stocks. The core tensor finds exactly that information. Most fitting algorithms to find the 

Tucker decomposition assume that the columns in the factor matrices are orthogonal but this is 

not required which allows me to notice that CP can be seen as a special case of Tucker. Indeed, 

one could think of CP as the case where the core tensor is super diagonal and the number of 

columns in all the factor matrices is the same. The example that I have provided uses an order-

three tensor but this is not required and the problem can be generalized to include N-way 

tensors. It is worth noting that there are two versions of the Tucker decomposition: Tucker1 and 

Tucker2. Tucker1 assumes that one of the factor matrices is the identity matrix while Tucker2 

assumes that two factors are both the identity matrix which corresponds to the standard two-

dimensional PCA, because I can write in matrix form the tensor as: 

𝑋(1) = 𝐴𝐺(1) (2.71) 

where X is the first frontal slice of the tensor. Now I will proceed to illustrate how one can 

compute the Tucker decomposition, since there are several ways to do it. The methods that 

Tucker himself introduced in his paper back in Tucker [1966] were three, all of which with the 

basic idea that you could find the leading n components that best explained the variability in 
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each mode, considering such finding independent with respect to all the other components in 

the other modes. Today such method is known as HOSVD, or Higher Order Singular Value 

Decomposition. The following algorithm illustrates how to compute it: 

 

Fig. 9 Higher Order Singular Value Decomposition to compute the Tucker Decomposition  

(Kolda and Balder [2009])  

It is very easy to see that the algorithm computes the R leading left singular values of each 

frontal slice of the tensor. Then it returns the core tensor and all the matrices with the singular 

values of all the modes. After this method, De Lathauwer, De Moor and Vanderwalle developed 

a much more efficient procedure with respect to the previous one that I have stated. Such 

procedure was called HOOI, or Higher Order Orthogonal Iteration. In this sense, I could define 

the problem as: 

 

min
𝐺,𝐴(1),…,𝐴(𝑁)

||𝑋 − [[𝑮; 𝑨(1), 𝑨(2), … , 𝑨(𝑁)]]||     

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐺 ∈ 𝑅𝑅1×𝑅2×…×𝑅𝑁 , 𝐴(𝑛)

∈ 𝑅𝐼𝑛×𝑅𝑛𝑎𝑛𝑑 𝑐𝑜𝑙𝑢𝑚𝑛𝑤𝑖𝑠𝑒 𝑜𝑟𝑡ℎ𝑜𝑔𝑜𝑛𝑎𝑙 𝑓𝑜𝑟 𝑛

= 1,…𝑁 

 

 

 

(2.72) 

By rewriting the above objective function in vectorized form as: 

||𝑣𝑒𝑐(𝑋) − (𝐴(𝑁)⊗𝐴(𝑁−1)⊗…⊗𝐴(1))𝑣𝑒𝑐(𝐺)||  

(2.73) 

It is easy to see that the core tensor G must have the following form: 

𝐺 = 𝑋 ×1 𝐴
(1)𝑇 ×2 𝐴

(2)𝑇 ×3 …×𝑁 𝐴
(𝑁)𝑇 (2.74) 

This is because the minimization of a norm implies that the lowest point that the function can 

reach is zero. At this point, we can rewrite the square of the objective function as: 
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||𝑋 − [[𝐺; 𝑨(1), 𝑨(2), … , 𝑨(𝑁)]]||
2

= 

= ||𝑋||
2
− 2 〈𝑋, [[𝐺; 𝑨(1), 𝑨(2), … , 𝑨(𝑁)]]〉

+ ||[[𝐺; 𝑨(1), 𝑨(2), … , 𝑨(𝑁)]]||
2

= 

= ||𝑋||
2
− 2〈𝑋 ×1 𝑨

(1)𝑇…×𝑁 𝑨
(𝑁)𝑇 , 𝐺〉 + ||𝐺||

2
= 

=  ||𝑋||
2
− 2〈𝐺, 𝐺〉+||𝐺||

2
= 

= ||𝑋||
2
− ||𝐺||

2
= 

              = ||𝑋||
2
− ||𝑋 ×1 𝑨

(1)𝑇 ×2 …×𝑁 𝑨
(𝑁)𝑇||2 

 

 

 

 

 

 

(2.75) 

This means that we can now use ALS to solve iteratively and compute the values for the A 

matrices. The squared norm of the tensor is constant so the problem of interest is the following: 

max
𝑨(𝑛)

||𝑋 ×1 𝑨
(1)𝑇 ×2 𝑨

(2)𝑇 ×3 …×𝑁 𝑨
(𝑁)𝑇||    

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑨(𝑛)

∈ 𝑅𝐼𝑛×𝑅𝑛  𝑎𝑛𝑑 𝑐𝑜𝑙𝑢𝑚𝑛𝑤𝑖𝑠𝑒 𝑜𝑟𝑡ℎ𝑜𝑔𝑜𝑛𝑎𝑙 

 

 

 

(2.76) 

which can be rewritten in matrix form as: 

||𝑨(𝑛)𝑇𝑊||𝑤𝑖𝑡ℎ 𝑊 = 𝑿(𝑛)(𝑨
(𝑁)…⨂𝑨(𝑛+1)⨂𝑨(𝑛−1)…⨂𝑨(1)) (2.77) 

The solution is just the SVD of W. It will surely converge to a solution, however there is no 

guarantee that it will be the global optimum nor that it will be a stationary point. Eldèn and 

Savas [2009] have developed a method that has fewer iterations than HOOI using a Newton-

Grassmann optimization strategy (which means applying derivative-based methods) for 

computing the Tucker decomposition of a three-way tensor. It is, however, more expensive in 

each iteration due to the computation of the Hessian but it ensures quadratic convergence 

numerically as the authors demonstrated. This method will converge to a stationary point. As 

mentioned before, the CP decomposition is unique; Tucker decomposition does not have such 

property, however I see it as an advantage because it means that one can choose the 

transformation such that the core tensor can be reduced to values equal to or very close to zero, 

leaving only the factor matrices. Superdiagonalization is impossible, as Tucker [1966] himself 

noticed in his original work, but it is possible to try and reduce as much as possible the elements 

of the core tensor. Finally, I will show the algorithm to compute the HOOI: 
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Fig. 10 Tucker Decomposition through Higher Order Orthogonal Iterations (Kolda and Balder [2009])  

The obvious remark is that I used this approach, instead of HOSVD alone, due to the need of 

computing the decomposition for a stream of three-dimensional tensors and that is also why I 

choose TensorLy as the Python package to perform the Tucker decomposition. As it is 

described in the paper that introduced this Python library, together with the online 

documentation of the library, they implement the HOOI to compute the Tucker decomposition. 

There are several other decompositions which are all mentioned in Kolda and Balder [2009] 

which are all somewhat related to the CP and Tucker, however I will not mention them here.  

One type of variant of both Tucker and CP decompositions are the NNCP and the NNTucker 

where NN stands for Non-Negative. Sometimes, it can be useful to impose the non-negativity 

constraint on the A matrices to improve readability of the results, as it is the case with 

greyscaled images. There are also some newer models that try to combine aspects of CP and 

Tucker decompositions, such as the work of De Almeida et. ot. [2006]. They try to express a 

tensor as a sum of lower rank Tucker tensors. For example: 

𝑋 ≈∑[[𝐺𝑟; 𝑨𝑟; 𝑩𝑟; 𝑪𝑟]]

𝑅

𝑟=1

 

 

   (2.78) 

 

A picture can be more explicative: 
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Fig. 11 Block decomposition of a third order tensor  

Here I will conclude the current section with some acknowledgements to the various workshop 

that are available online on YouTube, uploaded by the Institute of Applied Mathematics, which 

greatly helped in understanding better these concepts. Some of these conferences and 

workshops were even held by Tamara Kolda herself. Also, I would like to mention the great 

help coming from the workshops of the Institute for Machine Learning Research, hosted by 

Anima Anandkumar, who is one of the developers of the TensorLy library.   
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3: Data Description and Preprocessing  

In this section, I want to describe my data and to give some context of the various sources of 

such data, how it was gathered and finally preprocessed. The first thing to say is that my data 

comes from several sources which I aggregated through my code. Furthermore, I decided to use 

information coming from three separated types of data, borrowing the idea from the most 

relevant paper for this thesis which is the work of Qing Li et. ot. [2016]. They try to explain 

how an investor behaves, having at her disposal information coming from three different 

sources: quantitative data, such as the Fama and French risk factors, but also two types of textual 

data, which were a way to score the impact of rational information coming from news on 

investment decision and some way to capture the sentiment and the irrational behavior, 

especially through online posts. They performed their study on the Chinese market, however I 

tried to apply that methodology to the American market, specifically the first 100 companies 

by market capitalization of the Standard and Poor’s 500 equity index. Also, it was a little bit 

harder to find the data that I needed, while the authors were able to access huge datasets where 

some part of the preprocessing was already done. Following their example, I built a stream of 

tensors that had three modes, each mode representing a source of information. In particular, 

there was the firm-specific mode, which consisted of quantitative data, taken from the Eikon 

servers. My first attempt was to use monthly aggregated data but that option was quickly 

disbanded since the effect of news and online forums or social media posts have a very limited 

effect in time. Thanks to Professor Caporin, I was able to get a much higher frequency dataset, 

which consisted of the minute-by-minute values of the highest and lowest prices, together with 

the traded volume for the considered companies. The second mode of the tensors was the so 

called event-specific mode. It is well established and also particularly intuitive that news have 

an effect on the market. When the news comes out, professional traders already know what they 

contain and trade on the basis of it; they discount their preferences though this new information 

and try to adjust their behavior. This is basically the same thing that happens with posts, of 

which I will speak about in a second, but the key difference is that news represent the “hard 

truths”. They are not irrational sources of information but rather some proxy of the fundamental 

value and its changes, so it was a necessary addition to the information space. The third and last 

mode captures a different set of information coming from tweets. It is already established that 

many agents on the financial markets are not rational and they trade to entertain themselves or 

without a lot of knowledge or comprehension of what they are doing. There are also other 

people who are simply uninterested in the direction of the market and they do not trade for 

profit but because they have a specific need. Finally, there are some agents that trade on older 
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news, or more in general they are driven by emotions and are easily influenced by the mood 

swings of their peers which leads to contagion phenomena among such traders. To sum it up, 

many traders are not rational and are usually those who lose in the financial markets because 

experienced traders anticipate their moves or, in many cases, give into the same behavior 

themselves, generating intra-day trends and profit opportunities to be exploited. To capture such 

information, I decided to gather several tweets regarding the stocks that I have considered in 

my work and use them as inputs for my predictive model. The initial remark that I want to make 

is that I am not predicting the price in a dynamic way, but rather I am assuming market 

efficiency in each minute so that my model predicts a certain price and then I trade on the basis 

of the comparison with the actual price. As I mentioned earlier, the quantitative data was the 

easiest to find, since I had access to the Eikon database but also to Professor Caporin’s 

resources. In order to construct the firm-specific mode I initially gathered all the prices in an 

Excel spreadsheet where I proceeded to compute the average between the high and the low 

prices in each minute. After that, I used these prices to compute the Price to Earnings ratio (P\E) 

and the Price to Book ratio (P\B) and finally I multiplied the average price with the number of 

shares traded in each minute to obtain the Turnover by Volume. The reason why I chose these 

explicative variables relies on the fact that they are a proxy of the fundamentals of the firm, 

which are the primary source of information when deciding in which company to invest. One 

might say that they are the only information that you need when the time horizon of the 

investment is long, since all the information contained in the news and the tweets has already 

been discounted into the prices, which is why the monthly aggregated data was not suitable to 

my needs. By the way, the average price is my objective variable, I included it in the dataset to 

upload it in memory, but then I isolate it and store it in a dedicated object, there is no temporal 

dependency from previous times. I am aware of the fact that this in a really strong assumption 

to make, which is why there is a lot of room for improvement of this work. To manipulate the 

dataset I used the pandas python package, which is the go-to library for dataset manipulation. 

In the appendix of this work, there is the entire source code, indexed by the name of each script. 

I also avoided deleting the code that manipulated the monthly frequency dataset because I find 

informative just to look at the overall behavior in the past five years of the stocks that I have 

considered and also because I wanted to take advantage of the work made by Tummariello et. 

ot. [2003] that created the so called Planar Maximally Filtered Graph, or PMFG.  As I 

mentioned in the introduction, the increasing complexity of this world is reflect also in the more 

complex and yet elegant ways to simplify such complexity and visualize it. The economic 

environment is subject to this rule as well, one could even say that it has always been very 

complicated, however today we possess tools that can help us in overcoming challenges that 
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were previously unthinkable such as that of having an idea of all the possible linkages that 

might exist among firms and thus have an idea of some underlying structure to the system. By 

using the correlations among the prices of the firms that I have considered in my work, I was 

able to build the PMFG and thus visualize the underlying star-like structure that the economic 

system has. This is not something new and has been proven several times but I find fig.11 very 

informative: 

 

Fig. 11 The PMFG for the first 100 companies of the Standard and Poor’s 500, the data used is from the last 5 

years monthly aggregated prices 

As it was confirmed in other works, financial firms are not positioned in the center of the graph, 

but actually occupy marginal positions, as Wells Fargo and CO. shows. The central firms are 

basically two, Exxon mobile and International Bus.MCHS. It is clear that the centrality of this 

firms depends on how fundamental they are, since oil is the primary source of energy and it 

powers every machine of the other firms, while International Bus.MCHS is responsible for 

basically all the logistics and deliveries of goods on road in the US. The key point here is that 

this graph is preserving planarity (I cannot take out a subgraph without creating a “hole” in the 

original graph, not even a single node) while also ensuring that each node is linked to its 

neighbors. Depending on how long the lines are, the degree of how strong the connection is 
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between two firms changes. However, the firms that are linked to each other for some reason, 

even though they are not neighbors are captured by this graph. The algorithms to compute the 

PMFG are readily available on the web. On the other hand, the time frame that I have considered 

to build up my model goes from 17-08-2020 to 21-08-2020 and I have considered the trading 

hours from 9:30 to 16:00. This means that there are 420 observations in each day for a total of 

1950 observations. Besides the quantitative data, I also gathered qualitative data, specifically 

news headlines regarding the stocks that I have considered and tweets taken directly from 

Twitter as the source of the irrational information that generates the short term volatility in the 

market. Regarding the news headlines, I followed two approaches but eventually settled for the 

news headlines of each single company. My initial thought was to gather macroeconomic 

specific news from the Reuters website and so I did. However. I was not satisfied with the 

results, mainly because I was assuming that such news would affect all the firms, which is true, 

but I had no way to measure how much these news would impact each firm. I kept the code 

aside and decided to follow another route, which was to gather data for each firm specifically. 

That was possible thanks to the website finviz.com. It is easily accessible and I was able to 

design a scraper relatively easily. From there I gathered all the news that I needed for each 

company in the time frame that I was considering; indeed, finviz.com considers relevant only 

the last week news and discards older news which is assumed to be useless. The python libraries 

that can help when designing scrapers are various, the most famous is Beautiful Soup, which I 

have not used since it requires a more advanced knowledge of HTML and can help design 

scrapers on a lower level. What I have used is Selenium, which is available also for other 

programming languages, such as R. It allowed me to program my scraper in a higher level, just 

by proving to the parser the correct tag coming from the HTML source code of the webpage. It 

is relatively easy to learn how to create a very informal and goal-specific web scraper just by 

spending a little bit of time researching the web, which is another reason why I chose Python 

over other programming languages. Not only is it easy to use, but the resources to learn it and 

to apply it are readily available on the web and anyone can start to learn. Even if the Selenium 

library is very high level, it still retains a lot of versatility, as long as the class of the HTML 

webpage is properly specified, otherwise there are some workarounds to use but it can definitely 

get the job done. In the second script, called “better web scraping for news headlines”, I actually 

used a mixture of Beautiful Soup and Selenium to reach my goals, because Selenium was too 

constraining when trying to scrape the news from finviz.com. Another unfortunate obstacle was 

that finviz.com allows to search a company through its ticker; if you try to search by name, the 

website redirects to a list of pages that might be of interest, including articles among other 

things. To get to the actual webpage of the stock, where there is a conveniently placed list of 
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news, already divided by date, the research must be by ticker. Indeed, that is why I started to 

gather them in the very beginning of the script, because I had been using the names of the 

companies in the rest of the work. One thing that must be remarked is that the ticker was added 

by string addition to the url, which is in the very beginning of the code. Sometimes, you might 

encounter some pauses that I have added in the code, which slow it down by a huge factor, but 

it was necessary, otherwise the code would crash, since the cursor would not find the element 

specified due to the fact that the webpage was still loading. Also, later on, I applied some 

correction to the list of tickers, in particular I appended the last company that I had in my 

dataset, which is Ecolab, I removed the 3rd element, because I had no data for that stock. It was 

the type A stock of Google, which has “GOOGL” as ticker. This is the preferred stock of 

Google, which I have discarded and finally I added the letter “C” to the 91th element (because 

array indexing starts from 0), since the website where I gathered the tickers had some errors in 

it. Then the real deal starts. In order to use Beautiful Soup, one must create a Request object 

from the Request class and specify the type of user and the type of permission. The one that I 

have used is the most generic, which is accepted by every public website. Of course there are 

more advanced parameters that can be passed but I have yet to dive deeper into them. Once the 

code puts the request in place, then the server answers back with a response which is then 

opened and parsed as a HTML written content. From there, the code looks for a specific object 

which is the news table and stores the content of the table that I have specified for each company 

ticker in the list that has been fed to the for loop. At this stage, I then store everything into a 

dictionary, so that I can index the news to the ticker and then parse the relevant information that 

I want, starting from the news headline itself, then the minute and finally the date of when the 

article came out. Now that all the news have been correctly parsed and stored, the thing that 

remains to do is convert them in a format that can be fed to a mathematical model. The way to 

do that is offered by the techniques developed by the Natural Language Processing field of 

research. During the years there have been several methods developed to improve the 

interactions between man and machine, especially considering how a machine could understand 

natural language, or more properly speaking, how a machine could quickly convert natural 

language in numbers and then make a prediction on what the next word or phrase or paragraph 

even could be when interacting with a human. Furthermore, the research has been focused also 

on how all this textual data could be used to improve predictions or more generally to exploit 

the information within massive user-generated and online content, broadly speaking. In 

particular, I have used two methodologies to analyzed text in my work. For the news I have 

used the VADER lexicon while for the tweets I have used the TFIDF method. I will explain the 

latter in greater detail further down the section. VADER stands for Valence Aware Dictionary 
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for sEntiment Reasoning and it was developed by Hutto and Gilbert [2014]. It is capable of 

measuring the sentiment intensity, not only the sentiment of the text that it analyzes. The idea 

with VADER is to assign a value that is more continuous than the mere score of the sentiment. 

Indeed, VADER ranges from a lower limit of -1 which indicates a strongly negative piece to 

text, to 0 which indicates total neutrality to +1 which indicates a strongly positive text. It can 

take all possible real values in such interval, giving it the appropriate degree of freedom to 

illustrate the various positive or negative sentiments that investors can have regarding some 

news. An example should clarify: some news regarding Microsoft not meeting the analysts’ 

expectations is viewed as negative by investors whose portfolios are exposed to Microsoft, 

while investors that are more exposed to Apple might find the news positive, since they are 

competitors. Such diversity is captured in the fact that the score is more of a polarity of the 

sentiment. The idea behind how VADER works is very simple and it has been constantly 

updated since its release; it relies on a gold-standard list of lexical features which have been 

manually gathered by the authors through their own work or by relying on external agents who 

manually evaluated several sources of text to then teach the model how humans express a 

sentiment with more or less intensity, instead of just categorizing it as positive, negative or 

neutral. Another reason why I decided to apply VADER was because it was not yet used on 

financial news headlines but it generalized very well on several types of textual data. It was 

first thought for tweets but then it was extended to movie and product reviews and also New 

York Times articles. As for the news articles, I also followed two approaches: the first one was 

to divulge my attention to the primary source of tweets, that is why I wanted to scrape Twitter 

directly but sadly it could not be done with a simple user account. I registered to the Twitter 

developer program and obtain some credentials which allowed me access to the website. 

However, there were several limitations imposed to free developer accounts in various ways, 

such as the number of tweets that could be downloaded and the time frame that could be 

considered. Also there was no way to measure engagement of tweets, with engagement meaning 

the number of hearts given to a tweet, the number of retweets or the number of people that 

simply viewed the tweet. I had no way to control which tweets I was scraping, so I could be 

getting some tweets that were getting a lot of engagement while some others that were pretty 

much unknown to most of the users. The engagement was so important because the effect of 

irrational information is meaningful when it is contagious. If few people behave irrationally, 

the market simply kicks them out because they lose a lot. However, if a lot of people behave 

irrationally, then the effect on the market is significant and they are responsible for the short 

term volatility that allows the generation of small intra-day trends. Furthermore, when there are 

a lot of irrational agents, the rational traders do not behave rationally but actually give into the 
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same irrational behavior because it is convenient to do it, to push prices even further and realize 

even bigger profits as several studies have shown in the Behavioral Finance field. Such heard 

effect can be measured by how many people have read the tweets; not everyone will be a trader 

of course but the greater the visibility, the greater the chance that a trader saw that tweet and 

decided to trade based on that information, among other things. That is why I used another 

python library which is GetOldTweets3. This library did not have any limitations whatsoever, 

I could have potentially scraped tweets from a year ago and as many as I wanted, but the most 

useful method of the TweetCriteria class was setTopTweets, which allowed me to only scrape 

the most significant tweets in the period considered for each company. I also thought of using 

VADER on the tweets dataset but I preferred another method which is the Term Frequency 

Inverse Document Frequency, or TFIDF. The idea was to avoid any pollution of the data by 

adopting the same methodology of analysis of the two separated sources of information when 

training the regression model for tensors and price prediction, such as unexpected behavior or 

synergies which are not present in the underlying structure of the data but rather artificially 

introduced during the preprocessing phase. The idea behind the TFIDF method is to convert the 

text into arrays of ones and zeros if a specific feature is present into the dataset. Usually to each 

feature is assigned a word, with a maximum number of feature specified by the user according 

to one’s needs. I used 2000 features to be sure that every possible true sentiment conveyed in 

the tweets was correctly classified. However, the TFIDF methodology takes it a step further 

because it measures not only if a feature is present or not but also how many times such feature 

is present in the text and it also computes the inverse of the frequency in the document. Thanks 

to this smoothing factor, information conveyed by rarer features is prioritized while words that 

are very common receive less weight when creating the feature matrix. The way in which this 

is achieved is by creating a dictionary, some reference for the method to understand how to 

indicate the presence of a feature. In many studies, the authors create their own dictionary, 

especially when it comes to financial information; however, I was not using specifically 

financial tweets but rather some more generic tweets so I used the stopwords dictionary that 

comes with the python library NLTK, which stands for Natural Language ToolKit. This library 

is a must-have when it comes to implementing these methodologies for textual analysis. The 

stopwords dictionary is also very useful because it gathers all the words in the English language 

that are of common use, such as determinative and undeterminative articles, which do not add 

anything valuable to the text rather than making it grammatically correct. In this sense, they are 

useless for the extraction of the sentiment so they are voluntarily ignored when featurizing the 

text itself. There are also other elements that do not contribute to the classification of the tweets 

such as prefixes and suffixes, which can be removed through the Porter Stemmer algorithm; 
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however, I have not used it. Sometimes, the latter can lead to misleading classification, 

especially when it mistakes some “slang” or “lingo” in the tweets for elements that do not 

contribute to the sentiment while in fact they do. Another important thing to remember is that I 

did not have already classified tweets, so I needed to classify my dataset first and then perform 

the sentiment analysis. To do that I used another comprehensive dataset of tweets coming from 

GitHub, which was readily available and free to download. The dataset consisted of 15000 

reviews for airline companies in the US. After I parsed all the tweets with regular expressions, 

I used the entire dataset as a training ground for the Random Forest classifier and then I applied 

it to my tweets dataset which consisted of 20000 tweets. This is because I instructed the machine 

to gather the most significant 200 tweets in the time interval that I have specified for all the 100 

companies in the dataset. The main reason to use the Random Forest classifier is the so called 

“wisdom of the crowd”, however the best way to explain how the classifier works, I must 

explain the meaning of both words. It is random in the sense that it draws randomly tweets from 

the dataset that I want to classify and it is a forest in the sense that there are several decision 

trees that classify the tweets according to the dictionary previously created with the TFIDF 

methodology. However, the final sentiment extracted from the tweet (be it positive, negative or 

neutral) was the most frequent sentiment in the forest. By that I mean that each decision tree 

classifies the tweets with a specific sentiment, but the final result will be the one chosen by 

most of the trees, which is indeed the wisdom of the crowd effect. The actual number of trees 

that I used is equal to 100. Next thing that must be done was to construct the sentiment mode, 

since the mere presence of the tweets sentiments was not enough. I wanted to measure the 

intensity of each sentiment with respect to the less frequent so that I could create even more 

sources of variability and thus of valuable information. After the sentiment extraction, the most 

prevalent sentiment was negative, followed by neutral and then positive. This was expected in 

some way since the markets where experiencing a lot of volatility and the pandemic was still 

in its peak, people were still adjusting to the smart working necessity while  being stuck at 

home, deprived of holidays. To describe in further detail how I created the sentiment mode, I 

will refer to a similar methodology used in Qing Li et. ot. [2016], which followed from Qing 

Li et. ot. [2014]. The idea was to measure the either optimistic, neutral or pessimistic mood 

regarding a stock in the market together with the specific sentiment towards the single stock. In 

order to measure the sentiment of a specific stock, I applied the following formula: 

𝑀𝑝𝑜𝑠 =∑𝑛𝑢𝑚_𝑝𝑜𝑠𝑖 + 𝑇𝑖

𝐼

𝑖=0

 (3.1) 
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where T with subscript i stands for a time correction factor given by: 

𝑇 = 𝑒
−
𝑖
𝛽 (3.2) 

where I set beta to be equal to 20. The idea is to give more weight to more recent tweets, while 

older tweets become less and less informative as time passes. In the same way, I computed the 

neutral market mood and the negative market mood for each specific day that I have considered. 

Here the assumption that I am making is that the tweets are valid for the entire day, in the sense 

that I am not differentiating whether a tweets was posted in the morning or in the afternoon. 

Such a constraint could be relaxed and one could check if the are some better estimates. The 

reason why I set beta equal to 20 is because it seemed a good way to approximate the delay 

between posting, reception of the tweets and then the decision to trade according to them, as 

Qing Li et ot. [2016] showed. After having computed the moods of each stock, I also wanted 

some measure of how intense with respect to the other a sentiment was. That is why I defined 

the neutral intensity and the negative intensity as: 

𝐼𝑛𝑒𝑢𝑡 =
𝑀𝑛𝑒𝑢𝑡 −𝑀𝑝𝑜𝑠

𝑀𝑛𝑒𝑢𝑡 −𝑀𝑝𝑜𝑠
 (3.3) 

 

 

𝐼𝑛𝑒𝑔 =
𝑀𝑛𝑒𝑔 −𝑀𝑝𝑜𝑠

𝑀𝑛𝑒𝑔 +𝑀𝑝𝑜𝑠
 

 

 

(3.4) 

       

where “neg” stands for negative and “neut” stands for neutral. To end this section, I will just 

mention how I have arranged the data in order to load them into memory and then manipulate 

the objects with the code. After having performed all of these modifications and 

transformations, which I have discussed before, I loaded everything in an excel file, organizing 

the data so that all the variables were somewhat indexed by time and by company. This was 

done manually, moving cells around an Excel worksheet; I provide a snippet of such file as an 

example in figure 12, to understand what I mean: 
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Fig. 12 Snippet of the used dataset and its organization 

The idea was to have all the information a time t regarding company i very close, so that when 

reshaping the array in which I stored the loaded data I could still be able to trace back each cell 

by knowing its position in the array. The resulting matrix was 1950x1000. There are 1000 

columns because there are 10 variables regarding each of the 100 companies. After loading the 

data into memory, I needed to reshape the matrix to create the tensor stream. Before explaining 

how I did it, let me remark that the operation of reshaping the original matrix into a stream of 

tensors has nothing to do with Tensor algebra or any other kind of operation that could alter the 

original data. I am simply taking the data in each cell and repositioning it somewhere else, 

changing the organization of the data, rather than the structure. The best python library to 

manipulate arrays, matrices and to solve optimization and linear problems is numpy. There are 

several other libraries but numpy is the most famous and the choice for beginners who are 

approaching the python programming language when it comes to linear problems. Other 

choices include, but are not limited to, pytorch or TensorFlow. I chose numpy also because I 

used TensorLy, as I mentioned earlier, to perform the decompositions and prepare the ground 

for the tensor regression; TensorLy allows the user to choose the backend library to rely upon 

when performing calculations. The most known are all supported but numpy is the default one 

and I saw no reason to change it, mainly because the other libraries are usually used by those 

who have to tackle problems of much greater entity; my case was a little smaller in size so I 

was certain that I would have not had any problems in that aspect. Another small remark is that 

I want in no way penalize the numpy library, which is very efficient and crucial in several 

applications. The resulting reshaped array is four dimensional, in particular it was of dimensions 

1950x100x3x3. The reason is because I left unaltered the number of rows, since they indexed 

for time, then 100 is for each company and then the 3x3 subgroups have all the explanatory 

sources of variability (since 3x3=9=3 variables making up the firm-specific mode plus 5 making 

up the sentiment-specific mode plus 1 making up the event-specific mode). The missing column 

is the target variable, the average price, which I have stored in a separate object, in particular a 
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1950x100 matrix, where again the rows are indexed according to time and the columns are just 

the prices for all the 100 companies that I have considered.  
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Section 4: Global Dimensionality Reduction and Tensor Regression 

Now that I have described what I did to prepare my data, I can continue by explaining the 

methodology that I have used to create my regression model. The guidelines that I have 

followed were from the paper by Qing Li et ot. [2016]. A tensor-based information framework 

for predicting the stock market. Since they applied it to the Chinese stock market, I tried it on 

the US first 100 companies by market capitalization in the S&P 500 during the period from 17-

08-2020 to 21-08-2020. The model is separated in basically two algorithms that further prepare 

the data and then its output can be considered the theoretical price on which I will design a 

trading strategy.  

The first algorithm was defined of global dimensionality reduction, or GDR in short, which was 

necessary due to the high dimensionality of the problem. To remark the idea, the data has been 

now organized in 1950 tensors, each of dimension 100x3x3. I will now illustrate a picture which 

summarizes the scope of the model and the various logical passages, to help visualize what I 

am trying to accomplish. 

 

Fig. 13 Phases of the model that I want to build (Quan Li et. ot. [2016]) 

Picture 13 is pretty self-explanatory: starting from the information space, the investor gathers 

information from the previously mentioned three sources: firm specific, event specific and 

sentiment specific. The data organized in a tensor at each time t (which in my case is each 

minute) is then decomposed through a tensor decomposition technique, which is the Tucker 
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decomposition for the reasons that I have previously described. Then the tensor is reconstructed 

to build up the regressors, or the inputs for the tensor regression model. As I also mentioned 

previously, the assumption here is that the price at time t-1 has no impact on the price at time t. 

I will indicate now the algorithm and then provide the explanation of the various parts, together 

with the Mathematics behind it.  

 

 

Fig. 14 Global Dimensionality Reduction Algorithm (Quan Li et. ot. [2016]) 

As it is indicated at the very top pf the table, the inputs are the tensors that I have described 

earlier. The output that I expect is a stream of tensors where the dimensions will be lowered. I 

must say that in my work I found that the dimensions remained the same and this is due to my 

dataset being not very big, thus all the information could be exploited. Indeed, it was not a 

problem, since the GDR algorithm tries to reduce the dimensionality but the requisite is that 

𝐽𝑘 ≤ 𝐼𝑘. The output is defined “mapped” because the actual protagonist of this algorithm is the 

matrix V, computed along the way. This is the regularization matrix, or actually I should say 

the regularization matrices, since each mode has its own. The idea is that the geometric structure 

of the tensor must be preserved, or at least there needs to be some trace of it after the original 

information space is mapped to the new one that has a number of dimensions lower than or 

equal to the original one. The algorithm starts with the computation of the weighting matrix W 

that I will define properly later on, then a first loop starts according to the number of modes and 

for each mode every tensor is decomposed through the Tucker decomposition. At that point two 

matrices for each mode are computed. The matrix W was already initialized while the matrix 

D is a diagonal matrix where each value on the diagonal corresponds to the sum of the 
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corresponding column in the matrix W. Through D and W one can compute the matrix V by 

solving the following equation: 

(𝐷𝑈𝑘 −𝑊𝑈𝑘)𝑉𝑘 = 𝜆𝐷𝑈𝑘𝑉𝑘 (4.1) 

 

    

Solving for 𝑉𝑘: 

(𝐷𝑈𝑘 −𝑊𝑈𝑘)𝑉𝑘 −  𝜆𝐷𝑈𝑘𝑉𝑘 = 0 (4.2) 

(𝐷𝑈𝑘 − 𝜆𝐷𝑈𝑘 −𝑊𝑈𝑘)𝑉𝑘 = 0    (4.3) 

[(1 − 𝜆)𝐷𝑈𝑘 −𝑊𝑈𝑘]𝑉𝑘 = 0    (4.4) 

 

   

Where V in the last equality is just the nullspace of the matrix (1 − 𝜆)𝐷𝑈𝑘 −𝑊𝑘 which is 

known. The nullspace (or kernel for linear objects other than matrices) is defined as the values 

of V that make the previous equation equal to zero, avoiding the trivial solution of V=0. Finally, 

each tensor is recomposed by multiplying each factor matrix by the corresponding matrix V, 

for each mode. This makes the role of V even clearer since it means that V is the projection 

matrix for mode k, so that the new stream of tensors, with a lower dimensionality, can be 

obtained. This new stream of tensors becomes the input for the Tensor regression model. Now 

I will present the math behind the algorithm: 

The goal is to obtain the correction matrix for each factor, so to compute the matrix V (which 

has I rows and J columns) for each mode k, the objective function to minimize is: 

min
𝑉𝑘
𝐽(𝑉𝑘) =

∑ ∑ ||𝑉𝑘
𝑇𝑈𝑘

𝑖 − 𝑉𝑘
𝑇𝑈𝑘

𝑗
||𝑁

𝑗=1 𝑤𝑖,𝑗
2

𝑁
𝑖=1

∑ ||𝑉𝑘
𝑇𝑈𝑘

𝑖 ||2𝑁
𝑖=1 𝑑𝑖,𝑖

 

 

(4.5) 

 

    

In the function, 𝑤𝑖,𝑗 and 𝑑𝑖,𝑖 are elements coming from the matrix W and D respectively. W is 

an upper triangular matrix that measures the “proximity” of two tensors in the sequence. So if 

the tensor at time t is close to the tensor at time t-1, then the matrix W will have a 1 in that 

position, and zero otherwise. More specifically: 
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{1 𝑖𝑓 𝑖 ≤ 𝑗 𝑎𝑚𝑑
|𝑦𝑖 − 𝑦𝑗|

𝑦𝑖
≤ 5%

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

 

The matrix D, on the other hand is a diagonal matrix with the sums of the columns of W as 

elements of the diagonal. It is immediate to see how the entire function is designed to 

accomplish two objectives, the first one is to obtain a correction matrix that is able to project in 

the new space spanned by the columns of V without losing too much information in the process. 

In some sense the goal is to maximize the variance as the matrix is projecting the information 

on the lower dimensional subspace. Assuming that 𝑉𝑘
𝑇𝑈𝑘

𝑖  is a random variable with mean zero 

and estimating the probabilities using spectral graph theory from the matrix D (as in Chung 

[1997]), the denominator is exactly the variance. Minimizing the reciprocal of the variance 

means to maximize the variance itself, so that the projection is as informative as possible. The 

other goal is to create a correction factor that is also able to capture the dynamic connections 

among different tensors. The factors matrices can incorporate by themselves the intrinsic 

connections within the modes, the core tensor can incorporate the relationships between the 

modes but there would be no way to find the relationships between two contiguous tensors. The 

matrix V does exactly that but overcorrection is avoided thanks to the fact that only the tensors 

that are close enough contribute to the formation of the correction matrix. Such closeness is 

measured by the elements of the matrix W, which I remind is designed as above to do exactly 

that. At this point let me define 𝑉𝑘
𝑇𝑈𝑘

𝑖 = 𝐴𝑖, so that: 
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𝐽(𝑉) =  
∑ ∑ ||𝐴𝑖 − 𝐴𝑗||𝑁

𝑗=1

2

𝑤𝑖,𝑖
𝑁
𝑖=1

∑ ||𝐴𝑖||𝑁
𝑖=1

2
𝑑𝑖,𝑖

= 

=
∑ ∑ 𝑡𝑟𝑎𝑐𝑒(𝐴𝑖 − 𝐴𝑖)(𝐴𝑖 − 𝐴𝑗)

𝑇
𝑤𝑖,𝑗

𝑁
𝑗=𝑖

𝑁
𝑖=1

∑ 𝑡𝑟𝑎𝑐𝑒(𝐴𝐴𝑖𝑇)𝑑𝑖,𝑖
𝑁
𝑖

= 

=
∑ ∑ 𝑡𝑟𝑎𝑐𝑒(𝐴𝑖𝐴𝑖𝑇 + 𝐴𝑗𝐴𝑗𝑇 − 𝐴𝑖𝐴𝑗𝑇 − 𝐴𝑗𝐴𝑖𝑇)𝑤𝑖,𝑗

𝑁
𝑗=𝑖

𝑁
𝑖=1

…
= 

=
𝑡𝑟𝑎𝑐𝑒(𝐴1𝐴1𝑇 ∑ 𝑤1,𝑗 + 𝐴

2𝐴2𝑇 ∑ 𝑤2,𝑗 …+ 𝐴
𝑁𝐴𝑁𝑇 ∑ 𝑤𝑁,𝑗

𝑁
𝑗=𝑁 − ∑ ∑ 𝐴𝑖𝐴𝑗𝑇𝑤𝑖,𝑗

𝑁
𝑗=1

𝑁
𝑖=1

𝑁
𝑗=2

𝑁
𝑗=1

𝑡𝑟𝑎𝑐𝑒(∑ 𝐴𝐴𝑖𝑇𝑑𝑖,𝑖
𝑁
𝑖 )

 

=
𝑡𝑟𝑎𝑐𝑒(∑ 𝐴𝑖𝐴𝑖𝑇𝑑𝑖,𝑖 − ∑ ∑ 𝐴𝑖𝐴𝑗𝑇𝑤𝑖,𝑗

𝑁
𝑗=𝑖

𝑁
𝑖=1

𝑁
𝑖=1 )

𝑡𝑟𝑎𝑐𝑒(∑ 𝐴𝐴𝑖𝑇𝑑𝑖,𝑖
𝑁
𝑖 )

                                  (4.6) 

 

 

 

 

 

 

 

 

 

 

 

The key passage is the third one, where the problem is simplified thanks to the property of the 

trace of a square matrix, or more precisely, the following property: 

𝑡𝑟𝑎𝑐𝑒(𝐴𝑇𝐵) = 𝑡𝑟𝑎𝑐𝑒(𝐴𝐵𝑇)    (4.7) 

 

where the dimensions of A and B must be such that the result is a square matrix. It is then 

possible to interchange the sum operators and the trace operator since they are both linear, to 

recognize the structure of the matrix D, which I have mentioned earlier. Substituting the original 

values for A and defining 𝐷𝑈𝑘 = ∑ 𝑑𝑖,𝑖𝑈
𝑖𝑈𝑖𝑇𝑁

𝑖=1  and 𝑊𝑈𝑘 = ∑ ∑ 𝑤𝑖,𝑖𝑈
𝑖𝑈𝑗𝑇𝑁

𝑗=1
𝑁
𝑖=1 : 

𝐽(𝑉) =
𝑡𝑟𝑎𝑐𝑒(∑ 𝑉𝑇𝑈𝑖𝑈𝑖𝑇𝑉𝑑𝑖,𝑖 −∑ ∑ 𝑉𝑇𝑈𝑖𝑈𝑗𝑇𝑉𝑤𝑖,𝑗

𝑁
𝑗=𝑖

𝑁
𝑖=1

𝑁
𝑖=1 )

𝑡𝑟𝑎𝑐𝑒(∑ 𝑉𝑇𝑈𝑖𝑈𝑖𝑇𝑉𝑑𝑖,𝑖
𝑁
𝑖 )

= 

=
𝑡𝑟𝑎𝑐𝑒(𝑉𝑇(∑ 𝑑𝑖,𝑖𝑈

𝑖𝑈𝑖𝑇)𝑉𝑁
𝑖=1 − 𝑉𝑇(∑ ∑ 𝑉𝑇𝑈𝑖𝑈𝑖𝑇𝑉𝑤𝑖,𝑗

𝑁
𝑗=𝑖

𝑁
𝑖=1 )

𝑡𝑟𝑎𝑐𝑒(∑ 𝑉𝑇𝑈𝑖𝑈𝑖𝑇𝑉𝑑𝑖,𝑖
𝑁
𝑖 )

= 

=
𝑡𝑟𝑎𝑐𝑒(𝑉𝑇𝐷𝑈𝑉 − 𝑉

𝑇𝑊𝑈𝑉)

𝑡𝑟𝑎𝑐𝑒(𝑉𝑇𝐷𝑈𝑉)
 

 

 

 

(4.8) 

 

   

which can be solved, however there are several solutions to this problem. One way to make the 

solution unique is to add a constraint, which is: 

𝑡𝑟𝑎𝑐𝑒(𝑉𝑇𝐷𝑢𝑉) = 1    (4.9) 
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The problem now is: 

min 𝐽(𝑉) = 𝑡𝑟𝑎𝑐𝑒(𝑉𝑇𝐷𝑈𝑉 − 𝑉
𝑇𝑊𝑈𝑉)       

𝑠. 𝑡. 𝑡𝑟𝑎𝑐𝑒(𝑉𝑇𝐷𝑈𝑉) = 1 

(4.10) 

 

Now I construct the Lagrangian function to transform the problem from a constrained to an 

unconstrained minimization with one more parameter to take into account: 

𝐿(𝑉) = 𝑡𝑟𝑎𝑐𝑒(𝑉𝑇𝐷𝑈𝑉 − 𝑉
𝑇𝑊𝑈𝑉) −  𝜆 (𝑡𝑟𝑎𝑐𝑒(𝑉

𝑇𝐷𝑈𝑉) − 1) (4.11) 

 

    

From the fact that D and W are symmetric, I can write the following: 

𝑑𝐿(𝑉)

𝑑𝑉
= (𝑉𝑇(𝐷𝑈 −𝑊𝑈))

𝑇 + (𝐷𝑈 −𝑊𝑈)𝑉

− 𝜆((𝑉𝑇𝐷𝑈)
𝑇 + 𝐷𝑈𝑉) = 

= ((𝐷𝑈 −𝑊𝑈)
𝑇 + 𝐷𝑈 −𝑊𝑈)𝑉 − 𝜆(𝐷𝑈

𝑇 − 𝐷𝑈)𝑉 = 

= 2(𝐷𝑈 −𝑊𝑈)𝑉 − 2𝜆𝐷𝑈𝑉 = 0 

(4.12) 

 

   

From which I obtain the equation stated at the very beginning of the explanation of the GDR 

algorithm to compute the matrix V for each mode. The additional parameter lambda is specified 

by the user and I set it to 1.001 so that convergence and minimization are ensured. I will 

conclude the explanation of the GDR algorithm by specifying that the projection matrix for 

each mode strengthens and propagates the correlations among the modes while also 

incorporating the intertemporal dependencies coming from “close” tensors as indicated 

previously.  

I will continue now with the presentation of the Tensor Regression algorithm and I will follow 

the same order as I did for the GDR algorithm.  
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Fig. 15 Global Dimensionality Reduction Algorithm (Quan Li et. ot. [2016]) 

This is fundamentally an SVR problem or Support Vector Regression. As specified, the inputs 

are the stream of tensors that underwent the process of Global Dimensionality Reduction and 

the “price indicators”, meaning the matrix of average prices for company j at time i. As output, 

the model will give back the theoretical price, given by the multi-mode product of the input 

tensor at time i by each weighting matrix for each mode of the information space, plus a constant 

term “b” which is commonly referred to as the bias. Also the model outputs the slack variables, 

which are the values that allow tolerance of some violation of the margin that the user specifies. 

I will explain later on what it means. For the user-specified parameters, C is the constant and it 

is commonly chosen equal to one while epsilon is the error that the user wants to tolerate. The 

constant must be a positive number but not necessarily an integer and it measures how much 

the user wants to allow the violation of the margin, so a lower value of the constant aims at 

generalizing the model while a higher value aims at classifying each point correctly. On the 

other hand, epsilon indicates the wide the margin can be when classifying points. In my work I 

have chosen C=2 and epsilon=1. The explanation of the body of the algorithm is straightforward 

because the problem is indeed the Support Vector Regression problem, however it is performed 

in a higher dimensional context. In the context of SVR, or more generally Support Vector 

Machines or SVM, there is no way to compute the support vectors all at once but it can be done 

iteratively, since the problem is minimizing the inner product of the values that map the input 

matrix to a higher dimensional space, so that the data can be better separated. In general, SVM 

is very useful both in a supervised learning context but also in an unsupervised learning 

problem. The difference between the two cases is when the training inputs are labeled. In the 
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supervised learning case, as it is in my work, SVM tries to find the hyperplane that best 

separates the data points. I talk about a hyperplane because in the 2-dimensional case, with an 

input matrix, the hyperplane is a straight line, when considering the linear SVM. The true power 

of this methodology relies on the fact that they can also find the hyperplane the best separates 

the points in a non-linear context through the so called “kernel trick”, implicitly mapping the 

data to higher dimensions. The reason to do it is because some data might not be linearly 

separable in 2 dimensions but they could be in N dimensions. Indeed, SVM could potentially 

project the data to an infinite dimensional space. The role of epsilon is in the definition of the 

so called margin, so the distance from the hyperplane which is tolerated when classifying the 

data. Points that rely inside the margin are classified according to how close they are to either 

the negative margin or the positive one. A picture can help focus these ideas. 

       

Fig. 16 (left) Support Vector Machine applied to a binary classification problem  

(Google image search) 

Fig. 17 (right) An example of Support Vector Regression (Google image search) 

                                                                    

For the unsupervised learning, the idea is to let the data gravitate to the natural groups that are 

latent. When considering the Regression problem the idea is not to separate data as much as 

possible. Also there is a fundamental conceptual difference which is the fact that now the 

prediction is not aimed at classification but towards a real value, a number. In this sense, there 

are infinite values that one can find. In regression, the hyperplane is the plane that best fits the 

data, the latter being within the error margin indicated by epsilon. However, when considering 

noisy data, and stock prices are a good example of really noisy data, one has to allow some 

slack, which is why there are slack variables. They allow for some deviation from the chosen 
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interval around the hyperplane, which is usually a line but could also be a plane or even a higher 

dimensional object according to the dimensionality of the problem. This is where the constant 

parameter comes into play because it assigns a different importance to the slack variables 

according to its magnitude. The closer the constant C to zero, the closer the baseline case of 

SVR, the higher it is, the more the user is willing to tolerate deviations from the specified case. 

In general, what helped me personally to understand the difference is that with SVM 

classification problems we want the hyperplane just to separate the data and the margin around 

the hyperplane has to be as empty as possible, while the Regression problem with Support 

Vector Machines requires the hyperplane to interpolate data as best as it can while keeping as 

many data points as possible within the margin. From the mathematical point of view the 

problem is: 

min
𝑢,𝑣,𝑏

𝐽(𝑢, 𝑣, 𝑏) =  
1

2
||𝑢𝑣𝑇||

2
    

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 {
𝑦𝑖−< 𝑋𝑖, 𝑢𝑣

𝑇 > −𝑏 ≤ 𝜀

< 𝑋𝑖, 𝑢𝑣
𝑇 > +𝑏 − 𝑦𝑖 ≤ 𝜀

 

 

(4.13) 

 

The convex optimization problem comes from the specification that the mapping function 

𝑓(𝑋) =  𝑢𝑇𝑋𝑣 + 𝑏 can be rewritten as 𝑓(𝑋) = < 𝑋, 𝑢𝑇𝑣 >  + 𝑏 where <∙> is the inner product, 

given the training and test sets composed by the couples (X, y). The model complexity is equal 

to ||𝑢𝑇𝑣|| 2. I must remark that this is the specification of the problem in the two dimensional 

case, but it is immediately generalizable to the n dimensional case. Assuming that a function 

that approximates the data with an error less than epsilon exists, the problem is the following:  

min
𝑢,𝑣,𝑏,𝜉𝑖,𝜉𝑖

∗
𝐽(𝑢, 𝑣, 𝑏, 𝜉𝑖, 𝜉𝑖

∗) =
1

2
||𝑢𝑣𝑇||

2
+ 𝐶∑(𝜉𝑖 + 𝜉𝑖

∗)

𝑁

𝑖=1

    

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 {

𝑦𝑖−< 𝑋𝑖 , 𝑢𝑣
𝑇 > −𝑏 ≤ 𝜀 + 𝜉𝑖

< 𝑋𝑖, 𝑢𝑣
𝑇 > +𝑏 − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖

∗

𝜉𝑖
∗, 𝜉𝑖 ≥ 0,        𝑖 = 1,… ,𝑁

 

 

(4.14) 

 

where the slack variables have been introduced in the objective function. Now it is just a 

problem of finding u and v and this can be done by repeatedly optimizing the function for 

several values of u and v, each found from the previous iteration. Starting from u, it is set equal 

to a vector of ones: u = (1, 1….1, 1), so the problem becomes:  
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𝑥𝑖 = 𝑋
𝑖𝑢    (4.15) 

 

𝛽1 = ||𝑢||
2 (4.16) 

min
𝑣,𝑏,𝜉𝑖,𝜉𝑖

∗
𝐽(𝑣, 𝑏, 𝜉𝑖, 𝜉𝑖

∗) =
1

2
𝛽1||𝑣||

2
+ 𝐶∑(𝜉𝑖 + 𝜉𝑖

∗)

𝑁

𝑖=1

     

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 {

𝑦𝑖 − 𝑣
𝑇𝑥𝑖 − 𝑏 ≤ 𝜀 + 𝜉𝑖

𝑣𝑇𝑥𝑖 + 𝑏 − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖
∗

𝜉𝑖
∗, 𝜉𝑖 ≥ 0    𝑖 = 1,… ,𝑁

 

 

(4.17) 

 

    

From this optimization one can find v. Following the same procedure, setting the following: 

𝑥̂𝑖 = 𝑋𝑖𝑣    (4.18) 

𝛽2 = ||𝑣||
2 (4.19) 

 

one can find u from (4.20): 

min
𝑢,𝑏,𝜉𝑖,𝜉𝑖

∗
𝐽(𝑢, 𝑏, 𝜉𝑖, 𝜉𝑖

∗) =
1

2
𝛽1||𝑢||

2
+ 𝐶∑(𝜉𝑖 + 𝜉𝑖

∗)

𝑁

𝑖=1

     

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 {

𝑦𝑖 − 𝑢
𝑇𝑥̂𝑖 − 𝑏 ≤ 𝜀 + 𝜉𝑖

𝑢𝑇𝑥̂𝑖 + 𝑏 − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖
∗

𝜉𝑖
∗, 𝜉𝑖 ≥ 0    𝑖 = 1,… ,𝑁

 

 

(4.20) 

 

The reason why this algorithm works relies on the fact that the minimization of the objective 

function in each iteration ensures that a new minimum is always found each time u or v is 

updated. The convergence criterion is specified by the user. Since it is a squared function zero 

could be a good stopping criterion but there are also more reliable ways, such as derivative 

methods. The stopping criterion used in the sk-learn python library, which I have used, is the 

idea that the iterative procedure stops as soon as there is little to no improvement in the 

minimization process. However, if computations become too expensive or slow, one can even 

set a hard limit of say one-thousand iterations. In my code it was not necessary to introduce a 

hard limit on the iterations but it was necessary to perform some sort of validation, due to the 

few data available. What I decided to do was performing cross-validation using K-Folds since 
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I am assuming there is no intertemporal dependency. In my case, the SVR was performed with 

a constant value of 2 and an error no greater than 1, my kernel was the rbf or radial basis 

function. This concludes the explanation of the methodology and the model that I have used. 

Now I will focus on explaining the trading strategy that I have designed based on these findings.  

  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Section 5: Conclusions 
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Here I will present some conclusions, namely how to use in a trading context the tensor 

regression and propose a strategy that could be profitable. After having trained the model, I 

then design a trading strategy using my predictions. The trading strategies that can be used are 

various such as a simple Moving Average crossing strategy. This strategy is basically the “hello 

world” of the trading community because it generates a signal to buy each time the long term 

moving average crosses the short term moving average, indicating a potential positive trend 

while it generates a signal to sell when the short term moving average crosses the long term 

one, indicating a potential bear phase of the market. There are also other types of trading 

strategies such as the mean reversion  strategy, where the assumption is that prices tend to return 

to their average and thus one starts to trade on the basis of the fluctuations or the turtle trading 

strategy introduced by Dannis which is usually applied to futures. The latter states that you 

should buy futures on the 20-days low and sell on the 20-days high prices. The strategy that I 

chose was the mean reversion since I am focusing on the Directional Accuracy as the main 

metric to decide how to trade. Moreover, the Directional Accuracy that I was able to obtain for 

all the companies was of approximately 50%.It is equivalent to tossing a coin and guessing if 

the stock will move up or down but nonetheless the model is able to recognize the movement 

half of the times. This indicates that further data is required to improve the training of the model. 

I tried to perform some k-Fold validation, but it was still not enough. In order to check how 

good the strategy is, I backtested it on my entire dataset and then I designed a portfolio to check 

profit and losses. I should remind right now that I am not taking into consideration several other 

factors that are important and have been proven to be informative, namely the fact that there 

are brokers and market makers that operate into the market, there are delays in the reception 

and execution of orders, short-selling might be not allowed and finally there are transaction 

costs which I am not considering. I am assuming that all of the previous factors do not influence 

the prices but of course it can be an interesting path for improving these results. I previously 

mentioned the term “backtesting” which refers to the validation of a trading strategy on 

historical data, acting as if such strategy was implemented some periods of time before its actual 

implementation and deployment, thus simulating what would have happened in terms of profit 

and losses over the period considered. A good backtester is made of four essential elements but 

of course there are also other ways to improve it. My backtester has only the four essential ones: 

1. The data handler 

2. The strategy 

3. The portfolio 

4. The execution handler 
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The data handler is just a fancy name to address the dataset; usually it is called as such because 

many libraries have a DataHandler class object. The strategy is what I have previously and 

briefly described, needed to generate the buy and sell signals. The portfolio is necessary to keep 

track of profit and losses and finally the execution handler is the part of code responsible of 

instructing the machine to execute orders without the user’s interaction. Everything was virtual 

of course, I did not put any capital at stake. Using my predictions I used the Cerebro class object 

and thus the backtester python package which allowed me to design and implement the trading 

strategy on my predictions. Remarkably, the growth of the initial capital over the considered 

period is exponential. As mentioned previously, there are several constraints that have not been 

considered, which would likely diminish such enormous returns. Before drawing some 

conclusions, I will explain with a little more depth the strategy that I have used and the Cerebro 

and the backtester python library. About the strategy, the idea behind it is almost naïve: prices 

will return to the average, any deviation can be exploited, thus any stock that is below the 

market average will be bought while any stock above the average will be sold. The formula on 

which the strategy is based is the following: 

𝑤𝑖 =
−(𝑟𝑖 − 𝑟𝑚)

∑ |𝑟𝑘 − 𝑟𝑚|𝑘
 (5.1) 

where 𝑟𝑚 is the market return. Each stock has a weight w attached to it computed relatively to 

all the other stocks in the portfolio. About the Cerebro and the backtester python library, as the 

developers state in their documentation page, the idea is to make algorithmic trading simple 

and straightforward. They were able to design a library which can accept any kind of strategy 

and then backtest it without any intervention by the user. The library even offers the possibility 

to develop signals that can be then used by the trader to buy or sell, or skip entirely the trader 

and place orders autonomously. It is accessible to both professionals, who can exploit several 

functionalities that are precluded to the retail investors, such as more complex strategies or 

High-Frequency Trading, and small time traders who want to try and automate some of the time 

consuming work behind day trading.   

In this work I wanted to explore how far I could go in terms of improvement of existing 

methodologies to trade. Also, I wanted to provide some kind of roadmap to manipulate tensors 

and apply them to the financial context to try and obtain better predictions of stock prices, which 

are notoriously hard, even impossible, to predict exactly. There is still a long road ahead, since 

this work is far from conclusive and was only a first step in a field that has to be explored 

deeply, with the right tools and methodologies. First of all, the results obtained are based on a 

dataset which is too small for the raw power that tensors provide. Ideally one should acquire 
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and store data in the same way that I did for a year or so, group everything and then train the 

model, however this requires much more computational power. Furthermore, as a beginner 

programmer, the code in the appendix is in no way modular or replicable, unless one changes 

all the measurements accordingly. Ideally, the OOP (Object-Oriented Programming) paradigm 

can be applied and then elaborate a more “pythonic” way to approach this type of analysis. 

Besides problems strictly related to the amount of data and the code itself, other important 

remarks and flaws to be addressed in the future are the heavy assumptions imposed to the 

analysis. The fact that I am able to get such a high return is of course impossible, it is too high 

for a single week of trades. There are several other roles to be considered when creating the 

tensor stream for the supervised learning regression model with support vectors such as the role 

of other institutional investors and their impact on prices, the transaction costs and most 

importantly intertemporal dependence of prices, to name a few. Once all of these elements have 

been taken into account one can think of trying other strategies and compare them. One element 

that emerges is that the role of tensor is crucial in solving complex problems, speeding up 

calculations and in general providing more useful insights when several sources of information 

collide in a single information space with higher dimensionality. The following plots (figures 

18 and 19) are the results in terms of returns on an initial capital of 1000 US dollars, trading 

from 9:30 on the 17-08-2020 up until 15:58:00 on the 21-08-2020: 

 

Fig 18 Backtesting the mean reversion strategy with the predictions of the model, weekly return of 179% 
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Fig. 19 Backtesting the mean reversion strategy using the actual prices, the loss is approximately -2% 
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APPENDIX 

All the code that I have written for this work is reported as I used it. I will indicate through titles 

the names of the scripts. 

Preliminary analysis and graphs 

import pandas as pd 

import numpy as np 

import matplotlib.pylab as plt 

import networkx as nx 

import planarity 

 

 

# Custom Functions 

 

 

def sort_graph_edges(G): 

    sorted_edges = [] 

    for source, dest, data in sorted(G.edges(data=True), 

                                     key=lambda x: x[2]['weight']): 

        sorted_edges.append({'source': source, 

                             'dest': dest, 

                             'weight': data['weight']}) 

    return sorted_edges 

 

 

def compute_PMFG(sorted_edges, nb_nodes): 

    PMFG = nx.Graph() 

    for edge in sorted_edges: 

        PMFG.add_edge(edge['source'], edge['dest']) 

        if not planarity.is_planar(PMFG): 

            PMFG.remove_edge(edge['source'], edge['dest']) 

        if len(PMFG.edges()) == 3 * (nb_nodes - 2): 

            break 

    return PMFG 

 

 

# importing and indexing data 

 

my_data = pd.read_excel(r"C:\Users\user\Desktop\Master's Thesis\data 

thesis.xlsx") 

my_data["Dates"] = pd.to_datetime(my_data["Dates"], 

infer_datetime_format=True) 

indexed_data = my_data.set_index(["Dates"]) 

 

# removing NaN and isolating labels 

 

headers = indexed_data.columns 

indexed_data_noNaN = indexed_data.fillna(0) 

 

# isolating labels only for companies 

# restricting dataset to the first 100 firms due to computational problems 

 

headers_only_company = [] 

for company_name in range(100): 

    headers_only_company.append(headers[company_name*4]) 

df = pd.DataFrame(headers_only_company, columns=["company names"]) 

df.to_csv("company names.csv") 

 

company_price_data = indexed_data_noNaN[headers_only_company] 
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# There are 100 companies so the graph is not very clear 

 

company_price_data_part1 = indexed_data_noNaN[headers_only_company[0:11]] 

company_price_data_part2 = indexed_data_noNaN[headers_only_company[11:22]] 

company_price_data_part3 = indexed_data_noNaN[headers_only_company[22:33]] 

company_price_data_part4 = indexed_data_noNaN[headers_only_company[33:44]] 

company_price_data_part5 = indexed_data_noNaN[headers_only_company[44:55]] 

company_price_data_part6 = indexed_data_noNaN[headers_only_company[55:66]] 

company_price_data_part7 = indexed_data_noNaN[headers_only_company[66:77]] 

company_price_data_part8 = indexed_data_noNaN[headers_only_company[77:88]] 

company_price_data_part9 = indexed_data_noNaN[headers_only_company[88:]] 

 

# data visualization 

 

plt.xlabel("Daily Observations") 

plt.ylabel("Closing prices") 

plt.plot(company_price_data_part1) 

plt.legend(company_price_data_part1) 

plt.show() 

plt.xlabel("Daily Observations") 

plt.ylabel("Closing prices") 

plt.plot(company_price_data_part2) 

plt.legend(company_price_data_part2) 

plt.show() 

plt.xlabel("Daily Observations") 

plt.ylabel("Closing prices") 

plt.plot(company_price_data_part3) 

plt.legend(company_price_data_part3) 

plt.show() 

plt.xlabel("Daily Observations") 

plt.ylabel("Closing prices") 

plt.plot(company_price_data_part4) 

plt.legend(company_price_data_part4) 

plt.show() 

plt.xlabel("Daily Observations") 

plt.ylabel("Closing prices") 

plt.plot(company_price_data_part5) 

plt.legend(company_price_data_part5) 

plt.show() 

plt.xlabel("Daily Observations") 

plt.ylabel("Closing prices") 

plt.plot(company_price_data_part6) 

plt.legend(company_price_data_part6) 

plt.show() 

plt.xlabel("Daily Observations") 

plt.ylabel("Closing prices") 

plt.plot(company_price_data_part7) 

plt.legend(company_price_data_part7) 

plt.show() 

plt.xlabel("Daily Observations") 

plt.ylabel("Closing prices") 

plt.plot(company_price_data_part8) 

plt.legend(company_price_data_part8) 

plt.show() 

plt.xlabel("Daily Observations") 

plt.ylabel("Closing prices") 

plt.plot(company_price_data_part9) 

plt.legend(company_price_data_part9) 

plt.show() 

 

# PMFG 
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corr_matr = np.corrcoef(company_price_data.T) 

my_nb_nodes = 100 

complete_graph = nx.Graph() 

for i in range(my_nb_nodes): 

    for j in range(i+1, my_nb_nodes): 

        complete_graph.add_edge(i, j, weight=corr_matr[i, j]) 

 

my_sorted_edges = sort_graph_edges(complete_graph) 

 

my_PMFG = compute_PMFG(my_sorted_edges, len(complete_graph.nodes)) 

companies = {} 

for i in range(100): 

    companies[i] = headers_only_company[i] 

 

nx.draw_networkx(my_PMFG, pos=nx.spring_layout(my_PMFG), with_labels=True, 

node_size=150, node_color='w', 

                 labels=companies, font_size=4, font_color='r', 

font_weight='heavy', width=0.1) 

plt.savefig("PMFG.pdf") 

 

# descriptive statistics of prices 

descriptive_statistics_g1 = company_price_data_part1.describe() 

print(descriptive_statistics_g1) 

descriptive_statistics_g2 = company_price_data_part2.describe() 

print(descriptive_statistics_g2) 

descriptive_statistics_g3 = company_price_data_part3.describe() 

print(descriptive_statistics_g3) 

descriptive_statistics_g4 = company_price_data_part4.describe() 

print(descriptive_statistics_g4) 

descriptive_statistics_g5 = company_price_data_part5.describe() 

print(descriptive_statistics_g5) 

descriptive_statistics_g6 = company_price_data_part6.describe() 

print(descriptive_statistics_g6) 

descriptive_statistics_g7 = company_price_data_part7.describe() 

print(descriptive_statistics_g7) 

descriptive_statistics_g8 = company_price_data_part8.describe() 

print(descriptive_statistics_g8) 

descriptive_statistics_g9 = company_price_data_part9.describe() 

print(descriptive_statistics_g9) 

 

# Minute Data 

 

# extension = 'txt' 

# all_filenames = [i for i in 

glob.glob(r'C:\Users\user\PycharmProjects\test\dati compagnie minuto 

tickers\*.{}'.format(extension))] 

# combined_csv = pd.concat([pd.read_csv(f) for f in all_filenames]) 

# combined_csv.to_csv("minute_price_data.csv") 

 

data_minute = pd.read_excel(r"C:\Users\user\Desktop\Master's Thesis\data 

minute.xlsx") 

data_minute["dates"] = pd.to_datetime(data_minute["dates"], 

infer_datetime_format=True) 

indexed_data_minute = data_minute.set_index(["dates", "minute"]) 

 

indexed_data_minute_NoNaN = indexed_data_minute.replace(to_replace=0, 

value=np.nan).fillna(method='pad', axis=0) 

 

headers_avg = [] 

for company_name in headers_only_company: 

    headers_avg.append(company_name + " " + "avg") 

 

data_minute_prices = indexed_data_minute[headers_avg] 
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indexed_data_minute_NoNaN = indexed_data_minute_NoNaN.drop('minute', 

axis=1) 

 

company_price_data_minute_part1 = data_minute_prices[headers_avg[0:11]] 

company_price_data_minute_part2 = data_minute_prices[headers_avg[11:22]] 

company_price_data_minute_part3 = data_minute_prices[headers_avg[22:33]] 

company_price_data_minute_part4 = data_minute_prices[headers_avg[33:44]] 

company_price_data_minute_part5 = data_minute_prices[headers_avg[44:55]] 

company_price_data_minute_part6 = data_minute_prices[headers_avg[55:66]] 

company_price_data_minute_part7 = data_minute_prices[headers_avg[66:77]] 

company_price_data_minute_part8 = data_minute_prices[headers_avg[77:88]] 

company_price_data_minute_part9 = data_minute_prices[headers_avg[88:]] 

 

plt.xlabel("Minute Observations: 17/08/2020-21/08/2020") 

plt.ylabel("Avg. open-close prices") 

plt.plot(company_price_data_minute_part1) 

plt.legend(company_price_data_minute_part1) 

plt.show() 

plt.xlabel("Minute Observations: 17/08/2020-21/08/2020") 

plt.ylabel("Avg. open-close prices") 

plt.plot(company_price_data_minute_part2) 

plt.legend(company_price_data_minute_part2) 

plt.show() 

plt.xlabel("Minute Observations: 17/08/2020-21/08/2020") 

plt.ylabel("Avg. open-close prices") 

plt.plot(company_price_data_minute_part3) 

plt.legend(company_price_data_minute_part3) 

plt.show() 

plt.xlabel("Minute Observations: 17/08/2020-21/08/2020") 

plt.ylabel("Avg. open-close prices") 

plt.plot(company_price_data_minute_part4) 

plt.legend(company_price_data_minute_part4) 

plt.show() 

plt.xlabel("Minute Observations: 17/08/2020-21/08/2020") 

plt.ylabel("Avg. open-close prices") 

plt.plot(company_price_data_minute_part5) 

plt.legend(company_price_data_minute_part5) 

plt.show() 

plt.xlabel("Minute Observations: 17/08/2020-21/08/2020") 

plt.ylabel("Avg. open-close prices") 

plt.plot(company_price_data_minute_part6) 

plt.legend(company_price_data_minute_part6) 

plt.show() 

plt.xlabel("Minute Observations: 17/08/2020-21/08/2020") 

plt.ylabel("Avg. open-close prices") 

plt.plot(company_price_data_minute_part7) 

plt.legend(company_price_data_minute_part7) 

plt.show() 

plt.xlabel("Minute Observations: 17/08/2020-21/08/2020") 

plt.ylabel("Avg. open-close prices") 

plt.plot(company_price_data_minute_part8) 

plt.legend(company_price_data_minute_part8) 

plt.show() 

plt.xlabel("Minute Observations: 17/08/2020-21/08/2020") 

plt.ylabel("Avg. open-close prices") 

plt.plot(company_price_data_minute_part9) 

plt.legend(company_price_data_minute_part9) 

plt.show() 

 

descriptive_statistics_g1 = company_price_data_minute_part1.describe() 

print(descriptive_statistics_g1) 

descriptive_statistics_g2 = company_price_data_minute_part2.describe() 
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print(descriptive_statistics_g2) 

descriptive_statistics_g3 = company_price_data_minute_part3.describe() 

print(descriptive_statistics_g3) 

descriptive_statistics_g4 = company_price_data_minute_part4.describe() 

print(descriptive_statistics_g4) 

descriptive_statistics_g5 = company_price_data_minute_part5.describe() 

print(descriptive_statistics_g5) 

descriptive_statistics_g6 = company_price_data_minute_part6.describe() 

print(descriptive_statistics_g6) 

descriptive_statistics_g7 = company_price_data_minute_part7.describe() 

print(descriptive_statistics_g7) 

descriptive_statistics_g8 = company_price_data_minute_part8.describe() 

print(descriptive_statistics_g8) 

descriptive_statistics_g9 = company_price_data_minute_part9.describe() 

print(descriptive_statistics_g9) 

 

Webscraping for news headlines 

from selenium import webdriver 

import time 

import re 

import pandas as pd 

import nltk 

from nltk.corpus import stopwords 

from sklearn.feature_extraction.text import TfidfVectorizer 

 

"""This code finds news headlines from reuters for the first 100 companies 

of the dataset and then performs 

a Vectorization of the words of the headlines. Then they will be used for 

building the tensors mode""" 

 

headers_only_company = pd.read_csv("company names.csv") 

headers_only_company = headers_only_company.drop("Unnamed: 0", 1) 

 

# importing Chrome driver to automate the scraping 

driver = 

webdriver.Chrome(r'C:\Users\user\PycharmProjects\test\venv\Lib\site-

packages\selenium\chromedriver.exe') 

driver.get('https://www.reuters.com/news/archive/businessnews?view=page&pag

e=5&pageSize=10') 

 

# storing headlines and converting them to text 

 

count = 0 

headlines = [] 

dates = [] 

for company_name in headers_only_company.values: 

    try: 

        searchButton = driver.find_element_by_class_name("search-icon") 

        searchButton.click() 

        time.sleep(1) 

        searchField = driver.find_element_by_class_name("search-field") 

        searchField.send_keys(company_name) 

        searchField.send_keys(u'\ue007') 

        time.sleep(1) 

        loadMoreButton = driver.find_element_by_class_name("search-result-

more-txt") 

        # driver.execute_script("window.scrollTo(0, 

document.body.scrollHeight)") 

        time.sleep(1) 

        loadMoreButton.click() 
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        time.sleep(1) 

        loadMoreButton.click() 

        time.sleep(1) 

        loadMoreButton.click() 

        time.sleep(1) 

        loadMoreButton.click() 

        time.sleep(1) 

        loadMoreButton.click() 

        time.sleep(1) 

        loadMoreButton.click() 

        time.sleep(1) 

        news_headlines = driver.find_elements_by_class_name("search-result-

title") 

        news_dates = driver.find_elements_by_class_name("search-result-

timestamp") 

        for headline in news_headlines: 

            headlines.append(headline.text) 

            print(headline.text) 

        for date in news_dates: 

            dates.append(date.text) 

            print(date.text) 

            count = count + 1 

        print("CLICKED!!:") 

    except Exception as e: 

        print(e) 

        continue 

 

df = pd.DataFrame(headlines, columns=['Reuters news headline']) 

df.drop_duplicates() 

df.to_csv('reuters news headlines.csv') 

 

# pre-processing the headlines 

 

processed_headlines = [] 

 

for headline in headlines: 

    # Remove all the special characters 

    processed_headline = re.sub(r'\W', ' ', headline) 

    # remove all single characters 

    processed_headline = re.sub(r'\s+[a-zA-Z]\s+', ' ', processed_headline) 

    # Remove single characters from the start 

    processed_headline = re.sub(r'\^[a-zA-Z]\s+', ' ', processed_headline) 

    # Substituting multiple spaces with single space 

    processed_headline = re.sub(r'\s+', ' ', processed_headline, 

flags=re.I) 

    # Removing prefixed 'b' 

    processed_headline = re.sub(r'^b\s+', '', processed_headline) 

    # Converting to Lowercase 

    processed_headline = processed_headline.lower() 

    processed_headlines.append(processed_headline) 

 

# downloading the stopwords dictionary 

nltk.download('stopwords') 

 

# text to numeric conversion, min_df=5 and max_df=0.7 

tfidfconverter = TfidfVectorizer(max_features=2000, min_df=5, max_df=0.7, 

stop_words=stopwords.words('english')) 

X = tfidfconverter.fit_transform(processed_headlines).toarray() 

 

# storing the data for further usage 

df = pd.DataFrame(X) 

df.set_index(dates) 
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df.to_csv('tfidf text2num.csv') 

print('Done!') 

 

 

Better Webscraping for news headlines 

# Import libraries 

from selenium import webdriver 

from urllib.request import urlopen, Request 

from bs4 import BeautifulSoup as bs 

import time 

import pandas as pd 

import matplotlib.pyplot as plt 

# NLTK VADER for sentiment analysis 

from nltk.sentiment.vader import SentimentIntensityAnalyzer 

import nltk 

nltk.download('vader_lexicon') 

 

finwiz_url = 'https://finviz.com/quote.ashx?t=' 

 

tickers = [] 

 

driver = 

webdriver.Chrome(r'C:\Users\user\PycharmProjects\test\venv\Lib\site-

packages\selenium\chromedriver.exe') 

driver.get('https://finasko.com/sp-500-companies/') 

 

stock_symbol = driver.find_elements_by_class_name('stock-symbol') 

time.sleep(1) 

for i in stock_symbol: 

    tickers.append(i.text) 

loadmoreButton = driver.find_element_by_css_selector('a.post-page-numbers') 

loadmoreButton.click() 

time.sleep(1) 

stock_symbol_2 = driver.find_elements_by_class_name('stock-symbol') 

for j in stock_symbol_2: 

    tickers.append(j.text) 

stock_symbol_last = 'ECL' 

tickers.append(stock_symbol_last) 

 

tickers_not = tickers.pop(3) 

tickers[90] = tickers[90] + 'C' 

 

news_tables = {} 

count = 0 

for ticker in tickers: 

    url = finwiz_url + ticker 

    print(url) 

    count += 1 

    print(count) 

    req = Request(url=url, headers={'user-agent': 'my-app/0.0.1'}) 

    response = urlopen(req) 

    # Read the contents of the file into 'html' 

    html = bs(response) 

    # Find 'news-table' in the Soup and load it into 'news_table' 

    news_table = html.find(id='news-table') 

    # Add the table to our dictionary 

    news_tables[ticker] = news_table 

 

parsed_news = [] 
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# Iterate through the news 

for file_name, news_table in news_tables.items(): 

    # Iterate through all tr tags in 'news_table' 

    for x in news_table.findAll('tr'): 

        # read the text from each tr tag into text 

        # get text from a only 

        text = x.a.get_text() 

        # splite text in the td tag into a list 

        date_scrape = x.td.text.split() 

        # if the length of 'date_scrape' is 1, load 'time' as the only 

element 

 

        if len(date_scrape) == 1: 

            time = date_scrape[0] 

 

        # else load 'date' as the 1st element and 'time' as the second 

        else: 

            date = date_scrape[0] 

            time = date_scrape[1] 

        # Extract the ticker from the file name, get the string up to the 

1st '_' 

        ticker = file_name.split('_')[0] 

 

        # Append ticker, date, time and headline as a list to the 

'parsed_news' list 

        parsed_news.append([ticker, date, time, text]) 

 

# Instantiate the sentiment intensity analyzer 

vader = SentimentIntensityAnalyzer() 

 

# Set column names 

columns = ['ticker', 'date', 'time', 'headline'] 

 

# Convert the parsed_news list into a DataFrame called 

'parsed_and_scored_news' 

parsed_and_scored_news = pd.DataFrame(parsed_news, columns=columns) 

 

# Iterate through the headlines and get the polarity scores using vader 

scores = 

parsed_and_scored_news['headline'].apply(vader.polarity_scores).tolist() 

 

# Convert the 'scores' list of dicts into a DataFrame 

scores_df = pd.DataFrame(scores) 

 

# Join the DataFrames of the news and the list of dicts 

parsed_and_scored_news = parsed_and_scored_news.join(scores_df, 

rsuffix='_right') 

 

# Convert the date column from string to datetime 

parsed_and_scored_news['date'] = 

pd.to_datetime(parsed_and_scored_news.date).dt.date 

 

plt.rcParams['figure.figsize'] = [100, 60] 

 

# Group by date and ticker columns from scored_news and calculate the mean 

mean_scores = parsed_and_scored_news.groupby(['ticker', 'date']).mean() 

 

# Unstack the column ticker 

mean_scores = mean_scores.unstack() 

 

# Get the cross-section of compound in the 'columns' axis 

mean_scores = mean_scores.xs('compound', axis="columns").transpose() 
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# Plot a bar chart with pandas 

mean_scores.plot(kind='bar') 

plt.grid() 

plt.show() 

 

parsed_and_scored_divided = [] 

for i in range(0, 10000, 100): 

    parsed_and_scored_divided.append(parsed_and_scored_news.iloc[i:i+100, 

:]) 

 

for i in range(len(parsed_and_scored_divided)): 

    parsed_and_scored_divided[i].to_csv('news_n_{}.csv'.format(i)) 

 

parsed_and_scored_news.to_csv('parsed and scored news.csv') 

 

 

for i in range(100): 

    definitive_df = pd.concat([parsed_and_scored_divided, 

pd.read_csv('news_n_{}'.format(i))]) 

 

Twitter scraping for tweets 

import tweepy 

from tweepy import OAuthHandler 

import re 

import time 

import pandas as pd 

import nltk 

from nltk.corpus import stopwords 

from sklearn.feature_extraction.text import TfidfVectorizer 

from sklearn.ensemble import RandomForestClassifier 

 

""" This code is to obtain tweets from the social network, using the tweepy 

library.  

     

    WARNING: IT TAKES AT LEAST 11 HOURS TO GATHER THE TWEETS 

     

    It also classifies the sentiment conveyed by the scraped tweets, taking 

advantage of a freely available  

    data-set that can be found at 

https://raw.githubusercontent.com/kolaveridi/kaggle-Twitter-US-Airline-

Sentiment-/master/Tweets.csv 

""" 

 

# twitter api keys 

# Bearer_token = 

'AAAAAAAAAAAAAAAAAAAAAI1PGQEAAAAAZE2GLdMtpC2h7muRQppVpzsAhGc%3DTIsv9pbSTtD1

uxJcdqbU7wAFTXdZ9hrZau2QSoIqssNrk4hWQG' 

 

# Twitter keys for accessing their API 

 

twitter_api_key = 'dXPA73iP7fYljlU0NI19uECRD' 

twitter_secret_api_key = 

'RnzSQaOYErrefyCB2HPkE1kOAdt2h308FX7VvLOwfbm3d0Kikn' 

twitter_access_token = '1171770799-DnWcJr2CrSl1fWao2qpq09pq9x5vU77gG9iV6cv' 

twitter_access_token_secret = 

'yR7dOz4gn5PDZ35nh1UaYDtSFSAOkqUcWxid3ghK8h3e8' 

 

authorizer = OAuthHandler(twitter_api_key, twitter_secret_api_key) 

authorizer.set_access_token(twitter_access_token, 
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twitter_access_token_secret) 

 

api = tweepy.API(authorizer, wait_on_rate_limit=True) 

 

# importing data for company names 

 

prices = pd.read_excel(r"C:\Users\user\PycharmProjects\Scoop_project\data 

thesis.xlsx") 

prices["Dates"] = pd.to_datetime(prices["Dates"], 

infer_datetime_format=True) 

indexed_data = prices.set_index(["Dates"]) 

 

headers = indexed_data.columns 

indexed_data_noNaN = indexed_data.fillna(0) 

 

headers_only_company = [] 

for company_name in range(100): 

    headers_only_company.append(headers[company_name*4]) 

 

# scraping tweets 

 

all_tweets = [] 

count = 0 

for company_name in headers_only_company: 

    search_query = company_name 

    print(company_name) 

    time.sleep(1) 

    for tweet_object in tweepy.Cursor(api.search, q=search_query+ " -

filter:retweets", 

                                      lang='en', 

result_type='recent').items(150): 

        time.sleep(2) 

        all_tweets.append(tweet_object.text) 

        count += 1 

# saving the dataset for further usage later on 

 

all_tweets_df = pd.DataFrame(all_tweets, columns=['scraped tweets']) 

all_tweets_df.to_csv("all tweets.csv") 

 

# download the stopwords dictionary 

nltk.download('stopwords') 

 

# importing another dataset which was already classified 

support_tweets = 

pd.read_csv("https://raw.githubusercontent.com/kolaveridi/kaggle-Twitter-

US-Airline-Sentiment-/master/Tweets.csv") 

 

X = support_tweets.iloc[:, 10].values 

y = support_tweets.iloc[:, 1].values 

 

# data pre-processing 

support_processed_tweets = [] 

 

for support_tweet in range(0, len(X)): 

    # Remove all the special characters 

    support_processed_tweet = re.sub(r'\W', ' ', str(X[support_tweet])) 

    # remove all single characters 

    support_processed_tweet = re.sub(r'\s+[a-zA-Z]\s+', ' ', 

support_processed_tweet) 

    # Remove single characters from the start 

    support_processed_tweet = re.sub(r'\^[a-zA-Z]\s+', ' ', 

support_processed_tweet) 

    # Substituting multiple spaces with single space 
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    support_processed_tweet = re.sub(r'\s+', ' ', support_processed_tweet, 

flags=re.I) 

    # Removing prefixed 'b' 

    support_processed_tweet = re.sub(r'^b\s+', '', support_processed_tweet) 

    # Converting to Lowercase 

    support_processed_tweet = support_processed_tweet.lower() 

    support_processed_tweets.append(support_processed_tweet) 

 

# text to numeric conversion using TF-IDF 

tfidfconverter = TfidfVectorizer(max_features=2000, min_df=5, max_df=0.7, 

stop_words=stopwords.words('english')) 

X = tfidfconverter.fit_transform(support_processed_tweets).toarray() 

 

# text sentiment classification, remark: using all the dataset because 

these are only support tweets 

text_classifier = RandomForestClassifier(n_estimators=100, random_state=0) 

text_classifier.fit(X, y) 

 

processed_tweets = [] 

sentiments = [] 

 

# assigning the interesting tweets their sentiment 

for tweet in all_tweets: 

    # Remove all the special characters 

    processed_tweet = re.sub(r'\W', ' ', tweet) 

    # remove all single characters 

    processed_tweet = re.sub(r'\s+[a-zA-Z]\s+', ' ', processed_tweet) 

    # Remove single characters from the start 

    processed_tweet = re.sub(r'\^[a-zA-Z]\s+', ' ', processed_tweet) 

    # Substituting multiple spaces with single space 

    processed_tweet = re.sub(r'\s+', ' ', processed_tweet, flags=re.I) 

    # Removing prefixed 'b' 

    processed_tweet = re.sub(r'^b\s+', '', processed_tweet) 

    # Removing https 

    processed_tweet = re.sub(r'https:\\[a-zA-Z]+', '', processed_tweet) 

    # Converting to Lowercase 

    processed_tweet = processed_tweet.lower() 

    sentiment = 

text_classifier.predict(tfidfconverter.transform([processed_tweet]).toarray

()) 

    processed_tweets.append(processed_tweet) 

    sentiments.append(sentiment) 

 

# joining the two lists to create the data-set to be later used 

df_1 = pd.DataFrame(processed_tweets, columns=['processed tweets']) 

df_2 = pd.DataFrame(sentiments, columns=["sentiment"]) 

processed_tweets_df = df_1.join(df_2) 

processed_tweets_df.to_csv('processed tweets.csv') 

print('Done!') 

 

Better Twitter scraping for tweets 

import time 

import re 

import pandas as pd 

import nltk 

from nltk.corpus import stopwords 

from sklearn.feature_extraction.text import TfidfVectorizer 

from sklearn.ensemble import RandomForestClassifier 

import GetOldTweets3 as got 
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prices = pd.read_excel(r"C:\Users\user\PycharmProjects\Scoop_project\data 

thesis.xlsx") 

prices["Dates"] = pd.to_datetime(prices["Dates"], 

infer_datetime_format=True) 

indexed_data = prices.set_index(["Dates"]) 

 

headers = indexed_data.columns 

indexed_data_noNaN = indexed_data.fillna(0) 

 

headers_only_company = [] 

for company_name in range(100): 

    headers_only_company.append(headers[company_name*4]) 

 

since_date = '2020-08-17' 

until_date = '2020-08-22' 

# Creation of query object 

count = 200 

# Creation of list that contains all tweets 

text_tweets = [] 

dates = [] 

for company_name in headers_only_company: 

    text_query = company_name 

    tweetCriteria = 

got.manager.TweetCriteria().setQuerySearch(text_query).setSince(since_date)

.setUntil(until_date).setMaxTweets(count).setTopTweets(True) 

    time.sleep(1) 

    print("don't worry, I'm working on it...") 

# Creating list of chosen tweet data 

    tweets = got.manager.TweetManager.getTweets(tweetCriteria) 

    for tweet in tweets: 

        text_tweets.append(tweet.text) 

        print(tweet.text) 

        dates.append(tweet.date) 

        print(tweet.date) 

        time.sleep(1) 

 

all_tweets_df = pd.DataFrame(data=text_tweets, columns=['scraped tweets']) 

all_dates_df = pd.DataFrame(data=dates, columns=['dates']) 

all_tweets_and_dates = all_tweets_df.join(all_dates_df) 

all_tweets_and_dates.to_csv("all tweets.csv") 

 

# download the stopwords dictionary 

nltk.download('stopwords') 

 

# importing another dataset which was already classified 

support_tweets = 

pd.read_csv("https://raw.githubusercontent.com/kolaveridi/kaggle-Twitter-

US-Airline-Sentiment-/master/Tweets.csv") 

 

X = support_tweets.iloc[:, 10].values 

y = support_tweets.iloc[:, 1].values 

 

# data pre-processing 

support_processed_tweets = [] 

 

for support_tweet in range(0, len(X)): 

    # Remove all the special characters 

    support_processed_tweet = re.sub(r'\W', ' ', str(X[support_tweet])) 

    # remove all single characters 

    support_processed_tweet = re.sub(r'\s+[a-zA-Z]\s+', ' ', 

support_processed_tweet) 

    # Remove single characters from the start 

    support_processed_tweet = re.sub(r'\^[a-zA-Z]\s+', ' ', 
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support_processed_tweet) 

    # Substituting multiple spaces with single space 

    support_processed_tweet = re.sub(r'\s+', ' ', support_processed_tweet, 

flags=re.I) 

    # Removing prefixed 'b' 

    support_processed_tweet = re.sub(r'^b\s+', '', support_processed_tweet) 

    # Converting to Lowercase 

    support_processed_tweet = support_processed_tweet.lower() 

    support_processed_tweets.append(support_processed_tweet) 

 

# text to numeric conversion using TF-IDF 

tfidfconverter = TfidfVectorizer(max_features=2000, min_df=5, max_df=0.7, 

stop_words=stopwords.words('english')) 

X = tfidfconverter.fit_transform(support_processed_tweets).toarray() 

 

# text sentiment classification, remark: using all the dataset because 

these are only support tweets 

text_classifier = RandomForestClassifier(n_estimators=100, random_state=0) 

text_classifier.fit(X, y) 

 

processed_tweets = [] 

sentiments = [] 

 

# assigning the interesting tweets their sentiment 

for tweet in text_tweets: 

    # Remove all the special characters 

    processed_tweet = re.sub(r'\W', ' ', tweet) 

    # remove all single characters 

    processed_tweet = re.sub(r'\s+[a-zA-Z]\s+', ' ', processed_tweet) 

    # Remove single characters from the start 

    processed_tweet = re.sub(r'\^[a-zA-Z]\s+', ' ', processed_tweet) 

    # Substituting multiple spaces with single space 

    processed_tweet = re.sub(r'\s+', ' ', processed_tweet, flags=re.I) 

    # Removing prefixed 'b' 

    processed_tweet = re.sub(r'^b\s+', '', processed_tweet) 

    # Removing https 

    processed_tweet = re.sub(r'https:\\[a-zA-Z]+', '', processed_tweet) 

    # Converting to Lowercase 

    processed_tweet = processed_tweet.lower() 

    sentiment = 

text_classifier.predict(tfidfconverter.transform([processed_tweet]).toarray

()) 

    processed_tweets.append(processed_tweet) 

    sentiments.append(sentiment) 

 

# joining the two lists to create the data-set to be later used 

df_1 = pd.DataFrame(processed_tweets, columns=['processed tweets']) 

df_2 = pd.DataFrame(sentiments, columns=["sentiment"]) 

processed_tweets_df = df_1.join(df_2) 

processed_tweets_df = processed_tweets_df.join(all_dates_df) 

processed_tweets_df['dates'] = pd.to_datetime(processed_tweets_df['dates'], 

infer_datetime_format=True) 

processed_tweets_df = processed_tweets_df.set_index(['dates']) 

processed_tweets_df.to_csv('processed tweets.csv') 

print('Done!') 

 

Sentiment mode construction 

import pandas as pd 

import math 

import re 
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import openpyxl 

""" 

This code imports all the data-sets previously constructed and then uses 

the processed tweets.csv file to further  

develop the sentiment mode to be fed to the tensors. The description of the 

computation of the moods is reported below. 

There is also an additional part required to further clean up the tweets, 

which had some parts that were not eliminated 

during pre-processing.  

""" 

 

 

# importing data 

processed_tweets_and_sentiment = pd.read_csv('processed tweets.csv') 

my_data = pd.read_excel(r"C:\Users\user\Desktop\Master's Thesis\data 

thesis.xlsx") 

my_data["Dates"] = pd.to_datetime(my_data["Dates"], 

infer_datetime_format=True) 

indexed_data = my_data.set_index(["Dates"]) 

 

headers = indexed_data.columns 

indexed_data_noNaN = indexed_data.fillna(0) 

 

# isolating labels only for companies 

# restricting dataset to the first 100 firms due to computational problems 

 

headers_only_company = [] 

for company_name in range(100): 

    headers_only_company.append(headers[company_name*4]) 

 

# data-set with only factors 

headers_factors = indexed_data_noNaN.drop(headers_only_company, 1) 

 

# additional processing of tweets to remove links and other useless words 

# for i in range(len(processed_tweets_and_sentiment)): 

 #   processed_tweets_and_sentiment['processed tweets'][i] = 

re.sub(r'https', r'\\', processed_tweets_and_sentiment['processed 

tweets'][i]) 

  #  processed_tweets_and_sentiment['processed tweets'][i] = 

re.sub(r'\\\s+[a-zA-Z]+\s', r'\\', 

processed_tweets_and_sentiment['processed tweets'][i]) 

  #  processed_tweets_and_sentiment['processed tweets'][i] = re.sub(r'\\[a-

zA-Z0-9]+', r'', processed_tweets_and_sentiment['processed tweets'][i]) 

   # processed_tweets_and_sentiment['processed tweets'][i] = re.sub(r'^\s', 

r'', processed_tweets_and_sentiment['processed tweets'][i]) 

 

# processed_tweets_and_sentiment.to_csv('processed tweets.csv') 

 

# dataset of sentiment 

# sentiments = processed_tweets_and_sentiment['sentiment'] 

# print(sentiments.head()) 

 

# building up the stock mood, the market mood and the intensity 

# splitting the data-set in the number of tweets for each company, there 

are almost 20k tweets, so 205 per company 

 

# sentiment = sentiments.values.tolist() 

splitted_sentiment = [] 

for i in range(0, len(processed_tweets_and_sentiment), 205): 

    splitted_sentiment.append(processed_tweets_and_sentiment[i:i+205]) 

del splitted_sentiment[100] 

# creating the data-set with sentiment for each tweet for each company 
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# overall number of positive, neutral and negative tweets 

num_pos_tweets = 0 

num_neut_tweets = 0 

num_neg_tweets = 0 

for df in splitted_sentiment: 

    for sentiment in df['sentiment']: 

        if sentiment == 'positive': 

            num_pos_tweets += 1 

        elif sentiment == 'neutral': 

            num_neut_tweets += 1 

        else: 

            num_neg_tweets += 1 

print('positive tweets: ', num_pos_tweets, 'neutral tweets: ', 

num_neut_tweets, 'negative tweets: ',  num_neg_tweets) 

 

# computing the number of positive, neutral and negative tweets for each 

stock 

# First, I create three DataFrames for each sentiment and then use isin() 

to put True instead of the desired sentiment 

# Second, I loop through the columns and sum over them to get the number of 

times the desired sentiment is present, 

# then I store everything in a dedicated list 

date_list = ['2020-08-21 ', '2020-08-20 ', '2020-08-19 ', '2020-08-18 ', 

'2020-08-17 '] 

pos_sums = [] 

neut_sums = [] 

neg_sums = [] 

count = 0 

for df in splitted_sentiment: 

    # df.drop('processed tweets', axis=1) 

    count += 1 

    print(count) 

    df = df.reset_index() 

    for i in range(len(df)): 

        df['dates'][i] = re.sub(r'(\d+)*\+', r'', df['dates'][i]) 

        df['dates'][i] = re.sub(r'(\d+)*:', r'', df['dates'][i]) 

        df['dates'][i] = re.sub(r'00', r'', df['dates'][i]) 

    df_pos = df.loc[df['sentiment'] == 'positive'].isin(['positive']) 

    df_neut = df.loc[df['sentiment'] == 'neutral'].isin(['neutral']) 

    df_neg = df.loc[df['sentiment'] == 'negative'].isin(['negative']) 

    for date in date_list: 

        pos_sums.append(df_pos.loc[df['dates'] == date]['sentiment'].sum()) 

        neut_sums.append(df_neut.loc[df['dates'] == 

date]['sentiment'].sum()) 

        neg_sums.append(df_neg.loc[df['dates'] == date]['sentiment'].sum()) 

 

time_factor = [] 

for i in range(5): 

    time_factor.append(1/math.exp(i/20)) 

    # weighted mood for each stock 

weighted_pos = [] 

weighted_neut = [] 

weighted_neg = [] 

for i in range(0, 500, 5): 

    weighted_pos.append(pos_sums[i]*time_factor[0]) 

    weighted_pos.append(pos_sums[i + 1] * time_factor[1]) 

    weighted_pos.append(pos_sums[i + 2] * time_factor[2]) 

    weighted_pos.append(pos_sums[i + 3] * time_factor[3]) 

    weighted_pos.append(pos_sums[i + 4] * time_factor[4]) 

    weighted_neut.append(neut_sums[i] * time_factor[0]) 

    weighted_neut.append(neut_sums[i + 1] * time_factor[1]) 

    weighted_neut.append(neut_sums[i + 2] * time_factor[2]) 

    weighted_neut.append(neut_sums[i + 3] * time_factor[3]) 



76 
 

    weighted_neut.append(neut_sums[i + 4] * time_factor[4]) 

    weighted_neg.append(neg_sums[i] * time_factor[0]) 

    weighted_neg.append(neg_sums[i + 1] * time_factor[1]) 

    weighted_neg.append(neg_sums[i + 2] * time_factor[2]) 

    weighted_neg.append(neg_sums[i + 3] * time_factor[3]) 

    weighted_neg.append(neg_sums[i + 4] * time_factor[4]) 

 

 

   # conversion in Series to later usage 

   # df_pos = pd.Series(data=weighted_pos, index=headers_only_company) 

   # df_neut = pd.Series(data=weighted_neut, index=headers_only_company) 

   # df_neg = pd.Series(data=weighted_neg, index=headers_only_company) 

 

# Mood intensity for individual stocks 

inten_neut = [] 

inten_neg = [] 

for i in range(500): 

    inten_neut.append((weighted_pos[i] - 

weighted_neut[i])/(sum(weighted_pos) + sum(weighted_neut))) 

    inten_neg.append((weighted_pos[i] - weighted_neg[i])/(sum(weighted_pos) 

+ sum(weighted_neg))) 

 

keys = [] 

for company_name in headers_only_company: 

    keys.append(company_name + '_' + 'pos') 

    keys.append(company_name + '_' + 'neut') 

    keys.append(company_name + '_' + 'neg') 

    keys.append(company_name + '_' + 'intensity_neut') 

    keys.append(company_name + '_' + 'intensity_neg') 

 

sentiment_mode_dataset = {} 

for i in range(0, 500, 5): 

    sentiment_mode_dataset[keys[i]] = weighted_pos[i:i+5] 

    sentiment_mode_dataset[keys[i+1]] = weighted_neut[i:i+5] 

    sentiment_mode_dataset[keys[i+2]] = weighted_neg[i:i+5] 

    sentiment_mode_dataset[keys[i+3]] = inten_neut[i:i+5] 

    sentiment_mode_dataset[keys[i+4]] = inten_neg[i:i+5] 

 

    # Put everything in the data-set for the sentiment mode 

sentiment_mode = pd.DataFrame(data=sentiment_mode_dataset) 

 

sentiment_mode.to_excel('sentiment mode.xlsx') 

At this point I stopped using PyCharm and started using Google Colaboratory. I should also 

remark that the scripts titled “better …” are the effective ones, in the sense that it is form them 

that my data comes from, the others have been added for completeness and because they 

could be helpful to the reader.  

GDR_and_Tensor_Regression_and_MR_trading_strategy 

"""GDR_and_TensorRegression_and_MR_trading_strategy.ipynb 

 

Automatically generated by Colaboratory. 

 

Original file is located at 

    

https://colab.research.google.com/drive/1WGz9QgYkSy4Mw7Ekbvqpb5RlIpZK5FfV 

""" 

 

!pip install tensorly 

!pip install scipy 
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!pip install backtrader 

 

# Commented out IPython magic to ensure Python compatibility. 

# %tensorflow_version 2.x 

import math 

import pandas as pd 

import numpy as np 

import scipy 

from scipy import linalg 

from scipy.optimize import minimize 

import openpyxl 

import tensorly as tl 

from tensorly.decomposition import tucker 

from sklearn.svm import SVR 

from sklearn.model_selection import cross_val_predict 

from sklearn.metrics import mean_absolute_error 

from sklearn.metrics import mean_squared_error 

from sklearn.metrics import r2_score 

 

def tensor_distance(matrix): 

  # Custom function to compute the matrix W, further explanation in the 

code below  

  tmp = np.zeros(shape=(1949, 1949)) 

  for i in range(1949):  

    for j in range(99): 

     tmp[i][j] = (abs(matrix[i+1][j+1]-matrix[i][j])/matrix[i][j]) 

     if tmp[i][j] > 0.05: 

       tmp[i][j] = 0 

     elif tmp[i][j] <= 0.05: 

       tmp[i][j] = 1 

  return tmp 

 

 

def mape(actual, pred):  

    # Custom function to create the Mean Absolute Percentage Error Metric 

    actual, pred = np.array(actual), np.array(pred) 

    return np.mean(np.abs((actual - pred) / actual)) * 100 

 

 

def directional_accuracy(actual, pred): 

  # Custom function to compute the mean directional accuracy 

  actual, pred = np.array(actual), np.array(pred) 

  return np.mean((np.sign(actual[1:] - actual[:-1]) == np.sign(pred[1:] - 

pred[:-1])).astype(int)) 

 

# monthly data import, highly inefficient but I needed the company names 

 

my_data = pd.read_excel("data thesis.xlsx") 

my_data["Dates"] = pd.to_datetime(my_data["Dates"], 

infer_datetime_format=True) 

indexed_data = my_data.set_index(["Dates"]) 

 

headers = indexed_data.columns 

# indexed_data_noNaN = indexed_data.fillna(method='backfill', axis=1) 

 

# isolating labels only for companies 

# restricting dataset to the first 100 firms due to computational problems 

headers_only_company = [] 

for company_name in range(100): 

    headers_only_company.append(headers[company_name*4]) 

 

# minute data, actual dataset to be used 

data_minute = pd.read_excel("data minute.xlsx") 
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data_minute["dates"] = pd.to_datetime(data_minute["dates"], 

infer_datetime_format=True) 

indexed_data_minute = data_minute.set_index(["dates", "minute"]) 

 

indexed_data_minute_NoNaN = indexed_data_minute.replace(to_replace=0, 

value=np.nan).fillna(method='pad', axis=0) 

 

headers_avg = [] 

variables_to_drop = [] 

for company_name in headers_only_company: 

    headers_avg.append(company_name + " " + "avg") 

    variables_to_drop.append(company_name + " " + "open") 

    variables_to_drop.append(company_name + " " + "high") 

    variables_to_drop.append(company_name + " " + "low") 

    variables_to_drop.append(company_name + " " + "close") 

    variables_to_drop.append(company_name + " " + "volume") 

 

data_minute_prices = indexed_data_minute_NoNaN[headers_avg] 

 

# this will be my dependent variable, my "Y" 

# y = data_minute_prices.to_numpy() 

 

# data-set with the factors data 

# this is one mode, the firm specific one 

# firm_mode = indexed_data_minute_NoNaN.drop(variables_to_drop, 

axis=1).reset_index() 

 

# now import the sentiment mode 

# sentiment_mode = pd.read_excel('sentiment mode.xlsx').reset_index() 

 

# creating the definitive dataset and importing the event mode 

# df_1 = pd.concat([firm_mode, sentiment_mode], axis=1) 

# news = [] 

# for i in range(100): 

#    news.append('news_n_{}.csv'.format(i)) 

# all_news = pd.concat(map(pd.read_csv, news), axis=1) 

# definitive_df = pd.concat([df_1, all_news], axis=1) 

# definitive_df = definitive_df.drop(['index', 'time', 'neg', 'neu', 'pos', 

'headline', 'date', 'ticker', 'Unnamed: 0'], axis=1) 

# tensor_data = definitive_df.fillna(method='backfill', axis=0) 

# tensor_data = tensor_data.set_index(['dates', 'minute']) 

# tensor_data.to_csv('tensor_data.csv') 

 

# there was a mistake in the specification of the columns so I had to 

adjust it manually 

# that is why there is another call to the read_excel method on a 

tensor_data.xlsx file 

# tensor_data_new = pd.read_excel('tensor_data.xlsx') 

# tensor_data_new = tensor_data_new.fillna(method='backfill', axis=0) 

# tensor_data_new = tensor_data_new.set_index(['dates', 'minute']) 

# tensor_data_new.to_csv('tensor_data.csv') 

 

tensor_data_new = pd.read_csv('tensor_data.csv') 

tensor_data_new = tensor_data_new.set_index(["dates", "minute"]) 

y = data_minute_prices.to_numpy() 

 

y.shape 

 

# Global Dimensionality Reduction 

# construct the matrix W to check the proximity of two tensors in the 

sequence  

# It is an upper triangular matrix, where if two tensors are close the 

entry is a 1, 
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# otherwise the entry is 0 

W = tensor_distance(y) 

W = np.nan_to_num(W) 

W = np.tril(W) 

 

# compute the matrix D, which is a diagonal matrix made up by 

# the sums over the columns of W 

sums_over_cols = [] 

for column in W: 

  sums_over_cols.append(column.sum()) 

D = np.diag(sums_over_cols) 

 

# Convert the data to a numpy ndarray 

X = tensor_data_new.drop(headers_avg, axis=1) 

X = X.to_numpy() 

X_reshaped = np.reshape(X, (1950, 100, 3, 3)) 

X_reshaped_NoNaN = np.nan_to_num(X_reshaped) 

tensors = tl.tensor(X_reshaped_NoNaN) 

 

# lists to store the quantities in the algorithm 

core_storage = [] 

factors_1_storage = [] 

factors_2_storage = [] 

factors_3_storage = [] 

D_u1_storage = [] 

D_u2_storage = [] 

D_u3_storage = [] 

W_u1_storage = [] 

W_u2_storage = [] 

W_u3_storage = [] 

 

for i in range(1949): 

    # Tucker decomposition for the stream of input tensors, the rank has 

been 

    # chosen arbitrarily 

    core, factors = tucker(tensors[i], ranks=[100, 100, 100]) 

    # appending the core tensor 

    core_storage.append(core) 

    # appending the first three factors 

    factors_1_storage.append(factors[0]) 

    factors_2_storage.append(factors[1]) 

    factors_3_storage.append(factors[2]) 

    # appending the D matrix for every first factor of every tensor in the 

stream 

    # the same for the other two factors 

    D_u1_storage.append(D[i][i]*(np.dot(factors_1_storage[i], 

factors_1_storage[i].T))) 

    D_u2_storage.append(D[i][i]*(np.dot(factors_2_storage[i], 

factors_2_storage[i].T))) 

    D_u3_storage.append(sums_over_cols[i]*(np.dot(factors_3_storage[i], 

factors_3_storage[i].T))) 

    # appending the W matrix for every first factor of every tensor in the 

stream 

    # the same is done for the other factors 

    W_u1_storage.append(W[i][i]*(np.dot(factors_1_storage[i], 

factors_1_storage[i].T))) 

    W_u2_storage.append(W[i][i]*(np.dot(factors_2_storage[i], 

factors_2_storage[i].T))) 

    W_u3_storage.append(W[i][i]*(np.dot(factors_3_storage[i], 

factors_3_storage[i].T))) 

 

# computation of the actual D and W matrixes for each factor  

D_1 = sum(D_u1_storage) 
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D_2 = sum(D_u2_storage) 

D_3 = sum(D_u3_storage) 

W_1 = sum(W_u1_storage) 

W_2 = sum(W_u2_storage) 

W_3 = sum(W_u3_storage) 

# now the code to obtain V_k 

# the value for gamma was chosen arbitrarly 

gamma = 1.0001 

A_1 = np.subtract((1-gamma)*D_1, W_1) 

A_2 = np.subtract((1-gamma)*D_2, W_2) 

A_3 = np.subtract((1-gamma)*D_3, W_3) 

# b_1 = np.zeros(len(A_1)) 

# b_2 = np.zeros(len(A_2)) 

# func_1 = lambda x: np.linalg.norm(np.dot(-A_1,x)) 

# func_2 = lambda x: np.linalg.norm(np.dot(-A_2,x)-b_2) 

# func_3 = lambda x: np.linalg.norm(np.dot(A_3,x)-b) 

V_1 = scipy.linalg.null_space(A_1, rcond=1) 

V_2 = scipy.linalg.null_space(A_2, rcond=1) 

V_3 = scipy.linalg.null_space(A_3, rcond=1) 

 

tensors_reconstruct = [] 

factors_projected = [] 

for i in range(1949): 

  # build-up the Tensor stream back but by multiplying the matrix V_k for 

all  

  # the modes U_k in all the tensors 

  tmp = [] 

  tmp.append(np.matmul(V_1.transpose(), factors_1_storage[i])) 

  tmp.append(np.matmul(V_2.transpose(), factors_2_storage[i])) 

  tmp.append(np.matmul(V_3.transpose(), factors_3_storage[i])) 

  factors_projected.append(tmp) 

  tensors_reconstruct.append(tl.tucker_to_tensor((core_storage[i], 

factors_projected[i]))) 

 

# This ends the implementation of the first algorithm for global 

dimensionality reduction  

# Now I need to implement the regression part 

 

tensors_reduced = np.array(tensors_reconstruct) 

 

tensors_reduced.shape 

 

# Now tensor-based regression learning 

# The first thing to do is to set the weights for the factors 

# It said that they had to be random unit vectors, so I computed them 

# random_1 = np.random.randn(100) 

# random_2 = np.random.randn(3) 

# random_3 = np.random.randn(3) 

# random_1_norm = np.linalg.norm(random_1) 

# random_2_norm = np.linalg.norm(random_2) 

# random_3_norm = np.linalg.norm(random_3) 

# weight_hat_1 = random_1/random_1_norm 

# weight_hat_2 = random_2/random_2_norm 

# weight_hat_3 = random_3/random_3_norm 

# According to the paper, the betas are equal to the norm squared of the 

weight_hat vectors 

# This cannot be because the weight_hat vectors are unit vectors 

# Their norm is therefore equal to one, so I assume it was a mistake or 

maybe something wrong  

# that I did along the way. For the rest of the code, I use the random unit 

vectors.   

 

# betas = [np.linalg.norm(weight_hat_1)**2,  
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#         np.linalg.norm(weight_hat_2)**2, 

#         np.linalg.norm(weight_hat_3)**2] 

 

# betas = [weight_hat_1**2, weight_hat_2**2, weight_hat_3**2] 

 

# ORIGINAL, DO NOT MODIFY 

# Now tensor-based regression learning 

# The first thing to do is to set the weights for the factors 

# It said that they had to be random unit vectors, so I computed them 

# According to the paper, the betas are equal to the norm squared of the 

weight_hat vectors 

# This cannot be because the weight_hat vectors are unit vectors 

# Their norm is therefore equal to one, so I assume it was a mistake or 

maybe something wrong  

# that I did along the way. For the rest of the code, I use the random unit 

vectors.   

y = y[0:1949, :] 

# Here I start with the algorithm 

tensor_regressors = [] 

for j in range(1949): 

    random_1 = np.random.randn(100) 

    random_2 = np.random.randn(3)  

    random_3 = np.random.randn(3) 

    random_1_norm = np.linalg.norm(random_1) 

    random_2_norm = np.linalg.norm(random_2) 

    random_3_norm = np.linalg.norm(random_3) 

    w_hat_1 = random_1/random_1_norm 

    w_hat_2 = random_2/random_2_norm 

    w_hat_3 = random_3/random_3_norm 

    betas = [w_hat_1**2, w_hat_2**2, w_hat_3**2] 

    regressors = tl.tenalg.multi_mode_dot(tensors_reduced[j], betas) 

    tensor_regressors.append(regressors) 

tensor_regressors = np.array(tensor_regressors) 

# regressors_all_companies.append(tensor_regressors) 

 

tensor_regressors = tensor_regressors.reshape((1949, 1)) 

tensor_regressors.shape 

 

weights = [] 

biases = [] 

predictions = [] 

actual_values = [] 

for i in range(100): 

  X = tensor_regressors 

  y_company = y[:, i] 

  constant = 5 

  #I need the Support Vector Machines to continue, I need the sklearn.svm 

package 

  # support_regression = make_pipeline(StandardScaler(), SVR(C=constant, 

kernel='rbf', epsilon=0.1)) 

  # scaler = StandardScaler() 

  support_regression = SVR(C=constant, kernel='rbf', epsilon=2) 

  cross_validate = cross_val_predict(support_regression, X, y_company, 

cv=10) 

  # model = sklearn.multioutput.MultiOutputRegressor(support_regression) 

  # X_train_scaled = scaler.fit_transform(X_train) 

  # X_test_scaled = scaler.fit_transform(X_test) 

  # y_train_scaled = scaler.fit_transform(y_train.reshape((1561, 1))) 

  # y_test_scaled = scaler.fit_transform(y_test.reshape((388,1))) 

  support_regression.fit(X=X, y=y_company) 

  coef_dec_func = support_regression.dual_coef_ 

  bias = support_regression.intercept_ 

  actual_values.append(y_company) 
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  weights.append(coef_dec_func) 

  biases.append(bias) 

  predictions.append(cross_validate) 

   

 

  print('company n.{}: '.format(i), headers_only_company[i]) 

  MSE = mean_squared_error(y_true=y_company.reshape((-1, 1)), 

y_pred=cross_validate) 

  RMSE = math.sqrt(MSE) 

  MAE = mean_absolute_error(y_company.reshape((-1, 1)), 

y_pred=cross_validate) 

  MAPE = mape(y_company.reshape((-1, 1)), cross_validate) 

  dir_acc = directional_accuracy(y_company.reshape((-1, 1)), 

cross_validate) 

  r_2 = r2_score(y_company.reshape((-1, 1)), cross_validate) 

  # print('MSE: ', MSE) 

  print('RMSE: ', RMSE) 

  print('MAE: ', MAE) 

  print('MAPE: ', MAPE) 

  print('DA: ', dir_acc) 

  print('R2: ', r_2) 

 

predictions = pd.DataFrame(data=predictions) 

predictions_transposed = predictions.transpose() 

predictions_transposed["periods"] = data_minute["dates"].astype(str) + ' ' 

+ data_minute["minute"].astype(str) 

predictions_transposed["periods"] = 

pd.to_datetime(predictions_transposed["periods"], 

infer_datetime_format=True) 

indexed_predictions = 

predictions_transposed.set_index(predictions_transposed["periods"]) 

indexed_predictions = indexed_predictions.drop(["periods"], axis=1) 

indexed_predictions.columns = headers_only_company 

 

for company_name in headers_only_company: 

  

indexed_predictions[company_name].to_csv('{}_trading.csv'.format(company_na

me)) 

 

import matplotlib.pyplot as plt 

 

plt.plot(actual_values[0], label='actual price') 

plt.plot(indexed_predictions["MICROSOFT"].values, label='predicted price') 

plt.legend() 

 

# Trading strategy, MEAN REVERSION  

import backtrader as bt 

from datetime import datetime as dt 

class CrossSectionalMR(bt.Strategy): 

    def prenext(self): 

        self.next() 

     

    def next(self): 

        # only look at data that existed yesterday 

        available = list(filter(lambda d: d, self.datas))  

         

        rets = np.zeros(len(available)) 

        for i, d in enumerate(available): 

            # calculate individual daily returns 

            rets[i] = (d.close[0]- d.close[-1]) / d.close[-1] 

 

        # calculate weights using formula 

        market_ret = np.mean(rets) 
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        weights = -(rets - market_ret) 

        weights = weights / np.sum(np.abs(weights)) 

         

        for i, d in enumerate(available): 

            self.order_target_percent(d, target=weights[i]) 

 

cerebro = bt.Cerebro(stdstats=False) 

cerebro.broker.set_coc(True) 

 

for company_name in headers_only_company: 

    data = bt.feeds.GenericCSVData( 

        dataname=f'{company_name}_trading.csv', 

        dtformat=('%Y-%m-%d %H:%M:%S'), 

        datetime=0, 

        close=1, 

        time=-1, 

        open=-1, 

        high=-1, 

        low=-1, 

        volume=-1, 

        openinterest=-1, 

        nullvalue=0.0, 

        plot=False 

    ) 

    cerebro.adddata(data) 

 

 

cerebro.broker.setcash(1_000) 

cerebro.addobserver(bt.observers.Value) 

cerebro.addanalyzer(bt.analyzers.SharpeRatio, riskfreerate=0.0) 

cerebro.addanalyzer(bt.analyzers.Returns) 

cerebro.addanalyzer(bt.analyzers.DrawDown) 

cerebro.addstrategy(CrossSectionalMR) 

results = cerebro.run() 

 

print(f"Norm. Return: 

{results[0].analyzers.returns.get_analysis()['rnorm100']:.2f}%") 

print(f"Max Drawdown: 

{results[0].analyzers.drawdown.get_analysis()['max']['drawdown']:.2f}%") 

cerebro.plot()[0][0] 

 

for i in range(100): 

  tmp = pd.DataFrame(actual_values[i],  

                     index=predictions_transposed["periods"]) 

  tmp.to_csv('{}_trading_original.csv'.format(i)) 

 

import backtrader as bt 

from datetime import datetime as dt 

class CrossSectionalMR(bt.Strategy): 

    def prenext(self): 

        self.next() 

     

    def next(self): 

        # only look at data that existed yesterday 

        available = list(filter(lambda d: d, self.datas))  

         

        rets = np.zeros(len(available)) 

        for i, d in enumerate(available): 

            # calculate individual daily returns 

            rets[i] = (d.close[0]- d.close[-1]) / d.close[-1] 

 

        # calculate weights using formula 

        market_ret = np.mean(rets) 
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        weights = -(rets - market_ret) 

        weights = weights / np.sum(np.abs(weights)) 

         

        for i, d in enumerate(available): 

            self.order_target_percent(d, target=weights[i]) 

 

cerebro = bt.Cerebro(stdstats=False) 

cerebro.broker.set_coc(True) 

 

for i in range(100): 

    data = bt.feeds.GenericCSVData( 

        dataname=f'{i}_trading_original.csv', 

        dtformat=('%Y-%m-%d %H:%M:%S'), 

        datetime=0, 

        close=1, 

        time=-1, 

        open=-1, 

        high=-1, 

        low=-1, 

        volume=-1, 

        openinterest=-1, 

        nullvalue=0.0, 

        plot=False 

    ) 

    cerebro.adddata(data) 

 

 

cerebro.broker.setcash(1_000) 

cerebro.addobserver(bt.observers.Value) 

cerebro.addanalyzer(bt.analyzers.SharpeRatio, riskfreerate=0.0) 

cerebro.addanalyzer(bt.analyzers.Returns) 

cerebro.addanalyzer(bt.analyzers.DrawDown) 

cerebro.addstrategy(CrossSectionalMR) 

results = cerebro.run() 

 

 

print(f"Norm. Return: 

{results[0].analyzers.returns.get_analysis()['rnorm100']:.2f}%") 

print(f"Max Drawdown: 

{results[0].analyzers.drawdown.get_analysis()['max']['drawdown']:.2f}%") 

cerebro.plot()[0][0] 
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