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Abstract

The generation of good random numbers impacts basic research and applications beyond pure
academic interests: random numbers are required for countless applications, such as cryptography
and simulations. For most applications, it is of outmost importance to know if a set of numbers is
truly random, pseudo-random or contains some residual correlations. Tensor networks are powerful
data structures that spring from quantum many-body physics and are now increasingly applied to
machine learning applications. This thesis plans to explore the intersection between these two fields,
applying quantum-inspired machine learning to random number generation. We aim to perform and
characterise novel statistical checks comparing and characterising the statistical quality of different
number sets: correlated, pseudo-random, and quantum-random.
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Introduction

Nowadays, in spite of the fact that randomness and uncertainty are often viewed as an obstacle,
many fields such as cryptography, Monte Carlo simulations or research methods in general, requires
random numbers. There exists different types of random numbers generators and the one commonly
used are capable of generating sequences of Pseudo Random Numbers (PRNs). Indeed, since classical
computers are only able to execute algorithms, every result they can generate is deterministic. For
this reason, classical computers are not able to generate truly random sequences of numbers, although
for many applications using sequences generated by PRNGs is sufficient. In some case, however, it is
necessary to use truly random numbers and so unpredictability is a fundamental requisite [1, 2].

A different but fascinating topic that is emerging these days concerns the interface between machine
learning and the physical sciences. Biologically inspired Artificial Neural Networks (ANNs) are a well
known model for supervised learning and they are of increasing interest in several fields such as research
and industry. ANNs describe a functional mapping containing many parameters, which are optimised
during the training procedure, able to classify an input according to the class it belongs. Only in the
last few years, some profound connections between Machine Learning (ML) and physics, especially
quantum physics, have been shown in the two verses [3,4]. In particular, it has been shown that Tensor
Networks (TN), which are a particular numerical method originated from quantum physics that plays
the role of the biological originated ANNs, can be applied to solve ML tasks [5]. By using a TN
approach in ML, new information can be obtained in comparison with a traditional ANNs approach,
as we will see in Chapters 1 and 4.

In this thesis, after a concise overview over Tensor Network Machine Learning and Random Number
Generation, a link between these two topics is presented. The aim of this work is to present a
TN approach for the supervised learning problem of characterising the statistical quality of different
number sets: correlated, pseudo-random and quantum-random. Simulations are carried out on a
Binary Tree Tensor Network (bTTN) coded in Fortran by Timo Felser and Marco Trenti and running
on a INFN’s CloudVeneto remote instance.

vii
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Chapter 1

Tensor networks

In this chapter we are going to introduce tensor networks and briefly describe the differences
between a Tensor Network approach to machine learning and another based on Neural Networks, in
terms of accessible information [6, 7].

1.1 Tensors

A tensor is a multidimensional array. There are sundry ways to define it, using different level of
abstraction and different languages. For our purposes, a N -rank, m-dimensional tensor T consists of
a set of numbers Ti1,...,iN , where each index ij has m possible values.

As shown in Fig. 1.1, a tensor is represented by a circle with lines coming out of it. Each line, also
called edge, represents an index and has a proper dimension. To take an example, a rank-1 tensor
describing the position in space of one object, is depicted as a circle with a ’three dimensional’ line
departing from it [6, 7].

Figure 1.1: Examples of tensors in graphical representation: (a) Scalar (rank 0), (b) Vector ψi (rank 1). (c)
Matrix Oi,j (rank 2). (d) N -rank tensor ψi1,...,iN .

1.2 Tensors manipulation

The graphical notation introduced above, offers many advantages over traditional index notation,
among which a lighter way to represent multi dimensional object manipulations. Later on, we will see
that tensors are constantly manipulated and so why it is important to adopt a compact notation.

1.2.1 Outer product

The outer product between two tensors A and B is the element-wise product of the values of each
tensor component. In diagrammatic notation (see Eq. 1.1), it is represented by two circles being
placed next to each other and treated as a compound of the two.

Ai1...irBj1...js = = (A⊗B)i1...ir j1...js (1.1)

1



Chapter 1. Tensor networks 2

Figure 1.2: The coefficient of a many-body wave function with 4 constituents on the left can be decomposed
into Q = 4 smaller tensors which are connected through L = 5 auxiliary links. The original tensor Ψα1,...,α4

can
be obtained back by contracting tensors over virtual indices, following Eq 1.3.

1.2.2 Contraction

Any connection between two circles (shown on a more complex TN in Fig. 1.2) represents an index
contraction and following Einstein’s convention for indices, repeated indices are implicitly summed

(1.2)

∑︂
b,c

Aa,bBb,cCc,d = Aa,bBb,cCc,d = Oa,d (1.3)

The result of the contraction is a matrix Oa,d by the time there are only two indices left out of the
sum and so the final tensor has rank 2.

An operation such as tensor trace (Eq. 1.4) can be plainly expressed by connecting a line departing
from a tensor to that tensor itself. Partial trace operation follows naturally: given a tensor A having
two indices m, n with the same dimension dm = dn = d the latter is defined as the joint summation

=
d∑︂

i=1

Aii (1.4)

1.3 Tensor networks

Linked tensors can be arranged in several ways in space, and different spatial arrangements identify
different classes of tensor networks (TNs). TNs have been developed to efficiently represent a quantum
wavefunction of a quantum many-body system on a classical computer. Given a quantum system with
size N (e.g. a lattice of N fermions) the most general quantum many-body pure state that describes
the whole system can be written as

|ψ⟩ =
∑︂

i1,...,iN

Ψi1,...,iN

⎛⎝ N⨂︂
j=1

|ij⟩

⎞⎠ =
∑︂

i1,...,iN

Ψi1,...,iN |i1, . . . , iN ⟩ (1.5)

where {|ij⟩}j is a canonical basis of the subsystem’s j Hilbert space Hj and the Hilbert space of the
whole system corresponds to the tensor product of all the subspaces H = H1⊗ · · · ⊗HN . Supposing
that each local state space is d-dimensional, the complete representation seeks for dN coefficients. The
complex amplitudes Ψi1,...,iN of this wave function define an exponentially large tensor and determines
the state uniquely since by taking its squared module, Pi1,...,iN = |Ψi1,...,iN |2 the probability to find
the system in the configuration i1, . . . , iN is obtained. Using TN formalism it is possible to re-write
this tensor as the contraction of a set of smaller tensors by expanding it over auxiliary virtual indices

Ψi1,...,iN =
∑︂

α1,...,αL

T 1
{i}1{α}1T

2
{i}2{α}2 . . . T

Q
{i}Q{α}Q (1.6)
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(a) (b)

Figure 1.3: (a) A MPS decomposition, also named tensor train. A sign of approximation is used since the
operation involves an information compression. (b) Tree tensor network. Tensors composing the bottommost
layer take data as input and are called input data. The uppermost dangling link ℓ will become the prediction
of the network.

for a network with Q nodes and L links. Links are also called edges, and they are dangling edges if
only one side is connected to a tensor. For us, a dangling edge (e.g. i2 in Fig. 1.2) is a physical index
since it defines the amplitudes tensor. On the other hand, edges that connect two tensors are called
virtual indices and each tensor can have any number of connected links {α}l and any number of free
legs over physical indices {i}q. An example of how a tensor can be split into smaller ones is shown in
Fig. 1.2. The following are two examples of tensor networks.

1.3.1 Matrix Product State (MPS)

A first crucial example for one-dimensional quantum systems, is the Matrix Product State (MPS)
tensor network, depicted in Fig. 1.3a. Each physical index has a dimension d, the number of local
configurations and each virtual index α has a dimension χ, which is known as bond dimension: a
knob we can tune (hyper-parameter of the TN) in order to control the MPS approximation. In fact,
allowing χ to grow exponentially, we pass from a trivial approximation to the most exact one (dN ) of
a quantum state. It is worth to observe that, using a MPS, a rank-N tensor with dN components is
approximated with a train of lower order tensors with N · d · χ2 coefficients instead. The dimensional
scaling is then linear rather than exponential in the input size N . From the MPS ansatz, the Projected
Entagled Pair States (PEPS) can be deflty constructed in order to deal with two dimensional quantum
systems.

1.3.2 Tree Tensor Network (TTN)

In this work, a binary Tree Tensor Network (bTTN) (depicted in Fig. 1.3b) is used, whom tensors
are connected according to a hierarchical tree structure. The lattice is entirely composed of tensors
with three links and each layer has half tensors and double the tensor of the upper an bottom layer
respectively. The choice of a bTTN is a natural mirror of how a group of simple information (contained
in the bottommost layer) combine to form more complex concept.

1.3.3 Tensor network differentiation

As we will discuss in chapter 2, any kind of TN (but also more classical Neural Networks) should
perform an operation called gradient descent, in order to optimise the entries of the tensors with
respect to a given input. We therefore need to define a tensor network differentiation. Without
surprise, the derivative of any linear function of tensors (Eq. 1.6) with respect to a particular tensor
T ∗, is given by the tensor network where the tensor T ∗ has been removed

∂

∂T ∗

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦ = (1.7)
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Figure 1.4: Example of a two sites correlation on a MPS following Eq. 1.8.

1.3.4 Accessible information in a tensor network

With the basic knowledge introduced so far, one can compute quantities of interest on a TN.

Expectation values

Given a local observable acting on a local Hilbert space Ô, or a tensor product of those
⨂︁

i Ôi,
one can compute efficiently its expectation value in a state. An interesting expectation value that can
be calculated is a two sites (i and j) correlation, using a product of two σz Pauli matrices, defined as

Ci,j = ⟨ψ|σzi σzj |ψ⟩ (1.8)

We use this particular spin operator since we encode data in the bTTN using a local spin map (see
Section 2.2.2). In case of maximum correlation or anti-correlation, the information contained on one
feature site can be obtained by the other one and thus can be neglected. In figure 1.4 is depicted an
example of such calculation, where the two Pauli operators are inserted in the contraction between an
MPS |ψ⟩ and its complex conjugate ⟨ψ|. An important thing to notice is that, in this way, also state
norm or state overlap can be calculated.

Entropy

Von Neumann defined the entropy SV of a generic quantum state density matrix ρ by the formula

SV (ρ) = −Tr(ρ log ρ)
(a)
= −

∑︂
i

λi log λi (1.9)

Trace operation is invariant with basis changing and ρ = ρ† is hermitian, so we can rewrite it in a
basis in which it is diagonal [8]. Doing that, we find Shannon’s definition of entropy, calculated on
the eigenvalues (a). When dealing with tensor networks (pure states) S is the entanglement entropy
and reflects the shared information between two TNs bipartitions.

Given a pure state |ψ⟩AB ∈ H = HA ⊗ HB, it can be decomposed according to Schmidt decom-
position [8] into

|ψ⟩AB =
∑︂
α

λα |αA⟩ |αB⟩ (1.10)

where {|αA⟩} and {|αB⟩} are orthonormal states of systems A and B respectively and λi are the
Schmidt-coefficients (non zero normalised singolar values of the decomposition). The entanglement
entropy is then defined as

S = −
∑︂
α

λ2α lnλ
2
α (1.11)

The minimal entropy S = 0 is obtained when, for example, λ1 = 1 and in this case we can completely
separate the two bipartitions as they share no information. An higher S means that some information
is shared. In fact, in a machine learning framework, if the features in one bipartition provide no
valuable information for the classification task, the entropy on that bipartition is 0, and it could be
discarded with no loss of information.



Chapter 2

Tensor Network Machine Learning

As technology advances, an enormous amount of data is generated every day, and the capability
to manipulate them efficiently is increasingly important. In this framework, Machine Learning (ML)
algorithms have been developed with the aim of finding patterns in massive amount of data. In this
chapter we will talk about a subclass of ML called supervised learning and subsequently understand
how to accomplish supervised algorithm tasks using TNs notions, introduced above.

2.1 Machine Learning (ML)

The main goal of a ML algorithm is being able to label correctly an unknown input set of data.
The choice of the label depends on an inferred function that take as an input a set of data x and,
on the basis of a set of parameters θ, provides the best label for x. The choice of the optimal set of
parameters is done during the so-called training of the algorithm.

2.1.1 Supervised Learning

Given sufficient labelled examples, a supervised-learning system would learn to recognize inside
patterns and uses them to predict the values of the label on additional unlabelled data. Artificial
Neural Networks (ANNs) are a human-brain inspired model used in supervised learning that can learn
by processing labelled examples, forming probability-weighted associations between inputs and results.
ANNs are essentially made of nodes (neurons) and weights (axons), respectively circles and lines in
Fig. 2.1. Nodes and weights are further organised in layers: the input layer welcomes the input data,
the output layer returns the label prediction and in between the two there are one or more (Deep
Neural Networks (DNNs)) hidden layers.

Figure 2.1: A two-hidden-layers DNNs: orange neurons compose the input layer and the sky blue neuron is the
output layer. Labelled data in the training set S (images of number for example) are given in input in order to
optimise the model. Here is depicted the idea of training: we go from a blank model, with weights (black lines)
of the same sizes to a trained one, which has links of different thicknesses.

The neuron N is intended as a cell that receive a linear combination of the inputs x and weights
w, then through and activation function σ outputs a number.

N (x,w, b) = σ(x · w + b) ∈ R (2.1)

5



Chapter 2. Tensor Network Machine Learning 6

where b is the bias and σ is usually a non linear map that can be chosen among different ones, such as
sigmoid or ReLU. Each possible configuration of the network’s weights is part of the hypothesis class
set H.

Formally, in a supervised learning framework we have a domain set X that contains all the possible
instances x ∈ X usually treated as a vector of features. Each instance has its own label y ∈ L so
that when forming the training set S we are selecting an instance-label pair that belongs to the
domain points S ⊂ (X × L) : S = ((x1, y1) . . . (xm, ym)). Ideally, we assume there exist a probability
distribution D over the domain X that generates the instances, and a labelling function f : X → L,
both not known a priori. Then, through the training procedure, we use ML to find a good prediction
rule h ∈ H, which means obtaining a good approximation of f and D. The output of the entire
training process is then a trained model able to classify correctly different unlabelled, see Fig. 2.2.

Figure 2.2: A correctly trained model should be able to map the features vector x ∈ X , (the one containing the
value of pixels of the image representing the number ’4’) to its right label ℓ = 4 ∈ L.

2.1.2 Loss Function

The training process in a ML algorithm makes use of a loss function (or cost function) λ. It’s a
method of evaluating how well a specific prediction rule h reproduce the ideal labelling function f . If
predictions deviates too much from actual results, loss function would cough up a very large number.
Gradually, with the help of some optimisation function, the loss function is able to reduce the error
in prediction. In fact, an optimisation process aims to minimise the training error, defined by means
of different loss functions λ as:

LS(h) =
1

Nt

NT∑︂
i=1

λi(h, (x, y))t (2.2)

where NT is the number of training data. There exists a lot of different loss function but one of the
most commonly used and also highly expressive to understand the key idea is the squared loss

λi(h, (x, y)) = λsq,i(h, (x, y)) = (h(xi)− yi)
2 (2.3)

used for the penalisation of large errors in regression but also in classification.

2.1.3 Backpropagation

Defined the hypothesis class H, the training set S ∈ X ×L and specified the loss function λi in the
training error, the learning procedure (or weights optimisation) is led by the so called backpropagation.
It is an algorithm that uses the gradient descent to update the parameters of the network in order to
minimise the training error (Eq. 2.2). Chosen an initial predictor h0 ∈ H (usually a random set of
parameters), it iteratively updates the parameters according to the following equation

αt = η∇hLS(ht)

ht+1 = ht − αt
(2.4)

where ∇hLS(ht) is the gradient of the training error and we have introduced the learning rate η that
controls how big a step we should take in the direction of the gradient at time step t. We won’t discuss
here how to perform more complex gradient descents as we will use only the ideas from the vanilla
gradient descent for developing a TNs analog.
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2.2 Tensor Network Machine Learning (TNML)

The aim of this section is to demonstrate how TNs can replace ANNs in classification tasks,
pursuing the work of E.M. Stoudenmire and D. Schwab [9], that brought to light the theory of TNML.
The underlying idea is that if we interpret each instance of the dataset as an N -body quantum system
(e.g. a spin chain [10]), then we can use TNs to handle dimensional problems and perform ML tasks.

2.2.1 Framework

In TNML, a linear decision function f(x) is used to classify an input x

f(x) =W · Φ(x) =
∑︂
s

Ws1s2...sNΦ
s1s2...sN (x) (2.5)

where Φ(x) is the feature vector andW is the optimised weight tensor, that replace nodes and weights
of a classical DNNs. The latter can be exponentially large, leading to the curse of dimensionality. That
is where TNs ansatz comes in.

2.2.2 Encoding Data in a TN

The MNIST database consists of 60000 28×28 grayscale images of digits where the N = 784 pixels
of one image form an input vector x = (x1, x2, . . . , xN ). Each feature (a pixel, which is a scalar with
d = 1) in the grayscale image xj ∈ [0, 1], can be mapped using the following local feature spin map
ϕsj (xj)

ϕsj (xj) =
[︂
cos

π

2
xj , sin

π

2
xj

]︂
(2.6)

to a particular and higher dimensional feature space (from d = 1 dimension to d = 2). An
important thing to notice is that pixel values 0 and 1 are mapped to independent vectors in this new
feature space. Under a physical point of view, thus can be seen as the normalized wavefunction of a
single qubit where |1⟩ corresponds to a white pixel, |0⟩ to a black pixel and a superposition α |1⟩+β |0⟩
where α2 + β2 = 1 to a gray pixel. As a consequence, an image, which is by definition the collection
of N pixels, can be seen as a N -body unentangled wavefunction, given by the tensor product of N
rank-1 2-dimensional tensors. So, a natural total feature map is the product of N local feature maps
as

Φ(x)s1s2...sN = ϕs1(x1)⊗ ϕs2(x2)⊗ · · · ⊗ ϕsN (xN ) = (2.7)

where the indices sj run from 1 to the local dimension d, which is 2 in this particular case. A key
property of this space is that flipping a single pixel value from black to white results in an independent
image vector.

2.2.3 Multiple Label Classification

Since there are 10 classes (10 digits) we adopt a multiple label classification. We can interpret the
decision function (Eq. 2.5) as a set of functions, indexed by a label ℓ that stands for one of the 10
digits

f ℓ(x) =W ℓ · Φ(x) =
∑︂
s

W ℓ
s1s2...sN

Φs1s2...sN (x) (2.8)

To each label is associated a weight tensor W ℓ and it is optimised (Sec 2.2.5) during the training
procedure in order to obtain the best wave function W ℓ = |ψℓ⟩. Since we apply the same feature map
(Eq. 2.7) to all input data, the only quantity that depends on the label ℓ is exactly |ψℓ⟩. So when,
during the test, we predict a sample, we are calculating its feature vector overlap ⟨Φ(x)|ψℓ⟩ (Section
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(a) ≈ (b) = (c)

Figure 2.3: A multiple label classification model (a) approximated using an MPS topology (b). The contraction
of the weight tensor with a feature vector is the decision function f ℓ(x) (c), as said in Eq. 2.5. The label index
ℓ is placed arbitrarily on one of the MPS tensors but can be moved to other locations. [9]

1.3.4) for all labels ℓ and we further classify the input x by choosing the label ℓ for which |f ℓ(x)| is
largest.

2.2.4 MPS approximation

Once the weights have been organised into a TN structure through W ℓ, a way to handle the
curse of dimensionality must be found. In fact, taking the spin map ϕsj (xj) : R → R2 (d = 2), the
components of W ℓ scales exponentially in the input size N : Nℓ 2

N . As N grows, the tensor becomes
quickly unmanageable. The strategy pursued to solve this nuisance is to represent this tensor as a
TN, because we can approximate the exponentially large set of components in terms of a much smaller
set of parameters whose number grows only polynomially in the dimension of the input space. As
depicted in Fig. 2.3, for MNIST classification W ℓ has been written as a MPS tensor network

W ℓ
s1s2...sN

=
∑︂

α1...αN−1

T 1
s1α1

T 2
s2α1α2

. . . T ℓ;j
sjαjαj+1

. . . TN
sNαN−1

(2.9)

so that we deftly pass from Nℓ 2
N to NℓN 2χ3 components of W ℓ (where χ is the already discussed

bond dimension, see Section 1.3.1 and Fig. 2.3). The label index ℓ is placed arbitrarily on one of the
MPS tensors but can be moved to other locations [9].

2.2.5 Weights optimisation algorithm

According to Sections 2.1.2 and 2.1.3 we have to implement the cost function into the TN and
minimise it by optimising each tensor. Picking always the square loss as loss function and defined the
training set S ∈ X with m features xi with their label yi, then in TN formalism Eq. 2.2 become

LS(h) =
1

2

m∑︂
i=1

∑︂
ℓ

(f ℓ(x)− δℓyi)
2 (2.10)

where δℓyi = 1 is a Kronecker’s delta that is 1 if yi = ℓ and 0 in the other cases. Each tensor can be
optimised by minimising this cost function. Given, for example, the tensor T ∗ and following Section
1.3.3, we calculate the gradient of Eq. 2.10 with respect to this tensor

∂

∂T ∗LS =
m∑︂
i=1

∑︂
ℓ

(f ℓ(x)− δℓyi)
∂f ℓ(x)

∂T ∗ =
m∑︂
i=1

∑︂
ℓ

(f ℓ(x)− δℓyi)T̃
∗
= T̂

∗
(2.11)

The update rule, where α ∈ R is the learning rate hyper-parameter, is then

T ∗
new = T ∗

old − αT̂
∗

(2.12)

The optimisation algorithm then sweeps back and forth along the TN in order to do this to all the
tensors involved. A complete sweep constitutes an epoch of the training and after each epoch we can
measure the overall performances by computing the accuracy over the training set S and over the
validation set T .



Chapter 3

Random and pseudo-random number
generation

Anyone who considers arithmetical methods
of producing random digits is, of course, in
a state of sin.

Various techniques used in connection with
random digits, John Von Neumann, 1951.

Commonly, randomness is the lack of pattern or predictability in events of any kind. It was only in
the sixteenth century, with the advent of calculus, that randomness was defined more specifically and
included in a new formal framework, namely probability theory. Although randomness and uncertainty
are often viewed as an obstacle, today random numbers have a fundamental role in many fields such
as cryptography, Monte Carlo simulations [2] and research methods in general [1]. Being aware that
randomness is a broad argument, the purpose of this chapter is to briefly illustrate the differences
between two ways in which random numbers can be generated (PRNGs vs QRNGs) and to give the
key ideas on two ways to generate them exploiting quantum mechanical properties (Section 3.2.1).

3.1 Pseudo Random Number Generators (PRNGs)

A PRNG, also known as deterministic random bit generator (DRBG), is nothing more than a
mathematical formula producing periodic sequences of numbers (PRNs) that are completely deter-
mined by the initial state called seed. Although the output binary sequences are usually perfectly
balanced between 0 and 1, the algorithm used to generate numbers inserts strong long-range corre-
lation, which can undermine cryptographic security. Furthermore, the knowledge of the arithmetical
algorithm and the particular seed allow to reproduce a certain sequence of numbers, since there exists
a one-to-one correspondence between the two.

If a large amount of these numbers is needed, computers are involved and they admirably do this
job by making use of Pseudo Random Number Generators (PRNGs).

In this work, the tool used for generating PRNs is Python’s random module, which uses the
Mersenne Twister PRNG algorithm as its core generator [11]. Its name derives from the fact that its
period length (P) is chosen to be a Mersenne prime, specifically P = 219937 − 1.

3.2 Truly Random Number Generators (TRNGs)

For many application, unpredictability is a fundamental requisite; therefore, in literature can be
found plenty of ways to generate truly random numbers [12]. Here, we briefly explain how quantum
mechanical systems can be used to generate truly random numbers [13], motivated by the fact that
quantum random numbers (QRNs) will be used in the final chapter.

9
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(a)

(b) (c)

Figure 3.1: (a) Circuit implemented in the five-qubit IBM quantum computer: Hadamard gate are applied
to a |0⟩ quantum state to have a quantum superposition, which is then measured giving a string of five truly
random bit. (b) After passing through a symmetric beam splitter (BS), a photon exists in a superposition of
transmitted (T) and reflected (R) paths (|R⟩+ |T ⟩)/

√
2. (c) Random bits generation expoloiting single photon

polarization degree of freedom.

3.2.1 Quantum Random Number Generators (QRNGs)

In quantum mechanics, a two-level system can be prepared in a superposition of the (measurement)
basis states. According to Born’s rule, the measurement outcome of this particular quantum state
can never be predicted better than blindly guessing. Therefore, the nature of inherent randomness in
quantum measurements can be exploited for generating true random numbers.

In this work we used two different types of QRNGs: one developed by the Information Engineering
Department (DEI) at the University of Padova (UniPD) [14] and a five-qubit quantum computer of
the IBM Q Experience, through the open-source framework for quantum computing Qiskit [15]. We
see here briefly an implementation based on a single photon detector which is at the base of the more
complex platform developed at DEI [14]. As a matter of interest, besides optical systems, there have
also been proposals for QRNG based on radioactive decays or atomic quantum systems.

IBM Quantum Computer

The IBM Quantum Experience provides the possibility to use one of his quantum computer through
Qiskit, an open source software development kit for working with quantum computers at the level of
pulses, circuits and algorithm. Among all the different backends, we chose the five-qubit quantum
computer named ibmq london, we applied to each qubit a Hadamard gate to obtain quantum super-
position (in the Bloch sphere, we are mapping the vector |0⟩ in the Z basis to the vector |+⟩ in the X
basis)

H |0⟩ = |0⟩+ |1⟩√
2

= |+⟩ (3.1)

and then we measured all the five registers thus obtaining 5 truly random bits (see Fig. 3.1a).

Single Photon Detector

High-quality optical components can be found with a relative low costs and together with the
potential of chip-size integration, most of today’s practical QRNGs are implemented in photonic
systems. For example, a photon can be encoded with information about a two-level quantum system,
that is a qubit by definition, using its polarization. A single photon can be described as having
horizontal or vertical linear polarization, or a superposition of the two (see Fig. 3.1c). A polarising
beam splitter (PBS) then transmits the horizontal and reflects the vertical polarisation. For random
bit generation, the photon is measured by two single-photon detectors (SPDs). There exists also
path-based QRNG (see Fig. 3.1b), where a photon, after passing through a symmetric beam splitter
(BS), exists in a superposition of transmitted (T) and reflected (R) paths.



Chapter 4

Test on random numbers

In this chapter we apply TNML to solve the problem of distinguishing between correlated, pseudo-
random, truly random sequences of numbers. For this purpose we build and train a bTTN. The work
is divided in two main parts: we first perform a distinction between PRNs and correlated sequences.
Then, we also describe and try to address a similar approach to the distinction between sequences of
PRNs and QRNs.

4.1 Pseudo Random vs Correlated sequences

4.1.1 Data preparation and model description

The dataset X ×L (feature space times label space) consists of 100 thousand PRNs sequences and
100 thousand sequences of correlated numbers. Both sequences are made of numbers containing the
label information (ℓ = 0 for PRNs and ℓ = 1 for correlated) and 32 real numbers xj ∈ [0, 1] with four
decimal digits. PRNs sequences are created as described in Sec. 3.1.

On the other hand, correlated numbers are created in eight equiprobable different ways, where
each one is randomly chosen by means of another PRNG. It is important to point out that each
kind of correlation we introduce is characterised by a certain periodicity P and that six out of eight
different ways correlate numbers with the same fixed period (that will be visualised later on in Fig.
4.3 when computing sites correlations). By correlating numbers we mean, for example, that we take
two numbers randomly and the third as the sum, or difference, or multiplication of the previous two,
until 32 is reached (in this case we say that the sequence has P = 3). The two out of eight procedures
remaining correlate numbers with P = 2.

We define the training set S ⊂ (X × L), which contains a fraction of 4/5 of the entire dataset,
while the remaining 1/5 forms the test set T ⊂ (X × L) : S ∩ T = 0. Sequences of numbers are
then mapped to the feature space using the same spin map described in Eq. 2.6. The weight tensors
W ℓ, written by using a bTTN topology (Section 1.3.2), are then optimised using a conjugate gradient
descent, which is a more sophisticated version of the vanilla method described in Sec. 2.1.3 and Sec.
2.2.5. Notice that there exist other stocastic gradient descent that can be explored, but we leave their
exploration as an outlook for our work.

4.1.2 Confidences

We cast the classification problem to a probability calculus on a quantum state, written in a fixed
basis. In a quantum mechanical framework, as stated also in Section 2.2.3, our trained network can
be seen as the quantum superposition state |ψTTN ⟩ = c0 |ψ0

TTN ⟩ + c1 |ψ1
TTN ⟩ where c20 + c21 = 1. In

this case, |ψ0
TTN ⟩ and |ψ1

TTN ⟩ play the role of two optimised weight tensors W 0 and W 1. Given a
sequence x ∈ T , we define the confidence as the probability P ℓ(x) ∈ [0, 1] that x is a correlated or
pseudo random number sequence, respectively, namely

P ℓ(x) =
| ⟨Φ(x)|ψℓ

TTN ⟩ |2∑︁1
ℓ=0 | ⟨Φ(x)|ψℓ

TTN ⟩ |2
(4.1)
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Figure 4.1: Confidences in prediction. In red are reported wrongly classified sequences, in green the one classified
correctly, and in grey all the sequences contained in the test set T . In the left side (a) we have a well trained
bTTN classifier. Here, max bond dimension is χ = 25 and for each tensor the number of optimization steps is
Npass = 12. On the right (b), instead, is shown the confidences plot of a bad model, that is, the one trained for
the distinction between QRNs and PRNs (see Section 4.2), with the same hyper-parameter.

where we normalised the results since the output of the contraction is not normalised. Since Eq. 4.1
gives a confidence both for ℓ = 0 and ℓ = 1 and the two classification labels are exactly the boundaries
of the interval in which probability is normalised, we plot in grey in Fig. 4.1 all the confidences for
ℓ = 0 (e.g., if P 0(x) = 0.12 we known for certain that x is associated to ℓ = 1 with 1−P 0(x) = 0.88).
All the confidences have subsequently been compared with the true labels of the sequences and thus
the green and orange histograms are built. Our bTTN model shows a flatter distribution in terms of
wrongly classified data (e.g., when a PRNs sequence with ℓ = 0 is classified as ℓ = 1). Remarkably
though, the model behaves differently when dealing with correctly classified sequences, indicating with
the two peaks at the boundaries that the bTTN is very confident when predicting the correct label.

4.1.3 bTTN model validation

In order to validate our classification model we made use of two well-known tools of predictive
analytics and performance measurements: the confusion matrix and the Receiving Operator Charac-
teristic (ROC) curve. The first one, reported on Fig. 4.2a, shows that the model is able to associate a
sequence to its correct label. In order to check the ability of the bTTN to classify whether a sequence is
made of PRNs or contains correlations, we consider the ROC curve. Therefore, we define TP (TN) and
FP (FN) as the number of the true positive (negative) and the false positive (negative) classifications
made by the machine after the training. Then, we plot the rate of correctly tagged sequences (defined
as True Positive Rate TPR = TP/(TP + FN)) against the rate of wrongly tagged sequences (defined
as False Positive Rate FPR = FP/(FP + TN)). By changing the acceptance probability threshold we
obtain the orange curve shown in Fig. 4.2a. In order to quantify the efficiency of our classificator
we compare it with the so-called line of no-discrimination, which represents the ROC of a randomly
guessing classifier. To compare different classifiers, it can be useful to summarize the performance of
each classifier into a single measure. One approach is to calculate the Area Under the Curve (AUC).
It is equivalent to the probability that a randomly chosen positive instance is ranked higher than a
randomly chosen negative instance. In other words, higher the AUC, better the model is at predicting
0s as 0s and 1s as 1s. In our case, AUC = 0.818, so we have another way to validate our model.
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Figure 4.2: Confusion matrix (a) and ROC curve (b) of the PRNs vs correlated distinction (orange), compared
with the line of no-discrimination (dotted-navy-blue line). ROC curve (c) of the QRNs vs PRNs distinction,
discussed in Section 4.2.



Chapter 4. Test on random numbers 13

4.1.4 Correlations and Entropies

Thanks to the bridge between TNML and quantum physics and according to what said in Section
1.3.4, one can compute quantities of interest on a TN and relate them to the classification problem
under investigation. We start by computing the correlations contained in the TN after the training
procedure, over pair of sites of the bottommost layer. In the following graphs we are calculating the
expectation value of the product of two σz over a pair of sites i and j according to Sec. 1.3.4, and this
can be represented as

Cℓℓ′
ij = =

⟨ψℓ′
TTN |σz,iσz,j |ψℓ

TTN ⟩√︂
⟨ψℓ′

TTN |ψℓ′
TTN ⟩ ⟨ψℓ

TTN |ψℓ
TTN ⟩

(4.2)

where the normalisation is required because tensors are not already normalised. By doing this opera-
tion, over all the possible combinations of two sites, we obtain Figs. 4.3. The first thing that catches
the eye in Fig. 4.3a is that the periodicity of the sequences used during the training emerge in the
correlations.
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Figure 4.3: For all the figures, in the x-axis we put |ψℓ
TTN ⟩, in the y-axis ⟨ψℓ′

TTN | and in the z-axis the result

of Cℓℓ′

ij . Two-sites correlations on the correlated sequences bTTN (a) (ℓ = 1) trained on 200 thousand numbers
sequences with P = 3. Two-sites correlations on the correlated numbers sequences bTTN (b) (ℓ = 1) and on
the PRNs sequences bTTN (c) (ℓ = 0) both trained on 1 million of the same sequences used in (a). The increase
of the dataset size allows the less-probable correlation with P = 2 to be observed. (χ = 25, Npass = 12).

Other simulations are made varying only the dataset size. In particular, the biggest one involves 1
million of sequences with P = 3, and the result on correlations is reported in Fig. 4.3b,c. On heatmap
b, we can observe how the less-probable correlations with P = 2 emerge. The additional 16 × 16
triangles that appears (Fig. 4.3a) under the main pattern, are not related to sequences correlations
and might be due to noise introduced by the hierarchical structure of the bTTN. In fact, as the dataset
enlarges (Fig. 4.3c), triangles become smaller, indicating that the noise affects gradually lower tensors.

Another way to quantify correlations in number sequences is computing the entropy of the weight
states. In Fig. 4.4 the entropy of each tensor belonging to the five different layers of the bTTN.
The bottommost layer of the two graphs displays the entropies of the features, which reflects the
information of the input vector connected below. Higher layers correspond instead to the mutual
information of the input features connected from below. In the ML context, if the features in one
bipartition provide no valuable information for distinguishing between the given classes, the entropy is
zero. On the other hand, S increases the more information between the two bipartitions are exploited.
The entropy information can be useful to optimise the learning procedure: whenever S = 0, the
feature can be discarded with no loss of information for the classification and a new, more efficient
model with features and tensors can be introduced. On the contrary, whenever a bipartition entropy
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is high, highlights which features are important for the correct predictions. In short, if the entropy of
a feature bipartition is low, we can discard one of them providing negligible loss of information.
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Figure 4.4: Single-tensor entropies. On the left, entropies of a bTTN trained on sequences with P = 3. Same
on P = 5 on the right. It is interesting to observe how entropy increases climbing the hierarchical structure and
how the sequences period is reflected on the feature layer (5.0).

We can observe how in the subjacent layer of both (a) and (b) in Fig. 4.4 entropies are periodic.
This highlights the fact that the bulk of information is stored in the feature that contains the sum of
the previous 2 (4) features in case of P = 3 (P = 5).

4.2 Quantum Random vs Pseudo Random

As a final step, we have tried to train our machine in order to distinguish between sequences of
pseudo-random and truly random numbers. The sequences we have used are those taken generated
according to Sec. 3.1 and Sec. 3.2.1.

The first performed comparison was between QRNs and correlated numbers sequences. The result
is similar to the one between PRNs and correlated number sequences in terms of test accuracy (an
average of 74.38% and 74.69% in five epochs for QRNs and PRNs vs correlated number sequences
respectively) and in terms of correlations and entropies. This result shows how QRNs and PRNs
perform in the same way against correlated number sequences.

Finally, we tried to distinguish QRNs from PRNs. An initial approach, following Section 4.1.1
where correlated number sequences are replaced with QRNs sequences and PRNs sequences remains
the same, returned a model unable to distinguish between the two kind of sequences, or rather the
test accuracy with which the bTTN tries to associate a sequence to its correct label is less than 50%.

The second approach was to build PRNs sequences collecting one number every 50000 generated.
In this way, a larger amount of number is exploited to find differences from the QRNs in terms of
long range correlation, but the model was still unable to recognise and correctly label the sequences.
In Fig. 4.1b we plot the confidence graph related to this last case: the network has been able to find
a wrong guessing frequency on the train set S and the results on the test set T shows two bins in 0
and 1 with the same height for wrongly and correctly classified data. Furthermore, in Fig. 4.2 we plot
the ROC curve of this model. The curves confirm that our classifier model is not able to distinguish
between truly random and pseudo random numbers sequences. A last comment can be made on a
last approach we pursued: in this case, each feature in the PRNs sequences is defined as the sum of
50000 PRNs and, after a proper normalisation between 0 and 1, each of these has been used to form
50000 sequences 64 numbers long. In this way, we obtained a good distinction between the two classes
(around 90% test accuracy) but we may have mistakenly inserted biases within the dataset. Anyway,
the research is still proceeding in this direction.



Conclusions

In this work we have shown a working application of a tensor network machine learning algorithm.
Thanks to the properties of tensor network machine learning algorithm and its connection of tensor
network with quantum physics, we have been able to cast a machine learning classification task to
a probability calculus on TNs quantum states. This bridge allowed us to calculate correlations and
entropies on TNs quantum states, associated to the classification weights, making us able to understand
the emerging patterns in terms of the correlation period inserted within the sequences. These new
operations represent a huge step in terms of interpretability in machine learning and bring with them
the possibility of opening doors on new statistical analysis on number sequences.

We have been able to reach a solid distinction between correlated sequences and pseudo (quantum)
random numbers and these results can be used, among the many different possibilities, to investigate
sequences containing longer correlation periods.

The comparison between quantum and pseudo random numbers is instead much harder and this
is due to multiple factors. First of all, it is important to point out that the tensor network machine
learning approach used in this work is very recent and the code implementation, made by the Quantum
Theory Group of the University of Padua during the last year, is still under development. For example,
we are still being limited to a bounded number of features: we cannot create sequences of as many
number as we want. This is different from using an already well-known and tested model such as
the AlexNet Convolutional Neural Network (CNN) or others. Moreover, better statistical gradient
descent are known and can be implemented in our code to make it perform better.

Furthermore, Python’s Marsenne Twister pseudo random number generator is tested to generate
strong random numbers within the huge period, so it is in principle a difficult challenge to distinguish a
very small set of them contained in P from quantum random numbers. Remarkably though, during the
distinction between correlated number sequences and pseudo random numbers in Sec. 4.1.4 (precisely
in Fig. 4.3), we have observed how less-probable correlations contained in number sequences emerge
when increasing the input size and so, an outlook for the future in the distinction quantum vs pseudo
random number sequences would be to be able to use a larger amount of numbers. We could not use
as many numbers as we wanted also because of the trade-off between the dataset size and the provided
computing power.

Also a comparison with traditional deep neural networks should be done to see if they perform
differently, as happened in [4], where the two different approaches result in similar outcomes in terms of
prediction performances but the underlying information used by the two discriminators was inherently
different.
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