

Università degli Studi di Padova – Dipartimento di Ingegneria Industriale Corso di Laurea in Ingegneria Chimica e dei Materiali

Relazione per la prova finale «Studio di un processo di disinfezione tramite ozono nell'industria dell'acqua in bottiglia»

Tutor universitario: Prof. Barbera Elena

Tutor aziendale: Barbato Emanuel Laureando: Varnier Giovanni

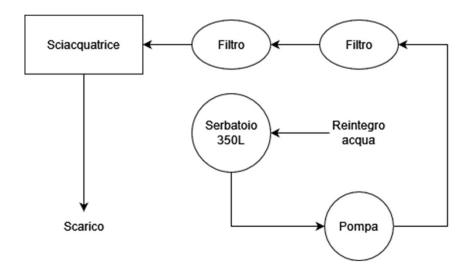
Padova, 23/09/2024

Introduzione

Obiettivi del progetto

Compatibilità dei materiali

Test condotti

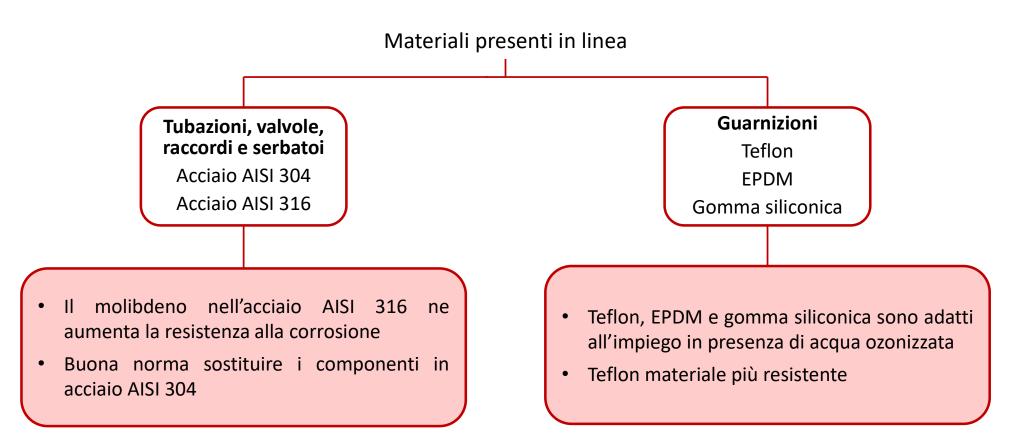

Risultati dei test

Conclusioni

Dopo soffiatura, le bottiglie immagazzinate in silos raccolgono impurità. Per mantenere qualità del prodotto finale, **eseguire un lavaggio** prima dell'imbottigliamento.

Attualmente, l'acqua impiegata viene scaricata (circa $8 \frac{m^3}{h}$).

OBIETTIVI DEL LAVORO


Riutilizzare l'acqua della sciacquatrice per ridurre il consumo idrico.

Disinfezione tramite **ozono**, prodotto in un **ozonizzatore pilota**.

Fattibilità dell'integrazione in linea

Compatibilità dei materiali in linea

Verifica produzione di ozono e potere disinfettante.

Presenza organismi in campioni di acqua pre e post trattamento.

Determinazione portate

Misurazione portate nel sistema in diverse configurazioni.

Acqua raccolta in un contenitore tarato dopo un certo intervallo di tempo.

Produzione ozono e consumo energetico

Determinazione ozono prodotto in base a regolazione impostata.

Concentrazione di ozono disciolto nel tempo e corrente fornita al generatore.

Decadimento ozono

Determinazione profilo temporale decadimento ozono.

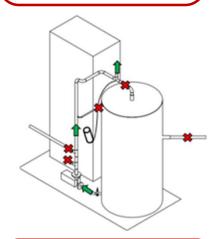
Concentrazione di ozono disciolto nel tempo a generatore spento.

Punto di controllo	Q.tà (mL)	CBT 37°C in T7A	Q.tà (mL)	SSPP	Q.tà (mL)	YEA 37°C 1 mL	Lieviti/ muffe
Bocca uscita 18' flusso	400	80	500	50	250	3	50 muffe
Bocca uscita 38' flusso	400	80	500	20	250	2	100 muffe
Acqua trattata	400	0	500	0	250	0	0

CBT: Carica batterica totale

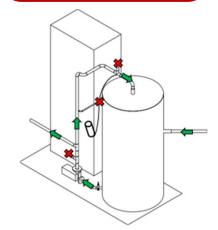
SSPP: Specie generiche di Pseudomonas

YEA: Carica microbica


- Ozonizzatore efficace nella produzione di ozono
- Microrganismi presenti, seppur in piccole quantità, eliminati nell'acqua trattata

Configurazione 1

Portata di ricircolo nel caso di uscita chiusa

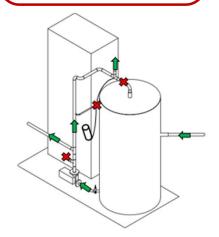


Portata volumetrica

 $2.25 \frac{m^3}{h}$

Configurazione 2

Portata di acqua trattata



Portata volumetrica

 $3.54 \, \frac{m^3}{h}$

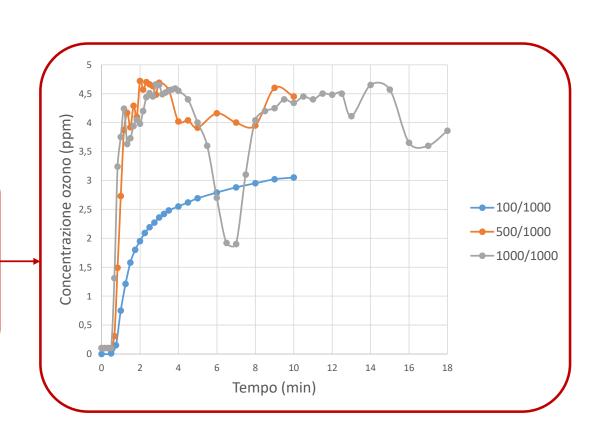
Configurazione 3

Portata di ricircolo nel caso di uscita aperta

Portata volumetrica

 $1.27 \, \frac{m^3}{h}$

RISULTATI-PRODUZIONE OZONO E CONSUMO ENERGETICO


Regolazione Potenziometro modula la corrente erogata al generatore di ozono

- 100/1000

500/1000

1000/1000

- Concentrazione massima e velocità con cui viene raggiunta simile nei casi 500/1000 e 1000/1000
 - 4.5 ppm in 2 min
- Caso 100/1000 ha dimostrato nette differenze
 - 3 ppm in 8 min

Considerata una tensione di rete (V) di 230 V per un periodo (t) di 8 ore.

Formula per energia consumata

$$E = I \cdot V \cdot t$$

Regolazione produzione	Corrente fornita (I) (A)	Energia consumata (E) (Wh)	
100/1000	0.40	736	
500/1000	0.90	1656	
1000/1000	1.05	1932	

Casi 500/1000 e 1000/1000 raggiungono concentrazione massima simile; quindi, piena potenza **non vantaggiosa** dal punto di vista energetico.

RISULTATI-PRODUZIONE OZONO E CONSUMO ENERGETICO

Confronto casi 100/1000 e 500/1000: determinazione tempo necessario per ottenere una riduzione significativa degli organismi.

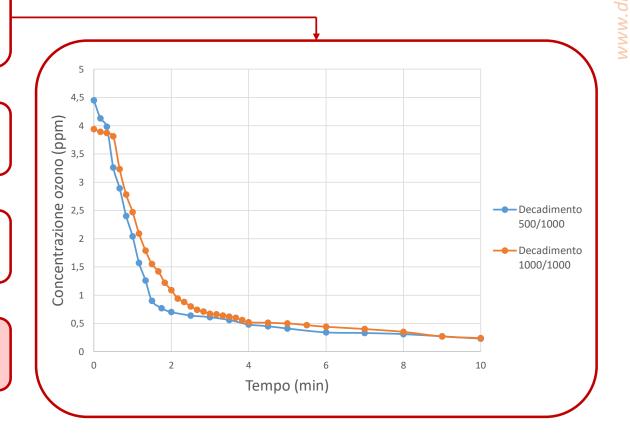
Equazione di Hass-Karra

$$\log\left(\frac{N}{N_0}\right) = -\Lambda_{10}(CT)$$

N-Numero di organismi dopo disinfezione N_0 -Numero di organismi iniziali Λ_{10} -Coefficiente specifico di letalità C-Concentrazione di disinfettante

	Batteri	E. Coli	Virus	Protozoa Cryptospori dium	Protozoa Giardia Iamblia Cysts
Tempo contatto 100/1000 (s)	2.235	0.984	13.530	409.836	23.364
Tempo contatto 500/1000 (s)	1.482	0.652	8.971	271.739	15.491

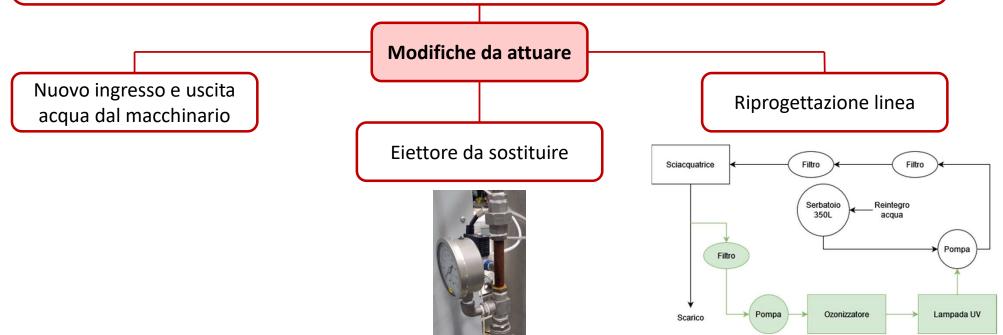
- **Tempi simili**, ragionevole considerare regolazione compresa tra 100/1000 e 500/1000
- Sopra questo intervallo, non c'è vantaggio significativo


T-Tempo di contatto

Concentrazione cala rapidamente in 2 min Rallentamento fino a valore stabile (0.5 ppm).

Non compatibile con impiego industriale previsto.

Anche a concentrazioni basse, elevata dispersione di ozono nell'ambiente.


Installazione lampada UV uscita dispositivo, per **eliminare ozono residuo**.

Ozonizzatore **può essere implementato** efficacemente per disinfettare l'acqua, rendendola adatta al ricircolo nel sistema.

Per valutare pienamente il contributo del dispositivo, sarà necessario attendere la sua messa in linea.

GRAZIE PER L'ATTENZIONE