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Abstract 

Roller compaction is a key unit operation in a dry granulation line for pharmaceutical tablet 

manufacturing. However, determining the optimal settings for a roller compactor (RC) typically 

requires extensive material-consuming experimental campaigns. This amount of material, in 

particular if active pharmaceutical ingredients are involved, may not be available during 

development phases, or may be very expensive. For this reason, a compactor simulator (CS) is 

usually employed to emulate the behaviour of compacted powders at a much smaller scale, with 

significant savings of materials, time, and money. However, the experimental conditions at 

which a CS shall be run to obtain a product with assigned specifications are different from those 

required to obtain the same product from a full-scale RC. How to find these conditions is an 

open issue. In this study, historical data from both CS and RC experiments are used to develop 

a transfer methodology that allows the experimenter to obtain optimal RC setup from the CS 

experimental results solely. The developed correlation, which has been applied to six different 

pharmaceutical powder blends, successfully captures the differences between the two 

equipment scales. Implementing this transfer methodology can result in reliable prediction of 

RC machine settings, thus enabling significant resource, time and money savings.   
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Introduction 

Roller compaction is a dry granulation process used to densify and enhance physical and 

flowability properties of pharmaceutical powder blends in the manufacturing of tablets. It is a 

continuous process that involves feeding powder through a pair of counter-rotating rollers, 

which compact it into a solid mass known as ribbon by exerting pressure. To better understand 

the phenomena that occur during the compaction process, Johanson (1965) developed a powder 

mechanics model that predicted the roll surface pressure and the ribbon solid fraction based on 

the physical properties of the powdered material, the operating conditions and the roller 

compactor (RC) geometry. To utilize the Johanson model, which presents two material-

dependent parameters, it is required a calibration of the latter by performing a parameter 

estimation employing RC experimental results of a specific powder blend. However, 

performing a comprehensive experimental campaign on the RC demands significant amounts 

of material, including very expensive active pharmaceutical ingredients (APIs), which may not 

be available during the drug development phases. In this context, compaction simulators (CSs) 

have been developed, which mimic the roll compaction process by performing uniaxial 

compaction through two counter-moving punches. By employing a CS, it became possible to 

quantify the compaction behaviour of a specific powder blend through more resource-efficient 

experimental campaigns, involving material amounts on the order of grams compared to the 

kilograms required for the RC testing. However, the results obtained from the CS are not 

suitable for accurately estimating the Johanson model parameters specific to a powder mixture, 

owing to differences in the applied pressure for equivalent solid fraction values. In this context, 

Bi et al., (2014) introduced the mass correction factor theory, which improves Johanson model's 

one-dimensional compaction assumption by providing a correction factor that allows to account 

and link the different RC and CS pressures. 

The objective of this Thesis is to assess the experimental results derived from both RC and CS 

pieces of equipment, investigating their differences across six various pharmaceutical powder 

blends. Following that, the analysis proceeds by developing a methodology, based on the mass 

correction factor theory, capable of explaining and establishing a relationship between the 

different CS and RC outcomes. The result, the proposed methodology allows for the 

characterization of the roller compaction behaviour for a specific powder blend solely by means 

of an experimental campaign on the CS, leading to substantial savings in terms of material, 

resources, and time and money. 

The Thesis is structured into four chapters. The Chapter 1 introduces roll compaction, 

describing its operational applications and advantages in the pharmaceutical industry. The 
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compaction simulator is examined next, explaining how this technology was developed to 

mimic RC. 

The Chapter 2 presents the Johanson model, detailing its assumptions and benefits, as well as 

the physical and mathematical principles. After that, the mass correction factor theory proposed 

by Bi et al., (2014) is presented. 

All materials investigated in this Thesis are presented in Chapter 3. The descriptions of all 

experimental campaigns conducted on both RC and CS and the related datasets follow. The 

mathematical methods utilised to carry out the parameter estimate for the Johanson model are 

next discussed. Finally, the proposed transfer methodology to establish the relationship between 

CS and RC pressures is described, presenting the development stage, with the calibration and 

validation procedures, and then the usage stage. 

In Chapter 4, the results obtained by estimating the Johanson parameters for each powder 

mixture are first presented. After that, the results of the experiments derived from the two 

distinct pieces of equipment are compared, and an analysis of how the mass correction factor 

can be applied to the findings of this thesis is carried out. Consequently, a preliminary model is 

calibrated by utilising solely four formulations, while the remaining two are employed for the 

purpose of validation. The analysis of the prediction accuracy data is conducted thereafter. 

Following this, a comprehensive model including all six materials is developed for subsequent 

utilisation. A seventh powder mixture, whose CS data come from a different CS machine, is 

then analysed and the applicability of the transfer approach is studied. Lastly, it is examined 

how the composition and percentages of excipients in a powder blend affect the Johanson 

parameter values. 

 



 

 

Chapter 1 

Roll compaction in the pharmaceutical 
industry 

Roller Compaction is a key unit operation of the granulation line in the manufacturing of 

pharmaceutical tablets. This chapter aims to present the main features of the granulation 

process, describing the key phenomena involved and the advantages it offers. Afterward, the 

roll compaction process is introduced, providing a comprehensive explanation of how powders 

behave during compaction. The advantages and limitations of this technology will be 

investigated, as well as the elementary design features of the roller compactor. Finally, the 

rationale and operational principles of the compactor simulator, which represents the second 

piece of equipment involved in this Thesis, are covered. 

 Introduction to the granulation process  

Granulation is defined as a process whereby the smaller primary particles are bonded into larger 

secondary particles, also called agglomerates, in which the primary particles can still be 

identified. Because the process ultimately results in the production of a larger entity it is also 

known as size enlargement by agglomeration. The granulation can be performed through 

compressive pressure, a binding agent, or both (Parikh, 2005). Binders are substances that are 

added either before or after agglomeration that bind chemically or physically to the solid 

surfaces, creating a linkage between the particles.  

Several different types of binding mechanisms are known that can lead to agglomeration of the 

primary particles: solid bridges, adhesive and cohesion forces, surface tension and capillary 

pressure, interlocking bonds, and attraction forces between solids. Those represent the five 

major groups, I to V, and within them, several subgroups of binding mechanisms can be 

identified, as reported in Table 1.1 (Pietsch, 2002). Pictorial representations of the 

aforementioned categories and subcategories are reported in Figure 1.1. 

For the technologies and materials involved in this Thesis, the principal binding mechanisms 

are the ones involving powders without the presence of liquid and heating phenomena, hence 

groups IV and V. These kinds of forces occur when the primary particles get considerably closer 

to one another, usually as a result of applied pressure. In particular, Van der Waals forces, which 

are short-range ones, represent the main contribution to the bond of particles when those are 
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close enough. Given the physical nature of the involved forces, the main factors that affect the 

successful processing for the agglomeration of primary particles are the powder rheology and 

the particle size. Decreased particle size significantly improves the surface-to-mass ratio and so 

increases bonding interactions (Parikh, 2005). 

Table 1.1. The binding mechanisms involved in the agglomeration processes. 

 
Figure 1.1. Pictorial representation of the binding mechanisms involved in the 

agglomeration processes (Pietsch, 2002). 

I: Solid bridges 

1. Sintering 

2. Partial melting 

3. Chemical reaction 

4. Hardening binders 

5. Recrystallization 

II: Adhesion and cohesion forces 
1. Highly viscous binders 

2. Adsorption layers 

III: Surface tension and capillary pressure 
1. Liquid bridges 

2. Capillary pressure 

IV: Attraction forces between solids 

1. Molecular forces 

a) Van-der-Waals forces 

b) Free chemical bonds 

c) Associations; hydrogen bridges 

2. Electric forces 

3. Magnetic forces 

V: Interlocking bounds  
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The granulation technique has been extensively used by a variety of industries, including 

pharmaceutical, coal, mining, and agrochemical. These industries use agglomeration techniques 

to minimize dust, make the material easier to handle, and increase its ultimate utility.  

In the pharmaceutical industry, the granulation of powders to form structured products is one 

of the most important operations in the manufacturing of tablets. This type of solid oral drug 

represents the most widely prescribed dosage forms in use today since they are simpler to 

manufacture than capsules and have longer shelf life than most liquids (Peter Davies, 2016). 

1.1.1  Rationale and benefits of granulation processes 

There are numerous reasons for granulating pharmaceutical powder mixtures, the most 

important of which are listed below:  

• Improvement of flow properties. Particle size has a distinct influence on the flowability 

properties of powders. The enlargement of particles by granulation improves their 

flowability by decreasing the specific surface area and the particle-particle interaction 

(Schiano et al., 2018). 

• Avoiding segregation and improving content uniformity of tablets. Particle size and 

differences in particle density within a blend can induce segregation during the 

manufacturing of tablets, in particular during the die-filling process (Guo et al., 2010). This 

phenomenon, known as particle segregation, happens when a homogenous mixture of 

powder particles with varied physical attributes (such as size, density, and shape) becomes 

unevenly dispersed during handling and processing. Particles with identical qualities, in 

particular, tend to gather in a single region of the mixture, resulting in spatial non-

uniformity. This can lead to false dosing of APIs dosing in the tablet. This issue is even 

more problematic in tablets containing low doses of API. By granulation, the mixture of the 

different primary particles and their percentage is fixed in the larger granules, so that an 

inhomogeneous distribution of the API can be prevented (Cantor et al., 2008). 

• Reduction of bulk volume. A further advantage of granulation is the size enlargement of 

particles which leads to a decrease in interparticle void spaces, resulting in increased bulk 

density of the powder. Granules occupy less space compared to loosen powders, making 

them easier to handle, transport, and store. This represents a great advantage in direct 

compression, where the high bulk volumes require high die-filling height, which can cause 

problems when filling the die. Furthermore, the deaeration during the compaction becomes 

difficult, which may result in the capping/lamination of the tablets (Mazel et al., 2015). 

Lastly, the reduced bulk volume also allows for more efficient packaging, which can lead 

to cost savings in terms of materials and storage space. 

• Reduction of safety hazards for operators. During the granulation process, the formation of 

larger, denser granules minimizes the generation of fine particles or dust, which are known 
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to pose respiratory hazards. This is of particular concern when dealing with highly potent 

drugs when accidental exposure constitutes a significant danger (Keizer, 2021). 

• Capability of controlling intermediate and product quality attributes. Within limits, 

granulation of pharmaceutical powder offers the advantage of allowing control over 

porosity, density, hardness, and surface-to-volume ratio. By adjusting the granulation 

process parameters such as binder concentration, granule size, and dry conditions, the 

porosity of the granules can be tailored. These parameters have a direct impact on the 

dispersibility, solubility, and reactivity of the granules, as it affects the rate of dissolution 

and interaction with other substances. Critical quality attributes of tablets, such as 

disintegration time, dissolution time, and wettability can be improved if the powder blend 

has been correctly granulated previously (Parikh, 2005) 

Other benefits of minor importance that granulation provides include improved product 

appearance and a lower propensity to caking. 

1.1.2  Granulation in the pharmaceutical industry 

The development of pharmaceutical granulation was driven by the invention of the tablet press 

by W. Brockedon in 1843. Since then, numerous different granulation processes and equipment 

have been developed, resulting in an ongoing process of efficiency and product quality 

improvement. The demands on the granulation properties were further enhanced in the 1970s 

when high-speed tablet and capsule-filling machines with automated controls were introduced.  

In fact, most pharmaceutical tablets cannot be manufactured by direct compression of the 

formulation because of poor flowability and high segregation tendency. The high-speed 

compression and capsule-filling machines require a uniform flow of material to the dies or 

filling stations that produce pharmaceutical dosage forms. Therefore, prior to the compression 

step, the formulation has to go through a granulation process to improve its handling properties 

and to assure composition homogeneity in the final dosage form, mostly in low-dose drugs 

(Parikh, 2005). 

Granulation techniques have grown in importance in drug manufacture since the most 

commonly used excipients and recently created APIs have low bulk density and poor 

flowability due to their cohesive appearance and small particle size (Szappanos-Csordas, 2018). 

Agglomeration technologies have played a crucial role in enabling the production of tablet 

drugs with a high API content, where handling and processing issues were an obstacle. 

Figure 1.2 illustrates where the granulation process integrates within the tablet manufacturing 

process. Two possible paths are possible according if wet or dry granulation is performed. Prior 

to granulation, all the components of the formulation are mixed. According to the properties of 

the powder mixture, they undergo two alternative granulation processes. But then in both cases, 
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lubricating agents are added to the agglomerated product. The resulting powder mixture is 

suitable now to be compacted and coated to form the final tablets.  

 
Figure 1.2.(https://www.epmmagazine.com/opinion/understanding-the-continuous-process/ 

). Schemes of the tablets manufacturing processes by wet granulation and dry granulation. 

The two main techniques for producing granules used in the pharmaceutical industry are wet 

granulation and dry granulation.  

1.1.2.1  Wet granulation 

Granules are formed by wetting the powder mixture with the addition of a liquid binder, such 

as water or organic solvents. In this case, the particles can be either directly enlarged or smaller 

granules formed by sieving a wet mass (Parikh, 2005). Once the granulation is performed the 

liquid binder is removed by means of a drying step, which aims to eliminate moisture from the 

granules while maintaining their integrity and desired properties. The main bonding mechanism 

within granules formed in wet agglomeration is liquid bridges that are formatted at the 

coordination points between the particles. 

Three wet granulation techniques are used in the pharmaceutical industry: twin-screw 

granulation, high-shear wet granulation, and fluid bed granulation. Wet granulation is the most 

used granulation method in the pharmaceutical industry since the granules obtained by this 

process show good flow properties due to their smooth surface and narrow granule size 

distribution (Thapa et al., 2019).  

Despite the benefits mentioned above, the presence of liquids (such as water or organic 

solvents) results in a number of drawbacks. Drying is required to remove the liquids, which 

https://www.epmmagazine.com/opinion/understanding-the-continuous-process/
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uses a lot of energy. The multi-stage process is expensive and time-consuming due to the high 

energy consumption and solvent recycling. The granules are also subjected to heat stress, which 

can accelerate the degradation process and speed up reactions like decarboxylation and 

oxidation (Keizer, 2021). 

1.1.2.2  Dry granulation 

In dry granulation, the agglomeration is achieved by means of the exertion of high pressure on 

the powder mixture, without the addition of any liquid or meltable binder. The powder is 

compacted into larger intermediate compacts, which are subsequently milled into granules. In 

this case, the particle size enlargement is achieved by the size reduction of previously dry 

compacted powder. 

The main bonding mechanism involved in dry granulation is due to Van der Waals forces, 

which become dominant when the contact area between individual powder particles increases 

due to the applied compaction pressure (Parikh, 2005).  

Dry agglomeration processes have been deployed in the pharmaceutical industry since the 

1940s, but in the last 30 years, this technology has arisen as it offers cost-effective and delicate 

handling for heat and or moisture-sensitive materials since no liquid binders are needed. 

However, it is important to note that not all powders are suitable for dry granulation. The 

powder mixture must possess adequate compressibility and cohesive properties for successful 

compaction. The selection of appropriate excipients and the optimization of process parameters 

is crucial for achieving desired granule properties. 

There are two dry granulation processes: slugging and roll compaction. Between the 1950s-

1970s slugging was the preferred method. Slugs are produced when the powder is fed into a 

large compression machine and compressed by tableting punches having large diameters. The 

slugs are milled into granules after the compression step (Parikh, 2005). Due to the lack of 

process control, limited economies of scale, and low manufacturing throughput associated with 

slugging, roll compaction developed as a preferred dry granulation method, effectively 

overcoming the limitations of slugging and gaining popularity in the pharmaceutical industry. 

 Roller Compactor 

Roll compaction is a continuous dry granulation method, which first pharmaceutical application 

was first mentioned in 1966 by Jaminet and Hess (Kleinebudde, 2004). In agglomeration by 

roll compaction, mixtures of API and excipients, e.g., binders, disintegrants, diluents, and 

lubricants, are mixed in a blender. This powder mixture is then fed and passed through two 

counter-rotating rolls with the flow being induced by the friction acting at the surfaces of the 

rolls. In the narrow region of the gap between the rolls, the powder is subjected to high pressure, 

leading to the formation of a compact or briquette that is reduced in size by milling or screening, 
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to achieve the desired granule size. The RC equipment is schematically depicted in Figure 1.3. 

The produced granules, with improved properties, are used in subsequent processes such as 

tableting or capsule filling. These granules have particle sizes in the range of 0.2 - 4.0 mm in 

the pharmaceutical industry, although they are mainly produced with a particle size range of 

0.2 - 0.5 mm (Shanmugam, 2015). 

 
Figure 1.3. Schematic representation of a roller compactor. (1) inlet funnel with agitator; 

(2) feed screw; (3) tamp screw; (4) small quantity inlet funnel; (5) rollers; and (6) rotor 

miller. The mechanistic model describes the region between the rollers (Toson et al., 2019).  

In order to describe, the phenomena occurring during roll compaction granulation in detail, the 

process is divided into three different regions (Johanson, 1965). The boundaries between the 

regions are defined by their angular position as reported in Figure 1.4. 

 
Figure 1.4. Schematic diagram of the roller compactor process and of the three 

characteristic regions.  

1. The slip region: The feeding system delivers the powder mixture to the slip or feed 

region. The start of this region is defined by the entry angle: 𝜃ℎ. In this stage the powder 



10  Chapter 1 

 

 

particles move slower than the roll surface, and so they slip. In the slip region, the 

powder is pre-densified primarily due to particle rearrangement and de-aeration, as a 

consequence of the little stresses applied by the feeding system. The main factors 

affecting the powder behaviour in the feed region are the frictional properties of the 

particulate materials, such as wall and inter-particle friction.  

2. The nip region: The nip, or compaction, region starts at the nip angle 𝛼, where the 

velocity of the powder blend starts to move with the same velocity as the roll surface. 

So, the particles are gripped between the two counter-rotating rolls and densification 

occurs due to the reduction in the roll gap as the powder is dragged to the closest point 

between rolls. This results in a substantial increase in the roll pressure. The high pressure 

exerted on the powder causes the breakage of brittle particles and the deformation of 

plastic ones. The new fractured particles, caused by the fragmentation, and the deformed 

ones lead to more contact points between the particulate. This induces the bonding of 

particles at the molecular level due to the effect of Van der Waals forces (Parikh, 2005). 

The maximum pressure exerted by the rolls is reached at the neutral angle, which does 

not necessarily occur at the smallest roll gap because of wall slip and other factors 

(Salman et al., 2006). 

The extent of the nip region depends on the material characteristics and operating 

parameters. Common values are: 5° < 𝛼 < 20° . 

3. The release region: Finally, the compacted ribbon is relieved in the release region, where 

the roll gap starts to increase again the exerted pressure ceases to exist. After the 

ejection, because of the absence of constraints and stresses, the compacted ribbon may 

increase in size due to elastic recovery (Salman et al., 2006). The enlargement concern 

mainly the ribbon thickness and this occurs mainly when dealing with plastic powder 

materials.  

1.2.1  Solid Fraction 

The solid fraction (SF), or relative density, is defined as the ratio between the envelope/bulk 

density and the true density: 

 
𝛾 =

𝜌𝐸

𝜌𝑇
 . (1.1) 

It can also be defined using the porosity, 𝜀, in fact, it results: 

 𝛾 = 1 − 𝜀 . (1.2) 

Envelope density, also known as bulk density, is determined for porous materials by including 

the volume occupied by the pore spaces within the material in the measurement. Conversely, 

true density is calculated as the ratio of the mass of the solid material to the volume occupied 

by that mass; therefore, the volume contributions of pores or internal voids are removed in the 
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measurement. The envelope and true density of the powder mixture are usually determined by 

helium and powder pycnometer.  

The SF is the most important intermediate roll compaction product attribute which has a great 

impact on the downstream processes. Besides the equipment and process-related parameters, it 

has a significant influence on the granule size distribution in the milling step. Additionally, it 

is correlated to the flowability, stickiness, reworkability, mechanical strength, homogeneity of 

the content, disintegration, and dissolution of the resulting grains (Amini and Akseli, 2020). In 

the roll compaction process, the SF is determined by the flowability and compressibility 

properties of the powder blend, as well as by machine operating settings. 

The term ‘compressibility’ is defined as the ability of a powder to decrease in volume under 

pressure, while ‘compactibility’ is defined as the ability of the powdered material to be 

compressed into a tablet of specified strength (i.e. radial tensile strength or deformation 

hardness).  

1.2.2  Advantages and limitations of roll compaction 

The distinctive advantage of roll compaction, over other granulation techniques, is its 

possibility of processing physically or chemically moisture-sensitive materials since the use of 

liquid binders is not required. Another benefit is that it does not require a drying stage and 

therefore it is suitable for compounds that either have a low melting point or degrade rapidly 

upon heating (Leuenberger, 1982). In addition, compared to other dry granulation techniques, 

such as slugging, roll compaction is a continuous process with higher productivity but less 

energy consumption and can produce more homogeneous products (Miguélez-Morán et al., 

2008). Another key aspect of the increasing popularity of the roll compaction process is the 

possibility of implementation of online and automation process settings leading to an 

improvement in product quality, minimizing batch-to-batch variability (Salman et al., 2006). 

Together with all the aforementioned advantages this granulation technology has several 

disadvantages that are the current subject of research and development. One of the most critical 

limitations is referred to the “loss of compactability”. When a powder mixture is granulated and 

milled using roll compaction, the resulting tables do not develop as much tensile strength as 

tablets produced by direct compression of the initial powder blend. For this reason, the analysis 

of ribbon and tablet product qualities is usually studied combined (Farber et al., 2008).  

The high fraction of uncompacted material, referred to as “fines”, during the roll compaction 

process is another critical drawback. It is mainly caused by two mechanisms: on the one hand 

by powder that passes the rolls without being compacted and on the other hand by particles 

generated during the milling step (Reimer and Kleinebudde, 2019). The produced fines can be 

re-compacted in order to improve the yield, nevertheless, the recycling of fines can lead to 

inappropriate drug uniformity, therefore the re-compaction of fines is not an advisable manner 
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to increase the throughput. The amount of fines can be reduced, when high compaction 

pressure, sealing system, and vacuum de-aeration are applied, albeit too high compaction 

pressure can lead to reduced compactibility of granules (Inghelbrecht and Remon, 1998). 

Moreover, the roll compacted ribbon is characterized by density heterogeneity across the roll 

width and length. This is related to the friction between the powder and the used sealing system, 

which leads to density variations across the ribbon width. Additionally, the periodical pattern 

of the screw feeder is visible along the ribbon length in a sinusoidal curve of more densified 

material (Perez-Gandarillas, 2016). This variability can propagate along the downstream 

process and influences the tablet quality. It is also required to include a certain amount of 

lubricant in the powder mixture to avoid material sticking on the roll surface.  

The most challenging problem in the roll compaction process is represented in the optimization 

of processing conditions and the scale-up. This is critical due to the complex behavior of the 

particulate materials that undergo compaction and also because of the diversity of formulations 

used in the pharmaceutical industry. This has become even more difficult considering the 

variety of different equipment designs (Yu, 2013). Suboptimal operation of the equipment can 

lead to unsatisfactory products. 

1.2.3  Process variables 

The process variable, i.e. machine settings, that can be adjusted, in order to obtain the desired 

granules, are common among all the most modern roll compactors. They can be set manually 

by the operators or controlled by means of the RC controlling system. They are listed, together 

with the acronym that will be used in this Thesis, as follows: 

• Specific Roll Force (SRF): The specific roll force represents the force that the roll 

provides to the powder to be compacted between them. It is expressed in kN per cm of 

roll width. Among all the machine parameters, it is influencing the ribbon and granules’ 

properties the most.  

• Roll Gap (S): The roll gap represents the minimum value of the distance between the 

two counter-rotating rolls. It is usually expressed in mm. 

• Roll Speed (RS): The counter-rotating rolls move simultaneously with the same speed. 

Their speed is usually expressed in rounds per minute (rpm). In the case of comparison 

of roll compactors with different roll diameters, the velocity is expressed as the 

circumferential one in m/s. 

• Screw Speed: Some roller compactor uses a screw feeding system to deliver the powder 

blend to the slip region. By adjusting the feeding screw speed, the amount of conveyed 

powder can be regulated. 
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1.2.4  Roller compactor design 

Even though the process variables are common among all industrial RC, the specific designs of 

the instrumentation present a large degree of variability. These different designs have the 

capability to affect the properties of the produced ribbons as explained below. 

1.2.4.1  Feeding mechanism 

The feeding system is a key element of the roller compactor because it has to provide a uniform 

and continuous flow of powders in order to fill the region between the rolls. If this is not 

achieved correctly the formed ribbon will present heterogeneity. The powder to be compacted 

can be fed to the slip region by gravity or by force-feeding using a screw feeder.  

In a gravity feed roller compactor, a hopper contains the powder blend and it guides its delivery 

to the region between rolls. The hopper is usually equipped with an agitator to break powder 

bridges. Similarly, in the force-feeding system, a screw is placed inside a hopper and the screw 

is directed to the space between the rolls. 

The choice between one feeding system or another is mainly driven according to the flow 

properties, the density of the powder, and the densification required. Gravity feed is suitable in 

the case of powder with good flowability, even though it presents some drawbacks due to 

feeding fluctuations and air escaping. Force feed fits better in the case of poor-flowing particles 

(Salman et al., 2006). 

1.2.4.2  Rolls layout 

The rotating rolls can be mounted in three different positions: horizontal, inclined, and vertical. 

These different layouts are shown in Figure 1.5.  

 
Figure 1.5. Configuration of roll compactors (A) horizontal (B) inclined (C) vertical (Guigon 

and Simon, 2003). 

The firstly invented and most commonly used is the horizontal layout with the vertical feeding 

system. This arrangement can cause by-pass and leakage problems in the case of powder with 

excellent flowability properties. This issue can be solved using the combination of horizontal 

feeding and vertical roll layouts, in which the production of uncompacted material is reduced. 
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However, due to the influence of gravity on the transport of the particles, the densification may 

result asymmetrical. Hence, the inclined design has been developed in order to possess both 

advantages of the aforementioned designs (Teng et al., 2009) 

1.2.4.3  Roll surface 

There are several roll surface options, including smooth, knurled, serrated, and grooved 

surfaces, as shown in Figure 1.6. The different degrees of roughness of the roll wall impact the 

friction between the powder particles and the roll surfaces. This can be particularly useful when 

the loose powder has to be compacted (Szappanos-Csordas, 2018). 

 
Figure 1.6. Different roll surface types (Fitzpatrick®). 

1.2.4.4  Sealing system 

An important issue to be prevented is the sideway migration of the powder outside the 

compaction area. For this reason, RC present either a side-sealing system or a rim-roll sealing 

system, as shown in Figure 1.7.  

 
Figure 1.7. Roller Compactor possible sealing systems: (a) side-sealing; (b) rim-roll sealing 

(Mazor et. Al., 2015). 



Roll compaction in the pharmaceutical industry  15 

 

 

The side-sealing system consists of two plates that form a physical barrier beside the gap width. 

To avoid metal-metal contact and wear, the side plate is often composed of a PTFE platelet 

(Salman et al., 2006). The rim-roll sealing system is characterized by one single roll having 

edges on both sides, while the other roll fits and moves inside the cavity created by these rims. 

The sealing mechanism utilized has an effect on the manufactured ribbon; for example, the rim-

roll sealing system produces a more homogeneous density distribution than the side-sealing 

system. This is due to uniform pressure distribution along the ribbon width and a reduction in 

uncompacted material. 

 Compactor simulator 

The interest in simulating roll compaction processes is particularly high, especially during the 

early phase of new formulation development. This is primarily due to the limited availability 

and high cost associated with new APIs. The roll compaction process itself is both time-

consuming and material intensive. However, with the aid of an accurate physical simulation, 

quickly identifying the appropriate process parameters in order to achieve the optimal ribbon 

quality attributes becomes possible. Consequently, simulations have the potential to 

significantly expedite the development process and result in substantial cost reductions. 

Reproducing the behavior of the powder undergoing compaction by the rolls is challenging due 

to the complex events that take place. A technique for mimicking the roll compaction process 

has been developed by Zinchuk et al. (2004) utilizing a laboratory uniaxial press where the 

punches move with a sinusoidal profile. By utilizing this sine function, the top and bottom 

punches are capable of emulating the rotational movement of a given point on the roll surface. 

The mathematical formulation of the simulation is: 

 𝐷 = 𝑅 sin(𝜔𝑡) , (1.3) 

where D is the punches displacement, R is the roll radius, 𝜔 is the roll rotation frequency and t 

is time (Zinchuk et al., 2004). The schematic representation of the simulation transfer is shown 

in Figure 1.9. 

Initially, the powder mixture is inserted in the die chamber of the compactor simulator. At t = 

0, the punches start to travel towards each other, compressing the powder at the same strain as 

in the real roll compaction process. The apex of the sinusoidal profile corresponds to the point 

at which punches and points on the roll surface achieve their minimum spacing and can be used 

to target the thickness of the simulated ribbons. When the punches have reached their minimum 

separation, they retract to decompress the ribbon before it is ejected to the die surface by the 

bottom punch.  
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The compacted product of the compactor simulator is called ribblet, and its appearance, 

compared with the ribbon one, is shown in Figure 1.10. The shape of the ribblets is determined 

by the tooling size and geometry, which can be round or rectangular.  

 
Figure 1.9. Transfer between roller compactor and compaction simulator. In the compaction 

simulator representation, three different time instants of the same punches’ displacement are 

reported (Zinchuk et al., 2004). 

To quantitatively evaluate the simulation, two key indicators of the ribblets and ribbons quality 

have been used and compared by Zinchuk et al., (2004): the SF and the tensile strength. The 

powder material in the analysis was microcrystalline cellulose. The results showed that ribbons 

and ribblets with similar SFs exhibit good agreement in tensile strength comparison, indicating 

that the method is valid for evaluating roll compaction behaviour. 

 
Figure 1.10. Compacted products of: (a) Roller compactor: ribbons, (b) Compactor 

simulator: ribblets  (Keizer, 2021). 

This method, therefore, has the great advantage of allowing rapid characterization of the 

pharmaceutical powders with minimum consumption of material, i.e., in the order of hundreds 

of milligrams. However, this methodology uses a batch process, i.e., the direct punches 
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compaction, to model a continuous process, i.e., roll compaction. As a result, the simulation is 

not unable to account for some roll compaction variables associated with continuous operation, 

such as the feeding system's inhomogeneous powder transport and shear forces on the roll 

surface (Zinchuk et al., 2004). 

 



 

 



 

 

Chapter 2 

Roll compaction modelling 

The Johanson model, which is used in this Thesis to characterise the behaviour of 

pharmaceutical powders during the roll compaction process, is introduced in this chapter. The 

physical and mathematical theory of the model and its capability to predict the pressure exerted 

by the rolls are explained. After that, the theory of the mass correction factor is introduced, 

which is designed to account for differences between estimated roll pressures and measured 

simulator ones. This constitutes the base of the proposed methodology for accelerating 

development operations. 

 Johanson (1965) model 

Over the years, numerous theoretical models have been developed to explore the mechanics of 

roll compaction and predict the quality of the resulting compacts. In 1965, Johanson introduced 

a rolling theory for granular solids. It was the first mathematical model for predicting the extent 

of the compression region and the pressure distribution after the powder are gripped by the 

rolls. Following this, Katashinkii (1986) utilized the slab method to analyse the nip region, 

enabling the prediction of pressure distribution and roll separating force, based on an analysis 

of metal rolling operations (Reynolds et al., 2010). Both the Johanson model and the slab model 

are one-dimensional models. In pursuit of more comprehensive insights, researchers have 

proposed two- and three-dimensional models for roll compaction, focusing on finite element 

methods (FEM) and discrete element methods (DEM). These numerical approaches offer the 

advantage of providing detailed and realistic representations of the roll compaction process by 

considering various material properties, geometries, and particle-particle interactions. 

However, both FEM and DEM come with inherent limitations, including computational 

complexity, challenges in calibration, numerical issues, and the requirement for accurate 

material properties to implement the simulations (Salman et al., 2006). 

The Johanson model's ongoing popularity in roll compaction modelling can be ascribed to a 

number of factors. Firstly, it provides valuable insights into the compaction process, 

considering density packing and stress relaxation mechanisms, thereby offering a 

comprehensive understanding of the phenomenon. Secondly, the model delivers reasonably 

accurate predictions of critical process parameters, further enhancing its appeal for practical 
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applications. Furthermore, the Johanson model has demonstrated strong agreement with 

experimental data across a wide range of pharmaceutical materials and settings. Because of its 

broad use, it has become an extremely useful tool for process control and scale-up research. 

Additionally, its relatively straightforward implementation makes it accessible to researchers 

and engineers without extensive computational expertise, setting it apart from more complex 

numerical methods like FEM or DEM.  

The Johanson model provides predictions of the roll normal stress distribution, roll torque and 

force, nip angle, i.e., the angular location along the roll surface at which powder begins to move 

at the velocity of the rolls and ribbon density at the roll gap. Its predictive capability reduces 

costs and time, minimizing experimental trials, thus, enabling one to focus on promising process 

conditions. It aids in the design of robust procedures and high-quality pharmaceutical products 

by improving understanding of roll compaction mechanics. Furthermore, the model predicts 

ribbon density and porosity, allowing for better process control and uniformity during 

production. 

In his paper, Johanson divided the zone between the rolls into two regions, as shown in Figure 

1.4:  

i) the slip region, where the slip occurs along the roll surface 

ii) the nip region, where a no-slip boundary condition applies.  

The transition from slip to nonslip region defines the nip angle 𝛼. The zone beyond the 

minimum roll gap is usually defined as the release region in which the stresses are relieved and 

the compacts were extruded from the system. 

2.1.1  Pressure distribution in the slip region  

To describe the powder behaviour in the slip region, Johanson developed its model on the basis 

of the Jenike and Shield (1959) criterion for steady-state particle flow in silo and hopper. The 

roll compacted material is assumed to be isotropic, frictional, cohesive and compressible and 

also to obey the effective yield function proposed by Jenike and Shield (1959) (Salman et al., 

2006). The latter was used by Johanson to represent the plane-strain and plane stress condition 

of the granular solid between the rolls. The effective yield function for plane strain and plane 

stress condition of the powder material between the rolls can be represented in Figure 2.1, where 

𝛿𝐸 is the effective angle of friction, 𝜙𝑊 is the angle of wall friction and 𝜈 is the acute angle 

between the tangent to the roll surface and the direction of the major principal stress 𝜎1 (Mansa, 

2006). The effective angle of friction 𝛿𝐸and the angle of wall friction 𝜙𝑊 are material properties 

that can be experimentally measured by means of a ring shear test. 
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Figure 2.1.  Jenike–Shield yield criterion for the slip region, with the effective and wall yield 

loci. 

The circle represents the Mohr’s circle, which is a method for representing the steady state 

stress in a material as function of that material. Every point on the circle represents a 

combination of normal stress 𝜎 and shear stress 𝜏 on some plane. The two planes of most 

interest are the planes on which the shear stress is zero, which are known as the major principal 

plane and the minor principal plane. The stresses acting on these planes are known as the major 

principal stress 𝜎1 and the minor principal stress 𝜎3. By means of these two stresses the effective 

yield equation can be written as (Mansa, 2006): 

 
sin 𝛿𝐸 =

𝜎1 − 𝜎3

𝜎1 + 𝜎3
 (2.1) 

At the roll surface, the relationship between the tangential and the normal forces is given by the 

wall yield locus, as reported in Figure 2.1, where the shear stress and the normal stress at the 

surface of the rollers are described by Point A. The angle of wall friction 𝜙𝑊 describes this 

locus but, for calculation purposes, it is more convenient to use the acute angle 𝜈 (Mansa, 2006): 

 
2𝜈 = 𝜋 − arcsin [

sin𝜙𝑊

sin 𝛿𝐸
] − 𝜙𝑊 (2.2) 

Considering now the pressure gradient 𝑑𝜎/𝑑𝑥, where 𝑥 is the vertical axis, as shown in Figure. 

2.2. Assuming slip occurs along the roll face, 𝑑𝜎/𝑑𝑥 would be determined by (2.2) and the 

Jenike-Shield yield criterion. A first-order approximation for 𝑑𝜎/𝑑𝑥 is (Johanson, 1965) : 

 
𝑑𝜎

𝑑𝑥
|
𝑆𝑙𝑖𝑝

=
4𝜎 (

𝜋
2 − 𝜃 − 𝜈) tan 𝛿𝐸

𝐷
2 [1 +

𝑆
𝐷 − cos 𝜃] [cot(𝐴 − 𝜇) − cot(𝐴 + 𝜇)]

  , (2.3) 

where: 𝜃 is the angular position in radians at the surface of a roll, such that 𝜃 = 0 corresponds 

to the minimum gap, 𝐷 represent the rolls diameter expressed in meters, 𝑥 is the distance 

upstream from the roll gap and the parameter 𝐴 is given by: 
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𝐴 =  
𝜃 + 𝜈 +

𝜋
2

2
  . (2.4) 

In (2.3) 𝜇 represents the friction coefficient of the material and it is given by: 

 
𝜇 =  

𝜋

4
− 

𝛿𝐸

2
  . (2.5) 

 
Figure 2.2. Region of nip in the roller compactor, where the element of volume V undergo 

compaction (Mansa, 2006).  

2.1.2  Pressure distribution in the nip region  

For angles smaller than the nip angle, i.e., the no-slip region, Johanson argues that the Jenike-

Shield yield behaviour no longer applies (Nagy and El Hagrasy, 2020). Because there is no slip 

along the roll surface in the nip zone, the powder must be compressed to the final roll gap 

dimension. This means that a volume 𝑉𝛼, as reported in Figure 2.2, must be compressed to a 

volume 𝑉𝜃 between the same arc-length segments. Continuity requires that the bulk densities 

𝜌𝛼 and 𝜌𝜃 in the volumes 𝑉𝛼 and 𝑉𝜃 be related by: 

 
 𝑉𝜃𝜌𝜃 = 𝑉𝛼𝜌𝛼  ⟹  

𝜌𝛼

𝜌𝜃
=

𝑉𝜃

𝑉𝛼
  . (2.6) 

The pressure 𝜎𝜃 at any angle 𝜃 < 𝛼 can be determined as a function of 𝜎𝛼, that corresponds to 

the pressure at an angle 𝜃 = 𝛼, by adopting the pressure-density relationship. Based on 

empirical evidence, Johanson stated that for increasing pressures the log density is a linear 

function of log pressure: 

 
 
𝜎𝛼

𝜎𝜃
= (

𝜌𝛼

𝜌𝜃
)
𝐾

, (2.7) 



Roll compaction modelling  23 

 

 

where 𝐾 is the compressibility constant, which is a property of the material where small 𝐾 

values indicate very compressible materials and large 𝐾 values indicate incompressible 

materials (Mansa, 2006). The powder compressibility 𝐾 is defined as the reciprocal of the slope 

of the linear trend of the pressure profile in a double-log diagram, as shown in Figure 2.3. 

 
Figure 2.3. Linear function used to describe the trend of log10 of density against log10 of 

pressure of experimental data points (blue dots). 

Substituting (2.6) into (2.7) gives a normal stress-volume relationship: 

 
 
𝜎𝜃

𝜎𝛼
= (

𝑉𝛼

𝑉𝜃
)
𝐾

. (2.8) 

For smooth roll surface, the volume of powder 𝑉𝜃 between the arc-lengths segment 𝐿 is: 

 𝑉𝜃 =  𝐿 𝑊[𝑆 + 𝐷(1 − cos 𝜃)] cos 𝜃 , (2.9) 

where 𝑊 is the roll width expressed in meters. Combining (2.8) and (2.9) leads to: 

 

𝜎𝜃 = 𝜎𝛼 [
(1 +

𝑆
𝐷 − cos 𝛼) cos 𝛼

(1 +
𝑆
𝐷 − cos 𝜃) cos 𝜃

]

𝐾

 . (2.10) 

As a result, if the nip angle is known, the pressure distribution between the rolls may be 

calculated. Eq. (2.10) is only applicable for angles 𝜃 < 𝛼.When slip does not occur along the 

roll surface, pressure 𝜎 is given by (2.9) and the pressure gradient is (Johanson, 1965): 

 
𝑑𝜎

𝑑𝑥
|
𝑁𝑖𝑝

=
𝐾𝜎 (2 cos 𝜃 − 1 −

𝑆
𝐷) tan 𝜃

𝐷
2 [(1 +

𝑆
𝐷 − cos 𝜃) cos 𝜃]

 . (2.11) 

This pressure gradient is zero for angles 𝜃 = 0° and for 𝜃 = 60°. 
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2.1.3  Determination of the nip angle  

Johanson (1965) proposed that the nip angle can be determined by finding the angle at which 

the pressure gradients for the slip and no-slip conditions were equal. Hence, the nip angle can 

be determined by equating (2.3) and (2.11) and solving for 𝜃 = 𝛼: 

 
4𝜎 (

𝜋
2 − 𝜃 − 𝜈) tan 𝛿𝐸

𝐷
2 [1 +

𝑆
𝐷 − cos 𝜃] [cot(𝐴 − 𝜇) − cot(𝐴 + 𝜇)]

=
𝐾𝜎 (2 cos 𝜃 − 1 −

𝑆
𝐷) tan 𝜃

𝐷
2 [(1 +

𝑆
𝐷 − cos 𝜃) cos 𝜃]

 . (2.12) 

The nonlinear equation (2.12) must be solved numerically. The intersection of the two vertical 

pressure gradients, which coincide with the angular position equal to 𝛼, is shown in Figure 2.4. 

 
Figure 2.4. Vertical pressure gradient versus angular position for both slip and no slip 

condition (Mansa, 2006). 

The solid line in the Figure 2.4 represents a typical pressure gradient profile given by (2.3) for 

the condition of slip along the roll surface. When 𝜃 = 𝜃ℎ, which represents the upper boundary 

of the slip region, as shown in Figure 1.4, the pressure gradient 𝑑𝜎/𝑑𝑥 is zero. On the other 

hand, when slip does not occur along the roll surface, the pressure gradient is provided by 

(2.11), which is depicted in Figure 2.4 as a dashed line.  

Considering how (2.12) is expressed, it results that the nip angle value depends on the 

compressibility constant 𝐾, on the material flowability properties, 𝛿𝐸 and 𝜙𝑊, and on the roller 

compactor machine settings 𝐷 and 𝑆. However, the impact of the geometry parameters on the 

value of 𝛼 is almost negligible, provided that 𝑆/𝐷 ≪ 1 . The effect of material properties on 

the value of the nip angle is shown by means of surface plots in Figure 2.5. 

It can be seen that 𝛿𝐸 has a lower effect, while 𝜙𝑊 and 𝐾 have a strong impact on the 

determination of the value of 𝛼. Greater 𝜙𝑊 and  𝐾, wider will be the nip region and so the 

angle from which the powder mixture will start to be compacted by the rolls. 
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Figure 2.5. Change of the nip angle (α) as the function of varying compressibility, wall 

friction angle, and effective angle of internal friction (So et al., 2021).  

2.1.4  Peak pressure and ribbon solid fraction 

Once the nip angle has been determined, the pressure distribution between the rolls can be 

calculated from (2.10). The resulting SF of the ribbon obtained from the roll compaction process 

is determined by the maximum pressure applied to the powder material during compression. In 

practical applications, the peak pressure, denoted as 𝑃𝑚𝑎𝑥, corresponds to the maximum 

pressure exerted on the powder at the minimum roll gap S when 𝜃 = 0, and it can be related to 

the roller force, represented as 𝑅𝑓 [kN], according to the Johanson model: 

 
𝑃𝑚𝑎𝑥 =

2𝑅𝑓

𝑊𝐷𝐹
  , (2.13) 

where 𝐹 is the force factor and it is defined as: 

 

𝐹 = ∫ [
(
𝑆
𝐷)

(1 +
𝑆
𝐷 − cos 𝜃) cos 𝜃

]

𝐾

cos 𝜃 𝑑𝜃
𝜃=𝛼(𝛿𝐸,𝜙𝑊,𝐾)

𝜃=0

 . (2.14) 

This represents a relationship between process parameters (roll force 𝑅𝑓, roll separation 

distance 𝑆), geometric parameters (roll diameter 𝐷, roll width 𝑊) and material properties 

(effective angle of internal friction 𝛿𝐸, angle of wall friction 𝜙𝑊 and compressibility 𝐾 

(Reynolds et al., 2010). Eq. (2.14) implicitly assumes the contributions of the pressure on the 

rolls in the slip region and the release region are negligible. According to (2.14) the peak 

pressure increases as the specific roll force increase while it decreases as the roll gap increases. 

The trend of the peak pressure as function of the two adjustable machine setting parameters is 

shown in Figure 2.6, where data are generated using (2.13) and (2.14): 



26  Chapter 2 

 

 

 
Figure 2.6. Contour plot showing the changes of the peak pressure as function of the specific 

roll force SRF (𝑅𝑓/𝑊), and the minimum roll gap 𝑆. 

Bindhumadhavan et al. (2005) used an instrumented roll compactor fitted with a miniature 

piezoelectric transducer in order to measure the pressure profile normal to the roll surface. They 

found that the pressure distribution is reasonably predicted from Eq. (2.10), although the 

measured pressure increased more strongly than the predicted as the material enters the nip 

region. They also found that the peak pressure applied was very accurately predicted 

(Bindhumadhavan et al., 2005). 

Once the peak pressure is known it can be used to determine the relative density that results 

from the applied pressure of the rolls. Eq. (2.10) is based on a power law relationship between 

material density and pressure. Following this, the relative density or SF of the ribbon 𝛾𝑅, can 

be estimated from the peak pressure as follows:  

 
𝛾𝑅 = 𝛾0𝑃𝑚𝑎𝑥

1
𝐾   , (2.15) 

where 𝛾0 is referred to as the pre-consolidation relative density or pre-consolidation solid 

fraction, which is, similarly to 𝐾, a compaction parameter depending on the material. 𝛾0 and 𝐾 

represent the two model parameters of the Johanson model, whose values have to be calibrated 

using experimental data from roller compactor experiments. Typically, the pre-consolidation 

density 𝛾0 corresponds to the relative density at a reference pressure of 1 MPa (Moroney et al., 

2020).  

After determining the values of 𝛾0 and 𝐾, it becomes possible to construct the compression 

profile that describes the trend of the ribbon SF and the predicted peak pressure, according to 

(2.15). An illustrative example of the roller compactor compression profile is depicted in Figure 

2.7. 
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Figure 2.7. Example of a roller compactor compression profile built according to the 

Johanson model. 

Incorporating (2.13) and (2.14) into (2.15) expresses the relationship between process output 

𝛾𝑅 , and process parameters 𝑅𝑓, 𝑆, 𝐷 and 𝑊, as follows: 

 

𝛾𝑅 = 𝛾0

(

 
 
 
 
 

2𝑅𝑓

𝑊𝐷 ∫ [
(
𝑆
𝐷)

(1 +
𝑆
𝐷 − cos 𝜃) cos 𝜃

]

𝐾

cos 𝜃 𝑑𝜃
𝜃=𝛼(𝛿𝐸,𝜙𝑊,𝐾)

𝜃=0

)

 
 
 
 
 

1
𝐾

. (2.16) 

Note that the equation in this form requires the units of the bracketed term to be in MPa 

(Moroney et al., 2020). 

2.1.5  Assumptions and limits of the Johanson model 

As described in the previous section, the Johanson model comes with certain limitations due to 

its underlying assumptions. Firstly, the material is assumed to be isotropic, frictional, cohesive, 

compressible and to obey the effective yield function proposed by Jenike and Shield (1959). 

When deriving (2.6), it is assumed that: i) the plane strain of the element of volume 𝑉𝜃 remains 

perfectly plane, ii) mass continuity theory holds true, or iii) there is no velocity gradient through 

the ribbon thickness as the element of material moves to minimum gap between the rolls (Bi et 

al., 2014). Additional powder properties used in the model include the effective angle of internal 

friction and the powder-roll friction angle, both of which are assumed constant with relative 

density, which is reasonable at the large stresses expected in a RC (Liu and Wassgren, 2016). 

Moreover, the Johanson model assumes negligible elastic recovery of the ribbon formed during 

the compaction process, thus simplifying the material behaviour by considering minimal or no 

rebound of the particles after compression. This assumption can lead to a discrepancy between 

the predicted SF at the minimum roll gap and the measured one due to the increase in ribbon 
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volume resulting from elastic recovery. Additionally, the model assumes the roll gap to be fully 

filled with powder, neglecting the possibility of air entrapment. In practice, air entrapment can 

occur, significantly affecting the overall densification process and leading to ribbon density and 

porosity variations. 

 Mass correction factor theory 

Despite the fact that the Johanson model is widely and consistently used to characterise roll 

compaction, various investigations have demonstrated that it tends to result in disparities 

between predicted and actual pressure values (Reynolds et al., 2010; Bi et al., 2014; Toson et 

al., 2019; So et al., 2021). In the attempt to validate the Johanson model, especially regarding 

the estimation of peak pressure applied by the rollers, predicted pressure values were compared 

with measurements obtained from uniaxial compaction equipment. Such comparisons, 

however, regularly resulted in disagreements, mainly because of the inaccurate assumption of 

one-dimensional flow of the powder particles within the nip region. According to Bi et al. 

(2014), this assumption is erroneous because the material close to the roll surface moves quicker 

than the material further away from the roll surface in the nip region. The velocity gradient 

gradually decreases as the powder particles move from the nip angle toward the minimum gap, 

as illustrated in Figure 2.8, where particles velocities between the rollers are represented by a 

contour plot from a FEM simulation. 

 
Figure 2.8. Streamwise component of the powder velocity generated from an FEM 

simulation (Liu and Wassgren, 2016). 

The Johanson model assumes that the entire element of powder material moves at the same 

speed as the roll. Consequently, Johanson's rolling theory overestimates the amount of material 

delivered to the minimum roll gap, leading to an overprediction of the maximum roll pressure. 
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In their study, Bi et al. (2014) introduced a mass correction factor 𝑓𝜃 into the mass conservation 

equation in the nip region (2.6). This correction factor was incorporated to address the variation 

in mass within each element caused by multi-dimensional flow: 

  𝑉𝜃𝜌′𝜃 = 𝑓𝜃𝑉𝛼𝜌𝛼  . (2.17) 

The variable that has been corrected using the mass correction factor is represented by the 

symbol with the apex. The introduction of the mass correction factor in (2.17) changes not only 

the stress-density connection but also the stress-volume relationship (Bi et al., 2014): 

 
 
𝜎𝛼

𝜎′𝜃
= (

𝑓𝜃𝜌𝛼

𝜌′𝜃
)
𝐾

= (
𝑉𝜃

𝑓𝜃𝑉𝛼
)
𝐾

. (2.18) 

Combining now (2.18) with (2.10), the resulting pressure in the no-slip region is: 

 

𝜎′𝜃 = 𝜎𝛼 [
𝑓𝜃 (1 +

𝑆
𝐷 − cos 𝛼) cos 𝛼

(1 +
𝑆
𝐷 − cos 𝜃) cos 𝜃

]

𝐾

. (2.19) 

Following the same derivation line, the force factor becomes: 

 

𝐹′ = ∫ [
𝑓0 (

𝑆
𝐷)

(1 +
𝑆
𝐷 − cos 𝜃) cos 𝜃

]

𝐾

cos 𝜃 𝑑𝜃
𝜃=𝛼(𝛿𝐸,𝜙𝑊,𝐾)

𝜃=0

 , (2.20) 

where 𝑓0 is the actual fraction of powder delivered from nip angle 𝛼 to angle 𝜃 = 0, so that the 

force factor from (2.21) can be written as (Bi et al., 2014): 

 

𝐹′ = 𝑓0
𝐾 ∫ [

(
𝑆
𝐷)

(1 +
𝑆
𝐷 − cos 𝜃) cos 𝜃

]

𝐾

cos 𝜃 𝑑𝜃
𝜃=𝛼(𝛿𝐸,𝜙𝑊,𝐾)

𝜃=0

  . (2.21) 

Moving 𝑓0 outside the integral from (2.20) to (2.21), it implicitly assumes that the mass 

correction factor is 𝜃-independent. This assumption has been shown to be incorrect by Liu et 

al. (2016), who performed a roll compaction FEM simulation in which they demonstrate the 

dependence of the mass correction factor on position 𝜃 within the roll compactor. Nevertheless, 

despite the lack of mathematical rigor, the equation proposed by Bi et al. (2014), where the 

correction was presented as a multiplier outside the integral, demonstrated acceptable predictive 

capabilities without necessitating additional simulation efforts, thus enhancing its practical 

applicability (So et al., 2021). 

From (2.21) the peak pressure exerted by the rolls at 𝜃 = 0 can be rewritten as: 

 
𝑃𝑚𝑎𝑥 =

2𝑅𝑓

𝑓0
𝐾𝑊𝐷𝐹

  , (2.22) 

Rearranging (2.22) maximum roll surface pressure after mass correction 𝑃𝑚𝑎𝑥 is derived as 

follow (Bi et al., 2014):  
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 𝑃′𝑚𝑎𝑥 = 𝑓0
𝐾𝑃𝑚𝑎𝑥   . (2.23) 

The pressures predicted by the Johanson model 𝑃𝑚𝑎𝑥 model and the pressures experimentally 

measured by a uniaxial compactor 𝑃′𝑚𝑎𝑥 for the same SF obtained in the compacted product 

can now be related through (2.23). This correction, in fact, accounts for the overprediction of 

the exerted roll pressure for the same values of SF. In this Thesis, (2.23) is revised to explicitly 

state the CS pressure as: 

 𝑃𝐶𝑆 = 𝑓0
𝐾𝑃𝑚𝑎𝑥  . (2.24) 

To account for pressure overprediction 𝑓0 has to assumed values lower than 1. In their case 

study, Bi et al. (2014) employed the mass correction factor theory, investigating three different 

active pharmaceutical powder mixtures on both the roller compactor and the uniaxial 

compactor. The mass correction factor 𝑓0 was used to explain the differences in pressure for the 

experimental obtained data. The absolute values of 𝑓0 linking the different pressures of each 

roller compactor experimental data ranged between 0.86 and 0.89. This indicated that only 86% 

to 89% of the powder material, as claimed by the Johanson model, was delivered at the angle 

𝜃 = 0. Additionally, their research revealed that the mean values of the factor 𝑓0 derived for 

the three powder mixtures were similar. 

This Thesis aims to analyse the pressure differences between experimental results obtained 

from the RC and the CS. The bridging element that will allow a relationship between the two 

pressures to be created is the mass correction factor. Initially, an exploratory analysis will be 

made to examine the values of 𝑓0 required to link the different pressures for each analysed 

powder mixture, as done in previous literature work. Based on this analysis, a methodology, 

based on the mass correction factor, for predicting roller compactor pressures based purely on 

simulator data will be proposed. 

 



 

 

Chapter 3 

Materials and methods 

In this chapter, a comprehensive presentation of the pharmaceutical powder mixtures used in 

this project will be provided, along with their specific compositions and characterizations. 

Subsequently, the experimental procedures conducted by the partner company on the RC and 

on the CS will be described in detail. The available datasets will be presented, together with the 

methods employed to obtain the data. Finally, the methodologies used to estimate the 

parameters, as well as the confidence intervals associated with them, will be thoroughly 

examined in relation to the models describing powder compaction on both the RC and the 

simulator. 

 Powder mixture 

In this Thesis, seven different pharmaceutical powder mixtures were considered. Four of them 

were placebo formulations, i.e., they did not contain any APIs. They were designed to resemble 

a real drug in appearance, but had no therapeutic effects on the body. The use of placebo 

formulations has relevance in clinical studies since it allows for the assessment of the 

effectiveness of new drugs. The remaining three powder combinations, on the other hand, 

contained APIs amounts. However, while the precise weight compositions were known, the 

specific mixture components themselves were not. 

Placebo formulations were made of different excipients, which are inert or inactive powder 

materials added to ease the tabletting operation and to improve the quality of the tablet. 

However, the term excipient includes multiple kinds of particle components with distinct 

functions: diluent, binders, lubricants, disintegrants, and glidants. The four placebo 

formulations in the analysis contained four different commonly used excipients: 

• Microcrystalline cellulose (MCC): Microcrystalline cellulose is a purified, partially 

depolymerised cellulose that occurs as a white, odourless, tasteless, crystalline powder 

composed of porous particles. MCC is widely used in the pharmaceutical industry as an 

ideal binder, due to its excellent compactability under a wide range of compaction pressures, 

and its resistance to organic and non-organic contaminants (Yu, 2013). Microcrystalline 

cellulose, like the following excipients, is commercially available with different grades 

according to its method of manufacture, particle size, moisture content, flow, and other 
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physical properties (Rowe et al., 2009). MCC Avicel® PH 102 was the specific grade used 

in this Thesis, and it is characterized by a nominal mean particle size of 100 µm. Because 

of its deformation behaviour under compaction pressure, microcrystalline cellulose is 

considered a plastic material.  

• Anhydrous lactose: Anhydrous lactose is a disaccharide sugar, that occurs as white to off-

white crystalline particles or powder. It is widely used in tablet manufacturing for its filler 

and binder properties and also because of its low moisture content. Lactose anhydrous 

Supertab® AN 21 was the specific grade of this excipient used in this Thesis. It presents a 

nominal mean particle size equal to ≈ 150 µm (Rowe et al., 2009). Differently from MCC, 

lactose is considered a brittle material because of its fragile deformation. 

• Mannitol: Mannitol is a naturally occurring sugar alcohol that occurs as a white, odourless, 

crystalline powder. It is mostly utilised in the pharmaceutical industry as a diluent for tablet 

drugs, where it is particularly advantageous because it is not hygroscopic and therefore may 

be used with moisture-sensitive APIs. In this work, Mannitol Pearlitol® 200SD was used. 

Being a spray-dried grade of mannitol, it presents a larger surface and better compactability 

compared to unprocessed mannitol. Similarly to lactose, the mean particle size of mannitol 

200 SD is equal to ≈ 170 µm (Perez-Gandarillas, 2016). Similarly to anhydrous lactose, 

spry-dried mannitol possesses a brittle behaviour. 

• Magnesium stearate (MgSt): Magnesium stearate is primarily used in tablet manufacture as 

a lubricant. Its concentration in the formulation is kept usually between 0.25% and 5.0% 

(Rowe et al., 2009).  

 
Figure 3.1. SEM imagines the four excipients: (a) microcrystalline cellulose, Avicel PH 102; 

(b) mannitol, Pearlitol 200 DS; (c) Lactose anhydrous SuperTab 21AN; (d) Magnesium 

Stearate (Rowe et al., 2009; https://www.roquette.com/innovation-hub/pharma/product-

profile-pages/pearlitol-200sd-mannitol ). 
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The scanning electron microscope (SEM) imagines of all the aforementioned excipients are 

shown in Figure 3.1. 

All the seven pharmaceutical blends that were used in this Thesis are reported, with their 

composition, in Table 3.1. The term “formulation” is used to refer to the placebo powder 

mixture, while the term “compound” refers to powder blends containing APIs. 

Table 3.1. List of materials and their compositions.  

Material Composition (w/w%) 

Formulation 1 

70% Lactose 

29% MCC 

1% MgSt 

Formulation 2 

50% Lactose 

49% MCC 

1% MgSt 

Formulation 3 

30% Lactose 

69% MCC 

1% MgSt 

Formulation 4 

50% Mannitol 

49% MCC 

1% MgSt 

Compound A 
25.4% API1 

74.6% Excipients 

Compound B 
25% API2 

75% Excipients 

Compound C 
87.5% API3 

12.5% Excipients 

 

The excipients in the first three formulations were the same; however, their weight percentages 

differed. Formulation 4, on the other hand, was the only placebo formulation that contained 

Mannitol. Compound C stood out among the active mixes when compared to the others, mainly 

because of the amount of API it contained. To distinguish the different APIs contained in the 

three Compound powder blends, a numerical subscript is used in Table 3.1 (API1, API2, API3). 

The composition and pharmaceutical grade of excipients in the active compounds may differ 

from those contained in the four placebo formulations.  

3.1.1  Powder characterization 

For the specific scopes of this Thesis, the powder blends were characterized for material 

properties like true density, the effective angle of internal friction, and the wall friction angle. 

This information was strictly required in order to solve the Johanson model, as in (2.16), and to 

calculate the SF, eq. (1.1), of the compacted products. 
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• True density: Prior to compaction the true density of the powder blends was obtained using 

a helium pycnometer (AccuPyc® II 1340, Micromeritics, Norcross, GA, USA).  

• Wall friction angle: The wall friction angle was measured using a ring shear tester, where 

the type of steel and the surface of the disc were the same as those of the roll surface of the 

RC. 

• Effective angle of internal friction: Effective angle of internal friction of the powder blends 

was also measured using the ring shear tester.  

Table 3.2 reports all the results of the material characterization analysis. 

Table 3.2. Results of powder blends characterisation. 

Material 
True density  

[g/cm3] 

Wall friction angle, 

𝝓𝒘 [°] 

Effective angle of 

internal friction, 𝜹𝑬 [°] 

Formulation 1 1.553 12.5 38.0 

Formulation 2 1.562 9.0 37.5 

Formulation 3 1.571 11.0 44.0 

Formulation 4 1.547 16.0 51.0 

Compound A 1.470 39.0 44.0 

Compound B 1.529 23.2 46.8 

Compound C 1.390 39.8 44.6 

 Roller compactor 

3.2.1  Gerteis Mini-Pactor® 

In the present Thesis, the experimental results regarding the roll compaction were performed 

using the Gerties Mini-Pactor® (Gerteis Machinen + Processengineering AG, Jona, 

Switzerland). Due to its dimension and the powder quantity that it can work, Mini-Pactor is a 

RC used for mainly for laboratory development and pilot projects. The theoretical maximum 

throughput declared by the company is 100 kg/h, however, the maximum throughput that can 

be achieved during operation is typically in the range of 50–70 kg/h (Bano et al., 2022). Full-

scale production RC can reach throughput capacity up to 400 kg/h. The equipment is shown in 

Figure 3.2. 

The Gerteis Mini-Pactor® was equipped with a horizontally positioned feeding screw and an 

inclined tamping screw. The rim-roll sealing system, as illustrated in Section §1.2.4.4, has been 

adopted for the experimental campaigns. As for the specific choice of roll surface, the knurled 

type was selected. These specific layouts are shown in Figure 3.3. 

The rolls presented a diameter equal to 250 mm and a width of 25 mm; and they were set up 

with the inclined layout, specifically with an angle of 30° corresponding to the horizontal plane.  
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Figure 3.2. (https://www.pharmaceutical-networking.com/gerteis-mini-pactor/ ) Gerteis 

Mini-Pactor®. 

The three machine settings that can be adjusted are the roll gap, which has a range of 1 to 6 

mm, the specific roll force, which has a range of 1 to 20 kN/cm, and the roller speed, which has 

a range of 1 to 30 rpm.  

 
Figure 3.3. Roller compactor specific design: (a) rim roll sealing system;(b) knurdel rolls 

(Szappanos-Csordas, 2018).  

Multiple runs were carried out at various combinations of machine settings in order to 

investigate the behaviour of the compacted powder at various pressures exerted. The roll speed 

was kept constant at 2 rpm, while the specific roll force and the roll gap were adjusted 

depending on the run. Typically, for conducting an experimental campaign involving four 

different conditions, i.e., four runs, at least of 2.5 kg of material is required. The summary of 

all roller compactor experimental campaigns is reported in Table 3.3. 

https://www.pharmaceutical-networking.com/gerteis-mini-pactor/
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Table 3.3. Roll compaction experiments conducted for each material. 

Material Dataset ID 
Specific roll force 

[kN/cm] 
Roll gap [mm] Run repetition 

Formulation 1 RC-F1 

3.0 

6.0 

9.0 

12.0 

4.2 

2 

2 

2 

2 

4 

1 

1 

1 

1 

1 

Formulation 2 

Formulation 3 

Formulation 4 

RC-F2 

RC-F3 

RC-F4 

3.0 

6.0 

9.0 

12.0 

4.2 

8.5 

3.0 

6.0 

2 

2 

2 

2 

4 

4 

4 

4 

1 

1 

1 

1 

1 

1 

1 

1 

Compound A RC-CA 

4.0 

6.0 

8.0 

5.0 

7.5 

10.0 

14.0 

2 

2 

2 

3 

3 

3 

3 

2 

11 

8 

2 

2 

2 

2 

Compound B RC-CB 

3.5 

5.5 

10.0 

6.5 

2 

2 

2 

3 

1 

7 

1 

1 

Compound C RC-CC 

1.0 

1.5 

2.0 

2.5 

3.0 

3.5 

3.8 

4.0 

4.5 

4.5 

2 

2 

2 

2 

2 

2 

2 

2 

2 

3 

1 

2 

3 

2 

3 

2 

3 

2 

4 

1 

 

Formulations 2,3 and 4 were tested with the same total number of runs and with the same 

machine setting combinations. Formulation 1, on the other hand, had a slightly different testing 

process, as it was evaluated using only the first five machine setting combinations of the other 

formulations. Moreover, Compounds A, B and C were investigated using completely different 

experimental protocols, in terms of machine parameter pairings that were adjusted during their 

experimental campaign. A total of 27 runs were done for Compound A, adjusting 8 distinct 

combinations of machine settings, with at least two runs performed for each. As a result, six 

ribbon samples were available for each combination of machine settings. Regarding Compound 

B, four combinations of machine parameters were used, but, in only one of them, multiple 
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repetitions were performed.  Finally, 23 runs were carried out for compound C, with up to 10 

distinct combinations of machine parameters being adjusted. It should be noted that these 

combinations showed specific roller force values that were close to one another. The addition 

of multiple repetitions within a single run also provides the opportunity to investigate and 

analyse the process variability. 

3.2.2  Ribbon solid fraction 

Three samples were obtained from the compacted ribbon for each run to determine the envelope 

density and hence the SF of the ribbon. Rectangular samples with dimensions of 25 by 10 mm 

were extracted from the ribbon for the envelope density measurement.  The three independent 

samples were taken at different segments of the ribbon to account for the potential variability 

of SF over the width and length of the ribbon. The envelope density of each sample was 

measured using a powder pycnometer (GeoPyc® 1365, Micromeritics, Norcross, GA, USA) to 

calculate the SF of the ribbon, as indicated in (1.1). Because the sample were extracted from 

the ribbon after compaction, this measurement is referred to as "out-of-die." This term is used 

to distinguish between SF samples obtained at the precise moment of maximum compaction 

and those obtained after compaction. Because of the influence of elastic recovery in out-of-die 

samples, distinguishing between the two measurements is critical. When pressure is released, 

the compacted material expands, resulting in an increase in volume and, as a result, a decrease 

in bulk density and SF. To ensure reliable comparisons, it is important to consistently specify 

whether measurements are performed in-die or out-of-die. 

By having three samples available for each run, it becomes possible to calculate the 

corresponding standard deviation, which enables the analysis of intra-run variability. The RC 

dataset for Compound C only contains the average values corresponding to each run. 

All the measured values of the ribbon SF for each RC dataset are reported in the Tables in 

Section §A.1 of the Appendix.  

 Compactor simulator  

During this project, the compaction behaviour of powder mixtures was studied by running more 

than a single experimental campaign for each of them on the CS. As will be elucidated in this 

section, the experimental campaigns also differed in the diameters of the punches used for the 

simulator. Furthermore, Compound C was investigated using a distinct CS, which employed a 

different modality for moving the punches compared to the method utilized for other powder 

mixtures. For this reason, the results concerning this specific powder blend will be treated 

separately from those tested on the same piece of equipment. The two different CS are shown 

in Figure 3.4. 
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Figure 3.4. (https://www.medelpharm.com/instruments/instruments-

products.html#styl_one_evolution ; https://www.merlin-pc.com/ ) Compactor simulators 

used during the experimental part: (a) Styl'One®;(b) Phoenix®.  

3.3.1  Phoenix®  

The initial CS datasets came from an experimental campaign carried out by a third-party 

company (Merlin Powder Characterisation, Brierley Hill, UK). The reason behind this was an 

initial mechanical issue with the GSK® simulator, which required the use of equipment from a 

third-party company. The equipment used was the Phoenix® (Phoenix Calibration & Services 

Ltd, Bobbington, UK) compactor simulator equipped with round punches with tooling 

diameters equal to 18 mm. In each test, an automated process filled the CS die with a specific 

amount of the powder mixture. The pressure was applied through a sinusoidal profile using two 

counter-moving punches, as illustrated in Section §1.3. In this experimental campaign, only 

Formulations 2,3 and 4 were tested. The summary of the 18mm Phoenix® CS experimental 

campaign is reported in Table 3.4.  

Table 3.4. Summary table of the CS experimental campaign performed on the 

Phoenix® with 18mm tooling diameters. 

Material Dataset ID 
Pressure range 

[MPa] 

Solid fraction range 

[-] 

No. of 

experiments 

Formulation 2 CS18-F2 19-122 0.58-0.83 10 

Formulation 3 CS18-F3 19-145 0.54-0.85 25 

Formulation 4 CS18-F4 18-117 0.56-0.79 25 

 

Formulation 2 was tested at only two treatment levels, where five repetitions were performed 

for each. Formulations 3 and 4, instead, were investigated at three treatment levels, where ten 

repetitions were performed at the edge levels and 5 at the central level. 

https://www.medelpharm.com/instruments/instruments-products.html#styl_one_evolution
https://www.medelpharm.com/instruments/instruments-products.html#styl_one_evolution
https://www.merlin-pc.com/
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A second experimental using the Phoenix® CS was performed internally in GSK®. Through 

this experimental campaign, all powder mixtures, except Compound C, were tested using round 

punches with a diameter of 10 mm. Because of the smaller diameter diameters, this 

configuration has an additional advantage in that it requires fewer materials during the 

experimental phase. Approximately 250 mg of powder mixture is required for a single test using 

this setup. The summary of the 10mm Styl'One® CS experimental campaign is reported in 

Table 3.5. 

Table 3.5. Summary table of the CS experimental campaign performed on the 

Phoenix® with 10mm tooling diameter. 

Material Dataset ID 
Pressure range 

[MPa] 

Solid fraction range 

[-] 

No. of 

experiments 

Formulation 1 CS10-F1 18-192 0.61-0.85 40 

Formulation 2 CS10-F2 22-220 0.58-0.90 35 

Formulation 3 CS10-F3 22-195 0.56-0.87 35 

Formulation 4 CS10-F4 23-193 0.56-0.85 35 

Compound A CS10-CA 18-163 0.57-0.82 30 

Compound B CS10-CB 28-249 0.62-0.87 40 

 

For each powder blend, the total number of experiments were performed among various 

treatment levels. Within each treatment level, five experiments were carried out. The number 

of experiments and pressure ranges evaluated for all formulations is substantially larger than in 

the 18 mm CS datasets, enabling the best description of the behaviour of the powder being 

compressed. Given that an experimental campaign on CS normally includes 35 tests, each of 

which consumes roughly 250 mg of material, the total material consumption on a simulator 

with a punch diameter of 10 mm is approximately 9 grams. In comparison, as pointed out in the 

previous section, an experimental campaign on RC requires a minimum of 8 runs, with an 

average of 2.5 kg of material utilized per 4 runs. Consequently, a complete experimental 

campaign on the RC necessitates at least about 5 kg of material. This implies that the material 

used for a full experimental campaign on the RC is approximately 550 times greater than what 

is needed to complete an experimental campaign on the CS. 

Compound A and B were again tested using the Phoenix® CS but with a further size of tooling 

diameter, i.e., 21.85 mm. With this setup, more material, compared to the 10 mm punches 

diameter layout, is required for a single test; in fact, 700 mg of powder is required. These 

datasets are summarized in Table 3.6. 

The pressure range explored in the 21.85mm simulator datasets is substantially narrower than 

the pressure range investigated in the 10 and 18 mm datasets, resulting in much smaller intervals 

of the produced SF. Consequently, these datasets, as they are, do not provide an adequate 

understanding of the compressibility behaviour of a specific powder. 
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Table 3.6. Summary table of the CS experimental campaign performed on the 

Phoenix® with 21.85mm tooling diameter. 

Material Dataset ID 
Pressure range 

[MPa] 

Solid fraction range 

[-] 

No. of 

experiments 

Compound A CS21-CA 25-67 0.63-0.75 34 

Compound B CS21-CB 34-67 0.64-0.70 38 

 

3.3.2  Styl'One®  

Lastly, Compound C was investigated using a Styl'One® (Medelpharm, France) compactor 

simulator, equipped with 11.29 mm tooling diameters. In contrast to previous campaigns on the 

Phoenix® CS, where pressure was applied with a sinusoidal profile utilising two counter-

moving punches, in this instance a single axial arrangement was used. This indicated that one 

punch was moving and compacting the powder mixtures while the other remained still. Due to 

its experimental campaign with a distinct piece of equipment and a different modality, 

Compound C was treated separately from all the other results obtained from the Phoenix® 

simulator. The Summary of the 11.29 mm Styl'One® CS experimental campaign is reported in 

Table 3.7. 

Table 3.7. Summary table of the CS experimental campaign performed on the 

Styl'One® with 11.29mm tooling diameters. 

Material Dataset ID 
Pressure range 

[MPa] 

Solid fraction range 

[-] 

No. of 

experiments 

Compound C CS11-CC 28-176 0.73-0.94 105 

 

As can be seen, for Compound C, a large number of experiments were conducted, and nearly 

all of these were distributed throughout 7 distinct treatment levels. 

 
Figure 3.5. Graphical representation of the pressure range and experiment distribution of 

the various compactor simulator datasets. 
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Figure 3.5 shows a graphical representation of all the CS experimental campaigns to help with 

visualization and highlight the differences in pressure range between the various experimented 

blends. The pressure range explored by the experimental campaign varies between the different 

powder mixtures and between treatment levels.  

3.3.3  Ribblet solid fraction 

Once the powder blends were compacted by the CS, the samples were ejected from the die by 

the lower punch. The envelope density of the produced ribblets was measured using the 

GeoPyc® 1365 powder pycnometer. Similarly to the density measurement in the RC, this 

measurement was also conducted out-of-die. Consequently, the impact of elastic recovery, 

which was consistent across both equipment, can be disregarded. All the measured values of 

the ribblets SF for each CS dataset are reported in the Tables in Section §A.2 of the Appendix.  

 Johanson model parameters estimation 

The estimation of the pressure exerted by the rolls required the values of the two Johanson 

model parameter, 𝛾0𝑅𝐶
 and 𝐾𝑅𝐶, as reported in (2.13) and (2.14). 𝛾0𝑅𝐶

 and 𝐾𝑅𝐶 are material-

dependent parameters, so they are different for each powder mixture. The introduction of 

subscripts associated with the 𝛾0 and 𝐾 allows for distinction based on the equipment from 

which these parameters have been estimated. Estimation of these parameters required utilizing 

experimental data on the SF of the ribbon. By employing these results, along with the 

corresponding machine settings used to obtain them, the model parameters were adjusted to 

better align with the experimental outcomes. A challenging aspect of estimating the Johanson 

model parameters was that it did not involve simply fitting a curve or model to given 

experimental points in the SF-pressure coordinates. In fact, being involved also in the 

computation of the nip angle and of the peak pressure, the x-coordinates of the experimental 

points on the SF-pressure diagram changed as 𝐾𝑅𝐶 changed. A customized parameter estimation 

algorithm was necessary to estimate the Johanson model parameters. The iterative 

computational procedure depicted in Figure 3.6 was employed for this purpose. 

The input data that the computational procedure required were the following: 

• Equipment geometry information: roll diameter D, and rolls width W. 

• Flowability properties of the powder mixture: effective angle of internal friction 𝛿𝐸, and 

wall angle of friction 𝜙𝑊. 

• RC experimental data: experimental ribbon solid fraction 𝛾𝑅
𝑒𝑥𝑝 , roll gap 𝑆 and roll force 

𝑆𝑅𝐹. 
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• First guess of the Johanson model parameters: 𝛾0𝑅𝐶
 and 𝐾𝑅𝐶. The initial parameter 

values for 𝛾0𝑅𝐶
 and 𝐾𝑅𝐶 were chosen based on their physical interpretation and literature 

results. Specifically, the guess values were set at 𝛾0𝑅𝐶
 = 0.3 and 𝐾𝑅𝐶 = 5.0. 

 

 
Figure 3.6. Flow chart of the Johanson model parameter estimation procedure. 

Once all this information was available, the iterative computational procedure worked as 

follows: 

i. For each RC experimental run, the values of the nip angles 𝛼, were determined by 

estimating them using the nonlinear equation (2.12). This was necessary because the nip 

angle is a function of the set roll gap. At the first iteration, the compressibility values 

used is the one on the initial guess. Eq. (2.12) was solved using the fsolved Matlab® 

function. 

ii. Utilizing the estimated nip angle values obtained at step (i.), the peak pressure values 

for each experimental run, hence each machine setting combination were calculated 

using (2.13) and (2.14). Also, at this stage, the compressibility constant used at the first 

iteration was the initially guessed one. The integral function of (2.14) was solved using 

the int Matlab® function. 
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iii. At this step, an estimation of the peak pressure was obtained for each run, which was 

associated with the experimental ribbon SFs. By utilizing the values of the Johanson 

model parameters, the calculated ribbon SFs were computed for each exerted pressure 

according to equation (2.15).  

iv. By utilizing the obtained values of the calculated ribbon SF and the experimental ones, 

the objective function at this iteration was computed. The specific formulation of the 

objective function will be presented in Section §3.4.1. Essentially, the objective function 

aimed to find the values of 𝛾0𝑅𝐶
 and 𝐾𝑅𝐶 that resulted in the best fit between the 

calculated and experimental ribbon SFs. 

v. The objective function values from the current iteration were compared to those from 

the previous iteration to calculate the difference. This difference indicates how close the 

objective function was to reach a minimum. Finding the objective function minimum 

means identifying the parameter values that resulted in the most precise calculation of 

the ribbon SF in relation to the experimental data. This computation only took place 

from the second iteration since no comparison was possible in the first iteration. 

vi. The objective function difference, between the present iteration and the previous one, 

was compared to the tolerance, which value was set to 10-6. If the objective function 

difference was greater than the tolerance, the values of 𝛾0𝑅𝐶
 and 𝐾𝑅𝐶 were modified and 

the computational procedure restarted from step (i.). The value of 𝛾0𝑅𝐶
 and 𝐾𝑅𝐶 of the 

subsequent iteration were adjusted based on the gradient of the objective function. 

Specifically, the new parameter values were chosen to ensure a decrease in the objective 

function, as indicated by the computed gradient. This adjustment aimed at minimizing 

the objective function, thus improving the overall optimization process. 

vii. The values of the Johanson model parameters were estimated and the Hessian matrix at 

the final iteration was computed. The Hessian matrix is the second-order gradient matrix 

and it contains information about the variability of the objective function with respect 

to the two parameters. In fact, from the Hessian matrix, as will be presented in Section 

§3.4.2, the confidence intervals of the retrieved parameters were computed. 

The whole minimization iterative procedure was performed using the fminunc Matlab® solver. 

The fminunc function is a local minimizer, which means that starting from an initial point, it 

seeks to finds the minimum of a function using local information derived from the function's 

partial derivatives. However, the output of this solver may not necessarily represent the desired 

global minimum, as it is sensitive to the starting point, hence to the guess parameter values. To 

verify if the obtained results correspond to the optimal set of parameter values, the iterative 

computational procedure was also performed using a global minimizer, that was the 

GlobalSearch Matlab® function. Results obtained from the local and the global optimizers do 

coincide. However, given the global minimizer's substantially longer convergence time, which 
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is on the order of minutes, the local optimizer is sufficient for this task, given its faster 

convergence time, which is on the order of seconds. 

3.4.1  Maximum likelihood objective function  

The objective function chosen to perform the estimation of the Johanson model parameters was 

the maximum likelihood objective function. Maximum likelihood estimation (MLE) is a 

method used to determine the values of model parameters, in such a way that they maximise 

the likelihood that the data-generating process, described by the model, produced the 

experiments that were actually observed (Ruud, 2000). 

The formulation of the maximum likelihood objective function relies on the concept of 

likelihood. Consider a set of independent and identically distributed random variables 

{𝑍1, 𝑍2, … , 𝑍𝑛}, where each 𝑍𝑖 follows a proability distribution characterized by the parameter 

vector 𝜽 =  𝜃1, 𝜃2, … , 𝜃𝑘. The likelihood function is defined as the joint probability of 

observing the data points 𝑧1, 𝑧2, … , 𝑧𝑛 given the parameters values 𝜽. 

Mathematically, the likelihood function can be expressed as the product of the individual 

probabilities (Ruud, 2000): 

 

ℒ(𝜽|𝑧1, 𝑧2, … , 𝑧𝑛) = Pr (𝑧1, 𝑧2, … , 𝑧𝑛|𝜽) = ∏Pr (𝑍𝑖 = 𝑧𝑖)

𝑛

𝑖=1

 . (3.1) 

Independence between datapoint is assumed, which allow to express of the joint probability as 

the product of individual probabilities. For continuous distributions, the likelihood function 

corresponds to the probability density function associated to the joint distribution of 

independent and identically distributed variables 𝑍1, 𝑍2, … , 𝑍𝑛 evaluated at the poiny 

{𝑧1, 𝑧2, … , 𝑧𝑛} (Ruud, 2000): 

 

ℒ(𝜽|𝑧1, 𝑧2, … , 𝑧𝑛) = ∏𝑓𝑍 (𝑧𝑖|𝜽)

𝑛

𝑖=1

 , (3.2) 

where 𝑓𝑍 (𝑧𝑖|𝜽) denotes the probability density function of the single Z. 

The values of the parameters that maximize ℒ(𝜽|𝑧1, 𝑧2, … , 𝑧𝑛) are the maximum likelihood 

estimates, denoted by �̂�, which are therefore obtained by the maximization of (Ruud, 2000): 

 �̂� = argmax
𝜽

ℒ(𝜽|𝑧1, 𝑧2, … , 𝑧𝑛) . (3.3) 

where the arg max function returns the points of the domain of the given function, at which the 

function values are maximized. The obtained set of the parameters value are the ones that make 

the observed data most probable. 

Allowing to deal with summation instead that with the product, the log-likelihood 

function, ℓ(𝜽|𝑧1, 𝑧2, … , 𝑧𝑛), which is the natural logarithm of the likelihood function, is used in 

the optimization process. This is possible because, since the logarithm function is a continuous 
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and strictly increasing function over the range of likelihood, the values that maximize the 

likelihood also maximize its logarithm (Ruud, 2000): 

 �̂� = argmax
𝜽

ℓ(𝜽|𝑧1, 𝑧2, … , 𝑧𝑛) . (3.4) 

If 𝑍1, 𝑍2, … , 𝑍𝑛 are normally and independent distributed variables, with mean 𝜇 and variance 

𝜎2, hence 𝜽 = [µ, 𝜎2], and the realization is denoted with 𝑧1, 𝑧2, … , 𝑧𝑛, the log likelihood 

function is expressed by (Ruud, 2000): 

 

ℓ(𝜽|𝑧1, 𝑧2, … , 𝑧𝑛) = −
𝑛

2
ln 2𝜋 𝜎2 −

1

2𝜎2
∑(𝑧𝑖 − 𝜇)2

𝑛

𝑖=1

 . (3.5) 

All the above mathematical background of the MLE can also be used to estimate the parameters 

of a model such as: 

 𝑦 = 𝑔(𝒙,𝜷) + 𝜀 , (3.6) 

where 𝑔 is the model function, 𝒙 is the vector containing the independent variebles, i.e., model 

input, 𝑦 is instead the dependent variable,  𝜷 is the vector of the model parameters, and 𝜀 is the 

error. For our specific application, 𝑔(𝒙,𝜷)  was represented the Johanson model, where the 

independent variables 𝒙 were represented by the material properties, the roller geometry and 

the machine settings, while the parameter vector 𝜷 was made by γ0RC
 and 𝐾𝑅𝐶.  

If two continuous variables Y and X are considered, and Y is assumed to have a conditional 

distribution given X, the probability density function, denoted by 𝑓𝑌|𝑋(𝑦|𝑧, 𝜽), the conditional 

log-likelihood function is defined as:  

 

ℓ(𝜽; 𝑦|𝑥) = ∑ln 𝑓𝑌|𝑋(𝑦|𝑧, 𝜽)

𝑛

𝑖=1

 . (3.7) 

If the errors 𝜀𝑖 are assumed to be independently and identically distributed with a normal 

distribution with mean equal to 0 and variance equalt to; the conditional distribution of Y given 

X is a Gaussian distribution with mean 𝑔(𝒙𝒊, 𝜷) and variance 𝜎2 (Ruud, 2000). 

The log-likelihood function hence become: 

 

ℓ(𝜽; 𝑦|𝑥) = −
𝑛

2
ln 2𝜋 𝜎2 −

1

2𝜎2
∑(𝑦𝑖 − 𝑔(𝒙𝒊, 𝜷))2

𝑛

𝑖=1

 . (3.8) 

The errors from which the variance 𝜎2 is computed are defined considering the residuals: 

 𝜀𝑖 = 𝑦𝑖
𝑒𝑥𝑝 − 𝑦𝑖

𝑐𝑎𝑙𝑐 , (3.9) 

that must be normally distributed with mean equal to 0. Therefore, the log-likelihood function 

fits a normal distribution to the residual, assuming the form: 

 

ℓ(𝜽, 𝜷, 𝜀1, … , 𝜀𝑛) = −
𝑛

2
ln 2𝜋 𝜎2 −

1

2𝜎2
∑(𝑦𝑖

𝑒𝑥𝑝 − 𝑦𝑖
𝑐𝑎𝑙𝑐)2

𝑛

𝑖=1

 , (3.10) 
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where 𝑛 is the number of experimental observations, 𝑦𝑖
𝑒𝑥𝑝

 is the experimental value of the 𝑖𝑡ℎ 

observation and 𝑦𝑖
𝑐𝑎𝑙𝑐 is the corresponding output of the model calculated using the 

corresponding model inuts and the model parameters: 

 𝑦𝑖
𝑐𝑎𝑙𝑐 = 𝑔(𝒙𝒊

𝒆𝒙𝒑
, 𝜷) . (3.11) 

The objective of the MLE is to find the values of parameters which maximize the log-likelihood 

function (3.10), and this is equivalent to minimize the negative log-likelihood function: 

 

−ℓ(𝜽, 𝜷, 𝜀1, … , 𝜀𝑛) = +
𝑛

2
ln 2𝜋 𝜎2 +

1

2𝜎2
∑(𝑦𝑖

𝑒𝑥𝑝 − 𝑦𝑖
𝑐𝑎𝑙𝑐)2

𝑛

𝑖=1

 . (3.12) 

Eq. (3.12) is the general form of the MLE objective function, for the Johanson model parameters 

it can be rewritten as: 

 

−ℓ(𝜽, 𝛾0, 𝐾, 𝜀1, … , 𝜀𝑛) = +
𝑛

2
ln 2𝜋 𝜎2 +

1

2𝜎2
∑(𝛾𝑅,𝑖

𝑒𝑥𝑝 − 𝛾𝑅,𝑖
𝑐𝑎𝑙𝑐)2

𝑛

𝑖=1

 . (3.13) 

Eq. (3.13) is the exact objective function that must be minimised in order to estimate the 

Johanson model parameter for each powder blend according on its experimental data. The value 

of γ0RC
 and 𝐾𝑅𝐶 are hence find accordingly to:   

 �̂� = arg min
𝛾0𝑅𝐶,𝐾𝑅𝐶

(−ℓ(𝜽, 𝛾0𝑅𝐶
, 𝐾𝑅𝐶 , 𝜀1, … , 𝜀𝑛)) . (3.14) 

The arg min function return the points of the domain of the given function, at which the values 

are minimized; and it is implemented in the computational procedure iterative presented in 

section by means of the fminunc Matlab® solver. 

3.4.2  Confidence intervals 

A crucial component of statistical inference is confidence interval estimation, as it provides a 

measure of uncertainty in parameter estimates. In fact, confidence intervals provide a range of 

possible values within which the true parameter value can be expected to lie with a certain level 

of confidence.  

Once the values of the Johanson model parameter were estimated as the iterative computational 

procedure comes to an end, their associated confidence interval must be computed. For this 

scope the Hessian matrix was used. This matrix was given as an output of the fminunc Matlab® 

solver once the function reaches an end. The Hessian matrix is a square matrix of second-order 

partial derivatives of the objective function, 𝑓 : 

 
(𝐇𝑓)𝑖,𝑗

=
𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗
 . (3.15) 

Applied to our parameter estimation and objective function it results: 
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𝐇 =

[
 
 
 
 
𝜕2(−ℓ)

𝜕𝛾0
2

𝜕2(−ℓ)

𝜕𝛾0𝜕𝐾

𝜕2(−ℓ)

𝜕𝛾0𝜕𝐾

𝜕2(−ℓ)

𝜕𝐾2 ]
 
 
 
 

 . (3.16) 

The Hessian matrix provides important information about the behaviour of a function at a given 

point, and the Hessian matrix computed at the last iteration, that corresponded to the found 

minimum, was used to compute the standard errors. The inverse of this matrix, in fact, provides 

an estimate of the variance-covariance matrix, which contains the variance of the estimated 

parameters on the diagonal and their covariances off-diagonal (Greene, 2012). Taking the 

square root of the variances, the standard error SE of the parameters estimates was obtained: 

 𝑆𝐸 =  √diag (𝐇−1) . (3.17) 

Once the standard errors were obtained, confidence intervals can be constructed using a chosen 

significance level, 𝛼. For all this Thesis, the significance level of 95% was chosen, being this 

value commonly chosen as a default value in most statistical analyses. Once the significance 

level is selected, the critical value, 𝑡𝛼,𝑛−2, was derived considering also the assumption of the 

specific distribution of the parameters. Not having large sample sizes from the RC experimental 

datasets, a t-student distribution whit n-2 degree of freedom was adopted, where n is the number 

of observations and 2 represent the number of estimated parameters: 

The 95% confidence intervals of the Johanson model parameters resulted: 

 𝛾0 − 𝑡𝛼,𝑛−2 𝑆𝐸(𝛾0) ≤ 𝛾0 ≤ 𝛾0 + 𝑡𝛼,𝑛−2 𝑆𝐸(𝛾0) , (3.18) 

 �̂� − 𝑡𝛼,𝑛−2 𝑆𝐸(𝐾) ≤ 𝐾 ≤ �̂� + 𝑡𝛼,𝑛−2 𝑆𝐸(𝐾) . (3.19) 

 Compactor simulator compression profile parameters 

The relationship used to describe the behaviour of the ribblets SF as function of the exerted 

pressure was a power law function (2.15), like the approach suggested by Johanson (1964) to 

describe the compacted ribbons in the roller compactor. In this equation, two material-

dependent parameters, 𝛾0𝐶𝑆 
, 𝐾𝐶𝑆, are present. To determine their values, calibration was 

necessary for each powder mixture based on experimental data obtained from the CS 

The CS compression profile parameters were estimated using a method similar to that used for 

the Johanson model parameter. However, because the applied pressure was readily available, 

the calculating technique is simplified in this instance. As a result, parameter estimation 

required a simple fitting operation on a SF-pressure diagram. Figure 3.7 depicts the iterative 

computational technique used to estimate the CS compression profile parameters. 
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Figure 3.7. Flow chart of the computational procedure for the estimation of the compactor 

simulator compression profile parameters. 

To start the iterative computational procedure, the experimental data of the SF and the 

corresponding applied pressure from the simulator were used as input. The procedure required 

an initial estimate of 𝛾0𝐶𝑆
 and 𝐾𝐶𝑆 to perform the first iteration. The objective function 

employed for the convergence of the iterative process was the same of the one used for 

estimating the Johanson model parameter, utilizing a MLE approach. The minimization 

function used is again the fminunc Matlab® solver, where the tolerance was set equal to 10-6. 

Once the optimal value of 𝛾0𝐶𝑆
 and 𝐾𝐶𝑆 were estimated, their 95% confidence intervals were 

computed as described in Section §3.4.2, hence using the Hessian matrix that the fminunc 

Matlab® solver gave as output. 

 Proposed transfer methodology using mass correction factor 

This section represents the core of this Thesis, in which the proposed transfer methodology is 

explained in detail. The term "transfer" refers to the process of establishing a relation between 

the two distinct compression profiles, allowing for the conversion of one into the other. The 

proposed method is based on the mass correction factor methodology, which effectively 

explains the differences between the pressure exerted by the compactor simulator and the one 

estimated for the roller compactor, as presented in Section §2.2. 

The identified methodology consists of two major stages. Initially, during the development 

stage, the methodology was formulated and refined using historical datasets coming from RC 

and CS experimental campaigns, as depicted in Figure 3.8. 
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Figure 3.8. Block flow diagram of the development procedure of the proposed transfer 

methodology. 

 In this stage, which also includes a preliminary compression profile analysis, an understanding 

was achieved regarding how the pressure differences between the RC and CS compression 

profiles can be explained by the mass correction factor theory. Then, the proposed approach is 

built using the available experimental data, ensuring the development of a model that faithfully 

and comprehensively explains the observed phenomena. The development phase is composed 

by the calibration process and subsequent validation of the calibrated methodology. The 

execution of these two steps is explained in the following sections.  

 
Figure 3.9. Block flow diagram of the usage procedure of the transfer methodology for new 

pharmaceutical powder mixtures during development operations. 

Once the methodology has been developed, its application during the usage phase for new 

pharmaceutical powder mixtures under development, is depicted in Figure 3.9. In this scenario, 

conducting an experimental campaign solely on the CS is sufficient. Thanks to the previously 
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developed transfer methodology, all the necessary information is obtained to characterize the 

material's compaction behaviour on the RC without requiring direct experiments on it. Through 

the information obtained, it is then possible to set the RC in the most optimal way to obtain the 

desired product. 

3.6.1  Development stage 

The development phase is visually represented through a block diagram in Figure 3.8. The 

available powder mixtures were tested on both the RC and the CS to develop the transfer 

methodology. On the CS, different SF values of the ribblets were obtained at various adjusted 

pressures to estimate the two compression profile parameters, 𝛾0𝐶𝑆
 and 𝐾𝐶𝑆, for each powder 

blend, as described in Section §3.5. Similarly, the same materials were tested on the RC to 

obtain various SF values at various combinations of specific roller force and roll gap. The 

Johanson model parameter values, as explained in Section §3.4, were then determined for each 

material. With the 𝛾0𝑅𝐶
 and 𝐾𝑅𝐶 parameters available, the pressures exerted for each 

combination of machine parameters 𝑃𝑚𝑎𝑥  were estimated, enabling the construction of RC 

compression profiles.  

The mass correction factor theory, as explained in Section §2.2, can now be applied. This theory 

allows linking the different pressures of the two equipment to the same SF values. Specifically, 

the study was focused on determining the values of 𝑓0 required to equalize the different 

pressures for each ribbon SF obtained during the experimental campaign on the RC. The 

objective was to develop a relation that utilizes the mass correction factor to explain the 

differences between the two compression profiles for all powder mixtures during calibration. 

Subsequently, the relation could be applied when only the CS compression profile will be 

available at the usage stage, thereby enabling the construction of a virtual RC compression 

profile. The term "virtual" is employed to denote the Johanson model constructed using the CS 

experimental data and the mass correction factor transfer methodology, rather than relying on 

the RC experimental results. As a result, a model describing the behaviour of this material on 

roll compaction can be established without the need for an experimental campaign on the RC. 

The final step of the development phase was to derive an algebraic expression for 𝑓0 that 

established the relationship between 𝑃𝐶𝑆 and 𝑃𝑚𝑎𝑥. This expression was obtained through 

calibration using available datasets, and the remaining datasets was used for validation 

purposes. 

3.6.2  Calibration 

The starting point of the analysis is the construction of the compression profiles for all the 

powder mixtures for both RC and CS. These will be built after the parameters of the models, 

describing the behaviour of the powders compacted by different pieces of equipment, have been 
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estimated, accordingly to Section §3.4 and §3.5. The obtained values of 𝛾0𝐶𝑆
, 𝐾𝐶𝑆 and 𝑃𝑚𝑎𝑥 , 

together with the RC experimental ribbon SF measurements 𝛾𝑅
𝑒𝑥𝑝

, are used to perform the 

calibration of the mass correction factor transfer methodology. The flow diagram of the iterative 

procedure used for the calibration is reported in Figure 3.10. 

 
Figure 3.10. Flow chart of the calibration iterative procedure to determine the optimal 

values of the parameters of transferring expression 𝑓0 = 𝑓(𝜷, 𝒙) 

The calibration requires the definition of a function expressing 𝑓0. In existing literature, 𝑓0 have 

been expressed as a constant function 𝑓0 = 𝑐𝑜𝑛𝑠𝑡., which is independent of powder blend 

compositions, material properties and machine operating variables (Bi et al., 2014; So et al., 

2021). The most suitable expression for 𝑓0 will be designed based on the experimental results 

of this Thesis. At this stage, the expression will be represented just as 𝑓0 = 𝑓(𝜷, 𝒙), where 𝜷 

represents the vector of numerical parameters to be estimated during calibration, and 𝒙 denotes 

the input variables, such as machine settings, that 𝑓0 may depend on. To determine the pressure 

required for the CS to achieve the same relative densities for each measured ribbon SF, the 

values of 𝛾𝑅,𝑖
𝑒𝑥𝑝

 are projected onto the CS compression profile by inverting (2.15): 

 

𝑃𝐶𝑆,𝑖 = (
𝛾𝑅,𝑖

𝑒𝑥𝑝

𝛾0𝐶𝑆
 
)

𝐾𝐶𝑆

 . (3.20) 
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These represent the values of pressure on the simulator that the correction, using  𝑓0 and starting 

from 𝑃𝑚𝑎𝑥  , must achieve to obtain a perfect transfer. After that, the estimated pressure values 

exerted by the rolls 𝑃𝑚𝑎𝑥  are corrected using the definition of 𝑓0, (2.24): 

 �̃�𝐶𝑆,𝑖 = 𝑓0
𝐾𝐶𝑆  𝑃𝑚𝑎𝑥  . (3.21) 

A visual representation of �̃�𝐶𝑆,𝑖 and 𝑃𝐶𝑆,𝑖 is presented in Figure 3.11. 

 
Figure 3.11. Graphical representation of the pressure values used to perform the calibration.  

The objective is to achieve a transfer that results in the closest possible values of the calculated 

�̃�𝐶𝑆,𝑖 to those of 𝑃𝐶𝑆,𝑖, thereby obtaining the closer overlapping between the corrected RC and 

CS compression profiles. An optimisation computational procedure is used to accomplish this, 

with the objective function, based on the MLE approach, that must be minimised: 

 

−ℓ(𝜽, 𝜷, 𝜀1, … , 𝜀𝑛) = +
𝑛

2
ln 2𝜋 𝜎2 +

1

2𝜎2
∑(𝑃𝐶𝑆,𝑖 − �̃�𝐶𝑆,𝑖)

2

𝑛

𝑖=1

 . (3.22) 

The values of 𝜷 obtained from this process represent the optimal expression of 𝑓0 = 𝑓(𝜷, 𝒙) 

for effectively transferring the RC and CS compression profiles of the calibration datasets. The 

optimization iterative procedure has been solved using the fminunc Matlab® solver. 

3.6.3  Validation 

Once the model has been calibrated and thus the function of 𝑓0 has been numerically defined, 

the methodology can be validated using new datasets that were not part of the calibration 

datasets. Similarly to the calibration stage, also for the validation both RC and CS are required. 

The aim of the validation is to prove if and how effectively the calibrated methodology performs 

the transfer between the CS an RC compression profile for a new powder mixture. The 

validation procedures that have been adopted is depicted in Figure 3.12. 
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Figure 3.12. Flow chart of validation procedures performed with respect to: (a) solid 

fraction; (b) machine settings. 

The initial step involves utilizing the dataset acquired during the experimental campaign on the 

CS to estimate the values of 𝛾0𝐶𝑆
 and 𝐾𝐶𝑆. Using the calibrated expression of the mass 

correction factor and incorporating the obtained values of 𝛾0𝐶𝑆
 and 𝐾𝐶𝑆, the virtual Johanson 

model parameters, namely �̃�0𝑅𝐶
 and �̃�𝑅𝐶, are derived. Once the values of �̃�0𝑅𝐶

 and �̃�𝑅𝐶 are 

obtained they can be utilized in two ways for validation purposes: 

1. Ribbon solid fraction prediction: The machine setting combinations applied during the 

experimental campaign using the available RC dataset are incorporated into the 

Johanson model to calculate the predicted ribbon SFs 𝛾𝑅
𝑐𝑎𝑙𝑐. Then these computed values 

are compared with the corresponding experimental values of 𝛾𝑅
𝑒𝑥𝑝

 obtained using the 

same combinations of machine settings.  

2. Machine settings prediction: The Johanson model is inverted and, using the 𝛾𝑅
𝑒𝑥𝑝

 values, 

the values of the machine settings to be set to obtain the same SF are determined, 

according to the model with the �̃�0𝑅𝐶
 and �̃�𝑅𝐶  parameters. As multiple combinations of 

specific roll forces and roll gaps can lead to same values of the ribbon SF, the roll gaps 

have been fixed to the experimentally implemented ones. Additionally, specific roller 

fractions are typically set to values with one decimal place. Therefore, the calculated 

values are rounded to the first significant figure to fit this practical constraint. Then, a 

comparison is made between the specific roll forces used in the experimental setup and 

the calculated ones. 
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3.6.4  Usage stage 

If the developed model consistently demonstrates satisfactory and reliable performance across 

various powder mixtures, it can make a significant contribution to accelerating pharmaceutical 

tablet development. The application of the proposed transfer methodology during its usage 

stage is illustrated by the block flow diagram of Figure 3.9. 

The investigation of a new pharmaceutical powder mixture will involve conducting an 

experimental campaign solely on the CS. The resulting experimental data will then be used to 

compute the values of 𝛾0𝐶𝑆
 and 𝐾𝐶𝑆. The latter will be used in conjunction with the correlation 

of the mass correction factor developed during the development stage to obtain the virtual 

Johanson model parameter values. These estimated parameters will be incorporated into the 

inverted Johanson model to determine the optimal RC machine settings 𝑆𝑅𝐹𝑐𝑎𝑙𝑐, 𝑆𝑐𝑎𝑙𝑐, to be 

implemented to obtain the desired ribbon SF, as desired by the operators.  

If the transfer methodology demonstrates its effectiveness and reliability, it has the potential to 

completely replace the need to conduct experimental campaigns on the roller compactor. This 

would lead to significant savings in terms of materials and costs required for these experimental 

campaigns, while also accelerating the overall characterisation and process modelling timeline. 



 

 

Chapter 4 

Results and discussion 

 Compression profile preliminary analysis 

4.1.1  Roller compactor compression profiles 

The Johanson model parameters were estimated for each powder mixture using the iterative 

computational procedure described in Section §3.4. All the measured ribbon SF samples of each 

roller compactor dataset were used for the estimation of the parameters. 

Once the values of 𝛾0𝑅𝐶
 and 𝐾𝑅𝐶 are obtained, the pressure can be estimated for each 

experimental combination of roll gap and specific roll force, thereby linking it to the measured 

SF of the experimental ribbon. The estimated values of the Johanson model parameters for all 

powder blends in this case study, along with their associated 95% confidence intervals, are 

reported in Table 4.1. The values of the confidence intervals were computed following the 

procedure described in Section §3.4.2.  

Table 4.1. Johanson model parameters values and 95% confidence intervals 

of all the powder mixtures. 

Material 
Pre-consolidation relative density, 𝜸𝟎𝑹𝑪

 [-] Compressibility constant, 𝑲𝐑𝐂 [-] 

Value 95% CI Value 95% CI 

Formulation 1 0.345 0.039 6.054 0.992 

Formulation 2 0.242 0.022 4.199 0.411 

Formulation 3 0.198 0.016 3.475 0.250 

Formulation 4 0.233 0.016 4.120 0.299 

Compound A 0.267 0.026 4.599 0.523 

Compound B 0.414 0.115 8.736 5.067 

Compound C 0.410 0.066 6.314 1.904 

 

Among the powder mixtures analyzed, Formulation 3, which is the placebo mixture with the 

highest MCC content, appears to be the most compressible, having the lowest 𝐾RC value. In 

contrast, Formulation 1, which has a lower MCC content than the other placebo mixtures, shows 

the highest values among the placebo formulations. The estimated confidence intervals for 
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placebo formulations and compounds A and C are narrow, hence the values of the associated 

Johanson parameter values can be considered attainable. 

 

Figure 4.1. Roller compactor compression profile (solid red line) built from experimental 

data (blue dots) for: (a) Formulation 1, (b) Formulation 2, (c) Formulation 3, (d) 

Formulation 4, (e) Compound A, (f) Compound B, (g) Compound C. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

 
(g) 
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Conversely, Compound B exhibits significantly wider confidence intervals in relation to the 

absolute values of the associated parameters. This indicates that the true value of the Johanson 

parameters for this powder blend is expected to lie in a broader range of values, making the 

estimated values of 𝛾0𝑅𝐶
 and 𝐾𝑅𝐶 affected by a stringer uncertainty. 

Figure 4.1 illustrates the RC compression profiles for each powder mixture analyzed in this 

thesis, built utilizing the results presented in Table 4.1. The compression profiles of the 

analyzed powder mixtures exhibit significant differences. Among them, Formulation 3, which 

resulted to be the most compressible material, shows a steep curve describing the relationship 

between SF and applied pressure. On the other hand, Compound B, which presents the highest 

compressibility constant (always considering the confidence intervals), displays a flatter curve. 

This suggests that, for Compound B, achieving higher ribbon SFs requires higher pressures, 

resulting in the need for either higher specific roll forces or narrower roll gaps to be adjusted 

during roll compaction operations. A distinctive characteristic of compound C is its ability to 

achieve high ribbon SF even at low pressures, obtainable by setting low specific roller forces 

and high roll gaps. This phenomenon is mathematically represented by the higher values 

observed for its pre-exponential parameter 𝛾0𝑅𝐶
, as presented in Table 4.1. 

Using the three SF measurements values associated with each experimental run, the intra-run 

sample variability values, in terms of SF standard deviation 𝜎𝑖𝑛𝑡𝑟𝑎−𝑟𝑢𝑛, were calculated. Three 

samples were collected from distinct sections of the ribbon in order to consider SF gradients 

along the ribbon. The average values 𝜎𝑖𝑛𝑡𝑟𝑎−𝑟𝑢𝑛 were then computed for each powder mixture, 

except for Compound C for which the three intra-run sample missed. The results are shown in 

Table 4.2. 

Table 4.2. Intra-run sample variability. 

Material �̅�𝒊𝒏𝒕𝒓𝒂−𝒓𝒖𝒏 [−] 

Formulation 1 0.018 

Formulation 2 0.017 

Formulation 3 0.008 

Formulation 4 0.012 

Compound A 0.011 

Compound B 0.023 

Compound C N/A 

 

Among the powder mixes, Compound B has the highest average intra-run variability value. 

This, coupled with the extremely high intra-run variability of the edge treatment levels, as 

shown in Figure 4.1.f, contributes to the significant uncertainty in estimating its parameters.  

Finally, the goodness of fit of the Johanson model was assessed by estimating the R2 values in 

calibration for each powder mixture. In addition, the mean absolute error (MAE) and mean 

relative error (MRE) in calibration, between the calculated and experimental ribbon SFs, were 
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examined to assess the model capability to represent the roll compaction process. The maximum 

relative error, max(RE), is another metric used in this Thesis to evaluate the performance of the 

models. This metric represents the highest value between the relative errors of measured and 

calculated values of the SF. Its relevance is heightened by GSK's setting of a critical threshold 

of 10%. Model diagnostic results are reported in Table 4.3 

Table 4.3. Johanson model diagnostic in calibration. 

Material MAE MRE max(RE) 𝑹𝟐 

Formulation 1 0.013 1.8 % 7.9 % 92.6 % 

Formulation 2 0.015 2.2 % 6.6 % 95.4 % 

Formulation 3 0.014 2.1 % 4.7 % 97.6 % 

Formulation 4 0.011 1.6 % 5.8 % 97.4 % 

Compound A 0.016 2.2 % 6.4 % 83.1 % 

Compound B 0.021 3.0 % 6.9 % 36.8 % 

Compound C 0.024 3.1 % 10.6 % 70.6 % 

 

The Johanson model demonstrates excellent results of the diagnostic parameter for the four 

placebo formulations. However, for the active powder blends, these values decrease due to the 

significant intra-run and process variability observed in the datasets from sample runs 

conducted at the same machine settings. This conclusion is also visible in Figure 4.1.e, 4.1.f 

and 4.1.g, where vertical clusters of experimental data at the same pressure values are present. 

Nevertheless, the relative and absolute errors of the SF still remain within acceptable values.  

With the compressibility constant values established, the nip angle values for each powder 

mixture can be derived using (2.12). The resulting values, computed across different roll gaps, 

are reported in Table 4.4. 

Table 4.4. Computed values of the nip angles for each material at different 

values of the minimum roll gap.  

Material 
𝜶 [°] 

𝑺 = 𝟐 𝒎𝒎 𝑺 = 𝟑 𝒎𝒎 𝑺 = 𝟒 𝒎𝒎 

Formulation 1 5.72 5.73 5.75 

Formulation 2 5.10 5.11 5.13 

Formulation 3 7.66 7.68 7.69 

Formulation 4 11.61 11.63 11.65 

Compound A 25.76 25.84 25.92 

Compound B 10.48 10.51 10.54 

Compound C 21.99 22.06 22.13 

 

Additionally, the design space of each powder mixture can be explored when both Johanson 

model parameters have been retrieved. This allows understanding of how the SF varies with 
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modifications across every potential combination of adjustable machine setting combinations. 

As a result, identifying the machine parameters required to produce a specified and desired 

ribbon relative density in accordance with the model becomes practicable. Figure 4.2 displays 

a visual representation of expected operating spaces for each powder blend using contour plots 

and surfaces plot. 

  
(a) 

  
(b) 

  
(c) 
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Figure 4.2. Contour plots (left side) and 3D surface plots (right side) reporting predicted 

values of the ribbon solid fraction at different combinations of specific roll forces and 

minimum roll gap for: (a) Formulation 1, (b) Formulation 2, (c) Formulation 3, (d) 

Formulation 4, (e) Compound A, (f) Compound B, (g) Compound C. 

  
(d) 

  
(e) 

  
(f) 

  
(g) 



Results and discussion  61 

 

 

4.1.2  Compactor simulator compression profile 

The values of 𝛾0𝐶𝑆
 and 𝐾𝐶𝑆 were estimated for all powder mixtures used in this Thesis by 

applying the iterative computational procedure described in Section §3.5. To assess potential 

variations caused by different pieces of equipment and diameter sizes, parameter estimation 

was conducted for each material CS dataset presented in Section §3.3. It is important to keep 

in mind that the initial two number digits within the dataset ID correspond to the diameter of 

the punches in millimetres. The resulting parameter values and 95% confidence intervals are 

reported in Table 4.5.  

Table 4.5. Compactor simulator compression profile parameters values and 

95% confidence intervals of all the powder mixtures. 

Material Dataset ID 

Pre-consolidation relative 

density, 𝜸𝟎𝑪𝑺
 [-] 

Compressibility constant, 𝑲𝑪𝑺 [-] 

Value 95% CI Value 95% CI 

Formulation 1 CS10-F1 0.422 0.017 7.449 0.495 

Formulation 2 
CS18-F2 

CS10-F2 

0.358 

0.335 

0.015 

0.007 

5.973 

5.250 

0.325 

0.136 

Formulation 3 
CS18-F3 

CS10-F3 

0.326 

0.286 

0.013 

0.007 

5.340 

4.547 

0.262 

0.118 

Formulation 4 
CS18-F4 

CS10-F4 

0.336 

0.325 

0.014 

0.011 

5.611 

5.295 

0.286 

0.229 

Compound A 
CS10-CA 

CS21-CA 

0.363 

0.343 

0.014 

0.017 

6.090 

5.354 

0.322 

0.397 

Compound B 
CS10-CB 

CS21-CB 

0.389 

0.370 

0.018 

0.178 

6.632 

6.239 

0.445 

4.965 

Compound C CS11-CC 0.486 0.009 7.835 0.263 

 

Overall, the estimation of the 𝛾0𝐶𝑆
 and 𝐾𝐶𝑆 parameters is more accurate than those of the RC. 

In fact, the SF data more closely follow the empirical power law trend of the SF with respect 

the applied pressure. Furthermore, when different punch sizes are considered, the estimated 

parameter values of the same powder blend show small deviations. These discrepancies may 

arise from the differences in geometry, where different punches and filling chamber diameter, 

leads to distinct ratios between volumes and contact surfaces. Consequently, such differences 

could result in different wall effects between the two configurations. Also, such differences 

may be determined by different experimental pressure ranges taken into consideration. In fact, 

as the applied pressure approaches very high levels, the SF values tend to converge towards the 

value of 1, resulting in a flattened compression profile, hence an increase in the value of the 

compressibility constant. Figure 4.3 shows the compression profiles for each powder mixture 

dataset analyzed in this Thesis, built utilizing the results presented in Table 4.5. 
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Figure 4.3. Compactor simulator compression profile (dashed black line) and confidence 

built from experimental data (green empty dots) for all the dataset: (a) CS10-F1; (b) CS10-

F2; (c) CS18-F2; (d) CS10-F3; (e) CS18-F3; (f) CS10-F4; (g) CS18-F4; (h) CS10-CA; (i) 

CS21-CA; (j) CS10-CB; (k) CS21-CB; (l) CS11-CC. 

Also, in the case of the CS compression profiles, the reported curves present significant 

differences among the different powder blends. However, it is worth to notice that the empirical 

relationship, i.e., the power law function, proposed by Johanson (1964) describes accurately the 

behaviour of the pharmaceutical powders that undergo compression. The estimation of 𝛾0𝐶𝑆
 

and 𝐾𝐶𝑆 from the CS21-CB dataset yields a wide 95% confidence intervals, and this is because 

of the datapoint clustering due to the narrow pressure range explored during its experimental 

campaign. 

4.1.3  Compression profiles comparison 

The current objective is to investigate the differences between compression profiles derived 

from the CS and those obtained from the RC. From a mathematical perspective, this means 

comparing the different values of the values of 𝛾0 and 𝐾 obtained from distinct pieces of 

equipment. To ensure consistency and comparability in this analysis, the CS dataset utilized in 

this comparison analysis were the ones obtained from the experimental campaigns performed 

on the Phoenix® with the 10mm tooling diameter. This specific piece of equipment was 

employed to investigate all the materials examined in this case study, with the exception of 

compound C. This approach enables us to make meaningful comparisons of compaction 

profiles, as we are considering datasets generated using the same piece of equipment, similar 

  
(j) (k) 

 
(l) 
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treatment levels, and identical punch sizes. Compound C is not taken into account at this stage 

because its CS dataset was obtained with a different piece of equipment and with different 

punches profile. Figure 4.4 shows the differences in the compression profiles observed for each 

of the powder mixtures. 

Figure 4.4. Comparison between RC and CS compression profiles for: (a) Formulation 1, 

(b) Formulation 2, (c) Formulation 3, (d) Formulation 4, (e) Compound A, (f) Compound B. 

The results show a consistent pattern across all seven powder blends: whatever the ribbon SF 

value, the compression profile constructed from the simulator consistently underestimates the 

pressure required for the same SF, in the RC. This finding aligns with the existing literature, 

which shows similar results (Reynolds et al., 2010; Toson et al., 2019). These differences can 

be mathematically explained by differences in the 𝛾0 and 𝐾 values used to characterize the same 

powder mixture on the two pieces of equipment. To better visualize the numerical differences 

in the parameters, their values, along with the 95% confidence intervals, are graphically 

reported, for each powder blend, in Figure 4.5. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 
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Figure 4.5. 𝛾0 (x-axis) and 𝐾 (y-axis) values estimated from the RC (black dots) and CS (red 

triangles). The number and the letter contained in the markers indicates the Formulation and 

the Compound ID respectively. 

The comparison of 𝛾0 and 𝐾 values indicates that, with the exception of compound B, the 

compactor simulator estimates greater values for both parameters than the RC. Compound B 

exhibits a different behaviour in the compactor simulator where both 𝛾0 and 𝐾 values are larger. 

However, it is important to highlight that compound B has extremely large confidence intervals, 

and most importantly much more uncertain. An interesting result from the comparative analysis 

of parameter values in Figure 4.4 is the particular sequence in which the parameters appear for 

each powder blend. Notably, if we consider a trend line that includes the data points for each 

piece of equipment, a significant congruence can be observed. Specifically, the sequence of 

parameters on the CS follows as: 3, 4, 2, A, 1, B; while the sequence of parameters on the RC 

is: 3, 4, 2, A, B, 1. The sole discrepancy is found in compound B; however, as previously 

mentioned, it exhibits criticality in the estimated parameter values. 

Figures 4.4 and 4.5 show that the experimental results acquired from various pieces of 

compaction equipment differ significantly. Consequently, it is impractical to directly employ 

the estimated values of 𝛾0𝐶𝑆
 and 𝐾𝐶𝑆 to characterize a powder mixture on the RC. To support 

this claim, the Johanson model was applied to each powder mixture using parameters estimated 

by the simulator. The resulting diagnostic outcomes of these implemented models are displayed 

in Table 4.6. 

It is evident that models calibrated with parameters estimated by the CS data are unsuitable for 

characterizing roll compaction operations of pharmaceutical powders. This holds true for all 

powder mixtures under analysis. In summary, this Section highlights that the transfer 

methodology that has to be employed ultimately must leads to lower values of 𝛾0𝑅𝐶
 and 𝐾𝑅𝐶 

parameters compared to those obtained from the CS. 
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Table 4.6. Johanson model diagnostic using values of 𝛾0 and 𝐾 from the 

compactor simulator. Results are compared to the one obtained from RC 

experimental data in the brackets. 

Material MEA MRE 𝑹𝟐 

Formulation 1 0.057 (0.013) 7.9 % (1.8 %) 25.1 % (92.6 %) 

Formulation 2 0.083 (0.015) 12.6 % (2.2 %) 0.8 % (95.4 %) 

Formulation 3 0.083 (0.014) 13.5 % (2.1 %) 25.7 % (97.6 %) 

Formulation 4 0.086 (0.011) 13.9 % (1.6 %) 0.5 % (97.4 %) 

Compound A 0.068 (0.016) 9.7 % (2.2 %) -137 % (83.1 %) 

Compound B 0.064 (0.021) 9.1 % (3.0 %) -367 % (36.8 %) 

 

4.1.4  Mass correction factors analysis 

Once both compression profiles from the two pieces of equipment are obtained, it becomes 

possible to determine the necessary mass correction factor values for transferring experimental 

data between them. In this process, all experimental data acquired from the RC are utilized. The 

pressure applied by the rollers 𝑃𝑚𝑎𝑥 is available, as it was estimated during the Johanson 

parameter estimation. To estimate the pressure, that the simulator should apply to achieve the 

same SF, the data points from the RC are projected onto the compression profile of the CS. This 

mathematical projection involves inverting (2.24), as follow: 

 

𝑓0,𝑖 = (
𝑃𝐶𝑆,𝑖

𝑃𝑚𝑎𝑥,𝑖
)

𝐾𝐶𝑆

, (4.1) 

where 𝑓0,𝑖 is the value of the mass correction factor of the 𝑖𝑡ℎ observation necessary to link the 

estimated pressure of the roll and the one projected on the simulator compression profile for the 

same 𝑖𝑡ℎ observation. The compressibility constant used in equation (4.1) is the one derived 

from the CS data. This selection is made because, when applying the transfer methodology 

using solely the experimental data from the CS, the compressibility constant from that specific 

dataset becomes the only available one. Figure 4.6 presents the diagrams where the values of 

ln(𝑓0,𝑖) for each powder mixture are plotted on the y-axis, while the x-axis represents the 

pressure exerted by the rolls, ln(𝑃𝑚𝑎𝑥).  

The results shown in Figure 4.6 demonstrate that achieving a perfect transfer between the 

compression profiles of the RC and the CS requires applying correction values that follow an 

increasing trend with respect to pressure. However, this does not hold true for Compound B, as 

shown in Figure 4.6.f, where a decreasing trend is observed. Nevertheless, the computation of 

𝑓0,𝑖 depends on the RC compression profile, which, in the case of Compound B, is characterised 

by strong uncertainty. As a result, the trends of 𝑓0,𝑖 are also affected by this uncertainty. 

Moreover, although with some differences, it seems that the straight line describing the upward 

trend of 𝑓0,𝑖 is common for all the powder mixtures under analysis. 
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Figure 4.6. Mass correction factor values estimated for each RC experimental data for: (a) 

Formulation 1; (b) Formulation 2, (c) Formulation 3, (d) Formulation 4, (e) Compound A, 

(f) Compound B. 

This finding contradicts the approach suggested by Bi et al. (2014) and So et al. (2021), who 

proposed using a constant value for the correction at any machine setting combinations, and 

hence at any pressure (Bi et al., 2014; So et al., 2021). The observed linear increase in this trend 

with applied pressure is physically reasonable. This is because the parameter 𝑓0 represents the 

fraction of mass delivered at the minimum roll gap, which is influenced by particles velocity 

gradients. When higher pressure is applied by the rollers, the particles become less loose in the 

nip region. Consequently, a larger fraction of powder is transported from the nip angle to the 

minimum roll gap. 

 Placebo-based transfer model 

4.2.1  Calibration 

The initial focus on developing the proposed transfer mechanism was the identification of the 

specific CS and RC datasets. It was decided to create an initial model employing as calibration 

datasets the ones of the four placebo formulations, i.e., RC-F1, CS10-F1, RC-F2, CS10-F2, 

RC-F3, CS10-F3, RC-F4 and CS10-F4. or validation purposes, the datasets of the two active 

compounds, i.e., RC-CA, CS10-CA, RC-CB and CS10-CB, were used. This decision was made 

   
(a) (b) (c) 

   
(d) (e) (f) 
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on purpose, to stress and properly test the transfer methodology limits. As explained in Section 

§3.1, excipients possess excellent flowability and compressibility properties, while the presence 

of APIs in the blends tends to compromise these properties. Therefore, if the model, calibrated 

based on the results from placebo formulations, manages to achieve satisfactory outcomes even 

for active mixtures, it would indicate an additional level of validation. As a result, the proposed 

methodology reliability and possible usefulness for future powder mixtures under development 

operations, will be strengthened. 

The first stage in building the model entails choosing and creating an expression for the mass 

correction factor 𝑓(𝜷, 𝒙), as discussed in Section §3.6.2. In light of the findings observed in 

Section §4.1.4, the selected methodology should formulate ln 𝑓0 as a linear function of the 

logarithm of the rolls pressure: 

 ln 𝑓0 = 𝛽1 + 𝛽2 ln 𝑃𝑚𝑎𝑥  , (4.2) 

where 𝛽1 and 𝛽2 represent the two coefficients to be estimated through calibration using 

experimental data. Their values must be determined to align the estimated pressure corrections 

for the RC as closely as possible with those for the CS, according to the calibration procedure 

discussed in Section §3.6.2. Importantly, it should be noted that the sets of experimental data 

points from the RC are not uniform across the four datasets. Specifically, during the 

experimental campaign for Formulation 1, five runs were executed, while Formulations 2, 3, 

and 4 each involved eight runs. each. Consequently, during calibration, the contribution of 

Formulation 1 to the calculation of the objective function (3.22) was weighted, i.e., multiplied 

by a coefficient, to make it comparable with the others. This approach guarantees that the 

incorporation of compression profiles from all formulations have equivalent significance in the 

model calibration process. Table 4.7 presents the calibrated values of the parameters of the mass 

correction factor expression, along with their corresponding 95% confidence intervals. 

Table 4.7. Parameters values and 95% confidence intervals of the mass 

correction factor linear expression for the place-based model. 

𝜷𝟏 𝜷𝟐 

Value 95% CI Value 95% CI 

-0.2481 0.068 0.0417 0.017 

 

Furthermore, the correction of the RC pressure values of the experimental data, yielded using 

the calibrated values of 𝛽1 and 𝛽2, is visualized in Figure 4.7, where the corrected datapoints 

are represented by open dots. 
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Figure 4.7. Correction of the pressures of the RC experimental data resulting from the 

placebo-based model calibration for: (a) Formulation 1, (b) Formulation 2, (c) Formulation 

3, (d) Formulation 4. 

The corrected pressure values demonstrate a remarkable similarity to the compression profiles 

generated by the compactor simulator. This consistency is noticeable for all four placebo 

formulations, highlighting the effectiveness of using a single expression for the mass correction 

factor. To numerically assess the differences observed during calibration, the mean absolute 

and relative errors, between pressures of the corrected RC data and their projection on the CS 

profiles, were computed for each formulation. These results are reported in Table 4.8. 

Table 4.7. Pressure mean absolute and relative errors in the placebo-based 

model calibration. 

Material MAE [MPa] MRE 

Formulation 1 11.2 15.1 % 

Formulation 2 8.3 18.0 % 

Formulation 3 10.0 18.6 % 

Formulation 4 5.9 17.6 % 

 

Formulation 3 has larger pressure errors, which are mostly due to the negative influence of the 

data point at the upper treatment level. While the relative errors may appear significant, their 

impact on the calculation of the SF is relatively minor. 

  
(a) (b) 

  
(c) (d) 
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4.2.2  Validation 

The validation of the calibrated model is presented, involving the use of Compounds A and B 

datasets. The procedure starts with the gathering of 𝛾0𝐶𝑆
 and 𝐾𝐶𝑆 values from the CS 

experimental data, as explained in Section §3.6.3. Their values are then employed to establish 

the virtual parameters of the Johanson model �̃�0𝑅𝐶
 and �̃�𝑅𝐶, using the calibrated relationship 

for the mass correction factor. Due to the formulation determined for 𝑓0 = 𝑓(𝜷, 𝒙), this step is 

straightforward. Starting from the relation defining the compression profile of the CS, it results: 

 
𝛾 = 𝛾0𝐶𝑆

𝑃𝐶𝑆

1
𝐾𝐶𝑆

⁄
 . (4.3) 

As discussed in Section §2.2, a relation is established between the pressure of the CS and that 

of the RC based on the definition of the mass factor. Combining (4.3) to (2.24), the SF can be 

expressed as function of the peak pressure exerted by the rolls: 

 
𝛾 = 𝛾0𝐶𝑆

(𝑓0
𝐾𝐶𝑆𝑃𝑚𝑎𝑥)

1
𝐾𝐶𝑆

⁄
 . (4.4) 

Thanks to the linear expression formulated to express 𝑓0, it is possible to rewrite (4.4) by 

integrating in it (4.2): 

 
𝛾 = 𝛾0𝐶𝑆

[(𝑒𝛽1𝑃𝑚𝑎𝑥 
𝛽2)

𝐾𝐶𝑆
𝑃𝑚𝑎𝑥  ]

1
𝐾𝐶𝑆

⁄

 . (4.5) 

Through a series of rearrangement and some algebra, it is possible to rewrite (4.5) as follows: 

 
𝛾 = 𝛾0𝐶𝑆

𝑒𝛽1  𝑃𝑚𝑎𝑥

𝛽2𝐾𝐶𝑆+1
𝐾𝐶𝑆 , (4.6) 

where the SF is described as a power law function of the peak pressure. This precisely 

represents the compression profile for the RC, where the pre-exponential term and the power 

factor are the virtual Johanson parameters, and they are as follows: 

 �̃�0𝑅𝐶
= 𝛾0𝐶𝑆

𝑒𝛽1 = 0.7803𝛾0𝐶𝑆
< 𝛾0𝐶𝑆

 , (4.7) 

 �̃�𝑅𝐶 =
𝐾𝐶𝑆

𝛽2𝐾𝐶𝑆 + 1
=

𝐾𝐶𝑆

0.0417𝐾𝐶𝑆 + 1
< 𝐾𝐶𝑆 .  (4.8) 

Both (4.7) and (4.8) exhibit an important feature: the virtual Johanson model parameters that 

they yield are smaller than those acquired from the CS. This particular aspect is very crucial in 

achieving the greatest effectiveness of the compression profiles transfer. Had the relation 

suggested by Bi et al. (2014) (i.e., 𝑓0 = 𝑐𝑜𝑛𝑠𝑡.), been utilized, and the same derivation process 

been followed, from (4.3) to (4.6), the resulting virtual Johanson model parameters would have 

been determined as follows: 

 �̃�0𝑅𝐶
= 𝑐𝑜𝑛𝑠𝑡 ∙ 𝛾0𝐶𝑆

 , (4.9) 

 �̃�𝑅𝐶 = 𝐾𝐶𝑆 . (4.10) 
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In this instance, only the pre-consolidation relative density would be modified, while the 

compressibility constant of the CS would remain unchanged. However, such an approach would 

yield a suboptimal model, especially when dealing with highly compressible powder mixtures. 

The performance of the transfer methods can be evaluated throughout the validation after 

acquiring �̃�0𝑅𝐶
 and �̃�𝑅𝐶 as per (4.7) and (4.8). This assessment investigates its capacity to 

predict both the SF and machine parameters. The predicted results will be compared to the 

actual outcomes obtained during the RC experimental campaigns. For a more detailed analysis 

of the results obtained, the validations will be presented separately for Compound A and 

Compound B. 

4.2.2.1  Compound A 

Section §4.1.2 reported the values of the 10 mm CS parameters 𝛾0𝐶𝑆
 and 𝐾𝐶𝑆 form Compound 

A, which yielded values of 0.280 and 4.815 for �̃�0𝑅𝐶
 and �̃�𝑅𝐶, respectively. By utilizing these 

computed values along with all input data, as illustrated in Figure 3.12.a, the Johanson model 

is solved in its direct form. This procedure allows for the model to compute the calculated SFs 

𝛾𝑅
𝑐𝑎𝑙𝑐, for each combination of experimentally implemented machine parameters. The 

comparison between these calculated values, 𝛾𝑅
𝑐𝑎𝑙𝑐, and their corresponding experimental 

counterparts, 𝛾𝑅
𝑒𝑥𝑝

, is carried out using the parity plot shown in Figure 4.8.a. The plot also 

includes error bands representing relative errors of 5% and 10%, enhancing the visualization of 

the datapoints distribution. 

 

  

(a) (b) 

Figure 4.8. Validation parity for Compound A to evaluate differences between calculated 

and experimental: (a) ribbon solid fractions, (b) specific roll forces. 

The datapoints are distributed quite evenly, with positive errors counterbalanced by negative 

errors. Particularly, all errors are within the 10% relative error band's critical threshold. Among 

the eighty-seven datapoints, only five, constituting approximately 5.7% of the experimental 
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data, display an error greater than 5%. The highest reported relative error is 7.4%. Furthermore, 

it is important to highlight the considerable variability observed in the measured SF values. 

Even when the same combination of machine parameters is used, resulting in identical 

calculated SFs, the measured values show significant variability. Based on these results, it can 

be concluded that the virtual Johanson model, which was developed primarily on the CS and 

transfer methods, accurately characterises the compaction behaviour of compound A on the RC. 

This conclusion is supported by the remarkable similarity between the diagnostic results of the 

virtual Johanson model and the Johanson model, as shown in Table 4.8. 

Table 4.8. Parameter values and diagnostic results of Virtual Johanson and 

Johanson model for Compound A. 

 
Parameter values 

MAE MRE max (RE) 𝑹𝟐 
𝛾0𝑅𝐶

 𝐾𝑅𝐶  

Johanson model 0.267 4.599 0.016 2.2 % 6.4 % 83.1 % 

Virtual Johanson model 0.283 4.857 0.017 2.4 % 7.4 % 80.0 % 

 

Figure 4.9 reports the compression profiles of both the virtual Johanson model and the Johanson 

model derived from experimental RC data. 

 
Figure 4.9. RC and virtual RC compression profiles comparison for Compound A.  

The overlap of the two curves is almost complete and is due to the similarity between the 

parameters estimated by experimental data and the transfer methodology. 

The validation method now involves predicting machine parameters, as detailed in Section 

§3.6.3 and illustrated in Figure 3.12.b. The input data in this scenario comes from the 

experimental RC dataset, which includes 𝛾𝑅
𝑒𝑥𝑝

 values and the corresponding adjusted minimum 

roll gaps that were applied. The specific roll forces required to precisely produce the values of 

𝛾𝑅
𝑒𝑥𝑝

 are calculated by solving the inverse of the Johanson model using �̃�0𝑅𝐶
 and �̃�𝑅𝐶. Figure 

4.8.b presents the parity plot displaying the comparison between the specific roll forces 
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employed during experiments and those calculated. Once again, the datapoints exhibit an 

homogeneous distribution of both positive and negative errors. The mean absolute error 

between experimentally implemented and calculated specific roll forces is 0.80 kN/cm. 

To summarise, the findings in this section highlight the greater accuracy of the prediction 

outcomes resulting from the proposed transfer methodology applied to Compound A. The 

application of this methodology at the usage stages would have successfully simulated this 

specific powder mixture without the requirement for an RC experimental campaign. 

Consequently 18 kg of material would have been saved, assuming 2.5 kg of powder blend for 

every 4 runs as reported by GSK. This huge amount becomes even more significant when 

considering the scarcity and cost of pharmaceutical compounds during their development 

stages. 

4.2.2.2  Compound B 

Section §4.1.2 reported the values of the 10 mm CS parameters 𝛾0𝐶𝑆
 and 𝐾𝐶𝑆 for Compound B, 

which yielded values of 0.298 and 5.100 for �̃�0𝑅𝐶
 and �̃�𝑅𝐶, respectively. Both validation 

procedures are carried out and the results are reported in the parity plots in Figure 4.10. 

 

  

(a) (b) 

Figure 4.10. Validation parity for Compound A to evaluate differences between calculated 

and experimental: (a) ribbon solid fractions, (b) specific roll forces. 

As can be seen from Figure 4.10.a, one single data point exceeds the 10% threshold error band. 

While seven of the total thirty experiments, accounting for 23% of the dataset, have relative 

errors greater than 5%. This mismatch can be traced to both the inaccuracy of the developed 

virtual Johanson model and the significant variability inherent in the experimental campaign of 

Compound B, as reported in Table 4.2. Similarly, in the parity plot illustrated in Figure 4.10.b, 

which highlights the errors in specific roll forces, the model still demonstrates its capability to 

offer a reasonable prediction of the required machine parameters to achieve the targeted ribbon 
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SF. The average absolute error between experimental and estimated specific roll force 

measurements is equal to 0.94 kN/cm.  

Table 4.9 summarises the parameters and diagnostic results of both the virtual Johanson models 

and those obtained from experimental data, similarly to the approach used for compound A. 

Table 4.9. Parameter values and diagnostic results of Virtual Johanson and 

Johanson model for Compound B. 

 
Parameter values 

MAE MRE max (RE) 𝑹𝟐 
𝛾0𝑅𝐶

 𝐾𝑅𝐶  

Johanson model 0.414 8.736 0.021 3.0 % 6.9 % 36.8 % 

Virtual Johanson model 0.298 5.100 0.023 3.2 % 10.1 % 17.3 % 

 

The discrepancy in parameter values is significant; however, the remaining outcomes of the 

model exhibit no excessive fluctuations. This is due to the high confidence interval values of 

Compound B parameter estimation. Figure 4.11 reports the compression profiles of both the 

virtual Johanson model and the Johanson model derived from experimental RC data. 

 
Figure 4.11. RC and virtual RC compression profiles comparison for Compound B.  

Although the two compression profiles exhibit marked dissimilarities, both capture the 

compaction behaviour of Compound B on the RC. It's important to consider that the estimated 

pressure values, the x-axis, for each test point are influenced by the parameter 𝐾𝑅𝐶  utilized. 

Consequently, if the smaller 𝐾𝑅𝐶, i.e., �̃�𝑅𝐶 is employed, the RC datapoints in Figure 4.11 would 

shift leftward, aligning more closely with the compression profile of the virtual Johanson 

model. 

From both Figure 4.10 and 4.11, another issue within the RC dataset of compound B is revealed. 

Specifically, two experimental points appear to be outliers. In fact, these datapoints, which are 

found at the higher and lower treatment levels, presents a SF of approximately 0.71 and 0.72, 

respectively. This is significant since the two treatment levels have radically different roller-
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specific forces, namely 3.5 and 10.0 kN/cm, while keeping the same minimum roll gap. If these 

two experiments, which are likely outliers, were excluded, the results of the transfer 

methodology would improve. In light of this, a scenario is presented wherein both the Johanson 

model and the validation of the virtual Johanson model are developed by omitting these two 

anomalous datapoints. The results are reported in Table 4.10. 

Table 4.10. Parameter values and diagnostic results of Virtual Johanson and 

Johanson model for Compound B, in the outlier exclusion scenario.  

 
Parameter values 

MAE MRE max (RE) 𝑹𝟐 
𝛾0𝑅𝐶

 𝐾𝑅𝐶  

Johanson model 0.343 6.223 0.019 2.6 % 6.8 % 49.3 % 

Virtual Johanson model 0.298 5.100 0.020 2.8 % 7.1 % 46.6 % 

 
Figure 4.12. RC and virtual RC compression profiles comparison for Compound B from 

which RC dataset the two presumed outliers have been removed.  

Table 4.10 and Figure 4.12 exemplify the impact of these two data points on the transfer 

outcomes. Even without excluding the two supposed outliers, the results of the transfer are 

decent and comparable with the Johanons model. But, by excluding them, a substantial 

improvement is experienced in the performance of the proposed transfer methodology.  

In conclusion also for Compound B the proposed transfer methodology obtains accurate results 

in validation and would have been suitable for its implementation in its usage stage procedures. 

Just as observed with Compound A, in this particular scenario a total of around 6 kg of material 

may have been saved from the RC experimental campaign. 

4.2.3  Validation using compactor simulator datasets with different 

diameters 

With regard to each of the datasets analysed thus far, the transfer methodology demonstrated a 

remarkable level of accuracy. An analysis is now being conducted to determine how this 
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methodology would perform when data from different datasets are used. In particular, the 

performance of the transfer methodology is investigated when "mixed datasets," i.e., datasets 

containing distinct experimental results from several compaction simulators (CS) with varying 

punch sizes, are used. These "mixed datasets" contain the same number of experiments as their 

10 mm datasets counterparts. Within them, 50% of the observations are randomly selected from 

the 10 mm CS dataset, while the remaining 50% are drawn from either the 18 mm CS datasets 

(Formulations 2, 3, and 4) or the 21.8 mm CS dataset (Compounds A and B). This scenario was 

selected based on the practical experience gathered during the course of this Thesis project. It 

is not uncommon for experimental equipment to experience issues and become unavailable as 

a result. Different equipment layouts are frequently used, and having a model that can be 

applied to data coming from different instruments setup can provide additional value. 

The validation processes presented in this Section are the same as those described in Section 

§3.6.3 and implemented in Section §4.2.2. The key difference is the use of different CS datasets 

as the initial points. As a result, the derived parameters 𝛾0𝐶𝑆
 and 𝐾𝐶𝑆 will differ intrinsically, 

resulting in differences in the Johanson virtual model parameters �̃�0𝑅𝐶
 and �̃�𝑅𝐶. In this analysis 

for Compound B, the entirety of the RC dataset is incorporated into the validation process, 

without removing the two presumed outliers. 

The model parameters and results are reported in Table 4.11, while the prediction errors for 

both the ribbon SF the specific roll force are shown graphically in Figure 4.13 as parity plots. 

Table 4.11. Parameter values and diagnostic results of Virtual Johanson and 

Johanson model using CS mixed datasets.  

Material 
 Parameter values 

MAE MRE max(RE) 𝑹𝟐 
 𝛾0𝑅𝐶

 𝐾𝑅𝐶  

Formulation 2 
Johanson model 0.242 4.199 0.015 2.2 % 6.4 % 95.4 % 

Virtual Johanson model 0.283 4.810 0.015 2.3 % 7.0 % 94.7 % 

Formulation 3 
Johanson model 0.198 3.475 0.014 2.1 % 4.7 % 97.6 % 

Virtual Johanson model 0.231 3.977 0.018 2.7 % 4.8 % 96.0 % 

Formulation 4 
Johanson model 0.233 4.120 0.011 1.6 % 5.8 % 97.4 % 

Virtual Johanson model 0.264 4.564 0.024 4.0 % 9.4 % 89.6 % 

Compound A 
Johanson model 0.267 4.599 0.016 2.2 % 6..4 % 83.1 % 

Virtual Johanson model 0.291 4.984 0.019 2.7 % 8.2 % 74.6 % 

Compound B 
Johanson model 0.414 8.736 0.024 3.0 % 6.9 % 36.8 % 

Virtual Johanson model 0.288 4.924 0.024 3.3 % 9.8 % 8.7 % 
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(e) 

Figure 4.13. Parity plots of the validation analysis performed utilizing CS mixed datasets of: 

(a) Formulation 2, (b) Formulation 3, (c) Formulation 4, (d) Compound A, (e) Compound B. 

The obtained transfer outcomes are really accurate over the entire variety of powder mixtures. 

However, in the case of Formulation 4 and the Compound A, there is a slightly decrease in 

performance where an heterogeneity of the error distributions can be noted in their parity plots. 

Such results were reasonably anticipated, as discussed in Section §4.1.2, where it was evident 

that the parameters 𝛾0𝐶𝑆
 and 𝐾𝐶𝑆 estimated using CS with varying diameters exhibited minimal 

disparity. Nonetheless, the results of our investigation clearly demonstrate that the proposed 

transfer methodology is still usable, although with some caution when working with data from 

other CS datasets. 

This finding highlights a further advantage of the proposed transfer methodology, which 

contributes to its intrinsic value in line with its core objective of accelerating tablet production 

development stages. In circumstances where CS data might be scarce, the creation of a "mixed" 

dataset becomes a viable option, facilitating the augmentation of available data, broadening the 

experimental space and reducing the uncertainty associated with evaluated CS parameters. 
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 Mix transfer model 

A new model is introduced in consideration of the results demonstrated in the preceding section, 

where the effectiveness of the model calibrated using the four placebo formulations in the 

validation phase was established. This model was calibrated using all available powder mixes, 

with the exception of Compound C because of its criticalities. Following this approach, a model 

will be developed that includes calibration from six powder blends, allowing for an analysis of 

a wider variety of material characteristics. This will result in the achievement of a final transfer 

function that is simultaneously established across all powder blends, thereby obtaining the most 

optimal transfer possible for each. Inevitably, doing so will reduce the model's ability to 

describe the required transfer for placebo formulations. However, it is expected to improve 

performance when active formulations are taken into account. 

The datasets employed for the calibration of this ultimate model are: RC-F1, CS10-F1, RC-F2, 

CS10-F2, RC-F3, CS10-F3, RC-F4, CS10-F4, RC-CA, CS10-CA, RC-CB and CS10-CB. The 

two presumed outliers of the RC Compound B dataset are removed in this analysis. Again, in 

light of the results presented in Figure 4.6, a linear function was utilised to express the mass 

correction factor in relation to the pressure exerted by the rollers. During the calibration phase, 

the influence of each powder mixture on the calculation of the objective function was weighed 

according to all the corresponding experimental data points, similarly to the placebo model. 

This ensured that the significance of each powder blend contribution was aligned, avoiding any 

undue impact from large RC datasets the one Compound A, with its eighty-seven experiments. 

The results of the calibration so performed are presented in Table 4.12, with the numerical 

values of the two parameters of the linear relationship and the respective confidence intervals. 

Table 4.12. Parameters values and 95% confidence intervals of the mass 

correction factor linear expression for the mix model. 

𝛽1 𝛽2 

Value 95% CI Value 95% CI 

-0.3015 0.044 0.0524 0.012 

 

Furthermore, the correction of RC pressure values of the experimental data, yielded using these 

calibrated values of 𝛽1 and 𝛽2, is visualized in Figure 4.14, where the corrected datapoints are 

represented by empty dots. 
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Figure 4.14. Correction of the pressures of the RC experimental data resulting from the mix 

model calibration for: (a) Formulation 1, (b) Formulation 2, (c) Formulation 3, (d) 

Formulation 4, (e) Compound A, (f) Compound B. 

The model, in view of the reported MAE demonstrates to be effective for all the analysed 

powder mixtures. In conclusion the results reported in Table 4.12 represent the value of the 

linear function of 𝑓0 proposed to be used in the future usage stage of the methodology, to 

retrieve the values of �̃�0𝑅𝐶
 and �̃�𝑅𝐶, starting from 𝛾0𝐶𝑆

 and 𝐾𝐶𝑆, and applying (4.7) and (4.8). 

The corrected pressure values from the RC data show a remarkable closeness with the CS 

compression patterns. This notable agreement exists throughout the four placebo formulations 

and the two active compounds, demonstrating the effectiveness of using a single expression for 

the mass correction factor. Mean absolute and relative errors were computed for each material 

to quantify the differences observed during the calibration procedure between the pressures of 

the CS profile pressures and the ones of the corrected RC data. The results are reported in Table 

4.13. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 
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Table 4.7. Pressure mean absolute and relative errors in the mix model 

calibration. 

Material MAE [MPa] MRE 

Formulation 1 12.3 17.5 % 

Formulation 2 7.6 14.9 % 

Formulation 3 9.7 15.1 % 

Formulation 4 5.0 12.9 % 

Compound A 9.3 13.3 % 

Compound B 12.3 22.9 % 

 Compound C analysis 

As previously discussed, Compound C was excluded from the analysis in Section §4.2 due to 

the distinct nature of its available CS dataset, obtained from a different piece of equipment and 

employing varying pressure application modality. The objective of this section is to investigate 

the applicability and results of expanding the performed previous analysis to include Compound 

C as well. Compound C also stands out because of its distinctive attribute of containing a high 

API content (about 87% w/w). Pre-consolidation relative densities and compressibility 

constants for both RC and CS datasets have already been estimated and reported, as in Sections 

§4.1.1 and §4.1.2. The resulting compression profiles are together reported and in Figure 4.14. 

 

 
Figure 4.14. Comparison between RC and CS compression profiles for Compound C. 

Again, the CS compression profile underestimates the pressure necessary to obtain the same 

ribbon solid fraction in comparison to the RC compression profile. In fact, both 𝛾0𝐶𝑆
 and 𝐾𝐶𝑆 

present values greater compared to 𝛾0𝑅𝐶
 and 𝐾𝑅𝐶. This result aligns with the findings from all 

other powder mixtures investigated in this Thesis, except for Compound B. 
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The investigation is now on establishing how the calibrated transfer methodology with all the 

materials applies to the experimental results obtained for Compound C. Employing (4.7) and 

(4.8), virtual Johanson parameter values of 0.360 and 5.567 are obtained, respectively. 

Subsequently, these values are utilized to solve the Johanson model, both directly and inversely, 

yielding calculated ribbon SF values and calculated specific roll forces. The resulting 

comparisons with the experimental ones are visually presented through parity plots in Figure 

4.15. 

 

  
(a) (b) 

Figure 4.15. Validation parity for Compound C to evaluate differences between calculated 

and experimental: (a) ribbon solid fractions, (b) specific roll forces. 

The results are worse in this instance, where 14 datapoints, of the total 23, presents a relative 

error greater than 5%., while there are 4 datapoints with a relative error greater than 10. 

Additionally, the error distribution is skewed, with predominantly positive residuals, where 

𝛾𝑅
𝑒𝑥𝑝 is greater than 𝛾𝑅

𝑐𝑎𝑙𝑐 for all cases except for one. These negative outcomes are also present 

in Figure 4.15.b, where machine parameter predictions fail to align precisely with the 

experimental ones and are not homogeneous distributed. The parameters and the diagnostic 

results of Johanson models employing virtual parameters and those derived from experimental 

data are presented in Table 4.12: 

Table 4.12. Parameter values and diagnostic results of Virtual Johanson and 

Johanson model for Compound C. 

 
Parameter values 

MAE MRE max (RE) 𝑹𝟐 
𝛾0𝑅𝐶

 𝐾𝑅𝐶  

Johanson model 0.410 6.314 0.024 3.1 % 10.6 % 70.6 % 

Virtual Johanson model 0.360 5.567 0.046 6.0 % 13.0 % 7.8 % 
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Also the model diagnostic results of these two models differ significantly. This discrepancy is 

evident when the compression profiles of the Johanson and virtual models are compared 

visually in Figure 4.16. 

 
Figure 4.16. RC and virtual RC compression profiles comparison for Compound C. 

The application of the transfer methodology to the CS curve yields a compression profile that 

consistently overestimates the pressure in comparison to the RC profile across the entire range 

of experimental pressures. Consequently, the SFs computed by the virtual Johanson model are 

predicted to be higher than the corresponding experimental values, as previously discussed. 

Considering the entirety of the presented findings, the transfer methodology is not satisfactory 

and acceptable in the case of Compound C. The outcomes point to two potential reasons for 

Compound C anomalous performances. A possible reason could be the use of different piece 

of equipment for investigating the material compaction behaviour on the CS. Aside from the 

differences in machinery, the manner in which pressure was applied differs from previous 

procedures used to the material used to calibrate and validate the transfer model. Alternatively, 

the composition of Compound C might be the root cause. Compound C, in particular, has large 

API percentages, which could potentially lead to divergent flow properties and compaction 

behaviours. As a result, this instance needs the inclusion of alternate transfer model values in 

order to provide a more precise representation of this compound's characteristics. 

Hence, in order to properly evaluate the aforementioned conclusions, an experimental campaign 

of Compound C on the Phoenix® CS with a 10 mm diameter and employing punch compression 

through a sinusoidal profile should be performed. Subsequently, the proposed and calibrated 

transfer methodology could be applied to these experimental outcomes. Following the 

suggested validation procedure, it could be possible to determine whether the results of the 

virtual Johanson model outperform the data shown in Table 4.12. 

If the results improve, aligning more closely with the Johanson model derived from 

experimental data, a plausible inference could be drawn: the proposed transfer methodology is 

effective even for powder blends with high API content. However, it's noteworthy that the 
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model would exhibits a degree of dependence on the specific instrumentation employed and the 

method of pressure application of the punches. Conversely, If the results remain unsatisfactory, 

an alternative conclusion could be drawn: the transfer methodology possesses inherent 

limitations attributed to material composition. As a result, its efficacy may be compromised 

when dealing with powder blends with increased APIs content. 

 Effect of composition on Johanson model parameter values 

The final objective is to investigate how the composition of pharmacological blends can impact 

and, as a result, determine different values for Johanson model parameters. The materials 

selected for this aim are the four placebo formulations, each containing different weight fraction 

of MCC PH 102, Anhydrous Lactose, and Mannitol 200 SD. However, a limitation arises with 

Formulation 4, as it is the only blend containing mannitol, thereby precluding an assessment of 

how its content may impact the values of γ0RC
 and 𝐾𝑅𝐶. Consequently, in order to conduct an 

exhaustive analysis, a literature search was conducted to source relevant data and results related 

to the same excipients. These data were collected from equivalent pharmaceutical grades to 

ensure consistency in material qualities, particularly in terms of average nominal diameter, 

which can affect compaction behaviour and flowability properties. 

Pérez Gago et al. (2018) performed an experimental campaign carried out using the same 

Gerteis Mini-Pactor® on a placebo formulation made up entirely of Mannitol 200 SD. The 

design of the experimental campaign and the results are shown in Table 4.13 (Pérez Gago et 

al., 2018). 

Table 4.13. Results of the experimental campaign performed by Pérez Gago 

et al. (2018) for Mannitol 200 SD on the Gerteis Mini-Pactor®. 

Material 
Specific roll force 

[kN/cm] 
Roll gap [mm] Solid fraction [-] 

Mannitol 200 SD 

4.0 

4.0 

4.0 

4.0 

8.0 

8.0 

8.0 

8.0 

6.0 

6.0 

6.0 

1.5 

3.0 

1.5 

3.0 

1.5 

3.0 

1.5 

3.0 

2.25 

2.25 

2.25 

0.723 

0.696 

0.718 

0.710 

0.779 

0.767 

0.757 

0.770 

0.756 

0.744 

0.755 

 

Utilizing these experimental data and the parameter estimation procedure of Section §3.4, the 

values of the Johanson model parameters, which are γ0RC
= 0.468 ± 0.068 and 𝐾𝑅𝐶 =
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10.44 ± 3.694, were estimated. Furthermore, based on the findings of Patel et al. (2010), the 

value of the compressibility constant for MCC PH 102 was calculated and equal to 𝐾𝑅𝐶 = 3.1. 

Hence, a fairly detailed demonstration of the effect of different excipient composition on the 

estimation of Johanson parameters can now be developed. The initial step was to examine at a 

binary excipient blend, specifically MCC PH 102 and Anhydrous Lactose. Figure 4.17 shows 

the values of 𝛾0𝑅𝐶
 and 𝐾𝑅𝐶, along with their respective confidence intervals, as function of the 

weight fraction of the lactose in the blends. 

 

  

(a) (b) 

Figure 4.17. Effect of the blends composition, in the binary placebo formulation of MCC and 

anhydrous lactose, on the Johanson parameter values: (a) 𝛾0𝑅𝐶
, (b) 𝐾𝑅𝐶 . 

Similarly, in Figure 4.18, the values of the parameters 𝛾0𝑅𝐶
 and 𝐾𝑅𝐶, as the weight fraction of 

mannitol varies with respect to the MCC. 

  

  

(a) (b) 

Figure 4.18. Effect of the blends composition, in the binary placebo formulation of MCC and 

mannitol, on the Johanson parameter values: (a) 𝛾0𝑅𝐶
, (b) 𝐾𝑅𝐶 . 
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Powder blends characterized by elevated levels of mannitol and lactose, both of which 

exhibiting brittle deformation tendencies, present elevated values of 𝛾0𝑅𝐶
 and 𝐾𝑅𝐶. Conversely, 

a higher content of MCC, which is characterised by its plastic behaviour, results in lower values 

of the Johnson model parameters. The observed trend indicates that as the MCC concentration 

of a blend increases, the estimated pressure required to produce the same ribbon SF decreases 

in comparison to blends with elevated levels of mannitol or lactose. The difference depends on 

the different compression profiles given by 𝛾0𝑅𝐶
 and 𝐾𝑅𝐶, where a lower value of 𝐾𝑅𝐶  results 

in a steeper curve.  

Furthermore, Figures 4.17 and 4.18 indicate that the relations between the values of 𝛾0𝑅𝐶
 and 

𝐾𝑅𝐶 and the excipient weight fractions are not linear. Indeed, up to 50% MCC compositions, 

the values of both Johanson model parameters maintain a degree of proximity between powder 

blends. However, as MCC concentrations decrease further, there is a significant increase in the 

values of 𝛾0𝑅𝐶
 and 𝐾𝑅𝐶. 

 



 

 

Conclusions 

The objective of this thesis was to provide a methodology able to explain and relate the 

discrepancies between the empirical results obtained from a compactor simulator and a roller 

compactor. The method ought to determine a correlation between the different pressures 

observed across the two pieces of equipment, for the same values of ribbon solid fraction. This 

methodology would enable gathering all necessary information required for the properly set the 

RC operating conditions, based solely on the CS experimental data. Consequently, significant 

material and cost savings can be achieved during the drug development process. 

In order to reach these targets, the study has been carried out as follows. 

First, the roll compaction process was modelled using Johanson (1965) model. The calibration 

of the Johanson model parameters was carried out for each material utilised in this study, based 

on the available experimental results. The parameter estimation was conducted by employing a 

maximum likelihood estimation approach. RC compression profiles were defined using the two 

Johanson model parameters. In a similar manner, the CS compression profiles were also 

established. Second, a transfer methodology was developed to account for the differences 

between CS and RC compression profiles. This methodology is based on the mass correction 

factor 𝑓0 theory (Bi et al., 2014). Based on the obtained findings, an algebraic material-

independent relationship between 𝑓0 and the roller pressure was developed. The values of the 

two coefficients in this relationship were determined through a calibration procedure utilising 

experimental data obtained from four different placebo powder formulations. The model was 

subsequently validated by employing two active powder compounds, resulting in very accurate 

property predictions. Third, the model was validated using CS datasets acquired with punches 

of different sizes than the calibration data. The validation findings once again shown a high 

level of accuracy in terms of prediction. This section of the study demonstrates the applicability 

of the methodology in emergency scenarios, utilising data obtained from multiple experimental 

campaigns. Fourth, all the six materials were used to calibrate a final model, with the aim to be 

implemented in the operational stage to reduce materials consumption during drug developing 

phases. In conclusion, the analysis of a seventh material was conducted employing the transfer 

methodology. In this specific case, the predicted outcomes are deemed unsatisfactory. 

However, this may be due to the difference modality and equipment employed to gather the CS 

experimental data compared to calibration. 

One of the primary challenges encountered in this Thesis was related to the definition and 

coding of the parameter estimate algorithm for the Johanson model. The latter was executed 

using an iterative optimisation process in Matlab®. Later, the optimal methodology for linking 
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RC and CS experimental data had to be determined. The most effective technique has been 

identified in the mass correction factor theory, which is also supported by physical concepts. 

Some issues have been identified during the analysis of the RC dataset of material, whereby the 

significant variability of the experimental data has resulted in a considerable level of uncertainty 

in the analysis.  

The validation analysis focused both on the analysis of the predictive results in terms of both 

the ribbon solid fraction and the machine parameters. In both instances, the errors observed 

between the estimated and experimental values were found to be limited and uniformly 

distributed around zero. All errors relative to the predicted ribbon solid fraction were 

determined to be within the maximum threshold of relative error, which was set at 10%. Given 

the composition of the four placebo formulations, an analysis of the effect of excipient 

concentrations on Johanson parameter values was performed. The study revealed that large 

amounts of anhydrous lactose and mannitol, both characterised as brittle materials, lead to great 

values of them. Conversely, the higher the microcrystalline cellulose composition, the lower 

the Johanson parameter values. 

One of the limits of the study is related to the fact that the proposed transfer methodology has 

been formulated as material independent. The values of parameters of the 𝑓0 expression are 

determined by obtaining the best simultaneous transfer for all the calibration material. The 

effectiveness of this approach was shown to be significant across all six materials examined, 

exceeding the typical number of materials analysed in existing literature. This finding is 

noteworthy considering the significant variations in the compositions and characteristics of the 

powder mixtures. Nevertheless, it is important to note that the methodology employed in this 

work may not yield desirable results when applied to materials that exhibit a significantly 

distinct physical response across the two scales. 

Hence, a potential opportunity to improve the proposed transfer method in the future would 

involve examining materials with physical compositions and properties beyond the six powder 

blends evaluated. Such an approach would enable the determination of the overall effectiveness 

of the proposed methodology. The execution of this implementation should follow the same 

procedure as the collection of the calibration experimental data, in order to avoid introducing 

additional variability caused by using different equipment or applying pressure in different 

modes. When investigate materials comparable to those discussed in this Thesis, it is suggested 

to proceed with the implementation of the methodology during the usage phase. This involves 

exclusively establishing the RC machine parameters based on the CS experimental results and 

the mass correction factor. 

 



 

 

Nomenclature 

Symbols (latin letters) 

SRF = Specific roll force 

D = Roll diameter 

S = Roll gap 

RS = Roll speed 

K = Compressibility constant 

𝑅 = Roll radius 

𝑉𝛼 = Specific volume of the layer corresponding to the angular position 𝜃 

𝑉𝜃 = Specific volume of the layer corresponding to the nip angle 𝛼 

𝐿 = Arc-length segment 

𝑊 = Roll width 

𝑃𝑚𝑎𝑥 = Maximum roller surface pressure at the minimum roll gap 

𝑅𝑓 = Total roll force 

𝐹 = Force factor 

𝐾𝑅𝐶 = 
Compressibility constant estimated from roller compactor experimental 

data 

𝐾𝐶𝑆 = 
Compressibility constant estimated from compactor simulator 

experimental data 

�̃�𝑅𝐶 = 
Compressibility constant estimated using the mass correction factor 

transfer methodology 

𝑓𝜃 = fraction of material delivered to angle 𝜃 

𝑓0 = Fraction of material delivered to angle 𝜃 = 0 

𝑃𝐶𝑆 = Maximum pressure applied by the compactor simulator 

ℒ = Likelihood function 

ℓ = Log-likelihood function 

𝐇 = Hessian matrix 

   

Greek letters 

𝜃 = Angular roll position 

𝛼 = Nip angle 

𝛾 = Solid fraction 
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𝜌𝐸 = Envelope density 

𝜌𝑇 = True density 

𝜀 = Porosity 

𝜔 = Roll rotation frequency 

𝛿𝐸 = Effective angle of internal friction 

𝜙𝑊 = Angle of wall friction 

𝜈 = Acute angle between major principal axis and tangent to roll surface 

𝜇 = Friction coefficient 

𝜎𝛼 = Mean normal stress at nip angle 𝛼 

𝜎𝜃 = Mean normal stress at angular position 𝜃 

𝜌𝛼 = Powder density in the layer corresponding to the angular position θ 

𝜌𝜃 = Powder density in the layer corresponding to the nip angle 

𝛾𝑅 = Ribbon solid fraction 

𝛾0 = Pre-consolidation relative density 

γ0RC
 = 

Pre-consolidation relative density estimated from roller compactor 

experimental data 

γ0CS
 = 

Pre-consolidation relative density estimated from compactor simulator 

experimental data 

�̃�0𝑅𝐶
 = 

Pre-consolidation relative density estimated using the mass correction 

factor transfer methodology 

𝜎𝑖𝑛𝑡𝑟𝑎−𝑟𝑢𝑛 = Standard deviation of the measured solid fraction of the intra runs samples 

   

Acronyms 

RC = Roller compactor 

CS = Compactor simulator 

SF = Solid fraction 

API = Active pharmaceutical ingredient 

FEM = Finite element methods 

DEM = Discrete element methods 

MCC = Microcrystalline cellulose 

SD = Spray dried 

MgSt = Magnesium stearate 

SEM = Scanning electron microscope 

MLE = Maximum likelihood estimation 

SE = Standard error 

MRE = Mean relative error 

MAE = Mean absolute error 



 

 

Appendix 

A.1  Roller compactor datasets 

Table A.1.1. RC experimental dataset of Formulation 1. 

Material Dataset ID Run no. 
Specific roll force 

[kN/cm] 

Roll gap  

[mm] 

Solid fraction 

 [-] 

Formulation 1 RC-F1 

1 3.0 2 

0.652 

0.653 

0.668 

2 6.0 2 

0.685 

0.753 

0.749 

3 9.0 2 

0.817 

0.798 

0.792 

4 12.0 2 

0.802 

0.848 

0.824 

5 4.2 4 

0.670 

0.676 

0.665 

 

Table A.1.2. RC experimental dataset of Formulation 2. 

Material Dataset ID Run no. 
Specific roll force 

[kN/cm] 

Roll gap  

[mm] 

Solid fraction 

 [-] 

Formulation 2 RC-F2 

1 3.0 2 

0.588 

0.606 

0.582 

2 6.0 2 

0.716 

0.715 

0.715 

3 9.0 2 

0.759 

0.822 

0.778 

4 12.0 2 

0.807 

0.820 

0.840 

5 4.2 4 0.577 
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0.622 

0.610 

6 8.5 4 

0.746 

0.725 

0.693 

7 3 4 

0.569 

0.594 

0.574 

8 6 4 

0.653 

0.655 

0.679 

 

Table A.1.3. RC experimental dataset of Formulation 3. 

Material Dataset ID Run no. 
Specific roll force 

[kN/cm] 

Roll gap  

[mm] 

Solid fraction 

 [-] 

Formulation 3 RC-F3 

1 3.0 2 

0.564 

0.566 

0.564 

2 6.0 2 

0.661 

0.701 

0.669 

3 9.0 2 

0.753 

0.734 

0.748 

4 12.0 2 

0.856 

0.852 

0.827 

5 4.2 4 

0.556 

0.559 

0.555 

6 8.5 4 

0.721 

0.718 

0.719 

7 3 4 

0.527 

0.523 

0.524 

8 6 4 

0.646 

0.624 

0.647 
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Table A.1.4. RC experimental dataset of Formulation 4. 

Material Dataset ID Run no. 
Specific roll force 

[kN/cm] 

Roll gap  

[mm] 

Solid fraction 

 [-] 

Formulation 4 RC-F4 

1 3.0 2 

0.559 

0.572 

0.587 

2 6.0 2 

0.680 

0.672 

0.672 

3 9.0 2 

0.738 

0.737 

0.753 

4 12.0 2 

0.794 

0.752 

0.811 

5 4.2 4 

0.545 

0.558 

0.566 

6 8.5 4 

0.680 

0.698 

0.689 

7 3.0 4 

0.515 

0.526 

0.515 

8 6.0 4 

0.630 

0.632 

0.607 

 

Table A.1.5. RC experimental dataset of Compound A. 

Material Dataset ID Run no. 
Specific roll force 

[kN/cm] 

Roll gap  

[mm] 

Solid fraction 

 [-] 

Compound A RC-CA 

1 4.0 2 

0.632 

0.647 

0.626 

2 6.0 2 

0.703 

0.660 

0.690 

3 8.0 2 

0.750 

0.760 

0.750 

4 4.0 2 

0.660 

0.640 

0.640 

5 6.0 2 

0.710 

0.695 

0.693 
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6 8.0 2 

0.748 

0.762 

0.791 

7 8.0 2 

0.729 

0.738 

0.722 

8 8.0 2 

0.764 

0.733 

0.726 

9 8.0 2 

0.731 

0.745 

0.727 

10 6.0 2 

0.690 

0.702 

0.693 

11 6.0 2 

0.720 

0.708 

0.736 

12 6.0 2 

0.715 

0.716 

0.708 

13 6.0 2 

0.708 

0.709 

0.714 

14 6.0 2 

0.701 

0.681 

0.687 

15 6.0 2 

0.716 

0.667 

0.693 

16 6.0 2 

0.678 

0.676 

0.686 

17 8.0 2 

0.717 

0.719 

0.721 

18 8.0 2 

0.715 

0.733 

0.734 

19 8.0 2 

0.737 

0.739 

0.729 

20 5.0 3 

0.641 

0.641 

0.638 

21 7.5 3 

0.720 

0.715 

0.704 

22 10.0 3 

0.780 

0.735 

0.784 
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23 14.5 3 

0.818 

0.785 

0.782 

24 6.0 2 

0.658 

0.667 

0.685 

25 5.0 3 

0.661 

0.660 

0.650 

26 7.5 3 

0.723 

0.711 

0.726 

27 10.0 3 

0.786 

0.787 

0.762 

28 14.5 3 

0.846 

0.826 

0.826 

29 6.0 2 

0.712 

0.706 

0.715 

 

 

Table A.1.6. RC experimental dataset of Compound B. 

Material Dataset ID Run no. 
Specific roll force 

[kN/cm] 

Roll gap  

[mm] 

Solid fraction 

 [-] 

Compound B RC-CB 

1 5.5 2 

0.703 

0.664 

0.671 

2 5.5 2 

0.668 

0.686 

0.713 

3 3.5 2 

0.678 

0.656 

0.708 

4 10.0 2 

0.722 

0.783 

0.789 

5 6.5 3 

0.692 

0.716 

0.723 

6 5.5 2 

0.741 

0.748 

0.715 

7 5.5 2 

0.761 

0.718 

0.693 

8 5.5 2 0.718 
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0.701 

0.699 

9 5.5 2 

0.697 

0.675 

0.744 

10 5.5 2 

0.722 

0.700 

0.718 

 

 

 

Table A.1.7. RC experimental dataset of Compound C. 

Material Dataset ID 
Specific roll force 

[kN/cm] 

Roll gap 

[mm] 

Solid fraction 

[-] 

Compound C RC-CC 

2.0 2 0.704 

3.0 2 0.737 

4.0 2 0.783 

1.5 2 0.686 

1.0 2 0.655 

2.0 2 0.730 

2.5 2 0.739 

3.0 2 0.689 

2.0 2 0.768 

3.0 2 0.731 

4.5 2 0.788 

3.5 2 0.789 

2.5 2 0.742 

1.5 2 0.676 

3.8 2 0.780 

3.5 2 0.764 

4.0 2 0.849 

3.8 2 0.824 

4.5 3 0.755 

3.8 2 0.763 

4.5 2 0.859 

4.5 2 0.854 

4.5 2 0.824 



 

 

A.2  Compactor simulator datasets 

Table A.2.1. 10 mm Phoenix® CS experimental dataset with of Formulation 1. 

Material Dataset ID Pressure [MPa] Solid fraction [-] 

Formulation 1 CS10-F1 

19.722 0.617 

18.296 0.609 

17.685 0.608 

18.615 0.613 

17.736 0.610 

33.868 0.678 

30.660 0.668 

34.034 0.682 

34.759 0.681 

34.874 0.684 

49.249 0.728 

45.773 0.712 

45.060 0.713 

47.619 0.713 

48.982 0.722 

82.722 0.771 

87.713 0.776 

93.328 0.791 

89.407 0.764 

83.053 0.783 

106.952 0.803 

106.774 0.807 

98.205 0.768 

111.981 0.783 

102.840 0.790 

137.026 0.822 

138.465 0.827 

138.898 0.805 

137.866 0.814 

140.897 0.827 

168.501 0.836 

169.417 0.857 

166.909 0.839 

164.999 0.829 

159.270 0.846 

189.598 0.817 

188.007 0.833 

186.530 0.830 

187.153 0.821 

192.628 0.856 
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Table A.2.2. 10 mm Phoenix® CS experimental dataset with of Formulation 2. 

Material Dataset ID Pressure [MPa] Solid fraction [-] 

Formulation 2 CS10-F2 

22.536 0.584 

22.536 0.592 

23.720 0.599 

23.708 0.590 

23.568 0.600 

41.113 0.672 

42.119 0.680 

40.336 0.672 

42.972 0.675 

42.679 0.672 

65.381 0.724 

67.533 0.735 

68.742 0.737 

66.158 0.716 

66.323 0.742 

91.317 0.775 

100.331 0.766 

99.886 0.777 

98.943 0.799 

99.274 0.789 

135.027 0.813 

146.155 0.837 

142.463 0.827 

142.896 0.817 

132.328 0.781 

166.476 0.836 

176.293 0.855 

175.656 0.859 

164.426 0.828 

178.508 0.837 

210.785 0.860 

214.566 0.852 

215.789 0.879 

219.850 0.896 

211.243 0.854 
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Table A.2.3. 10 mm Phoenix® CS experimental dataset with of Formulation 3. 

Material Dataset ID Pressure [MPa] Solid fraction [-] 

Formulation 3 CS10-F3 

22.384 0.558 

23.135 0.567 

23.504 0.565 

23.542 0.566 

23.351 0.566 

52.903 0.701 

54.444 0.695 

53.947 0.699 

53.196 0.700 

54.011 0.692 

68.488 0.725 

70.346 0.728 

69.774 0.737 

69.188 0.730 

67.431 0.741 

95.544 0.765 

99.440 0.780 

98.536 0.781 

100.675 0.781 

101.044 0.785 

151.172 0.832 

153.171 0.836 

152.878 0.833 

157.627 0.844 

157.334 0.838 

188.516 0.865 

186.046 0.855 

198.944 0.869 

191.623 0.857 

195.570 0.861 

43.074 0.671 

43.188 0.672 

43.303 0.668 

42.004 0.661 

42.437 0.657 
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Table A.2.4. 10 mm Phoenix® CS experimental dataset with of Formulation 4. 

Material Dataset ID Pressure [MPa] Solid fraction [-] 

Formulation 4 CS10-F4 

23.797 0.566 

25.057 0.580 

24.408 0.578 

23.644 0.569 

23.415 0.573 

40.222 0.653 

40.374 0.655 

39.687 0.648 

40.018 0.653 

38.757 0.620 

49.580 0.675 

51.528 0.691 

48.943 0.683 

48.510 0.684 

51.286 0.693 

68.347 0.730 

69.748 0.728 

67.354 0.730 

69.481 0.726 

67.189 0.728 

102.483 0.774 

95.671 0.773 

103.005 0.777 

98.001 0.770 

98.714 0.765 

144.271 0.794 

154.864 0.819 

154.266 0.835 

154.571 0.832 

153.693 0.822 

178.317 0.839 

193.023 0.848 

184.123 0.828 

189.929 0.846 

190.693 0.854 
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Table A.2.5. 10 mm Phoenix® CS experimental dataset with of Compound A. 

 

  

Material Dataset ID Pressure [MPa] Solid fraction [-] 

Compound A CS10-CA 

17.723 0.572 

20.270 0.585 

15.444 0.554 

18.615 0.584 

18.908 0.580 

40.222 0.665 

41.482 0.657 

48.765 0.683 

44.283 0.684 

50.840 0.707 

64.846 0.733 

60.835 0.721 

58.964 0.719 

74.625 0.741 

66.094 0.740 

82.875 0.753 

75.478 0.737 

77.910 0.751 

81.360 0.755 

89.560 0.762 

91.584 0.765 

108.060 0.771 

104.724 0.768 

101.006 0.788 

98.982 0.777 

145.111 0.814 

142.335 0.811 

143.087 0.820 

162.656 0.815 

148.587 0.810 
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Table A.2.6. 10 mm Phoenix® CS experimental dataset with of Compound B. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Material Dataset ID 
Pressure 

[MPa] 

Solid fraction 

 [-] 

Compound B CS10-CB 

27.999 0.628 

29.807 0.623 

30.927 0.629 

32.557 0.623 

31.984 0.627 

63.331 0.735 

57.716 0.733 

64.464 0.725 

61.434 0.741 

67.354 0.743 

81.194 0.758 

92.514 0.779 

92.577 0.763 

87.892 0.762 

91.406 0.762 

119.277 0.814 

115.597 0.815 

129.807 0.815 

112.898 0.795 

109.282 0.802 

153.056 0.838 

126.191 0.823 

121.684 0.813 

124.014 0.818 

132.773 0.832 

173.772 0.843 

166.132 0.845 

162.402 0.838 

164.273 0.858 

188.070 0.857 

225.083 0.867 

249.504 0.866 

244.309 0.866 

228.865 0.864 

206.876 0.864 

52.979 0.724 

52.496 0.716 

46.359 0.682 

49.542 0.692 

51.859 0.721 
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Table A.2.7. 18 mm Phoenix® CS experimental dataset with of Formulation 2. 

 

Table A.2.8. 18 mm Phoenix® CS experimental dataset with of Formulation 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Material Dataset ID Pressure [MPa] Solid fraction  [-] 

Formulation 2 CS18-F2 

18.983 0.586 

18.922 0.586 

20.331 0.594 

19.173 0.587 

18.564 0.584 

115.662 0.824 

116.515 0.828 

122.734 0.828 

112.580 0.830 

116.097 0.833 

Material Dataset ID Pressure [MPa] Solid fraction [-] 

Formulation 3 CS18-F3 

23.191 0.565 

21.413 0.559 

21.227 0.558 

22.694 0.561 

18.855 0.543 

22.011 0.563 

20.678 0.552 

22.034 0.562 

19.346 0.554 

20.026 0.552 

47.605 0.684 

54.343 0.687 

54.001 0.690 

54.018 0.693 

48.813 0.686 

143.112 0.844 

145.084 0.852 

142.074 0.836 

139.707 0.850 

145.650 0.840 

128.507 0.837 

122.333 0.835 

140.774 0.850 

131.690 0.845 

133.615 0.844 
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Table A.2.9. 18 mm Phoenix® CS experimental dataset with of Formulation 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Material Dataset ID Pressure [MPa] Solid fraction [-] 

Formulation 4 CS18-F4 

21.276 0.575 

20.853 0.565 

20.942 0.570 

20.667 0.568 

19.804 0.562 

19.429 0.561 

20.258 0.569 

18.376 0.565 

21.077 0.567 

19.918 0.566 

44.831 0.675 

40.386 0.675 

40.451 0.671 

38.963 0.669 

38.751 0.666 

111.623 0.790 

112.420 0.787 

108.854 0.788 

108.801 0.781 

105.765 0.776 

106.952 0.779 

117.421 0.791 

109.951 0.792 

107.640 0.782 

110.929 0.789 



CS datasets  105 

 

 

Table A.2.10. 21.85 mm Phoenix® CS experimental dataset with of Compound A. 

Material Dataset ID Pressure [MPa] Solid fraction [-] 

Compound A CS21-CA 

26.061 0.647 

27.074 0.645 

31.013 0.662 

30.397 0.647 

27.208  0.649 

25.752 0.634 

28.245 0.643 

29.360 0.649 

30.912 0.641 

30.619 0.650 

31.685 0.646 

30.432 0.642 

31.677 0.636 

31.893 0.634 

33.232 0.658 

25.080 0.633 

30.301 0.646 

26.216 0.639  

30.965 0.650 

27.464 0.643 

29.349 0.643 

25.194 0.623 

30.131 0.646 

31.163 0.643 

32.710 0.650 

34.915 0.658 

35.123 0.657 

65.040 0.748 

56.040 0.731 

67.670 0.748 

61.101 0.743 

63.163 0.753 

62.854 0.748 

63.915 0.745 
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Table A.2.11. 21.85 mm Phoenix® CS experimental dataset with of Compound B. 

Material Dataset ID Pressure [MPa] Solid fraction [-] 

Compound B CS21-CB 

45.428 0.696 

37.337 0.671 

41.692 0.669 

49.180 0.700 

43.009 0.685 

40.678 0.681 

42.249 0.683 

49.375 0.704 

43.118 0.688 

44.031 0.691 

36.385 0.669 

41.228 0.673 

37.483 0.677 

36.603 0.654 

40.998 0.670 

36.654 0.641 

34.560 0.639 

42.908 0.670 

37.427 0.660 

42.150 0.665 

41.924 0.670 

38.310 0.660 

45.591 0.667 

57.584 0.709 

67.385 0.725 

48.218 0.682 

47.727 0.674 

44.423 0.679 

41.382 0.680 

38.443 0.657 

42.734 0.671 

42.937 0.669 

48.796 0.673 

47.164 0.682 

44.695 0.678 

39.179 0.673 

47.295 0.691 

41.540 0.655 
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Table A.2.12. 11.28 mm Styl’One® CS experimental dataset with of Compound C. 

Material Dataset ID Pressure [MPa] Solid fraction [-] 

Compound C CS11-CC 

28.934 0.735 

29.435 0.737 

29.234 0.735 

48.657 0.791 

48.757 0.788 

48.958 0.793 

68.481 0.828 

68.581 0.825 

68.481 0.825 

92.809 0.863 

93.510 0.864 

93.010 0.862 

117.138 0.895 

117.338 0.893 

117.539 0.895 

136.861 0.908 

136.861 0.908 

136.361 0.905 

174.005 0.909 

175.607 0.928 

175.106 0.932 

29.435 0.740 

29.435 0.737 

29.335 0.736 

48.757 0.790 

48.958 0.787 

48.657 0.789 

68.881 0.827 

68.481 0.827 

68.481 0.824 

93.210 0.863 

93.010 0.858 

93.010 0.858 

116.938 0.893 

117.438 0.890 

117.539 0.892 

137.362 0.906 

136.461 0.907 

136.561 0.907 

174.806 0.925 

174.606 0.926 

175.006 0.931 

28.367 0.737 
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47.489 0.793 

55.365 0.811 

78.326 0.853 

101.620 0.878 

120.041 0.895 

157.119 0.917 

28.934 0.735 

48.290 0.794 

58.035 0.816 

81.997 0.862 

106.125 0.892 

125.248 0.910 

163.493 0.938 

29.001 0.740 

48.424 0.790 

58.135 0.813 

83.031 0.860 

106.092 0.891 

124.814 0.910 

163.292 0.937 

29.635 0.752 

49.792 0.808 

69.115 0.844 

93.343 0.874 

118.306 0.898 

137.529 0.921 

176.341 0.938 

29.635 0.743 

49.392 0.803 

69.081 0.841 

93.443 0.876 

117.639 0.898 

136.995 0.912 

175.707 0.936 

29.435 0.741 

48.991 0.800 

68.547 0.839 

93.277 0.872 

117.906 0.898 

137.662 0.921 

175.006 0.939 

30.269 0.788 

49.992 0.827 

69.015 0.854 

93.477 0.884 

117.205 0.905 
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136.494 0.920 

174.673 0.940 

29.435 0.743 

49.024 0.798 

68.581 0.841 

93.377 0.873 

117.872 0.896 

137.162 0.917 

175.240 0.938 

30.302 0.782 

49.959 0.823 

69.048 0.854 

93.544 0.885 

117.906 0.907 

137.028 0.917 

174.673 0.937 
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