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INTRODUCTION 
    ͟ ͟͟  ͟  ͟͟  ͟  ͟  ͟ ͟͟  ͟  ͟͟  ͟  ͟  ͟ ͟͟  ͟  ͟͟  ͟  ͟  ͟ ͟͟  ͟  ͟͟  ͟  ͟  ͟ ͟͟  ͟  ͟͟  ͟  ͟  ͟ ͟͟  ͟  ͟͟  ͟  ͟  ͟ ͟͟  ͟  ͟͟  ͟  ͟ ͟ ͟͟  ͟  ͟͟  ͟  ͟  ͟ ͟͟  ͟  ͟͟  ͟  ͟   

 
 
 
 Similarities between wave optics and quantum mechanics have been highlighted in many 
occasions and they can be dated back to the early developments of quantum physics. The analogy 
between geometric optics and Newtonian particle dynamics was in fact the guiding line to the 
born of  quantum mechanics after the famous publishing of de Broglie  in 1923. From the initial 
development of the quantum mechanics a wide variety of concepts were borrowed from the optic 
and successfully applied to this new theory in order to demonstrate the wavy behavior of particles 
such as electrons. In particular the first concepts applied to the quantum dynamic were the ones of 
interference and diffraction, well known for light waves. 
 Transfer of ideas and concepts between these two branches of knowledge continuously occurred 
untill nowadays and in the past decade, experimental and theoretical studies on quantum-optical 
analogies have seen an important resurgence. It has proven that coupled optically waveguides 
provide a rich laboratory to investigate the classical analogues of a wide variety of coherent 
quantum effect encountered in atomic, molecular, or condensed matter physics.  
 

The access of coherent wave phenomena in microscopic quantum systems is often a 
challenging task because of complications arising from many-body effects, decoherence and the 
presence of time-dependent or non linear terms in the Schrödinger equation. In this context the 
study of the wave phenomena in optics has several advantages: (1) the possibility of a direct and 
easy spatial visualization of typical ultrafast phenomena in time; (2) the possibility to explore 
coherent dynamical regimes not yet accessible in quantum system; (3) the ability to mimic 
coherent laser-matter interactions by simple geometric bending of the guiding photonic structures. 
Due to these advantages the optic permits not only to demonstrate the quantum effects but to go 
further tanks to the more easy implementation, insomuch as quantum effects can inspire the 
conception of new optical components [9]. 
 

In this work only two types of quantum effects are optically taken into account: the two-
state STImulated Raman Adiabatic Passage (STIRAP) belonging to the atomic and molecular 
physics and the diffusion enhanced in quasicrystal belonging to the solid-state physics. The first 
one is a quantum phenomenon that permits to achieve an equal coherent superposition of two 
quantum states. If initially the population is entirely confined in the state of lower energy, at the 
end of the process an equal distribution of the atoms in the two states is achieved. For the second 
phenomena recent experiments have highlighted as in quasicrystals the introducing of disorder 
cannot transform the material in an insulator, as happens for the other materials following the 
phenomena of Anderson localization. This effect is only briefly described because the aim of this 
second part is the developing of the setup permitting further future studies of the quantum effect. 

 Their optical description is developed in the framework of purely classic 
electromagnetically theory and the experiments are conducted in a regime where the field 
quantization is not needed. 
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To optically study these quantum effects it is important to utse techniques permitting a 
good control on the design and on the physical properties of the structure, as the curvature of the 
waveguide or the index contrast. The conventional techniques exploiting physical-chemical 
processes allows to satisfied these requirements but they need a technology not easy to implement 
and in addition fixed optical structures are create. On the other hand, to test optically the proposed 
phenomena, a versatile and low – cost approach is needed because a great number of experimental 
tests will be required before finding the optimum configuration, so that using conventional 
techniques a great number of sample would be necessary. The same problem arises for the 
implementation of the setup to the study of transport properties in quasicrystal so it was decided 
to use two alternative techniques, reconfigurable, based on the photoinscription: the lateral 
illumination technique and the photo induced direct writing technique.  

The first one consists on an illumination of a photorefractive crystal (strontium barium 
niobate) submitted to an external electric field, with a laser containing the desired waveguides 
pattern which has to be reproduced in the crystal. The reconfiguration time is in order of minutes, 
allowing to make a great number of experimental tests even if the sample cannot be moved from 
the setup, because when the illumination is light-off the structure degraded. Consequently the 
characterization of the structures must be made in the same setup used for their creation and this 
technique appeared to be optimal to demonstrate optically the two-state STIRAP, for which a 
great number of tests are required but not the displacement of the sample. 

The second one consists of a scanning with a laser beam on the surface of photorefractive 
crystal (lithium niobate) in order to create permanent optical structures. The reconfigurable times 
are in order of hours, but now the sample can be moved from the setup: this is an essential 
condition for the type of characterizations that has to be made for the study of quasicrystals. 
 
 This work is based on a collaboration project between Université de Lorraine (Metz) and 
Università degli studi di Padova. In particular the study and the optical verification of the two-
state STIRAP was made in the foreign university and it is framed in a contest in which the optical 
effect can be exploited to create new optical components. The optical demonstration of the 
generalized three-state STIRAP, a quantum phenomena similar to the present one, was in fact the 
basis to produce a planar achromatic multiple beam splitter. In particular the two-state STIRAP 
can be the basis phenomena to produce a perfect achromatic 50:50 beam coupler. 
The basis study on the system able to reproduce optically the quasicrystals was made in Padova 
and this work aspires to create a setup with which to study the properties of these materials not yet 
well understood.  
 

In the initial part of the first chapter the quantum theory of the of three-state STIRAP and 
EIT is discussed, being the basis to understand the two-state STIRAP. Later the two-state 
STIRAP in its quantum version and the theory of quasicrystals are introduced. In the second part 
of the chapter the coupling mode theory is explained and the basic principles of the analogies are 
described. Finally the correspondence between the quantum and optic variables is explained for 
each quantum phenomena. 

 
The second chapter deals with the phorefractive and Pockels effect, the basic phenomena 

used to create optical structures. The properties of strontium barium niobate and lithium niobate 
are also described, as functional for the discussion of the two techniques used to create optical 
structures: the lateral illumination technique and the photoinduced direct writing technique. Their 
physical principle and advantages are explained and later the correspondingly setup is presented. 
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The third chapter deals with the presentation of the optical demonstration of the two-state 
STIRAP in strontium barium niobate. The central part of this section is the explanation of the 
programs written in Matlab languages, used to make both the simulations and the experimentally 
configurations of the quantum phenomena. They are basis on the resolution of the coupling mode 
theory and starting from the initial theoretical condition they created a image of the waveguides 
ready to be tested. 

 
In the fourth chapter the analyzes of waveguides and Fibonacci gratings, simulation the 

quasicrystal behavior, are presented. This structures are made in lithium niobate and characterized 
respectively in near and far field: this study is the basis to a further develop of the optical system 
able to reproduce optically the quasicrystals. 
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1  ⎸    THEORY 
   ͟ ͟͟   ͟ ͟͟  ͟  ͟͟  ͟  ͟  ͟ ͟͟  ͟  ͟͟  ͟  ͟  ͟ ͟͟  ͟  ͟͟  ͟  ͟  ͟ ͟͟  ͟  ͟͟  ͟  ͟  ͟ ͟͟  ͟  ͟͟  ͟  ͟  ͟ ͟͟  ͟  ͟͟  ͟  ͟  ͟ ͟͟  ͟  ͟͟  ͟  ͟ ͟ ͟͟  ͟  ͟͟  ͟  ͟  ͟ ͟͟  ͟  ͟͟  ͟  ͟   

 
 
 
 

1.1 Summary of Quantum Dynamical Coupled State Phenomena 
 

There are many types of phenomena that can be discussed in relationship with the analogies 
between quantum physics and optics. Following the classification proposed by Longhi [1] it is 
possible to distinguish three principal categories: analogies of optics with fundamental concepts 
and effects of quantum mechanics, with solid-state physics and with atomic and molecular 
physics. In this work only the last two categories are discussed, and in particular the first one in 
relation to the phenomena of the diffusion thought aperiodic quasicrystals, while the second one 
to the two-state STIRAP. 
 
 
 
1.1.2 Three-State STIRAP, EIT  

 
It is important to introduce two effects which will be used in this work: the three-state 

STImulated Raman Adiabatic Passage (STIRAP) and Electromagnetically Induced Transparency 
(EIT). 
 
The basis notion to understand the formalism describing this two mechanisms is the one of Rabi 
oscillation. The excited population P(t) of a two state-system exposed to steady coherent radiation 
does not follow a monotonically increasing pattern but oscillates sinusoidally. This mechanism is 
known as Rabi oscillations and in particular when the radiation is resonant, i.e. the laser 
frequency is equal to the Bohr transition, the result is: 
 ���� = �	 
1 − cos	�Ω���                                                    (1.1) 

 
where the frequency Ω is known as Rabi frequency and it is associated to the strength of the atom-
radiation interaction and proportional to the square root of the laser intensity. When the radiation 
intensity varies the Rabi frequency consequently varies and the cosine argument Ωt is replacing 
by the so-called pulse area A(t), the time integral of the Rabi frequency. 

 Ω� → � Ω������� = �����
��  

 
so the excited-state population oscillates between 0 and 1. 
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The oscillatory Rabi cycling characteristic of the two
multistate systems. In the particular case of a three
transition probabilities P12 from the state 
 ��	 =
 

The three-state STIRAP 
permits to achieve adiabatically a
to a metastable state ψ3, via an intermediate state 
 
The quantum system used to describe this 
which the intermediary state is coupled to 
field. In particular the population is transferred by two lasers
frequencies named respectively
pulse. ∆P = ω1-2 – ωp and ∆S = 

detuning, i.e. the difference between the frequency 
that one carried by the laser beam 
 
 Mathematically the system is described by the 
 

 
where Ψ(t) is the wave function characterizing the system evolution and
 

 
Cn(t) is the probability amplitude whose absolute square is the probability P
be found in state ψn(t) at the instant t and defined as:
 

Figure 1.1 : Q

configuration utilized for 

The oscillatory Rabi cycling characteristic of the two-state system can also be found in a 
multistate systems. In the particular case of a three-state system, as the one of Figure 1.1, the

from the state ψ1 to the state ψ2 and P23 from the state ψ

= �	 �1 � cos��	�          �	� � �	 �1 � cos�	��                         
STIRAP (STImulated Adiabatic RAman Passage) is a 

a complete population transfer from an initially populated state
, via an intermediate state ψ2, named two-photon Raman transition.

tum system used to describe this phenomenon is lambda-type, as shown in
coupled to ψ1 by a field named pump field, and to ψ

the population is transferred by two lasers characterized by two Rabi 
named respectively ΩP(t) and ΩS(t), indicating respectively the pump

 ω2-3 – ωS  are the respectively the single photon
the difference between the frequency of the Bohr transition 

beam ωp (ωs). 

Mathematically the system is described by the time-dependent Schrödinger

�� ������� �  �������                                                     

characterizing the system evolution and defined as:

���� � ∑ "#���$#���%#&� .                                                 

(t) is the probability amplitude whose absolute square is the probability Pn(t) that the atom will 
(t) at the instant t and defined as: 

�#��� � |"#���|	 � |($#|����)|	.                                        

Quantum system with three energy levels in lambda 

configuration utilized for the STIRAP technique. 

state system can also be found in a 
state system, as the one of Figure 1.1, the 

from the state ψ2 to state ψ3 are: 

�                         (1.2) 

is a process that, 
populated state ψ1 

photon Raman transition. 

type, as shown in Figure 1.1, in 
and to ψ3 by the Stokes 
cterized by two Rabi 

pump and Stokes 
single photon frequency 

of the Bohr transition ω1-2 (ω2-3) and 

Schrödinger equation 

                                                     (1.3) 

defined as: 

                                                 (1.4) 

(t) that the atom will 

                          (1.5) 

system with three energy levels in lambda 
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Using (1.5) the Schrödinger equation (1.3) results as a coupled set of ordinary differential 
equations assuming the form: 
 �� ���*��� �  ���*���                                                   (1.6) 

 
where C(t) =  [C1(t), C2(t), C3(t)] is a three component column vector of the population probability 
amplitudes, defined in the base of ψ1, ψ2, ψ3, named diabatic states. 
The wished initial and final conditions of the equation are C(-∞) = [1,0,0]T and C(+∞) = [0,0,1]T, 
that means that the entire population resides initially in ψ1 and at the end in ψ3. 
 
In the rotating wave approximation (RWA) [7] the Hamiltonian has the form: 
 

 ��� � 	�
+
,-

0 �	Ω/�t� 0�	Ω/�t� Δ/ �	Ω2�t�0 �	Ω2�t� Δ/ � Δ23
45.                                          (1.7) 

 
In particular in this work only the two-photons resonance between ψ1 and ψ3 is described, 

i.e. the one for which ∆P = ∆S,. If this condition is satisfied, the eigenstates of the Hamiltonian 
(1.7) are the time-independent states ψ1, ψ2, ψ3 and the eigenvalues, that represent the energies of 
the three states, are respectively  67��� � ∆79∆:7;:���	                                                               (1.8 a) 6<��� � 0                                                                               (1.8 b) 6���� � =�9=:7;:�>�	                                                            (1.8 c) 

where  Ω�t� � ?Ω/	�t� + Ω2	�t� is the root-mean-square Rabi frequency.  

 
In this space, in which the quantum system is normally described, the phenomenon has 

not a direct comprehension. Indeed it is most easily understood in another one, which coordinate 
vectors are the eigenstates ψ1, ψ2, ψ3. 
The new eigenstates, named adiabatic states, are related to the diabatic states by the relations 
 Φ7��� � sinD sinE	$� + cosE$	 + cosD sinE	$�                               (1.9 a) Φ<��� = cos D 	$� −	sinD 	$�                                                                   (1.9 b) Φ���� = sinD cosE	$� − sinE	$	 + cosD cosE	$�                              (1.9 c) 
 
where the time-dependent mixing angles θ(t) and ϑ(t) are defined as 
 �F	D��� = ;G���;H��� ,            �F	2E��� = ;���= .                                              (1.10) 

 
The eigenvalue Φ<��� associated with the null eigenvalues has a particular importance because, 
exploiting this state, it is possible to achieve a complete population transfer between ψ1 and  ψ3 
without populating the state ψ2. To force the system to follow this eigenstate, named dark state,  
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the key variable to control is the angle 
initially completely aligned with 
To achieve this, at the beginning of the 

to be larger than that one of the

equation. (1.9a), the angle θ gets zero
has to be in the opposite situations
This type of  pulse sequence is called ‘
at the beginning with ΩP(t) and at the end with
 
If an intuitive sequence of pulses is 
produced, and it is impossible to achieve a complete transfer 
 

To achieve the population transfer an important constrain
the pulses have to have an appropriate form to permi
Mathematically this condition requires that  
 

This condition reflects the fact that
as compared to the difference between their energies.
By developing the equations 
amplitudes, with a large area and 
evolution. In this way D��� change slowly and the system has the possibility to remain aligned 
with the dark state Φ0 during the process.
Considering that the variation has to be slow, the 
obtain the population transfer: the
pulses have been chosen to be gaussian

Because the state ψ2 does not participate
excitation remains adiabatic, its properties, such as radiative decay, do not i
process. 

Figure 1.2 : Exemple of gaussians pulses in the conterintuitive sequence 

to the three-state STIRAP.

the key variable to control is the angle D��� because, changing it from 0° to 90°
initially completely aligned with ψ1 and, at the end, with ψ3.  

at the beginning of the process, the Rabi frequency of the Stokes pulse

that one of the pump pulse ΩP(t), in this way when   
;G;J �	→KL

gets zero. On the contrary, at the end, the amplitude of
in the opposite situations, to obtain θ = 90°.  

is called ‘counterintuitive’, because the intuition would suggest
(t) and at the end with ΩS(t), to move the population from 

sequence of pulses is applied, generalized Rabi oscillation in the three states are 
produced, and it is impossible to achieve a complete transfer of the population from ψ

To achieve the population transfer an important constraint has to be take
the pulses have to have an appropriate form to permit an adiabatic evolution of the system.

requires that   

MNΦO 7MΦO �PM ≪ |67 � 6�|                                                     
 

the fact that the coupling between the adiabatic states has to be negligible
compared to the difference between their energies. 

 one realizes that only pulses sufficiently smooth
s, with a large area and exhibiting a sufficient overlap permit to have an adiabatic 

change slowly and the system has the possibility to remain aligned 
during the process. 

Considering that the variation has to be slow, the exact form of the pulses is not determinant to 
obtain the population transfer: the Figure 1.2 shows a possible configuration, where the two 

to be gaussian. 
does not participate to the population transfer,

its properties, such as radiative decay, do not influence the STIRAP 

Exemple of gaussians pulses in the conterintuitive sequence leading 

state STIRAP. 

from 0° to 90°, the system is 

Rabi frequency of the Stokes pulse ΩS(t) has 

→��LLLR0 , from the 

of the two pulses 

would suggest to act 
to move the population from ψ1 to ψ3. 

e three states are 
the population from ψ1 to ψ3. 

has to be taken into account: 
t an adiabatic evolution of the system. 

                                                     (1.11) 

has to be negligible 

that only pulses sufficiently smooth, close in 
a sufficient overlap permit to have an adiabatic 

change slowly and the system has the possibility to remain aligned 

is not determinant to 
a possible configuration, where the two 

, as long as the 
nfluence the STIRAP 

leading 



 

 

 
 
The system just described can be generalized to 

Figure 1.3, and the corresponding 
 
 The Electromagnetic
modification of the optical properties of a material
an electric field of the correct freque
This effect has been predicted theoretically in 1990
experimentally demonstration
vapors [5] and by Field et al.
 The quantum system 
levels system in lambda configurations,
couple the state ψ1 and ψ2 is named 
pulse.  
The EIT effect can be achieved only 
to ψ2 and from ψ2 to ψ3 are permitted whereas the one
>> Ωprobe and finally (3) the two lasers pulses 
that means ∆pump = ∆probe = ∆ = 0.
This configuration is completely equivalent to that one described for the STIRAP mechanism, 
therefore the Schrödinger equation that describes the time evolution of this system is identical to 
those previously used: 
 

 
where C(t) =  [C1(t), C1(t), C
defined in the base of diabatic
Hamiltonian has the form 
 

 ��
 
different from the previous one of equation (1.7

 
 

Figure

configuration utilised to achieve the EIT effect.

The system just described can be generalized to one with N energy levels, 
Figure 1.3, and the corresponding phenomenon is called multiple-STIRAP [2]

The Electromagnetically Induced Transparency (EIT) is an optical non
modification of the optical properties of a material. It can occur near an atomic resonance, 

of the correct frequency is applied. 
been predicted theoretically in 1990 by Harris et al. 

demonstration has been realized some years later by Boller et
al. using lead vapors [6].  

system used to describe this phenomenon is, in its simplest form, a three
levels system in lambda configurations, like that one shown in Figure 1.3. The

is named probe pulse whereas that one that couple 

effect can be achieved only if three conditions are respected: (1) the transition
permitted whereas the one from ψ1 to ψ3 is dipole forbidden

the two lasers pulses have to be in resonance with the dipolar transitions, 
∆ = 0. 

This configuration is completely equivalent to that one described for the STIRAP mechanism, 
erefore the Schrödinger equation that describes the time evolution of this system is identical to 

�� ���*��� �  ���*���                                                
C3(t)] is three component column vector of the probability amplitudes, 

diabatic states ψ1, ψ2, ψ3, while, in the RWA approximation, the 

��� � 	 �	S
0 ΩTUVWX�t� 0ΩTUVWX�t� 0 ΩTYZT�t�0 ΩTYZT�t� 0 [.                

he previous one of equation (1.7) because ∆pump = ∆probe = ∆ = 0.

Figure 1.3: Quantum system in lambda 

configuration utilised to achieve the EIT effect. 

      1| Theory 
 

9 

with N energy levels, visible in the 
[2]. 

n optical non-linear coherent 
an atomic resonance, when 

. [3,4] and the first 
et al. using strontium 

ts simplest form, a three 
. The laser pulse that 

whereas that one that couple ψ2 and ψ3 pump 

the transitions from ψ1 
ole forbidden; (2) Ωpump 

in resonance with the dipolar transitions, 

This configuration is completely equivalent to that one described for the STIRAP mechanism, 
erefore the Schrödinger equation that describes the time evolution of this system is identical to 

                                               (1.12) 

(t)] is three component column vector of the probability amplitudes, 
, while, in the RWA approximation, the 

[                              (1.13) 

∆ = 0. 
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The EIT can be explained

interference destruction and the second one using the 
mechanism and in particular the dressed states.
 
 Let’s consider that all the atoms are 
resonant probe pulse is applied, a certain number of atoms have the probability to pass in the level 
ψ2 directly ($� → $	). When the 
ψ2 following the sequence $� →
to transfer the atoms towards ψ
equation (1.12), the solution highligths
probability amplitude of π/2. Therefore the two different ways to populate the 
phase difference of π between them: the two mechanisms interfere destructively and the total 
probability to have the atoms in ψ
is no more possible and the material becomes 

The second point of view utilize
Ωprobe, like in the specific case of EIT, it is more conv
where basis vectors are the instantaneous eigenstates of the Hamiltonian 
done for the STIRAP mechanism
the Equations (1.9) but , since Ω
and ϑ(t) = π/4. The equations (1.9
 ΦΦΦ
 
as can be seen, the two eigenvalues 
antisymmetric respectively, of the unperturbed state

Figure 1.4: Quantum systems 

unperturbed states ψ1 
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probability to have the atoms in ψ2 becomes null. In others words the transition between 
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coupling between ψ2 and ψ3 form a different type of system named dressed state, as shown in the 
Figure 1.4, in which Φ+ and Φ- are separated of 2Ωpump. 
 
As it can be seen in Figure 1.4, the appearance of the dressed state have as consequence that the 
Ωprobe is no longer resonant with the two photons transition, as it was permitted in the original 
system.  
If initially the population is entirely confined in ψ1, it is no longer possible to move it toward ψ2 or 
ψ3, and the state becomes transparent to this transition. 
This consideration can be deduced also considering directly the equation (1.14b). The state Φ0 
does not have components in the states ψ2 and ψ3, therefore if the population is initially entirely in 
ψ1, it does not move from this state during the time evolution. 
 
 
 
1.1.2 Two-State STIRAP 
 
 The two-state STIRAP is a quantum phenomenon that permits to achieve an equal 
coherent superposition of two quantum states. If initially the population is entirely confined in the 
state of lower energy, at the end of the process an equal distribution of the atoms in the two states 
is achieved. 
  
 The quantum system that describes this mechanism is shown in the Figure 1.5. The two 
energy levels ψ1 and ψ2, named diabatic states, are coupled by a laser characterized by a Rabi 
frequency Ω(t), which is not in resonance with the two-photon transition. The offset between the 
Bohr transition frequency ω0= (E2-E1)/ħ  and the laser carries frequency ωL is the time dependent 
detuning ∆(t). 
The evolution of this system is described by the time dependent Schrödinger equation as before 
 �� ��� "��� �  ���"���                                               (1.15) 

 
where C(t) =  [C1(t), C1(t)] is a two component column vector of probability amplitude, defined in 
the base of diabatic states ψ1, ψ2 and, in the RWA approximation, the Hamiltonian has the form 
  ��� � �	 ] 0 Ω���Ω��� 2Δ���^.                                               (1.16) 

 
The wished initial and final state of the system are C(-∞) = [1,0]T and C(+∞) = [1,1]T, that means 
that the entire population resides initially in ψ1 while at the end  there is an equal distribution in ψ1 
and ψ2. 
The RWA approximation, used to describe the system, is valid if both the frequency Ω(t) and ∆(t) 
are much smaller than the laser carrier frequency ωL. 
 

The model presented to describe the two-state system is a useful picture of the real 
situation but only an idealization. Real atoms have an infinite number of bound states that become 
important, for example, when the spontaneous emission is included in the description of the 
system. Indeed when this phenomenon occurs for the exited level, there is a probability that the 
population lead to levels other than the ground state, so that these atoms are lost from the two-
state system previously described. A correct description would have to take into account the 
presence of additional levels and the probability loss out of the system occurring from ψ2.  
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Figure 1.5

phenomenon.

Mathematically this traduces in the using of non-Hermitian Hamiltonian where the probability is 

three-state STIRAP, it is more convenient to describe
a new base, whose coordinate vectors are the instantaneous eige

corresponding eigenstates, named adiabatic states, are related to 

Φ7�t� � ψ� sin θ�t� @ ψ	 cosθ�t�                         Φ��t� � ψ� cos θ�t� @ ψ	 sinθ�t�                            
θ(t) is defined as 

D��� � �	abc tan e;���=���f.                                     

eigenvalues, that represent the energies of the adiabatic states, are defined by 

7��� � �	 eΔ��� @ 9∆	��� @ Ω	���f                       
���� � �	 eΔ��� � 9∆	��� @ Ω	���f                       

s it was seen for the EIT, in this base the two eigenvalues form a new type of system named 

transfer θ(t) has to change slowly enough so that the state evolves
ds the Rabi frequency Ω(t) and the detuning ∆(t) have

slowly, so that the state vector remains fixed in the adiabatic coordinates space. 
athematically the general adiabatic condition requires that  

MNΦO 7MΦO �PM ≪ |67 � 6�|.                                                   

5: Quantum system utilised in the two-state STIRAP 

phenomenon. 

Hermitian Hamiltonian where the probability is 

describe the evolution 
a new base, whose coordinate vectors are the instantaneous eigenstates of the 

are related to ψ1, ψ2 by 

               (1.17 a)  
               (1.17 b) 

                   (1.18) 

nergies of the adiabatic states, are defined by 

                         (1.19 a) 

                                     (1.19 b) 

s it was seen for the EIT, in this base the two eigenvalues form a new type of system named 

slowly enough so that the state evolves 
∆(t) have to change 

 As already seen, 

                    (1.20) 

STIRAP 
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The coupling between the adiabatic state has to be negligible compared to the difference between 
their energies. For a two-state system the equation (1.20) is converted as follow 
 �	 MΩO Δ � ΩΔO M ≪ �Ω	 + Δ	��/	.                                              (1.21) 

 
This relation means that the adiabatic condition requires first of all smooth pulses and furthermore 
a large Rabi frequency and/or large detuning. 
 
 The system presented in Fig. 1.5 can be used to achieve the STIRAP phenomenon, like 
described in the Paragraph 1.1.1, but using only two states. The first big difference between the 
three-state and the two-state STIRAP is that in the last case an equal superposition, and not a 
completed transfer of population, at the end of the process is obtained. To describe the way in 
which the phenomenon works it is useful to start showing the topological equivalence between the 
two-state system and the three-state system [6]. 
 
 The equation (1.15) can be transformed as three coupled Bloch equations having real-
valued variables, using complex values of the probability amplitude, so that in the RWA 
approximations the transformed Schrödinger equation takes the form [12]: 
 

� ��� hi���j���k���l � h
0 �Δ��� 0Δ��� 0 �Ω���0 Ω��� 0 l hi���j���k���l.                                (1.22) 

 
The quantities u,v,w are the real-valued time-dependent coordinates of the Bloch vector that 
moves in an abstract three dimensional space. In particular u and v are respectively the real and 
the imaginary part of the coherence expressed by the term 2C1C2

* that is: 
 cmℎobopco � i + �j � 2"�"	∗                                           (1.23) 
 
and w is the population inversion. The initial condition is w(-∞) = -1 
 
The equations (1.22) are therefore the conversion of the two-level into a three-level system. It 
should be noted that this is not a time-dependent Schrödinger evolution for a resonantly coupled 
lambda-system in the usual RWA approximation. The latter would have the following form: 
  

� ��� h"����"	���"����l �
�	 h 0 Ω/�t� 0Ω/�t� 0 Ω2�t�0 Ω2�t� 0 l h"����"	���"����l                              (1.24) 

 
where Ωp(t) and ΩS(t) are respectively the pump and the Stokes pulses, as already described for 
the three-state STIRAP.  
 
In order to make the equation (1.24) similar to (1.22) so that the two systems mathematically 
equivalently, it is sufficient to replace the probability amplitude C1, C2, C3 as follow 
 "r	 � ��"	                                                         (1.24 a) "r� � �"�                                                          (1.25 b) 



 
 

 14 

 

 
 
and to permute C1 and "r� to obtain the right structure of the desired Schr
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Figure 1.6. 
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where θ(t) as the following form:
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respectively. The detuning ∆(t) and the Rabi frequency Ω(t) in (1.22
(t) and ΩP(t) in the counterintuitive three-state STIRAP, as shown in 

is very useful because now, to study the two-state STIRAP
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only one that permit to achieve an adiabatic transfer of the population from the 

e it is the only one that presents a linear combination of only two states 

��� � k��� cos D��� @ i��� sin D���                                       
: 

�F	D��� � ;���=���.                                                         

To have the passage of the population from w to u, initially the detuning ∆(t) has to be larger than 
∞) = 0, hence d(-∞) = w(-∞). At the end the opposite situation has 

θ ∞) = π/2 and d(+∞) = u(+∞).  
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                            (1.26) 
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The last condition means that the system achieves a state characterised by the condition |u|=1 and 
v=w=0. Knowing that states having u2+v2=1 and w=0 are states of maximal coherence in a two-
level system, the process that depletes completely the initial energy level in the three-state 
configurations corresponds to create a maximally coherent superposition of the states in the two-
level configuration. Using the same notation already explained for the three-state STIRAP this 
sequence of pulses is named counterintuitive. 
On the contrary, by implementing an intuitive sequence of pulses, the initial state is completely 
depleted but an oscillating superposition of ψ2 and ψ3 is created. In the two-state STIRAP this fact 
has as consequence that a state characterised by the conditions w = 0 and |u2|+|v2|=1 is created. 
Also in this case a state of maximal coherence is achieved and it is possible to have in the two 
levels, at the end of the process, an equal distribution of the initial population. 
 

To maintain the system in the adiabatic condition it is necessary to change slowly the 
pulses. The other important condition  is that the pulses have a large area, as prescribed by the 
global condition of adiabaticity, already discussed for the three-state STIRAP, 
 s	 ≪ t Ωu�������7�                                                        (1.29) 

where   Ωu��� � 9Ω	��� + Δ	���. 
The adiabatic passage is very robust and depends weakly on the overlap of the two pulses. 
Besides, the most energetically efficient choice consists in implementing two pulses with the 
same maximal amplitude. 
 
 
1.1.4 Disorder-Enhanced Transport in Photonic Quasicrystals 

 
Usual theory of charge transport in conducting crystals rely on the concept of Bloch Waves, 

where the quantum state of the charge carriers is described by a Schrödinger equation with a  
periodic potential. This kind of formalism exploits the perfect periodicity of the crystal medium to 
find explicit solutions to this problem and lead to well known concepts in solid state physics, such 
as energy band, effective masses and so on. A fundamental change in this situation occurs when 
the perfect periodicity of the medium is perturbed. The so-called Anderson localization is a 
phenomenon in which, introducing disorder, a conducting crystal can transform in an insulator. A 
more intriguing situation observed in partially ordered media, such as quasicrystals. 
 

A quasicrystal is defined as an intermediate phase between an ordered and a disordered 
structure. It does not have a unit cell and does not exhibit translational symmetries as usually 
interpreted for a periodic structure, but anyway it possesses a long range order and displays Bragg 
diffraction [40]. They were discovered by Shechtmann et al.[42] in 1984 and the first theoretical 
analysis was proposed in the same year by Levine and Steinhardt [43]. These structures are 
classified using the notion of order, originating from the corresponding periodic structure of a 
dimension higher than the physical one. For example a 1D quasicrystal it can be seen as the 
projection of a 2D periodic lattice on a line [42], so in the theoretical model the Bragg diffraction 
is attributed to the presence of higher dimension. 

 
First experiments in the study of transport properties of these crystals have highlighted that the 

presence of a disordered structure enhance the transport instead of turning it off . 
More deepened experiments have concluded that quasicrystals  have counterintuitive transport 
properties; in this respect, some fundamental questions are still not answered. For example, the 
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mechanism proposed to explain the unusual transport in quasicrystals assumes
electrons while the conductivity measurements inevitably incorporate elect
interactions. . A possible way to investigate experimentally these issues is to mimic the dynamic 
of electron waves with optical signals and the quasi 
waveguiding structures. 
 

In this scenario, it is ma
used to reproduce optically these kinds of phenomena in a convenient fashion. This is one of the 
goals of the present work.  
 
 
 

1.2. Coupled Optical Waveguides
 

The theory of quantum-optical analogie
equation describing quantum phenomena, the Schrödinger equation,
one describing the waveguides coupling
waveguides provide a laboratory to investigate the classical analogues of coherent quantum effect 
just described. This approach has several advantages: (1) the possibility of a direct and easy 
visualization in space of typical ultrafast phenomena in time; (2) the possibility 
coherent dynamical regimes not yet accessible in quantum system; (3) the ability to mimic 
coherent laser-matter interactions by simple geometric bending of the guiding
 
 
1.2.1 Optical waveguides

 
A waveguide is an element able to confine an electromag

optical type if the frequency of the transported wave is in the optic range. They are built using at 
the least two different dielectrics and the confinement is achieved surroun
the larger refractive index, i.e. the 
confined in one or more directions but only the first type, named planar, and characterized by only 
two index refractions, is mathematically studied in this paragraph.
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confines the incident light when two conditions
angle at the core-cladding surface separation 
reflection, so that the optical ray is completely reflected, as shown 
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modes, the only realized in our 
 

 
The presence of the parameter 
value corresponds to a different guided mode. As consequence, also
propagation β(z) becomes discretized in function of the mode 
 

 
where neff m is the refractive 
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By substituting equation (1.31
 

 
This is the transcendental equation
not resolvable analytically, i
the Figure 1.8. 

Figure 1.8: Graphic 

rigth side of the equation, whereas the black one is the left side. The 

intersection of two curve permits to find θ

many modes can propagate in the guide. 

imposes that the wave satisfies the condition of auto-coherence, so that after two total
cladding the resultant wave has to be equal to the incident one. This 

ion is mathematically translated into the equation: 

2x<yp	 sin D̅ � 2{ � 2|}                                              

 is the module of the wave vector in the vacuum, W is the waveguide width, 
variation of the phase caused by the total reflection and m is the order of the mode propagation. 

of the phase is calculated using the Fresnel equations and for transvers electric (
our experiments of light induced waveguides, it has the form:

tan~	 � ?���: �w����: �w � 1                                                      

The presence of the parameter m in the equation (1.30) implies a discretisation of 
value corresponds to a different guided mode. As consequence, also the longitudinal constant of 

(z) becomes discretized in function of the mode m considered: 

�� � x<p	 cos D̅� � x<p����                                              

refractive effective index seen along the propagation by the specific mode 
the condition n2 < neff m < n1. 

(1.31) in (1.30) the latter can be rewritten as follows

tan �s�#:�� sin D̅ � �s	 � � ?���: �w����: �w � 1                                       

transcendental equation and it permits to calculate the different va
not resolvable analytically, it is possible to resolve it only numerically or graphically, as shown in 

Graphic solution of trascendental equation. The red curve is the 

rigth side of the equation, whereas the black one is the left side. The 

intersection of two curve permits to find θm, and their number indicates how 

many modes can propagate in the guide.  
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coherence, so that after two total reflections 
cladding the resultant wave has to be equal to the incident one. This 

                                              (1.30) 

is the waveguide width, φ is the 
is the order of the mode propagation. 

transvers electric (TE) 
, it has the form: 

                               (1.31) 
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                                              (1.32) 
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                                       (1.33) 
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With the wave optic approach, on the other hand, it is possible to calculate the electric 
field, and therefore the shape of the modes, associated with the propagation in a single waveguide. 
A monochromatic wave of this type is a solution of the Helmholtz equation: 
 �∇	 @ x<	p	�������� � 0                                                (1.34) 

 
And the resulting propagation modes form a complete base.  
 
For the particular geometry used, invariant for translations along the axis y, and for the mode TE, 
a possible solution of (1.34) as the form: 
 ���, �� � �����o��
���� � �����                                        (1.35) 
 
Substituting this in the Helmholtz equation (1.34) one gets: 
 �:��: ����� + 
p	���x<	 � ��	 ������ � 0                                   (1.36) 

 
where n(x) is the profile of index refraction and, as shown in Figure 1.7, it is n2 in the core and n1 
in the cladding. 
The equation (1.36) has to be solved separately in the core and in the cladding, because the 
dynamic of the electric field is completely different in these two regions. 
 
In the core  p		x<	 � ��	 > 0, which can be seen from equation (1.32), by knowing that n2 < neff m 
< n1. Therefore the solution has an oscillatory form and equations are easier understandable if the 
electric field is expressed under the form ������ � a�i�, where am is the amplitude and um the 
field distribution: 
 i���� ∝ �cos 	�ℎ���	sin	�ℎ���	� 										} = 0,2,4} = 1,3,5								− y/2 ≤ � ≤ y/2                  (1.37) 

 

where hm is the transverse propagation constant, defined as ℎ� = 9p		x<	 − ��	 = 	s#¡ ����w�	 . 

 
In the cladding, on the contrary,	p		x<	 − ��	 < 0, therefore the solution is exponential, and after 
re-expressing ������ as done in the core, the field distribution um has the form: 
 i���� ∝ �	exp�−¦���exp	�¦���	 � 										� > y/2� < y/2                                     (1.38) 

 

where γm is the wave extinction coefficient, defined as ¦� = 9��	 − p�	x<	 = p�x<?§V�: �w�§V�: �� − 1. 

This part of the wave is named evanescent, ad it is the base for treating the coupling mode theory, 
as discussed in the following paragraph. 
 
To determine the complete form of the  electric field it is necessary to know also the amplitude 
am. To achieve this it is sufficient to impose the continuity of the electric field at the surface of 
separation core-cladding Ecore (x =±W/2)= Ecladding (x =±W/2) and to normalize the distribution of 

the mode: t i�	 ����� = 17��� . 
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This description can be generalized for waveguides confines in two dimensions or with an 
arbitrary index profile along x . In this case the solution of the problem has to be found 
numerically. 
 
 
 
1.2.2 Coupled mode theory 

  

The optical coupling is a phenomenon that occurs when multiples waveguides are placed 
sufficiently near to each other, so that the light injected in one guide can transfer to a near one. 
More precisely the modes of propagations of the light confined in a guide are coupled with those 
in a near guide. 

 
Different types of formalisms were been developed to study theoretically this mechanism, 

but in this work only the coupled mode theory (CMT) is briefly described.  
This theory was developed by Yariv in 1973 and it is based on the coupling by evanescent waves,  
that occurs when a second waveguide is placed sufficiently near the first one, so that the two 
evanescent waves can superimpose each other. This formalism was created to study the coupling 
of two guides, where the equations can be completely resolved, but it can also be used to describe 
more complex and extended structures: it is sufficient to generalize the theory using a “tight-
binding” type approximation. 
 

The base of the theory is to treat the presence of the second waveguide as a perturbation 
of the problem that involves the single guide 
 

When a second waveguide is taken into account, as shown in Figura 1.9, the propagating 
wave is not longer a solution of the Helmholtz equation but, in the approximation of coupled 
mode theory, of: 

 ∇	���� � ¨<6<6�b� �:��:���� � ¨< �:��:©ª�«���, ��                              (1.39) 

 

Figura 1.9:  Structure composed with two different waveguides. Wl, nl are  

the width and the index refraction of the left one; Wr, nr of the right one; s 

is the inter-guide distance; nb is the bulk index refraction. 
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where ε(r) = n2(r) is the space-dependent dielectric constant describing the waveguide, and Ppert is 
the perturbation polarization defined as: 
 ©ª�«���, �� � 6<Δ6������, �� � 6<Δp	������, ��                              (1.40) 

 
To solve this equation the same geometry already used for the single guide is adopted, and as 
unperturbed base, its eigenstates are used. With this formalism, and for TE modes, the electric 
field can be rewritten as follows: 
 ���, �, �� � �	∑ a����� i�o¬���®�¯� + c. c.                            (1.41) 

 
It is important to note that, in this case, the amplitude am is dependent upon z, in contrast to the 
case of a single guide, and that E(x,z,t) is actually the sum of the two electric fields which 
propagate separately in the two guides. Therefore the equation (1.41) can be rewritten as follows: 
 
                         ���, �, �� � �«��, �, �� + �±��, �, �� 
                                         � �	 ²a«���i«���o¬���®³¯� + a±���i±���o¬���®´	¯� + c. c. µ          (1.42) 

 
where Er represents the electric field propagating in the right guide and El in the left one. Indeed 
only the fundamental mode m=0 is considered because experimentally the setup is adjusted only 
for this one. The variation of the amplitude of ar(z) and al(z) include the information on the 
transfer of energy, that is obtained if waveguides are sufficiently close to each other. 
Substituting (1.42) and (1.40) in (1.39), due of the approximation of slowly varying  amplitude ¶ �:�¯: a����¶ ≪ ¶ ��¯ a����¶, separating the contribution for the left and right guides and 

considering only one direction of propagation for the light, the coupling equations can be 
rewritten in the form [47]: 
 ��¯ a«��� � ��"±«a±���o�¬∆®¯ � �"««a«���                                (1.43 a) ��¯ a±��� � ��"«±a«���o�¬∆®¯ � �"±±a±±���                                (1.43 b) 

 
Where ∆β is the phase mismatch within the two guides, defined as ∆β=βl-βr and C, for the right 
guide, is defined as: 
 "±« � ·�¸ t ¹p±	��� � pº	���»i±���i«�����±���	¼½¬��                         (1.44 a) 

"«« � ·�¸ t ¹p±	��� � pº	���»i«	�����±���	¼½¬��                             (1.44 b) 

 
where the influence extends on the left guide. These equation admit an analytic solution only if 
the two guides are identical. Equation (1.44) describes the coupling constant between the left and 
the right waveguides, while the second one represents only a small correction that can be 
normally neglected. 
 
 Finally, equations that are solved to study the light propagation in two waveguides are: 
 ��¯ a«��� � ��"±«a±���o�¬∆®¯                                           (1.45 a) 
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��¯ a±��� � ��"«±a«���o�¬∆®¯                                           (1.44 b) 

 
With initial conditions al(0) = a0 and ar(0) = 0, that correspond to consider the wave entirely 
coupled in the left waveguide. 
 

In the case of identical guides the phase mismatch ∆βz in null and coupling constants are 
all equal, so equations (1.43) can be further simplified: 

 ��¯ a«��� � ��"a±���                                                (1.46 a) ��¯ a±��� � ��"a«���	                                               (1.46 b) 

 
In this way C admits the analytic solution: 

 "��� � 	¾�: ¿��ÀÁ�Â®���7	/¿��²¾�: 7¿�: µ	                                              (1.47) 

 
where γm is the wave extinction coefficient, hm the transverse propagation constant, W the width 
of the guide and s the inter-guide distance, calculated between the two boundaries of the guides 
(Figure 1.9). 
 
Finally, if more than two waveguides exist the equations (1.46) can be rewritten in a single 
expression: ��¯ a#��� � ��"
a#����� + a#7�����                                  (1.48) 

 
This is the fundamental equation of the CMT, which is also the generalization for a larger number 
of identical waveguides equally spaced, in which only the fundamental mode TE00 propagates and 
where each guide is influenced only by its first neighbors.  
 
 
 
1.2.3 Resonant case 

 
In this paragraph the analogy between quantum and optical quantities is explained for the 

three-state STIRAP and EIT. We consider the resonant case, where the detuning ∆ between the 
Bohr frequency and that of the exciting laser is null. 

 
The quantum effect, as already explained, is governed by the Schrödinger equation: 

 � ���Ã��� � �� ���Ã���                                                     (1.49) 

 
Where A(t) = [A1(t), A2(t), A3(t)] is a three-component column vector of the population 
probability amplitudes defined in the base of unperturbed states ψ1, ψ2, ψ3, and the Hamiltonian 
has the form: 
 

 ��� � �	S 0 Ω��t� 0Ω��t� 0 Ω	�t�0 Ω	�t� 0 			[                                         (1.50) 
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The equation describing the wave coupling
presentation can be rewritten as: 
 

 
Where A(z) = [A1(z), A2(z), A
amplitudes propagating in each guide, and H(t) is a matrix containing 
between the waveguides: 
 

 ���
In the Hamiltonian coupling constant
of guides not equally spaced has to be taken into account
possible to reproduce optically the two quantum p
 

The analogy between the quantum
that equations (1.48) and (1.50) have the same structure and
correspondence between temporal and
Cn(z) of the Hamiltonian (1.52) correspond to
levels ψn to the nth waveguide.  
The quantum resonance condition
having the same width and the same 
 

 
 

 
 
 
 

Figure 1.10: a) Exemple of gaussians pulses in the 

the three-state STIRAP. CP is coupling co

and Cs between the last and the cental one. b) Waveguide structure providing an optical 

analogies to the counterintuitive three state STIRAP process.

describing the wave coupling reported (1.48) and in a more g
 

ÄÄ¯Ã��� � �� ���Ã���                                                   
A3(z)] is a three-component column vector of the

agating in each guide, and H(t) is a matrix containing the coupling constants 

� � � �	S 0 C�	�z� 0C	��z� 0 C	��z�0 C�	�z� 0 			[                                      

In the Hamiltonian coupling constants are all different and z-dependents because 
has to be taken into account. This description indicates that it is 

cally the two quantum phenomena of STIRAP and EIT..

The analogy between the quantum mechanics and the optic is linked to the observation 
have the same structure and, in particular, they are equivalent

espondence between temporal and z coordinate is established. In this way coupling constants 
correspond to Rabi frequencies Ωn(t) in (1.50) and 

 
resonance condition ∆k = 0 is optically reproduced using identical waveguides, 

having the same width and the same effective index.  

Exemple of gaussians pulses in the spatial conterintuitive sequence 

is coupling constant between the input waveguide and central one 

and Cs between the last and the cental one. b) Waveguide structure providing an optical 

analogies to the counterintuitive three state STIRAP process. 

in a more general 

                                                   (1.51) 

the electric field 
the coupling constants 

                         (1.52) 

 
because the general case 

. This description indicates that it is 
henomena of STIRAP and EIT.. 

to the observation 
they are equivalent if a 

In this way coupling constants 
and the nth energy 

identical waveguides, 

conterintuitive sequence leading to

nstant between the input waveguide and central one 

and Cs between the last and the cental one. b) Waveguide structure providing an optical 



 

For the STIRAP mechanism 
levels and, as it was already seen in paragraph 
counter-intuitive sequence of the pulses 
equivalent to a spatial one,
sequence, so the Figure 1.2
now, a longitudinal dependence with the crystal le
reproduced observing in equation 
on the inter-guide distance s
waveguides and vice versa a small 
the variations of CS or CP are
1.10b. In  z = 0, as example, 
to model a small CP, The same logic was applied f
 
The intuitive case is reproduce
1.10a, the waveguides take on the
 
 

 

 
 

For the EIT the fundamental condition is to have 
using linear waveguides, separated
compared with the one between 1 and 2, as shown in 

 
 

 

Figure 1.11: Waveguide structure providing an optical analogies to the intuitive 

three state STIRAP process.

Figure 1.12: a): Quantum system 

providing an optical analog

For the STIRAP mechanism three waveguides are necessaries to simulate the three energy 
, as it was already seen in paragraph 0.01.1.2, it is important to implement the temporal

intuitive sequence of the pulses ΩP and ΩS. Knowing that the temporal coordinate is 
, this condition is optically translated in a spat

2 becomes the Figure 1.19a, where pulses have the
a longitudinal dependence with the crystal length. This sequence is experimentally 

in equation (1.47) that the coupling constant has an exponential dependence 
s, so a larger coupling constant implies a small distance between two 

waveguides and vice versa a small coupling constant a larger distance between them
are reproduced modulating s along the crystal, as shown in

0, as example, the input waveguide has a larger distance relative to the central one, 
The same logic was applied for the creation of the output

reproduced simply permuting the order of the gaussians
take on the new structure presented in Figure 1.11 

For the EIT the fundamental condition is to have Ωpump >> Ωprobe, and this is traduced by 
separated by a small inter-guide distance between waveguide 2 and 3, 

one between 1 and 2, as shown in Figure 1.12. 

Waveguide structure providing an optical analogies to the intuitive 

three state STIRAP process. 

Quantum system describing EIT effect. b)Waveguide structure 

providing an optical analogies to the EIT process. 
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three waveguides are necessaries to simulate the three energy 
, it is important to implement the temporal 

. Knowing that the temporal coordinate is 
translated in a spatial counter-intuitive 

have the same shape but, 
This sequence is experimentally 

has an exponential dependence 
implies a small distance between two 

a larger distance between them. In this way 
, as shown in Figure 

relative to the central one, 
or the creation of the output waveguide. 

rder of the gaussians pulses in Figure 

, and this is traduced by 
ce between waveguide 2 and 3, 

 

Waveguide structure providing an optical analogies to the intuitive 

b)Waveguide structure 
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1.2.4 Detuned case 

 
The detuned case describes the optical analogy with the two-state STIRAP, where a 

detuning ∆ is present. The analogy is based on the same consideration explained for the resonant 
case: the Schrödinger equation and the basic equations of the coupled mode theory have the same 
structure, so it possible to demonstrate quantum phenomena using optic experiments. The 
difference is in the Hamiltonian matrix. In quantum description, as explained in paragraph 1.1.2, 
the latter has the form: 

  ��� � �	 ] 0 Ω���Ω��� 2Δ���^                                                 (1.53) 

 
While the matrix for the optical analogue, containing the coupling constant can be written as 
follows [13]: 
 

 ��� � Ç 0 "�,	o¬∆®È"	,�o�¬∆®È 0 É                                          (1.54) 

 
Comparing these two matrixes, it can be noticed that the role of the detuning ∆ in the CMT is 
played by a phase mismatch ∆βz in equations (1.54) while C(z) is again the analogue of the Rabi 
frequency Ω(t). The two coupling constants C1,2 and C2,1 are not equals, because of the presence 
of ∆βz.  
Usually the matrix (1.54) is rewritten in a different way to have a structure more similar to the 
Hamiltonian (1.53). This is realized using transformations: 
 ��� ��� � ��?Ê¡,:Ê:,¡ o�¬∆®È                                                (1.50 a) �	� ��� � �	���                                                              (1.55 b) 
 
In this new basis the Hamiltonian takes the form: 
  � e∆� "" 0f                                                          (1.56) 

 

where " � 9"�,	"	,� is the geometric mean of coupling constants between the guide 1 and 2 and 
∆β becomes the equivalent of the detuning ∆. 
 

To realize experimentally the optical analogy, two waveguides are necessary to simulate 
the two energy levels and the presence of a phase mismatch implies the use of waveguides with 
the same width but different effective refractive index, given that the latter is directly related to 
∆β by the formula: 

 ∆� � 	x<Δp � 	s� Δp                                                  (1.57) 

 
As it was seen for the three-state STIRAP, also in this case it is important to pass from a 

temporalcounterintuitive or intuitive sequence of pulses to a spatial one, but this time the gaussian 
variation  is on ∆β and C. Experimentally the first one is realized with a gaussian variation of the 
index of refraction contrast, since they are connected as shown in equation (1.57), and the second 



 

 

 
one exploiting the exponential
state STIRAP. Following this schema
demonstrate optically the two
 
 
 
1.1.2  Diffusion trough aperiodic

 
The first example in photoni

was described by Kohomoto et al.[44]. This approach is based 
equation describing the quantum system is analogue to the equation of the CMT theory
Kohomoto et al. proposed a 1D photonic quasicrystals structure using dielectric multilayers 
arranged in the so-called Fibonacci sequence. It 
base blocks are two layers of 
by the fact that their rapport L/S is an irrational number
retraced to a repetitive sequence of a highest common divisor
is reproduced.   
The order of L and S is deci
L the sequence is composed by 
In this work we have used the rule just explained to crea
in paragraph 2.4.3. 
 
 
 
 
 

Figure 1.13: Waveguide structure providing an optical analogies to the counteintuitive two

STIRAP process. The gaussian variation of Δβ is obtained a gaussian modulation of the 

index, visible in the superior guide on a grey

modulating the inter-guide distance.

exponential dependence of inter-guide distance, as already seen for the tree
Following this schema, a structure as the one shown in Figure 1.13 

the two-state STIRAP effect. 

ffusion trough aperiodic coupled waveguides array 

The first example in photonics describing an aperiodic structure with a long
was described by Kohomoto et al.[44]. This approach is based on the fact that the Schrödinger 
equation describing the quantum system is analogue to the equation of the CMT theory

proposed a 1D photonic quasicrystals structure using dielectric multilayers 
called Fibonacci sequence. It was defined using a substitutional

of two different thickness named long (L) and short (
rapport L/S is an irrational number. In this way the sequence 

retraced to a repetitive sequence of a highest common divisor and the behaviour of a quasicrystal 

S is decided following the iterative rules  Ë → Ì and Ì →
L the sequence is composed by elements : L, S, SL, SLS, SLSSL, etc.. 
In this work we have used the rule just explained to create an aperiodic 1D structure, as described 

Waveguide structure providing an optical analogies to the counteintuitive two

STIRAP process. The gaussian variation of Δβ is obtained a gaussian modulation of the 

index, visible in the superior guide on a grey-scale color code,, while the variation of C obtained 

guide distance. 
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s already seen for the tree-
Figure 1.13 is used to 

cs describing an aperiodic structure with a long-range order 
on the fact that the Schrödinger 

equation describing the quantum system is analogue to the equation of the CMT theory. 
proposed a 1D photonic quasicrystals structure using dielectric multilayers 

using a substitutional rule where the 
named long (L) and short (S), characterized 

the sequence cannot be 
and the behaviour of a quasicrystal 

→ ÌË, so starting with 

dic 1D structure, as described 

Waveguide structure providing an optical analogies to the counteintuitive two-state 

STIRAP process. The gaussian variation of Δβ is obtained a gaussian modulation of the refractive 

scale color code,, while the variation of C obtained 
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WAVEGUIDES 
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In order to realize experimentally the schemes depicted in the preceding paragraph, it is 

convenient to use a flexible approach for rapid prototyping of complex optical structures without 
need for complicated technological steps. Commonly in the opto-electronic or 
telecommunications domains waveguides are realized using physical-chemical steps, but this 
approach requires a complex technology to be implemented. Moreover all these techniques have 
the disadvantage to create not alterable static structures, so each experimental configuration which 
can be tested requires a new sample, limiting the study of new phenomena. 

In recent times [8,9] it has been shown that light – induced techniques can provide and 
efficient way to solve these issues. In particular, photorefractive materials, i.e. materials whose 
refractive index can be modified dynamically or semi – permanently by a light pattern, offer a 
convenient way to produce in short times and at low cost the complicated optical structures 
needed to verify the quantum – optical analogies described in the previous chapter 

Above all this approach is particularly convenient because of its reconfigurability: each 
optical structure can be easily canceled and in this way only one sample is necessary. 

Different techniques can be implemented to create reconfigurable photorefractive 
waveguides. In this work, two approaches were used: the lateral illumination technique in SBN 
and the photorefractive direct writing in Fe:LN. The first approach was already demonstrated, and 
used to test the optical analogue of STIRAP and EIT effect [8]. In this work we use it to 
demonstrate experimentally, to our knowledge for the first time, the optical two – state STIRAP 
phenomenon. 

The second method was originally developed in the course of this thesis; it is meant to be a 
complementary approach with respect to the lateral illumination technique, because in this way 
semi – permanent structures are created, as opposite to the first technique which is fully 
dynamical. This offers some advantages when the produced structures have to be handled and 
moved for other applications. The effectiveness of this approach is proved by realizing and 
characterizing quasi – periodical optical structures. 
In the following, the basic characteristics of photorefractive effect and of the materials used are 
reviewed and a description of the employed experimental setups is given. 

 
 
 

2.1    The Pockels Effect  
 

The Pockels effect, named also linear electro-optic effect, is a second order process, 
discovered in 1899 by Friedrich Pockels. It consists in a linear modification of the refractive index 
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when the material is exposed to an electric field. Due to its linear nature in the electric field, this 
effect can occur only in non centro-symmetric materials. 

This effect is described using the optical indicatrix, i.e. an ellipsoid whose central section, 
perpendicular to the direction of  propagation of the incident beam, identify with its principal 
axes, the index of refraction of the material, according to the polarization of the propagating 
beam. It can be written in the following implicit form: 

 �:#Í @ �:#Î @ ¯:#È � 1                                                              (2.1) 

 
where nx, ny, and nz are the principal values of the refractive index along the three directions of an 
orthogonal reference system xyz, indicating the principals dielectric axes. In its general 
formulation, developed by Nye, equation (2.1) can be rewritten as: 
 Ï¬Ð�¬�Ð = 1      with       Ï¬Ð = �·ÑÒ                                                (2.2) 

 
remembering that  p¬Ð = 96¬Ð. 
When an arbitrary electric field E(x,y,z) is applied to the crystal, the refractive index ellipsoid can 
change its shape and orientation and this variation is described by the third rank electro-optical 
tensor rijk through the relation: ∆Ï¬Ð = b¬ÐÓ�Ó                                                          (2.3) 
 
from the condition Bij = Bji also the electro-optic tensor has to be invariant under permutation of 
indices i,j so rijk = rjik. The tensor B, using the Voigt notation, can be rewritten as: 
 

ÔÏ�� Ï�	 Ï��Ï	� Ï		 Ï	�Ï�� Ï�	 Ï��Õ = ÔÏ� ÏÖ Ï×ÏÖ Ï	 Ï¸Ï× Ï¸ Ï�Õ.                                        (2.4) 

 
The electro-optic relation (2.3) can be rewritten as: 

 ∆ � �#:�¬ = ∑ b¬Ð�ÐÐ                                                     (2.5) 

 
or in its explicit form: 
 

Ø∆Ï�∆Ï	⋮∆ÏÖÚ = hb�� b�	 b��b	� b		 b	�⋯bÖ� ⋯bÖ	 ⋯bÖ�l Ô
���	��Õ                                         (2.6) 

 
As the index variation is much smaller than 1 the equation (2.5) can be rewritten as follows: 
 ∆p = − #Ü	 b¬Ð�Ð                                                          (2.7) 

 
 
 



 

 

 
 

2.2     Photorefractive Effect
 

The photorefractive effect is the refractive index variation 
homogenous light pattern. This variation is realized as a result of two process
the photo-excitation, and the resulting redistribution 
external non uniform illumination
strong space charge field in the material. The second one is due to the Pockels effect, 
internal field in turn modifies the refractive index .

This effect was observed for the first time in 1966 by Ashkin at
LiTaO3. The refractive index variation is the origin of 
propagating in the crystal. Because of this behavior initially 
for the opto-electronic performances. In
damage”, and all initial studies had the purpose
 

The first model of the photorefractive effect was proposed by Chen 
highlights that the index variation in a mater
information carried by the light
the photo-induction mechanism is explained. This model consider
presenting donor impurities 
excitation can be neglected. The concentration of those donors is indicated as N
A part of these impurities, having a
charge. The energy transported by the incident beam permits to ionize filled impurities, so that 
they emit a charge (in this case we will consider only electron 
electrons moves in the conduction band, until t
elsewhere in the crystal. The
impurity, with the difference that the first ones are mobiles while the second ones are fixed. This 
schema is represented in Figure 

again photo-excited and the mechanism continues as long as it is trapped in a dark zone. In this 
way an electronic transfer  from illuminated to dar

Figure 2.1: Description of the photorefractive effect 

transport model. 

Photorefractive Effect 

The photorefractive effect is the refractive index variation of a material exposed to a non 
. This variation is realized as a result of two process
the resulting redistribution of electric charges inside the material 

external non uniform illumination; the final result of this charge unbalance 
space charge field in the material. The second one is due to the Pockels effect, 

in turn modifies the refractive index . 
s effect was observed for the first time in 1966 by Ashkin at al. [28] in LiNbO
. The refractive index variation is the origin of a wave front distortion of a

. Because of this behavior initially the effect was regarded as
electronic performances. Indeed initially this effect was classified as

, and all initial studies had the purpose to decrease it. 

The first model of the photorefractive effect was proposed by Chen in 1968 
highlights that the index variation in a material submitted to radiation can be exploited to record

light signal. He proposed a model based on the band transport, where 
induction mechanism is explained. This model considers a photorefractive material 

 sufficiently far away from the conduction band, so that 
can be neglected. The concentration of those donors is indicated as N

having a density NÞ7, is ionized, so that they are apt to 
charge. The energy transported by the incident beam permits to ionize filled impurities, so that 
they emit a charge (in this case we will consider only electron – type carriers).

conduction band, until they are trapped at another ionized impurity 
e crystal. The generation rate of the moving electrons is the same of the ionized 

impurity, with the difference that the first ones are mobiles while the second ones are fixed. This 
Figure 2.1. If the electron is trapped in an illuminated zone it can be 

excited and the mechanism continues as long as it is trapped in a dark zone. In this 
way an electronic transfer  from illuminated to dark zone is realized and this new charge 

Description of the photorefractive effect following the band 
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distribution generates an internal static electric field named space charge field ESC, in turn 
modifying the index refraction via the electro-optic effect.  
 

This first model was later completed by Kukhtarev et al [30,31] in1978, developing a 
system of equation describing completely the effect just described. 

 �%ßà�� � �áâ @ ���ãä �ãä7� � ¦åp�ãä7                                                 (2.8) æ � ç¨p�� @ ¨xèé	∇nX + qsI�ãä −ãä7�ìíî                                     (2.9) ε<ε∇�ðñ = −ç�p� +ãò −ãä7�                                                          (2.10) �ó�� + ∇æ = 0                                                                                         (2.11) 

 
The equation (2.8) is the trap generation rate where s is the cross section coefficient for excitation, 
I the incident light intensity, β the thermal excitation coefficient, γR the electron recombination 
constant and ne the free electrons density. The first term of equation (2.8) takes into account that 
ionized donors are generated either by photo-ionization or by thermal excitation while the last 
term considers that the number NÞ7 decreases because of the electron recombination in a dark zone 
of the crystal.  
The equation (2.9) is the current density which is due to the contribution of three terms. The first 
one is connected to the presence of an electric field, which can be either internal or externally 
applied, where µ is the electronic mobility and q the electronic charge. The second one the 
contribution due to the electronic diffusion which is connected to the gradient of the electron 
density, where kB is the Boltzmann constant and T the absolute temperature. The third term is the 
photo-galvanic current  describing the current generated in absence of electric field due uniquely 
to the photo-excitation. Lph  is the photo-galvanic drift vector. 
Equation (2.10) is the Poisson equation describing the space charge field, where ε is the 
permittivity dielectric tensor and NA is a background charge necessary to ensure the charge 
equilibrium. 
Equation (2.11) is the continuity equation, where ρ is the charge density. 
 
 As we explain in the paragraph 2.3.4 and 2.4.4 ours structures are created submitting a 
photorefractive crystal to a localized illumination, so equation (2.8) to (2.11) has to be solved for 
this particular condition and not as it is usually made for the case of a periodic illumination. 
Normally the solution for our particular problem is found only numerically, but using suitable 
hypothesis analytic solutions can be found separately for the lateral illumination technique and the 
photorefractive direct writing. 
 
 
 

2.3   Dynamical Optical structures inStrontium Barium Niobate  
 

Strontium barium niobate (SBN) presents many properties that makes it a suitable 
candidate for many non-linear applications. This crystal is used to make both fundamental and 
applied studies thanks to its electro-optic, piezo-electric, pyro-electric and photorefractives 
properties [14, 15]. Actually it is already utilized for electro-optic modulator [16], phase 
conjugation [17], holographic storage [18], generation of spatial solitons [19, 20] and second 
harmonic generation [21]. 
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2.3.1 SBN 
 

The chemical formula of strontium barium niobate is SrXBa1-XNb2O6, usually abbreviated 
by the name SBN: x% ,where x is the strontium fraction present in the material. The most used 
composition for optical applications are x = 61% or x = 75%. 
SBN is obtained starting with a chemical compound made of a mixing of powders of BaCO3, 
SrCO3 and Nb2O6, and it is produced using different growing methods such as Bridgman [22], 
Stepanov [23, 24] or Czochralski [25] process, and the last one is the most often used. 
 
SBN is a negative uniaxial crystal having the optical axis corresponding to the c-axis. In such 
anisotropic crystal the optical response of the material is described by its dielectric tensor 6̂, 
which, due to symmetry properties, can be written, as a diagonal matrix: 
 

6̂ � 6< õ6�� 0 00 6�� 00 0 6��ö.                                                      (2.12) 

 
At optical frequencies the permittivity of the material is usually described in terms of its refractive 
index and according to the polarization of the incident radiation, the crystal has two refractive 

indices, one ordinary  p÷ � ?·¡¡·�  and the other one extraordinary p� � ?·ÜÜ·� . The presence of two 

different coefficients in matrix (2.12) determines the birefringent nature of the material, which is 
negative because the corresponding indices respect the relation ne < no. 
 
The refractive indices also depend on the value of the strontium fraction x and on the wavelength 
used. For the value of 633nm, the one used to explore the created structures, the corresponding 
values are: 
 

 x = 61% x = 75%, 
ne 2.2953 2.2987 
n0 2.3116 2.3117 

 
SBNt is transparent in the range 0,3 – 6,0 µm, at room temperature it is ferroelectric and belongs 
to the crystallographic point group 4mm, therefore its electro-optic tensor has the form: 
 

b �
+
,,-
0 0 b��0 0 b��00b×�0

0b×�00
b��000 3
445                                                           (2.13) 

 
The exact value of the coefficients depends strongly on the fraction x of strontium and on the 
wavelength. For SBN:61% and SBN:75% at 633nm, the coefficients r13 and r33 have respectively 
the values:  
 

 x = 61% x = 75%, 
r13 47 pm/V 67 pm/V 
r33 235 pm/V 1340 pmV 
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It is important to understand t
several optical properties, among which
attention toward extrinsic and rather than
the description of this effect.  
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crystal during the growth or subsequent treatments. In the specific case of photorefraction
dopants like chrome or cerium are 
The most common dopant used is C
photorefractive process dominatted by
that for cerium concentration larger than 0.15
of the dopant concentration, indicating th
The absorption is proportional to the total concentration of filled and empty traps and increases 
according to the cerium concentration
concentration below 0.15mol% experim
since the material is electron conductive the absorption of a photon by Ce
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2.3.2 Sample 
 

The sample of SBN utilized in this work is SBN:61% doped with 0.002mol% of cerium. 
The SBN:75% would have permitted to have greater electro
realization of such type of crystal having a good crystalline qua
SBN:61%. The crystal, grown by Stepanov
mm as reported in Figure 2.3, and
It is also provided with two electrode
application of the external electric field along this direction. In this configuration the optical
structures are confined only along 
and y they are limited by the crystal
The particular strontium/barium 
sample permits, in the experimental conditions employed
seconds, allowing to follow in real time

 
 

Figure 2.2: Photograph

electrodes are applied.
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It is important to understand the defect structure of SBN, because it plays a role
among which the photorefractive effect. In particular we focus the 

rather than intrinsic defects, because the first ones

Extrinsic defects consist in any other elements out of Sr, Nb and O that can enter in
ystal during the growth or subsequent treatments. In the specific case of photorefraction

like chrome or cerium are intentionally added to increase the photorefractive sensitivity.
most common dopant used is Cerium and, its introduction in the crystal leads to a 

ted by electrons rather than hole transport. It was 
larger than 0.15mol% the photoconductivity becomes independent 

, indicating that the ratio between filled and empty traps is constant. 
The absorption is proportional to the total concentration of filled and empty traps and increases 
according to the cerium concentration, showing that the dopant is the origin of the absorption. For 
oncentration below 0.15mol% experiments reveal that the cerium is present in SBN as Ce

the material is electron conductive the absorption of a photon by Ce3+ creates Ce
properties depend on the ratio Ce3+ / Ce4+. 

The sample of SBN utilized in this work is SBN:61% doped with 0.002mol% of cerium. 
The SBN:75% would have permitted to have greater electro-optic coefficients r13

realization of such type of crystal having a good crystalline quality is much more difficult than for 
by Stepanov technique, was cut to obtain a sample of 

mm as reported in Figure 2.3, and polished to optical grade, using standard procedures,
with two electrodes of graphite [27] perpendicular to the z axis, allowing the 

application of the external electric field along this direction. In this configuration the optical
d only along the optical axis c, i.e. 1D waveguides are created, while alo

they are limited by the crystal dimension. 
strontium/barium fraction and the percentage of the cerium characterizing the
, in the experimental conditions employed here, a slow dynamic in

in real time the mechanism of the waveguides formation.

Photograph of SBN:61%. On the left and right the two 

electrodes are applied. 

y 

x 

z 
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plays a roles for 
icular we focus the 

s are important in 

that can enter in the 
ystal during the growth or subsequent treatments. In the specific case of photorefraction, 

added to increase the photorefractive sensitivity. 
crystal leads to a 

It was highlighted [46]  
the photoconductivity becomes independent 

at the ratio between filled and empty traps is constant. 
The absorption is proportional to the total concentration of filled and empty traps and increases 

, showing that the dopant is the origin of the absorption. For 
that the cerium is present in SBN as Ce3+ and 

creates Ce4+. In this 

The sample of SBN utilized in this work is SBN:61% doped with 0.002mol% of cerium. 

13 and r33 but the 
is much more difficult than for 

was cut to obtain a sample of 5 x 23 x 5 
polished to optical grade, using standard procedures,. 

perpendicular to the z axis, allowing the 
application of the external electric field along this direction. In this configuration the optical 

are created, while along x 

characterizing the 
in the order of few 

formation. 
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2.3.3 Waveguide Creation by lateral illumination technique 
 

The lateral illumination technique exploits the photorefractive properties of SBN crystals 
to induce waveguiding structures having the same shape of a light pattern which is sent on one 
crystal face. The obtained structures are probed in real time by a secondary light beam which is 
launched in the waveguide from a face perpendicular to the first one. The waveguiding structures 
realized with this technique are fully dynamical: the refractive index change is locally increased 
proportionally to the light intensity, following it whenever this is moved and disappearing if the 
illumination is switched off. The lateral illumination technique therefore bases its operation in the 
fact that the light is guided by the light. The idea of the method is the following: an electric field 
applied to the sample reduces its refractive index everywhere by electro optic effect, but in the 
illuminated area this field is screened by a higher density of mobile charge carriers. The refractive 
index in this region results therefore increased with respect to the rest and a waveguide is 
obtained. An additional background illumination can be used in order to smooth the resulting 
index profile to avoid saturation effects. 
 

This method has the important advantage to be reconfigurable, indeed each index variation 
disappears as soon as the illumination is switched off on a timescale of the order of one minute, so 
that the crystal can returns always to the initial situation. Because of the small relaxation time of 
the material, it is sufficient to turn off the external illumination to start the cancelling process in 
the crystal. By increasing the intensity of the external incoherent illumination ID an homogenous 
redistribution of the charges can be accelerated, reporting the refractive index to the bulk value. 
This permits to make a very large number of experimental demonstrations. On the contrary this 
method has the disadvantage that the optical structure exits till the external illumination is on and 
the external electric field is present, so the crystal cannot be moved from the setup. 
 

To find an analytic expression of the charge space field, we follow the treatment described in 
[32] and [27], solving Kukhtarev equations. 

Since the realized structures are straight structures aligned perpendicular the ferroelectric c 
axis, the problem can be treated in one dimension, in particular along z, parallel to the c axis of 
the crystal. A stationary situation is considered, describing the electric field after the initial 
transitory situation. Besides that, the contributions associated to charge diffusion are neglected, 

because an illumination beam with width larger than the Debye length LD is used, with Ë� � 	sÓø 
where x� � ?�:%ùúú·�·Óûü and ã��� � %ßà²%ß�%ßàµ%ß  . LD is in the order of 1µm for the majority of the 

photorefractive crystals. The photo-galvanic effect is also neglected, because this effect is not 
relevant for SBN. This effect explains because an external electric field E0 has to be applied to the 
crystal, indeed the external illumination makes the material much more conductive but the 
conduction electrons are emitted along a privileged direction. Under these hypothesis equation 
(2.9) simplifies to: 

 æ � ç¨p���ðñ @ �<�.                                                     (2.14) 
 
On the other hand, from eq. (2.8) it turns out that at equilibrium the carriers concentration is given 
by: p���� � 
ýþ�¯�7®��%ß�%ßà�¿�%ßà                                                   (2.15) 
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So that the material become more conducting where the illumination is strong. In these 
conditions, by substituting eq. (2-15) into eq. (2-14) it can be shown that the space charge electric 
field has the following expression: 
 ��Ê��� � �< þßþß7þ�¯�                                                      (2.16) 

 
where E0 is the electric field applied to the crystal through the electrodes, I(z) the intensity of the 
laser beam illuminating the crystal, i.e. the lateral localized illumination and ID is the dark 
intensity. The latter has two contributions, one is the thermal excitation of mobile charges while 
the other one is due to the background illumination. It is important to notice in equation (2.16) 
that the electric field E0 is decreased in the illumination zone according to the ratio I(x)/ID. 
 

Initially the crystal has an homogeneous n0 refractive index, corresponding to its bulk 
value. Applying the external electric field E0 along c axis, due to the Pockels effect, the index 
variation is equally decreased according to: 
 ∆pþ�¯�&< � � #Ü	 b����<.                                                     (2.17) 

 
When the localized illumination is applied, due to the photorefractive effect, the electric field seen 
by the crystal is the one expressed in (2.10), so that the index modulation can be expressed as 
follows: 
 ∆pþ�¯��< � � #Ü	 b����< þßþß7þ�¯�                                             (2.18) 

 
Consequently the refractive index contrast profile becomes: 
 ∆p � ∆pþ����< � ∆pþ���&< � ∆p< þ���þß7þ���                                  (2.19) 

 

where  ∆p< � � #Ü	 b����<. The situation is depicted in figure 2,4c. It is easy to see that the 

refractive index in the illuminated region is higher compared to the one in the dark, so that 
illuminated areas can in principle be used as the core of the light induced waveguide. Equation 
(2.16) displays another important property of the obtained refractive index profile: saturation. If âä ≪ â��� eq. 2.19 can be approximated as Δp��� ≈ ∆p< þßþ�¯�  and the refractive index contrast is 

determined by the illumination profile (remember that ∆p< has a negative sign) with an amplitude 
proportional to âä. On the other hand, if âä ≫ â���, i.e. outside the illuminated area, or for very 
weak illumination patterns, the refractive index profile does not follow anymore the illumination 
profile, Δp��� ≈ ∆p< � constant. It is therefore important to set a correct value of the 
background illumination, in order to have a large refractive index contrast on one hand and to 
reproduce correctly the illumination pattern on the other.  
Experimentally this is obtained adding in the setup an halogen lamp which illuminates uniformly 
the crystal. The creation of a stabile waveguide exploiting this method requires characteristic 
times of about 30seconds, thanks also to the high electro-optic coefficient r33. 
Concerning the cross section of the illumination profile, it can be shown that in practice, a true 
square profile is practically impossible to obtain, due to aberrations and to the finite optical 
resolution limit of our setup. A more realistic picture [27] is a waveguide following a super 
gaussian  profile: 



 

 

 
 

 
where l is the half width of the super gaussian at 1/e
 
 
 
2.3.4 Experimental Setup

 
The creation of photo induced waveg

paragraph 2.3.2, is made utiliz
illumination technique.  

 
The control beam used to obtain the illumination profile inducing the waveguides is obtained 
from a Nd:YAG laser characteriz
This one passes through a spatial filter, a spherical lens (SL), which enlarges it, and a 
beam splitter, is used to select
right polarization hits a spatial light modulator (SLM) Holoeye
of the setup This device permits to reproduce the waveguides on the SBN. It is formed by a 
nematic liquid crystals cell of
are all oriented in the same direction but, when an electric field is applied, they turn and the 
degree of rotation depends 
orientation induces a variat
controlled, inserting in the control program a gray scale image having 256 different type of gray 
levels and the dimensions of 1920 x 1200 pixels, to be in accordance with SLM dimension. Th
condition is due to the fact that the maximum
white regions of the image, while a black 
polarization. The intermediaries gray colors have a partial effect in the 
reflected beam having the polarization rotated in accordance with the image used, goes back 
toward the beam splitter and the variation on the polarization is traduced in a variation of 
 

Figure 2.3: Description of th

the lateral illumination technique.

â��� � â< Ço��ÍÀ�´ �� @ o��Í́�� @ o��Íà�´ ��É                                  
where l is the half width of the super gaussian at 1/e2 and p is the structure periodicity

Experimental Setup 

The creation of photo induced waveguides, whose physic principles are
, is made utilizing the setup presented in Figure 2.4 and 

used to obtain the illumination profile inducing the waveguides is obtained 
characterized by a wavelength of 532nm, with a power of about 200mW. 

This one passes through a spatial filter, a spherical lens (SL), which enlarges it, and a 
is used to select the vertical polarization of the beam. After that, the beam 

right polarization hits a spatial light modulator (SLM) HoloeyeTM LC-R 1080, 
permits to reproduce the waveguides on the SBN. It is formed by a 

nematic liquid crystals cell of 16.39 x 10.56 mm steered by a computer. Initially nematic crystals 
are all oriented in the same direction but, when an electric field is applied, they turn and the 

 on the value of the applied electric field. The variation on crystal 
variation of the reflected beam polarization. This operation is software 

controlled, inserting in the control program a gray scale image having 256 different type of gray 
levels and the dimensions of 1920 x 1200 pixels, to be in accordance with SLM dimension. Th

due to the fact that the maximum polarization change in the beam is induced 
of the image, while a black part of the image one not modify the beam

. The intermediaries gray colors have a partial effect in the polarization variation. The 
reflected beam having the polarization rotated in accordance with the image used, goes back 
toward the beam splitter and the variation on the polarization is traduced in a variation of 

Description of the process permitting to create waveguide in SBN with 

the lateral illumination technique. 
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                                  (2.20) 

periodicity 

uides, whose physic principles are described in 
and the so called lateral 

used to obtain the illumination profile inducing the waveguides is obtained 
power of about 200mW. 

This one passes through a spatial filter, a spherical lens (SL), which enlarges it, and a polarizing 
. After that, the beam with the 

R 1080, the key instrument 
permits to reproduce the waveguides on the SBN. It is formed by a 

. Initially nematic crystals 
are all oriented in the same direction but, when an electric field is applied, they turn and the 

on the value of the applied electric field. The variation on crystal 
polarization. This operation is software 

controlled, inserting in the control program a gray scale image having 256 different type of gray 
levels and the dimensions of 1920 x 1200 pixels, to be in accordance with SLM dimension. This 

the beam is induced for 
one not modify the beam’s 

polarization variation. The 
reflected beam having the polarization rotated in accordance with the image used, goes back 
toward the beam splitter and the variation on the polarization is traduced in a variation of  

waveguide in SBN with 
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intensity, as it reflects toward the
has been modified. 
The beam passes through two crossed cylindrical lens (CL), one vertical and the other horizontal. 
which are used to adapt the SLM image to the sample dimensions
system of lenses, to create a correct image in the SLM, 
the SLM and the sample should be taken into account:
 

 
The control beam is finally sent to
to an electric field  and a background light, necessary
paragraph 2.3.2. The electric field is ap
electrodes while the supplementary illumination supplied
intensity can be regulated. 

 The probe beam is a He
axis of the SBN. The beam 
interferometer, useful to measure the refractive index contrast in the 
One part of the probe beam propagates 
by a microscope objective, to investigate the 
recombined, expanded with a spherical lens and the 
camera. The total magnification of the 
 

  
 
 
 
 
 

Figure 2.4: Description of the setup used to 
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intensity, as it reflects toward the SBN the horizontal component, that is the part of the beam that 

The beam passes through two crossed cylindrical lens (CL), one vertical and the other horizontal. 
which are used to adapt the SLM image to the sample dimensions. Because of the presence of this 

, to create a correct image in the SLM, the conversion due to the imaging between 
the SLM and the sample should be taken into account: 

1 pixelSLM = 1.2µmSBN 

sent to the crystal to create the waveguides. The SBN is also 
a background light, necessary during the inscription process, as

The electric field is applied along the c axis of the crystal thanks to its graphite 
he supplementary illumination supplied by a white halogen lamp whos

is a He-Ne laser at the wavelength of 633nm, and polarized along
axis of the SBN. The beam is divided into two parts to create also a Mach

measure the refractive index contrast in the waveguides 
propagates in free space while the other one is coupled into the crystal 

by a microscope objective, to investigate the created structure. Finally the two beams are 
, expanded with a spherical lens and the resulting image is collected by a CCD 

The total magnification of the collecting system is given by: 

1 pixelCCD = 0.73µmSBN 

scription of the setup used to create photoinduced waveguides.

Reconfigurable waveguides 

SBN the horizontal component, that is the part of the beam that 

The beam passes through two crossed cylindrical lens (CL), one vertical and the other horizontal. 
the presence of this 

the conversion due to the imaging between 

the crystal to create the waveguides. The SBN is also subjected 
process, as seen in the 

plied along the c axis of the crystal thanks to its graphite 
by a white halogen lamp whose 

polarized along the ĉ 
a Mach-Zehnder  
 (see Figure 2.5). 

ne is coupled into the crystal 
Finally the two beams are 

is collected by a CCD 

create photoinduced waveguides. 
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2.4    Photorefractive Direct writing Iron doped Lithium Niobate 
 
 
2.4.1 Fe:LN 

 
Lithium niobate single crystal (LiNbO3, or LN) presents many properties that makes it a 

great candidate for many linear and non-linear optical applications such as waveguides, electro-
optic modulators, second harmonic generators, holographic devices, sensors. 

It is an artificial crystal, described the first time in 1928 by Zachariasen [34] and 
synthesized the first time in 1965 by Ballman, using  Czochralski technique [35]. It is one of the 
four compounds of the pseudo-binary system Li2O−Nb2O5, besides Li2Nb28O71, Li3NbO4 and the 
lithium triniobate LiNb3O8, and it is colorless and insoluble in water and organic solvents. It is a 
pyro-electric, piezo-electric and ferroelectric material. At temperatures lower than the Curie point, 
which is about 1150°C, it has a spontaneous polarization, which disappears at higher temperatures 
in the paraelectric phase. 
LN can is normally produced normally using a chemical composition characterized by a lithium 
deficiency, differing from the stoichiometric formula (50 mol% Li2O): the composition 
corresponding to this point is defined as congruent and the relative molar percentage of Li2O is 
48.6 mol% [36]. This composition is preferred because the melt and the growing crystal have the 
same composition, so these crystals show the highest uniformity of their chemical and physical 
properties. On the contrary, in other cases, such as stoichiometric materials, the composition of 
the melt and the crystal are slightly varying during the growth and the crystal becomes non-
uniform, particularly along the growth axis.  
 
LN is a negative uniaxial crystal having the optical axis correspond to the ferroelectric c-axis. In 
such anisotropic crystal the optical response of the material is described by its dielectric tensor 6̂, 
which, due to symmetry properties of LN, can be written, as a diagonal matrix: 
 

6̂ � 6< õ6�� 0 00 6�� 00 0 6��
ö.                                                      (2.21) 

 
At optical frequencies the permittivity of the material is usually described in terms of its refractive 
index. According to the polarization of the incident radiation, the crystal have two refractive 

index, one ordinary  p÷ � ?·¡¡·�  and the other one extraordinary p� � ?·ÜÜ·� . The presence of two 

different coefficients determines the negative birefringent nature of the material, as indexes 
respect the relation ne < no. Their values are strongly dependent on the temperature, composition, 
and beam wavelength: for a congruent sample at room temperature and for 633nm and 532nm 
beams (those used in this work) they are respectively: 
 

 532 nm 633nm 
ne 2.23357 2.20217 
n0 2.32319 2.28641 

  
The pure LN is transparent from about 0.35µm to 5µm and belongs to the crystallographic space 
symmetry group R3c, point group 3m, therefore its electro-optic tensor has the form: 
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445.                                                   (2.22) 

 
These coefficients have a linear dependency with the temperature, as shown e.g. by P. Górsky et 
al. [37] in the range 20÷200◦C, and in particular at room temperature they have the values: 
 

r22 = 3.4 pm/V 
r42 = 28 pm/V 
r13 = 8.6 pm/V 

r33 = 30.8 pm/V. 
 
The defect structure of LN is of main importance to understand, because it deals with many 
optical properties, in particular with the photorefractive effect. As a matter of fact, since the 
discovery of this effect, great effort has gone into the understanding of the role of defects in the 
physical properties of the material. In particular we focus the attention in extrinsic and not 
intrinsic defects, because the first ones are more important in description of the photorefractive 
effect. 

 

Extrinsic defects consists in any other elements out of Li, Nb and O that can enter in the crystal 
during the growth or subsequent treatments. In the specific case of photorefraction the dopant 
used may have two purposes: 

-  to suppress the effect as in the case of Mg, Zr, Zn and Hf . 
-  to enhance it as for Fe, Cu, Mn and Ni. 

For the aim of this work it is fundamental to utilize the second category of dopants and in 
particular sample doped with iron are used. 
 
Iron doping provides in the visible range of the absorption spectrum a strong broad band 
responsible for the photoexcitation of the free electrons, which is a necessary condition for the 
realization of the photorefraction. It is well known that for Fe:LiNbO3 the iron atoms are found in 
the valence states Fe2+ and Fe3+, and that these states represents respectively donors and acceptors 
centers in photorefractivity. 
 
By solving the equations (2.8 – 2.11), and as confirmed experimentally (see e.g. [45]), it can be 
shown that on iron doped LiNbO3 crystal the space charge electric field follows a saturated 
exponential time evolution: 
 � � �ý�� e1 − o�� �− �ü��f                                            (2.23) 

 

where Esat is the field at saturation defined as �ý�� � 	
þ
�  with K the Glass constant, α the 

absorption coefficient and σ the photoconductivity of the LiNbO3; T0 is the relaxation time 

defined as é< � ·
�. These characteristics are determined by the specific sample in use. It can be 

shown that the photoconductivity (which determines the relaxation time) is proportional to the 
light intensity and to the reduction ratio [Fe2+]/[Fe3+], while the saturation value of the space  
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charge field is proportional to [Fe3+]. The doping characteristics of the sample therefore establish 
its photorefractive response. 
 
 
 
2.4.2 Sample 

 
The samples used in this thesis were grown by the Czochralski technique in our laboratories  

and obtained from the same boule. The samples are bulk doped with iron at nominal concentration 
of 0.1mol%, as this concentration is known to be the optimal one for maximizing the 
photorefractive properties [38]  The samples were oriented, cut in slabs with the major surface 
perpendicular to the x direction and polished to optical grade, using standard procedures. All the 
resulting samples were oxidized using a thermal treatment in wet oxygen atmosphere, as verified 
by optical absorption. In these conditions and for this doping level, the saturation value of the 
photorefractive space charge field Esc is expected to be about 108V/m, which lead to a maximum 
expected variation of the refractive index compared of about 10-4. 
  . 
In our experimental setup for direct beam writing, these samples are scanned with a focused laser 
beam with an intensity of about 5·109 W/m2 in the focal spot (see paragraph 2.4.3) ). Assuming a 
reduction degree between 0.001 and 0.01, a typical value, it turns out that the photoconductivity 
has an  expected value of about 10-8 - 10-9 Ω-1 cm-1 and consequently the dielectric relaxation time 
T0 is in expected to be in the millisecond range. Using these values it possible to calculate the 
variation of the electric space charge field in function of the time using (2.23), reported in Figure 
2.6.  
The photorefractive characteristic time of our sample can be compared with the time needed to 
the writing beam to scan a length equal to a spotsize, in order to estimate the optimal scanning 
speed. Considering a beam diameter of about 2µm and a photorefractive saturation time of 1ms, it 
turns out that an optimal speed to reach the saturation value of the space charge field is in the 
range of 1000µm/s. This value allows for scanning an area of 2 x 2 mm2 with 300 lines in the 
reasonable time of 200s. In principle, working at faster speed in order not to have the space 
charge field saturated, should allow for the realization of graded index structures, as it is achieved 
with the lateral illumination technique. 

Figure 2.5: Example of  Fe:LN sample having the 

titanium waveguide diffused in the superior 

surface, used to write waveguides and gratings.  

y 
x 
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As it will be explained below, the direct beam writing technique produces nearly vertical optical 
barriers extending from the sample surface in the bulk of the sample for some tenth of microns, so 
that the light confinement is only lateral along the crystallographic z direction.
vertical confinement may be desirable, so that we explored also the possibility to write lateral 
optical index structures on the top of a preexisting fixed slab waveguide.
slabs, a local doping was performed to create a
two major surfaces. Initially a thin film of Ti was deposited by magnetron sputtering for 180 
seconds, using a power of 80W and an initial chamber pressure of 5 x 10
thermal diffusion was made at a temperature of 1050°C for two hours in air atmosphere: these 
values permit to obtain a planar and a mono
about 650 nm, later used to study the samples.
The diffused samples were characterized by 
obtain the concentration profile of the iron and titanium. This characterization shows that the iron 
concentration is constant, as expected, while that one of titanium follows a semi
evolution, with the maximum at the surface and a width at half amplitude of about 1.5
shown in Figure 2.7. From the concentration profile it is possible to know the corresponding 
index variation, using the equation: 
 

 
where k and γ are constant depending on the element diffused and C is the concentration 
expressed in atoms/cm3. For the titanium diffused in Fe:LN it is known from
the extraordinary polarization is utilized, k = 1.2
reported in Figure 2.7, where it can be notice
 
 

Figure 2.6: Electric space charge field in functi

Fe:LN samples light up with a gaussian beam of intensity 
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below, the direct beam writing technique produces nearly vertical optical 
barriers extending from the sample surface in the bulk of the sample for some tenth of microns, so 
that the light confinement is only lateral along the crystallographic z direction. 
vertical confinement may be desirable, so that we explored also the possibility to write lateral 
optical index structures on the top of a preexisting fixed slab waveguide. To this aim o
slabs, a local doping was performed to create a waveguide by titanium in-diffusion at one of the 
two major surfaces. Initially a thin film of Ti was deposited by magnetron sputtering for 180 
seconds, using a power of 80W and an initial chamber pressure of 5 x 10-6 mbar, after that a 

as made at a temperature of 1050°C for two hours in air atmosphere: these 
values permit to obtain a planar and a mono-mode guide at the surface for the wavelength of 
about 650 nm, later used to study the samples. 
The diffused samples were characterized by Secondary Ion Mass Spectrometry (SIMS) in order to 

concentration profile of the iron and titanium. This characterization shows that the iron 
concentration is constant, as expected, while that one of titanium follows a semi

th the maximum at the surface and a width at half amplitude of about 1.5
From the concentration profile it is possible to know the corresponding 

index variation, using the equation: [50] 

∆p � x	"¿                                                             

are constant depending on the element diffused and C is the concentration 
. For the titanium diffused in Fe:LN it is known from the literature that, if 

the extraordinary polarization is utilized, k = 1.2·1023 cm3 and  γ = 1. The corresponding profile is 
, where it can be noticed as that the maximal contrast obtainable

Electric space charge field in function of the time estimated for 

samples light up with a gaussian beam of intensity of 5∙109 W/m2
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below, the direct beam writing technique produces nearly vertical optical 
barriers extending from the sample surface in the bulk of the sample for some tenth of microns, so 

 In some cases a 
vertical confinement may be desirable, so that we explored also the possibility to write lateral 

To this aim on some 
diffusion at one of the 

two major surfaces. Initially a thin film of Ti was deposited by magnetron sputtering for 180 
mbar, after that a 

as made at a temperature of 1050°C for two hours in air atmosphere: these 
mode guide at the surface for the wavelength of 

Secondary Ion Mass Spectrometry (SIMS) in order to 
concentration profile of the iron and titanium. This characterization shows that the iron 

concentration is constant, as expected, while that one of titanium follows a semi-gaussian 
th the maximum at the surface and a width at half amplitude of about 1.5µm, as 

From the concentration profile it is possible to know the corresponding 

                                  (2.24) 

are constant depending on the element diffused and C is the concentration 
the literature that, if 

= 1. The corresponding profile is 
the maximal contrast obtainable is 0.0113. 

estimated for 
2. 
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2.4.3 Waveguide creation  

 
The optical structure creation in LN using the photoinduced direct writing exploits, as for 

the lateral illumination technique, the photorefractive effect. 
In this case a focused laser beam is scanned along the sample surface to write the desired 
structures. Also this one is a reconfigurable method because every variation in the refractive index 
can be easily canceled by illuminating the sample with a sufficiently intense homogenous 
incoherent light. The great difference between the other method is in that this way, due to the long 
dark relaxation time of the material, the optical structures can be considered as permanent. This 
offers the great advantage that the sample can be moved from the setup making it available for 
following characterization or utilizations. 
Of course,  because of their reconfigurability, it is necessary to pay attention on the wavelength 
and on the intensity of the light used for the following characterizations, in order not to erase the 
produced structures. 

 
An analytical solution for the Kukhtarev equations in this case is not easy, on one hand 

because the writing beam has a three dimensional structure, on the other because it is moving 
along a given direction. A rigorous treatment for the full problem could be done only numerically, 
but two cases [33,39] were reported in literature that could help understand some aspects of the 
technique. The first model developed by Zozulya and Anderson solves  the problem for a static 
Gaussian beam focused at the surface of a Fe:LN sample, with the beam polarized along the z 
direction. The other interesting situation corresponds to the solution of a one dimensional problem 
similar to the one considered in paragraph 2.3.3. This latter case is meaningful if we consider that 
the resulting refractive index profile along a written line is probably not so different from this 
case. 
 

The Zozulya-Anderson  model considers a fixed single gaussian beam polarized along z 
axis of a photorefractive media, which enters in the face x = 0 and propagates along the axis x, 

Figure 2.7: a) Concentration profile of the titanium diffused in sample of LN bulk doped with iron 

in function of its depth. b) Variation of the index refraction generated by the presence of titanium 

in function of sample depth 
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and exits at x = L. The crystal is cut along crystallographic axis, and the beam diameter is much 
more small than the size of the sample, so that its size is considered to be infinite. The photo-
galvanic current is generated along z. 

Using these conditions, the equations are completely solved finding the distributions of 
the electric charge, potential and current. From these equations, the index variation can be 
obtained from using the electro optic effect. This is determined starting from the variable ν(r), the 
normalized non linear addition to the refractive index of the medium, defined as: 

 

���� � Ó	Óß p	��ª ∙ ����± ∙ �{� ∙ �ª                                        (2.25) 

 
Where k is the wave number of the electromagnetic radiation in the medium k = 2πn/λ, n is the 

index refraction, x� � ? �:%�·�·Óûü,  � � ÓûüÓø� , eP is the unit vector in the direction of beam 

polarization, b̂�± is the electro-optic tensor and φ is the dimensionless potential of the electric field 

defined as ∇{ � � Óß�
� . Considering that in LiNbO3 the most important component of the electro-

optic tensor is r33 the equation (2.25) can be rewritten as follows: 
 

���� � Ó	 p	b��������                                                    (2.26) 

 

where ���� � �Óø �~����¯ . Since ν(r) ∝ G(r) we shall refer to G as the normalized non linear 

refractive index. The distribution of the potential φ is completely known developing all equations 
of the Kukhtarev model so, finally, the normalized refraction index, apart from some 
proportionality constants, has the expression: 
 

���, �� ≈ �x þ̄� � � Ó	 �¯:7�:þ��: @ �	 xp	�ª¾b��                               (2.27) 

 

where âº � Óß�:
�#:«ÜÜ�, � � ?s �� þßÀ¡¸ , â%�	 � �:���þß

�#:«ÜÜ  and d is the width at half amplitude of the 

gaussian beam. In Figure 2.8 G(r), and its projection along y and z are reported. As it can be seen 
along the z coordinate the index variation is initially increased compare to the bulk value, but 
overall a fixed gaussian beam polarized along z, propagating along x generates a negative 
variation.  
In our case the situation is similar to the one just described with the difference that the gaussian 
beam scans the surface along y, so the refractive index profile along z is expected to be similar to 
the one reported in Figure 2.8, as it is verified in chapter 4 using far-field characterization of the 
samples. 
 
 The Bian’s model [39] solves Kukhtarev equations supposing a cylindrical gaussian beam 
with distribution: 

â��, �� � â<�0, ��o À:Í:�:�È�                                                 (2.28) 
 
 
propagating along the z direction. The spatial extent of the gaussian beam along the direction 
perpendicular to the c-axis is assumed to be infinite and the polarization is considered along the c-
axis. This model gives important information on the space charge electric field considering our 



 

 

 

technique invariant in the scanning direction, so reducing the problem 
addition in the model the crystal is supposed to be short
direction the spatial extend w(z) of the gaussian laser beam is supposed to be much less than the 
width of the crystal. With these approximations the space charge field E
expression, which is identical to equation (2.16):
  

 

where I is the illumination generated by the gaussian beam,  

constant and âä � ®ý  is the so

This equation is not rigorously valid for our case because samples are not short
0 but it permits anyway to have important information on the space charge electric field cre
in the LN during the illumination with a gaussian beam. When I >> I
illumination, the ESC is proportional to the photovoltaic contribution of the field, corresponding, 
as will be explain in the paragraph 
 
 
 

Figure 2.8: a) Numerical simulation of the non linear re

beam propagating along x. b) Projection of the index along z and c) along y.

technique invariant in the scanning direction, so reducing the problem to single dimension
addition in the model the crystal is supposed to be short–circuited. In addition along the x 

ection the spatial extend w(z) of the gaussian laser beam is supposed to be much less than the 
width of the crystal. With these approximations the space charge field ESC

expression, which is identical to equation (2.16): 

��Ê ≈ ��ª þþ7þ�7þß                                                        

where I is the illumination generated by the gaussian beam,  � � Ó¿%��!  is the photovoltaic field

is the so-called dark irradiance. 

This equation is not rigorously valid for our case because samples are not short
0 but it permits anyway to have important information on the space charge electric field cre
in the LN during the illumination with a gaussian beam. When I >> ID, which is the case of our 

is proportional to the photovoltaic contribution of the field, corresponding, 
as will be explain in the paragraph 2.4.2, to the electric field at saturation. 

erical simulation of the non linear refractive index generated by a

beam propagating along x. b) Projection of the index along z and c) along y. 
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to single dimension. In 

circuited. In addition along the x 
ection the spatial extend w(z) of the gaussian laser beam is supposed to be much less than the 

SC results to have the 

                                                        (2.29) 

is the photovoltaic field 

This equation is not rigorously valid for our case because samples are not short-circuited and IR = 
0 but it permits anyway to have important information on the space charge electric field creating 

, which is the case of our 
is proportional to the photovoltaic contribution of the field, corresponding, 

fractive index generated by a gaussian 
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The Zozulya-Anderson 
independently of the exact form of the profile
discussed in the case of SBN and lateral illumination technique, can be used to generate optical 
barriers instead of a guiding core
creation requires at least two scans along the sample to create 
Because of this fact this technique can be considered the specular of the one used to create 
waveguides in SBN. 

 
 

 
2.4.4 Experimental setup

 
The experimental setup used to create waveguides, periodic and 

gratings in sample Fe:LN is presented 
The structures are created

characterized by a wavelength of 532 nm, a rectilinear vertical polarization
1Watt. The beam passes through a shutter and through a series of filters to attenuate it. Finally the 
beam is sent to a 100x microscope objective, as shown in 
the sample has been set to 17 mW, after a preliminary study which indicated this value as a good 
compromise between the writing velocity and the quality of the realized structures.
The objective can be translated along the optical axis, as shown in
allowed by a piezo actuator, controlled by a computer
beam has an estimated focus spot size of 1
the polarization parallel to the x axis

The sample is placed above a computer
along x and y axis with a resolution step of 0.5
The sample can be also manually tilted in order to have its surface parallel to the translation 
directions. The beam is partially reflected at the sample surface, 
the microscope objective and the perisc
turn connected to an oscilloscope.

Figure 2.9: In the upper part of the image i

writing of the optical barriers. In the lower 
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and the Bian’s model show that the index variation 
independently of the exact form of the profile. Therefore this technique, differently from what 

the case of SBN and lateral illumination technique, can be used to generate optical 
barriers instead of a guiding core, as shown in Figure 2.9. This implies that the 

requires at least two scans along the sample to create the claddings zone 
his technique can be considered the specular of the one used to create 

Experimental setup 

The experimental setup used to create waveguides, periodic and aperiodic Fibonacci 
is presented in Figure 2.10. 

created in the sample using a continuous Ti:Sapphire l
characterized by a wavelength of 532 nm, a rectilinear vertical polarization and an

The beam passes through a shutter and through a series of filters to attenuate it. Finally the 
beam is sent to a 100x microscope objective, as shown in Figure 2.10a. The power of the beam on 

been set to 17 mW, after a preliminary study which indicated this value as a good 
compromise between the writing velocity and the quality of the realized structures.

can be translated along the optical axis, as shown in Figure 2.10b. Its translation is 
allowed by a piezo actuator, controlled by a computer. Exiting from the microscope 
beam has an estimated focus spot size of 1-2µm, a power density in the order of 5

axis. 
The sample is placed above a computer–controlled translation stage, which can be moved 

axis with a resolution step of 0.5µm and velocities in the range 1µm/s 
The sample can be also manually tilted in order to have its surface parallel to the translation 

he beam is partially reflected at the sample surface, and this light goes back through 
the microscope objective and the periscope and it is collected deflecting it toward a photodiode, in 
turn connected to an oscilloscope. This latter possibility allow for the detection of the optimal 

In the upper part of the image index refraction profile after 

writing of the optical barriers. In the lower one, picture of a waveguide.
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that the index variation is negative, 
. Therefore this technique, differently from what 

the case of SBN and lateral illumination technique, can be used to generate optical 
. This implies that the waveguide 

ne around the core. 
his technique can be considered the specular of the one used to create 

aperiodic Fibonacci 

continuous Ti:Sapphire laser 
an initial power of 

The beam passes through a shutter and through a series of filters to attenuate it. Finally the 
The power of the beam on 

been set to 17 mW, after a preliminary study which indicated this value as a good 
compromise between the writing velocity and the quality of the realized structures. 

b. Its translation is 
microscope objective , the 

m, a power density in the order of 5·109W/m2 and 

controlled translation stage, which can be moved 
m/s – 3·104 µm/s. 

The sample can be also manually tilted in order to have its surface parallel to the translation 
goes back through 

deflecting it toward a photodiode, in 
This latter possibility allow for the detection of the optimal  

after 

one, picture of a waveguide. 



 

 

 
 

focusing at the sample surface, as when the beam is focused at the surface, the photodiode
shows a maximum. 
 

To create waveguides or
to the beam polarization. The structures have to be created at
beam has to be focused here.
so that, during the translation, the structures are created always at
the beam is focused initially on a corner of the sample, and subsequently in the opposite one
if the oscilloscope indicates that the signal is maximal in both points for the same z
microscope objective the sample
to be tilted and the microscope objective tra
operation damages optically the sample, therefore these two regions cannot be used to create the 
desired structures. Moreover, due to 
that structures are also written

 
As a consequence of

surface moving parallel to y
rolling and pitching of the translation stages (which can lead to the presence of sub 
the written gratings) the lines are scanned moving always in the same direction.
make thick optical barriers it is sufficien
to the dimension of about 1.5µ
so to create larger barrier a region

 
 
 
 
 
 
 
 

Figure 2.10: Description of the setup used to write the waveguides and the gratings.

eye view. b)Lateral view. 

focusing at the sample surface, as when the beam is focused at the surface, the photodiode

waveguides or gratings, the sample is placed on the stage with its 
to the beam polarization. The structures have to be created at the upper sample surface, so

. After that it is important to guarantee the horizontality of the crystal, 
so that, during the translation, the structures are created always at the same height. To make this
the beam is focused initially on a corner of the sample, and subsequently in the opposite one
if the oscilloscope indicates that the signal is maximal in both points for the same z
microscope objective the sample is taken to be horizontal. If it is not the situation, the crystal has 
to be tilted and the microscope objective translated, till the horizontal condition is found. This 
operation damages optically the sample, therefore these two regions cannot be used to create the 

. Moreover, due to the gaussian nature of the beam, it is important to remember 
ructures are also written in depth, and not only at the surface. 

consequence of how the sample is placed on the stage, the laser has to 
y axis. In order to avoid the presence of systematic errors due to the 

and pitching of the translation stages (which can lead to the presence of sub 
the written gratings) the lines are scanned moving always in the same direction.
make thick optical barriers it is sufficient to separate lines with a distance of 1µ

dimension of about 1.5µm of the beam focus, this value allow to superimpose the lines and 
a region. 

scription of the setup used to write the waveguides and the gratings.
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focusing at the sample surface, as when the beam is focused at the surface, the photodiode signal 

on the stage with its z axis parallel 
sample surface, so the 

t is important to guarantee the horizontality of the crystal, 
the same height. To make this, 

the beam is focused initially on a corner of the sample, and subsequently in the opposite one and 
if the oscilloscope indicates that the signal is maximal in both points for the same z-position of the 

horizontal. If it is not the situation, the crystal has 
nslated, till the horizontal condition is found. This 

operation damages optically the sample, therefore these two regions cannot be used to create the 
of the beam, it is important to remember 

the sample is placed on the stage, the laser has to scan the 
In order to avoid the presence of systematic errors due to the 

and pitching of the translation stages (which can lead to the presence of sub – harmonics in 
the written gratings) the lines are scanned moving always in the same direction. In addition to 

h a distance of 1µm, because thanks 
rimpose the lines and 

scription of the setup used to write the waveguides and the gratings. a) Bird’s –
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 3 ⎸     OPTICAL TWO-STATE                    

STIRAP IN SBN 
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The optical two-state STIRAP is studied using the setup presented in paragraph 2.3.4, by 
which waveguides are created and characterized. In this section the simulations of the phenomena 
and its experimental realization are presented.  
 
 
 

3.1  Setup Optimization and Characterization 
 

The first step to characterized the setup consists in the study of the accessible index variation 
when we illuminate the SBN with the control beam. As it was seen in paragraph 2.3.2, describing 
the waveguides formation, the maximal index contrast is the difference between the one of the 
dark and the illuminated zone and it depends on the external electric field E0, the intensity of the 
control beam I(x) and the background illumination ID.  

In spite of the theoretical equation the information on the effective  index contrast is obtained 
experimentally using the Mach-Zehnder interferometer placed in the setup as described in 
paragraph 2.3.4. Experimentally we count the number of fringe in the interferometric image, from 
the initial moment of the waveguide creation to the stationary situation, operation made possible 
thanks to the rather slow dynamics characterizing the photorefractive process in SBN. The 
number of fringes m, calculated using images as the one reported in Figure 3.1b, permits to know 
easily the index contrast ∆n, using the equation: 
 ∆" � 	s� Δp �                                                           (3.1) 

 
where λ is the wavelength of the probe beam, d the crystal length and ∆Φ is the phase shift 
defined as ∆Φ = 2πm. It is also possible in this way to connect the gray level of the waveguide 
with its refraction index contrast, counting the variation fringes for different waveguides, each 
one characterized by a different color. This study is fundamental because, experimentally we have 
access to the gray level using the SLM, but for the simulation it is necessary to know the index 
contrast. With this study the calibration reported in Figure 3.2a is obtained, where it can be 
noticed that the effective refraction contrast is in the order of 10- 4 and that images with a grey 
level superior than 75% or inferior than 50% cannot be used. In the first case because the SLM 
generates a constant changing in the refractive index, in the second one because the dynamic is 
too slow and an appreciable change in the index cannot be measured in a reasonable time.  
From the information on ∆n it is possible to know the phase mismatch between two waveguides 
using the equation: 
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The corresponding calibration is reported in 
 

The external electric field 
waveguide width is 7.2µm, because a precedent study has highlighted that these values are the 
optimal experimental conditions
control laser was set to about 180mW 
largest zone for which a changing in the gray level corresponds to a change in the effective index. 
With these parameters only the first propagation mode
 
 To reproduce the gaussian variation of the phase mismatch in a
index refraction it is important to know the dependence of 
between 50% and 75%. This information is extract from a fit made on 
equation: 
 

gray level

Figure 3.1

Figure 3.2: a) Calibration measu

of the gray level apllied to the SLM image. b)

function of the gray level. 
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∆� � 	x<Δp � 	s� Δp                                                       

The corresponding calibration is reported in Figure 3.2b. 

The external electric field E0 applied to the crystal was set to 2.5kV/cm
µm, because a precedent study has highlighted that these values are the 

optimal experimental conditions to obtain waveguide of good quality [8]. The power
about 180mW as a result of preliminary studies. This allows to obt

zone for which a changing in the gray level corresponds to a change in the effective index. 
only the first propagation mode propagates in the waveguides.

To reproduce the gaussian variation of the phase mismatch in a gaussian variation of the
it is important to know the dependence of the gray level in function of the 

This information is extract from a fit made on Figure 3.2b 

gray level = -0.0052 Δβ3 + 0.16 Δβ2 + 0.99 Δβ + 47                                   

1: Interferometric image of a waveguide. 

a) Calibration measures of the effective contrast of the refraction index

of the gray level apllied to the SLM image. b) Calibration measures of the phase mismatch as a 
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                                      (3.2) 

2.5kV/cm and the 
m, because a precedent study has highlighted that these values are the 

[8]. The power of the 
This allows to obtain the 

zone for which a changing in the gray level corresponds to a change in the effective index. 
propagates in the waveguides. 

gaussian variation of the 
gray level in function of the ∆β 

Figure 3.2b obtaining the 

                                   (3.3) 

ndex as a function 

the phase mismatch as a 
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3.2 Theoretical Modeling 
 

The central part of the demonstration of the optical two-state STIRAP consists in the creation 
of images reporting the optimal waveguides configuration which has to be reproduce in the 
crystal. To make this, a set of programs in Matlab language reported in Annex A were developed, 
creating,  from the initial shape of the two pulses ∆β and C, the desired image  

 
The first step is to decide which pulse shape to take, because as seen in paragraph 0.01.1.2 

there is not a privileged choice, although for simplicity a gaussian variation is normally 
considered. So a preliminary study on the pulses is made using Program 1. Considering that the 
light is initially coupled in only one waveguide, the coupled mode equation using the Hamiltonian 
(1.51) is numerically solved and the intensity of the end of the two waveguides is studied. The 
purpose of the two-state STIRAP is to achieve the 50% of the initial intensity exiting from each 
waveguides, for both the intuitive and the counterintuitive sequence. Pulses are modeled with the 
aim of reaching of this situation. During this first study it is important to take into account that 
that the maximal variation of ∆β and C are experimentally limited. For the first one, Figure 3.2b 
indicates that the maximal amplitude is about 10cm-1, while for the second one the limitation 
derive from the minimal inter-guide distance that the SLM can reproduce in the crystal. As seen 
earlier this one is 1.2µm, so the amplitude of the coupling constant cannot be superior to the value 
corresponding of this minimal distance. 
The study on the optimal theoretical configuration of pulses has also highlighted that the system 
exhibits the same behavior when the phase mismatch is positive or negative. Therefore so 
experimentally four configurations have to be tested: counterintuitive and intuitive sequence, each 
ones for negative and positive ∆β. 
 

When the optimal theoretical configuration is found, Program 2, solving the equation of the 
propagation in a single waveguide and the coupling mode theory, described respectively in 
paragraph 161.2.1 and 1.2.2, translates the variation of pulse C in a variation of the inter-guide 
distance. To solve the model it is fundamental to utilize the real index refraction of the waveguide 
and not the effective one, so the ∆n found with calibration measures is converted using Program 
3. This one calculates the propagation in a single guide solving the transcendental equation for a 
theoretical index in the range 10-5 - 4·10-4.  The experimental value is predicted from the equation 
(1.31) and the result is shown in Figure 3.3: from this graph, with a fit, the two values are 
connected and the result equation is finally used in Program 2. It can be seen as the two indexes 
have a non-linear variation for small values around 10-5, while for large values the mutual 
dependency is roughly linear. Overall the entire set of value is modeled with a polynomial of sixth 
order. 
To demonstrate the optical two-state STIRAP two waveguides with different refractive index 
contrast are necessary, so the coupling constant C1,2 and C2,1 are not equals and, as seen in 
paragraph 1.2.4,  their geometric average is used to solve the model. Fixing the inter-guide 
distance Program 2 permits also a study in the variation of the coupling constants as a function of 
∆β, as shown in Figure 3.4. This graph is created using a gaussian variation of the phase mismatch 
having an amplitude of 1.0mm-1 and an inter-guide distance of 3µm: the geometric mean is about 
constant, and this demonstrate that the approximation used to solve the model is licit. 

 
After having calculated the waveguide curvature, it possible to reproduce the phase mismatch 

variation in a corresponding gray level variation, using equation (3.3). These calculations are 
implemented in Program 4,  and the final image with right dimensions, resolution and colors is 
produced to be experimentally tested. To create the image corresponding to a positive ∆β the two 
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waveguides are placed in the figure
straight one. For the case of negative 
microscopy objective couples the 
condition in a simpler way. Images are c
gray level changing between 50% and 75%, according to calibration measures. 
not prescript which waveguide ha
configurations are expected to deliver the same result.
 
 

 

 

Figure 3.3: Prediction of the effective refraction index in function of 

the theoretical one 

Figure 3.4: Variation

Ceff, calculated using a waveguide with a fixed index of refraction and the other 

one with the gaussian contrast reported in Figure 3.5a. The inter

fixed to 3μm. 
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waveguides are placed in the figure so that the microscopy objective injects the light in the 
. For the case of negative ∆β, the two waveguides are simply translated so that the 
objective couples the light entirely in the curved one, realizing the

Images are created with a black background while waveguides have a 
gray level changing between 50% and 75%, according to calibration measures. 

waveguide has to have the fixed index and which the gaussian one
configurations are expected to deliver the same result. 

Prediction of the effective refraction index in function of 

l one in the range 10-5 - 4∙10-4. 

Variation of coupling constants C1,2 and C2,1 and its geometric mean 

, calculated using a waveguide with a fixed index of refraction and the other 

one with the gaussian contrast reported in Figure 3.5a. The inter-guide distance is 
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so that the microscopy objective injects the light in the 
ranslated so that the 

curved one, realizing the desiderate 
while waveguides have a 

gray level changing between 50% and 75%, according to calibration measures. The theory does 
the gaussian one, both 

Prediction of the effective refraction index in function of 

and its geometric mean 

, calculated using a waveguide with a fixed index of refraction and the other 

distance is 
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3.3  Results and Discussion 
 

The first set of measures utilizes gaussian pulses having respectively  the form: 
 

∆���� � ∆�< exp ]− �¯�¯¡# �	^                                               (3.4) 

"��� � "< exp ]��¯�¯:# �	^                                                 (3.5) 

 
where ∆β0 and C0 are the maximal amplitudes, zi is the center of the gaussian and w is it’s the half 
width at 1/e level. 
 

After a preliminary test on possible pulses configurations, it was decided to center 
gaussian pulses respectively in z1 = 7,6mm and z2 = 15,2mm from the beginning of the crystal, 
equally spaced compared to the crystal border which are about 23mm, so that in this symmetric 
situation the change from the counterintuitive to the intuitive sequence consists only in a 
permuting of z1 and z2 in equations (3.4) and (3.5). The maximal value of the phase mismatch ∆β0 
was set to 1.0mm-1 and C0 = 0.42mm-1 . This choice is motivated by the fact that higher pulses 
allows to better respect the adiabatic condition. The gaussian width w is established as the value 
permitting to obtain in the simulation 50% of the initial intensity at the output of each 
waveguides. The resulting profiles of ∆β and C  for the counterintuitive case are shown in Figure 
3.5a while in Figure 3.5b the corresponding variation of the intensity along the propagation is 
reported. It can be recognized as these parameters allow to maintain the system in adiabatic 
condition because the intensity does not exhibit oscillations during the propagation. The intuitive 
sequence is reported in Figure 3.6. It can be seen that also in this case the system tends to the 
desired final configuration but initially the system is characterized by oscillations. In both cases 
the simulation do not reach exactly 50% of the initial population because of both the finite crystal 
length and the values describing pulses. 
Figure 3.7 shows the counterintuitive case simulated using a negative phase mismatch and it can 
be noticed that the intensity profile is the same to the one for positive ∆β. The intuitive case 
exhibits the same behavior. 
 

For each configurations the corresponding waveguide profile is reported in Figure 3.8. 
This one reproduces the gaussian variation of C considering that the other waveguide is straight 
and ideally placed at position zero on the ordinate axis. The typical distance are in the order of 
micrometers and in particular for this configuration  the minimal distance between the two 
waveguides is about 2 µm while the maximum distance is about 20µm. Only two profiles are 
necessary, considering that the case with negative phase mismatch does not change the curvature. 

 
Finally the images controlling the SLM are generated and an example is given in Figure 

3.9, the one corresponding to the counterintuitive case. This one is created by fixing the gray level 
of the straight waveguide to 75% while the curbed guide is characterized by a gaussian 
longitudinal index variation, reproducing the variation of ∆β of Figure 3.5a. As explained in the 
precedent paragraph from the theoretical point of view it is indifferent where the gaussian 
variation is placed but unfortunately this correspondence is not confirmed experimentally. In 
initial experiments the index variation was placed in the straight waveguide and with this 
configuration a confirmation of the two-state STIRAP was obtained, but only for the positive 
gaussian variation of the phase mismatch, indication that experimentally some kind of asymmetry 
is introduced. On the contrary, if the indexes of refractions variations are placed as in Figure 3.8  
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Figure 3.5 a) Counterintuitive 

intensity along the propagation in the crys

Figure 3.6: a) Intuitive spatial 

along the propagation in the crystal using the intuitive pulse sequence.
 

Figure 3.7: Counterintuitive pulses sequence using a negative Δβ

evolution intensity using the counterintuitive pulse sequence with a negative Δβ.

2 | Reconfigurable waveguides

) Counterintuitive spatial pulses sequence. b) Simulation of the lig

along the propagation in the crystal using the counterintuitive pulse sequence.

spatial pulses sequence. b) Simulation of the light evolution 

along the propagation in the crystal using the intuitive pulse sequence. 

Counterintuitive pulses sequence using a negative Δβ b) Simulation of the lig

using the counterintuitive pulse sequence with a negative Δβ. 

Reconfigurable waveguides 

Simulation of the light evolution  

tal using the counterintuitive pulse sequence. 

t evolution intensity 

Simulation of the light 

 



 

 

 
 

there is a light passage between the waveguides for all configurations, counterintuitive 
intuitive and with positive and negative 
Images are more sensible to small variation in 
micrometers of the Figure 3.8 into pixels in Figure 3.9. Effectively, known that 1.2
corresponds to 1pixel, variation of the inter
the setup. 
 

Experimentally the light propagation is studied
the CCD camera, and it is possible to see that
is about 20 seconds, the light init
guides. Video shows that for all the configuration
predicted by simulation, but the phenomena is not 
between waveguides are still 
highlight the phenomena for all four configurations. A
made to modify the present experiment
In any case it is possible to make 
intensity, profile and position of the waveguides.
the one shown in Figure 3.10 ar
corresponding profiles along the
corresponding gaussian profile
physical dimension, we remember
0.73µmSBN. The resulted profile are repo
configurations it is possible to achieve about the same intensity in two waveguides
the crystal. The two gaussians in
with ∆β<0 by 16.8µm. Remembering

Figure 3.9: Image used to reproduce 

The present structure corresponds to the one for the counterintuitive case is reported.

Figure 3.8: a) Inter-guide

guide distance  calculated for the intuitive pulses sequence

there is a light passage between the waveguides for all configurations, counterintuitive 
intuitive and with positive and negative ∆β.  

sible to small variation in ∆β instead of C because of the transformation from 
micrometers of the Figure 3.8 into pixels in Figure 3.9. Effectively, known that 1.2
corresponds to 1pixel, variation of the inter-guide distance inferior to this step are not

he light propagation is studied at the end of the crystal
and it is possible to see that, after an initial transient time of stabilization

, the light initially injected in one single waveguide is coupled into both 
for all the configuration are 50% of the initial light is achieved, as 

but the phenomena is not sufficiently stable, because light oscillation 
still present after the quasi stationary state. At the present we are able to 

na for all four configurations. A consecutive important work will have to be 
made to modify the present experimental parameters in order to stabilize further 
In any case it is possible to make a preliminary analyze to have important information
intensity, profile and position of the waveguides. From videos of each configuration, images, as 

Figure 3.10 are extracted and the analysis is made 
along the x axis for a fixed y. The latter, are superimposed with the 

corresponding gaussian profile (Figure 3.11). To connected the x axis expressed in pixel to a
on, we remember from the setup description that 1 pixel

The resulted profile are reported in Figure 3.11 where it can be 
configurations it is possible to achieve about the same intensity in two waveguides

two gaussians in the counterintuitive case with ∆β>0 are separated by 18.2
Remembering that each waveguide has a width of 7.2µ

Image used to reproduce with the SLM in the SBN the desired pulse configuration. 

The present structure corresponds to the one for the counterintuitive case is reported.

guide distance  calculated for the counterintuitive pulses sequence. 

guide distance  calculated for the intuitive pulses sequence. 
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there is a light passage between the waveguides for all configurations, counterintuitive 

instead of C because of the transformation from 
micrometers of the Figure 3.8 into pixels in Figure 3.9. Effectively, known that 1.2µm 

guide distance inferior to this step are not detected by 

at the end of the crystal taking videos with 
, after an initial transient time of stabilization which 

ially injected in one single waveguide is coupled into both 
of the initial light is achieved, as 

, because light oscillation 
the present we are able to 

consecutive important work will have to be 
further the process. 

to have important information on the 
From videos of each configuration, images, as 

is made by studying the 
, are superimposed with the 
axis expressed in pixel to a 

1 pixelCCD is equal to 
be seen that for all the 

configurations it is possible to achieve about the same intensity in two waveguides at the end of 
are separated by 18.2µm and 

as a width of 7.2µm the respective  

the desired pulse configuration. 

The present structure corresponds to the one for the counterintuitive case is reported. 

distance  calculated for the counterintuitive pulses sequence. b) Inter-
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Figure 3.11: Output intensity profile 

as the previous one. Each pick is superimposed with a gaussian for the analysis of intensity and 

position. 

Figure 3.10: Image of two waveguides extract from

studying the light evolution. This kind of image is us

the profiles reported in the following figure.

2 | Reconfigurable waveguides

x 

y 

ntensity profile along x of the two waveguides extracted from images such 

Each pick is superimposed with a gaussian for the analysis of intensity and 

Image of two waveguides extract from the video 

studying the light evolution. This kind of image is used to obtain 

the profiles reported in the following figure. 

Reconfigurable waveguides 

ted from images such 

Each pick is superimposed with a gaussian for the analysis of intensity and 



 

  

 
inter-guide distances are 11µ
and µm are made these value are consistent with those expected from the theoretical profile of 
Figure 3.8a. In the intuitive case for 
corresponding to an inter-guide separation of 20.5
 
To validate the model it is also necessary to 
demonstrated. The aim is to confirm that
the theoretical model constra
sequence expected to prevent
The sequence reported in Figure 3.12
gaussian variation of the longitudinal propagation constant
set constant to the value of 0.5mm
The corresponding intensity simulation along the propagation 
injected in one waveguide, after an initial oscillat
waveguide. 
With this configuration the corresponding image 
the other one curbed, having the same curvature calculated
index. I particular the straight one has a gray level of 75% while the other one is calculated using 
equation (3.3) for ∆β=0.5mm
characterized by oscillations, the light remains confined in the
confirming the theoretical expectations.
 
 Another type of pulses variation was a
be independent from the their analytical form. 
used, reported in Figure 3.13a
  

 
where ∆β0 and C0 are the maximal amplitude, z
half width at 1/e level. 
In this case, the intensity in the two waveguides evolves toward the
amplitudes ∆β0 and C0 for the gaussian profile. I

Figure 3.12: a) Pulses configuration

Intensity variation along the crystal  for the counterexample configuration.

guide distances are 11µm and 9.6µm: considering that two transformations between pixel 
se value are consistent with those expected from the theoretical profile of 

In the intuitive case for ∆β > 0 the separation is 27.7µm while for ∆β
guide separation of 20.5µm and 24.2µm, respectively.

o validate the model it is also necessary to find counterexamples of the two
to confirm that the 50% splitting is achieved only if pulses respect all 

the theoretical model constraints described in paragraph 0.01.1.2. For this purpose
expected to prevent the passage of the light between the two waveguides 

sequence reported in Figure 3.12a was selected, to demonstrate that it is necessary to have a 
longitudinal propagation constant. ∆β. For the counterexample

value of 0.5mm-1, while C is not changed with respect to 
The corresponding intensity simulation along the propagation shown in Figure 3.12b
injected in one waveguide, after an initial oscillation, remains almost all confined

With this configuration the corresponding image is formed by two waveguides, one straight and 
g the same curvature calculated earlier, but this time both with a fixed 

index. I particular the straight one has a gray level of 75% while the other one is calculated using 
∆β=0.5mm-1. In this case the video shows that, after a initial transient time 

characterized by oscillations, the light remains confined in the waveguide where it is injected, 
confirming the theoretical expectations. 

Another type of pulses variation was also tested, so that the quantum phenomena
be independent from the their analytical form. In particular super-gaussian of fourth order were 

, reported in Figure 3.13a, and following the equation: 

∆���� � ∆�< exp ]��¯�¯¡# �¸^                                              
"��� � "< exp ]��¯�¯:# �¸^                                                 

are the maximal amplitude, zi is the center of the super-gaussian and w is its 

in the two waveguides evolves toward the 50% 
for the gaussian profile. In particular ∆β0 is set equal 

a) Pulses configuration used for test a counterexample of the two

Intensity variation along the crystal  for the counterexample configuration. 
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m: considering that two transformations between pixel 
se value are consistent with those expected from the theoretical profile of 

m while for ∆β < 0 is 31.4µm, 
m, respectively. 

find counterexamples of the two-state STIRAP just 
is achieved only if pulses respect all 

For this purpose a pulse 
ween the two waveguides was analyzed. 

it is necessary to have a 
. For the counterexample ∆β was 

respect to the precedents tests. 
in Figure 3.12b. The light 

ion, remains almost all confined in the same 

s formed by two waveguides, one straight and 
, but this time both with a fixed 

index. I particular the straight one has a gray level of 75% while the other one is calculated using 
the video shows that, after a initial transient time 

waveguide where it is injected, 

, so that the quantum phenomena would 
gaussian of fourth order were 

                                         (3.6) 

                                                 (3.7) 

gaussian and w is its 

 splitting for smaller 
 to 0,6mm-1 and C0 = 

used for test a counterexample of the two-state STIRAP. b) 
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0,3mm-1. Consequently w was fix
configuration, equals to 7,6mm and 15,2mm, respectively.
maintain the system in adiabatic condition, visible from the Figure 3.13b because of th
presence of oscillations.  
The corresponding inter-guide distance is shown in Figure 3.14, where it can be seen as the 
maximal is about 120µm. The phase mismatch is reproduced always 
corresponding figure is experimentally tested. 
reproduce C is too large so that the light can be here confine 
experimentally this configuration cannot 
 
 

 
         Figure 3.13: a) Counterintuitive

         evolution  intensity along the propagation in the crystal using the counterintuitive supergaussian

         pulse sequence. 

 

 

                                                    Figure

                                                     the counterintuitive 
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was fix to 6,2mm, that is z1 and z2 are the same as in the precedent 
ion, equals to 7,6mm and 15,2mm, respectively. This configuration allows 

in adiabatic condition, visible from the Figure 3.13b because of th

guide distance is shown in Figure 3.14, where it can be seen as the 
The phase mismatch is reproduced always using equation (3.3) and the 

corresponding figure is experimentally tested. Unfortunately the curvature
too large so that the light can be here confine and, in spite of the simulation, 

experimentally this configuration cannot be used to test the two-state STIRAP. 

a) Counterintuitive supergaussian pulses sequence. b) Simulation of the lig

along the propagation in the crystal using the counterintuitive supergaussian

Figure 3.14: Inter-guide distance  calculated for  

the counterintuitive supergaussian pulses sequence.  

Reconfigurable waveguides 

as in the precedent 
This configuration allows anyway to 

in adiabatic condition, visible from the Figure 3.13b because of the non 

guide distance is shown in Figure 3.14, where it can be seen as the 
using equation (3.3) and the 

curvature necessaries to 
in spite of the simulation, 

Simulation of the light 

along the propagation in the crystal using the counterintuitive supergaussian 
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4 ⎸     DIRECT WRITING OF FIBONACCI                                       

WAVEGUIDES ARRAY IN Ti:Fe:LN 
    ͟ ͟͟  ͟  ͟  ͟͟  ͟  ͟  ͟ ͟͟  ͟  ͟͟  ͟  ͟  ͟ ͟͟  ͟  ͟͟  ͟  ͟  ͟ ͟͟  ͟  ͟͟  ͟  ͟  ͟ ͟͟  ͟  ͟͟  ͟  ͟  ͟ ͟͟  ͟  ͟͟  ͟  ͟  ͟ ͟͟  ͟  ͟͟  ͟  ͟  ͟ ͟͟  ͟  ͟͟  ͟  ͟ ͟ ͟͟  ͟  ͟͟  ͟  ͟  ͟ ͟͟  ͟  ͟͟  ͟  ͟   

 
 
 
 

Using the setup described in paragraph 2.4.4, a series of waveguide was produced in our 
Fe:LN sample. The resulting system was studied both in near field to characterize the light – 
confinement properties of the written optical barriers and in far-field using an optical 
diffractometer. The first approach exploited the setup presented in paragraph 4.1, while the 
second one will be described in the following. This study is the basis to a further develop of the 
optical system able to reproduce optically the quasicrystals. 

 
 
 

4.1  Waveguide characterization  
 

The first step of our investigation consisted in determining what are the best process 
conditions are in order to obtain a waveguide and what the limits of the writing technique are. The 
first experimental waveguides set was realized in the bulk of a Fe:LN sample described in 
preceding paragraph (sample code:151.15.2), following the schema shown in Figure 4.1and in the 
Table 4.1. In this case the field is confined in only one dimension, so that the resulting waveguide 
have a configuration somehow similar to those created with the lateral illumination technique. A 
set of waveguides was therefore realized by changing in a systematic fashion the writing speed 
between 500 and 1000 µm/s, the barriers width between 30 and 5 µm and the waveguide width 
between 25 and 50 µm (see table 4.1).  

 
The setup used for the characterization waveguides in near field is shown in Figure 4.2. The 

source is a fiber-coupled laser diode with a wavelength of 670 nm, a power of  some hundreds of 
microwatts and controlled by changing the injected current. The beam exiting from the fiber is 
collimated by a convex-plane lens with a focal length of 3cm, and injected in the microscope 
objective1. The sample is collocated in the focus of the probe beam, so that the probe signal is 
injected inside the waveguide structures. A second microscope objective with 50x magnification 
placed at the output surface, collects the light exiting from the waveguide. A CCD system 
connected to a computer was connected to the output objective, to collect some image of the beam 
exiting from the surface 

Two type of focusing objectives were used during the analysis, one with an enlargement of 4x 
and the other one with an enlargement  of 60x. From the equations describing the transmission of 
a gaussian beam through a focusing components, it is possible to estimate the diameter of the 
laser exiting of these two lens. In particular the focused spot for the first one has a diameter of 
about 25µm, while for the other one of about 4µm. 
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To study this first set of waveguides, the 

was used, because its waist was better suited to the waveguide dimensions.
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Writing velocity [µm/s] 

Barriers width [µm] 

Waveguide width [µm] 50 

L [µm] 

S [µm] 

Table 4.1 

 
 
 

 

 
 
 

Figure 4.1: Description of the first  waveguides set wrote in the sample 151.15.2.

system indicated the crystallographic axis of lithium niobate.

 

Figure 4.2: Description of the setup used to study waveguides

4 | Direct writing of Fibonacci waveguides array in Ti:Fe:LN

To study this first set of waveguides, the microscope objective1 with the enlargement of 4x 
was used, because its waist was better suited to the waveguide dimensions. 
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the first  waveguides set wrote in the sample 151.15.2. 

system indicated the crystallographic axis of lithium niobate. 

Description of the setup used to study waveguides. 

Direct writing of Fibonacci waveguides array in Ti:Fe:LN 

microscope objective1 with the enlargement of 4x 
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The preliminary characterization is made with the CCD camera, which permits to take 
images of waveguides, as shown in 
system allows to easily evidence a waveguide
propagation, i.e. along the z
4.3b). It is also possible to evaluate its extension in the volume of the sample
which is about 100µm and 
addition in this direction, figures show the presence of fringes, owed to internal reflections at the 
surface. 

 
The second characterization

comparing the measured near field images along the depth direction.
Initially the influence of optical barriers 
guides A2 and B2 are reported in 
nm) and barriers dimension
translation of 500µm/s, while the second
a preliminary study on gratings, 
necessary to complete the writing of the entire sample and the 
variation, for the power of 17 mW.  
It can be noticed as A2 allows 
the barriers with a velocity 
also a theoretical motivation, 
electric field, creating a large refractive index contrast compared to the bulk value.

Figure 4.3: a) Image of A1 waveguide, which presents a multi

of light. b) Image of A2 waveguide, characterized by a mono

The x axis is along sample surface, while 

of a guide is about 100μm.

The preliminary characterization is made with the CCD camera, which permits to take 
images of waveguides, as shown in Figure 4.3, where A1 and A2 guides are presented. This 

easily evidence a waveguide and to distinguish, perpendicularly to the beam 
z axis, its multi-mode (Figure 4.3a) or a mono-

It is also possible to evaluate its extension in the volume of the sample
 to notice that the maximum of the guiding is near the surface. In 

addition in this direction, figures show the presence of fringes, owed to internal reflections at the 

second characterization is made studying guides profiles along
measured near field images along the depth direction. 

influence of optical barriers writing velocity is carried out and, as example,
are reported in Figure 4.4a. These ones were made with

barriers dimension (30µm), but the first one was written with 
m/s, while the second one with 1000µm/s. These two values 

liminary study on gratings, as they permit to obtain a suitable compromise between the time 
to complete the writing of the entire sample and the magnitude

, for the power of 17 mW.   
A2 allows for a better confining of the light: therefore it is preferable to write 

barriers with a velocity not larger than 500µm/s. This result, as seen in paragraph 
also a theoretical motivation, because a smaller velocity aloe to reach the maxim

creating a large refractive index contrast compared to the bulk value.

a) Image of A1 waveguide, which presents a multi-mode propagation 

of light. b) Image of A2 waveguide, characterized by a mono-mode propagation. 

axis is along sample surface, while y along the volume, where the extension 

of a guide is about 100μm. 

z 

x 
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The preliminary characterization is made with the CCD camera, which permits to take 
guides are presented. This 

perpendicularly to the beam 
-mode nature (Figure 

It is also possible to evaluate its extension in the volume of the sample, i.e. along x axis, 
maximum of the guiding is near the surface. In 

addition in this direction, figures show the presence of fringes, owed to internal reflections at the 

along z axis, i.e. by 

and, as example, profiles of 
made with the same width (35 

with a velocities stage 
two values were chosen after 

a suitable compromise between the time 
magnitude of index refraction 

re it is preferable to write 
, as seen in paragraph 2.4.2, has 

the maximal space charge 
creating a large refractive index contrast compared to the bulk value. 

mode propagation 

mode propagation. 

, where the extension 
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The influence of barriers width is also examined and, as example, the profiles of guides 
A2 and C2 are reported in Figure 

(500µm/s) and width (35nm) but the first one has two barriers of 30
15µm. In this case the difference of confined light intensity is about 1%, so it is not necessary to 
make wider barriers to obtain a suitable confining

Finally guides width is taken into account and, as example, 
shown in Figure 4.4c. These guides were made with the same barriers dimension (30
writing velocities (500µm/s), but with different widths. The 
dimensions inferior to 35µm have mono

 
The second experimental 

having canceled the preceding structures
schema shown in Figure 4.5 and in the 
hybrid, because the confinement is achieved in two different ways: in one direction it is possible 
thanks to the photorefractive optical barriers while in the other one t
titanium waveguide.  
 In this case a microscope objective
compromise because the hybrid waveguides have a guiding region with a very different size along 
the horizontal (~20 µm) and vertical (~2 µm)
with a dimension comparable to 

Figure 4.4: Profiles of intensity of confined light, projected along x direction.

(black) and B2 (red). b) Profile of A2 (black) and 

and A3 (blue). 
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The influence of barriers width is also examined and, as example, the profiles of guides 
Figure 4.4b. These one were made with the same writing velocity 

m/s) and width (35nm) but the first one has two barriers of 30µm, while the second one of  
m. In this case the difference of confined light intensity is about 1%, so it is not necessary to 

rriers to obtain a suitable confining. 
Finally guides width is taken into account and, as example, the profiles of group A are 

c. These guides were made with the same barriers dimension (30
µm/s), but with different widths. The figure shows that only guides with 
µm have mono-mode propagation of light. 

experimental waveguide set was made again in the sample 151.15.2,
preceding structures, but this time in the titanium guide, following the 

and in the Table 4.1. In this case we obtained waveguides which are 
confinement is achieved in two different ways: in one direction it is possible 

optical barriers while in the other one thanks to the presence of the 

microscope objective1 with an enlargement of 60x was used, This is a necessary 
compromise because the hybrid waveguides have a guiding region with a very different size along 
the horizontal (~20 µm) and vertical (~2 µm), so that it is necessary to have a beam 

 the one of the titanium waveguide. 

intensity of confined light, projected along x direction.

Profile of A2 (black) and C2 (red). c) Profiles of A1 (black), A2 (red) 

Direct writing of Fibonacci waveguides array in Ti:Fe:LN 

The influence of barriers width is also examined and, as example, the profiles of guides 
These one were made with the same writing velocity 

m, while the second one of  
m. In this case the difference of confined light intensity is about 1%, so it is not necessary to 

profiles of group A are 
c. These guides were made with the same barriers dimension (30µm) and 

figure shows that only guides with 

in the sample 151.15.2, after 
titanium guide, following the 

obtained waveguides which are 
confinement is achieved in two different ways: in one direction it is possible 

anks to the presence of the 

This is a necessary 
compromise because the hybrid waveguides have a guiding region with a very different size along 

beam focus waist 

intensity of confined light, projected along x direction. a) Profile of A2 

(red). c) Profiles of A1 (black), A2 (red) 
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Waveguide 
width [µm] 
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Figure 4.5: Description of the first waveguides set

Figure 4.6: Images of group A, written

mode propagation of light. b) A2 guide, where the propagation is mono

mono-mode propagation, in which a defect owed to the crystal is presen

Figure 4.8: Images of group D

b) D2 guide, where the propagatio

z 

x 

z 

x 

x 

Figure 4.7: Images of group C

mode propagation of light. b) C2 guide, where the propagation is mono

the crystal is presented. c) C3 guide, with a mono

 B C D 
 3 1 2 3 1 2 3 1 

500 1000 500 500

 30 15 10 

 25 50 35 25 50 35 25 50 

500 

250 

Description of the first waveguides set wrote in the sample 151.15.2.

Images of group A, written in titanium waveguide. a) A1 guide, characterized by a multi

mode propagation of light. b) A2 guide, where the propagation is mono-mode. c) A3 guide, with a 

mode propagation, in which a defect owed to the crystal is present. 

Images of group D, wrote in titanium waveguide. a) D1 guide, created in a crystal defect. 

b) D2 guide, where the propagation is mono-mode, and where a defect owed to the crystal is present.

z 

Images of group C, wrote in titanium waveguide. a) C1 guide, characterized by a multi

mode propagation of light. b) C2 guide, where the propagation is mono-mode,

crystal is presented. c) C3 guide, with a mono-mode propagation. 
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 E 
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500 500 
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50 50 35 25 

wrote in the sample 151.15.2.  

. a) A1 guide, characterized by a multi-

mode. c) A3 guide, with a 

. a) D1 guide, created in a crystal defect. 

and where a defect owed to the crystal is present. 

. a) C1 guide, characterized by a multi-

mode, but a defect owed to 
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In fact, images had shown the presence of light leakages in titanium waveguide from the 
photorefractive optical barriers, caused by different values of index refraction 
and y axis. Indeed, being ∆nTi >> ∆
x, i.e. an elliptic beam, would be required to have the optimal coupling, while the real one is 
symmetric. To solve this problem it would
4.1, inserting a cylindrical lens after the microscope objective1 to make the beam elliptic, or to 
change the variation of index refraction modifying the diffu
 

The first characterization is made with the CCD camera, as shown in
4.8 where the group A, C and D are presented.
noticed as this way to create waveguides is more sensible to crystal imperfection, and because of 
this reason D1 guide is excluded from the analysis.
the group E, made with barriers of 1
a beam power of 17mW and a writing velocity of 500
are created with a single line. 
 The second characterization is made projected along 
In particular along x, as reported 
be noted how the titanium waveguide permits to confine entirely the light
 
Profiles obtained along z are reported in
make clearer the comparison on the shape of
with a width of 50µm are always multi
necessary to have a width inferior to 35
30µm or 15µm, because the trend of modes is the same, if the writing velocity is 500
consideration changes if the width of barrier
light and the propagation becomes mono
 

With this technique it is possible to reproduce what it was made with the lateral 
illumination technique but with some limitations, as for example the mini
be achieved between waveguides, which cannot be made smaller than 5 microns for the explored 
range of experimental conditions.
 
 
 

 

 
Figure 4.9:  Intensity profiles of confined light, projected along 
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In fact, images had shown the presence of light leakages in titanium waveguide from the 
photorefractive optical barriers, caused by different values of index refraction variation along 

>> ∆nbarriers, a different numerical aperture of the beam along 
, i.e. an elliptic beam, would be required to have the optimal coupling, while the real one is 

symmetric. To solve this problem it would be necessary to change the set up described in 
, inserting a cylindrical lens after the microscope objective1 to make the beam elliptic, or to 

change the variation of index refraction modifying the diffusion parameters of the titanium

characterization is made with the CCD camera, as shown in Figure 
where the group A, C and D are presented. Observing photos of  A3, C2, D1 and D2

as this way to create waveguides is more sensible to crystal imperfection, and because of 
is excluded from the analysis. It was impossible to observe a guided mode in 

with barriers of 1µm, so it is possible to conclude that waveguides 
a beam power of 17mW and a writing velocity of 500µm/s cannot confine the light, if the barriers 

The second characterization is made projected along x and y the profiles of
as reported in Figure 4.9 which show the behavior of A1 as example, it can 

the titanium waveguide permits to confine entirely the light along this direction.

are reported in Figure 4.10 and they are all normalized to one,
make clearer the comparison on the shape of the propagation modes. It can be seen that guides 

m are always multi-modes, and to have a mono-mode p
necessary to have a width inferior to 35µm, so that  it is nearly irrelevant to create barriers of 

m, because the trend of modes is the same, if the writing velocity is 500
consideration changes if the width of barriers is reduced up to 5µm, because they confines less the 
light and the propagation becomes mono-mode. 

With this technique it is possible to reproduce what it was made with the lateral 
illumination technique but with some limitations, as for example the minimum distance than can 
be achieved between waveguides, which cannot be made smaller than 5 microns for the explored 
range of experimental conditions. 

profiles of confined light, projected along y direction.
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In fact, images had shown the presence of light leakages in titanium waveguide from the 
variation along x 

, a different numerical aperture of the beam along z and 
, i.e. an elliptic beam, would be required to have the optimal coupling, while the real one is 

be necessary to change the set up described in Figure 
, inserting a cylindrical lens after the microscope objective1 to make the beam elliptic, or to 

of the titanium. 

Figure 4.6, 4.7 and 
of  A3, C2, D1 and D2, it can be 

as this way to create waveguides is more sensible to crystal imperfection, and because of 
It was impossible to observe a guided mode in 

waveguides created with 
e the light, if the barriers 

rofiles of confined light. 
which show the behavior of A1 as example, it can 

along this direction. 

all normalized to one, in order to 
the propagation modes. It can be seen that guides 

mode propagation it is 
it is nearly irrelevant to create barriers of 

m, because the trend of modes is the same, if the writing velocity is 500µm/s. This 
m, because they confines less the 

With this technique it is possible to reproduce what it was made with the lateral 
mum distance than can 

be achieved between waveguides, which cannot be made smaller than 5 microns for the explored 

direction. 



 

 
 
 
 

 
 

4.2  Gratings characterization

4.2.1 Description of the setup

 
The gratings characterization is

reciprocal space, obtained using t
  The source laser is a He

The beam is initially transmitted through a chopper
polarizer and an attenuator. After that the laser pass
and an iris, selecting only its central part
illuminated area on the sample
cover the grating surface.  Th
rotational axis. This stage, perfor
position with respect to the rotation axis can be set 
the sample surface contains the goniometer axis
second goniometer having a minimum step of 0.005deg  and performing
the diffraction pattern has to be obtained in the far field, a spherical lens is mounted on the 
detector arm, with a 100 µm slit in its focal point. Using this
scan along the true far – 
measured signal. The photodetector is connected to a lock
reference. In this way a good 
intensity is finally recorded and stored on a PC.
 
The focused spotsize after the
of the probe beam 1/D, so it is importan
avoid loss of intensity and/or resolution
for different iris apertures. The largest aperture possible is of 5mm, because this is the li

Figure 4.10: : Intensity profiles of 

which shows a multi-mode propagation while A2 (red) and A3 (blue) a mono

(black) characterized by multi

 

Gratings characterization 

Description of the setup 

characterization is made through the study of their diffractions pattern
using the setup shown in Figure 4.11 [48]. 

The source laser is a He-Ne, having a wavelength of 632.8 nm and a power of
transmitted through a chopper, whose frequency is 360 Hz

polarizer and an attenuator. After that the laser passes through abeam expander
only its central part. The aperture of the latter pe

illuminated area on the sample the spot size, so that the beam has the appropriate
The sample is placed on a rotational stage, with its 

performing a ω scan, has a step resolution of 0.005
position with respect to the rotation axis can be set and it is placed on a translation stage,
the sample surface contains the goniometer axis. The detector is a Si PIN diode

having a minimum step of 0.005deg  and performing the so
the diffraction pattern has to be obtained in the far field, a spherical lens is mounted on the 

m slit in its focal point. Using this configuration, the photodetector can 
 field region, i.e. associating to a given propagation direction the 

measured signal. The photodetector is connected to a lock-in which uses the chopper signal as 
reference. In this way a good dynamic of seven orders of magnitudes is obtained. 
intensity is finally recorded and stored on a PC. 

focused spotsize after the lens has a diameter which is inversely proportional to the diameter 
D, so it is important to verify that it can entirely enter in the s

and/or resolution. This is verified by doing a θ-scan of the primary beam
The largest aperture possible is of 5mm, because this is the li

rofiles of confined light, projected along z direction. a) Profile

mode propagation while A2 (red) and A3 (blue) a mono-

characterized by multi-mode propagation, while C2 (red) and C3 (blue)  by a mono
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diffractions pattern in the 

a wavelength of 632.8 nm and a power of 5mW. 
, whose frequency is 360 Hz, a vertical 

beam expander, collimating it, 
ermits to define the 

t the beam has the appropriate dimension to 
its y axis parallel to the 

resolution of 0.005deg; the sample 
placed on a translation stage, so that 

The detector is a Si PIN diode is mounted on a 
the so-called θ scan. As 

the diffraction pattern has to be obtained in the far field, a spherical lens is mounted on the 
configuration, the photodetector can 

field region, i.e. associating to a given propagation direction the 
in which uses the chopper signal as 

dynamic of seven orders of magnitudes is obtained. The diffracted 

has a diameter which is inversely proportional to the diameter 
it can entirely enter in the slit, in order to 

of the primary beam, 
The largest aperture possible is of 5mm, because this is the limit value  

a) Profiles of group A: A2 (black) 

-mode. b) Profile of group C: C1

C2 (red) and C3 (blue)  by a mono-mode. 
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to cover about entirely the grating surface
as shown in Figure 4.12  If the iris 
lens, the maximum of the intensity is flat
to pass the 100 µm slit. This implies that t
the split size and not by the lens
because guaranteeing the major intensity.

 
The setup just described 

space considering the geometry shown 
respectively the incident angle of
angle between the primary beam and the diffracted one
the scattered one: for elastic scattering 
configuration the  projection along x and z of 

 

 

Figure 4.11: Description of 

Figure 4.12: 
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to cover about entirely the grating surface and therefore apertures of 4mm and 3 mm were
iris aperture is 3mm, which creates the largest spot size after

lens, the maximum of the intensity is flat (Figure 4.12), meaning that the focused size is still able 
This implies that the angular resolution of the apparatus 

and not by the lens. In the following the largest iris aperture of 5mm
the major intensity. 

setup just described allows to obtain the diffraction pattern I(k) in the reciprocal 
the geometry shown in Figure 4.13. In this configuration ω

respectively the incident angle of the primary beam with respect  to the sample normal
angle between the primary beam and the diffracted one. Let K0 being the incident momentum, 

for elastic scattering k = KS-K0 is the exchanged moment
he  projection along x and z of k becomes: 

x� � x
sin� @ sin�D � ���                              x¯ � x
cos� @ cos�D � ���                                            

Description of the setup used for gratings characterization. 
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therefore apertures of 4mm and 3 mm were tested, 
spot size after the 

meaning that the focused size is still able 
 is determined by 

of 5mm can be used, 

) in the reciprocal 
ω and θ become 

to the sample normal, and the 
the incident momentum, KS 

momentum. In this 

                 (4.2 a) 
                                             (4.1 b) 



 

so it is clear that by performing 
in the reciprocal space. 
 

 
 
 

4.2.2 Periodic and Fibona

 
With the setup described in the previous section, three different gratings, written on the 

titanium waveguide of sample 151.14, were studied, two of them aperiodic and one periodic, as 
shown in Figure 4.14 and whose characteristics are reported in 
 
 

 
 
 

 
Long (L)
Short (S)

Writing velocity [
Lines number

                        Table 4.3 

 

Figure 4.13: Description of the geometry used to convert the 

direct space in the reciprocal one

Figure 4.14

Fibonacci gratings while C is periodic.

erforming a ω – θ scan according to a suitable pattern 

Periodic and Fibonacci diffraction gratings 

With the setup described in the previous section, three different gratings, written on the 
titanium waveguide of sample 151.14, were studied, two of them aperiodic and one periodic, as 

whose characteristics are reported in Table 4.3 

 A B 
(L) [µm] 23 23 
(S) [µm] 17 15 

Writing velocity [µm/s] 500 500 500
Lines number 300 300 300

Description of the geometry used to convert the 

direct space in the reciprocal one [48]. 

14: Description of the sample 151.14. A and B are aperiodic 

ci gratings while C is periodic. 
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 provides information 

With the setup described in the previous section, three different gratings, written on the 
titanium waveguide of sample 151.14, were studied, two of them aperiodic and one periodic, as 

C 
23 
/ 

500 
300 

and B are aperiodic 
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The periodic grating (C) permits to make a complementary study on the writing technique 
explained in paragraph 2.4.4, to analyze the characteristics of the single line creating the cla
of the waveguides, and also validate the results of the aperiodic gratings. 

They are studied is far-
corresponding diffraction pattern is presented in 
diffraction peaks are equally spaced, as expected.
 
In particular, the theoretical fundamental period Q of the pattern 
as: 

 
where L is the grating spacing, so the expected value
Consequently of this formula the position of each 
an integer number.  
To verify if the theoretical Q is in accordance with the experimental one
plotted in function of its order.
interpolation of the experimental data
 

intercept = (
 
in excellent agreement with the nominal value
 

 

Figure 4.15: Diffraction pattern of periodic grating. 

logarithmic scale. 
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The periodic grating (C) permits to make a complementary study on the writing technique 
, to analyze the characteristics of the single line creating the cla

of the waveguides, and also validate the results of the aperiodic gratings.  
-field using the optical diffractometer described above 

corresponding diffraction pattern is presented in Figure 4.15, where and it can be seen that 
peaks are equally spaced, as expected. 

fundamental period Q of the pattern in the reciprocal space 

$ � 	s�                                                                     

spacing, so the expected value for this particular grating
the position of each peak in this space is situated in k

the theoretical Q is in accordance with the experimental one, peaks position
. The corresponding graph is shown in Figure 4

interpolation of the experimental data gives the parameters:   

Qexp = (0.27247± 0.00005) µm-1 

intercept = (-0.0007±0.0004) µm-1 

in excellent agreement with the nominal value. 

Diffraction pattern of periodic grating. The intensity is reported in 
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The periodic grating (C) permits to make a complementary study on the writing technique 
, to analyze the characteristics of the single line creating the cladding 

described above and the 
, where and it can be seen that 

in the reciprocal space is defined 

                              (4.2) 

for this particular grating is 0.273µm-1. 
situated in kx = nQ, with n 

position has been 
4.16 and a linear 

The intensity is reported in 



 

 

 
 
From the analysis of peaks intensity, i

photoinduced direct writing are deduced
From standard diffraction theory, in the thin grating approximation, the diffraction pattern can be 
expressed with a function of this kind
 

 
where |%�ç�|	 is the square modulus of the structure factor and 
function. In other words, the reciprocal space intensity is
– like peaks located at positions 
 

 
where Δp��� is the real-space refractive index profile of a the repeated unit (in our case a written 
line). As it is well known, the presence of the squared modulus prevents one from obtaining direct 
information on Δp��� by directly
the details on the phase of F(q)
we search for a simple function in direct space for 
factor gives an analytical dependence describing with reasonable approximation the reciprocal 
space intensity of each diffraction peak. The calculated structure factor is then adjusted to the 
experimental data in order to obtain an approxima
approach, the actual shape of 
simply described using some phenomenological function. The idea is that 
of the line is the same for all the produced grating, we expect the structure factor to be the same 
for all. The periodic grating is then used to estimate this function and subsequently used to 
simulate the other more complex structures.

Figure 4.16

order. The slop of the linear fit permits the estimation of  the real grating

period. 

From the analysis of peaks intensity, information on the index profile 
direct writing are deduced. 

From standard diffraction theory, in the thin grating approximation, the diffraction pattern can be 
expressed with a function of this kind: 

â�ç� � ∑ |%�ç�|	&�ç � p$�7�#&��                                          

is the square modulus of the structure factor and &�ç � p$� is the Kronecker delta 
function. In other words, the reciprocal space intensity is given by a series of evenly spaced delta 

like peaks located at positions p$, whose intensity is modulated by the function:

%�ç� � t Δp���	o�¬'���(:�(: .                                          

space refractive index profile of a the repeated unit (in our case a written 
. As it is well known, the presence of the squared modulus prevents one from obtaining direct 

by directly calculating the inverse Fourier transform of 
F(q) are missing. We used therefore two approaches. In the first case 

we search for a simple function in direct space for ∆n, so that the squared modulus of
factor gives an analytical dependence describing with reasonable approximation the reciprocal 
space intensity of each diffraction peak. The calculated structure factor is then adjusted to the 
experimental data in order to obtain an approximate estimate of the shape of 
approach, the actual shape of Δp��� is disregarded and the structure factor in reciprocal space is 
simply described using some phenomenological function. The idea is that as the real space shape 

ine is the same for all the produced grating, we expect the structure factor to be the same 
for all. The periodic grating is then used to estimate this function and subsequently used to 
simulate the other more complex structures. 

16: Peaks position in the reciprocal space in function of the 

The slop of the linear fit permits the estimation of  the real grating
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ex profile created by the 

From standard diffraction theory, in the thin grating approximation, the diffraction pattern can be 

 
                                   (4.3) 

is the Kronecker delta 
given by a series of evenly spaced delta 

, whose intensity is modulated by the function: 

                                          (4.4) 

space refractive index profile of a the repeated unit (in our case a written 
. As it is well known, the presence of the squared modulus prevents one from obtaining direct 

calculating the inverse Fourier transform of |%�ç�|	, because all 
are missing. We used therefore two approaches. In the first case 

n, so that the squared modulus of its structure 
factor gives an analytical dependence describing with reasonable approximation the reciprocal 
space intensity of each diffraction peak. The calculated structure factor is then adjusted to the 

te estimate of the shape of Δp���. In the second 
is disregarded and the structure factor in reciprocal space is 

as the real space shape 
ine is the same for all the produced grating, we expect the structure factor to be the same 

for all. The periodic grating is then used to estimate this function and subsequently used to 

in function of the 

The slop of the linear fit permits the estimation of  the real grating
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Following the first approach, it can be seen that the q 
less obeys an exponential dependence:
 

 
The separate fit of the positive and negative k
 

 
A [a.u.] 
t [µm-1] 

                         Table 4.4 

 
An analytical function whose squared Fourier transform gives an exponential like (4.6) is a 
Lorentzian function, L(x): 
 

 
Where B = A2 and 2Γπ = 1/t, separately for positive and negative k
Table 4.4,  

 
the Lorenztian L(x) is characterized by the parameters:
 

B = (0.0349285

Figure 4.17: Peak 

space. The fit of the exponential data.
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pproach, it can be seen that the q – behavior of the peak intensities more or 
less obeys an exponential dependence: 

|%�ç�|	 ≅ �o�'/�                                                         

positive and negative kx gives the following parameters: 

Negative kx Positive kx 

0.00114 ± 0.00009 0.0013 ± 0.0001 
-0.23 ± 0.01 0.23 ± 0.01 

An analytical function whose squared Fourier transform gives an exponential like (4.6) is a 

 

Ë��� � Ï *:+�:7�*:�: 		                                         
= 1/t, separately for positive and negative kx. Using mean value of the 

A = (0.00122 ± 0.00007) a.u. 
t = (0.230 ± 0.007) µm-1 

s characterized by the parameters: 

B = (0.0349285 ± 0.0000002) a.u. 
Γ = (0.69 ± 0.01) µm  

Peak intensity in function of its position in the reciprocal

space. The fit of the exponential data. 
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behavior of the peak intensities more or 

                                                         (4.5) 

An analytical function whose squared Fourier transform gives an exponential like (4.6) is a 

                                (4.6) 

. Using mean value of the 

in function of its position in the reciprocal



 

 

 
 
According to this view, we may estimate that the refractive index profile of a single line written 
with an incident power of 17mW
the above listed parameters. A plot of the line is shown in Figure 4.18. 
 
From this profile also information on width optical barriers created in the sample 151.15.2 can be 
extracted. The width at half height 
observation that two lines written at a separation smaller than 1 
On the contrary the amplitude B is not an indication of the maximum refractive index obtainable, 
because of the equation (4.5) where the peak intensity is only proportional to square module of 
the Fourier transformation. At this stage of setup characterization it is only known from the 

Figure 4.19: Index refraction profile  obtained in bulk Fe:LN using the direct writing 

technique, for a laser power of 17mW and a velocity writing of 500μm/s. 
 

Figure 4.18: Simulation

presence of the titanium diffused in the surface and the photoinduced direct writin

technique. 

According to this view, we may estimate that the refractive index profile of a single line written 
with an incident power of 17mW and a writing velocity of 500µm/s, has a Lorentzian shape, with 
the above listed parameters. A plot of the line is shown in Figure 4.18.  

From this profile also information on width optical barriers created in the sample 151.15.2 can be 
extracted. The width at half height Γ equal to 0.69µm, is in agreement with the experimental 
observation that two lines written at a separation smaller than 1 µm merge together 
On the contrary the amplitude B is not an indication of the maximum refractive index obtainable, 

5) where the peak intensity is only proportional to square module of 
the Fourier transformation. At this stage of setup characterization it is only known from the 

Index refraction profile  obtained in bulk Fe:LN using the direct writing 

a laser power of 17mW and a velocity writing of 500μm/s.  

Simulation of the global variation of the refractive index due to the 

presence of the titanium diffused in the surface and the photoinduced direct writin
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According to this view, we may estimate that the refractive index profile of a single line written 
m/s, has a Lorentzian shape, with 

From this profile also information on width optical barriers created in the sample 151.15.2 can be 
m, is in agreement with the experimental 

m merge together  
On the contrary the amplitude B is not an indication of the maximum refractive index obtainable, 

5) where the peak intensity is only proportional to square module of 
the Fourier transformation. At this stage of setup characterization it is only known from the 

Index refraction profile  obtained in bulk Fe:LN using the direct writing 

 

of the global variation of the refractive index due to the 

presence of the titanium diffused in the surface and the photoinduced direct writing 
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literature, as seen in paragraph 2.4.1, that the variation is in the order of 10-4.  To have the real 
value two solutions are possible: to solve numerically the non linear problem for a focalized laser 
beam scanning the surface of the sample, or to add in the setup a Mach Zehnder interferometer to  
measure it directly, as made for photoinduced waveguides in SBN. 
In Figure 4.19 the Lorentzian profile of Figure 4.18 due to the photoinduced direct writing 
process is superimposed to the refractive index profile of Figure 2.7b generated by the presence of 
the titanium. The waveguide E3 is simulated, characterized by a width of 25µ and single optical 
barriers. 
 
For what concerns the second approach, it can be seen that the function:  
 

|%�ç�|	 ≅ ��oÀ�ÍÀÍ��,¡ @ �	oÀ�ÍÀÍ��,:                                       (4.7) 
 
can be used to describe accurately the q – dependence of Figure 4.17 of the peak intensities in 
reciprocal space. This function will be exploited to simulate the experimental data obtained in 
aperiodic gratings, as explained in the following. 
 
 The aperiodic grating (A and B) are studied with the same setup of the periodic one, i.e.in 
far-field. The aim of their characterization is to understand if these gratings arranged in Fibonacci 
sequence exhibits the expected characteristics. 
 
The two periods L and S are arranged following the substitution rule explained in paragraph 1.1.2 
but it was decided to utse a total number of 300 periods.    
The resulting diffraction pattern is reported in Figure 4.20 and Figure 4.21, where it can be seen 
as the peaks numbers is much larger than the periodic one: this is the peculiarity of these types of 
gratings which are dense, i.e. theoretically between two peaks it is always possible to find another 
one having an inferior intensity. 
 
In order to analyse our results, we follow the Levine and Steinhardt formalism [49] according to 
which in the real space, 1D quasicrystals may be described by the general form: 
 �# � p @ � @ �

- e#- @ �f                                                     (4.8) 

 
where n is an integer, τ the golden ratio and α, β a generic shift of the reference system and [y] is 

the integer part of y. Knowing that  √5 � . �1 + �
-:� equation (4.8) can be rewritten as  

 

�# � ²p�1 + .�	� @ √5�µ � �
- �#²�7-À:µ7√×®√× /@ � � �.                     (4.9) 

 
Where {y} indicates the fractional part of y. The first term is invariant under transformation of 
integer multiples of (1 + τ -2) while the second one is always periodic with period τ(1 + τ -2). 
Equation (4.9) can be rewritten as: 
 �# � �pa @ "� @ %�pa @ "�                                                  (4.10) 
 
where the first parenthesis indicates a quantity periodic of period a and F is a periodic function 
with period b such that b/a is an irrational number.  



 

 
 

 
 
 

Figure 4.20: Diffraction pattern of the Fibonacci grating A

in logarithmic scale.

Figure 4.21: Diffraction pa

logarithmic scale. 

Diffraction pattern of the Fibonacci grating A. The intensity is reported 

. 

Diffraction pattern of the Fibonacci grating B. The intensity is repo
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. The intensity is reported 

ttern of the Fibonacci grating B. The intensity is reported in 
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Considering the equation (4.10) the position of our lines can be formally considered as the sum of 
a two periodic sequence having two incommensurate periods a and b. It can be shown that in the 
reciprocal space the peaks positions are defined by: 
  $¾,¾0 � 2| �¾

� + ¾0º � � 	s-:�7-: �ℎ @ ¾0
- �                                         (4.11) 

 
where h and h’ are two integer numbers.. 
 
Adapting this theory to ours gratings, the equation (4.8) can be re-expressed as: 
 �# � pË	 @ ΔË e#-f                                                     (4.12) 

 
where L2 is long period and ∆L = L1 – L2. 
Following the same procedure  used for the equation (4.8) the equation (4.12) can be rewritten as: 
 
 
 �# � p�Ë	 @ ΔË.��� � ΔË 1#²�:7=�-À¡µ-��:7=�-À¡�2                                  (4.13) 

 
The first term is invariant under translations of (L2 + ∆Lτ -1) and the second term under 
translations of τ(L2 + ∆Lτ -1). In this case in the reciprocal space the peaks position are given by 
the formula: 
 

$¾,¾0 � 	s-
�:-7=� �ℎ @ ¾0

- �                                           (4.14) 

 
This formula cannot be directly used to generate peaks position because of their dense position in 
the reciprocal space. The comparison between the experimental value and the simulation is easier 
if the diffraction pattern is analyzed by directly calculating its reciprocal space intensity 
distribution from the basic definition: 
 â�ç� � ¶�%∑ %�ç�o¬'�3%#&� ¶	 � �% |%�ç�|	M∑ o¬'�3%#&� M	                  (4.15) 

 
where �# are the position of the grating lines according to the Fibonacci sequence and F(q) is the 
structure factor, in principle equal to the one of the periodic gratings. For the aperiodic grating, to 
calculate the the reciprocal space intensity distribution, it is necessary to separate the line shape 
contribution due to the structure factor from the contribution generated from the Fibonacci 
arrangement. The square module of the structure was obtained from the fit of the peak intensities 
of the periodic grating (equation 4.7 and  Figure 4.17). The third term of the last member of 
equation (4.15) is numerically calculated considering q = Qh, h’ and as example the result is 
reported in Figure 4.22 for the grating A where the reciprocal space is limited between 0 and 1. 
Comparing this graph with the one of Figure 4.23 reporting the experimental value it can be seen 
as the dense structure is well reproduced. Only two peaks are not in according with the real values 
because the simulation is very sensible of the S(k) and the function adopted, in this range, not 
reproduce with a good approximation experimental values. The simulation is in accord also with 
the rest of experimental values.  
 



 

 
. 

Figure 4.22: Experimenetal values of the Fi

Figure 4.23: Simulation of the structure 

netal values of the Fibonacci grating A in the range between 0 and 1

Simulation of the structure factor for the Fibonacci grating A.
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grating A in the range between 0 and 1 

grating A. 
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CONCLUSIONS 
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This work was devoted to the experimental study of quantum – optical analogies by means of a 
new and powerful experimental approach which exploits the photorefractive effect in two 
different materials to produce arbitrary and reconfigurable optical structures which can be used to 
mimic some quantum – like phenomena. 
 
  
The analogy between these two branches of physics is based on the observation that the 
Schrödinger equation, describing the temporal evolution in the quantum world, has the same 
structure of the equations resulting from the coupled mode theory. In particular they are 
equivalent if a correspondence between temporal and z coordinate is established and in this 
picture every quantum level become the analogue of a single optical waveguide. 
Two different setups were exploited. The first one, developed by the Laboratoire Matériaux 
Optiques, Photoniques et Systèmes (LMOPS) at the Lorraine University, Supélelc campus in 
Metz (France) based on the lateral illumination technique on Ce-doped SBN samples, the other 
one, realized ex novo at the Padova University exploiting an original “direct laser writing” 
approach on iron – doped lithium niobate. These two systems proved to be complementary as the 
first allows for the production of arbitrary dynamical structures, while the second is an excellent 
way to produce at low cost semi – permanent optical structures and enabled us to successfully 
prove the optical analogue of two effects. The advantage of this approach is that the proposed 
methods are extremely versatile and have low cost, so are particularly suited for rapid prototyping 
of he complex optical structures needed in this work. 
 
 The first quantum effect reproduced is the two-state STImulated Raman Adiabatic 
Passage (STIRAP) which allows achieving a coherent superposition of two quantum states with 
equal probability in a two – level system, i.e. if initially the population is entirely confined in the 
ground state at the end of the process an equal distribution of the atoms in the two states is 
achieved. Form the quantum point of view this effect is produced modulating conveniently the 
laser Rabi frequency coupling the two energy levels and the detuning between the laser and the 
Bohr  frequency. Optically this is traduced modulating in the same way the coupling constant 
between the two waveguides and the refractive index along the propagation direction. It is worth 
highlighting that this effect from the quantum point of view has been only theoretically predicted 
but not tested experimentally because it is difficult to find a quantum system with the desired 
characteristics. 
Experimentally these structures were reproduced using the lateral illumination technique in a SBN 
crystal. The configuration giving the better results exploits a gaussian variation of pulses centered 
in z1 = 7,6mm and z2 = 15,2mm along the crystal length, having a width of half width of 6.2mm 
and the maximal value of the phase mismatch equal to 1.0mm-1 and for C to 0.42mm-1 . 
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This was reproduced creating in SBN two waveguides, one straight and having a constant 
refractive index and the other one curved so that the inter-guide distance is modulated with a 
Gaussian profile and with an additional Gaussian – like modulation of the refractive index. The 
experimental configuration was created starting from the pulses shape and resolving the coupled 
mode theory using Matlab language. A numerical resolution of the related equations was 
implemented, in order to allow for a precise design of the needed structures. With this 
configuration, the  optical analogy of the two – state STIRAP was successfully observed, to our 
knowledge for the first time. It is worth pointing out that this effect has also some interesting 
practical application because a structure similar to the one here observed can be exploited as an 
achromatic directional coupler, of great interest for all optical signal processing. Future work will 
be needed to increase the stability of the observed structures which, due to their dynamical nature, 
may not allow for the observation of the phenomenon for a long time.  
 
 The second part of the work is devoted to the development of a new method to realize 
semi-permanent arbitrary three – dimensional optical structures, using the photorefractive 
properties of Fe – doped lithium niobate. The developed method involves the writing of optical 
structures using a low – power focused laser beam scanned on the sample with the aid of a 
computer – controlled translation stage. In this approach optical barriers can be written either in 
the bulk or on the top of a Ti  - diffused waveguide on a Fe: LN sample. This method may seem 
similar to the other well-known direct writing approaches such as femtosecond laser writing, 
however it bears the following important differences: (i) the laser source can be a low- cost CW 
green laser with moderate power of the order of 10 mW. (ii) The realized structures can be easily 
erased by illumination with a inhomogeneous light. (iii) The obtained refractive index variations 
are negative instead than positive. The realized setup was tested, defining the optimal process 
parameters, which enabled to obtain stable refractive index modulations were obtained. In 
particular the possibility of confining light into waveguides obtained by creating two optical 
barriers at close distance was demonstrated, to our knowledge for the first time.  

Also this method can be used to test some quantum processes, similar to the ones 
highlighted above, or to test the optical analogue of some solid state systems difficult to obtain 
experimentally. In this thesis, to demonstrate the usefulness of this approach, we studied the 
diffraction characteristics of an optical quasi – crystal, which will be used in the continuation of 
this work to study the propagation of light in an array of aperiodically coupled waveguides. Quasi 
crystals can be considered as an intermediate phase between an ordered and a disordered structure 
which does not exhibits translational invariance but anyway possessing a long range order and 
displaying some peculiar aspects in diffraction experiments. To this purposes we exploited the 
advantages of our setup to record a series of quasi – periodic lattices by writing a sequence of 
lines arranged according to a Fibonacci sequence. The reciprocal lattice of the produced structures 
was studied by optical diffraction. By comparison with a periodic grating recorded in the same 
conditions, we were able to obtain information on the refractive index profile of a single line and 
we highlighted how the presence of quasi – periodic order modifies the diffraction characteristics 
of the sample. An analysis performed using quasi – crystal theory, shows that the diffraction 
pattern is in good agreement with theoretical predictions. 

 
 
 

 
 
 
 



 
 

 77 

 





 
 

 79 

 
 
 
 
 

ANNEX  A 
͟͟  ͟  ͟͟  ͟  ͟  ͟ ͟͟  ͟  ͟͟  ͟  ͟  ͟ ͟͟  ͟  ͟͟  ͟  ͟  ͟ ͟͟  ͟  ͟͟  ͟  ͟  ͟ ͟͟  ͟  ͟͟  ͟  ͟  ͟ ͟͟  ͟  ͟͟  ͟  ͟  ͟ ͟͟  ͟  ͟͟  ͟  ͟ ͟ ͟͟  ͟  ͟͟  ͟  ͟  ͟ ͟͟  ͟  ͟͟  ͟  ͟  

 
 
 In this section programs written using Matlab language are reported. They are used to 
create all simulations and images reported in the chapter 3, and they were the base to the 
experimental study of the optical two-state STIRAP. 
 
PROGRAM 1 
 
Clear all  
 
%% Guides parameters  
step=0.001;              %step of calculation  
length=23;               %mm 
nrguide=2;               %number of the guides  
nrzpoints=0:step:length; %number of the points along the crystal  
  
%% Pulses parameters   
kconstant=0.37; %coupling constant max (mm-1)  
delta_beta=1.0; %delta_beta max (mm-1)  
  
%gaussian variation of the coupling constant and th e phase mismatch  
kconstant1(1,:)=kconstant*exp(-((nrzpoints-13.8)/(5 )).^2);   
delta_beta1(1,:)=delta_beta*exp(-((nrzpoints-9)/(5) ).^2);   
  
%% Initial conditions 
%definition of the matrix of electric field  
Es=zeros(nrguide,size(nrzpoints,2));  
%the electric field is coupled entirely in one of t he two guides  
Es(1,1)=1;   
 
%% Resolution of coupling equation using Euler's me thod  
for  j=2:size(nrzpoints,2)  
    Es(1,j)=Es(1,j-1)-i*step*(kconstant1(j)*(Es(2,j -1))+ delta_beta1(j)* 
Es(1,j-1));  
    Es(2,j)=Es(2,j-1)-i*step*(kconstant1(j)*(Es(1,j -1)));  
         
    Intensityout=abs(Es).^2; %calculation of the intensity  
  
end  
figure;  
plot(nrzpoints,Intensityout);  
xlabel( 'Distance along the crystal [mm]' );  
ylabel( 'Normalized Intensity [a.u]' );  
title( 'INTENSITY PROFILE' , 'FontWeight' , 'bold' , 'FontSize' ,9);  
axis([0 23 0 1.1]);  
box off ;  
figure;  
plot(nrzpoints,delta_beta1,nrzpoints,kconstant1);  
title ( 'GAUSSIANS PULSES' , 'FontWeight' , 'bold' , 'FontSize' ,9);  
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xlabel( 'Distance along the crystal [mm]' );  
ylabel( 'Pulses [mm^{-1}]' );  
 
%the writing is controlled by the mouse in the grap hic  
gtext( '\Delta\beta' ); 
gtext ( 'C' );  
axis([0 23 0 1.1]);  
box off ;  
 
 
PROGRAM 2 
 
clear all  
  
lambda=633e-3;       %wavelength (µm)  
length_crystal=23;   %mm 
Z0=376.730;          %characteristic impedance of empty  
  
%% Pulses Parameters  
%the crystal is subdivided in steps of 0.05 mm  
nrzpoints=1:0.05:length_crystal;               
C=0.3;    %coupling constant max(mm-1)  
B=1.0;    %delta_beta max (mm-1)  
%gaussian variation of the coupling constant and th e phase mismatch  
kconstant=C*exp(-((nrzpoints-7.6)/(7)).^2);    
delta_beta=B*exp(-((nrzpoints-15.2)/(7)).^2);  
 
%% Waveguides Parameters  
d=7.2;         %waveguide width µm (6 pixel)  
s=1:0.05:30;   %waveguide separation (µm)  
ne=2.2953;     %bulk refraction index  
  
%guide with fixe refraction index  
frangie_a=4.7;    %it corresponds to a gray level of 75%  
%experimental refraction index  
dn_a_efficace=lambda*frangie_a/(length_crystal*10^3 ):  
%theoretic refraction index extract from Program 3  
dn_a=-1.2e19*dn_a_efficace^6+9.9e15*dn_a_efficace^5 -3.3e12* 

dn_a_efficace^4+5.5e8*dn_a_efficace^3-5e4*dn_a_effi cace^2 
+3.8*dn_a_efficace+1.3e-5;  

  
%guide with varying refraction index 
%experimental refraction index  
dn_b_efficace(1,:)=(lambda*10^(-3)*delta_beta)/(2*p i)+dn_a_efficace;  
%theoretic refraction index extract from Program 3  
dn_b(1,:)=-1.2e19*dn_b_efficace.^6+9.9e15*dn_b_effi cace.^5-
3.3e12*dn_b_efficace.^4+5.5e8*dn_b_efficace.^3-
5e4*dn_b_efficace.^2+3.8*dn_b_efficace+1.3e-5;  
  
%% Transcendental equation of guide with fixe refra ction index  
k0=2*pi/lambda; 
%limit value of sin_theta for the first mode  
lim_a=lambda/(2*d*(ne+dn_a))-1e-12;       
%complementary of the critical angle 
theta_c_a=acos(ne/(ne+dn_a));  
sin_theta_a=0.000001:0.000001:lim_a;  
for  g=1:length(sin_theta_a) 
  %left side of trscendental equation,m=0  
  left_a(g)=tan(pi*d*(ne+dn_a)*sin_theta_a(g)/lambd a); 
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  %right side of trscendental equation                     
  right_a(g)=sqrt((sin(theta_c_a))^2/(sin_theta_a(g )*sin_theta_a(g))-1);   
    result_a(g)=right_a(g)-left_a(g);  
end 
%it find the minimum value and it stokes in i_a the  corresponding index 
of array  
[minimum_a,i_a]=min(abs(result_a)); 
%it is the value where the two curves cross each ot her        
sin_theta_m_a=sin_theta_a(i_a);           
theta_m_a=asin(sin_theta_m_a);           %mode angle for waveguide a  
%Longitudinal constant of propagation for waveguide  a  
beta_m_a=k0*(ne+dn_a)*cos(theta_m_a);  
    
%% Calculation of mode's constants  
h_a=sqrt(k0^2*(ne+dn_a)^2-beta_m_a^2);                                     
%Tranverse propagation constant for waveguide a  
gamma_m_a=ne*k0*sqrt((cos(theta_m_a))^2/(cos(theta_ c_a))^2-1);             
%Extinction coefficient for waveguide a  
b_a=(cos(2*(ne+dn_a)*pi*sin_theta_m_a/lambda*d/2))/ (exp(-
gamma_m_a*d/2));  %proportionality factor  
  
%% Transcendental equation of guide with varying re fraction index  
for  k=1:length(dn_b)  
    theta_c_b(k)=acos(ne/(ne+dn_b(k)));  
    sin_theta_c_b(k)=sin(theta_c_b(k));  
    lim_b(k)=lambda/(2*d*(ne+dn_b(k)))-1e-12;  
    if  lim_b<sin_theta_c_b  
        sin_theta_b=0.000001:0.000001:lim_b(k);   
        for  g=1:length(sin_theta_b)  
            left_b(g)=tan(pi*d*(ne+dn_b(k))*sin_the ta_b(g)/lambda);  
right_b(g)=sqrt((sin(theta_c_b(k)))^2/(sin_theta_b( g)*sin_theta_b(g))-
1);  
            result_b(g)=right_b(g)-left_b(g);  
        end  
    else  
      sin_theta_b=0.000001:0.000001:sin_theta_c_b(k );     
        for  g=1:length(sin_theta_b)  
            left_b(g)=tan(pi*d*(ne+dn_b(k))*sin_the ta_b(g)/lambda);  
            
right_b(g)=sqrt((sin(theta_c_b(k)))^2/(sin_theta_b( g)*sin_theta_b(g))-
1);  
            result_b(g)=right_b(g)-left_b(g);  
        end  
    end  
    [minimum_b,i_b]=min(abs(result_b));  
    sin_theta_m_b(k)=sin_theta_b(i_b);  
    theta_m_b(k)=asin(sin_theta_m_b(k));                     
    beta_m_b(k)=k0*(ne+dn_b(k))*cos(theta_m_b(k));  
     
%% Calculation of mode's constants 
%Transverse propagation constant for waveguide b     
h_b(k)=sqrt(k0^2*(ne+dn_b(k))^2-beta_m_b(k)^2); 
%Extinction coefficient for waveguide b                                        
gamma_m_b(k)=(ne)*k0*sqrt((cos(theta_m_b(k)))^2/(co s(theta_c_b(k)))^2-
1); 
%proportionality factor  
b_b(k)=(cos(2*(ne+dn_b(k))*pi*sin_theta_m_b(k)/lamb da*d/2))/(exp(-
gamma_m_b(k)*d/2)); 
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%% Calculation of the mode um_a and um_b  
  for  t=1:length(s)  

l_suppl=20; %µm,         
ymin=-l_suppl-d/2;       %inferior extreme of the array  
ymax=d/2+s(t)+d+l_suppl; %superior extreme of the array  
pas=0.01; 

%the zero of the coordinate is centered in the infe rior guide  
ya=ymin:pas:ymax;  

%the zero of the coordinate is centered in the supe rior guide  
yb=fliplr(ya);            

         
%filling of an array with the refractive index na in  the inferior guide 
and with bulk index outside  
      na=zeros(length(ya),1);                              
      indice_debut_guide=round(l_suppl/pas);  
      indice_fin_guide=indice_debut_guide+round(d/p as);  
      na(indice_debut_guide+1:indice_fin_guide+1)=n e+dn_a;  
      na(1:indice_debut_guide)=ne;  
      na(indice_fin_guide+2:end)=ne;  
                

um_a=zeros(length(ya),1);  
um_a(indice_debut_guide+1:indice_fin_guide+1)=cos(h _a*ya(indice_de

but_guide+1:indice_fin_guide+1));  
um_a(1:indice_debut_guide)=b_a*exp(gamma_m_a*ya(1:i ndice_debut_gui

de));  
um_a(indice_fin_guide+2:end)=b_a*exp(-
gamma_m_a*ya(indice_fin_guide+2:end));  

 
um_I_a=um_a.^2;  

        
%filling of an array with the refractive index nb i n the superior guide 
and with bulk index outside  
      nb=zeros(length(yb),1);  
      indice_debut_guide=round((l_suppl+d+s(t))/pas );  
      indice_fin_guide=indice_debut_guide+round(d/p as);  
      nb(indice_debut_guide+1:indice_fin_guide+1)=n e+dn_b(k);  
      nb(1:indice_debut_guide)=ne;  
      nb(indice_fin_guide+2:end)=ne;  
         

um_b=zeros(length(yb),1);  
um_b(indice_debut_guide+1:indice_fin_guide+1)=cos(h _b(k)*yb(indice

_debut_guide+1:indice_fin_guide+1));  
um_b(1:indice_debut_guide)=b_b(k)*exp(-
gamma_m_b(k)*yb(1:indice_debut_guide));  
um_b(indice_fin_guide+2:end)=b_b(k)*exp(gamma_m_b(k )*yb(indice_fin

_guide+2:end));  
 

um_I_b=um_b.^2;  
  
%Normalization 
%the integral is calculated using the trapezoidal m ethod  
      norm_um_b=-beta_m_b(k)/(2*k0*Z0)*trapz(yb,um_ I_b(:));                 
      norm_um_a=beta_m_a/(2*k0*Z0)*trapz(ya,um_I_a( :));  
        
      UM_a=1/sqrt(norm_um_a)*um_a;  
      UM_b=1/sqrt(norm_um_b)*um_b;  
         
      UM_ab=UM_a.*UM_b;  
      integrando_a=(na.^2-ne^2).*UM_ab;  
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      kappa_ab=trapz(ya,integrando_a);   %µm^-1 
        kappa1(t)=k0/(4*Z0)*kappa_ab;      %coupling constant a-b  
         
        integrando_b=(nb.^2-ne^2).*UM_ab;  
        kappa_ba=-trapz(yb,integrando_b);  %µm^-1    
        kappa2(t)=k0/(4*Z0)*kappa_ba;      %coupling constant b-a  
         
   %effective coupling constant  
        kappa_eff(t)=sqrt(kappa1(t).*kappa2(t)); %µm^-1      
%the difference between the gaussian coupling const ant and the 
calculated coupling constant is computed  
        difference(t)=kconstant(k)-10^3*kappa_eff(t );     
end  
%finding of the minimum value of the array 'differe nce' and stoking in z 
the corresponding index  
    [minimo,z]=min(abs(difference)); 
%distance board to board of the two waveguides that  reproduces the best 
value of gaussian coupling constant  
    Sp(k)=s(z);   %µm 
end 
 
figure;  
plot(Sp);  
title( 'Profile of the guide curvature' , 'FontWeight' , 'bold' , 
'FontSize' ,9);  
xlabel( 'Distance along the crystal [mm]' );  
ylabel( 'Distance board to board of the two waveguides [µm] ' );  
 
 
PROGRAM 3 
 
clear all  
  
%% Guides parameters  
ne=2.2953;            %bulk refraction index  
d=7.2;                %waveguide width µm (6 pixel)  
lamb=633e-3;          %wavelength (µm)  
dn=1e-5:1e-5:4e-4;    %variation of the refraction index  
  
%% Transcendental equation  
 k0=2*pi/lamb; 
% limit value for sin_theta for the first mode  
for  k=1:length(dn) 
    lim(k)=lamb/(2*d*(ne+dn(k)))-1e-12;     
end  
for  k=1:length(dn)  
    theta_c(k)=acos(ne/(ne+dn(k))); %complementary of the critical angle  
    sin_theta=0.000001:0.000001:lim(k);  
    left=tan(pi*d*(ne+dn(k))/lamb*sin_theta); %left side of the equation  
    right=sqrt(sin(theta_c(k))^2./(sin_theta.*sin_t heta)-1); %right side 
    result=right-left;  
    [minimum,i]=min(abs(result))  
  
%% %% Calculation of mode's constants  
    sin_theta_m(k)=sin_theta(i);  
    theta_m(k)=asin(sin_theta_m(k));            %mode angle  
    beta_m(k)=k0*(ne+dn(k))*cos(theta_m(k));    %longitudinal constant  
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    delta_n_eff(k)=(beta_m(k)-k0*ne)/k0;  
  
end  
  
figure;  
plot(delta_n_eff,dn);  
ylabel( '\Deltan_{theo}' );  
xlabel( '\Deltan_{effective}' );  
title( 'THEORETICAL INDEX REFRACTION' , 'FontWeight' , 'bold' );  
 
 
PROGRAM 4 
 
figure;  
%to set the dimensions of the image. with the resol ution of 1200dpi the 
finals dimendions are (6.394*1200, 3.9985*1200)pixe l = (4800,7680)pixel  
%it is decided to utilised an initial image with di mensions 4 times that 
the originals (=1200,1920)pixel  
set(gcf, 'PaperUnits' , 'inches' , 'Paperposition' , [0 0 6.394 3.9985]);  
  
%to convert µm to pixel, to move the courved guide to take into account 
the  thickness of the two guides,to reflect the ima ge because the light 
is injected from right  
conversion=zeros;  
for  i=1:length(Sp)  
    conversion(length(delta_beta)+1-i)=Sp(i)/(1.2)+ 6;    
end  
  
gray=zeros(length(delta_beta),1);  
delta_beta_conversion=zeros(length(delta_beta),1);  
  
%plot of the courved guide from right to left with gaussian refraction 
index  
for  i=1:length(delta_beta) 
%to set the other guide the zero of the variation o f the refraction 
index and to transform from mm^-1 to cm^-1  
    delta_beta_conversion(length(delta_beta)+1-i)=1 2.839-
(delta_beta(i)*10);     
    gray(length(delta_beta)+1-i)=(-
0.0052*(delta_beta_conversion(length(delta_beta)+1-
i))^3+0.16*(delta_beta_conversion(length(delta_beta )+1-
i))^2+0.99*delta_beta_conversion(length(delta_beta) +1-i)+47)/100;  
    hold on;    
plot(i,conversion(i), 's' , 'MarkerEdgeColor' ,[gray(length(delta_beta)+1-
i),gray(length(delta_beta)+1-i),gray(length(delta_b eta)+1-i)], 
'MarkerFaceColor' ,[gray(length(delta_beta)+1-
i),gray(length(delta_beta)+1-i),gray(length(delta_b eta)+1-
i)], 'MarkerSize' ,1.2);  
end  
 
%to set the background of the image with the color noir  
set(gcf, 'color' ,[0 0 0]); 
%horizontally in the left the 6% of the image is no ir, vertically the 
straight guide is centre in the middle of the image                                      
axis([-(length(delta_beta)*0.06) length(delta_beta)  -600 600]);  
%to eliminate the image's white bord  
set(gca, 'Units' , 'normalized' , 'Position' , [0 0 1 1] );         
axis off ; 
%to save the image with the right colors previously  decided                                                        
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set(gcf, 'InvertHardCopy' , 'off' ); 
%to save the image with a resolution of 1200dpi  
print -dpng  prova1.png  -r1200 ;                                   
I=imread( 'prova1.png' ); 
%to create the final image with the right dimension s (1200pixel x 
1920pixel)  
A = imresize(I,[1200 1920], 'bicubic' );                           
imwrite (A,'int_grigi_guida_curva1.png'); %to save the curved guide  
  
figure;  
set(gcf, 'PaperUnits' , 'inches' , 'Paperposition' , [0 0 6.394 3.9985]);  
  
%plot of the straight guide with fixe refraction in dex  
y=0;  
for  i=1:length(delta_beta)  
    hold on;  
    plot(i,y, 's' , 'MarkerEdgeColor' ,[0.75 0.75 0.75], 
'MarkerFaceColor' ,[0.75 0.75 0.75], 'MarkerSize' ,1.2);  
end  
  
set(gcf, 'color' ,[0 0 0]);                                        
axis([-(length(delta_beta)*0.06) length(delta_beta)  -600 600]);  
set(gca, 'Units' , 'normalized' , 'Position' , [0 0 1 1] );         
axis off ;                                                        
set(gcf, 'InvertHardCopy' , 'off' );                               
print -dpng  prova2.png  -r1200 ;                                  
J=imread( 'prova2.png' );  
B = imresize(J,[1200 1920], 'bicubic' );                           
imwrite(B,'int_grigi_guida_curva2.png');                         

 
C=imadd(A,B);       %superposition of the two images  
imwrite(C, 'int(15,2-1,0)(7,6-0,3)7_grigi_guida_curva_negativo .png' );  
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