
University of Padova

Department of Mathematics

Master Thesis in Data Science

Towards Explainability in Knowledge

Enhanced Neural Networks

Supervisor Master Candidate
Luciano Serafini Riccardo Mazzieri
University of Padova

Co-supervisor
Alessandro Daniele
Fondazione Bruno Kessler

Academic Year
2020-2021

ii

iv

Abstract

Research on Deep Learning has achieved remarkable results in recent years, mainly thanks
to the computing power of modern computers and the increasing availability of large data
sets. However, deep neural models are universally considered black boxes: they employ sub-
symbolic representations of knowledge, which are inherently opaque to human beings trying
to derive explanations. In thiswork,we first give a survey on the research field of ExplainableAI,
providing more rigorous definitions of the concepts of interpretability and explainability. We
then delve deeper in the research field of Neural Symbolic Integration, which tackles the task
of integrating the statistical learning power ofmachine learning with the symbolic and abstract
world of logic. Specifically, we analyze Knowledge Enhanced Neural Networks [1], a special
kind of residual layer for neural architectures which makes it possible to inject symbolic logical
knowledge inside a neural network. We describe and analyze experimental results on relational
data on the task of collective classification, and study howKENN is able to automatically learn
the importance of logical rules from the training data. We finally review explainabilitymethods
for KENN, proposing ways to extract explanations for the predictions provided by themodel.

v

vi

Contents

Abstract iii

List of figures ix

List of tables xi

Listing of acronyms xiii

1 Introduction 1

2 Explainability in Machine Learning 3
2.1 Why do we need explainability . 4
2.2 When do we need explainability . 6
2.3 What is explainability . 7

2.3.1 Transparency . 9
2.3.2 Post-hoc interpretations . 10

2.4 Neural Symbolic Integration . 14

3 Knowledge Enhanced Neural Networks 17
3.1 Theoretical Framework . 17

3.1.1 Prior Knowledge and language semantic 17
3.1.2 t-conorm Functions . 19
3.1.3 t-conorm Boost Functions . 22
3.1.4 Applying TBFs to preactivations 24
3.1.5 Increasing the satisfaction of the Knowledge 28

3.2 KENN Architecture . 29
3.3 KENN for relational data . 31
3.4 Related Work . 36

3.4.1 Regularization Approaches . 36
3.4.2 Model Based Approaches . 39

3.5 Experiments . 40
3.5.1 Citeseer Dataset . 41
3.5.2 The Prior Knowledge . 41
3.5.3 Experimental Setup . 41
3.5.4 Results . 44

vii

3.5.5 Clause Weights and satisfaction of the rules 45
3.6 Explainability in KENN . 50

3.6.1 Evaluation Metrics . 55

4 Conclusion 57

References 59

Acknowledgments 65

viii

Listing of figures

2.1 Intuitive representationof explanations coming fromtransparentmodels (left)
vs. explanations coming frompost-hoc interpretability techniques (right). Trans-
parentmodels are inherently interpretable by their design; they canbe inspected
and explanations can be deduced from them. Post-hoc interpretability, on the
other hand, refers to a wide range of techniques with which explanations are
extracted by any already trained model. 9

2.2 Process of image manipulation shown in [2]. From an intuitive point of view,
starting from existing real images, the network is asked to enhance the features
of the image that resemble the desired object (in this case, starting from an im-
age of a tree, start looking for features that resemble buildings). This process
is then repeated, creating a positive feedback loop. As a result, the features of
the desired objects appear seemingly out of nowhere. 11

3.1 On the left, example preactivations for the clause A(x) ∨ ¬B(x) are shown.
For both the examples, the same delta (δf) is applied to these preactivations.
In the first example, the NN has a high confidence, while in the second one
it is much lower. We can see how, when applying the activation function, the
actual delta (δg) is much smaller in the first case and larger in the second. This
is due to the shape of the sigmoid activation function itself. 27

3.2 Examplewith all the steps needed to compute δc for the clauseA∨¬B starting
from the vector of preactivations z; for this examplewc = 2. We refer to this
process as clause enhancement. 28

3.3 Illustration of the KENN architecture. Images are replications of the illustra-
tions provided in [1]. 30

3.4 Representation of relational data inside KENN. Specifically, objects and rela-
tions can be seen as nodes and edges of a directed graph. The preactivations
of each grounded predicate are represented in tables U and B. In this exam-
ple, two unary predicates and one binary predicate are present. Note that in
matrix B only the object pairs such that there is a relation between them are
reported. 32

3.5 This figure shows an example with all the necessary computations to obtain
the final delta matrices δU and δB (in the bottom), starting from matrices U
andB (top left). 35

ix

3.6 Simple example showing how the relational knowledge is injected in the NN
for the Citeseer experiments. In this toy example, features are 4-dimensional
vectors and there are 3 unary predicates; in the actual experiments, feature
vectors have 3703 components and the output classes are 6. 43

3.7 Relative improvements for the inductive learning task. 95% confidence inter-
vals are provided for our results. 45

3.8 Histograms showing the distribution of the accuracies for all the different 500
runs, for the inductive case. On the left, the accuracies of the base NN vs accu-
racies of KENN. On the right the distribution of the relative improvements. . 46

3.9 Relative improvements for the transductive learning task. 95% confidence
intervals are provided for our results. 48

3.10 Histograms showing the distribution of the accuracies for all the different 500
runs, for the transductive case. On the left, the accuracies of the base NN vs
accuracies of KENN.On the right the distribution of the relative improvements. 49

3.11 Scatterplots showing the relation between clause weight and clause compli-
ance, for each clause from 85 different runs, for each different training percent-
age. We can observe how, as the training dimension increases, KENN learns to
adjust the clause weights according on howmuch that clause is satisfied in the
training set. Each dot in the scatterplots corresponds to a clause in a specific
run; the colour of the dot denotes the topic related to that clause. 51

3.12 Process for extracting deltas relative to the clauses in C ⊆ K. The output
deltas are highlighted in yellow for both the unary case (a) and binary case
(b). Note that in the binary case the blue arrows are just a shorthand for the
extraction process shown on the left. 53

3.13 An example showing the application of two different deltas derived from two
different clauses, on a single common literal. On the left, the deltas are applied
to the preactivations from the base NN, but in two different orders. Note
how, at the activation level,the individual contributions change based on the
order of application at the preactivation level, while the aggregated contribu-
tion stays the same. 54

x

Listing of tables

3.1 Test set accuracies obtained with the inductive paradigm. The columns for
SBR and RNM show the results reported in [3]. The quantities between
parentheses denote the relative improvement with respect to the base NN. . . 44

3.2 Test set accuracies obtained with the transductive paradigm. The columns
for SBR and RNM show the results reported in [3]. The quantities between
parentheses denote the relative improvement with respect to the base NN. . . 47

3.3 p-values computed for each learning paradigm and for each training percent-
age. Values below 10−100 are reported as 0. 47

xi

xii

Listing of acronyms

CE Clause Enhancer

FOL First Order Logic

GDPR General Data Protection Regulation

KE Knowledge Enhancer

KENN Knowledge Enhanced Neural Network

KGL Knowledge Guided Learning

LIME Local Interpretable Model-agnostic Explanations

LTN Logic Tensor Networks

ML Machine Learning

MLN Markov Logic Network

NeSy Neural Symbolic Integration

NN Neural Network

RNM Relational Neural Machines

SBR Semantic Based Regularization

TBF t-conorm Boost Function

XAI Explainable Artificial Intelligence

xiii

xiv

1
Introduction

Deep Learning (DL) research has been moving faster and faster in recent years. Deep models
continue to deliver state-of-the-art results in a wide variety of Artificial Intelligence (AI) ap-
plications, large companies are investing huge amounts of money on DL research, the general
reputation of deep learning continues to grow, and the enthusiasm towards data-driven AI
only seems likely to increase with time. However, the limitations of this approach have already
been identified and criticized [4]: in fact, while the remarkable results achieved by deep neural
models are undeniable, their limitations are often underestimated or ignored.

The first critical aspect ofDL is its exclusive dependence ondata: this learning frameworkhas
proven to be very effective for many specific tasks; however, without enough data, DL models
still lack the ability to learn even basic concepts, due to their inability to reason in symbolic
and abstract terms. For example, if you verbally describe a unicorn to a child, he or she will
likely be able to recognize it on a television program, to explain to others what a unicorn is, and
perhaps even to produce a representation in a drawing of what he or she has learned from the
description. This is because the concept of a unicorn is simple to elaborate for a human, being
a simple composition of already known objects. Specifically, this composition can be easily
expressed with logical formulas, which do not require any kind of data to be able to express
new information. In contrast, to teach anNeural Network (NN)what a unicorn is, one would
have to provide it with hundreds or thousands of pictures, eachwith a label that tells it whether
that is a unicorn or not. This approach looks unnecessary for such a trivial task; however, DL
models have not yet been fully integrated with symbolical reasoning and prior knowledge in

1

order to solve this kind of task as a human would.
Another critical aspect of DL models is their black-box nature: deep NNs have millions or

even billions of parameters that can’t be directly examined and interpreted by humans. While
model transparency is not always necessary, this opaqueness can be dangerous in some critical
domains such as medical and financial ones, and poses the risk of heavily biased models, as
pointed out in [5].

These, and many other critical aspects of DL motivate this work of thesis, which will be
focused around two specific active research fields. The first is Explainable AI (XAI), where the
focus is on the task of deriving explanations from ML systems with the aim of achieving more
transparentmodels, boosting trust towards data-drivenAI as a result. Wewill then delve deeper
into the field ofNeural Symbolic Integration (NeSy), which tackles the challenge of integrating
logical knowledge inside NNs. Specifically, this thesis focuses on Knowledge EnhancedNeural
Networks (KENN) [1], a special kind of NN layer designed to inject logical knowledge inside a
neural model, in order to improve its predictive capabilities. We will report theoretical details,
as well as experimental results, together with an analysis of the explainability of KENN.

This work of thesis was conducted during my internship at the Bruno Kessler Foundation
in Trento, Italy. During this experience, I worked alongside researcher AlessandroDaniele and
professor Luciano Serafini on experiments and further research on KENN, which led to the
development of this work.

This thesis is organized as follows. In Chapter 2 we will discuss in depth the concept of
explainability in Machine Learning and report the last developments in the field of XAI. In
Chapter 3 we will focus on KENN. Specifically, in Section 3.1 we’ll describe the theoretical
framework behind the model. In Section 3.2 we’ll see its architecture, and in Section 3.5 we
will report results of the experiments performed on relational data, on a collective classification
task. Finally, in Section 3.6 will discuss about the explainability of KENN and devise ways to
derive explanations from it.

2

2
Explainability in Machine Learning

In recent years, research onDeep Learning (DL) has achieved remarkable results in a wide vari-
ety of domains, going from image recognition, speech recognition, machine translation, play-
ing games, and many others, in some cases even outperforming human capabilities [6, 7, 8].
Although DL is not a new research topic [9, 10], its popularity and capabilities skyrocketed
only in the last decade: this has been possible mostly thanks to the always growing availability
of new data, together with the increase in computational power of modern machines. Despite
the quick and huge success, researchers in the field have already shown some perplexities and
moved some critiques towards this approach [4, 11]: is DL really the future of AI? Will NNs
be able to give a good approximation of the human brain? Leaving aside such overwhelming
questions, we should still be interested in what DL is capable to do at the moment, and what
capabilities it still lacks. Oneparticular aspect forwhichDLhasbeen criticized is its lack of trans-
parency: in fact, deep models have millions or even billions of learnable parameters, which are
not characterizable in any human interpretable way. This results in opaque models, since no
human supervisor can, ultimately, interpret what the model has learned by simply inspecting
its internal structure. To refer to this undesirable property of deep NNs, the term “black box”
is commonly used. DL models also present other critical and perplexing issues: in [12] the au-
thors made a NN misclassify an image by applying an hardly perceptible perturbation, found
bymaximizing the network’s prediction error. Such adversarial examples have also been found
to be somewhat universal and not just the result of overfitting [13]. Similarly, authors in [14]
show how deep NNs are easily fooled into misclassifying inputs with no resemblance to their

3

true category. This kind of issues pose serious doubts about the ability of NNs to learn gen-
eral representations: indeed, if such networks can generalize well, how can they be confused
by what we see as nearly indistinguishable images? Adversarial examples are not confined to
the field of computer vision: natural language networks can also be fooled as shown in [15, 16].
Furthermore, it has been found that in several applications, DL models present strong biased-
ness. One example is reported in [17], where the authors show how word embeddings trained
on Google News articles exhibit strong female/male gender stereotypes due to biases in the
training data. Susceptibility to unintuitive errors remains therefore a pervasive problem in DL
and no robust solution has been found for them so far. Such issues contribute to generate mis-
trust, and threaten to slow downor even hinder the prevailance ofAI in some applications, due
to the high potential of unexpected behavior and lack of verifiability of solutions. In light of
such problems, Explainable Artificial Intelligence (XAI) has become an area of interest in the
research community: it tackles the important problem that complex machines and algorithms
often cannot provide insights into their behavior and thought processes. The need for XAI is
now even more urgent: the renewed EU General Data Protection Regulation (GDPR) could
require AI providers to provide users with explanations of the results of ML systems based on
their personal data. This clearly affects the industry in a huge way: indeed, the GDPRmay hin-
der or even prohibit the use of “black box” models which don’t offer explanations for their de-
cisions, when based on users’ personal data (think for example to recommender systems). This
is also referred to as the “right to explanation” [18]. The need for XAI has been also expressed
by the statement on algorithmic transparency and accountability released by the Association
for Computing Machinery [19], and by the XAI program launched by DARPA in 2017 [20].

Even though the general aim for XAI is well understood as the achievement of interpretabil-
ity, or explainability, for ML models, few articulate precisely what those terms mean or why
they are important. In this chapter, we try to provide amore rigorous definition for such terms,
by reviewing what has been done in the literature so far.

2.1 Why do we need explainability

Before determining a good definition for explainability or interpretability, wemust have a good
understanding ofwhat the real world objectives ofXAI research are. More specifically, what are
the desiderata of XAI which are still not being satisfied by the current ML tools and practices.
Consider a supervised learning scenario: a lot of evaluationmetrics are used to assess the quality
of a model, accuracy probably being the most common one. The computation of suchmetrics

4

require the presence of model predictions, together with ground truth labels, in order to pro-
duce a score which is computed in order to answer in a quantitative way to some questions, like
“how good isModel A able to generalize with respect toModel B?”, or “what is the probability
that Model A will misclassify an unseen sample?”. This evaluation framework provides satis-
factory answers for some kinds of questions, but still fails to answer other ones, especially those
demanding qualitative information, with questions like “why did the model predict sample x
to belong to class k?”. This kind of questions are the ones sought by XAI research. However,
we argue that a rigorous definition for the desiderata of XAI cannot consist in a list of poten-
tial questions: this approach is qualitative and already tackled by philosiphical works [21]. We
therefore need to express such needs in other forms other than simple questions.

Lipton [22] suggests that the need for explainability arises “when our real world objectives
are difficult to encode as simple real-valued functions”: in this sense, interpretations are useful
to achieve objectives which are important for us, but which we struggle to model in a formal
way. Other mentioned motivating aspects are causality, transferability, informativeness and
fair and ethical decision making. The authors in [23] refer to this same concept as incomplete-
ness in the problem formalization. In such situations, explanations can act as a bridge between
the model and the human supervisor, who can evaluate the predictions based on the provided
explanations and decide whether they meet certain criteria that the machine alone could not
understand. Some examples of such scenarios can be:

• Scientific Understanding: humans learn about the world around them in the form of
knowledge, which is still difficult to formalize in the same way in which it works inside
our brains. For this reason, we might look for explanations from ML models, which in
turn we can interpret and transform into human interpretable knowledge.

• Safety: in complex tasks, rigorous and complete testing is almost never feasible and it is
not possible to formally model all the wrong or dangerous decisions that a model could
make. For this reason, when decisions from a ML system can pose a threat to others,
explanations can help humans to evaluate safety conditions and to boost trust towards
AI.

• Ethics: for us humans, evaluating the fairness of a decision is often easy, in the sameway
inwhichwehave a clear idea of howwewouldwant ourmodel to be ethical (for example,
we could desire a “fair” classifier for loan approval). However, this kind of properties are
not easy to encode inML systems and, at the same time, biases in the data can often lead
to unethical decisions if not treated properly.

Some papers [24, 25] alsomotivate the need for explainability and interpretability in light of
the need for trust by domain experts: indeed trust is fundamental if one plans to act based on

5

a prediction, therefore ML systems must be able to communicate with highly skilled human
experts to leverage their expertise and share useful information or patterns from the data.

2.2 When do we need explainability

Explainability is important in a lot of domains, but not in all of them. There are applications,
e.g. aircraft collision avoidance, in which algorithms have been functioning from years with-
out giving any explanations and without any human interaction. It is clear, then, that ML
systems can be used without any need for interpretations in real world applications, at least in
those cases where their raw performance in terms of accuracy suffices, or when the risk of error
doesn’t pose any serious threat to the end users. Therefore, domains that demand explainabil-
ity are generally characterized by the critical nature of decisions which need to be made, where
mistakes could have severe consequences. Authors in [26] provide a fairly exhaustive list of
domains in need for explainability:

• Medical Domain/Health-Care: when the lives of humans are at stake, the need for
explanations and knowledge are of paramount importance; take as an example a model
used from doctors in order to associate to each patient a risk of suffering a certain disease.
Such a model should not only be accurate, but intelligible: in this way, doctors could
understand theunderlying causes for such adisease, effectively introducingnew scientific
knowledge in the medical domain;

• Judicial System: machine learning systems have also been explored for the automatic
decision of judgement results [27]. Such systems should help judges and lawyers to take
decisions, but in order to do so their decision must be well motivated;

• Banking/Finance: typical examples of automatic decision making in the banking do-
main are automatic credit approval systems. Since banks are legally obliged to provide
customers withmotivations when their credit request is denied, the usage of explainable
models is required;

• Automobile Industry: autonomous driving systems are one of the most common and
popular applications in DL research. Such autonomous agents are responsible for any
accident that could take place on the road: for this reason explanations for each of the
agent’s decisionmust be provided, both for legal and security reasons, so that the system
can be quickly fixed and improved;

• Recommender Systems: explainable recommendations boost the trustworthiness and
effectiveness of recommender systems [28]. Furthermore, regulations like the aforemen-

6

tioned GDPR are currently requiring models that use users’ personal data to provide
predictions, to also provide explanations.

Examples of other domains requiring explainability include bio-informatics, marketing, elec-
tion campaigns, precision agriculture or expert systems for the military.

2.3 What is explainability

Several research works attempt to describe rigorously the meaning of explainability in the con-
test of XAI. In the literature, such word is often used interchangeably or substituted by “in-
trepretability”, even though some try to make a distinction. In [29], for example, the authors
claim that explainability is a property of a model that implies interpretability, but not vicev-
ersa. More specifically they provide definitions that, we argue, are the most agreed upon in
the literature. For clarity, from now on we will interpret those two terms with the following
meanings:

Definition 2.3.1 (Interpretability). We define interpretability in the context of supervised
ML as the generic property of a model which makes its individual components, as well as its
functioning as a whole, understandable by a human being. Examples of interpretable models
are simple linear regression or decision trees. Examples of not interpretable models are deep
neural networks.

Definition 2.3.2 (Explainability). We define explainability in the context of supervised ML
as the generic process by which we extract any kind of explanation from a model. This can
be done by exploiting the natural properties of the model (in which case, such a model can be
called explainable), or by devising techniques to extract explanations from any model.

Explanations, according to the authors, can be evaluated in two ways: according to their
intelligibility (that is, its understandability by a human being) and their completeness (that is,
the accuracy of the description). Under this definitions, the challenge of XAI is in creating
explanations that are both interpretable and complete, even though such characteristics are
often opposed to one another. These two features of explanations resemble two important
properties ofMLmodels and suggest a similitude: on one hand, the user would desire a simple
modelwith fewparameters and at the same time amodel able to capture reallywell the structure
of the training data. While both the properties are desirable, they are almost never achievable
at the same time. Indeed, as we train simple models, we will probably underfit the data: in

7

the same way, really easy explanations often fail to capture the complexities behind the internal
workings of our algorithms. On the other hand, aswe add parameters to ourmodel andmake it
more complex, it will begin to better fit the data: in the sameway a really complete explanation
will describe accurately the operations of the systems, but will probably result more difficult
to understand to a human being. This comparison suggests that, even for explanations, one
should allow for a tradeoff between interpretability and completeness. The author also suggests
that the explanation methods should be evaluated according to how such explanations behave
on the curve from maximum interpretability to maximum completeness. This approach is
followed in depth in [25], where the authors devise an explanation technique able to work for
any classifier, by optimizing the intelligibility-completeness tradeoff. More information about
this work is provided in Section 2.3.2.

In [23] interpretability is defined as the “ability to explain or to present in understandable
terms to a human”. According to [26], instead, interpretability is most often used in terms of
comprehending how the predictionmodelworks as awhole, while explainability, in contrast, is
used to indicate the capability of models to give explanations about their decision, but keeping
their black box nature. In the particular context of generating explanations for DLmodels, the
authors of [30] define an explanation as the collection of features of an interpretable domain
(i.e. pixel values on images), that have contributed for a given example to produce a decision
(e.g. classification or regression). We can see that none of the aforementioned definitions are
specific enough to enable one universal formalization: indeed they implicitly depend on the
context or the aim of the research work.

Going back to our definitions, we could be tempted to consider an inherently explainable
model generallymore desirable with respect to an interpretablemodel. Indeed, interpretability
implies an active effort on the part of the human supervisor to dig inside themodel, understand
the internal mechanisms and infer the model motivations. On the other hand, this process is
simplified if the model provides explanations directly, allowing us to immediately have more
insights about its decision process. While this may often be true, this certainly does not consti-
tute a rule and, in general, amodel can’t be said to be interpretable if it is considered explainable,
or vice-versa. For example, think about the human brain: while we are able to give really de-
tailed and motivated reasons behind our decision processes, our brain is not an interpretable
model. Indeed, we don’t know every single aspect of how our brains works, and yet we (often)
trust the explanations that other human beings provide when asked why they took a certain
decision. This offers an interesting point of view to the discussion: we should be careful not to
trust certain explanations only by the fact that they look plausible and convincing. To this re-

8

Figure 2.1: Intuitive representation of explanations coming from transparent models (left) vs. explanations coming from

post-hoc interpretability techniques (right). Transparent models are inherently interpretable by their design; they can be

inspected and explanations can be deduced from them. Post-hoc interpretability, on the other hand, refers to awide range

of techniques with which explanations are extracted by any already trainedmodel.

gard, Herman [31] warns its readers, making a clear distinction between descriptive and persua-
sive explanations: indeed implicit cognitive biases of the human brain couldmislead us to trust
wrong explanations (for example, humans naturally tend to prefer simpler descriptions). To
avoid falling in this problem, one should always keep in mind the intelligibility-completeness
tradeoff mentioned above.

It is clear that, even after providing some sort of definitions, themeanings of interpretability
and explainability are still very generic and slippery. Nevertheless, the volume of research in
XAI is quickly expanding, making the number of available methodologies continuously grow.
One fundamental problem in XAI is the definition of specific properties, which make models
explainable or interpretable. In the literature, two paradigms are often distinguished [32, 22]:

• Transparency, or integrated interpretability: it is mostly a feature of interpretable mod-
els. A transparent model can be interpreted by a human thanks to its own easy to under-
stand design.

• Post-hoc interpretability: refers to that approachwith which explanations are extracted
from already trained models. Such models can be transparent, or retain their black box
structure.

An intuitive illustration of those two concepts are illustrated in Figure 2.1.

2.3.1 Transparency

Transparency is one of the properties that can enable interpretability and it implies some sort
of understanding of themechanism by which themodel works. It can also be seen as the direct
opposite to the concept of black box. Lipton [22] goes into even more details, by subdividing
transparency in different levels:

9

1. Simulatability: it’s the highest level of abstraction of the concept of transparency. Lip-
ton refers to simulatability as the property of themodel that makes it understandable by
a person “at once”. Specifically, this means that a human could, given the input data and
all the necessary parameters, produce a prediction by making all the computations in a
reasonable time. This notion of transparency is not very applicable to modern machine
learning techniques and is often disregarded.

2. Decomposability: it’s the transparency considered at the level of the single components
of themodel. Specifically, onemodel can be considered decomposable if each part of the
model (weights, modules, computations...) admits an intuitive explanation.

3. Algorithmic Transparency: this notion of transparency refers to the learning algo-
rithm itself. For example, we know that in the case of linear regression the shape of
the loss function is known, as well as an analytical form for the solution for the prob-
lem. This means a maximum degree of algorithmic transparency. On the other hand,
modern deep learning lacks this notion of transparency: in fact, even if a lot of power-
ful optimization algorithms give empirically excellent results, there is no guarantee that
thosewill work on any newproblem. The same holds for the shape of the error function,
which is almost never known.

It’s interesting to notice that the human brain, as noted previously, doesn’t exhibit any of
those features. In fact, human thinking is not transparent to us and justifications in the form
of explanations may differ from the actual decision mechanism. Transparent models are fasci-
nating, but recent research in DL has proven that predictive performances rise when building
deeper models, and not vice-versa. For this reason, in recent years, a lot of attention has been
put on the research of post-hoc explainability methods.

2.3.2 Post-hoc interpretations

With post-hoc interpretability we refer to those methods with which we generate explanations
from already trained models, without caring about their internal mechanisms. The advantage
of this approach is that it does not impact on the performances of themodel, which is treated as
a black box. Unlike transparency, this kind of interpretability is the one that applies to humans.
Lipton [22] summarizes post-hoc explainability methods into the following categories.

Visualization

Another popular approach for post-hoc interpretations is to provide visualizations in order to
have a qualitative idea of what the model has learned. For example, when models learn em-

10

beddings in high dimensional vector spaces, one popular technique to visualize them is t-SNE
[33], which provides 2D or 3D visualization of high dimensional data points, in such a way
that nearby samples are likely to appear closer together. In the field of computer vision, several
papers have investigated the internal representations of visual concepts in CNNs. In [2], the
authors try to build “prototipes” of certain objects starting from already trained image classi-
fication models. Specifically, starting from a white noise image, they tweak it in such a way
that the activation of a certain neuron (in this case, the output neuron corresponding to the se-
lected object) is maximized. This process can be replicated also starting from an existing image,
a process which produces really peculiar visual effects (see Figure 2.2).

Figure 2.2: Process of imagemanipulation shown in [2]. From an intuitive point of view, starting from existing real images,

the network is asked to enhance the features of the image that resemble the desired object (in this case, starting from

an image of a tree, start looking for features that resemble buildings). This process is then repeated, creating a positive

feedback loop. As a result, the features of the desired objects appear seemingly out of nowhere.

This process is also known asActivation Maximization: consider a deepNN classifier which
maps an input tensor (in this case an image) x to a set of classes {ωi}mi=1. In a classification
scenario, we know that the i-th output neuron encodes the modeled class probability p (ωi|x).
The basic idea is that the prototype x∗i , representative of class ωi can be found as follows:

x∗i = max
x

log p(ωi|x)− λ‖x‖2.

The proposed definition doesn’t yield good results in practice: although producing strong
class response, they often look unnatural. This problem is solved in several ways, for exam-

11

ple by adding regularization via a data density model, or imposing prior constraints which are
common in real images, such as high correlation among neighboring pixels. Again, a similar
approach is found in [34], where the authors investigate the amount of information retained
in the hidden representations of CNNs. They manage to reconstruct the original images with
good accuracy even from high level representations by performing gradient descent on white
noise inputs.

Local explanations

With visualization techniques, one aims to understand what the model learned from a global
point of view: for example, the activationmaximization technique described earlier will reflect
the “internal representation” that the model has of a particular class. With local explanations,
instead, one aims at giving explanations in the context of a specific example. One popular ap-
proach is the computation of saliency maps, or relevance scores [35, 30, 36]. Specifically, given
a data point x ∈ Rk, and given the learned function f , the predicted class for point x will
be f(x); this approach aims to assign to each feature a scoreR(x)i, representing a measure of
how relevant the feature xi is for explaining f(x). One simple approach to obtain the rele-
vance scores is sensitivity analisys: it consists on finding the input features for which the output
is more sensitive, meaning the ones that best contribute to increase the value of the output. In
mathematical terms, it is defined as:

R(x)i =

(
∂f

∂xi

)2

,

where the gradient is then evaluated on x. Such relevance scores can then be visualized: for
example, in images they can be represented as a mask. We should note a subtle detail: this
method gives us an explanation of the variation of f(x), not of the value of f(x) itself. In
other terms, this method does not answer the question “what parts of x make it belong to class
y?”, but instead it answers “what parts of x make it belong more/less to class y?”.

While the relevance scores can be seen as a way of extracting explanations, those can also be
used in different ways. An interesting approach can be found in [37], where the authors explic-
itly train the relevance scores in a supervised manner, in such a way to make them conform to
somemanually curated notion of where the attention should be put. Following this approach,
the authors aim to train amodel which is “right for the right reason”. Themotivation is that, if
the assumption that relevance score faithfully describes the model’s underlying behavior, then
costraining such relevance scores in order tomatch domain knowledge would result in amodel

12

that, in some way, will use that domain knowledge to take decisions.

Another interesting approach for generating local explanations is from Ribeiro et al. [25]:
theypropose an explanation technique calledLIME(Local InterpretableModel-agnostic Expla-
nations), which purpose is to locally approximate complex models with simpler, interpretable
models, following the completeness-interpretability tradeoffmentionedbyGilpin in [29] . More
specifically, they define an explanation as an interpretable model g ∈ G, where G is a set of
models which, with the right conditions, can be considered interpretable (e.g. decision trees).
In fact, the authors note that even those that are considered transparent models, will not be
considered interpretable by a human supervisor if the model relies on thousands of features
to make the prediction. This means that there should be a measure of complexity that deter-
mines how much a “potentially interpretable” model g is actually interpretable. They denote
such measure of complexity as Ω(g) (e.g. for decision trees, this could represent the depth of
the tree). Then, they denote with f : Rk → R the model to be approximated, and with
πx(z) a proximity measure between a feature vector x and z. Finally, L(f, g, πx) is defined as
a measure of how badly the model g approximates f near the input sample x. With this setup,
one can find a model g which is maximally interpretable, and which best explains the original
model, near a specific input. Specifically, this model is the output of LIME, which is defined
as follows:

ξ(x) = argmin
g∈G

L (f, g, πx) + Ω(g).

Another recent techniquewhichprovides local explanations is the attentionmechanism[38],
which, in recent years, has proven to be very successful mostly in machine translation [39] and
computer vision [40]. Despite not being explicitly designed to provide explanations, they can
do so by visualizing their internal attention scores, which highlight sections of the input data
which were most influential for the classification. It is interesting to note that this kind of ex-
planations are almost identical to the ones provided by saliency maps, discussed above. The
core difference is that, for the attentionmechanism, the attention scores are directly computed
by the model at inference time, while the saliency maps are obtained after inference via back-
propagation. It is interesting to know that datasets depicting how humans distribute attention
have been created [41, 42]: this can allow us to evaluate attention-based models according to
how much their attention patterns conform with the human ones. Notice how this particular
framework differs a bit from standard post-hoc explainability methods; indeed, since the atten-
tion weights are jointly trained with themodel, there is no need for any extra step after training

13

to obtain them, they just need to be extracted from the trained model. This might lead us to
put them in the set of transparent models, but it should be noted that models based on atten-
tion are often very deep, are largely made up of standard NN layers, and the attention weights
are trained jointly with all the other parameters of the model via backpropagation. Thus, they
definitely lack both the simulatability and algorithmic transparency aspects. In the end, these
models don’t perfectly fall into any category, but since they only provide local explanations, we
argue that this is the most appropriate way to describe them.

Explanation by example

A common way in which humans justify their decisions is by offering analogies between the
current object in study, and similar objects. For example, to decide the best treatment for a
medical condition, doctors often refer to previous similar case studies. This kind of explanation
is referred to explanation by example. The first approach with this method was proposed in
[43]: the authors aim to generate explanations in the form of a collection of elements from
the training set, returned by the model (in this case, a neural network) together with the actual
prediction. To do this, they generate a distance metric directly from the model: in this way it
is possible, at inference time, to scan the entire training set and look for the data points which,
by the model’s point of view, are the most similar to the current one being classified. Given x

the current sample being predicted and given y any element of the training set, this metric is
defined as the euclidean distance between the hidden representations of y and x.

2.4 Neural Symbolic Integration

Despite the attempts in the literature to give rigorous definitions of explainability and inter-
pretability, those remain slippery concepts: interpretations may vary depending on the appli-
cation domain and type of task to be performed. The need for explainability is mostly due to
the black box nature ofMLmodels, which is universally agreed upon. Indeed, differently from
humans, ML models employ only sub-symbolic representations of concepts, meaning that ev-
erything inside the model is encoded as tensors of real values, which are inherently opaque to
humans. Furthermore, classic ML systems learn everything from data, which is a radically dif-
ferent paradigm from the one humans use for learning. This has been identified as one of their
major flaws [4]: NNs can offer outstanding performances when the problem is confined inside
a specific domain (e.g. recognize spoken words in a short audio clip), but have nothing to offer

14

when it comes to trivial tasks like commonsense reasoning. One possible way to extend the
range of applications of NNs, could be to equip them with the ability to reason with abstract
symbolic terms. Indeed, the introduction of symbolic language inside neural networks could
also help in the process of encoding general knowledge inside them, a problem for which the
formulation is still considered incomplete (cfr. Section 2.1). Furthermore, the integration of
the statistical nature of learning with the logical nature of reasoning has been already identified
as one of the most important research challenges in computer science [44].

One of the first proposed ML models able to handle uncertainty and logic simultaneously
are Markov Logic Networks (MLN) [45]. The authors, motivated by the growing interest in
Statistical Relational Learning, propose a simple and effective representation able to combine
the power of probabilistic graphical models with logic. Specifically, a MLN is defined as a set
of pairs (Fi, wi), where Fi is a First Order Logic (FOL) formula, and wi is its corresponding
weight. Those, together with a set of constants C = {c1, . . . , c|C|}, are used as a template to
build aMarkovRandomField [46], whichmodels the distribution over all the possible worlds
as follows:

P (X = x) =
1

Z
exp

(∑
i

wini(x)

)
,

where ni(x) is the number of true groundings of the i-th formula, in the current world. This
simple and elegant hybrid approach makes it possible to handle the randomness and uncer-
tainty of real-world problems together with the power of logic. However, MLNs can only
handle discrete variables and features, which is a big limitation for real use cases. For this rea-
son, an extension of MLNs has been proposed in [47], which can also deal with continuous
variables.

However, with the recent success of DL models, a great interest has arisen in the integra-
tion of neural architectures with logic. The area of research that addresses the problem of inte-
grating symbolical knowledge with neural architectures is known as Neural Symbolic Integra-
tion (NeSy). The intuition that motivates NeSy as field of research goes beyond explainability:
while neural networks give good evidence to be a good modeling framework for the human
mind (e.g. parallelization and adaptive learning from the environment) they completely lack
the ability to reason in symbolic terms [48]. Indeed, works in NeSy argue that logic is the best
tool to represent general knowledge, and their first aim is to build systems capable of dealing
with both symbolic and sub-symbolic representations.

In thenext chapter,wedelve in thedetails ofKnowledgeEnhancedNeuralNetworks (KENN)
[1], a neural network layer designed to integrate logical knowledge in NNs. We will also give a

15

short summary of other notable methods in NeSy and provide a comparison of experimental
results on the task of collective classification.

16

3
Knowledge Enhanced Neural Networks

Knowledge EnhancedNeural Networks (KENN) [1] is a special type of NN layer, designed for
injecting logical knowledge into a pre-existing base NN. More specifically, it is a residual layer
designed to be stacked after the last layer of any NN, in order to boost its predictive perfor-
mances via the addition of a Prior Knowledge in the form of FOL clauses. In this chapter we
will describe the theory behind KENN, its architecture, and experimental results.

3.1 Theoretical Framework

We present here the theoretical framework behind KENN. The first step will be to rigorously
define the symbolic language and how to link it with the theoretical framework of NNs, which
consists in defining a semantic for the language. Next, we will describe the process with which
the truth value of a clause can be increased, and how to integrate this method inside NNs.

3.1.1 Prior Knowledge and language semantic

Definition 3.1.1 (PriorKnowledge). ThePriorKnowledge is defined as a collection of formu-
las of a function-free first order language L whose signature is defined with a set of constants
C = {a1, . . . , a|C|} and a set of predicatesP = {p1, . . . , p|P|}. A predicate is a symbol, which
can take in input a number of constantsn ≥ 1. Ifn = 1, the predicate represents a property of

17

the input constant; if n > 1, it represents a relation between the input constants. The number
n is called the arity of the predicate.

Definition 3.1.2 (Clause). A clause is defined to be of the following form:

c :=
k∨

i=1

li, li 6= lj ∀i 6= j. (3.1)

In this equation, li is a literal, i.e. a formula constituted only by an-ary predicate, or its negation.
Specifically, whenwriting li 6= lj , wemean that those two literals never share their constituting
predicate. For example, the clause A(x) ∨ ¬B(x) is considered an acceptable clause, while
A(x)∨B(x)∨¬A(x) is not. Also clauses have an arity, which is by definition the number of
variables given in input to the clause.

One example of a clause could be the following:

c(x, y) = ¬Smoker(x) ∨ ¬Friends(x, y) ∨ Smoker(y), (3.2)

which, in classical logic, is equivalent to the clauseSmoker(x)∧Friends(x, y) ⇒ Smoker(y),
but expressed as a disjunctionof literals. Such a clause is constitutedby twopredicates: Smoker(x),
a unary predicate expressing the statement “x is a smoker”, and Friends(x, y), a binary pred-
icate which expresses the statement “x and y are friends”. Therefore, this clause expresses the
rule “if x is a smoker and x and y are friends, than also y is a smoker”. Note that the variablesx
and y are supposed to be universally quantified, since our aim is to express general knowledge.
We now give another definition:

Definition 3.1.3 (Grounding of a clause). The grounding of an n-ary clause c, denoted as
c[x1/k1, . . . , xn/kn], is the clause obtained by substituting ki to xi, ∀i = 1, . . . , n.

Going back to the example of before, assume that a and b are two specific persons. Then,
the grounding of clause (3.2) will be

c(x/a, y/b) = c(a, b) = ¬Smoker(a) ∨ ¬Friends(a, b) ∨ Smoker(b).

The next step is to build a semantic for the formal language L, that is, how to interpret
the symbols that we are working with. In practice, this will consist on defining a way to map
constants towards a domain, and predicates to functions that go from such domain to a truth

18

value. To clarify, consider the following example: let a be a constant and let P be a predicate,
such that P (x) expresses the statement “x is a prime number”. In this case, there is a natural
way to define an interpretation for our symbols, that is to map constants to the domain of
natural numbers and to map P to the function f : N −→ {0, 1}, where f(n) = 1 if n is
prime, and 0 otherwise. Now, we define the semantic ofL.

Definition 3.1.4 (Semantic of L). The semantic of L is defined by means of a pair of func-
tions (IC, IP), that, together, define an interpretation for the symbols of our language and are
defined as follows:

IC : C −→ Rl

c 7−→ x,

IP : P −→
(
Rnl → [0, 1]

)
P 7−→ f

(3.3)

Wheren is the arity of the predicateP and f is a function that takes in input the concatenation
of the interpretations of n constant symbols, IC(c1), . . . , IC(cn) and returns the truth value
ofP (c1, . . . , cn). Note that, to make the notation lighter, we will omit the subscript when it’s
clear whether the argument of the interpretation is a literal or a constant term.

With those definitions, we can already see how this theoretical framework is suitable to de-
scribe a NN. In fact, each constant symbol c is mapped to a l-dimensional real vector, which
can be seen as the feature vector characterizing the real world object identified by c. Another
important detail is that the truth value of each literal, in our setup, is not determined by a hard
assignment of 0 or 1, but is represented by a real number in the interval [0, 1]. This is a cru-
cial point: indeed, the truth value in our semantic represents predictions of a NN, which, for
classification tasks, are always expressed in terms of values in the interval [0, 1]. The natural
consequence of this choice is that, from this point on, we will have to rely on the rules of Fuzzy
Logic [49], which is a generalization of the standard Boolean logic where the truth value of
variables can take the value of any real number between 0 and 1.

3.1.2 t-conorm Functions

With our definition of a semantic for L, we can now give an interpretation for constants and
predicates. The next step is to find a way to interpret clauses, or, more specifically, a way to
determine the truth value of a grounded clause. We saw that, by definition, a clause is a disjunc-
tion of literals: this means that we only need a way to define the interpretation of a negated
predicate and of the disjunction of two predicates. As stated above, since we are allowing truth

19

values in the range [0, 1], we will need to use the rules of Fuzzy Logic. For computing the truth
value of a negated predicate, the standard way in Fuzzy Logic is to use the Lukasiewicz Nega-
tion.

Definition 3.1.5 (Lukasiewicz Negation). If P ∈ P is a predicate, then:

I(¬P) = 1− I(P)* (3.4)

So for example if the truth value of a predicate is I(P)(x) = 0.8, the truth value of its
negated copy would be I(¬P)(x) = 0.2. It is worth noting that this definition is equivalent
to the Boolean negation when I(P) = 0 or I(P) = 1.

With this tool we are now able to compute the truth value of any literal. There remains to
see how to define the interpretation of a disjunction of literals. To do this, we introduce the
concept of t-conorm functions.

Definition 3.1.6 (t-conorm). A t-conorm is a function⊥: [0, 1]2 → [0, 1] that satisfies the
following properties:

1. ⊥ (a, b) =⊥ (b, a)

2. ⊥ (a, b) ≤⊥ (c, d) if a ≤ c and b ≤ d

3. ⊥ (a,⊥ (b, c)) =⊥ (⊥ (a, b), c)

4. ⊥ (a, 0) = a

By definition, ⊥ takes values in [0, 1]2, but can be easily extended to [0, 1]n for any n, by
defining:

⊥ (a1, . . . , an) :=⊥ (a1,⊥ (a2, · · · ⊥ (an−1, an))).

In FuzzyLogic, t-conorm functions are used to represent the concept of logical disjunction, and
will be the tool employed to represent the interpretation of a disjunction of literals. Specifically:

I(l1 ∨ · · · ∨ ln) =⊥ (I(l1), . . . , I(ln)). (3.5)

*Writing 1−I(P) is a slight abuse of notation since I(P) is a function. To be more precise one shoud write
I(¬P)(I(c)) = 1− I(P)(I(c)), ∀c.

20

With the givendefinitions,wehave all that is needed to compute the truth valueof any grounded
clause. From a practical point of view, the only remaining step would be to choose a specific
t-conorm function. KENN uses the Gödel t-conorm function, which is also known as the
Maximum t-conorm and is defined as

⊥max (a, b) = max{a, b},

which, as above, can be extended like follows:

⊥max (t) = max
i=1,...,l

ti, ∀t ∈ Rl.

We are now finally ready to fully understand how this theoretical framework is able to de-
scribe the predictions of a NN. Suppose that we have a dataset X = {x1, . . . , xn}, xi ∈ Rl,
where each xi belongs to one or more classes (P1, . . . , Pm). The task in which the NN must
learn to classify each input into one or more output classes is known in Machine Learning as a
multilabel classification problem. To tackle this kind of task, a NN architecture will present, in
the last layer,moutput units, each ofwhichwill be finally subject to a sigmoidal activation func-
tion. After training, the NN will have learned to approximate a function h(xi) = yi ∈ Rm,
where (yi)j = P(xi belongs to class j).Now, if we consider:

1. P = {P1, . . . , Pm} to be predicates defined as Pi(x) = “x belongs to class Pi”;

2. {x1, . . . , xn} to be the interpretations of the constants C = {c1, . . . , cn}, which repre-
sent the real-world objects of our dataset,

it is clear that the entries of yi can be seen as truth values of the predicates {P1, . . . , Pm}.
More formally:

(yi)j = INN(Pj)(xi), ∀i = 1, . . . , n, ∀j = 1, . . . ,m. (3.6)

Hence, thewholeNNdefines an interpretation for eachpredicatePi, whichwedenoted asINN .
Therefore, given a clause c :=

∨k
i=1 li and given a collection of feature vectors {x1, . . . , xd}

(where d is the arity of c), then the truth value of the grounded clause predicted by theNNwill
be⊥ ((yc)1, . . . , (yc)k), where:

yc ∈ Rk, (yc)i =

INN(li) if li is not a negated predicate

1− INN(li) otherwise.
(3.7)

21

The intuition behind KENN is very simple: given the vector y of predictions of the NN, a
new layer is added at its end with the aim to modify y and obtain a new vector of predictions
y′, of the form y′ = y + δ, such that y′ improves the truth value of each clause present in
the base knowledge and, at the same time, keeps the quantity ‖y′ − y‖2 minimal. It is worth
noticing that this new layer introduced by KENN, called Knowledge Enhancer (KE), is a kind
of residual layer, since it learns to represent the quantity δ = y′ − y.

3.1.3 t-conorm Boost Functions

The next problem is to understand how to improve the truth value of a single clause c ∈ K.
Since this truth value is represented by a t-conorm function, this involves finding a way to let
the value of⊥ (yc) rise by manipulating the value of yc, where yc is the vector of truth values
of the literals contained in clause c, defined in equation (3.7). To do this, we define a new class
of functions.

Definition 3.1.7 (t-conorm Boost Function (TBF)). A function δ : [0, 1]n → [0, 1]n is a
t-conorm Boost Function (TBF) if:

0 ≤ ti + δ(t)i ≤ 1 ∀n ∈ N ∀t ∈ [0, 1]n.

Let∆ denote the set of all TBFs.

From the definition follows a simple but essential result.

Lemma 3.1.1. Given any t-conorm⊥ and δ ∈ ∆, it holds that:

⊥ (t) ≤⊥ (t+ δ(t)).

Proof. By definition of TBF, δ(t)i ≥ 0. This implies that

ti ≤ ti + δ(t)i, ∀i = 1, . . . , n.

By themonotonicity of t-conorms (i.e. property 2ofDefinition 3.1.6) , it follows that⊥ (t) ≤⊥
(t+ δ(t)).

The purpose of such TBF δ is to update the value of yc in such a way that the truth value of
the clause,⊥ (yc), increases. The problem is now how to choose such aTBF. It is clear that not

22

all the δ ∈ ∆would be useful: for example, one could choose the function δ(yc)i = 1− (yc)i.
In this way, we would obtain an updated truth value of 1 for any literal, independently of yc.
This of course would be pointless, and would render the predictions of the base NN useless.
For this reason another requirement for y′ is needed. Specifically, as we already mentioned,
KENN is built in such a way that the learnt delta improves the t-conorm value in a minimal
way. To be more rigorous, we will now formally define the concept of a minimal TBF.

Definition 3.1.8 (Minimal TBF). A function δ ∈ ∆ is minimal with respect to a norm ‖ · ‖
and a t-conorm⊥ if and only if:

‖δ′(t)‖ < ‖δ(t)‖ ⇒⊥ (t+ δ′(t)) <⊥ (t+ δ(t)), ∀δ′ ∈ ∆, ∀n ∈ N, ∀t ∈ [0, 1]n.

As mentioned above, KENN works with the Gödel t-conorm function and the Lp norm
‖x‖p = (

∑n
i=1 |xi|p)

1
p . The next step at this point is to find such a minimal TBF. In the

following result, we present a possible form that a minimal TBF can assume.

Theorem 3.1.2. For any function f : Rn → R and for any vector t ∈ [0, 1]n, we define
δf : Rn → Rn as

δf (t)i =

f(t) if i = argmaxnj=1 tj

0 otherwise

Let f : [0, 1]n → [0, 1] satisfying 0 ≤ f(t) ≤ 1−maxnj=1 tj . Then, δf is a minimal TBF for
the Gödel t-conorm function and the Lp norm.

Proof. δf is a TBF. Indeed δf (t) ≥ 0 and 0 ≤ ti + δf (ti) ≤ 1 because f(t) ≤ 1 −maxj tj .
Therefore we only need to prove that δf is minimal. Take δ ∈ ∆, with ‖δ(t)‖p < ‖δf (t)‖p.
We have to show that

⊥ (t+ δ (t)) <⊥
(
t+ δf (t)

)
.

Now define j = argmaxk (tk + δ(t)k). By definition of the Gödel t-conorm we can imme-
diately derive that:

⊥ (t+ δ(t)) = tj + δ(t)j. (3.8)

Now, defining i = argmaxk tk, using the same reasoning and exploiting the definition of δf

it follows that:
⊥ (t+ δf (t)) = ti + f(t). (3.9)

23

By combining (3.8) and (3.9) and noting that by definition ti ≥ tj , the last step is to prove that
f(t) > δ(t)j . To do this we exploit the definition of Lp norm as follows:

δ(t)j = (|δ(t)j|p)
1
p ≤

(
n∑

k=1

|δ(t)k|p
) 1

p

= ‖δ(t)‖p < ‖δf (t)‖p = f(t).

Where the last inequality follows from the definition of δf (t).

3.1.4 Applying TBFs to preactivations

There is a problem with the definition of δf : there is a specific constraint f(t) ≤ 1−maxi ti

that limits the number of candidates for f . Indeed, this is imposed to ensure that each entry
of the final output y′c = yc + δf (yc) will be in [0, 1]. There is a natural way to solve this
impracticality: since we are assuming a multilabel classification scenario, the final m output
units of the NNwill pass through a sigmoidal activation function. More specifically, yi will be
of the form:

yi = σ(zi) =
1

1 + e−zi
, ∀i = 1, . . . ,m,

where z is the vector of preactivations from the NN. For this reason, KENN exploits the fact
that σ takes only values in [0, 1] by applying the TBF directly on the preactivations z. In fact,
it is clear from an intuitive point of view that one can apply any delta to the preactivations
vector, and at the same time always be sure that the final outputwill be in [0, 1]. In this way, the
constraint onf is no longer needed. However, recall that the input for theTBF at the activation
level is yc (defined in equation (3.7)), which is the vector of truth values for the literals present
in clause c. Therefore, in the same way, we will need to define zc, the vector of preactivations
for the literals of clause c. There is one problem though: we don’t know how to define the
preactivation of a negated literal, i.e. we don’t know how to derive z¬A from zA. In fact, recall
that in equation (3.4) we defined the interpretation of a negated predicate, where we knew that
the truth values were well defined in the interval [0, 1]. Nowwe are dealingwith preactivations,
which cannot be considered truth values in the Fuzzy Logic theoretical framework. However,
this problem can be easily solved by exploiting the following property of the sigmoid activation
function:

1− σ(x) = σ(−x).

24

Now it’s easy to see that, since y¬A = 1− yA, we can define:

z¬A = −zA.

Notice that we are not introducing any new concepts: instead we are just redefining quantities
that were already mentioned at the activation level, to the preactivation level. In this way, we
can finally define zc := (zl1 , . . . , zlk) for every clause c :=

∨k
i=1 li of the knowledge. We refer

to the process of transforming from z to zc as the selection step.

Going back to the main problem, in the next theorem we prove formally that applying a
minimal TBF on the preactivations zc is equivalent to applying a minimal TBF on yc.

Theorem 3.1.3. Given any function f : Rn → R, and given t = σ(v), v ∈ Rn, the function:

δg(t) = σ(v + δf (v))− σ(v) (3.10)

is a minimal TBF under the Gödel t-conorm and the Lp norm.

Proof. By definition we know that v = σ−1(t), hence we can rewrite equation (3.10) as:

t+ δg(t) = σ(v + δf (v)).

From the definition of sigmoid activation function it easily follows that 0 ≤ t+ δg(t) ≤ 1. To
prove that δg is a TBF we have to show that δg(t) ≥ 0. We note a few details: σ is monotonic
increasing, which means that:

argmax
j=1

n
j=1σ (vj) = argmax

j=1
vj.

Another implication of the monotonicity of σ is that:

f(v) ≥ 0 ⇒ σ (vi + f(v)) ≥ σ (vi) .

This implies that δg(t) = σ(v + δf (v)) − σ(v) ≥ 0. We now define the function g(t) =

σ(vi + f(v)) − σ(vi), where i = argmaxj vj . It’s easy to see that this g is the function

25

associated to our δg. In fact:

δg(t)i = σ(v + δf (v))i − σ(v)i

=

g(t) if i = argmaxj tj

0 otherwise.

Therefore, Theorem 3.1.2 guarantees that δg is a minimal TBF under the Gödel t-conorm and
the Lp norm.

Note that δg(yc) is not directly computed in KENN but it’s indirectly induced by applying
δf on zc.

Applying the TBF directly on the preactivations has also another remarkable advantage. In-
deed, it is known that it is possible to interpret the value of the preactivation of the i-th output
neuron as the “confidence” of the NN that the current feature vector is to be classified in the
i-th class. This “confidence” is not yet a probability, but a generic scalar value x ∈ R; it will
become a probability when transformed with the sigmoid activation function: σ(x) ∈ [0, 1].
More specifically we know that:

• x � 0means high confidence of being classified in the i-th class. This follows from the
fact that limx→+∞ σ(x) = 1;

• x � 0means high confidence of not being classified in the i-th class. This follows from
the fact that limx→−∞ σ(x) = 0;

• x ≈ 0 corresponds to a highly uncertain decision. This follows from the fact that
σ(x) ≈ 0.5 if x ≈ 0.

By observing the shape of the sigmoid activation function we can notice that when |z| � 0

(high confidence in the NN predictions), even large deltas on the preactivations produce very
small changes. More rigorously, lim|x|→∞ |σ(x + δ) − σ(x)| = 0, ∀x ∈ R, δ � 0. On the
contrary, when x ≈ 0, even small deltas on the preactivations produce high modification at
the activation level. This will result in the following behavior: if the NN is highly confident
of its decision, then logical rules will not modify too much the result of the NN predictions.
On the contrary, in the cases where the NN is uncertain of its decision, our base knowledge
will intervene and give higher modifications on the final predictions. This conforms to the
intuition that KENN should produce minimal changes in the original predictions. These key
concepts are further illustrated in Figure 3.1.

26

Figure 3.1: On the left, example preactivations for the clauseA(x)∨¬B(x) are shown. For both the examples, the same
delta (δf) is applied to these preactivations. In the first example, theNNhas a high confidence, while in the second one it is

much lower. We can see how, when applying the activation function, the actual delta (δg) is much smaller in the first case
and larger in the second. This is due to the shape of the sigmoid activation function itself.

As we alreadymentioned, the minimal TBF directly modeled by KENN is the one we called
δf . From its definition, we know that themagnitude of the produced delta is determinedby the
definition of f . One of themost important features ofKENN is that, by design, it learns to give
the proper importance to each clause in the base knowledge: this precise feature of the model
gives also a way to find such function f . Specifically, for each clause c a learnable parameterwc

is defined so that the produced delta for c is:

δwc(zc)i =

wc if i = argmaxnj=1(zc)j

0 otherwise.

From this definition it’s now clear that the function f we were looking for is not actually the
same for all the clauses in the base knowledge, but it is defined for each different clause and it’s
equal to the constant function fc(zc) = wc, wc ∈ [0,∞]. There is one last problem: while
it’s true that the function δwc is a minimal TBF, the implementation of this kind of functions

27

inside a NN is unfeasible since they are not differentiable. For this reason KENN uses a soft
approximation of δwc , defined as:

δwc
s (zc)i = wc · softmax(zc)i = wc ·

e(zc)i∑n
j=1 e

(zc)j
. (3.11)

There is still, however, one additional step to describe in order to fully understand howKENN
produces a vector of deltas. Let K be the set of clauses in our knowledge, and {wc}c∈K their
correspondingweights. For every clause c ∈ Kwewant to obtain anewdelta, namely δc ∈ Rm,
which contains one value for each predicate in the clause and is defined as follows:

δcA =

δwc
s (zc)A ifA ∈ c

−δwc
s (zc)¬A if ¬A ∈ c

0 otherwise

, ∀A ∈ c (3.12)

This newly defined delta, δc, will be the change obtained from clause c and will be summed to
z to obtain the updated prediction. More specifically:

y′ = σ(z + δc).

In Figure 3.2, an example of computation of the δc vector is provided.

Figure 3.2: Examplewith all the steps needed to compute δc for the clauseA∨¬B starting from the vector of preactiva-

tions z; for this examplewc = 2. We refer to this process as clause enhancement.

3.1.5 Increasing the satisfaction of the Knowledge

In the previous section we found out howKENNproduces a vector of changes δ to be applied
to the original NN predictions, but only considering a single clause. That would suffice in
the cases where the knowledge is constituted only by a single clause, but in real applications

28

a higher number of logical rules will be desirable. Therefore, the next and final problem is to
understand how KENN takes all the deltas from all the clauses and produces a single vector of
changes. This particular step of aggregation is critical, as it constitutes one of the best features
of KENN, but at the same time one of its bigger inaccuracies. This is because, to aggregate the
contributions from all the clauses c ∈ K, KENN just sums the contributions. Specifically, the
final prediction is defined as follows:

y′ = σ(z +
∑
c∈K

δc). (3.13)

This particular choice makes KENN really fast at inference and learning time, increasing scal-
ability. At the same time, though, this makes the risk of inconsistencies higher. For example,
the same predicate can appear negated in one clause, and not negated in another clause: in this
way the delta for the first onewill be negative while it will be positive for the second one. In this
way, the two deltas may cancel out rendering the contributions of the two clauses less effective.

3.2 KENN Architecture

In this section we describe the architecture of the KENN layer in details. First, we will describe
the basic functioning for the case where the knowledge is constituted only by unary clauses.
Then, in Section 3.3, we will describe how KENN is able to handle binary clauses. Note that,
theoretically, KENNcanbe extended toworkwith clauses of any arity. However, for now it has
been implemented to work with unary and binary clauses, which are also the most common
use cases. All the contents of this section have been implemented as a Python 3 package, based
on TensorFlow 2 [50] and all the source code is publicly available on Github†.

As described above, the core functionality of KENN is the clause enhancement, i.e. the cre-
ation of a vector δ which, summed to the vector of preactivations z from a NN, produces a
modified vector of predictions y′ which increases the truth value of the relative clause. The
architecture that takes care of this task is the Clause Enhancer (CE): this submodule takes in
input the full vector of preactivations from the original NN and computes the vector of deltas
described in equation (3.12). For each clause in the base knowledge, a CE will be instantiated.
Note how the CE does not take in input a single vector of preactivations at a time, but works
in parallel taking in input mini-batches of data. The details of the architecture of the CE are

†https://github.com/DanieleAlessandro/KENN2

29

https://github.com/DanieleAlessandro/KENN2

...

... ...

... ...

...

(a) The Clause Enhancer (CE) module.

(b) The Knowledge Enhancer (KE) module.

Figure 3.3: Illustration of the KENN architecture. Images are replications of the illustrations provided in [1].

described in Figure 3.3a. Specifically, the CE takes in input the mini-batch of preactivations
{z1, . . . , zk} coming from the base NN, and for each sample in the mini-batch performs the
following operations:

1. Performs the selection step;

2. Computes the vector of deltas according to equation (3.11);

3. Transforms the delta vector according to equation (3.12)

Once everyCEhas produced a vector of deltas, the next step is to aggregate themby summing

30

them up. The module that performs this operation is called the Knowledge Enhancer (KE),
which is shown in Figure 3.3b. More specifically, the KE performs the following operations:

1. Takes all the preactivations from the NN as inputs, and instantiates a CE for each clause
in the knowledge base;

2. Sums the produced vector of changes from all the CEs, obtaining a final delta vector;

3. It sums the obtained delta with the original preactivations vector;

4. Applies the sigmoid activation function.

These steps produce the final vector of modified predictions y′. Notice that the KE is the
implementation of equation (3.13).

3.3 KENN for relational data

As we said, KENN can also handle relational data; specifically, thanks to its general approach,
KENN can theoretically handle clauses with any arity. Nevertheless, for simplicity, we will just
describe how it is possible to handle the case of binary clauses. In order to integrate binary
clauses, the first step is to split the base knowledge into two disjoint subsets of clausesKU and
KB , containing the unary and binary clauses respectively. In this way, the set of all the clauses
constituting the Prior Knowledge is denoted as K = KU ∪ KB . The intuition at the base of
KENNremains the same: starting from initial predictions z, wewill need to produce a vector of
deltas δ. The only difference, is that δ will be the sum of two different deltas, one produced just
by unary clauses and the other just by binary clauses. More in details, this consists inmodifying
equation (3.13) as follows:

y′ = σ(z +
∑
c∈KU

δc +
∑
c∈KB

δc). (3.14)

Note that the procedure to compute the quantity
∑

c∈KU
δc is the one we described before,

since it deals just with unary clauses. The only thing left to define is how to compute a delta
vector starting from a binary clause.

Table representation of binary data

In order to deal with binary clauses, KENNrepresents truth values of every grounded predicate
inside two different matrices: U andB. Matrix U has one row for each constant, one column

31

1

2

0

3

Unary
1.3 2.7

1.9 0.4

-3.2 -0.1

2.3 0.1

i
0

1

2

3

sx
0

1

1

2

sy
2

0

2

3

Binary
3.1

4.8

6.5

5.6

4.8

6.5

3.1

5.6

-3.2 -0.1

1.3 2.7

1.9 0.4
2.3 0.1

Figure 3.4: Representation of relational data inside KENN. Specifically, objects and relations can be seen as nodes and

edges of a directed graph. The preactivations of each grounded predicate are represented in tablesU andB. In this exam-

ple, two unary predicates and one binary predicate are present. Note that inmatrixB only the object pairs such that there

is a relation between them are reported.

for each unary predicate and an additional column containing an identifier for each object. Ma-
trixB, instead, has one row for each couple of objects: specifically, for each pair of objects such
that there is a binary relation between them. The first two columns of B contain the identi-
fier indices of the pair of objects, while the remaining columns contain the preactivations for
each binary predicate, grounded on that pair of objects. So, in the case of n unary predicates,
m binary predicates, p total objects and q couples of objects, U and B will have dimensions
p× (n+1) and q× (m+2) respectively. Figure 3.4 shows an example with a visualization of
U andB. With those newly defined matrices, equation (3.14) can be implemented as follows:y′u = σ(U + δU)

y′b = σ(B + δB),

where y′u and y′b are the final predictions for the unary and binary predicates respectively, and
δU and δB are the delta matrices that need to be computed.

The JOIN operation

At this stage, we have two matrices, U and B, containing preactivations of unary and binary
predicates respectively. However, recall that the CE module takes in input a single matrix con-
taining all the preactivations, in order to compute the deltas. The fact is that, given any binary

32

clause, wemust be able to access the preactivation value of any of its atoms, from a singlematrix.
Take as an example the grounded clause A(c1) ∨ B(c1, c2) ∨ ¬A(c2). The preactivations of
A(c1) andA(c2) can be accessed frommatrixU , but the one forB(c1, c2) can be accessed only
fromB. For this reason, we need a way tomerge both the binary and unary preactivations into
a single matrix. KENN does this with the JOIN operation.

Definition 3.3.1 (JOIN). Given n unary predicates,m binary predicates and their respective
matrices U andB, the JOIN operation is defined as follows:

JOIN(U,B) = M

where the i-th row of the matrixM is:

Mi = (sx, sy, Usx2, . . . , Usx(n+1), Usy2, . . . , Usy(n+1), Bi3, . . . , Bi(m+2)),

where sx = Bi1, s
y = Bi2.

More simply, M has the same number of rows as matrix B and shares its two first columns;
additionally, it also contains the preactivations of all the unary predicates for both the first and
second index of each row, together with all the preactivations for the binary predicates.

From this new matrix, the CE can access the preactivations for any atom of any grounded
binary clause and can compute a delta matrix, which we will call δM .

The GROUP BY and SELECT operations

As we saw with our previous example, binary clauses can also contain unary predicates. This
implies that the delta vectors generated from binary clauses can actually modify the preactiva-
tions of both unary and binary predicates. More specifically, this means that the matrix δM
contains some information that is supposed to go both inside matrices δU and δB. KENN
extracts the unary deltas from δM with the GROUP BY operation, and does the same for the
binary deltas with the SELECT operation.

Definition 3.3.2 (GROUP BY). The GROUP BY (GB) operation takes in input the matrix
of deltas δM and an index (x or y), and is defined as follows:GB(δM, x) = δUx

GB(δM, y) = δUy,

33

where

(δUx)i =
(
i,
∑

j∈Ji
x
δMj3, . . . ,

∑
j∈Ji

x
δMj(2+n)

)
(δUy)i =

(
i,
∑

j∈Ji
y
δMj(n+3), . . . ,

∑
j∈Ji

y
δMj(2n+2)

)
J i
x := {j : δMj1 = i}

J i
y := {j : δMj2 = i}.

In simple terms, the GROUPBY operation extracts the deltas for the unary predicates from
the delta matrix δM , by aggregating the results for each object identifier. This is exactly equiv-
alent to a GROUP BY query in a relational database.

Definition 3.3.3 (SELECT). The SELECT operation simply extracts the deltas for the preac-
tivations of the binary atoms from the δM matrix. Specifically:

SELECT(δM) = δB

where:
δBi =

(
δMi1, δMi2, δMi(2n+3), . . . , δMi(2n+m+2)

)
.

Computing the delta matrices

Now that all the necessary tools have been defined, we are ready to describe the process to com-
pute the matrices δU and δB. KENN uses two different KEs to generate delta matrices: one
(KEu) takes in input thematrixU , and returns a deltamatrix δUu, using the standard procedure
for unary predicates described in the previous section. The other (KEb) takes in input a matrix
M = JOIN(U,B), and returns a delta matrix δM . Afterwards, the following operations are
performed:

1. The final deltamatrix forbinarypredicates is obtained as follows: δB = SELECT(δM);

2. Two matrices δUx = GB(δM, x) and δUy = GB(δM, y) are computed;

3. δUx and δUy are summed together, obtaining matrix δUb;

4. The final delta matrix for unary predicates is obtained as follows: δU = δUu + δUb.

In Figure 3.5, we report an example with the whole process.

34

Unary
1.3 2.7

1.9 0.4

-3.2 -0.1

2.3 0.1

0

1

2

3

0

1

1

2

2

0

2

3

Binary
3.1

4.8

6.5

5.6

JOIN KE

SELECT

GROUP BYGROUP BY

0

1

1

2

2

0

2

3

 Binary
3.1

4.8

6.5

5.6

Unary
-0.2 2.3

0 0

-2.1 -0.8

2.0 -0.3

0

1

2

3

Unary
-0.5 0.7

2.6 -0.3

0.9 3.2

0 0

0

1

2

3

Unary
-0.7 3.0

2.6 -0.3

-1.2 2.4

2.0 -0.3

0

1

2

3

KE

Unary
-0.4 1.2

0.6 0.1

-0.3 1.3

3.2 -2.1

0

1

2

3

Unary
-1.1 4.2

3.2 -0.2

-1.5 3.7

5.2 -2.4

0

1

2

3

0

1

1

2

Unary
1.3 2.7

1.9 0.4

1.9 0.4

-3.2 -0.1

Unary
-3.2 -0.1

1.3 2.7

-3.2 -0.1

2.3 0.1

Binary
3.1

4.8

6.5

5.6

2

0

2

3

0

1

1

2

Unary
-0.5 0.7

1.9 0.1

0.7 -0.4

0.9 3.2

Unary
1.1 -0.3

-0.2 2.3

-3.2 -0.5

2.0 -0.3

 Binary
0.3

1.7

-0.2

0.1

2

0

2

3

Input

Output

Figure 3.5: This figure shows an examplewith all the necessary computations to obtain the final deltamatricesδU andδB
(in the bottom), starting frommatricesU andB (top left).

35

3.4 Related Work

As already introduced at the end of Chapter 2, the integration of statistical learningwith logical
symbolic knowledge is one of the key challenges in the research on artificial intelligence, specif-
ically for the field of NeSy. Authors of [1] subdivide NeSy sytstems into three main groups,
based on their different objectives:

1. DifferentiableReasoning : in this category, the goal is to create differentiable approaches
for deductive resoning, which can be defined as the process of producing logical deduc-
tions from an initial knowledge base;

2. Inductive Logic Programming : here the goal is to extract logical knowledge from
data, or to refine an existing one;

3. KnowledgeGuidedLearning: here the goal is learning in classicalML sense, where the
knowledge has the role of a supervisor,meaning that themachine should learn according
to the base knowledge.

We are interested in Knowledge Guided Learning (KGL), the class of models where KENN
belongs. The objective is to improve the performance of a NN model, by providing a Prior
Knowledge which is expressed in terms of logical formulas and which acts as a supervisor for
the learning process. At present, two main ways of injecting knowledge inside NNs have been
employed. The first one involves the usage of a regularization term in the loss function. Indeed,
logical rules can be interpreted as constraints for the weights in the learning process; inML, the
natural way to introduce constraints in learning is to add a penalization term in the loss func-
tion, which represents in some way the satisfaction of the logical rules. The second approach,
adopted by KENN, is to directly modify the network architecture: in this way, logical rules are
enforced at the level of the network topology.

3.4.1 Regularization Approaches

In KGL, regularization approaches enforce the satisfaction of the knowledge by defining a spe-
cial penalization term to be applied to the loss function. Here we briefly mention two impor-
tant examples of regularization based approaches: Logic TensorNetworks and Semantic Based
Regularization.

36

Logic Tensor Networks

Logic Tensor Networks (LTN) [51] is a notable example of a method capable of integrating
logical knowledge inside a NN by directly modifying the loss function. To do this, the authors
define a differentiable first-order logic language called Real Logic, with which they manage to
represent common deep learning tasks, such as clustering, multi-label classification, relational
learning, regression, embedding learning and many others. In simple terms, the role of Real
Logic is to act as a bridge between the purely symbolic world of logic, and the sub-symbolic
world of neural systems. This is achieved by defining a specific semantic for the language, where
each domain is interpreted as sets of tensors in the real field. In the same way, each constant,
variable and term of the language is interpreted as a tensor of real values, function symbols are
interpreted as functions between tensors, and predicates are interpreted as functions that map
tensors into the interval [0, 1]. Specifically, given s any symbol of the language L, the authors
call its interpretation the “grounding” of s, and denote it with G(s)‡.

The authors then define how to compute the grounding of formulas, by using the semantics
of first-order fuzzy logic. The way in which learning becomes possible is by defining the para-
metric grounding for symbols: given a symbol s, the parametric grounding of s is a grounding
which is not known in advance, and can be computed exclusively by knowing a set of parame-
ters. It is denoted as G(s|θs), where θs is the set of parameter values that uniquely determines
the value of the grounding. With this setup, learning is defined as the process of searching for
the set of parameters θ∗ such that:

θ∗ = argmax
θ∈Θ

(
SatAgg

ϕ∈K
Gθ(ϕ)

)
,

where the quantity SatAgg
ϕ∈K

Gθ(ϕ) denotes the level of satisfiability of all the formulas in the

knowledge base, with respect to a given aggregating operator SatAgg : [0, 1]∗ → [0, 1], which
has the task of aggregating all the truth values of the formulas.

It’s interesting to note that, based onwhat kind of symbol we are learning the grounding for,
one can identify a corresponding task in machine learning:

• If s ∈ C, corresponds to learning an embedding;

• If s ∈ F , it corresponds to learning regression tasks;

‡Note how here the term “grounding” differs from the standard meaning, which was defined in Section 3.1.
While talking about LTN, the term “grounding” should be read as “interpretation”.

37

• If s ∈ P , it corresponds to learning a classification task.

For the simple case of binary classification, for example, the task is to learn the parametric
grounding of a predicateA, G(A|θ) : x → σ(MLPθ(x)), whereMLP denotes a multi layer
perceptron. If we define with D the dataset with all the examples, the actual loss function to
minimize will be:

L =

(
1− SatAgg

ϕ∈K
Gθ,x←B(ϕ(x))

)
,

where the notation SatAgg
ϕ∈K

Gθ,x←B(ϕ(x))means that the variable x is grounded with the data

B, whereB is a mini-batch sampled fromD. Note how LTN does not define a regularization
term to add to a predefined loss function, but defines the entire loss in terms of satisfiability
of formulas. This means that also the supervised learning paradigm is enforced by logical rules.
More specifically, for the case of binary classification, for each sampleabelonging to the positive
class, the knowledge base will contain the formulaP (a), where the atomP (a)means “sample
a belongs to the positive class”. The same happens for all the representatives of the negative
class.

Semantic Based Regularization

Semantic Based Regularization (SBR) is a general learning framework designed to integrate
domain specific background knowledge in the form of first-order logic (FOL) clauses. To en-
force the satisfaction of all the clauses, SBR introduces special regularization terms in the loss
function, which represent the satisfaction of the knowledge. Specifically, given a background
knowledge represented by set ofH clauses, the satisfaction of theh-th clause can be represented
by the quantity denoted by 0 ≤ ϕh(f) ≤ 1, where f is the vector of predictions provided by
the model. From here, the regularization term to be added to the loss function is defined as

H∑
h=1

λh(1− ϕh(f)),

where λh is the weight associated to the h-th constraint. A higher value of λh will increase the
cost of not satisfying the constraint, meaning that the importance of the corresponding rule
will increase. The conversion of FOL clauses into differentiable functions is made possible by
considering fuzzy generalizations of FOL logic, similarly to how it is done in KENN. This is
a natural approach for machine learning tasks, but a major disadvantage over KENN is that,

38

since the clause weights are introduced at the level of the loss function, those cannot be learned
and are required to be known in advance. This, of course, is unlikely to happen in real scenarios
and it is muchmore desirable to learn the weights together with the other learnable parameters
of the model.

3.4.2 Model Based Approaches

An example of model based approach for the integration of logic in NNs is represented by
Relational Neural Machines (RNM) [3]. A RNM models a probability distribution over a set
ofm output variables, given the predictions provided by one (or more) base NN, and a set of
model parameters. Specifically, differently from a standard NN, each forward pass in RNM is
performed in two separate stages: in the first one, the predictions from the NN are obtained
from the input data; the second is a semantic stage, where the logical costraints are enforced over
the output. More precisely, this second stage is performed by an undirected graphical model.
RNMdefines a conditional probability distribution of the exponential family over the output
variables, which is defined as follows:

p(y|f, λ) = 1

Z
exp

(∑
x∈S

Φ0(f(x), y(x)) +
∑
c

λcΦc(y)

)
,

where Z is the partition function, f(x) are the predictions from the NN, λ is the set of pa-
rameters driving the semantic stage, Φ0 is a potential function which enforces the supervised
learning paradigm, S is the subset of supervised input vectors and Φc is a potential associated
to c, a FOL formula part of the base knowledge. Specifically,Φc enforces the satisfaction of the
clause c, while λc determines the weight of such clause.

The approach used by RNM is similar to the one used in KENN: a base NN (or any learner)
is used as a foundation which provides initial predictions: on those, the model performs a post
elaboration step, enforcing logical rules and improving the predictions. Also, like in KENN,
the clause weights are trained together with the whole model, which is a desirable thing in real
use cases. However, one significant drawback of RNM is that, for each training step, and also
at inference time, an optimization problem must be solved. Specifically, the best assignment
for the output variables is foundwith aMaximum a Posteriori (MAP) estimation, whichmaxi-
mizes the posterior probability of the grounded target variables, given the predictions from the

39

base NN and the parameters λ:

y∗ = argmax
y

P (y|f, λ).

In comparison, KENN is much more efficient since it is implemented as an actual layer of the
NN architecture, which is then trainable end-to-end, together with the clause weights.

3.5 Experiments

In this section we describe in detail the experiments performed with KENN. We tested the
ability ofKENNofworkingwith relational data, in the context ofCollectiveClassification [52],
both with the inductive and transductive learning paradigm.

Definition 3.5.1 (Collective Classification). Consider a directed graph, consisting in a set of
nodes V and a set of edges E. Each v ∈ V is described with a vector of features x ∈ Rn and
belongs to one of k classes {ωi}ki=1. The set of nodes V is further divided in two subsets of
nodes: X , the set of nodes for which the correct label is known (Training Set), and Y , the set
of nodes for which it is unknown (Test Set). The task of Collective Classification is to correctly
predict the labels of nodes in Y , given the feature vectors of X and the topology structure
determined byE.

Two learning paradigms can be defined:

• Inductive Learning: two separate graphs are used: Gx = (X,Ex) for training and
Gy = (Y,Ey) for testing, where Ex = {(u, v)|u, v ∈ X} and Ey = {(u, v)|u, v ∈
Y }. In other words, the edges of nodes between train and test set are not considered.

• Transductive Learning: a single graph is considered, withboth training and test nodes:
the network can use the information coming from the relations from the Test set even
during training, but the actual supervision will come only from training nodes. Com-
pared with the inductive paradigm, here the network has more available information,
and for this reason we can expect better results.

We also provide a comparison of our results with the ones from SBR and RNM, reported
on [3], on the same dataset and using the same learning paradigms. All the experiments were
carried out with Python 3 and TensorFlow 2 [50]. All the code is publicly available onGithub§.

§https://github.com/rmazzier/KENN-Citeseer-Experiments

40

https://github.com/rmazzier/KENN-Citeseer-Experiments

3.5.1 Citeseer Dataset

The experiments were conducted on the Citeseer Dataset [53]: it consists in a citation network
with 4732 citations (directed links) between 3312 scientific publications (nodes), belonging
to 6 different classes which represent the topic of the paper. Each node in the dataset is repre-
sented by a 0/1 valued feature vector, where each entry indicates the absence or presence of the
corresponding word in the dictionary, which is constituted by 3703 unique words.

3.5.2 The Prior Knowledge

The knowledge that we want to use in order to improve the predictions from the NN is the
intuitive fact that, if a paper cites another paper, it is probably true that they are of the same
topic. If we denote with Ti(x) the truth value that node x belongs to the i-th output class, this
fact can be encoded in terms of a logical clause as follows:

∀x∀y Ti(x) ∧ Cite(x, y) → Ti(y), i = 1, . . . , 6

meaning that the this clause is repeated one time for each different output class. Inside KENN,
this clause is represented as a disjunction of literals as follows:

∀x∀y ¬Ti(x) ∨ ¬Cite(x, y) ∨ Ti(y), i = 1, . . . , 6

3.5.3 Experimental Setup

The aim of these experiments was to obtain comparable results to those reported in [3]. For
this reason we used the same base NN that was used there, which consists in a fully connected
dense NN with three hidden layers, each of which using 50 hidden units and the ReLu activa-
tion function. Specifically, the NN takes in input only the features of each document in the
dataset, meaning that it will be blind to the relations between them. For this reason, we can
already observe that the predictions of the NN will not be influenced in any way by the choice
of the learning paradigm. Specifically, we used the same random seed for both the tasks, so the
the predictions of the NN are exactly the same between the two paradigms. The relational in-
formation (i.e. the citations between the papers) is introduced only at the level of theKE, and is
treated as base knowledge. Note that this is a very specific case: KENN, in general, is designed to
be able to learn both unary and binary predicates. In this case instead, the relational knowledge

41

is provided as ground truth and is used as an additional piece of information, which is exploited
by the model to produce better predictions. Also note that the only learned predicates are the
unary ones. Specifically, the forward pass is constituted by the following steps:

1. The base NN takes in input the matrix of features for the current batch of data, and
returns thematrix of unary preactivationsU (without the column containing the object
identifiers, which is left implicit);

2. Thematrix of binary predicatesB is derived directly from the data, according to the cur-
rent learning paradigm being considered. Since there is just a binary predicate, namely
the Cite predicate, matrix B will have just three columns, two for the indices of the
object pairs, and one for the truth value of the binary predicate.

3. KENN takes in inputU andB, and produces deltas δU and δB, as described in Section
3.3. Since we are just interested in learning unary predicates, we just keep δU , while δB
is discarded;

4. Differently from the standard case where the sigmoidal activation function is applied
in the KE module, here the KE uses the softmax activation function. This is because
for these experiments we are considering a multi-class classification task where each ob-
ject can belong exclusively to one class. Specifically, the output of the KENN layer is
obtained as follows:

y′ = softmax(U + δU).

In Figure 3.6 an examplewith all the listed steps is reported. Additionally, note that the truth
values of the connections for this dataset are hard, meaning that nodes can be either connected
or not connected, with no other alternative. For this reason pairs of connected objects are as-
signed a very high value, in this case 500¶. Also notice that only the pairs of connected objects
are reported inB. In fact, it would be useless to consider also the pairs of not connected nodes
(thus having a preactivation value equal to −500 for the Cite predicate), since for those cases
the grounded clauses of our knowledge would be automatically satisfied‖, and KENN would
not apply any change. Thus, the number of rows of matrixB will be equal to the number of
edges in the training graph.

In our model architecture, we also stack three KENN layers instead of only one: this choice
is motivated by the fact that a single layer would consider only the neighbors of each node. By

¶There is not a specific reason for the choice of this number. The only important thing is that, when applying
the sigmoidal activation function, the resulting truth value is close to 1.

‖Take c1 and c2 two nodes in the graphwhich are not connected; given the clause¬T (c1)∨¬Cite(c1, c2)∨
T (c2), its truth value will be always≈ 1, since I(¬Cite(c1, c2)) ≈ 1.

42

1 1 0 1
1 0 0 1
1 1 1 0
0 0 1 1

0.2 2.1 -1.2
-1.4 0.2 4.6
0.9 -2.2 3.9
-2.5 0.8 -0.2

0

1

2

3

0 1
3 0
3 1
2 1

500
500
500
500

0.9 1.2 -1.1
-1.1 0.9 5.1
1.3 -1.3 4.2
-1.2 1.2 -0.1

0.40 0.54 0.06
0.01 0.01 0.98
0.05 0.01 0.94
0.07 0.73 0.19

Figure 3.6: Simple example showing how the relational knowledge is injected in the NN for the Citeseer experiments. In

this toy example, features are 4-dimensional vectors and there are 3 unary predicates; in the actual experiments, feature
vectors have 3703 components and the output classes are 6.

adding three layers, instead, we allow for a propagation of the changes to farther nodes. This
intuitionwas confirmed by empirically better results with respect to ones using a single KENN
layer.

In addition to considering two different learning paradigms, we also evaluate our model on
splits of different sizes, in order to see the impact of the dataset size on the final results. Specif-
ically, for each learning paradigm, the model is trained on 10%, 25%, 50%, 75%, 90% splits
of the whole dataset. Additionally, to have statistically relevant results, for each training per-
centage the dataset was trained for 500 times, where each time the training data is randomly
picked in such a way that the class balance between train validation and test sets is preserved.
Such a high number was motivated by the fact that, when training on always different splits,
variance of the results can be very high, especially in the cases where the training set constitutes
a small percentage of the whole dataset. In [3], the same procedure has been adopted, with
the only difference that the number of training runs for each split percentage was 10 instead of
500. This was probably due to much longer training times: recall that in the case of RNM an
optimization problem must be solved at each training step and also at inference time. Indeed,
this fact highlights how one of the main advantages of KENN is its efficiency and scalability.
Due to the different number of training runs, results won’t be exactly comparable to the ones
provided in [3]; nevertheless, our results will have a strong statistical significance. Additionally,
we also provide 95% confidence intervals for each test set accuracy, as well as p-values with re-
spect to the null hypothesis that the mean test set accuracy of KENN is the same as the one of
the base NN.

43

3.5.4 Results

Inductive Learning

In Table 3.1 we report the results of the experiments for the inductive case. Specifically, each
column contains the mean of all the test set accuracies from the different runs. The results for
SBR and RNM are the ones reported in [3]. Also note that since we were not able to perfectly
replicate the results for the base NN accuracies reported in [3], we report the ones obtained by
our base NN, and use the relative improvements as the main evaluation metric. The relative
improvements are also visualized in Figure 3.7, together with 95% confidence intervals, with a
comparison with those from SBR andRNM. Finally in Figure 3.8, we report histograms show-
ing the distribution of the test set accuracies of both our base NN and KENN, together with
the distribution of the relative improvements for all the runs. The p-values for every training
percentage were extremely small and well below the 0.05 threshold: for completeness, they are
reported in Table 3.3. This means that, for both the training paradigms, we can safely reject the
null hypothesis and be almost sure that the improvements provided by KENN are not a result
of random perturbations due to the different choice of the training splits. As we can observe,

Table 3.1: Test set accuracies obtained with the inductive paradigm. The columns for SBR and RNM show the results re-

ported in [3]. The quantities between parentheses denote the relative improvement with respect to the base NN.

% training NN SBR RNM NN KENN
10 0.645 0.650 0.685 0.544 0.601

(+0.005) (+0.040) (+0.048)
25 0.674 0.682 0.709 0.629 0.671

(+0.008) (+0.035) (+0.041)
50 0.707 0.712 0.726 0.680 0.714

(+0.005) (+0.019) (+0.034)
75 0.717 0.719 0.726 0.733 0.754

(+0.002) (+0.009) (+0.021)
90 0.723 0.726 0.732 0.759 0.768

(+0.003) (+0.009) (+0.010)

KENN outperforms both RNM and SBR for each training percentage. Additionally, we can
see how the relative improvement becomes smaller as the training percentage increases. This
makes sense from an intuitive point of view: when disposing of few data, NNs struggle to give
good results and the prior knowledge plays a more important role, providing more improve-
ments. On the other hand, when the NN is trained on a lot of data, the knowledge becomes

44

10 25 50 75 90
Percentage of Training

0.00

0.01

0.02

0.03

0.04

0.05

Inductive learning, 95.0% confidence intervals
delta KENN
delta SBR
delta RNM

Figure 3.7: Relative improvements for the inductive learning task. 95% confidence intervals are provided for our results.

less important: indeed the NN has now access to much more information and, in some sense,
can learn the rules on its own from the patterns in the data. In this sense, RNM shows a similar
behavior with respect to KENN, even if providing less relative improvement overall.

Transductive Learning

We report the same results for the transductive case in Table 3.2, Figure 3.9 and Figure 3.10 re-
spectively. Note that the results of our NN are exactly same of the ones from the inductive
paradigm; this is because we used the same random seed for both the paradigms, and, as al-
ready mentioned, the base NN is blind to the learning paradigm. On the other hand, results
of the NN from [3] report different results. Looking at the relative improvements, we can
observe how all the three methods provide similar results for all the training dimensions, the
only exception being the 10% training percentage, where KENN shows a much higher rela-
tive improvement. KENN still seem to outperform SBR and RNM for the 10%, 25% and
50% training percentages, but the difference is far less pronounced. However, recalling how
the results from [3] are the average of just 10 runs, the comparison cannot be considered very
reliable.

3.5.5 Clause Weights and satisfaction of the rules

One of the best features of KENN is its capability to learn the clause weights. This is a fun-
damental property, since it allows the model to automatically boost the importance of useful

45

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

5

10

15

De
ns

ity

Accuracies for training dimension = 10%
NN
KENN

0.4 0.2 0.0 0.2 0.4
0.0

2.5

5.0

7.5

10.0

12.5

De
ns

ity

Deltas for training dimension = 10%

0.55 0.60 0.65 0.70
0

10

20

30

De
ns

ity

Accuracies for training dimension = 25%
NN
KENN

0.00 0.05 0.10 0.15
0

5

10

15

20

De
ns

ity

Deltas for training dimension = 25%

0.50 0.55 0.60 0.65 0.70 0.75
0

10

20

30

De
ns

ity

Accuracies for training dimension = 50%
NN
KENN

0.00 0.05 0.10 0.15 0.20 0.25
0

5

10

15

20

25

De
ns

ity

Deltas for training dimension = 50%

0.625 0.650 0.675 0.700 0.725 0.750 0.775 0.800
0

5

10

15

20

25

De
ns

ity

Accuracies for training dimension = 75%
NN
KENN

0.05 0.00 0.05 0.10 0.15
0

5

10

15

De
ns

ity

Deltas for training dimension = 75%

0.675 0.700 0.725 0.750 0.775 0.800 0.825 0.850
0

5

10

15

20

25

De
ns

ity

Accuracies for training dimension = 90%
NN
KENN

0.06 0.04 0.02 0.00 0.02 0.04 0.06 0.08
0

10

20

30

De
ns

ity

Deltas for training dimension = 90%

Figure 3.8: Histograms showing the distribution of the accuracies for all the different 500 runs, for the inductive case. On
the left, the accuracies of the base NN vs accuracies of KENN. On the right the distribution of the relative improvements.

46

Table 3.2: Test set accuracies obtained with the transductive paradigm. The columns for SBR and RNM show the results

reported in [3]. The quantities between parentheses denote the relative improvement with respect to the base NN.

% training NN SBR RNM NN KENN
10 0.640 0.703 0.708 0.544 0.652

(+0.063) (+0.068) (+0.108)
25 0.667 0.729 0.735 0.629 0.702

(+0.062) (+0.068) (+0.073)
50 0.695 0.747 0.753 0.680 0.744

(+0.052) +0.058) (+0.065)
75 0.708 0.764 0.766 0.733 0.788

(+0.056) (+0.058) (+0.055)
90 0.726 0.780 0.780 0.759 0.808

(+0.054) (+0.054) (+0.049)

Table 3.3: p-values computed for each learning paradigm and for each training percentage. Values below 10−100 are re-

ported as 0.

% training p-value Inductive p-value Transductive
10 3.22 · 10−36 0
25 0 0
50 0 0
75 2.25 · 10−48 0
90 2.87 · 10−9 0

rules, and to ignore useless ones. However, to actually verify that KENN is able to correctly
learn these weights, we analyzed them after training and investigated on the reasons that lead
to their growth or shrinkage.

Specifically, what we care about is to have an empirical evidence that, if a certain clause is
particularly important, KENN is able to increase its respective clause weight. We quantify the
importance of a specific clause by defining the clause compliance, a metric which expresses how
much a clause is satisfied on the training data.

Definition 3.5.2 (Clause Compliance). Let G := (V,E, T) be the current training graph,
where V is the set of nodes,E is the set of edges and T : V → {1, . . . , 6} is the function that
maps each node to its ground truth class. Given one of the output classes k ∈ {1, . . . , 6} and
the corresponding clause ck : ¬k(x) ∨ ¬Cite(x, y) ∨ k(y), we define the clause compliance

47

10 25 50 75 90
Percentage of Training

0.00

0.02

0.04

0.06

0.08

0.10

Transductive learning, 95.0% confidence intervals
delta KENN
delta SBR
delta RNM

Figure 3.9: Relative improvements for the transductive learning task. 95% confidence intervals are provided for our re-

sults.

of ck inG as:

C(G, ck) =

∑
v∈Tk

∑
u∈N (v) 1(u ∈ Tk)∑

v∈Tk
|N (v)|

(3.15)

where Tk is the set of nodes of topic k, N (v) is the number of nodes cited by v, and 1(u ∈
Tk) is equal to 1 if u ∈ Tk or 0 otherwise. In simpler terms, C(G, ck) is the ratio between
the number of citations from papers of topic k to papers of topic k and the total number of
citations coming from papers of topic k. It is equal to 1 when always satisfied, and is equal to
0when never satisfied. To investigate whether KENN is capable to associate higher weights to
clauses with a high clause compliance, we perform 85 different training runs, and inspect the
learned weights for each clause against its clause compliance. We repeat this process for each
percentage of the training set. Results are visualized in Figure 3.11: by looking at the obtained
plots, we can observe that there is a strong correlation between the two variables, which gets
more pronounced as the size of the training set increases. Another interesting fact is that, as the
clause compliance decreases, an higher variance in the values of the clause weights is observed.
For example, looking at the 90% case, we can see that the clause associated to the topic “AI” has
amean clause compliance slightly smaller than 0.5, meaning that this rule is satisfied slightly less
than half of the times. By looking at all the values assumed by its clause weight throughout the
runs, we can indeed see that the results are very variable with respect to the other topics. This
behavior goes against our intuition in some way: if a rule is not useful (like in this case), then
the clause weights should monotonically decrease during training, leading to low and tightly

48

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

5

10

15

20

25

De
ns

ity

Accuracies for training dimension = 10%
NN
KENN

0.0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

De
ns

ity

Deltas for training dimension = 10%

0.55 0.60 0.65 0.70 0.75
0

10

20

30

De
ns

ity

Accuracies for training dimension = 25%
NN
KENN

0.025 0.050 0.075 0.100 0.125 0.150 0.175
0

5

10

15

20

25

De
ns

ity

Deltas for training dimension = 25%

0.50 0.55 0.60 0.65 0.70 0.75 0.80
0

10

20

30

De
ns

ity

Accuracies for training dimension = 50%
NN
KENN

0.05 0.00 0.05 0.10 0.15 0.20 0.25
0

5

10

15

20

De
ns

ity

Deltas for training dimension = 50%

0.60 0.65 0.70 0.75 0.80 0.85
0

5

10

15

20

25

De
ns

ity

Accuracies for training dimension = 75%
NN
KENN

0.00 0.05 0.10 0.15 0.20
0

5

10

15

De
ns

ity

Deltas for training dimension = 75%

0.65 0.70 0.75 0.80 0.85
0

5

10

15

20

25

De
ns

ity

Accuracies for training dimension = 90%
NN
KENN

0.025 0.000 0.025 0.050 0.075 0.100 0.125 0.150
0

5

10

15

20

De
ns

ity

Deltas for training dimension = 90%

Figure 3.10: Histograms showing the distribution of the accuracies for all the different500 runs, for the transductive case.
Onthe left, theaccuraciesof thebaseNNvsaccuraciesofKENN.Ontheright thedistributionof the relative improvements.

49

packed values for the learned clause weights. In reality, we found that as the compliance of the
rules in the data decreases, the learning of their clause weights becomes more randomic: this
could be due to a variety of factors, which do not appear to have an obvious or easy explanation.
One possible interpretation could be that different randomic initializations of the base NN
could lead less compliant clauses to actually produce positive changes, in turn leading KENN
to believe that the importance of such a clause should be boosted.

3.6 Explainability in KENN

In this section, we study how to obtain explanations fromKENN. In Chapter 2 we studied dif-
ferent kinds of approaches for interpretability and explainability inML, specifically for the case
of NNs. We also analyzed the important distinction between transparent models and post-hoc
explainabilitymethods, togetherwith their advantages and disadvantages. Aswe know,KENN
can’t work on its own: it needs a base NN classifier which has the task of providing the initial
predictions. For this reason, KENN can’t be considered a completely transparent model just
because it is designed to work alongside a standard NN architecture, which is inherently hard
to interpret and explain. However, once the initial predictions from the base NN are provided,
everything that happens inside the KE can be interpreted; for this reason, KENN can be con-
sidered a partially transparent model. Indeed, if we restrict just to the phase where the rules
from the knowledge are enforced, everything that happens inside the KE layer is completely
transparent.

To better justify this claim, let’s take into consideration the single components of KENN:
the whole layer is composed by the KE, which in turn instantiates several CEs, sums their re-
turned deltas together with the original preactivations, and returns the final, modified predic-
tions. Therefore, the core of the KENN layer is constituted by the CEs. Everything that hap-
pens inside a CE is easy to understand to the point that, given the initial preactivations from the
base NN and the clause weights, even a human could produce a prediction. These characteris-
tics match the simulatability and decomposbility definitions reported in Section 2.3, justifying
even more our claim that the KENN can be considered a completely transparent NN layer. In
practice, the transparency of the CE module allows us to extract explanations for the predic-
tions given by KENN. To understand how, we propose a simple example. Consider the clause
c : ¬Dog(x)∨Animal(x), which expresses the fact that if an object is a dog, then it is also an

50

0.44 0.46 0.48 0.50 0.52 0.54 0.56
Clause Weights

0.0

0.2

0.4

0.6

0.8

1.0

Cl
au

se
 C

om
pl

ia
nc

e

Training dimension: 10%
AI
Agents
DB
HCI
IR
ML

0.46 0.48 0.50 0.52 0.54 0.56
Clause Weights

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Cl
au

se
 C

om
pl

ia
nc

e

Training dimension: 25%
AI
Agents
DB
HCI
IR
ML

0.48 0.50 0.52 0.54 0.56
Clause Weights

0.5

0.6

0.7

0.8

0.9

Cl
au

se
 C

om
pl

ia
nc

e

Training dimension: 50%
AI
Agents
DB
HCI
IR
ML

0.46 0.48 0.50 0.52 0.54 0.56
Clause Weights

0.5

0.6

0.7

0.8

0.9
Cl

au
se

 C
om

pl
ia

nc
e

Training dimension: 75%
AI
Agents
DB
HCI
IR
ML

0.46 0.48 0.50 0.52 0.54 0.56
Clause Weights

0.4

0.5

0.6

0.7

0.8

0.9

Cl
au

se
 C

om
pl

ia
nc

e

Training dimension: 90%
AI
Agents
DB
HCI
IR
ML

Figure 3.11: Scatterplots showing the relation between clause weight and clause compliance, for each clause from 85 dif-
ferent runs, for each different training percentage. We can observe how, as the training dimension increases, KENN learns

to adjust the clause weights according on howmuch that clause is satisfied in the training set. Each dot in the scatterplots

corresponds to a clause in a specific run; the colour of the dot denotes the topic related to that clause.

51

animal. Now suppose that our model returns the following predictions and deltas:

Dog(c) = 0.7,Animal(c) = 0.2; δDog(c) = −0.3, δAnimal(c) = 0.001.

Howcanwe obtain an explanation from the following deltas? Tounderstand this, we first note
that:

¬Dog(c) = 0.3,Animal(c) = 0.2; δ¬Dog(c) = 0.3, δAnimal(c) = 0.001,

where the first two are the truth values for the literals of clause c and the following two are the
corresponding deltas, the output of equation (3.11). By theway theCEworks, we know that the
value of the highest literal of the clause is the one thatwill be increasedmore, since this increases
the truth value of clause c. For this specific example, the highest literal was¬Dog(c), and was
increased by 0.3: this can be explained by the fact that the NN was almost sure that sample c
was not an animal, therefore, since we know thatDog(c) ⇒ Animal(c), then the confidence
for ¬Dog(c) should increase (meaning that the confidence for Dog(c) should decrease). In
even simpler terms, since the NN predicted with high confidence that c is not an animal (note
that confidence of 0.2 forAnimal(c) translates to a confidence of 0.8 for¬Animal(c)), then c
will not probably be a dog, therefore the truth value ofDog(c) should decrease. In the end, the
final predictions will beDog(c) = 0.4,Animal(c) = 0.2001: note how the base predictions
have been corrected by KENN, using the knowledge from the clause c. This is just a simple
example, but it shows how it is possible, for any prediction and for any clause, to explain the
logical reason behind each produced delta, by taking into consideration all the literals of the
clause and their relationship. Notice also how these kind of considerations can be converted
into the form of natural language explanations, which could be very useful auxiliary tools for
researchers and practitioners looking for explanations from the predictions given by KENN.

Up to now we saw how to extract explanations by inspecting a single clause. However, it
is also possible, at inference time, to evaluate the impact on the final predictions of multiple
clauses at a time. Specifically, this process can happen at different levels of precision: for ex-
ample, we might want to study the changes caused by the whole base knowledge, or we might
desire to isolate the effects of a small group of clauses. More precisely, given a base knowledge
K, and given a subset of clausesC ⊆ K forwhichwewant to observe the effects, the delta vector
we are looking for is the sumof all the vectors δc, ∀c ∈ C. However, note that theKEmodule is
designed to compute

∑
K δ

c, while we are interested in
∑
C δ

c: for this reason we will need to

52

(a) Delta extraction from the KE module, for the

clauses subsetC = {c1, c2}.

JOIN KE SELECT

GROUP BYGROUP BY

KE

(b)Delta extraction for the binary case. Note how this process takes place

simultaneouslywith the computation of thewhole deltamatrices δU and

δB (cf. Figure 3.5).

Figure 3.12: Process for extracting deltas relative to the clauses in C ⊆ K. The output deltas are highlighted in yellow

for both the unary case (a) and binary case (b). Note that in the binary case the blue arrows are just a shorthand for the

extraction process shown on the left.

intercept the deltas just as they are returned by their respective CEs. Figure 3.12 provides a visu-
alization of this process for the unary and binary case. We can also extract the deltas caused by
different non overlapping subsets of clauses. Note however that the exact contribution from
each different subset can be visualized only whenworking at the level of preactivations. Indeed,
we know that the actual delta at the activation level (denoted in Section 3.1.4 as δg) will change
based on the preactivations values, even if the initial delta applied at the preactivation level (de-
noted in previous section as δf) is the same. Recall that we already illustrated this fact in Figure
3.1. This implies that, when cumulatingmore deltas from different clauses, we can visualize the
exact contribution from each clause at the preactivation level, but we lose this information at
the activation level, where the only thing we can observe is the aggregated contribution of all
the clauses. A simple example showing this problem is reported in Figure 3.13: here we consider
two different clauses c1 and c2, which have the literal A(x) in common, and are identified by
different colors (for simplicity, we illustrate only what happens to the common literal A(x)).
The two clauses produce two deltas: δc1 and δc2 , which are added to the preactivations from
the base NN. The figure shows what happens when the deltas are applied in two different or-
ders. First, note that the cumulative effect of δc1 and δc2 , of course, stays the same for both the

53

Figure 3.13: An example showing the application of two different deltas derived from two different clauses, on a single

common literal. On the left, the deltas are applied to the preactivations from the base NN, but in two different orders.

Note how, at the activation level,the individual contributions change based on the order of application at the preactivation

level, while the aggregated contribution stays the same.

possible orderings, even at the activation level. This is because:

σ(z + δc2 + δc1)− σ(z) = σ(z + δc1 + δc2)− σ(z).

However, note how each individual clause contributes with different quantities, depending on
the order of application at the preactivation level. Specifically, if we focus on c1:

σ(z + δc1)− σ(z) 6= σ(z + δc1 + δc2)− σ(z + δc2).

In simple terms, the contribution of each clause at the activation level depends on the order in
which the clauses apply their contribution at the preactivation level: the problem is that this
order is not defined since all the deltas are applied simultaneously. Therefore, when inspecting
the changes caused by more clauses, the only information that we can retain is the aggregated
contribution of all of them.

54

3.6.1 Evaluation Metrics

In real-world problems, one might deal with hundreds or thousands of clauses and/or pred-
icates: the manual inspection of deltas in those cases is not feasible, and in general local ex-
planations are less useful. For this reason, alternative approaches are necessary. For example,
one might desire to find a certain score which quantifies how much the contribution from the
knowledge (or a subset of the knowledge C ⊆ K) improved (or worsened) a certain prediction
from the base NN. This score can be defined as follows:

Definition 3.6.1 (Improvement Score). Suppose that x is an input sample, to be classified
into one or more of m classes. We define the vector of deltas δ̂C = σ(z + δC) − σ(z) where
δC ∈ Rm is the delta coming from clauses belonging to C ⊆ K. Given vector of ground truth
labels l ∈ {−1, 1}m, where the i-th entry is equal to 1 if x belongs to the i-th class, and −1

otherwise, then the improvement score for xwith respect to C is defined as follows:

IS(x, C) =
m∑
i=1

δ̂C i · li = δ̂C
⊤
· l. (3.16)

The improvement score quantifies the positive contribution of theKENN layer for the current
prediction.

Note that δ̂C is simply the vector of deltas at the activation level. In simple terms, what hap-
pens in equation (3.16) is that each term of the delta vector will produce a positive contribution
only when its sign is the same as the corresponding ground truth label. This is because we
want KENN to increase the confidence for positive classes, and decrease it for negative classes.
This score can be useful for several applications: for example, we might want to analyze the
predictions for which KENN gave themost improvements or, vice-versa, wemight want to see
where KENN has actually provided worse results with respect to the base NN. To do that we
can simply order the predictions based on this score: an increasing order will give in the first
places themost problematic predictions, where KENN gave the worst results. On the contrary,
a decreasing score will provide first the best results.

Now, recall that KENN aggregates the deltas of all the clauses by simply summing the indi-
vidual deltas: this is very convenient since it makes KENN fast and scalable. However, we saw
that this kind of aggregation may be too simplistic, and may cause inconsistencies in the case
where multiple clauses disagree on how certain truth values should be changed. In order to
diagnose this kind of behavior on a trained KENN model, we can define another score:

55

Definition 3.6.2 (Disagreement Score). Using the previously defined notation, we can define
the disagreement vector for sample xwith respect to the subset of clauses C as follows:

DV (x, C) =
∑
c∈C

∣∣∣δ̂c∣∣∣−
∣∣∣∣∣∑
c∈C

δ̂c

∣∣∣∣∣ . (3.17)

GivenDV (x, C), we can define two different scores:

• DS(x, i, C) = DV (x, C)i: the disagreement score for samplex, with respect to the i-th
predicate;

• DS(x, C) =
∑

i DV (x, C)i: the cumulated disagreement score for sample x with re-
spect to all the predicates.

This score quantifies the amount of inconsistencies and disagreement among the clauses be-
longing to C: a score of 0 implies perfect agreement between all the clauses, while an higher
score reflects an higher disagreement. We recall that two clauses are said to disagree if, given
a common literal, the deltas that they produce for that literal have different signs. Not also
how we can choose to restrict the analysis to a single predicate (or a subset of predicates), or to
consider them all together.

Also in this case, one could rank the predictions with respect to the disagreement score, to
evaluate which clauses disagree more; we can also choose to measure the disagreement on spe-
cific predicates, or on all of them. This can be useful in different situations, like during debug-
ging or for the knowledge selection phase.

To conclude, we saw that, in general, explanations extracted from KENN can be useful
mostly to evaluate the impact of the knowledge, and can allow the user to refine it, by adding or
removing rules that proved to be useful or damaging. We also saw that, when inspecting single
clauses, more expressive explanations can be extracted: specifically, thanks to the transparency
of the CE, simple and human readable explanations can be derived and even converted in nat-
ural language form. We remark, however, that this transparency is just partial and limited to
the knowledge enforcement stage: indeed, the base NN remains an opaque component of the
whole model, even if used in conjunction with KENN.

56

4
Conclusion

In this work we first gave a review of XAI methods, and distinguished two main approaches
for explainability. The first is transparency, which refers to the particular property of models
to be interpreted by human supervisors without the need of external tools or complex post-
elaboration methods. Transparency is desirable since allows us to have a precise idea of how
predictions are obtained, by knowing the internal mechanisms of the models. One drawback,
however, is that, typically, for amodel to be transparent it is also required to be relatively simple
and to have few parameters; this goes against the latest finding in DL research, where deeper
models seem to be the more performing ones. On the other hand, post-hoc explainability fo-
cuses on extracting explanations from any kind of trained model, which is free to retain its
black box nature. These approaches are more complex and often require to solve additional
optimization problems, but their ability to be applied to any trained model makes the perfor-
mance sacrifice no longer necessary.

We then described KENN, a special residual layer designed to inject prior knowledge, ex-
pressed as a set FOL clauses, inside a base NN classifier. Specifically, its objective is to improve
the base NN predictions by maximizing the truth values of all the rules in the knowledge base.
This is made possible thanks to TBFs, which, applied to preactivations from the NN, are able
increase the truth value of the logical formulas. We also comparedKENNwith SBR andRNM,
two other notable examples of neuro-symbolic architectures, and analyzed their differences, ad-
vantages and shortcomings. A remarkable feature of KENN is its capability to learn the clause
weights, parameters associated to each logical rule, which define their importance. We explored

57

this specific feature of KENNby visualizing the relationship between the clause compliances in
the training data with the corresponding clause weights, and noticed a linear correlation which
gets stronger as the amount of training data increases. This is an evidence of how KENN is
able to boost the importance of useful rules, while partially ignoring useless or damaging ones.
We also provided experimental results on the task of collective classification on the Citeseer
Dataset: specifically, for the inductive learning paradigm, we found that KENN outperforms
both SBR and RNM. Finally, we also propose methods to extract explanations from KENN.
First, we saw how it is possible to extract simple and human readable explanations from the CE,
a feature that highlights the inherent transparency of the KENN layer. Then, we saw how to
inspect the precise changes caused by any subset of rules from the knowledge base, by simply
extracting the delta vectors from their respective CEs. We also propose some examples of cus-
tom metrics, which allow us to quantify the positive (or negative) contribution of KENN in
the context of local explanations, and also to assess the amount of disagreement between rules
in the knowledge base.

Concluding, KENN is a promising technique to integrate prior knowledge inside NNs: dif-
ferently from other NeSy methods, its is simple and computationally efficient, despite being
less general and precise for other aspects (think for example to the way KENN aggregates the
deltas, or to the possibility to use only the universal quantifier). The ability of KENN to learn
the clause weights can be an interesting subject of further research. For example, KENN could
be used as a knowledge extraction method from data: starting from randomly generated rules,
KENN can be able to selectively boost the weights of the more useful ones. Also, more exper-
iments on simple unary base knowledge can be made. Finally, explainability in KENN is also
a promising research topic: for example, in my experience of stage, we started working on an
interactive, web-based interface to debug and visualize the results of a KENNmodel. This kind
of tools can be very useful: they can encourage a new approach towards a more explainable AI,
and boost popularity of neuro-symbolic models like KENN.

58

References

[1] A. Daniele and L. Serafini, “Knowledge enhanced neural networks,” in PRICAI 2019:
Trends in Artificial Intelligence. Cham: Springer International Publishing, 2019, pp.
542–554.

[2] A. Mordvintsev, C. Olah, and M. Tyka, “Inceptionism: Going deeper into neural
networks,” 2015. [Online]. Available: https://research.googleblog.com/2015/06/
inceptionism-going-deeper-into-neural.html

[3] G. Marra, M. Diligenti, F. Giannini, M. Gori, and M. Maggini, “Relational neural ma-
chines,” arXiv preprint arXiv:2002.02193, 2020.

[4] G. Marcus, “Deep learning: A critical appraisal,” arXiv preprint arXiv:1801.00631, 2018.

[5] C. O’Neil, Weapons of Math Destruction: How Big Data Increases Inequality and
Threatens Democracy. Crown, 2016.

[6] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasu-
vunakool, R. Bates, A. Žídek, A. Potapenko et al., “Highly accurate protein structure
prediction with alphafold,” Nature, vol. 596, no. 7873, pp. 583–589, 2021.

[7] T.Gebru, J. Krause, Y.Wang, D. Chen, J. Deng, E. L. Aiden, and L. Fei-Fei, “Using deep
learning and google street view to estimate the demographic makeup of the us,” arXiv
preprint arXiv:1702.06683, 2017.

[8] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre, S. Schmitt, A. Guez,
E. Lockhart, D. Hassabis, T. Graepel et al., “Mastering atari, go, chess and shogi by
planning with a learned model,” Nature, vol. 588, no. 7839, pp. 604–609, 2020.

[9] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,W. Hubbard, and L. D.
Jackel, “Backpropagation applied to handwritten zip code recognition,” Neural Com-
putation, vol. 1, no. 4, pp. 541–551, 1989.

59

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

[10] F. Rosenblatt, “The perceptron: a probabilistic model for information storage and or-
ganization in the brain.” Psychological review, vol. 65, no. 6, p. 386, 1958.

[11] S. Sabour, N. Frosst, and G. E. Hinton, “Dynamic routing between capsules,” arXiv
preprint arXiv:1710.09829, 2017.

[12] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus,
“Intriguing properties of neural networks,” Dec. 2013.

[13] C. Buckner, “Adversarial examples and the deeper riddle of induction: The need for a
theory of artifacts in deep learning,” arXiv preprint arXiv:2003.11917, 2020.

[14] A. Nguyen, J. Yosinski, and J. Clune, “Deep neural networks are easily fooled: High
confidence predictions for unrecognizable images,” Jun. 2015, pp. 427–436.

[15] R. Jia and P. Liang, “Adversarial examples for evaluating reading comprehension sys-
tems,” Jan. 2017, pp. 2021–2031.

[16] W. E. Zhang, Q. Z. Sheng, A. A. F. Alhazmi, and C. Li, “Generating textual adversarial
examples for deep learning models: A survey,” arXiv preprint arXiv:1901.06796, p. 129,
2019.

[17] T. Bolukbasi, K.-W. Chang, J. Zou, V. Saligrama, and A. Kalai, “Man is to computer
programmer as woman is to homemaker? debiasing word embeddings,” in Proceed-
ings of the 30th International Conference on Neural Information Processing Systems, ser.
NIPS’16. Red Hook, NY, USA: Curran Associates Inc., 2016, p. 4356–4364.

[18] B. Goodman and S. Flaxman, “European union regulations on algorithmic decision-
making and a “right to explanation”,” AI magazine, vol. 38, no. 3, pp. 50–57, 2017.

[19] ACM. (2017) Statement on algorithmic transparency and accountability. [Online].
Available: https://www.acm.org/binaries/content/assets/public-policy/2017_usacm_
statement_algorithms.pdf

[20] D. Gunning and D. Aha, “Darpa’s explainable artificial intelligence (xai) program,”
AI Magazine, vol. 40, no. 2, pp. 44–58, Jun. 2019. [Online]. Available: https:
//ojs.aaai.org/index.php/aimagazine/article/view/2850

60

https://www.acm.org/binaries/content/assets/public-policy/2017_usacm_statement_algorithms.pdf
https://www.acm.org/binaries/content/assets/public-policy/2017_usacm_statement_algorithms.pdf
https://ojs.aaai.org/index.php/aimagazine/article/view/2850
https://ojs.aaai.org/index.php/aimagazine/article/view/2850

[21] S. Bromberger, On what we know we don’t know: Explanation, theory, linguistics, and
how questions shape them. University of Chicago Press, 1992.

[22] Z. Lipton, “The mythos of model interpretability,” Communications of the ACM,
vol. 61, Oct. 2016.

[23] F. Doshi-Velez and B. Kim. (2017) Towards a rigorous science of interpretable machine
learning. [Online]. Available: https://arxiv.org/abs/1702.08608

[24] B. Kim, “Interactive and interpretable machine learning models for human machine
collaboration,” 2015.

[25] M. Ribeiro, S. Singh, and C. Guestrin, ““why should i trust you?”: Explaining the pre-
dictions of any classifier,” Feb. 2016, pp. 97–101.

[26] N. Burkart and M. Huber, “A survey on the explainability of supervised machine learn-
ing,” Journal of Artificial Intelligence Research, vol. 70, Jan. 2021.

[27] B. Chen, Y. Li, S. Zhang, H. Lian, and T. He, “A deep learning method for judicial
decision support,” in 2019 IEEE 19th International Conference on Software Quality, Re-
liability and Security Companion (QRS-C), 2019, pp. 145–149.

[28] Y. Zhang andX. Chen, “Explainable recommendation: A survey and new perspectives,”
arXiv preprint arXiv:1804.11192, 2018.

[29] L. Gilpin, D. Bau, B. Yuan, A. Bajwa, M. Specter, and L. Kagal, “Explaining explana-
tions: An overview of interpretability of machine learning,” Oct. 2018, pp. 80–89.

[30] G.Montavon,W. Samek, andK.-R.Müller, “Methods for interpreting and understand-
ing deep neural networks,” Digital Signal Processing, vol. 73, pp. 1–15, 2018.

[31] B. Herman, “The promise and peril of human evaluation for model interpretability,”
ArXiv, vol. abs/1711.07414, 2017.

[32] F. K. Došilović, M. Brčić, and N. Hlupić, “Explainable artificial intelligence: A survey,”
in 2018 41st International Convention on Information and Communication Technology,
Electronics and Microelectronics (MIPRO), 2018, pp. 0210–0215.

61

https://arxiv.org/abs/1702.08608

[33] L. van der Maaten and G. Hinton, “Visualizing data using t-sne,” Journal of
Machine Learning Research, vol. 9, no. 86, pp. 2579–2605, 2008. [Online]. Available:
http://jmlr.org/papers/v9/vandermaaten08a.html

[34] A.Mahendran andA.Vedaldi, “Understanding deep image representations by inverting
them,” inProceedings of the IEEE conference on computer vision and pattern recognition,
2015, pp. 5188–5196.

[35] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside convolutional networks: Vi-
sualising image classificationmodels and saliencymaps,” arXiv preprint arXiv:1312.6034,
Dec. 2013.

[36] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas, “Dueling net-
work architectures for deep reinforcement learning,” in Proceedings of The 33rd Inter-
national Conference on Machine Learning, ser. Proceedings of Machine Learning Re-
search, M. F. Balcan and K. Q. Weinberger, Eds., vol. 48. New York, New York, USA:
PMLR, Jun. 2016, pp. 1995–2003.

[37] A. S. Ross,M. C.Hughes, and F.Doshi-Velez, “Right for the right reasons: Training dif-
ferentiablemodels by constraining their explanations,” arXiv preprint arXiv:1703.03717,
2017.

[38] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin, “Attention is all you need,” in Advances in neural information processing
systems, 2017, pp. 5998–6008.

[39] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidi-
rectional transformers for language understanding,” arXiv preprint arXiv:1810.04805,
2018.

[40] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner,
M.Dehghani,M.Minderer, G.Heigold, S. Gelly et al., “An image is worth 16x16 words:
Transformers for image recognition at scale,” arXiv preprint arXiv:2010.11929, 2020.

[41] D. H. Park, L. A. Hendricks, Z. Akata, A. Rohrbach, B. Schiele, T. Darrell, and
M. Rohrbach, “Multimodal explanations: Justifying decisions and pointing to the evi-
dence,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, 2018, pp. 8779–8788.

62

http://jmlr.org/papers/v9/vandermaaten08a.html

[42] A. Das, H. Agrawal, L. Zitnick, D. Parikh, and D. Batra, “Human attention in visual
question answering: Do humans and deep networks look at the same regions?” Com-
puter Vision and Image Understanding, vol. 163, pp. 90–100, 2017.

[43] R. Caruana,H.Kangarloo, J. D.Dionisio, U. Sinha, andD. Johnson, “Case-based expla-
nation of non-case-based learning methods.” in Proceedings of the AMIA Symposium.
American Medical Informatics Association, 1999, p. 212.

[44] L. G. Valiant, “Three problems in computer science,” Journal of the ACM (JACM),
vol. 50, no. 1, pp. 96–99, 2003.

[45] M. Richardson and P. Domingos, “Markov logic networks,” Machine learning, vol. 62,
no. 1-2, pp. 107–136, 2006.

[46] J. Pearl, Probabilistic reasoning in intelligent systems: networks of plausible inference.
Elsevier, 2014.

[47] J.Wang and P.M.Domingos, “Hybridmarkov logic networks.” in AAAI, vol. 8, 2008,
pp. 1106–1111.

[48] T.R.Besold,A.Garcez, S. Bader,H.Bowman, P.M.Domingos, P.Hitzler, K.-U.Kühn-
berger, L. Lamb,D. Lowd, P. Lima, L. Penning, G. Pinkas, H. Poon, andG. Zaverucha,
“Neural-symbolic learning and reasoning: A survey and interpretation,” ArXiv, vol.
abs/1711.03902, 2017.

[49] V. Novák, “First-order fuzzy logic,” Studia logica, vol. 46, no. 1, pp. 87–109, 1987.

[50] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard et al., “Tensorflow: A system for large-scale machine learning,” in
12th {USENIX} symposium on operating systems design and implementation ({OSDI}
16), 2016, pp. 265–283.

[51] L. Serafini and A. d. Garcez, “Logic tensor networks: Deep learning and logical reason-
ing from data and knowledge,” arXiv preprint arXiv:1606.04422, 2016.

[52] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-Rad, “Collective
classification in network data,” AI magazine, vol. 29, no. 3, pp. 93–93, 2008.

63

[53] Q. Lu and L. Getoor, “Link-based text classification,” in IJCAI Workshop on Text Min-
ing and Link Analysis, 2003.

64

Acknowledgments

First of all, I would like to thankAlessandroDaniele, who followed and helpedme both during
and after my internship in FBK, proving to be an excellent and caring supervisor. I would also
like to thank professor Luciano Serafini and all the members of the DKM research group at
FBK, for providing a stimulatingwork environment and for always being ready to lend an hand
in case of need.

I would like to thank my university colleagues and friends: in these two years we shared chal-
lenging moments and came out stronger together. This work was partly possible thanks to
them and their help.

I would also like to thank my family, for their ever-present, unconditional and loving support.
I could not be here without them.

Last but not least, I would like to thank Benedetta for her continuous, patient and loving sup-
port, which proved to be a constant source of strength.

65

	Abstract
	List of figures
	List of tables
	Listing of acronyms
	Introduction
	Explainability in Machine Learning
	Why do we need explainability
	When do we need explainability
	What is explainability
	Transparency
	Post-hoc interpretations

	Neural Symbolic Integration

	Knowledge Enhanced Neural Networks
	Theoretical Framework
	Prior Knowledge and language semantic
	t-conorm Functions
	t-conorm Boost Functions
	Applying TBFs to preactivations
	Increasing the satisfaction of the Knowledge

	KENN Architecture
	KENN for relational data
	Related Work
	Regularization Approaches
	Model Based Approaches

	Experiments
	Citeseer Dataset
	The Prior Knowledge
	Experimental Setup
	Results
	Clause Weights and satisfaction of the rules

	Explainability in KENN
	Evaluation Metrics

	Conclusion
	References
	Acknowledgments

